WO2012109871A1 - Dispositif récepteur cohérent et procédé de compensation de dispersion chromatique - Google Patents

Dispositif récepteur cohérent et procédé de compensation de dispersion chromatique Download PDF

Info

Publication number
WO2012109871A1
WO2012109871A1 PCT/CN2011/077885 CN2011077885W WO2012109871A1 WO 2012109871 A1 WO2012109871 A1 WO 2012109871A1 CN 2011077885 W CN2011077885 W CN 2011077885W WO 2012109871 A1 WO2012109871 A1 WO 2012109871A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
optical signal
modulated optical
coherent receiver
receiver device
Prior art date
Application number
PCT/CN2011/077885
Other languages
English (en)
Chinese (zh)
Inventor
刘宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES11849899.7T priority Critical patent/ES2442778T3/es
Priority to EP11849899.7A priority patent/EP2518914B1/fr
Priority to PCT/CN2011/077885 priority patent/WO2012109871A1/fr
Priority to CN201180001753.9A priority patent/CN102326344B/zh
Priority to US13/565,458 priority patent/US8861979B2/en
Publication of WO2012109871A1 publication Critical patent/WO2012109871A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6161Compensation of chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/252Distortion or dispersion compensation after the transmission line, i.e. post-compensation

Definitions

  • the present invention relates to the field of communications, and in particular, to a coherent receiver device and a dispersion compensation method. Background technique
  • FIG. 1 A typical polarization multiplexed coherent receiver is shown in Fig. 1.
  • the received optical signal is divided into X and y signals by polarization splitter 101 and sent to 90, respectively.
  • the mixers 103x and 103y through the photodetector 104 (PD shown in Fig. 1), the analog-to-digital conversion module 105 (A/D shown in Fig. 1), obtain a N-sample (N is usually 2) digital signal.
  • the x and y dispersion compensation modules 106x and 106y are input separately to complete the dispersion compensation.
  • the dispersion-compensated signal input is subjected to polarization demultiplexing and equalization by a polarization compensation module 107 composed of a 2*2 butterfly filter.
  • the equalized signals are input to the phase recovery modules 108x and 108y, respectively, and the decoding modules 109x and 109y restore the original bit stream.
  • 107 usually uses an adaptive filter.
  • the coefficient update module 110 is used to update 107 filter coefficients in real time.
  • the dispersion compensation module performs dispersion compensation, it needs to predict the dispersion value to determine the compensation transfer function.
  • the existing architecture needs to scan various possible dispersion values in the electrical layer to find a pointer ( The optimum dispersion value, such as BER/Q, is compensated for this dispersion value.
  • the present invention provides a coherent receiver device and a dispersion compensation method.
  • the present invention can perform dispersion monitoring in an optical layer to improve the speed of dispersion compensation.
  • a coherent receiver device provided by an embodiment of the present invention includes a polarization beam splitter and a color a dispersion compensation module, characterized in that
  • the beam splitter is configured to split the modulated optical signal received by the coherent receiver device to the dispersion monitoring module and the polarization beam splitter;
  • the dispersion monitoring module is configured to perform dispersion monitoring on the modulated optical signal sent by the optical splitter to determine a dispersion range of the modulated optical signal received by the coherent receiver device, and cause the dispersion compensation module to monitor the dispersion Dispersion compensation is performed within the dispersion range monitored by the module.
  • the dispersion compensation module Based on the determined range of dispersion, the dispersion compensation module performs dispersion compensation within the dispersion range.
  • a part of the modulated optical signal is separated from the modulated optical signal to be coherently received by the optical splitter as dispersion monitoring initial data, and a dispersion monitoring module is disposed behind the optical splitter to split the modulated optical signal.
  • Performing dispersion monitoring to determine a range of excellent dispersion so that the subsequent dispersion compensation module can perform dispersion compensation within the determined dispersion range, thereby narrowing the search range of dispersion compensation and improving the speed of dispersion compensation.
  • the dispersion compensation module finds more accurate dispersion compensation values within a limited range.
  • FIG. 1 is a schematic structural block diagram of a prior art coherent receiver device
  • FIG. 2 is a block diagram showing the structure of an embodiment of the coherent receiver device of the present invention
  • FIG. 3 is a block diagram showing the structure of an embodiment of the dispersion monitoring module of FIG.
  • FIG. 4 is a block diagram showing the structure of another embodiment of the dispersion monitoring module of FIG. 2;
  • FIG. 5 is a flow chart showing an embodiment of a dispersion compensation method for a coherent receiver device of the present invention;
  • Figure 6 is a flow chart showing another embodiment of the dispersion compensation method of the coherent receiver device of the present invention.
  • the coherent receiver device of the present invention includes a polarization beam splitter 101, mixers 103x and 103y, a photodetector 104, and an analog-to-digital conversion module 105 included in the coherent receiver device of the prior art.
  • a dispersion compensation module 106x and 106y a polarization compensation module 107 composed of a 2*2 butterfly filter, phase recovery modules 108x and 108y, decoding modules 109x and 109y, and a coefficient update module 110, in addition, as shown in FIG. 2,
  • the coherent receiver device of the present invention further includes a beam splitter 100 and a dispersion monitoring module 111.
  • the beam splitter 100 is disposed before the polarization beam splitter 101, and the dispersion monitoring module 111 is disposed in the beam splitter 100 and the Between the dispersion compensation modules 106x and 106y, the optical splitter 100 is configured to split the modulated optical signal received by the coherent receiver device and send the modulated optical signal to the dispersion monitoring module 111 and the polarization beam splitter 101.
  • the dispersion monitoring module 111 is configured to perform dispersion monitoring on the modulated optical signal sent by the optical splitter 100 to determine a modulated optical signal received by the coherent receiver device. Dispersion range, and a dispersion compensating module 106x and 106y dispersion compensation within the dispersion range of the chromatic dispersion monitoring module 111 of the monitoring.
  • the present invention splits a small portion of the modulated optical signal by the optical splitter at the forefront of the coherent receiver device, and then uses the dispersion monitoring module to perform dispersion monitoring on the small portion of the modulated modulated optical signal to determine the approximate range of excellent dispersion, and The monitoring result of the dispersion monitoring module is provided to the dispersion compensation module for dispersion compensation.
  • the advantage of this is that the most suitable dispersion value can be found in the reduced dispersion range for dispersion compensation, which reduces the complexity of the dispersion compensation algorithm and improves the complexity. The speed of dispersion compensation.
  • a dispersion monitoring module with a monitoring range of +/- 30,000 ps/nm and a monitoring accuracy of +/- 2000 ps/nm can be used The calculation time is shortened to 1/16 of the original. If the monitoring accuracy is further improved, the calculation time can be further shortened.
  • the dispersion monitoring module 111 can implement dispersion monitoring by using a phase comparison method, a radio frequency power detection method, a nonlinear detection method, and the like, and FIG. 3 and FIG. 4 respectively show vestigial sidebands in the phase comparison method ( VSB) Clock phase shift detection method for specific implementation of dispersion monitoring and RF power detection.
  • the dispersion monitoring module 111 may include a first tunable optical filter (corresponding to TOF1 in FIG. 3), Two tunable optical filters (corresponding to TOF2 in FIG. 3), a first photodiode (corresponding to PIN1 in FIG. 3), a second photodiode (corresponding to PIN2 in FIG. 3), and a first clock recovery circuit (corresponding to FIG. 3) CDR1), a second clock recovery circuit (corresponding to CDR2 in FIG. 3), and a phase comparator (corresponding to IC1 in FIG.
  • the first tunable optical filter and the second dimming are respectively used to filter out the upper and lower sidebands of the double-sideband modulated optical signal sent by the optical splitter; in the specific implementation, the dimmable filter is not necessarily used, as long as it can be sent to the optical splitter. Both sideband modulated optical signals can be filtered by sideband filters.
  • the first photodiode and the second photodiode are respectively used for photoelectrically converting signals output by the first tunable optical filter and the second tunable optical filter; in specific implementation, other photoelectrics may be used.
  • the first clock recovery circuit and the second clock recovery circuit are respectively for using the first photodiode and the second photodiode
  • the clock signal is recovered from the data after the diode is photoelectrically converted
  • the phase comparator is configured to compare phase differences between the clock signals output by the first clock recovery circuit and the second clock recovery circuit, thereby obtaining a dispersion monitoring result.
  • the phase comparator may be a vector phase meter.
  • the upper and lower sidebands of the baseband data signal are directly filtered out, and the photodiode PIN is photoelectrically converted, and then received from the two vestigial sideband data.
  • the dispersion signal is recovered separately, and finally the phase difference between the two clock signals is compared to realize dispersion monitoring.
  • the dispersion monitoring module 111 can monitor by measuring the RF power on some preset frequencies (the preset frequency can be set by the user). Based on this, the dispersion monitoring module 111 can include a phase adjuster, a photodiode (corresponding to PIN3 in FIG. 4), and a radio frequency power detector, where: the phase adjuster is configured to adjust a tone transmitted by the optical splitter.
  • the radio frequency power of the modulated optical signal is changed;
  • the photodiode is configured to photoelectrically convert a modulated optical signal output by the phase adjuster; and the radio frequency power detector is configured to detect the photoelectric
  • the diode output data is a change in the RF power at a preset frequency to obtain a dispersion monitoring result.
  • the phase adjuster may be a Mach-Zehnder interferometer or a high birefringence fiber interferometer.
  • the photodiode can be replaced with other photodetectors.
  • the monitoring is performed by measuring the radio frequency power at some preset frequencies.
  • adding a Mach-Zehnder interferometer (MZI) or a high birefringence fiber interferometer at a monitoring point can monitor chromatic dispersion by directly measuring the amount of RF power at a fixed frequency of the baseband data signal. This fixed frequency depends on the delay of the MZI or the length of the high birefringence fiber.
  • MZI Mach-Zehnder interferometer
  • a high birefringence fiber interferometer at a monitoring point can monitor chromatic dispersion by directly measuring the amount of RF power at a fixed frequency of the baseband data signal. This fixed frequency depends on the delay of the MZI or the length of the high birefringence fiber.
  • Step S510 from the splitting The device receives one of the modulated optical signals after the splitter receives the modulated optical signal received by the coherent receiver device.
  • step S510 can be completed by TOF1 and TOF2 in the embodiment shown in FIG.
  • Step S511 Filter upper and lower sidebands of the double-sideband modulated optical signal sent by the optical splitter.
  • step S511 can be completed by TOF1 and TOF2 in FIG.
  • Step S512 the filtered upper and lower sideband signals are respectively photoelectrically converted.
  • step S512 can be completed by PIN1 and PIN2 in FIG.
  • Step S513, recovering one clock signal from each of the two signals obtained after performing photoelectric conversion.
  • step S513 can be performed by CDR1 and CDR2 in FIG.
  • Step S514 comparing the phase differences of the recovered two clock signals to obtain a dispersion monitoring result.
  • step S514 can be completed by IC1 in FIG.
  • Step S515, causing the dispersion compensation module to perform dispersion compensation within the dispersion range based on the determined dispersion range.
  • step S515 can be based on the comparison phase difference of the IC1 output in FIG. 3: 3 ⁇ 4.
  • the upper and lower sidebands of the baseband data signal are directly filtered out, and the photodiode PIN is photoelectrically converted, and then received from the two vestigial sideband signals.
  • the dispersion signal is recovered separately, and finally the phase difference between the two clock signals is compared to realize dispersion monitoring.
  • the subsequent dispersion compensation module performs dispersion compensation based on the monitored dispersion range.
  • FIG. 6 is a flow chart showing another embodiment of a dispersion compensation method of a coherent receiver device of the present invention.
  • the method of this embodiment performs dispersion monitoring by using a radio frequency power detection method.
  • the specific method of this embodiment includes:
  • Step S610 Receive, from the optical splitter, one of the optical signals after the splitter splits the modulated optical signal received by the coherent receiving device.
  • step S610 can be completed by the phase adjuster in the embodiment shown in FIG.
  • Step S611 Adjust a phase of the one modulated optical signal sent by the optical splitter to change a radio frequency power of the modulated optical signal.
  • step S611 can be completed by the phase adjuster in the embodiment shown in FIG.
  • Step S612 photoelectrically converting the phase-modulated modulated optical signal.
  • step S612 can be completed by PIN3 in the embodiment shown in FIG.
  • Step S613 detecting a change in the radio frequency power of the signal at the preset frequency output after the photoelectric conversion, thereby obtaining a dispersion monitoring result.
  • step S612 can be completed by the radio frequency power detector in the embodiment shown in FIG.
  • Step S614 causing the dispersion compensation module to perform dispersion compensation within the dispersion range based on the determined dispersion range.
  • step S614 can be based on the comparison phase difference of the IC1 output in FIG. 4: 3 ⁇ 4.
  • the monitoring is performed by measuring the RF power at some specific frequencies.
  • adding a Mach-Zehnder interferometer (MZI) or a high birefringence fiber interferometer at a monitoring point can monitor chromatic dispersion by directly measuring the amount of RF power at a fixed frequency of the baseband data signal. This fixed frequency depends on the delay of the MZI or the length of the high birefringence fiber.
  • MZI Mach-Zehnder interferometer
  • a high birefringence fiber interferometer at a monitoring point can monitor chromatic dispersion by directly measuring the amount of RF power at a fixed frequency of the baseband data signal. This fixed frequency depends on the delay of the MZI or the length of the high birefringence fiber.
  • a part of the modulated optical signal is separated from the modulated optical signal to be coherently received by the optical splitter as dispersion monitoring initial data, and a dispersion monitoring module is disposed behind the optical splitter to split the modulated light.
  • the signal is subjected to dispersion monitoring to determine a range of excellent dispersion, so that the subsequent dispersion compensation module can perform dispersion compensation within the determined dispersion range, thereby narrowing the search range of the dispersion compensation and improving the speed of dispersion compensation.

Abstract

La présente invention se rapporte au domaine des communications, en particulier elle se rapporte à un dispositif récepteur cohérent et à un procédé destiné à une compensation de dispersion chromatique, le dispositif comprenant un séparateur de faisceau polarisant, un module de compensation de dispersion chromatique, un séparateur optique en face du séparateur de faisceau polarisant et un module de surveillance de compensation de dispersion chromatique relié entre le séparateur optique et le module de dispersion chromatique ; le séparateur optique étant utilisé pour envoyer un signal optique modulé, reçu grâce au dispositif récepteur cohérent, vers le module de surveillance de dispersion chromatique et le séparateur de faisceau polarisant après la séparation ; et le module de surveillance de dispersion chromatique étant utilisé pour surveiller la dispersion chromatique sur le signal optique modulé envoyé par le séparateur optique afin de déterminer la plage de dispersion chromatique du signal optique modulé reçu par le dispositif récepteur cohérent, et pour amener le module de compensation de dispersion chromatique à exécuter une compensation de dispersion chromatique dans la plage de dispersion chromatique détectée par le module de surveillance de dispersion chromatique. La présente invention peut exécuter une surveillance de dispersion chromatique dans une couche optique et augmenter la vitesse de compensation de dispersion chromatique.
PCT/CN2011/077885 2011-08-01 2011-08-01 Dispositif récepteur cohérent et procédé de compensation de dispersion chromatique WO2012109871A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES11849899.7T ES2442778T3 (es) 2011-08-01 2011-08-01 Dispositivo receptor coherente y método de compensación de la dispersión cromática
EP11849899.7A EP2518914B1 (fr) 2011-08-01 2011-08-01 Dispositif récepteur cohérent et procédé de compensation de dispersion chromatique
PCT/CN2011/077885 WO2012109871A1 (fr) 2011-08-01 2011-08-01 Dispositif récepteur cohérent et procédé de compensation de dispersion chromatique
CN201180001753.9A CN102326344B (zh) 2011-08-01 2011-08-01 相干接收机装置及色散补偿方法
US13/565,458 US8861979B2 (en) 2011-08-01 2012-08-02 Coherent receiver apparatus and chromatic dispersion compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077885 WO2012109871A1 (fr) 2011-08-01 2011-08-01 Dispositif récepteur cohérent et procédé de compensation de dispersion chromatique

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/565,458 Continuation US8861979B2 (en) 2011-08-01 2012-08-02 Coherent receiver apparatus and chromatic dispersion compensation method

Publications (1)

Publication Number Publication Date
WO2012109871A1 true WO2012109871A1 (fr) 2012-08-23

Family

ID=45453090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077885 WO2012109871A1 (fr) 2011-08-01 2011-08-01 Dispositif récepteur cohérent et procédé de compensation de dispersion chromatique

Country Status (5)

Country Link
US (1) US8861979B2 (fr)
EP (1) EP2518914B1 (fr)
CN (1) CN102326344B (fr)
ES (1) ES2442778T3 (fr)
WO (1) WO2012109871A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071734A1 (fr) * 2011-11-14 2013-05-23 中兴通讯股份有限公司 Procédé et dispositif de compensation de la dispersion chromatique
EP2850749B1 (fr) * 2012-05-16 2017-11-29 Telefonaktiebolaget LM Ericsson (publ) Détermination de propriétés d'un trajet de communications optiques dans un réseau de communications optiques
CN102832995A (zh) * 2012-08-30 2012-12-19 华中科技大学 一种色散在线监测装置及测量方法
CN103713194B (zh) 2012-10-08 2016-08-03 富士通株式会社 一种用于时钟恢复的相位检测方法和装置
WO2014112516A1 (fr) * 2013-01-15 2014-07-24 日本電信電話株式会社 Système de communication cohérent, procédé de communication et procédé d'émission
CN104144018A (zh) * 2013-05-10 2014-11-12 中兴通讯股份有限公司 光接收装置及方法、光收发一体模块
WO2014194940A1 (fr) * 2013-06-05 2014-12-11 Huawei Technologies Co., Ltd. Récepteur optique cohérent
US20150256267A1 (en) * 2014-03-07 2015-09-10 Alcatel-Lucent Usa Inc. Optical receiver having a digital chromatic-dispersion compensator based on real-valued arithmetic
US9553717B2 (en) 2014-03-18 2017-01-24 Analog Devices Global Systems and methods for clock and data recovery
US9246669B2 (en) * 2014-05-22 2016-01-26 Analog Devices Global Apparatus and method for modular signal acquisition and detection
US9749125B2 (en) 2014-12-12 2017-08-29 Analog Devices Global Apparatus and method for clock generation
CN104767570B (zh) * 2015-03-26 2017-10-17 华中科技大学 一种偏振无关相干接收机
US9927575B2 (en) * 2015-06-25 2018-03-27 Huawei Technologies Co., Ltd. Optical coupling using polarization beam displacer
CN108141282B (zh) * 2015-10-26 2019-12-13 华为技术有限公司 一种时钟性能监控系统、方法及装置
CN106656314B (zh) 2015-10-31 2019-05-24 华为技术有限公司 一种监测光通信网络色散的方法及装置
JP7101569B2 (ja) * 2018-08-31 2022-07-15 住友電気工業株式会社 光受信装置の組立方法
JP6610742B1 (ja) * 2018-10-09 2019-11-27 Nttエレクトロニクス株式会社 適応等化装置、適応等化方法及び通信装置
US11742950B2 (en) * 2019-11-28 2023-08-29 Nippon Telegraph And Telephone Corporation Wavelength dispersion amount calculation apparatus and wavelength dispersion amount calculation method
WO2021238749A1 (fr) * 2020-05-29 2021-12-02 Huawei Technologies Co., Ltd. Procédé et appareil de traitement de signal, et récepteur cohérent
WO2023172536A1 (fr) * 2022-03-08 2023-09-14 Ii-Vi Delaware, Inc, Émetteur-récepteur optique à compensation de dispersion intégrée pour applications à débit binaire élevé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1482480A (zh) * 2002-09-13 2004-03-17 华为技术有限公司 偏振模色散补偿方法及其补偿器
JP2009296290A (ja) * 2008-06-05 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Pmd補償装置
CN101908932A (zh) * 2009-06-04 2010-12-08 华为技术有限公司 偏振模色散的补偿方法及装置
CN101322335B (zh) * 2005-12-20 2011-03-02 中兴通讯股份有限公司 一种自适应色散补偿装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7536108B2 (en) * 2001-06-29 2009-05-19 Nippon Telegraph & Telephone Corporation High precision chromatic dispersion measuring method and automatic dispersion compensating optical link system that uses this method
US6829549B2 (en) 2001-12-17 2004-12-07 Nortel Networks Limited Implementation of a post detection chromatic dispersion compensation transfer function
US6798500B2 (en) * 2002-03-05 2004-09-28 Jds Uniphase Corporation Method for estimation of chromatic dispersion in multichannel optical network spans and chromatic dispersion monitor therefore
US7382984B2 (en) * 2002-10-03 2008-06-03 Nortel Networks Limited Electrical domain compensation of optical dispersion in an optical communications system
US7606498B1 (en) * 2005-10-21 2009-10-20 Nortel Networks Limited Carrier recovery in a coherent optical receiver
EP2071747B1 (fr) * 2006-09-26 2015-02-18 Hitachi, Ltd. Récepteur de champ électrique optique et système de transmission optique
US8265491B2 (en) * 2008-09-22 2012-09-11 At&T Intellectual Property I, L.P. Method for improving the performance of digital coherent optical receiver using single ended photo-detection
JP5440686B2 (ja) * 2009-03-27 2014-03-12 富士通株式会社 波長分散を等化する装置および方法、並びにデジタルコヒーレント光受信器
JP5458826B2 (ja) * 2009-11-24 2014-04-02 富士通株式会社 分散補償装置、光受信装置、分散補償方法および光受信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1482480A (zh) * 2002-09-13 2004-03-17 华为技术有限公司 偏振模色散补偿方法及其补偿器
CN101322335B (zh) * 2005-12-20 2011-03-02 中兴通讯股份有限公司 一种自适应色散补偿装置及方法
JP2009296290A (ja) * 2008-06-05 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Pmd補償装置
CN101908932A (zh) * 2009-06-04 2010-12-08 华为技术有限公司 偏振模色散的补偿方法及装置

Also Published As

Publication number Publication date
US8861979B2 (en) 2014-10-14
CN102326344B (zh) 2014-03-12
CN102326344A (zh) 2012-01-18
EP2518914A1 (fr) 2012-10-31
EP2518914A4 (fr) 2013-02-27
ES2442778T3 (es) 2014-02-13
EP2518914B1 (fr) 2013-10-23
US20130034352A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
WO2012109871A1 (fr) Dispositif récepteur cohérent et procédé de compensation de dispersion chromatique
JP4583840B2 (ja) 遅延干渉計を微調整するための自動フィードバック制御方法および装置
JP4888567B2 (ja) コヒーレント光受信機
Winzer et al. Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM
EP3012984B1 (fr) Appareil et procédé de surveillance de la qualité de signal d&#39;un signal optique modulé
JP7121887B2 (ja) デジタルコヒーレント受信器およびそのスキュー調整方法
US7769299B2 (en) Chromatic dispersion monitoring method and chromatic dispersion monitoring apparatus, and optical transmission system
US8634727B2 (en) Coherent optical receiver, apparatus and method for detecting interchannel skew in coherent optical receiver
US8805208B2 (en) System and method for polarization de-multiplexing in a coherent optical receiver
JP5460618B2 (ja) 光学レシーバのための位相制御回路及び方法
US8903255B2 (en) Polarization-multiplexed signal receiver, polarization multiplexing system and polarization-multiplexed signal receiving method
WO2003007509A2 (fr) Controle de dispersion optique base sur le filtrage optique de bande laterale residuelle
JP2004356742A (ja) 信号波形劣化補償器
US8923707B2 (en) Apparatus for compensating optical signal impairments
CN105794129A (zh) 偏振无关相干光接收器
JP2002223190A (ja) 信号受信方法
JP2012090262A (ja) 平均長さ検知装置、および方法
WO2007131401A1 (fr) Dispositif et procédé de détection de dispersion, et système de transmission de signaux optiques
JP2008092123A (ja) 1次偏波モード分散の補償方法および補償器、並びに、それを用いた光伝送システム
JP5471241B2 (ja) 光信号品質モニタ装置
JP6657700B2 (ja) 干渉除去装置及び干渉除去方法
Diniz et al. Hardware-efficient chromatic dispersion estimator based on parallel Gardner timing error detector
JP2014165728A (ja) 光受信器
JP5861516B2 (ja) 光伝送装置及び特性補償方法
US8131161B2 (en) DPSK optical receiver

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001753.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011849899

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE