WO2012108526A1 - グラフェンの製造方法およびグラフェン - Google Patents

グラフェンの製造方法およびグラフェン Download PDF

Info

Publication number
WO2012108526A1
WO2012108526A1 PCT/JP2012/053098 JP2012053098W WO2012108526A1 WO 2012108526 A1 WO2012108526 A1 WO 2012108526A1 JP 2012053098 W JP2012053098 W JP 2012053098W WO 2012108526 A1 WO2012108526 A1 WO 2012108526A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
band
copper foil
organic substance
plasma treatment
Prior art date
Application number
PCT/JP2012/053098
Other languages
English (en)
French (fr)
Inventor
貴壽 山田
金 載浩
正統 石原
古賀 義紀
雅考 長谷川
飯島 澄男
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to KR1020137018929A priority Critical patent/KR101939615B1/ko
Priority to EP12745110.2A priority patent/EP2674396B1/en
Priority to JP2012556939A priority patent/JP5686418B2/ja
Publication of WO2012108526A1 publication Critical patent/WO2012108526A1/ja
Priority to US13/963,369 priority patent/US9156699B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]

Definitions

  • the present invention relates to a graphene production method and graphene for use in a transparent conductive film and the like.
  • the conductive planar crystal with SP2 bonded carbon atoms is called “graphene”.
  • the graphene is described in detail in Non-Patent Document 1.
  • Graphene is the basic unit of various forms of crystalline carbon films. Examples of crystalline carbon films using graphene include single-layer graphene using one layer of graphene, nanographene that is a stack of several to ten layers of nanometer-sized graphene, and a graphene stack of several to several tens of layers Are carbon nanowalls (see Non-Patent Document 2) that are oriented at an angle close to perpendicular to the substrate surface.
  • a crystalline carbon film made of graphene is expected to be used as a transparent conductive film or a transparent electrode because of its high light transmittance and electrical conductivity. Furthermore, the carrier mobility of electrons and holes in graphene can be up to 200,000 cm 2 / Vs, which is 100 times higher than that of silicon at room temperature. Development of ultra-high-speed transistors aiming at terahertz (THz) operation by taking advantage of the characteristics of graphene is also underway. As for the production method of graphene, the exfoliation method from natural graphite, the desorption method of silicon by high-temperature heat treatment of silicon carbide, and the formation method on various metal surfaces have been developed. The transparent conductive carbon film using a carbon film has been studied for a wide variety of industrial applications.
  • Non-Patent Documents 3 and 4 a method of forming graphene by chemical vapor deposition (CVD) on the surface of copper foil has been developed (Non-Patent Documents 3 and 4).
  • the graphene film forming method based on this copper foil is based on the thermal CVD method, and methane gas as a raw material gas is thermally decomposed at about 1000 ° C., and one to several layers are formed on the surface of the copper foil. It forms graphene.
  • the graphene production method by CVD basically uses a gaseous raw material such as methane gas.
  • a raw material of graphene solid raw materials such as various resins may be used, but it is difficult to use them by CVD.
  • CVD using gas as a raw material it is difficult to produce graphene on a specific part of the base material and form a pattern, and therefore processing for forming a pattern after producing graphene on the base material is difficult. There was a need to do.
  • a resin carbonization is carried out by forming a polymethylmethacrylate (PMMA) film on a copper foil by coating and heating it in a mixed gas atmosphere of hydrogen and argon at 800 ° C to 1000 ° C.
  • PMMA polymethylmethacrylate
  • the formation method of graphene using the copper foil as a base material by the thermal CVD method and the resin carbonization method is considered promising as an industrial production method of graphene.
  • this technique is a process by thermal CVD at a high temperature close to the melting point of 1080 ° C. of copper, there is a problem that the shape of the copper foil surface changes due to copper evaporation or recrystallization during graphene film formation. found.
  • film formation is performed while continuously feeding a roll-shaped base material to a film formation region, and film formation while winding with a winding roll.
  • the technique by the thermal CVD method and the resin carbonization method is difficult to apply because the substrate becomes high temperature.
  • the present invention has been made in view of the above circumstances, and is a problem of conventional graphene film formation by thermal CVD and resin carbonization, which is a high temperature process and a long process time. It is an object of the present invention to provide a method for solving the problem and forming graphene at a lower temperature in a shorter time.
  • the present inventors have found a new method for forming graphene at a low temperature in a short time. It has been found that it can be formed in a short time and can solve the above-mentioned problems in the prior art.
  • a metal substrate coated with an organic substance is subjected to a plasma treatment using a gas containing hydrogen under reduced pressure by setting the temperature in the microwave surface wave plasma processing apparatus to 500 ° C. or less, and the organic substance
  • a method for producing graphene, comprising growing graphene on a surface [2] The surface of the organic material is subjected to a plasma treatment using a gas containing hydrogen under reduced pressure by setting the temperature in the microwave surface plasma processing apparatus to 500 ° C. or lower on the metal substrate coated with the organic material.
  • a method for producing graphene comprising: stacking a graphene on a metal base material on which graphene is grown and forming a laminate; and peeling the graphene from the metal base material.
  • the method for producing graphene according to [1] or [2], wherein the organic substance is polymethyl methacrylate or benzotriazole [4]
  • the metal substrate is a copper thin film Graphene obtained by the method for producing graphene according to any one of [5] [1] to [4], wherein the graphene production method according to any one of [1] to [3] [6] A metal substrate coated with an organic substance used in the graphene production method according to any one of [1] to [4].
  • the problem of conventional graphene film formation by thermal CVD and resin carbonization which is a high temperature process and a long process time, is solved, and graphene is formed at a lower temperature in a shorter time It becomes possible to do. Since it can be synthesized in a large area at a low temperature by the method of the present invention, a transparent conductive film for touch panel use, a semiconductor device or an electronic device such as a transistor or an integrated circuit, a transparent electrode, an electrochemical electrode, or a biodevice requiring a large area Application to such as is possible.
  • Example 3 Raman scattering spectrum of graphene formed on copper foil coated with methyl methacrylate as organic substance Raman scattering spectrum of graphene formed on copper foil coated with benzotriazole as organic material in Example 3
  • Example 4 Raman scattering spectrum of graphene formed on copper foil coated with methyl methacrylate as organic substance
  • Example 4 Raman scattering spectrum of graphene formed on copper foil coated with benzotriazole as organic material
  • heat treatment was performed on copper foil coated with methyl methacrylate as an organic substance, and the Raman spectrum of the sample.
  • graphene is produced by modifying the organic substance by the action of charged particles and electrons generated by plasma and the catalytic function of a metal such as nickel, copper, iridium, and platinum. It is formed. Therefore, it is possible to form graphene at a lower temperature and in a shorter time as compared with the conventional resin carbonization method.
  • the graphene of the present invention can be obtained mainly by employing specific production conditions. In order to produce the graphene, it is possible to form the graphene at a lower temperature in a shorter time by performing plasma treatment on the metal foil coated with an organic substance. A film having a large area can be formed by using a copper foil in which an organic material is applied to a base material or by using a surface wave microwave plasma method.
  • a metal having a catalytic function such as nickel, copper, iridium, or platinum can be used.
  • a metal having a catalytic function such as nickel, copper, iridium, or platinum can be used.
  • a temperature sufficiently lower than the melting point of copper 1080 ° C.
  • Normal microwave plasma treatment is performed at a pressure of 2 ⁇ 10 3 to 1 ⁇ 10 4 Pa.
  • the plasma is difficult to diffuse and the plasma concentrates in a narrow region, so that the temperature of the neutral gas in the plasma becomes 1000 ° C. or higher. Therefore, the temperature of the copper foil substrate is heated to 800 ° C. or more, and copper evaporation from the copper foil surface increases. Therefore, it cannot be applied to the production of graphene.
  • there is a limit to uniformly expanding the plasma region and it is difficult to form highly uniform graphene over a large area. Therefore, in order to keep the temperature of the copper foil substrate during film formation low and to form highly uniform graphene over a large area, plasma treatment at a lower pressure is necessary.
  • microwave surface wave plasma capable of generating and maintaining plasma stably even at 10 2 Pa or less was generated and used for plasma processing.
  • the microwave surface wave plasma is described in detail, for example, in the document “Hideo Sakurai, Plasma Electronics, Ohmsha 2000, p.124-125”.
  • the temperature could be sufficiently lower than the melting point of the copper foil substrate, and uniform plasma could be generated in a large area of 380 mm ⁇ 340 mm or more.
  • the Langmuir probe method single probe method
  • the electron density is 10 11 to 10 12 / cm 3
  • the cut-off electron density for a microwave with a frequency of 2.45 GHz is 7.4 ⁇ 10 10 / cm 3. It was confirmed that the surface wave plasma is generated and maintained by surface waves.
  • the Langmuir probe method is described in detail, for example, in the document “Hideo Sakurai, Plasma Electronics, Ohmsha 2000, p.58”.
  • the substrate temperature is 500 ° C. or less, preferably 50 to 500 ° C., more preferably 50 to 400 ° C.
  • the pressure is 50 Pa or less, preferably 2 to 50 Pa, more preferably 2 to 20 Pa.
  • the treatment time is not particularly limited, but is about 1 second to 50 minutes, preferably about 1 second to 20 minutes. With such a treatment time, graphene is obtained.
  • the gas used for the microwave plasma treatment is hydrogen or a mixed gas of hydrogen and an inert gas.
  • Inert gases include helium, neon, argon, and the like.
  • carbon atoms are included in the basic structure of the structure, such as polyacrylic acid, polyacrylic acid ester, polymethacrylic acid, polymethacrylic acid ester, and methyl methacrylate.
  • Acrylic resins polyethylene glycol-bis (1,2,3-benzotriazolyl ether), benzotriazoles such as polyethylene glycol-1,2,3-benzotriazolyl ether, polyvinyl chloride, polyethylene, phenol resin, etc.
  • a polymer or the like can be used.
  • an acrylic resin capable of forming a film or a benzotriazole having a rust preventive film function can be used.
  • the copper foil base material to which the organic substance used in the present invention is applied is composed of a thinly bonded organic substance thin film (101) and a base material copper foil (102).
  • FIG. 1 is a diagram schematically showing a copper foil coated with an organic material used in this example.
  • the organic material thin film (101) is formed by applying an organic material dissolved in a solvent on the copper foil (102).
  • the treatment procedures for polymethyl methacrylate and benzotriazole, which are organic substances used in this example, are as follows.
  • a method for forming a copper foil coated with polymethyl methacrylate as an organic substance will be described.
  • 2 g of methyl methacrylate polymer powder (Tokyo Chemical Industry Co., Ltd., [CH 2 C (CH 3 ) COOCH 3 ] n) and 48 g of methoxybenzene (manufactured by Wako Pure Chemical Industries, Ltd., Methoxybenzene, CH 3 OC 6 H 5 ) Mix and dissolve completely with stirring.
  • About 5 ml of this organic substance solution was dropped on a copper foil (102) having a size of 150 mm ⁇ 220 mm and a thickness of 33 ⁇ m placed on a flat table, and thinly and evenly spread with a plastic spatula.
  • Excess organic substance solution was wiped off with a waste cloth or the like. This was treated in a dryer at 50 ° C. for 1 hour, completely dried, and a copper foil base material coated with the organic substance (101) was produced.
  • benzotriazole was applied by a conventionally known spray method. The time is several seconds, and the substrate temperature during coating is about 50 ° C. After application, it was dried with a dryer.
  • the peak positions of the 2D band, the G band, the D band, and the D ′ band depend on the number of layers of the graphene film and the excitation wavelength of the laser at the time of measuring the Raman scattering spectroscopic spectrum (LMMalard, MAPimenta, G Dresselhaus and MSDresselhaus, Physics Reports 473 (2009) 51-87).
  • the peak positions of the 2D band, the G band, the D band, and the D ′ band are 2700 cm ⁇ 1 , 1582 cm ⁇ 1 , 1350 cm ⁇ 1 , and 1620 cm ⁇ 1. It is near.
  • the G band is due to the normal six-membered ring
  • the 2D band is due to the overtone of the D band.
  • the D band is a peak due to a defect in a normal six-membered ring.
  • the D ′ band is also a peak induced by defects, and is considered to be caused by the end portion of the graphene having several to several tens of layers (see Non-Patent Document 5). If both G-band and 2D-band peaks are observed in the Raman scattering spectrum, the film is identified as graphene (see Non-Patent Document 3). In general, it is known that as the number of graphene layers increases, the 2D band shifts to the higher wavenumber side and the half-value width increases. Furthermore, when the excitation wavelength of the laser becomes shorter, the 2D band shifts to the higher wavenumber side.
  • the transparent conductive carbon film formed on the copper foil base material by the method of the present invention was peeled off from the copper foil and pasted on the glass substrate.
  • quartz glass having a diameter of 10 mm and a thickness of 1 mm, or soda glass having a width of 26 mm, a length of 75 mm, and a thickness of 1 mm was used as the glass substrate.
  • the transmittance measuring apparatus used was NDH5000SP manufactured by Nippon Denshoku Kogyo Co., Ltd., and the transmittance was measured in the wavelength region of 550 nm. In the measurement, first, a transmittance spectrum of only a quartz glass substrate without a graphene film was measured.
  • the transmittance spectrum of the quartz glass substrate to which the graphene film was attached was measured.
  • the transmittance spectrum of the graphene film itself was determined by subtracting the transmittance spectrum of the quartz glass substrate without the graphene film from the transmittance spectrum of the quartz glass substrate with the graphene film attached in this way.
  • a sample exhaust manifold and a graphene film formed on a copper foil base material by the method of the present invention were peeled off from the copper foil base material and pasted on an insulator substrate.
  • the insulator substrate used was PDMS (polydimethylsiloxane: SILPOT 184 W / C manufactured by Toray Dow Corning Co., Ltd.), quartz glass, or soda glass.
  • PDMS polydimethylsiloxane: SILPOT 184 W / C manufactured by Toray Dow Corning Co., Ltd.
  • quartz glass or soda glass.
  • MCP-TPQPP square probe with an electrode interval of 1.5 mm was used.
  • the upper limit value of the voltage applied between the electrodes was set to 10V or 90V.
  • the sample was partitioned into a 2 cm wide grid and sheet resistance (surface resistivity) was measured by pressing a square probe against the graphene film.
  • Example 1 In this example, hydrogen plasma treatment was performed on a copper foil coated with polymethyl methacrylate as an organic substance.
  • FIG. 2 is a diagram schematically showing the microwave surface wave plasma processing apparatus used in this embodiment.
  • a microwave surface wave plasma processing apparatus used in the present invention is attached to a metal reaction vessel (210) having an open upper end and an upper end portion of the reaction vessel (210) through a metal support member (204) in an airtight manner. It consists of an alumina window (203) for introducing the microwaves and a rectangular microwave waveguide (202) with a slot attached to the upper part.
  • a sample is placed inside the reaction vessel (210) and hydrogen plasma treatment is performed.
  • the processing procedure is as follows.
  • a copper foil base material (205) coated with the organic substance was placed on a sample stage (206) provided in a plasma generation chamber (201) in a microwave surface wave plasma processing vessel (210).
  • the reaction chamber was evacuated to 1 ⁇ 10 ⁇ 3 Pa or less through an exhaust pipe (208).
  • a cooling water pipe (211) is wound around the reaction chamber, and cooling water is supplied thereto to cool the reaction chamber.
  • the sample stage was made of copper, and cooling water was supplied through a cooling water supply / drain pipe (207) to cool the sample.
  • the height of the sample stage was adjusted so that the distance between the alumina window (203) and the copper foil substrate coated with polymethyl methacrylate was 75 mm.
  • hydrogen gas was introduced into the treatment chamber through the treatment gas introduction pipe (209).
  • the hydrogen gas flow rate was 30.0 SCCM.
  • the pressure in the reaction chamber was maintained at 10 Pa using a pressure adjusting valve connected to the exhaust pipe (208).
  • Plasma was generated at a microwave power of 1.5 kW, and a hydrogen plasma treatment was performed on the copper foil base material (205) coated with an organic substance.
  • the temperature of the substrate during the hydrogen plasma treatment was measured by bringing an alumel-chromel thermocouple into contact with the back surface of the substrate.
  • the substrate temperature was about 380 ° C. at the maximum throughout the hydrogen plasma treatment.
  • the base material during the hydrogen plasma treatment reaches a high temperature, the copper foil may be melted or further disappear due to evaporation. Therefore, it is important to carefully control the temperature of the substrate.
  • graphene is formed on the copper foil base material.
  • the plasma processing time is 20 minutes.
  • FIG. 3 the schematic diagram of the graphene (301) formed on the copper foil (302) is shown.
  • FIG. 5 and 6 An example of the measured Raman scattering spectrum of graphene is shown in FIG. 5 and 6 show an enlarged spectrum and fitting characteristics in the vicinity of the G band and the vicinity of the 2D band.
  • Bands important for evaluation of graphene by Raman scattering spectroscopy are 2D band (2646.9 cm ⁇ 1 ), G band (1571.6 cm ⁇ 1 ), D band (1323.8 cm ⁇ 1 ), and D ′ band (1606. 0 cm ⁇ 1 ). If both G band and 2D band peaks are observed in the Raman scattering spectrum, the film is identified as graphene (see Non-Patent Document 3).
  • the film formed in the present invention is graphene.
  • the 2D band shows a shape having a shoulder on the lower end side, whereas in the case of graphene, it shows a symmetrical shape.
  • the measured left and right halves of the peak width of the peak of the 2D band of Figure 6 the left half of the peak width (the left half of the half width) at 39.2cm -1, the right half of the peak width 37cm -1 It was found that the peak shape was almost symmetrical. From this, it is clear that the film obtained by the present invention is graphene.
  • the D ′ band is a peak induced from a defect, and is considered to be caused by an end portion of the graphene having several to several tens of layers.
  • the number of graphene layers can be identified using the relative intensities of the 2D band and G band peaks (Non-patent Document 3).
  • the intensity of each peak was determined by fitting each peak using the Lorentz function and subtracting the background.
  • the graphene shown in FIGS. 4, 5 and 6 has the intensity ratio between the 2D band and the G band and the D ′ band. It turned out that it has the structure which mixed.
  • the cross section of the graphene film prepared by the method of this example was observed with an electron beam microscope.
  • the sample for observation was coated with an amorphous carbon film on a transparent conductive carbon film and thinned by a focus ion beam (FIB) method.
  • the equipment used was Xvision200TB manufactured by SII Nanotechnology.
  • For transmission image observation with an electron beam microscope H-9000UHR manufactured by Hitachi, Ltd. was used and the acceleration voltage was 300 kV.
  • the observation result by an electron microscope is shown in FIG.
  • the figure shows an amorphous carbon film / graphene / copper foil structure as a support material. From FIG. 7, the length and the number of graphene sheets were counted. The average length of the graphene sheet was 0.72 nm. Note that the average number of layers of the graphene film was 9.4 layers.
  • Example 2 In the present example, as in Example 1, the hydrogen plasma treatment of copper foil coated with benzotriazole as an organic substance was performed using the microwave surface wave plasma treatment apparatus shown in FIG.
  • a copper foil base material (205) coated with the organic substance was placed on a sample stage (206) provided in a plasma generation chamber (201) in a microwave surface wave plasma processing vessel (210).
  • the reaction chamber was evacuated to 1 ⁇ 10 ⁇ 3 Pa or less through an exhaust pipe (208).
  • a cooling water pipe (211) is wound around the reaction chamber, and cooling water is supplied thereto to cool the reaction chamber.
  • the sample stage was made of copper, and cooling water was supplied through a cooling water supply / drain pipe (207) to cool the sample.
  • the height of the sample stage was adjusted so that the distance between the alumina window (203) and the copper foil base material coated with benzotriazole was 75 mm.
  • hydrogen gas was introduced into the treatment chamber through the treatment gas introduction pipe (209).
  • the hydrogen gas flow rate was 30.0 SCCM.
  • the pressure in the reaction chamber was maintained at 5 Pa using a pressure adjusting valve connected to the exhaust pipe (208).
  • Plasma was generated at a microwave power of 1.5 kW, and a hydrogen plasma treatment was performed on the copper foil base material (205) coated with an organic substance.
  • the temperature of the substrate during the plasma treatment was measured by bringing an alumel-chromel thermocouple into contact with the substrate surface.
  • the substrate temperature was about 320 ° C. at the maximum throughout the hydrogen plasma treatment.
  • the base material during the hydrogen plasma treatment reaches a high temperature, the copper foil may be melted or further disappear due to evaporation. Therefore, it is important to carefully control the temperature of the substrate.
  • graphene is formed on the copper foil base material.
  • the plasma processing time is 20 minutes.
  • FIG. 3 shows a schematic diagram of graphene formed on a copper foil.
  • FIG. 9 and 10 show the spectrum and fitting characteristics obtained by enlarging the vicinity of the G band and the vicinity of the 2D band.
  • Bands important for evaluation of graphene by Raman scattering spectroscopy are 2D band (2665.9 cm ⁇ 1 ), G band (1588.8 cm ⁇ 1 ), D band (1343.0 cm ⁇ 1 ), and D ′ band (1617. 5 cm ⁇ 1 ). If both G band and 2D band peaks are observed in the Raman scattering spectrum, the film is identified as graphene (see Non-Patent Document 3).
  • both G band and 2D band peaks are observed, and thus it is clear that the film formed in the present invention is graphene.
  • the 2D band shows a shape having a shoulder on the lower end side, whereas in the case of graphene, it shows a symmetrical shape.
  • the peak widths of the left half and right half of the 2D band peak in FIG. 10 were measured, the peak width of the left half was 40.0 cm ⁇ 1 and the peak width of the right half was 37.2 cm ⁇ 1. It was found to be a typical peak shape. From this, it is clear that the film obtained by the present invention is graphene.
  • the D ′ band is a peak induced from a defect, and is considered to be caused by an end portion of the graphene having several to several tens of layers.
  • Example 3 In this example, argon / hydrogen plasma treatment was performed using a copper foil coated with polymethyl methacrylate as an organic substance and a copper foil coated with benzotriazole as an organic substance. Details of the argon / hydrogen plasma treatment used in this example will be described below. The method for applying the organic substance is the same as in Example 1 and Example 2.
  • FIG. 11 shows a sectional view of the apparatus.
  • 1100 is a discharge vessel
  • 1101 is a rectangular waveguide
  • 1102 is a slot antenna
  • 1103 is a quartz window
  • 1104 is a substrate
  • 1105 is a sample stage
  • 1106 is a reaction chamber
  • 1107 is a processing gas introduction tube
  • 1108 Indicates an exhaust pipe.
  • a copper foil having a thickness of 33 ⁇ m was placed in the reaction chamber (1106), and an argon / hydrogen plasma treatment was performed.
  • the experimental conditions are as follows.
  • the microwave power was 4.5 kW / one microwave launcher, and the pressure in the discharge vessel was 5 Pa.
  • the plasma processing gas was argon gas 30 SCCM and hydrogen gas 50 SCCM.
  • the pressure in the reaction chamber was maintained at 5 Pa using a pressure adjusting valve connected to the exhaust pipe (1108).
  • the distance between the quartz window (1103) and the copper foil base material can be changed from 40 mm to 190 mm.
  • the plasma CVD process was performed by setting the distance between the quartz window (1103) and the copper foil base material to 190 mm.
  • FIG. 12 shows the relationship between the time from the start of plasma processing and the substrate temperature. It was confirmed that the substrate temperature increased with time.
  • FIGS. 13 and 14 show Raman spectra of a sample obtained by performing argon / hydrogen plasma treatment on a copper foil coated with polymethyl methacrylate as an organic material and a copper foil coated with benzotriazole as an organic material for 20 minutes, respectively. .
  • the substrate temperature at the end of the plasma treatment was 152 ° C.
  • a Raman spectrum (FIG. 13) of a sample obtained by performing argon / hydrogen plasma treatment for 20 minutes on a copper foil coated with polymethyl methacrylate as an organic substance is a 2D band (2660) which is an important band in the evaluation by graphene Raman scattering spectroscopy. .1 cm ⁇ 1 ), G band (1584.9 cm ⁇ 1 ), D band (1327.7 cm ⁇ 1 ), and D ′ band (1614.3 cm ⁇ 1 ) were observed.
  • a single layer when the intensity ratio of the G band and the 2D band is I (2D) / I (G) ⁇ 2, and 2 or 3 layers when I (2D) / I (G) 1 to 2 It is said that it is a graphene film of a degree (nonpatent literature 3). From the fact that the intensity ratio of the 2D band and G band peaks and the D ′ band were observed, it was found that the composition had a configuration in which about 1 to several tens of layers of graphene were mixed.
  • the film formed in the present invention is graphene.
  • the 2D band shows a shape having a shoulder on the lower end side, whereas in the case of graphene, it shows a symmetrical shape.
  • the left half and right half peak widths of the 2D band peak in FIG. 13 were measured, the left half peak width was 31.0 cm ⁇ 1 and the right half peak width was 30.2 cm ⁇ 1. It was found to be a typical peak shape. From this, it is clear that the film obtained by the present invention is graphene.
  • the D ′ band is a peak induced from a defect, and is considered to be caused by an end portion of the graphene having several to several tens of layers.
  • a single layer when the intensity ratio of the G band and the 2D band is I (2D) / I (G) ⁇ 2, and 2 or 3 layers when I (2D) / I (G) 1 to 2 It is said that it is a graphene film of a degree (nonpatent literature 3). From the fact that the intensity ratio of the 2D band and G band peaks and the D ′ band were observed, it was found that the composition had a configuration in which about 1 to several tens of layers of graphene were mixed.
  • both G band and 2D band peaks are observed. Therefore, it is clear that the film formed in the present invention is graphene.
  • the 2D band shows a shape having a shoulder on the lower end side, whereas in the case of graphene, it shows a symmetrical shape.
  • the measured left and right halves of the peak width of the peak of the 2D band 14, the peak width of the left half 37.2Cm -1, peak width of the right half is 35 cm -1, nearly symmetrically It was found to have a peak shape. From this, it is clear that the film obtained by the present invention is graphene.
  • the D ′ band is a peak induced from a defect, and is considered to be caused by an end portion of the graphene having several to several tens of layers.
  • Example 4 In this example, an argon / hydrogen plasma treatment for 50 minutes was performed in the same manner as in Example 3, and a copper foil coated with polymethyl methacrylate as an organic substance and a copper foil coated with benzotriazole as an organic substance Went to each.
  • the substrate temperature at the end of the plasma treatment was 196 ° C.
  • a Raman spectrum (FIG. 15) of a sample obtained by performing argon / hydrogen plasma treatment for 50 minutes on a copper foil coated with polymethyl methacrylate as an organic substance is a 2D band (2678) which is an important band in the evaluation by graphene Raman scattering spectroscopy. .5 cm ⁇ 1 ), G band (1591.7 cm ⁇ 1 ), D band (1335.8 cm ⁇ 1 ), and D ′ band (1614.3 cm ⁇ 1 ) were observed.
  • a single layer when the intensity ratio of the G band and the 2D band is I (2D) / I (G) ⁇ 2, and 2 or 3 layers when I (2D) / I (G) 1 to 2 It is said that it is a graphene film of a degree (nonpatent literature 3). From the fact that the intensity ratio of the 2D band and G band peaks and the D ′ band were observed, it was found that the composition had a configuration in which about 1 to several tens of layers of graphene were mixed.
  • both G band and 2D band peaks are observed, and thus it is clear that the film formed in the present invention is graphene.
  • the 2D band shows a shape having a shoulder on the lower end side, whereas in the case of graphene, it shows a symmetrical shape.
  • the left half and right half peak widths of the 2D band peak in FIG. 14 were measured, the left half peak width was 39.0 cm ⁇ 1 , and the right half peak width was 31.0 cm ⁇ 1, which is almost symmetrical. It was found to be a typical peak shape. From this, it is clear that the film obtained by the present invention is graphene.
  • the D ′ band is a peak induced from a defect, and is considered to be caused by an end portion of the graphene having several to several tens of layers.
  • a single layer when the intensity ratio of the G band and the 2D band is I (2D) / I (G) ⁇ 2, and 2 or 3 layers when I (2D) / I (G) 1 to 2 It is said that it is a graphene film of a degree (nonpatent literature 3). From the fact that the intensity ratio of the 2D band and G band peaks and the D ′ band were observed, it was found that the composition had a configuration in which about 1 to several tens of layers of graphene were mixed.
  • both G band and 2D band peaks are observed, and thus it is clear that the film formed in the present invention is graphene.
  • the 2D band shows a shape having a shoulder on the lower end side, whereas in the case of graphene, it shows a symmetrical shape.
  • the left half and right half peak widths of the 2D band peak in FIG. 15 were measured, the left half peak width was 42.2 cm ⁇ 1 and the right half peak width was 43.0 cm ⁇ 1. It was found to be a typical peak shape. From this, it is clear that the film obtained by the present invention is graphene.
  • the D ′ band is a peak induced from a defect, and is considered to be caused by an end portion of the graphene having several to several tens of layers.
  • graphene can be formed at 400 ° C. or lower by microwave surface wave plasma treatment, but in this comparative example, the effect of heat treatment was examined.
  • the substrate was heat-treated on each of a copper foil coated with polymethyl methacrylate as an organic material obtained by the same production method as in Examples 1 and 2, and a copper foil coated with benzotriazole as an organic material.
  • the copper foil coated with polymethyl methacrylate as the organic material used in this comparative example and the copper foil coated with benzotriazole as the organic material are both the same as in Examples 1 and 2.
  • a table lamp heating device (MILA-5000 type) manufactured by ULVAC-RIKO was used.
  • a copper foil coated with polymethyl methacrylate as an organic substance and a copper foil coated with benzotriazole as an organic substance were placed, and evacuated to 10 ⁇ 4 Pa or less.
  • the flow rates of hydrogen gas and argon gas were 100 sccm and 200 sccm, and were maintained at 100 Pa. Thereafter, the temperature was raised from room temperature to 400 ° C. over 5 minutes, and heat treatment was performed at 400 ° C. for 20 minutes.
  • the heating conditions of this comparative example are substantially the same temperature and time as in Example 1.
  • 17 and 18 show Raman spectra of samples obtained by heat-treating a copper foil coated with methyl methacrylate as an organic substance and a copper foil coated with benzotriazole as an organic substance, respectively.
  • the G band (1588.9 cm ⁇ 1 ) and the D band (1355.5 cm ⁇ 1 ) are observed, but the 2D band is not observed.
  • the G-band (1600 cm -1) and D-band (1355.5cm -1) is observed, 2D band was observed. 17 and 18, it is confirmed that graphene cannot be formed by heat treatment at 400 ° C. for 20 minutes. From this, it is clear that plasma treatment is necessary for graphene formation at a low temperature of 400 ° C. or lower. It was.
  • the graphene production method and graphene of the present invention can be formed in a large area at a low temperature, a transparent conductive film for touch panel use, a semiconductor device or an electronic device such as a transistor or an integrated circuit, a transparent that requires a large area This is a very important technology that can be used for all devices, equipment, and applied products using graphene such as electrodes, electrochemical electrodes, and biodevices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

 熱CVDおよび樹脂炭化法によるグラフェン成膜の課題である、高温プロセスであり、かつプロセス時間が長いという問題を解決し、より低温で短時間にグラフェンを形成する手法を提供することを目的とするものであって、銅箔基材に塗布された有機物質を、銅箔基材ごとマイクロ波表面波プラズマ処理装置を用いて水素プラズマ処理を施し、この水素プラズマ処理により、銅箔基材上にグラフェンを形成することにより上記課題を解決する。

Description

グラフェンの製造方法およびグラフェン
 本発明は、透明導電膜などに利用するためのグラフェンの製造方法及びグラフェンに関する。
 SP2結合した炭素原子による導電性の平面状結晶は「グラフェン」と呼ばれている。グラフェンについては非特許文献1に詳述されている。グラフェンは様々な形態の結晶性炭素膜の基本単位である。グラフェンによる結晶性炭素膜の例としては、一層のグラフェンによる単層グラフェン、ナノメートルサイズのグラフェンの数層から十層程度の積層体であるナノグラフェン、さらに数層から数十層程度のグラフェン積層体が基材面に対して垂直に近い角度で配向するカーボンナノウォール(非特許文献2参照)などがある。
 グラフェンによる結晶性炭素膜は、その高い光透過率と電気伝導性のため、透明導電膜や透明電極としての利用が期待されている。さらにグラフェン中の電子およびホールのキャリア移動度は室温でシリコンの100倍も高い最大20万cm/Vsになる可能性がある。このグラフェンの特性を生かしてテラヘルツ(THz)動作を目指した超高速トランジスタの開発も進められている。
 グラフェンの製造方法については、これまで、天然黒鉛からの剥離法、炭化ケイ素の高温熱処理によるケイ素の脱離法、さらにさまざまな金属表面への形成法などが開発されているが、グラフェンによる結晶性炭素膜を用いた透明導電性炭素膜は多岐にわたる工業的な利用が検討されており、そのため、高いスループットで大面積の成膜法が望まれている。
 最近、銅箔表面への化学気相合成法(CVD)によるグラフェンの形成法が開発された(非特許文献3、4)。この銅箔を基材とするグラフェン成膜手法は、熱CVD法によるものであって、原料ガスであるメタンガスを約1000℃程度で熱的に分解し、銅箔表面に1層から数層のグラフェンを形成するものである。
 また上記CVDによるグラフェン製法は、基本的にメタンガスなど気体状の原料を用いる。グラフェンの原料としてはさまざまな樹脂などの固体状の原料も可能性があるが、CVDで利用することは困難である。さらにガスを原料とするCVDでは、基材のある特定の部分にグラフェンを作製しパターンを形成することは困難であり、そのため、基材上にグラフェンを作製した後にパターンを形成するための加工を行う必要があった。これらの課題を解決するため、最近、銅箔にポリメタクリル酸メチル(polymethylmethacrylate、PMMA)膜を塗布により形成し、それを水素とアルゴンの混合ガス雰囲気中で800℃~1000℃で加熱する樹脂炭化法により、グラフェンを形成する手法が開発された。(非特許文献6)
山田久美、化学と工業、61(2008)pp.1123-1127 Y.Wu,P.Qiao,T.Chong,Z.Shen,Adv.Mater.14(2002)pp.64-67 Xuesong Li, Weiwei Cai, Jinho An,Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, InhwaJung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, Science,Vol.324, 2009,   pp.1312-1314. Xuesong Li, Yanwu Zhu, WeiweiCai, Mark Borysiak, Boyang Han, David Chen, Richard D. Piner,  Luigi Colombo,  Rodney S. Ruoff, Nano Letters, Vol.9,2009, pp.4359-4363. L.G.Cancado,M.A.Pimenta, B.R.A.Neves, M.S.S.Dantas, A.Jorio,Phys.Rev.Lett.93(2004)pp.247401_1-247401_4) ZhengzongSun, Zheng Yan, Jun Yao, Elvira Beitler, Yu Zhu, James M. Tour, NATURE,doi:10.1038/nature09579
 前記の銅箔を基材とするグラフェンの熱CVD法および樹脂炭化法による形成手法は、グラフェンの工業的な製造方法として有望と考えられる。
 しかしながら、この手法は銅の融点1080℃に近い高温での熱CVDによるプロセスであるため、グラフェン成膜中の銅の蒸発や再結晶化による銅箔表面の形状変化が生じるという問題があることが判明した。
 また、前述の高いスループットで大面積の成膜法の1つとして、ロール状の基材を成膜領域に連続的に送り込みながら成膜し、巻き取り用のロールで巻き取りながら成膜するという手法が望まれるが、熱CVD法および樹脂炭化法による手法では基材が高温になるために、該手法の適用は困難である。
 工業的な高スループットのためには、現状の熱CVD法および樹脂炭化法と比較して低温でかつ反応時間の短い成膜手法の開発が望まれている。
 本発明は、以上のような事情に鑑みてなされたものであって、従来の熱CVD法および樹脂炭化法によるグラフェン成膜の課題である、高温プロセスであり、かつプロセス時間が長いという問題を解決し、より低温で短時間にグラフェンを形成する手法を提供することを目的とするものである。
 本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、低温で短時間にグラフェンを形成するための新たな手法を見出し、これにより、グラフェンが従来法と比較して低温でかつ短時間に形成でき、従来技術における上記課題を解決しうることが判明した。
 本発明は、これらの知見に基づいて完成するに至ったものであり、以下のとおりのものである。
[1]有機物質を塗布した金属製基材にマイクロ波表面波プラズマ処理装置内の温度を500℃以下に設定して減圧下で水素を含有するガスを用いたプラズマ処理を行い、該有機物質表面上にグラフェンを成長させることを特徴とするグラフェンの製造方法。
[2]有機物質を塗布した金属製基材にマイクロ波表面プラズマ処理装置内の温度を500℃以下に設定して減圧下で水素を含有するガスを用いたプラズマ処理を行い、該有機物質表面上にグラフェンを成長させてなる金属基材とグラフェンを積層して積層体を形成し、金属基材からグラフェンを剥離することを特徴とするグラフェンの製造方法。
[3]前記有機物質は、ポリメタクリル酸メチル又はベンゾトリアゾールであることを特徴とする[1]又は[2]に記載のグラフェンの製造方法
[4]前記金属製基材は銅薄膜であることを特徴とする[1]~[3]のいずれかに記載のグラフェンの製造方法
[5][1]~[4]のいずれかに記載のグラフェンの製造方法で得られたグラフェン。
[6][1]~[4]のいずれかに記載のグラフェンの製造方法に用いられる有機物質を塗布した金属製基材。
 本発明の方法によれば、従来の熱CVDおよび樹脂炭化法によるグラフェン成膜の課題である、高温プロセスであり、かつプロセス時間が長いという問題を解決し、より低温で短時間にグラフェンを形成することが可能となる。
 本発明の方法により、低温で大面積に合成できるため,タッチパネル用途等の透明導電膜、トランジスタや集積回路等の半導体デバイスまたは電子デバイス、広面積を必要とする透明電極や電気化学電極、バイオデバイスなどへの応用が可能となる.
本発明の有機物質を塗布した銅箔基材を模式的に示す図 実施例1、2で用いたマイクロ波表面波プラズマ処理装置を模式的に示す断面図 本発明で得られる銅箔の上に形成されたグラフェンの模式図 実施例1で形成したグラフェンのラマン散乱分光スペクトル 実施例1で形成したグラフェンのラマン散乱分光スペクトルのGバンド近傍を拡大した図 実施例1で形成したグラフェンのラマン散乱分光スペクトルの2Dバンド近傍を拡大した図 実施例1で形成したグラフェンの電子線顕微鏡による透過像の観察写真 実施例2で形成したグラフェンのラマン散乱分光スペクトル 実施例2で形成したグラフェンのラマン散乱分光スペクトルのGバンド近傍を拡大した図 実施例2で形成したグラフェンのラマン散乱分光スペクトルの2Dバンド近傍を拡大した図 実施例3,4で用いた大面積マイクロ波表面波プラズマ処理装置を模式的に示す断面図 実施例3における、プラズマ処理開始からの時間と基板温度の関係を示す図 実施例3で、有機物質としてメタクリル酸メチルを塗布した銅箔に形成したグラフェンのラマン散乱分光スペクトル 実施例3で、有機物質としてベンゾトリアゾールを塗布した銅箔に形成したグラフェンのラマン散乱分光スペクトル 実施例4で、有機物質としてメタクリル酸メチルを塗布した銅箔に形成したグラフェンのラマン散乱分光スペクトル 実施例4で、有機物質としてベンゾトリアゾールを塗布した銅箔に形成したグラフェンのラマン散乱分光スペクトル 比較例で、有機物質としてメタクリル酸メチルを塗布した銅箔を熱処理し試料のラマンスペクトル 比較例で、有機物質としてベンゾトリアゾールを塗布した銅箔を熱処理した試料のラマンスペクトル
 101:有機物質薄膜
 102:銅箔
 201:プラズマ発生室
 202:スロット付き矩型マイクロ波導波管
 203:マイクロ波を導入するためのアルミナ窓
 204:アルミナ窓を支持する金属製支持部材
 205:基材
 206:基材を設置するための試料台
 207:冷却水の給排水管
 208:排気管
 209:処理用ガス導入管
 210:処理容器
 211:冷却水管
 301:グラフェン
 302:銅箔
 1100:放電容器
 1101:矩形導波管
 1102:スロットアンテナ
 1103:石英窓
 1104:基材
 1105:試料台
 1106:反応室
 1107:排気管
 1108:処理用ガス導入管
 本発明のグラフェンの製造方法では、プラズマにより生成された荷電粒子や電子のエネルギーと、ニッケル、銅、イリジウム、白金等の金属の触媒機能の作用により、有機物質を改質することで、グラフェンが形成される。そのため、従来の樹脂炭化法と比較して、より低温で短時間にグラフェンの形成が可能である。
 本発明のグラフェンは、主として特定の製造条件を採用することにより得ることができる。そのグラフェンを作製するには、有機物質を塗布した金属箔にプラズマ処理を施すことで、より低温で短時間にグラフェンを形成することが可能となる。基材に有機物質を塗布した銅箔を用いること、表面波マイクロ波プラズマ法を用いることで、大面積の膜を形成できる。
 本発明のグラフェン製造方法の基材には、ニッケルや銅、イリジウム、白金等の触媒機能を有する金属を用いることができる。金属箔基板の表面形状を変化することなく、金属箔の蒸発を生じることなくグラフェンを形成するためには、金属の融点より十分低い温度でプラズマ処理を施す必要がある。
 例えば、銅箔基板の場合、銅の融点(1080℃)より十分低温において処理することが必要である。
 通常のマイクロ波プラズマ処理は、圧力2×10~1×10Paで行われる。この圧力ではプラズマが拡散しにくく、プラズマが狭い領域に集中するため、プラズマ内の中性ガスの温度が1000℃以上になる。そのため、銅箔基板の温度が800℃以上に加熱され、銅箔表面からの銅の蒸発が大きくなる。したがってグラフェンの作製に適用できない。またプラズマ領域を均一に広げるには限界があり、大面積に均一性の高いグラフェンの形成が困難である。
 したがって、成膜中の銅箔基板の温度を低く保ち、かつ大面積に均一性の高いグラフェンを形成するには、より低圧でのプラズマ処理が必要である。
 本発明では、10Pa以下でも安定にプラズマを発生・維持することが可能な、マイクロ波表面波プラズマを発生させ、プラズマ処理に利用した。
 マイクロ波表面波プラズマについては、例えば文献「菅井秀郎,プラズマエレクトロニクス,オーム社 2000年,p.124-125」に詳述されている。
 これにより、銅箔基板の融点より十分に低い温度にする事ができ、かつ380mm×340mm以上の大面積に均一なプラズマを発生させることができた。
 プラズマをラングミュアプローブ法(シングルプローブ法)により診断した結果、電子密度が1011~1012/cmであり、周波数2.45GHzのマイクロ波に対するカットオフ電子密度7.4×1010/cmを超えており、表面波により発生・維持する表面波プラズマであることを確認した。
 このラングミュアプローブ法については、例えば文献「菅井秀郎,プラズマエレクトロニクス,オーム社 2000年,p.58」に詳述されている。
 本発明で用いるCVD処理の条件としては、基板温度は、500℃以下であり、好ましくは50~500℃、さらに好ましくは50~400℃である。
 また、圧力は、50Pa以下であり、好ましくは2~50Pa、さらに好ましくは2~20Paが用いられる。
 処理時間は、特に限定されないが、1秒~50分程度、好ましくは1秒~20分程度である。この程度の処理時間によれば、グラフェンが得られる。
 本発明において、マイクロ波プラズマ処理に用いるガスは、水素、または水素と不活性ガスの混合ガスである。不活性ガスとしてはヘリウム、ネオン、アルゴン等が包含される。
 本発明において、マイクロ波プラズマ処理に用いる原料の有機物質として、炭素原子を構造の基本骨格に持ち、ポリアクリル酸やポリアクリル酸エステル、ポリメタクリル酸と、ポリメタクリル酸エステル、メタクリル酸メチル等のアクリル樹脂や、ポリエチレングリコール-ビス(1,2,3-ベンゾトリアゾリルエーテル)、ポリエチレングリコール-1,2,3-ベンゾトリアゾリルエーテル等のベンゾトリアゾール類、ポリ塩化ビニル、ポリエチレン、フェノール樹脂等の高分子等を用いることができる。好ましくは、被膜形成可能なアクリル樹脂や防錆膜機能を有するベンゾトリアゾール類を用いることが出来る。
 以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
 本実施例においては、銅箔に塗布した有機物質に、マイクロ波表面波プラズマ処理装置を用いて水素プラズマ処理を施した。以下に詳細を述べる。
(有機物質/銅箔構造形成方法)
 本発明に用いる有機物質を塗布した銅箔基材は、薄く接着された有機物質薄膜(101)と、母材の銅箔(102)により構成されている。図1は、本実施例に用いた有機物質を塗布した銅箔を模式的に示す図である。
 本発明においては、銅箔(102)上に溶媒に溶かした有機物質を塗布することにより有機物質薄膜(101)を形成する。
 本実施例で用いた有機物質であるポリメタクリル酸メチルおよびベンゾトリアゾールの処理手順は、それぞれ以下のとおりである。
 有機物質としてポリメタクリル酸メチルを塗布した銅箔の形成方法を説明する。
 メタクリル酸メチルポリマー粉末(東京化成工業株式会社製、[CH2C(CH3)COOCH3]n)2gとメトキシベンゼン(和光純薬工業株式会社製、Methoxybenzene、CH3OC6H5)48gを混合し、撹拌しながら完全に溶解させた。この有機物質溶液を、平滑な台の上に設置した大きさ150mm×220mm、厚さ33μmの銅箔(102)の上に5mlほど滴下し、プラスチック製のヘラで薄く均一に塗り広げた。余分な有機物質溶液はウエス等で拭き取った。これを50℃の乾燥機中で1時間処理し、完全に乾燥させ、有機物質(101)を塗布した銅箔基材を作製した。
 有機物質としてベンゾトリアゾールを塗布した銅箔の形成方法を説明する。
 塗布には、従来公知のスプレー法により、ベンゾトリアゾールを塗布した。時間は、数秒であり、塗布時の基板温度は、50℃程度である。塗布後、ドライヤーで乾燥させた。 
 以下、本発明の手法で作製したグラフェン膜の、ラマン散乱分光スペクトル、光透過性、及び電気伝導性の、それぞれの測定方法について説明する。
 (ラマン散乱分光スペクトルの測定方法)
 試料として、本発明の手法で銅箔基板上に設けられたグラフェンを用いた。測定装置は(株)堀場製作所製XploRA型機であり、励起用レーザーの波長は638nm、レーザービームのスポットサイズは直径1ミクロン、分光器のグレーティングは600本、レーザー源の出力は9.3mWで、減光器は使用しなかった。アパーチャーは100μm、スリットは100μm、対物レンズは100倍とした。露光時間は5秒間で10回の測定を積算してスペクトルを得た。
 2Dバンド、Gバンド、Dバンド、およびD´バンドのピーク位置は、グラフェン膜の層数やラマン散乱分光スペクトルの測定時のレーザーの励起波長に依存することが非特許文献(L.M.Malard, M.A.Pimenta, G. Dresselhaus and M.S.Dresselhaus, Physics Reports 473 (2009) 51-87)等で示されている。例えば、励起波長514.5nmのレーザーによる単層グラフェン膜の場合、2Dバンド、Gバンド、Dバンド、およびD´バンドのピーク位置は、2700cm-1、1582cm-1、1350cm-1、1620cm-1付近である。Gバンドは正常六員環によるもので、2DバンドはDバンドの倍音によるものである。またDバンドは正常六員環の欠陥に起因するピークである。また、D´バンドも欠陥から誘起されるピークであり、数層から数十層程度のグラフェンの端の部分に起因するものと考えられる(非特許文献5参照)。ラマン散乱分光スペクトルにGバンドと2Dバンドの両方のピークが観測される場合、膜はグラフェンであると同定される(非特許文献3参照)。一般的に、グラフェンの層数が増えると2Dバンドは高波数側にシフトすること、半値幅が広がることが知られている。さらに、レーザーの励起波長が短くなると、2Dバンドは高波数側にシフトする。
 (光透過率の測定方法)
 試料として、本発明の手法で銅箔基材に成膜した透明導電性炭素膜を銅箔から剥離し、ガラス基板上に貼付したものを使用した。ガラス基板は、直径10mm、厚さ1mmの石英ガラス、または幅26mm、長さ75mm、厚さ1mmのソーダガラスを用いた。
 使用した透過率測定装置は、日本電食工業社製NDH5000SPであり、波長領域550nmでの透過率の測定を行った。測定ではまず、グラフェン膜を貼付しない石英ガラス基板だけの透過率スペクトルを測定した。次にグラフェン膜を貼付した石英ガラス基板の透過率スペクトルを測定した。このようにして得たグラフェン膜を貼付した石英ガラス基板の透過率スペクトルからグラフェン膜を貼付しない石英ガラス基板の透過率スペクトルを差し引くことにより、該グラフェン膜自体の透過率スペクトルを求めた。
 (電気伝導性の測定方法)
 試料排気マニホールド、本発明の手法で銅箔基材に成膜したグラフェン膜を銅箔基材から剥離し、絶縁体基板上に貼付したものを使用した。使用した絶縁体基板は、PDMS(ポリジメチルシロキサン:東レ・ダウコーニング株式会社製 SILPOT 184 W/C)や石英ガラス、ソーダガラスを用いた。
 電気伝導性の評価には三菱化学株式会社製 低抵抗率計 ロレスターGP MCP-T600であり、電極間隔1.5mmのスクエアプローブ(MCP-TPQPP)を使用した。電極間に印加する電圧の上限値は10Vもしくは90Vに設定した。試料を幅2cmの格子状に区画分けし、スクエアプローブを該グラフェン膜に押しつけることによりシート抵抗(表面抵抗率)を測定した。
(実施例1)
 本実施例においては、有機物質としてポリメタクリル酸メチルを塗布した銅箔の水素プラズマ処理を行った。図2は、本実施例に用いたマイクロ波表面波プラズマ処理装置を模式的に示す図である。
 本発明に用いるマイクロ波表面波プラズマ処理装置は、上端が開口した金属製の反応容器(210)と、反応容器(210)の上端部に、金属製支持部材(204)を介して気密に取り付けられたマイクロ波を導入するためのアルミナ窓(203)と、その上部に取り付けられたスロット付き矩形マイクロ波導波管(202)とから構成されている。
 本実施例においては、反応容器(210)の内部に、試料を設置し、水素プラズマ処理を行う。処理手順は以下のとおりである。
 マイクロ波表面波プラズマ処理容器(210)内のプラズマ発生室(201)に設けられた試料台(206)に、前記有機物質を塗布した銅箔基材(205)を設置した。次に、排気管(208)を通して反応室内を1×10-3Pa以下に排気した。反応室には冷却水管(211)が巻きつけてあり、そこに冷却水を供給して反応室を冷却した。また、試料台は銅でできており、冷却水の給排水管(207)を通して冷却水を供給し、試料の冷却を行った。
 アルミナ窓(203)とポリメタクリル酸メチルを塗布した銅箔基材との距離が75mmになるよう試料台の高さを調整した。
 次に、処理室に処理用ガス導入管(209)を通して、水素ガスを導入した。水素ガス流量は、30.0SCCMであった。反応室内の圧力を排気管(208)に接続した圧力調整バルブを用いて、10Paに保持した。
 マイクロ波パワー1.5kWにてプラズマを発生させ、有機物質を塗布した銅箔基材(205)の水素プラズマ処理を行った。水素プラズマ処理中の基板の温度は、アルメル-クロメル熱電対を基板裏面に接触させることにより測定した。水素プラズマ処理を通じて基材の温度は最高でおよそ380℃であった。水素プラズマ処理中の基材が高温になると、銅箔が溶融したり、さらには蒸発により消失したりすることがある。したがって、十分注意深く基材の温度管理をすることが肝心である。以上の水素プラズマ処理の結果、銅箔基材上にグラフェンが形成される。プラズマ処理時間としては、20分である。
 図3に、銅箔(302)の上に形成されたグラフェン(301)の模式図を示す。
 測定したグラフェンのラマン散乱分光スペクトルの例を図4に示す。また、Gバンド近傍および2Dバンド近傍を拡大したスペクトルとフィッティング特性を図5および6に示す。グラフェンのラマン散乱分光による評価で重要なバンドは、2Dバンド(2646.9cm-1)、Gバンド(1571.6cm-1)、Dバンド(1323.8cm-1)、およびD´バンド(1606.0cm-1)である。ラマン散乱分光スペクトルにGバンドと2Dバンドの両方のピークが観測される場合、膜はグラフェンであると同定される(非特許文献3参照)
 図4では、Gバンドと2Dバンドの両方のピークが観測されており、したがって、本発明で形成された膜はグラフェンであることが明らかである。また、バルクの結晶性炭素物質であるグラファイトの場合、2Dバンドは低端数側に肩をもつ形状を示すが、グラフェンの場合は左右対照的な形状を示す。図6の2Dバンドのピークの左半分と右半分のピーク幅を測定したところ、左半分のピーク幅(半値幅の左半分)は39.2cm-1、右半分のピーク幅は37cm-1であり、ほぼ左右対称的なピーク形状であることがわかった。このことからも本発明で得られる膜はグラフェンであることが明らかである。またD´バンドは欠陥から誘起されるピークであり、数層から数十層程度のグラフェンの端の部分に起因するものと考えられる。
 2DバンドとGバンドのピークの相対強度を用いてグラフェンの層数を同定することができる(非特許文献3)。それぞれのピークを、ローレンツ関数を用いてフィッティングしバックグラウンドを差し引くことによって、それぞれのピークの強度を求めた。ピーク強度はそれぞれ、I(2D)=9043.3、I(G)=17550.0、I(D’)=5108.5、I(D)=16617.6、であった。Gバンドと2Dバンドの強度の比がI(2D)/I(G)≧2となる場合は単層、またI(2D)/I(G)=1~2となる場合は2~3層程度のグラフェン膜であるとされる(非特許文献3)。
 このように図4、図5、図6に示したグラフェンは、2DバンドとGバンドのピークの強度比、およびD´バンドが観測されていることから、1層から数十層程度のグラフェンとが混在する構成を有することが分かった。
 本実施例の手法で作成したグラフェン膜を電子線顕微鏡で断面を観察した。観察用試料は、透明導電性炭素膜上に非晶質炭素膜を塗布し、フォーカスイオンビーム(FIB)法により薄片化した。装置は、エスアイアイ・ナノテクノロジー社製Xvision200TBを用いた。電子線顕微鏡による透過像観察には、日立製作所社製H-9000UHRを用い、加速電圧300kVの条件でおこなった。
 電子顕微鏡による観察結果を図7に示す。図は、支持材料である非晶質炭素膜/グラフェン/銅箔構造である。図7より、グラフェンシートの長さとその枚数を数えた。グラフェンシートの平均長さは、0.72nmであった。なお、グラフェン膜の平均層数は、9.4層であった。
 次いで、本実施例の手法で作成したグラフェン膜の光透過率及び電気伝導性の測定を行ったところ、透過率は、90%であり、シート抵抗は、4.2Ω/□であった。
 (実施例2)
 本実施例においては、実施例1と同じく、図2に示すマイクロ波表面波プラズマ処理装置を用いて、有機物質としてベンゾトリアゾールを塗布した銅箔の水素プラズマ処理を行った。
 マイクロ波表面波プラズマ処理容器(210)内のプラズマ発生室(201)に設けられた試料台(206)に、前記有機物質を塗布した銅箔基材(205)を設置した。次に、排気管(208)を通して反応室内を1×10-3Pa以下に排気した。反応室には冷却水管(211)が巻きつけてあり、そこに冷却水を供給して反応室を冷却した。また、試料台は銅でできており、冷却水の給排水管(207)を通して冷却水を供給し、試料の冷却を行った。
 アルミナ窓(203)とベンゾトリアゾールを塗布した銅箔基材との距離が75mmになるよう試料台の高さを調整した。
 次に、処理室に処理用ガス導入管(209)を通して、水素ガスを導入した。水素ガス流量は、30.0SCCMであった。反応室内の圧力を排気管(208)に接続した圧力調整バルブを用いて、5Paに保持した。
 マイクロ波パワー1.5kWにてプラズマを発生させ、有機物質を塗布した銅箔基材(205)の水素プラズマ処理を行った。プラズマ処理中の基板の温度は、アルメル-クロメル熱電対を基板表面に接触させることにより測定した。水素プラズマ処理を通じて基材の温度は最高でおよそ320℃であった。水素プラズマ処理中の基材が高温になると、銅箔が溶融したり、さらには蒸発により消失したりすることがある。したがって、十分注意深く基材の温度管理をすることが肝心である。以上の水素プラズマ処理の結果、銅箔基材上にグラフェンが形成される。プラズマ処理時間としては、20分である。
 図3に、銅箔の上に形成されたグラフェンの模式図を示す。
 測定したグラフェンのラマン散乱分光スペクトルの例を図8に示す。Gバンド近傍および2Dバンド近傍を拡大したスペクトルとフィッティング特性を図9および10に示す。グラフェンのラマン散乱分光による評価で重要なバンドは、2Dバンド(2665.9cm-1)、Gバンド(1588.8cm-1)、Dバンド(1343.0cm-1)、およびD´バンド(1617.5cm-1)である。ラマン散乱分光スペクトルにGバンドと2Dバンドの両方のピークが観測される場合、膜はグラフェンであると同定される(非特許文献3参照)
 図8では、Gバンドと2Dバンドの両方のピークが観測されており、したがって、本発明で形成された膜はグラフェンであることが明らかである。また、バルクの結晶性炭素物質であるグラファイトの場合、2Dバンドは低端数側に肩をもつ形状を示すが、グラフェンの場合は左右対照的な形状を示す。図10の2Dバンドのピークの左半分と右半分のピーク幅を測定したところ、左半分のピーク幅は40.0cm-1、右半分のピーク幅は37.2cm-1であり、ほぼ左右対称的なピーク形状であることがわかった。このことからも本発明で得られる膜はグラフェンであることが明らかである。またD´バンドは欠陥から誘起されるピークであり、数層から数十層程度のグラフェンの端の部分に起因するものと考えられる。
 2DバンドとGバンドのピークの相対強度を用いてグラフェンの層数を同定することができる(非特許文献3)。図9、10のようにそれぞれのピークを、ローレンツ関数を用いてフィッティングしバックグラウンドを差し引くことによって、それぞれのピークの強度を求めた。ピーク強度はそれぞれ、I(2D)=86.8、I(G)=821、I(D’)=761.3、I(D)=1335、であった。Gバンドと2Dバンドの強度の比がI(2D)/I(G)≧2となる場合は単層、またI(2D)/I(G)=1~2となる場合は2~3層程度のグラフェン膜であるとされる(非特許文献3)。
 このように図8、図9、図10に示したグラフェン膜の例は、2DバンドとGバンドのピークの強度比、およびD´バンドが観測されていることから、1層から数十層程度のグラフェンが混在する構成を有することが分かった。
 (実施例3)
  本実施例においては、有機物質としてポリメタクリル酸メチルを塗布した銅箔、及び有機物質としてベンゾトリアゾールを塗布した銅箔を用いて、それぞれにアルゴン/水素プラズマ処理を行った。
 以下に本実施例で用いたアルゴン/水素プラズマ処理の詳細を述べる。有機物質の塗布方法は、実施例1および実施例2と同様の方法である。
 本実施例においては、図11に示すような四つのプラズマ生成用マイクロ波ランチャーを配列し、マイクロ波表面波プラズマを大規模化(プラズマ処理領域:断面積600mm×400mm、高さ200mm)した大面積プラズマ装置を用いて、グラフェン膜の合成を行った。
 図11にその装置の断面図を示す。該図において、1100は放電容器、1101は矩形導波管、1102はスロットアンテナ、1103は石英窓、1104は基材、1105は試料台、1106は反応室、1107は処理用ガス導入管、1108は排気管、をそれぞれ示している。
 本実施例では、反応室(1106)に、厚さ33μmの銅箔を設置し、アルゴン/水素プラズマ処理を行った。実験条件は以下の通りである。
 マイクロ波パワーは4.5kW/マイクロ波ランチャー1台、放電容器内の圧力は5 Paとした。プラズマ処理用ガスはアルゴンガス30SCCM、水素ガス50SCCMとした。反応室内の圧力を排気管(1108)に接続した圧力調整バルブを用いて、5Paに保持した。本実施例では、石英窓(1103)と銅箔基材との距離を40mmから190mmまで変えることが出来る。本実施例では、石英窓(1103)と銅箔基材との距離を190mmとしてプラズマCVD処理を行った。
 プラズマ処理開始からの時間と基板温度の関係を図12に示す。時間が長くなるにつれて基板温度の上昇が確認できた。
 有機物質としてポリメタクリル酸メチルを塗布した銅箔、及び有機物質としてベンゾトリアゾールを塗布した銅箔にアルゴン/水素プラズマ処理を、20分間行った試料のラマンスペクトルを、それぞれ図13及び図14に示す。プラズマ処理終了時の基板温度は152℃であった。
 有機物質としてポリメタクリル酸メチルを塗布した銅箔にアルゴン/水素プラズマ処理を20分間行った試料のラマンスペクトル(図13)は、グラフェンのラマン散乱分光による評価で重要なバンドである2Dバンド(2660.1cm-1)、Gバンド(1584.9cm-1)、Dバンド(1327.7cm-1)、およびD´バンド(1614.3cm-1)が観測された。バックグラウンドを差し引くことによって求めたそれぞれのピークの強度は、I(2D)=33.1、I(G)=152.5、I(D’)=122、I(D)=481.2であった。Gバンドと2Dバンドの強度の比がI(2D)/I(G)≧2となる場合は単層、またI(2D)/I(G)=1~2となる場合は2~3層程度のグラフェン膜であるとされる(非特許文献3)。2DバンドとGバンドのピークの強度比、およびD´バンドが観測されていることから、1層から数十層程度のグラフェンが混在する構成を有することが分かった。
 図13では、Gバンドと2Dバンドの両方のピークが観測されており、したがって、本発明で形成された膜はグラフェンであることが明らかである。また、バルクの結晶性炭素物質であるグラファイトの場合、2Dバンドは低端数側に肩をもつ形状を示すが、グラフェンの場合は左右対照的な形状を示す。図13の2Dバンドのピークの左半分と右半分のピーク幅を測定したところ、左半分のピーク幅は31.0cm-1、右半分のピーク幅は30.2cm-1であり、ほぼ左右対称的なピーク形状であることがわかった。このことからも本発明で得られる膜はグラフェンであることが明らかである。またD´バンドは欠陥から誘起されるピークであり、数層から数十層程度のグラフェンの端の部分に起因するものと考えられる。
 有機物質としてベンゾトリアゾールを塗布した銅箔にアルゴン/水素プラズマ処理を20分間行った試料のラマンスペクトル(図14)は、グラフェンのラマン散乱分光による評価で重要なバンドである2Dバンド(2667.3cm-1)、Gバンド(1594.8cm-1)、Dバンド(1332.7cm-1)、およびD´バンド(1613.0cm-1)が観測された。バックグラウンドを差し引くことによって求めたそれぞれのピークの強度は、I(2D)=26.5、I(G)=105.2、I(D’)=75.2、I(D)=371.0であった。Gバンドと2Dバンドの強度の比がI(2D)/I(G)≧2となる場合は単層、またI(2D)/I(G)=1~2となる場合は2~3層程度のグラフェン膜であるとされる(非特許文献3)。2DバンドとGバンドのピークの強度比、およびD´バンドが観測されていることから、1層から数十層程度のグラフェンが混在する構成を有することが分かった。
 図14では、Gバンドと2Dバンドの両方のピークが観測されており、したがって、本発明で形成された膜はグラフェンであることが明らかである。また、バルクの結晶性炭素物質であるグラファイトの場合、2Dバンドは低端数側に肩をもつ形状を示すが、グラフェンの場合は左右対照的な形状を示す。図14の2Dバンドのピークの左半分と右半分のピーク幅を測定したところ、左半分のピーク幅は37.2cm-1、右半分のピーク幅は35cm-1であり、ほぼ左右対称的なピーク形状であることがわかった。このことからも本発明で得られる膜はグラフェンであることが明らかである。またD´バンドは欠陥から誘起されるピークであり、数層から数十層程度のグラフェンの端の部分に起因するものと考えられる。
 (実施例4)
 本実施例においては、実施例3と同一の方法で、50分間のアルゴン/水素プラズマ処理を、有機物質としてポリメタクリル酸メチルを塗布した銅箔、及び有機物質としてベンゾトリアゾールを塗布した銅箔のそれぞれに行った。プラズマ処理終了時の基板温度は196℃であった。
 有機物質としてポリメタクリル酸メチルを塗布した銅箔にアルゴン/水素プラズマ処理を50分間行った試料のラマンスペクトル(図15)は、グラフェンのラマン散乱分光による評価で重要なバンドである2Dバンド(2678.5cm-1)、Gバンド(1591.7cm-1)、Dバンド(1335.8cm-1)、およびD´バンド(1614.3cm-1)が観測された。バックグラウンドを差し引くことによって求めたそれぞれのピークの強度は、I(2D)=17.6、I(G)=84.9、I(D’)=54.1、I(D)=1212.7であった。Gバンドと2Dバンドの強度の比がI(2D)/I(G)≧2となる場合は単層、またI(2D)/I(G)=1~2となる場合は2~3層程度のグラフェン膜であるとされる(非特許文献3)。2DバンドとGバンドのピークの強度比、およびD´バンドが観測されていることから、1層から数十層程度のグラフェンが混在する構成を有することが分かった。
 図15では、Gバンドと2Dバンドの両方のピークが観測されており、したがって、本発明で形成された膜はグラフェンであることが明らかである。また、バルクの結晶性炭素物質であるグラファイトの場合、2Dバンドは低端数側に肩をもつ形状を示すが、グラフェンの場合は左右対照的な形状を示す。図14の2Dバンドのピークの左半分と右半分のピーク幅を測定したところ、左半分のピーク幅は39.0cm-1、右半分のピーク幅は31.0cm-1であり、ほぼ左右対称的なピーク形状であることがわかった。このことからも本発明で得られる膜はグラフェンであることが明らかである。またD´バンドは欠陥から誘起されるピークであり、数層から数十層程度のグラフェンの端の部分に起因するものと考えられる。
 有機物質としてベンゾトリアゾールを塗布した銅箔にアルゴン/水素プラズマ処理を50分間行った試料のラマンスペクトル(図16)は、グラフェンのラマン散乱分光による評価で重要なバンドである2Dバンド(2678.5cm-1)、Gバンド(1599.2cm-1)、Dバンド(1328.4cm-1)、およびD´バンド(1620.3cm-1)が観測された。バックグラウンドを差し引くことによって求めたそれぞれのピークの強度は、I(2D)=8.9、I(G)=44.3、I(D’)=30.9、I(D)=156.6であった。Gバンドと2Dバンドの強度の比がI(2D)/I(G)≧2となる場合は単層、またI(2D)/I(G)=1~2となる場合は2~3層程度のグラフェン膜であるとされる(非特許文献3)。2DバンドとGバンドのピークの強度比、およびD´バンドが観測されていることから、1層から数十層程度のグラフェンが混在する構成を有することが分かった。
 図16では、Gバンドと2Dバンドの両方のピークが観測されており、したがって、本発明で形成された膜はグラフェンであることが明らかである。また、バルクの結晶性炭素物質であるグラファイトの場合、2Dバンドは低端数側に肩をもつ形状を示すが、グラフェンの場合は左右対照的な形状を示す。図15の2Dバンドのピークの左半分と右半分のピーク幅を測定したところ、左半分のピーク幅は42.2cm-1、右半分のピーク幅は43.0cm-1であり、ほぼ左右対称的なピーク形状であることがわかった。このことからも本発明で得られる膜はグラフェンであることが明らかである。またD´バンドは欠陥から誘起されるピークであり、数層から数十層程度のグラフェンの端の部分に起因するものと考えられる。
 (比較例)
 前記の各実施例に示すとおり、本発明では、マイクロ波表面波プラズマ処理により400℃以下でグラフェンが形成できるが、本比較例では、加熱処理による効果について検討した。
 基板は、実施例1および2と同様の作製方法で得られる有機物質としてポリメタクリル酸メチルを塗布した銅箔、及び有機物質としてベンゾトリアゾールを塗布した銅箔、のそれぞれに熱処理を行った。本比較例で用いた有機物質としてポリメタクリル酸メチルを塗布した銅箔、及び有機物質としてベンゾトリアゾールを塗布した銅箔は、いずれも実施例1および2と同様である。
 加熱処理は、アルバック理工社製卓上型ランプ加熱装置(MILA-5000型)を用いた。石英製試料ホルダ上に、それぞれ有機物質としてポリメタクリル酸メチルを塗布した銅箔、及び有機物質としてベンゾトリアゾールを塗布した銅箔を置き、10-4Pa以下まで真空排気した。水素ガスおよびアルゴンガス流量を100sccmおよび200sccmとし、100Paに保持した。その後、室温から400℃まで5分間で昇温し、400℃で20分間の熱処理を行った。本比較例の加熱条件は、実施例1とほぼ同等の温度と時間である。
 図17および18に、有機物質としてメタクリル酸メチルを塗布した銅箔、及び有機物質としてベンゾトリアゾールを塗布した銅箔を、それぞれ熱処理した試料のラマンスペクトルを示す。図17では、Gバンド(1588.9cm-1)およびDバンド(1355.5cm-1)が観測されるが、2Dバンドは観測されなかった。図18では、Gバンド(1600cm-1)およびDバンド(1355.5cm-1)が観測されるが、2Dバンドは観測されなかった。
 図17および18より、400℃で20分間の熱処理ではグラフェンが形成できないことが確認され、このことから、400℃以下の低温でのグラフェン形成には、プラズマ処理が必要であることが明らかとなった。
 本発明のグラフェンの製造方法およびグラフェンは、低温で大面積に形成することができるため、タッチパネル用途等の透明導電膜、トランジスタや集積回路等の半導体デバイスまたは電子デバイス、広面積を必要とする透明電極や電気化学電極、バイオデバイスなどのグラフェンを用いるあらゆるデバイスや機器、応用製品への利用が可能であり、非常に重要な技術である。

Claims (6)

  1.  有機物質を塗布した金属製基材にマイクロ波表面波プラズマ処理装置内の温度を500℃以下に設定して減圧下で水素を含有するガスを用いたプラズマ処理を行い、該有機物質表面上にグラフェンを成長させることを特徴とするグラフェンの製造方法。
  2.  有機物質を塗布した金属製基材にマイクロ波表面プラズマ処理装置内の温度を500℃以下に設定して減圧下で水素を含有するガスを用いたプラズマ処理を行い、該有機物質表面上にグラフェンを成長させてなる金属基材とグラフェンを積層した積層体を形成し、金属基材からグラフェンを剥離することを特徴とするグラフェンの製造方法。
  3.  前記有機物質は、メタクリル酸メチル又はベンゾトリアゾールであることを特徴とする請求項1又は2に記載のグラフェンの製造方法
  4.  前記金属製基材は銅薄膜であることを特徴とする請求項1~3のいずれか1項に記載のグラフェンの製造方法
  5.  請求項1~4のいずれか1項に記載のグラフェンの製造方法で得られたグラフェン。
  6.  請求項1~4のいずれか1項に記載のグラフェンの製造方法に用いられる有機物質を塗布した金属製基材。
PCT/JP2012/053098 2011-02-10 2012-02-10 グラフェンの製造方法およびグラフェン WO2012108526A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137018929A KR101939615B1 (ko) 2011-02-10 2012-02-10 그래핀의 제조 방법 및 그래핀
EP12745110.2A EP2674396B1 (en) 2011-02-10 2012-02-10 Method for producing graphene
JP2012556939A JP5686418B2 (ja) 2011-02-10 2012-02-10 グラフェンの製造方法、グラフェン及び金属製基材
US13/963,369 US9156699B2 (en) 2011-02-10 2013-08-09 Method for producing graphene, and graphene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011027260 2011-02-10
JP2011-027260 2011-02-10
JP2011077342 2011-03-31
JP2011-077342 2011-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/963,369 Continuation US9156699B2 (en) 2011-02-10 2013-08-09 Method for producing graphene, and graphene

Publications (1)

Publication Number Publication Date
WO2012108526A1 true WO2012108526A1 (ja) 2012-08-16

Family

ID=46638738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053098 WO2012108526A1 (ja) 2011-02-10 2012-02-10 グラフェンの製造方法およびグラフェン

Country Status (5)

Country Link
US (1) US9156699B2 (ja)
EP (1) EP2674396B1 (ja)
JP (1) JP5686418B2 (ja)
KR (1) KR101939615B1 (ja)
WO (1) WO2012108526A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446520A (en) * 1987-08-12 1989-02-21 Nippon Denso Co Resistance device for preheating plug of diesel engine
CN103193224A (zh) * 2013-04-17 2013-07-10 苏州大学 在非金属基底上低温制备石墨烯薄膜的方法
CN103864061A (zh) * 2012-12-13 2014-06-18 财团法人工业技术研究院 石墨烯片的形成装置与形成方法
JP2014238377A (ja) * 2013-06-10 2014-12-18 独立行政法人産業技術総合研究所 グラフェン膜の欠陥修復方法及びグラフェン膜の透過率測定装置
WO2019220903A1 (ja) * 2018-05-16 2019-11-21 国立研究開発法人産業技術総合研究所 グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101423988B1 (ko) * 2012-12-13 2014-08-01 광주과학기술원 레이저 플라즈마 스펙트럼을 이용한 시료 내 측정 대상 원소의 정량 분석 방법
US9242865B2 (en) 2013-03-05 2016-01-26 Lockheed Martin Corporation Systems and methods for production of graphene by plasma-enhanced chemical vapor deposition
KR102402545B1 (ko) * 2014-02-19 2022-05-27 삼성전자주식회사 배선 구조 및 이를 적용한 전자소자
WO2015126139A1 (en) 2014-02-19 2015-08-27 Samsung Electronics Co., Ltd. Wiring structure and electronic device employing the same
CN104392945A (zh) * 2014-10-31 2015-03-04 北京工业大学 一种基于场效应估算cvd方法生长在铜箔上的石墨烯迁移率的方法
KR101940702B1 (ko) * 2016-09-02 2019-01-21 순천대학교 산학협력단 플라즈마 표면처리 된 플렉서블 기판을 이용한 그래핀 투명전극 제조방법
US9812295B1 (en) 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
US9767992B1 (en) 2017-02-09 2017-09-19 Lyten, Inc. Microwave chemical processing reactor
US9997334B1 (en) 2017-02-09 2018-06-12 Lyten, Inc. Seedless particles with carbon allotropes
CN110418816B (zh) 2017-03-16 2022-05-31 利腾股份有限公司 碳和弹性体整合
US10920035B2 (en) 2017-03-16 2021-02-16 Lyten, Inc. Tuning deformation hysteresis in tires using graphene
US10502705B2 (en) 2018-01-04 2019-12-10 Lyten, Inc. Resonant gas sensor
CN109721049B (zh) * 2017-10-30 2021-03-16 中国科学院苏州纳米技术与纳米仿生研究所 一种边缘齐整的石墨烯条带、其制备方法及应用
US10756334B2 (en) 2017-12-22 2020-08-25 Lyten, Inc. Structured composite materials
WO2019143559A1 (en) 2018-01-16 2019-07-25 Lyten, Inc. Microwave transparent pressure barrier
WO2019240784A1 (en) 2018-06-13 2019-12-19 Hewlett-Packard Development Company, L.P. Graphene printing
KR102563925B1 (ko) 2018-08-31 2023-08-04 삼성전자 주식회사 반도체 제조 장치
US11309545B2 (en) 2019-10-25 2022-04-19 Lyten, Inc. Carbonaceous materials for lithium-sulfur batteries
US11489161B2 (en) 2019-10-25 2022-11-01 Lyten, Inc. Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes
US11773014B2 (en) 2020-08-04 2023-10-03 Lyten, Inc. Toughened carbon-containing glass materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090324897A1 (en) * 2007-09-18 2009-12-31 Samsung Electronics Co., Ltd. Graphene pattern and process of preparing the same
US20100301212A1 (en) * 2009-05-18 2010-12-02 The Regents Of The University Of California Substrate-free gas-phase synthesis of graphene sheets

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9032A (en) * 1852-06-15 mooee
US10030A (en) * 1853-09-20 Improvement in toilet-furniture
KR20090026568A (ko) * 2007-09-10 2009-03-13 삼성전자주식회사 그라펜 시트 및 그의 제조방법
KR101443217B1 (ko) * 2007-09-12 2014-09-19 삼성전자주식회사 그라펜 쉘 및 그의 제조방법
KR101344493B1 (ko) * 2007-12-17 2013-12-24 삼성전자주식회사 단결정 그라펜 시트 및 그의 제조방법
KR20130038836A (ko) * 2010-03-08 2013-04-18 윌리엄 마쉬 라이스 유니버시티 그래핀 및 그리드 하이브리드 구조물에 기초한 투명 전극

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090324897A1 (en) * 2007-09-18 2009-12-31 Samsung Electronics Co., Ltd. Graphene pattern and process of preparing the same
US20100301212A1 (en) * 2009-05-18 2010-12-02 The Regents Of The University Of California Substrate-free gas-phase synthesis of graphene sheets

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
G.D. YUAN ET AL.: "Graphene sheets via microwave chemical vapor deposition", CHEMICAL PHYSICS LETTERS, vol. 467, 27 November 2008 (2008-11-27), pages 361 - 364, XP025817310 *
HIDEO SUGAI: "Plasma Electronics", 2000, OHMSHA, LTD., pages: 124 - 125
HIDEO SUGAI: "Plasma Electronics", 2000, OHMSHA, LTD., pages: 58
KUMI YAMADA, KAGAKU TO KOGYO, vol. 61, 2008, pages 1123 - 1127
L. G. CANCADO; M. A. PIMENTA; B. R. A. NEVES; M. S. S. DANTAS; A. JORIO, PHYS. REV. LETT., vol. 93, 2004, pages 247401 - 1,247401-4
L. M. MALARD; M. A. PIMENTA; G. DRESSELHAUS; M. S. DRESSELHAUS, PHYSICS REPORTS, vol. 473, 2009, pages 51 - 87
See also references of EP2674396A4
XU ZHANWEI ET AL.: "Large-scale production of graphene by microwave synthesis and rapid cooling", CHEM COMMUN, vol. 47, no. 4, 28 January 2011 (2011-01-28), pages 1166 - 1168 *
XUESONG LI; WEIWEI CAI; JINHO AN; SEYOUNG KIM; JUNGHYO NAH; DONGXING YANG; RICHARD PINER; ARUNA VELAMAKANNI; INHWAJUNG; EMANUE L T, SCIENCE, vol. 324, 2009, pages 1312 - 1314
XUESONG LI; YANWU ZHU; WEIWEI CAI; MARK BORYSIAK; BOYANG HAN; DAVID CHEN; RICHARD D. PINER; LUIGI COLOMBO; RODNEY S. RUOFF, NANO LETTERS, vol. 9, 2009, pages 4359 - 4363
Y. WU; P. QIAO; T. CHONG; Z. SHEN, ADV. MATER., vol. 14, 2002, pages 64 - 67
ZHENGZONG SUN ET AL.: "Growth of graphene from solid carbon sources", NATURE, vol. 468, 25 November 2010 (2010-11-25), pages 549 - 552 *
ZHENGZONGSUN; ZHENG YAN; JUN YAO; ELVIRA BEITLER; YU ZHU; JAMES M. TOUR, NATURE

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446520A (en) * 1987-08-12 1989-02-21 Nippon Denso Co Resistance device for preheating plug of diesel engine
CN103864061A (zh) * 2012-12-13 2014-06-18 财团法人工业技术研究院 石墨烯片的形成装置与形成方法
CN103193224A (zh) * 2013-04-17 2013-07-10 苏州大学 在非金属基底上低温制备石墨烯薄膜的方法
JP2014238377A (ja) * 2013-06-10 2014-12-18 独立行政法人産業技術総合研究所 グラフェン膜の欠陥修復方法及びグラフェン膜の透過率測定装置
WO2019220903A1 (ja) * 2018-05-16 2019-11-21 国立研究開発法人産業技術総合研究所 グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法
JPWO2019220903A1 (ja) * 2018-05-16 2021-02-18 国立研究開発法人産業技術総合研究所 グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法
JP7012393B2 (ja) 2018-05-16 2022-02-14 国立研究開発法人産業技術総合研究所 グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法

Also Published As

Publication number Publication date
KR101939615B1 (ko) 2019-01-17
KR20140014113A (ko) 2014-02-05
US20130327981A1 (en) 2013-12-12
EP2674396B1 (en) 2016-07-20
US9156699B2 (en) 2015-10-13
JPWO2012108526A1 (ja) 2014-07-03
EP2674396A4 (en) 2014-03-19
EP2674396A1 (en) 2013-12-18
JP5686418B2 (ja) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5686418B2 (ja) グラフェンの製造方法、グラフェン及び金属製基材
JP5692794B2 (ja) 透明導電性炭素膜の製造方法
Chan et al. Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition
Sha et al. Layer-by-layer thinning of MoSe2 by soft and reactive plasma etching
JP6661189B2 (ja) グラフェン膜の作製方法
JP6800401B2 (ja) グラフェン透明導電膜の製造用電解銅箔
Kasap et al. Controlled growth of large area multilayer graphene on copper by chemical vapour deposition
Struzzi et al. Probing plasma fluorinated graphene via spectromicroscopy
Miyata et al. Pure electric and magnetic fields applied to reduced graphene oxide for defect repair and oxygen removal
Gottlieb et al. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper
Huang et al. The effects of low power density CO2 laser irradiation on graphene properties
Kwak et al. Microwave-assisted synthesis of group 5 transition metal dichalcogenide thin films
RU2722528C2 (ru) Графен и производство графена
Batryshev et al. Elaboration of carbon nanowalls using radio frequency plasma enhanced chemical vapor deposition
Kang et al. Atmospheric pressure chemical vapor deposition of graphene using a liquid benzene precursor
Kumar et al. Growth of few-and multilayer graphene on different substrates using pulsed nanosecond Q-switched Nd: YAG laser
Zheng et al. Nitrogen-doped few-layer graphene grown vertically on a Cu substrate via C60/nitrogen microwave plasma and its field emission properties
JP6411112B2 (ja) グラフェン膜の製造装置
Hong et al. Open-atmosphere flame synthesis of monolayer graphene
JPWO2019220903A1 (ja) グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法
Yang et al. Influence of reaction parameters on synthesis of high-quality single-layer graphene on Cu using chemical vapor deposition
US20130337195A1 (en) Method of growing graphene nanocrystalline layers
Temiz et al. Effect of intermittent oxygen exposure on chemical vapor deposition of graphene
Akbarnejad et al. Facile and rapid exfoliation of black phosphorus assisted by acetic acid
Kang et al. Synthesis of Continuous Graphene Film Using Liquid Pyridine Precursor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137018929

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012556939

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012745110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012745110

Country of ref document: EP