WO2019220903A1 - グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法 - Google Patents

グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法 Download PDF

Info

Publication number
WO2019220903A1
WO2019220903A1 PCT/JP2019/017497 JP2019017497W WO2019220903A1 WO 2019220903 A1 WO2019220903 A1 WO 2019220903A1 JP 2019017497 W JP2019017497 W JP 2019017497W WO 2019220903 A1 WO2019220903 A1 WO 2019220903A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
graphite thin
nickel foil
graphite
peak
Prior art date
Application number
PCT/JP2019/017497
Other languages
English (en)
French (fr)
Inventor
雅考 長谷川
加藤 隆一
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2020519548A priority Critical patent/JP7012393B2/ja
Publication of WO2019220903A1 publication Critical patent/WO2019220903A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs

Definitions

  • the present invention relates to a graphite thin film, a graphite thin film laminate, and a method for producing them.
  • Graphite composed of carbon atoms (C) bonded with SP 2 has excellent heat resistance, chemical resistance, high conductivity and high thermal conductivity, and occupies an important position as an industrial material.
  • artificially produced graphite is generally used.
  • a method of producing sheet-like graphite by using an aromatic polymer such as polyimide as a starting material and firing it is used industrially (see Patent Document 1, Non-Patent Documents 1 and 2). ).
  • This artificial graphite sheet is currently widely used as a high heat conductive sheet for heat dissipation of small personal devices such as mobile phones and smartphones.
  • a method has been developed in which a graphene oxide integrated film obtained by filtering a graphene oxide solution through a filter is reduced by high-temperature treatment to increase thermal conductivity.
  • the above-described conventional graphite thin film and its manufacturing process have the following problems (1) to (3).
  • (1) Graphite thin films having a thickness of up to about 10 ⁇ m have been commercialized so far and are widely used as heat management materials for electronic devices and the like.
  • thermal interface material TIM
  • a sheet-like graphite thin film produced by firing an aromatic polymer such as polyimide or graphene oxide as a starting material can be produced with a thickness of less than several ⁇ m because of its production method. It ’s very difficult.
  • an object of the present invention is, in one aspect, to provide a high-quality graphene thin film having an average film thickness of 300 to 400 nm and a manufacturing method for manufacturing the graphene thin film at a relatively low temperature.
  • Another object of the present invention is, in one aspect, a graphene thin film laminate including a high-quality graphene thin film having an average film thickness of 300 to 400 nm and a nickel foil film supporting the graphene thin film, and a method for manufacturing the same. Is to provide.
  • a graphite thin film having a thickness of 1 ⁇ m or less can be produced in a simple process and at a low temperature as compared with a conventional method for producing a graphite thin film.
  • this method is suitable as a continuous production method such as roll-to-roll.
  • a graphite film having an average film thickness of 300 ⁇ 400 nm, in the Raman spectrum comprises a peak near 1580 cm -1 and near 2680cm -1, and, or do not have a peak near 1350 cm -1
  • a graphite thin film laminate comprising the graphite thin film according to any one of ⁇ 1> to ⁇ 4> and a nickel foil that supports the graphite thin film.
  • the nickel foil is heated under vacuum to a temperature of 1250 to 1350 ° C., the plasma treatment of the carbon-containing gas is performed while heating the nickel foil, and then the nickel foil is continued while the plasma treatment is continued. Is cooled to 830 to 870 ° C., and a graphite thin film or a graphite thin film laminate is produced by forming a graphite thin film on the surface of the nickel foil.
  • a graphite thin film or a graphite thin film laminate is produced by forming a graphite thin film on the surface of the nickel foil.
  • the method for producing a graphite thin film or a graphite thin film laminate according to ⁇ 7> wherein dissolved carbon is deposited on the surface of the nickel foil and crystallized to form on the nickel foil.
  • the graphite thin film of the present invention is of high quality having an average film thickness of about 300 to 400 nm.
  • a high-quality graphite thin film having an average film thickness of about 300 to 400 nm can be manufactured at a significantly lower temperature (about 1300 ° C.) than the conventional method without including an overlaying step. Is possible. Therefore, by using this method, it is possible to produce an extremely thin graphite thin film by a continuous production method such as roll-to-roll.
  • FIG. 1 is a schematic cross-sectional view of a graphite thin film according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a graphite thin film / nickel foil / graphite thin film laminate in an embodiment of the present invention.
  • FIG. 3 is a diagram showing a process for producing a graphite thin film / nickel foil / graphite thin film laminate using plasma irradiation in the embodiment of the present invention.
  • FIG. 4 is a diagram showing a production process without plasma irradiation in a comparative example for comparison with the production process in the embodiment of the present invention. The left figure of FIG.
  • FIG. 5 is a diagram showing the positions (1) to (5) where the Raman spectroscopic measurement was performed on the sample of the example produced by plasma irradiation, and the right figure of FIG. 5 shows the Raman spectrum at each position.
  • FIG. The left figure in FIG. 6 is a diagram showing the positions (1) to (5) where the Raman spectroscopic measurement was performed on the comparative sample prepared without plasma irradiation, and the right figure in FIG. 5 is the Raman spectrum at each position.
  • FIG. FIG. 7 is a view showing an X-ray diffraction spectrum (2 ⁇ - ⁇ measurement) of the graphite thin film according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing the thermal diffusivity measurement result by the periodic heating method of the graphite thin film according to the embodiment of the present invention.
  • FIG. 8A shows the response temperature at heating frequencies of 70, 140, 200 and 400 Hz. The relationship between the phase difference ⁇ and the distance L from the heating point (laser beam irradiation position) is shown, and
  • FIG. 8B is a diagram showing the relationship between the thermal diffusivity ⁇ and the heating frequency f.
  • FIG. 1 shows a graphite thin film 10 according to an embodiment of the present invention.
  • FIG. 2 shows a graphite thin film / nickel foil / graphite thin film laminate 12 according to an embodiment of the present invention.
  • the graphite thin film / nickel foil / graphite thin film laminate (hereinafter sometimes simply referred to as “graphite thin film laminate”) includes a graphite thin film 10 and a nickel foil 11.
  • the graphite thin film according to the embodiment of the present invention has an average film thickness of 300 to 400 nm and is of high quality.
  • High quality means that the Raman spectrum has peaks in the vicinity of 1580 cm ⁇ 1 and 2680 cm ⁇ 1 and does not have a peak in the D band indicating defects (observed in the vicinity of 1350 cm ⁇ 1 ). Alternatively, even if it has a peak, it can be confirmed that the peak intensity is 5% or less of the peak around 1580 cm ⁇ 1 .
  • the graphite thin film according to the embodiment of the present invention can be said to be of high quality because it has orientation.
  • the presence of orientation can be confirmed by satisfying the following (1) to (3) in the X-ray diffraction spectrum.
  • Nickel foil is used as a base material or support when forming or using a graphite thin film, and to facilitate handling, transportation, etc., until only the graphite thin film is peeled off from the nickel foil and used. It is intended for use as a body.
  • the nickel of the nickel foil may be pure nickel or may contain an alloy component of 50% by mass or less (preferably 20% by mass or less, more preferably 10% by mass or less).
  • the thickness of the nickel foil is not limited, but is usually about 1 to 100 ⁇ m, preferably about 1 to 50 ⁇ m. When the nickel foil is removed by etching or the like, the thinner one is preferably 1 to 50 ⁇ m, more preferably about 2 to 30 ⁇ m.
  • the graphite thin film according to the embodiment of the present invention is preferably a self-supporting film.
  • the self-supporting film means a film that can maintain its shape even when a support (or base material) such as nickel foil is not present. And even if it is a film
  • a graphite thin film laminate 12 by forming a graphite thin film 10 on both front and back surfaces of a nickel foil 11, but one surface of the nickel foil is covered with an appropriate material.
  • a graphite thin film laminate in which a graphite thin film is formed only on the other surface can be obtained.
  • the graphite thin film laminate 12 is obtained by the following process using plasma treatment (see FIG. 3). That is, a nickel foil is installed in the plasma processing apparatus and evacuated to 10 ⁇ 3 Pa or less (preferably about 10 ⁇ 4 Pa or less). Next, the nickel foil is heated in such a vacuum state (for example, energization heating) to rise from room temperature to 1250 to 1350 ° C.
  • a carbon-containing gas preferably methane, ethane, or acetylene
  • SCCM preferably 25 to 35 SCCM
  • the pressure is adjusted to 10 to 30 Pa (preferably 15 to 25 Pa).
  • plasma treatment of a carbon-containing gas such as methane is performed for 20 to 40 minutes (preferably 25 to 35 minutes) (FIG. 3, (2)).
  • cooling is performed to 800 to 900 ° C. (preferably 830 to 880 ° C.) over about 10 to 20 minutes at a rate of about 20 to 40 ° C.
  • Methane which is a carbon-containing gas for plasma treatment, is decomposed by plasma, and the carbon component decomposed and generated thereby is temporarily dissolved in a nickel foil maintained at a temperature rise of about 1300 ° C. Thereafter, dissolved carbon is precipitated on the surface of the nickel foil in the cooling process up to a cooling temperature of about 850 ° C. and in the maintaining process of the cooling temperature, and crystallizes to form a graphite thin film. Thereby, both the front and back surfaces or one surface of the nickel foil are covered with the graphite thin film. It was a nickel foil exhibiting a metallic luster before the formation of the graphite thin film, but it was visually confirmed that the graphite film was black after the formation of the graphite thin film.
  • Roll-to-roll is a processing method in which a sheet material wound in a roll shape is fed out, and the necessary processing is performed while being conveyed intermittently or continuously, and the processed material is again wound into a roll shape. Means.
  • one or two graphite thin films can be obtained.
  • Etching removal is mentioned.
  • Etching solutions used for etching removal include, but are not limited to, ferric chloride aqueous solution and dilute nitric acid.
  • the graphite thin film separated from the nickel foil has a sheet resistance of about 0.5 to 5 ⁇ and a thermal conductivity of about 1500 to 1700 W / mK.
  • Nickel foil was installed in the plasma processing apparatus and evacuated to about 10 ⁇ 4 Pa once. Next, the nickel foil was heated and heated from room temperature to 1300 ° C. over 5 minutes by heating the nickel foil in such a vacuum state (FIG. 3, (1)). While heating at 1300 ° C., 30 SCCM of methane as a carbon-containing gas was introduced to adjust the pressure to 20 Pa, and methane plasma treatment was performed for 30 minutes (FIG. 3, (2)). Then, it cooled to 850 degreeC over about 15 minutes at the speed
  • Raman spectroscopic measurement was performed on the graphite thin film formed on the nickel foil after the plasma treatment.
  • the wavelength of the excitation laser used was 638 nm, and the spot diameter of the laser beam was 1 ⁇ m.
  • the measurement was performed at five locations along the diagonal of a 10 mm ⁇ 10 mm sample.
  • FIG. 5 shows Raman spectrums measured at five locations. Thus, spectra having peaks at 1578 cm ⁇ 1 and 2678 cm ⁇ 1 were observed.
  • the peak at 1578 cm ⁇ 1 is the G band of graphite, and the peak at 2678 cm ⁇ 1 is the 2D band, which is a typical Raman spectrum obtained from high quality graphite.
  • the peak at 2678 cm ⁇ 1 is the 2D band, which is a typical Raman spectrum obtained from high quality graphite.
  • no D band indicating defects observed in the vicinity of 1350 cm ⁇ 1 . This indicates that the graphite thin film produced by this method is very good and has high crystal quality.
  • the film thickness of the graphite thin film obtained from the measurement with a stylus profilometer and SEM was in the range of 300 nm to 400 nm, and the average film thickness was about 350 nm.
  • the average film thickness is an average value when the film thickness is measured in a predetermined range of about 1 to 5 mm with a stylus type step gauge, or about 10 to 20 thicknesses randomly selected with an SEM. It means the average value when measured.
  • the average sheet resistance of the graphite thin film obtained in the present invention is 3.2 ⁇ 0.3 ⁇ , and the film thickness is about 350 nm, so that the electric conductivity is about 9000 S / cm.
  • XRD measurement (2 ⁇ - ⁇ measurement) X-ray diffraction measurement of the above self-supporting graphite thin film was performed. Details of the measurement are described below.
  • the X-ray diffractometer used was Rigaku Corporation's X-ray diffractometer RINT2100XRD-DSCII, and the goniometer was an Ultimate III horizontal goniometer manufactured by Rigaku Corporation. A multipurpose sample stand for thin film standard is attached to this goniometer. The measured sample was obtained by bonding a graphite thin film separated from the nickel foil to a thin quartz glass. The sample size was approximately 10 mm square.
  • the X-ray was a copper (Cu) K ⁇ 1 line.
  • the applied voltage and current of the X-ray tube were 40 kV and 40 mA.
  • a scintillation counter was used as the X-ray detector.
  • the scattering angle (2 ⁇ angle) was calibrated using a silicon standard sample. The deviation of the 2 ⁇ angle was ⁇ 0.02 ° or less.
  • the measurement sample is fixed to the sample stage, and the 2 ⁇ angle is 0 °, that is, the X-ray incident direction is parallel to the sample surface under the condition that the X-ray is directly incident on the detector. It was adjusted so that half was blocked by the sample. In this way, the incident angle ( ⁇ angle) of 0 ° with respect to the sample surface was determined.
  • the goniometer is rotated, the 2 ⁇ angle is changed from 10 ° to 90 ° in steps of 0.02 °, and X-rays are irradiated while changing the ⁇ angle to be half of the 2 ⁇ angle.
  • the intensity of X-rays scattered from the sample at the - ⁇ angle was measured.
  • the computer program used for the measurement is RINT2000 / PC software Windows (registered trademark) manufactured by Rigaku Corporation.
  • the measured X-ray diffraction spectrum is shown in FIG. It can be seen that there is a strong and clear peak at 2 ⁇ angle of 26.54 °. Furthermore, although the 2 ⁇ angle is as small as 54.64 °, there is a clear peak. From the 2 ⁇ angles of these peaks, they were found to be graphite (002) and (004) diffraction peaks, respectively.
  • the thermal diffusivity of the graphite thin film separated from the nickel foil was measured by a periodic heating method.
  • the periodic heating method is a method in which heat flow energy whose intensity is periodically modulated is given to a measurement sample, and the thermal diffusivity is obtained from the amplitude or phase difference of the temperature response at a position away from the heating region by a certain distance.
  • heat flow energy laser light or Joule heat of a heater is used, and this is periodically modulated and given to the sample. In this measurement, heating by laser light irradiation was used.
  • temperature sensors such as thermocouples
  • thermoreflectance methods are used for temperature response detection.
  • non-contact temperature detection was performed using a radiation thermometer.
  • thermal diffusivity measurement by the periodic heating method see the literature (H. Kato, T. Baba, M. Okaj, “Anisotropic thermal-diffusivity measurements by a new laser-spot-heating technique”, Meas. Sci. Technol. Vol. 12 (2001) pp.2074-2080).
  • the measured size of the graphite thin film was 6 mm in diameter.
  • the average film thickness was about 350 nm.
  • FIG. 8A shows the measurement result.
  • the horizontal axis represents the distance L from the heating point (laser beam irradiation position), and the vertical axis represents the temperature response phase difference ⁇ .
  • the heating frequency f is 70, 140, 200 and 400 Hz, and the laser output for heating is 30 mW.
  • the thermal diffusivity ⁇ and the phase difference ⁇ have a relationship as shown below. Using this relationship, the thermal diffusivity ⁇ is determined from each of the positive and negative regions of L.
  • FIG. 8B shows the relationship between the thermal diffusivity ⁇ thus obtained and the heating frequency f.
  • the thermal diffusivity ⁇ is 1.1 ⁇ 10 ⁇ 3 , 9.3 ⁇ 10 ⁇ 4 , 9.1 ⁇ 10 ⁇ 4 , 9.2 ⁇ 10 ⁇ at heating frequencies f of 70, 140, 200, and 400 Hz, respectively. 4 m 2 / s.
  • the thermal conductivity of the graphite thin film according to the example of the present invention was approximately 1570 W / mK.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

真空下でニッケル箔を加熱して1250~1350℃の温度まで昇温し、前記ニッケル箔に加熱を行いながら炭素含有ガスのプラズマ処理を行い、その後、プラズマ処理を継続しながらニッケル箔を830~870℃まで冷却して、該ニッケル箔の表面にグラファイト薄膜を生成させる。そうすると、平均膜厚が300~400nmの高品質なグラフェン薄膜を比較的低温で製造することができるようになる。

Description

グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法
 本発明は、グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法に関するものである。
 SP2結合した炭素原子(C)からなるグラファイトは、優れた耐熱性や耐薬品性、高導電性でかつ高熱伝導などの特性を有し、工業材料として重要な位置を占める。この様なグラファイトとしては、一般に人工的に製造したものが用いられている。例えば、ポリイミド等の芳香族高分子を出発原料として、それを焼成処理することで、シート状のグラファイトを製造する方法が工業的に用いられている(特許文献1、非特許文献1及び2参照)。この人工グラファイトシートは現在、携帯電話やスマートフォンなどの小型パーソナルデバイスの熱放散用高熱伝導シートとして広く用いられている。また最近では酸化グラフェン溶液をフィルターで濾すなどして得た酸化グラフェン集積膜を高温処理することによって還元し、熱伝導率を高める手法が開発されるに至っている。
 上述のような従来のグラファイト薄膜やその製造工程には、次の(1)~(3)に示すような問題がある。
(1)グラファイト薄膜はこれまでに薄さ10μm程度までが商品化され、電子デバイスなどの熱マネージメント用材料として広く利用されている。グラファイト薄膜を例えば層間熱接続材料(Thermal Interface Material, TIM)などのより高機能の熱マネージメントで利用するためには、1μmあるいはそれ以下の薄さを実現することが好ましい。ポリイミド等の芳香族高分子や酸化グラフェンを出発原料として、それを焼成処理することで製造されるシート状のグラファイト薄膜は、その作製手法のため、厚さ数μmより薄いものを作製することがたいへん難しい。
(2)ポリイミド等の芳香族高分子を出発原料とする作成手法では、1000℃程度の熱処理による炭素化、および2000℃から3000℃程度あるいはそれ以上の温度での熱処理による黒鉛化という高温の複数工程が必要である。酸化グラフェンの集積膜を還元する場合においても、高熱伝導率の達成のためには3000℃あるいはそれ以上の高温を必要とする。したがって、これまでバッチ方式の生産のみが実現されている。工業的にはロールツーロールなどの連続生産方式による高スループットの生産法が待望されているが、いまだ確立に至っていない。
(3)上記(1)及び(2)の問題点は、グラファイトの優れた特性をさらに広範な用途に展開することの大きな妨げとなっている。
特許第1991824号公報
M. Murakami, K. Watanabe, and S. Yoshimura : "High-quality pyrographite films", Appl. Phys. Lett. Vol.48, No. 23, pp.1594-1596 (1986) M. Murakami, N. Nishiki, K. Nakamura, J. Ehara, H. Okada, T. Kouzaki, K. Watanabe, T. Hoshi and S. Yoshimura, Carbon 30 (1992), pp.255-262.
 よって、本発明の目的は、一側面では、平均膜厚が300~400nmの高品質なグラフェン薄膜、及び該グラフェン薄膜を比較的低温で製造するための製造方法を提供することである。
 また、本発明の他の目的は、一側面では、平均膜厚が300~400nmの高品質なグラフェン薄膜と該グラフェン薄膜を支持するニッケル箔膜とを含むグラフェン薄膜積層体、及びそれらの製造方法を提供することである。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、厚さ1μm以下のグラファイト薄膜を、従来のグラファイト薄膜の作製法と比較して簡便な工程で、かつ低温で作製できる知見を得た。さらにこの手法はロールツーロールなどの連続生産手法として好適であることを見出した。
 本出願では以下の発明が開示される。
<1>平均膜厚が300~400nmのグラファイト薄膜であって、そのラマン分光スペクトルにおいて、1580cm-1付近と2680cm-1付近にピークを備え、かつ、1350cm-1付近にピークを有しないか又はピークを有していてもそのピーク強度が1580cm-1付近のピークの5%以下であるグラファイト薄膜。
<2>シート抵抗が0.5~5Ω、および/または、熱伝導率が1500~1700W/mKである<1>に記載のグラファイト薄膜。
<3>X線回折の2θ-θ測定スペクトルにおいて、2θ角が26.54°に(002)回折の強く明瞭なピークがあり、2θ角が54.64°に(004)回折の小さいピークがあり、かつ、θ角を0.5°に固定した2θ測定スペクトルにおいて、2θ角が26.54°のピーク強度が、2θ-θ測定スペクトルの2θ角が26.54°のピーク強度の2%以下である<1>に記載のグラファイト薄膜。
<4>自立した薄膜である<1>に記載のグラファイト薄膜。
<5><1>~<4>のいずれか1項に記載のグラファイト薄膜と、該グラファイト薄膜を支持するニッケル箔を具備するグラファイト薄膜積層体。
<6>前記グラファイト薄膜を前記ニッケル箔の両表面に具備する<5>に記載のグラファイト薄膜積層体。
<7>真空下でニッケル箔を加熱して1250~1350℃の温度まで昇温し、前記ニッケル箔に加熱を行いながら炭素含有ガスのプラズマ処理を行い、その後、プラズマ処理を継続しながらニッケル箔を830~870℃まで冷却して、該ニッケル箔の表面にグラファイト薄膜を生成させるグラファイト薄膜またはグラファイト薄膜積層体の製造方法。
<8>前記グラファイト薄膜は、炭素含有ガスがプラズマ処理により分解して生成された炭素がニッケル箔に溶け込み、その後の830~870℃までの冷却過程および/またはその温度でのプラズマ処理時に、前記溶け込んだ炭素がニッケル箔表面に析出し、結晶化することによりニッケル箔上に生成する<7>に記載のグラファイト薄膜またはグラファイト薄膜積層体の製造方法。
<9>前記グラファイト薄膜またはグラファイト薄膜積層体は、ロールツーロールを用いて製造される<7>または<8>に記載のグラファイト薄膜またはグラファイト薄膜積層体の製造方法。
<10><7>~<9>のいずれか1項に記載のグラファイト薄膜またはグラファイト薄膜積層体の製造方法において、製造されたグラファイト薄膜積層体からニッケル箔を除去するグラファイト薄膜の製造方法。
 本発明のグラファイト薄膜は、平均膜厚が300~400nm程度の高品質のものである。
 また、本発明の製造方法によれば、平均膜厚300~400nm程度の高品質のグラファイト薄膜が、重ね合わせ工程を含むことなく、従来法と比較して大幅な低温(1300℃程度)で製造可能である。このため本手法を利用することにより極薄のグラファイト薄膜をロールツーロールなどの連続生産手法で生産することも可能となる。
図1は、本発明の実施形態におけるグラファイト薄膜の断面模式図である。 図2は、本発明の実施形態におけるグラファイト薄膜/ニッケル箔/グラファイト薄膜積層体の断面模式図である。 図3は、本発明の実施形態におけるプラズマ照射を用いたグラファイト薄膜/ニッケル箔/グラファイト薄膜積層体の作製工程を示す図である。 図4は、本発明の実施形態における作製工程と比較するための比較例におけるプラズマ照射無しの作製工程を示す図である。 図5の左図は、プラズマ照射により作製した実施例のサンプルについてラマン分光測定を行った位置(1)~(5)を示す図であり、図5の右図は各位置のラマン分光スペクトルを示す図である。 図6の左図は、プラズマ照射なしで作製した比較例のサンプルについてラマン分光測定を行った位置(1)~(5)を示す図であり、図5の右図は各位置のラマン分光スペクトルを示す図である。 図7は、本発明の実施形態に係るグラファイト薄膜のX線回折スペクトル(2θ-θ測定)を示す図である。 図8は、本発明の実施形態に係るグラファイト薄膜の周期加熱法による熱拡散率測定結果を示す図であり、図8(a)は加熱周波数70、140、200及び400Hzでの応答温度の位相差θと加熱点(レーザー光の照射位置)からの距離Lの関係を示し、図8(b)は熱拡散率αと加熱周波数fの関係を示す図である。
 以下、本発明のグラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法について、実施形態と実施例に基づいて説明する。重複説明は適宜省略する。なお、ふたつの数値の間に「~」を記載して数値範囲を表す場合には、これらのふたつの数値も数値範囲に含まれるものとする。
 図1は、本発明の実施形態に係るグラファイト薄膜10を示している。また図2は、本発明の実施形態に係るグラファイト薄膜/ニッケル箔/グラファイト薄膜積層体12を示している。グラファイト薄膜/ニッケル箔/グラファイト薄膜積層体(以下、単に「グラファイト薄膜積層体」ということがある。)はグラファイト薄膜10と、ニッケル箔11を備えている。
 本発明の実施形態に係るグラファイト薄膜は、平均膜厚が300~400nmであり、高品質のものである。高品質であることは、そのラマン分光スペクトルにおいて、1580cm-1付近と2680cm-1付近にピークを備え、かつ、欠陥を示すDバンド(1350cm-1付近に観測される)にピークを有しないか又はピークを有していてもそのピーク強度が1580cm-1付近のピークの5%以下であることにより確かめることができる。
 本発明の実施形態に係るグラファイト薄膜は、配向性を有することからも高品質のものといえる。配向性を有することは、X線回折スペクトルにおいて、次の(1)~(3)を満足することにより確認することができる。
(1)X線回折の2θ-θ測定スペクトルにおいて、2θ角が26.54°(002)に強く明瞭なピークが存在する。
(2)X線回折の2θ-θ測定スペクトルにおいて、2θ角が54.64°(004)に小さいがはっきりとしたピークが存在する。(2θ角が54.64°のピーク強度が2θ角が26.54°のピーク強度の2%以上)。
(3)θ角を0.5°に固定した2θ測定スペクトルにおいて、2θ角が26.54°のピーク強度が、2θ-θ測定スペクトルの2θ角が26.54°のピーク強度の2%以下である。
 ニッケル箔は、グラファイト薄膜の形成時や使用時の基材または支持体として、また、グラファイト薄膜のみをニッケル箔から剥離して使用するまでの取扱い、搬送等を容易にするための基材または支持体として使用するものである。
 ニッケル箔のニッケルは、純ニッケルでもよいし、また、50質量%以下(好ましくは20質量%以下、より好ましくは10質量%以下)の合金成分を含んでいても良い。ニッケル箔の厚さは、限定するものではないが、通常、1~100μm、好ましくは1~50μm程度である。ニッケル箔をエッチングなどにより除去する場合は、薄い方が好ましく1~50μm、より好ましくは2~30μm程度である。
 本発明の実施形態に係るグラファイト薄膜は、好適には、自立膜である。なお、自立膜とは、ニッケル箔などの支持体(または基材)が存在しなくても形状を保持し得る膜を意味する。そして、支持体上に形成されて固着されている膜であっても、支持体をエッチング除去等の各種の手段により除去した後においてもその形状を保持し得る薄膜は自立膜とする。
 図2に示すように、ニッケル箔11の表裏両表面上にグラファイト薄膜10を形成し、グラファイト薄膜積層体12を作製することが望ましいが、ニッケル箔の一方の面を適宜の材料により被覆した状態で他方の面のみにグラファイト薄膜を形成したグラファイト薄膜積層体とすることもできる。
 グラファイト薄膜積層体12は、プラズマ処理を用いた以下の工程によって得られる(図3参照)。すなわち、プラズマ処理装置内にニッケル箔を設置し、一旦10-3Pa以下(好ましくは10-4Pa以下程度)まで真空排気を行う。次にその程度の真空状態でニッケル箔を加熱(例えば通電加熱)することにより3~8分間(好ましくは4~6分間)かけて室温から1250~1350℃(好ましくは1280~1320℃)まで昇温する(図3、(1))。該昇温温度での加熱を行いながら炭素含有ガス(好ましくはメタン、エタン、またはアセチレン)を20~40SCCM(好ましくは25~35SCCM)導入して圧力を10~30Pa(好ましくは15~25Pa)に調整し、メタン等の炭素含有ガスのプラズマ処理を20~40分間(好ましくは25~35分間)行う(図3、(2))。その後、プラズマ照射を行いながら毎分20~40℃(好ましくは25~35℃)程度の速度で10~20分程度かけて800~900℃(好ましくは830~880℃)まで冷却する(図3、(3))。その冷却温度で3~8分間(好ましくは4~6分間)プラズマ処理を継続する(図3、(4))。その後プラズマ処理とニッケル箔の加熱を終了する。それと同時に炭素含有ガスの供給を停止し、真空排気を行いながら3~8分(好ましくは4~6分)程度で室温まで冷却する(図3、(5))。グラファイト薄膜積層体作製全体の工程はおよそ1時間程度である。
 プラズマ処理用炭素含有ガスであるメタンがプラズマにより分解し、それにより分解且つ生成した炭素成分が、1300℃程度の昇温温度に維持したニッケル箔に一旦溶け込む。その後850℃程度の冷却温度までの冷却過程やその冷却温度の維持過程において溶け込んだ炭素がニッケル箔表面に析出し、結晶化することによりグラファイト薄膜が生成する。これにより、ニッケル箔の表裏両表面または一方の表面はグラファイト薄膜で覆われる。グラファイト薄膜形成前は金属光沢を呈するニッケル箔であるが、グラファイト薄膜形成後は黒色を呈していることを目視により確認した。従来のポリイミドなどの樹脂炭化法によるグラファイト薄膜作製は1000℃程度の炭化工程と3000℃程度の結晶化(グラファイト化)工程の二段階を必要とするため、本発明の実施形態に係る手法と比較してはるかに手間と時間がかかり、高温を要するものである。一方、本発明の実施形態に係る手法によれば、全体で1時間程度の短時間で、かつ約1300℃前後という低温で高品質なグラファイト薄膜積層体を作製できる。またこの手法によるグラファイト薄膜積層体作製はプラズマ照射を行う工程(図3の(2)、(3)および(4))で完了するため、成膜用基材であるニッケル箔を巻き取りながら連続的にプラズマ照射することで、グラファイト薄膜積層体を連続的に形成することが可能である。すなわち本手法は、従来の樹脂炭化法では不可能であったロールツーロールでのグラファイト薄膜積層体の連続作製に適用することができ、工業的にたいへん有利な高スループット生産法として発展させることができる。なお、ロールツーロールとは、ロール状に巻かれたシート材料を繰り出して、間欠的又は連続的に搬送しながら必要な処理を行いつつ、処理が終わった材料を再びロール状に巻き取る処理方式を意味する。
 製造されたグラファイト薄膜積層体からニッケル箔を除去することにより、1枚または2枚のグラファイト薄膜を得ることができる。ニッケル箔除去手段としては、限定されないが、エッチング除去が挙げられる。エッチング除去に使用するエッチング液としては、限定するものではないが、塩化第二鉄水溶液、希硝酸などが挙げられる。
 ニッケル箔から分離されたグラファイト薄膜は、0.5~5Ω程度のシート抵抗、1500~1700W/mK程度の熱伝導率を有する。
 以下、本発明について、実施例や比較例に基づいてさらに詳細に説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(ニッケル箔を用いたグラファイト薄膜またはグラファイト薄膜積層体の製造)
 プラズマ処理装置内にニッケル箔を設置し、一旦10-4Pa程度まで真空排気を行った。次にその程度の真空状態でニッケル箔を通電加熱することにより5分間かけて室温から1300℃まで昇温した(図3、(1))。1300℃で加熱を行いながら炭素含有ガスとしてのメタンを30SCCM導入して圧力を20Paに調整し、メタンのプラズマ処理を30分間行った(図3、(2))。その後、プラズマ照射を継続しながら毎分30℃程度の速度で15分程度かけて850℃まで冷却した(図3、(3))。850℃で5分間プラズマ処理を継続し(図3、(4))、その後プラズマ処理とニッケル箔の加熱を終了した。それと同時にメタンの供給を停止し、真空排気を行いながら5分程度で室温まで冷却して(図3、(5))、ニッケル箔の表裏両面に形成したグラファイト薄膜、または、グラファイト薄膜積層体を得た。
(グラファイト薄膜のラマン分光測定)
 グラファイト薄膜の結晶品質を評価するため、プラズマ処理後のニッケル箔に形成したグラファイト薄膜のラマン分光測定を行った。使用した励起用レーザーの波長は638nm、レーザー光のスポット径は1μmである。測定は図5に示すように10mm×10mmのサンプルの対角線に沿う5か所で行った。図5に5か所で測定したラマン分光スペクトルを示す。このように、1578cm-1と2678cm-1にピークを持つスペクトルが観測された。1578cm-1のピークはグラファイトのGバンド、また2678cm-1のピークは2Dバンドであり、高品質グラファイトから得られる典型的なラマン分光スペクトルである。また欠陥を示すDバンド(1350cm-1付近に観測される)はまったく観測されなかった。このことは本手法で作製したグラファイト薄膜がたいへん良好で高い結晶品質を有することを示すものである。
(比較実験例、プラズマ照射なし)
 比較のため、図4に示すように、図3に示す工程のうち、メタンガスのプラズマを10分間照射する部分(図3の(2)、(3)および(4))を、プラズマを照射しないで実施した(図4の(2)、(3)および(4))。その他の工程は図3に示すものと同じである。この工程によると、ニッケル箔表面は黒色を呈することはなく、グラファイト薄膜が形成したことを目視で確認することはできなかった。すなわち、プラズマ照射なしではグラファイト薄膜やグラファイト薄膜積層体の作製はできなかった。
 比較のため、図4に示すプラズマ照射なしの工程で処理したニッケル箔表面のラマン分光測定も行った。図6は測定結果を表すラマン分光スペクトルであるが、Gバンドも2Dバンドも全く観測されなかった。このことは図4に示すプラズマ照射なしの工程では、ニッケル箔表面にグラファイト薄膜が形成されなかったことを示すものである。
(ニッケル箔から分離したグラファイト薄膜の作製)
 次に、図2に示した表裏両表面にグラファイト薄膜を形成したニッケル箔、すなわちグラファイト薄膜積層体を塩化第二鉄溶液に浸漬し、ニッケルを溶解することによりグラファイト薄膜をニッケル箔から分離した。さらにニッケル箔から分離したグラファイト薄膜をステンレスのワッシャーですくい上げ、純水をしみこませたベンコット(登録商標)と同じ容器内に保持し、高湿度の状態で徐々に乾燥した。乾燥後のグラファイト薄膜はピンセットを使ってワッシャーからつまみ上げることができた。このようにして、ニッケル箔から分離したグラファイト薄膜を作製した。
(グラファイト薄膜の厚さの測定)
 上記のニッケル箔から分離したグラファイト薄膜の膜厚測定として、触針式段差計(表面粗さ測定装置)による測定、および、走査型電子顕微鏡(SEM)での断面観察を実施した。段差計による測定の実施にあたり、まず初めに石英ガラス上にグラファイト薄膜をイソプロピルアルコールおよびエタノールを介して接着させた後、カットオフ値0.08mm、触針の送り速さ0.05mm/secにて3方向から測定を実施した。測定したグラファイト薄膜の石英基板からの高さの平均を、段差計から測定したグラファイト薄膜の膜厚とした。次に作製したグラファイト薄膜をSEMによる断面観察を行い、膜厚を測定した。触針式段差計およびSEMによる測定から求めたグラファイト薄膜の膜厚は300nmから400nmの範囲内であり、平均膜厚はおよそ350nmであった。なお、平均膜厚は、触針式段差計により1~5mm程度の所定範囲で膜厚を測定した際の平均値、または、SEMにより無作為に選択した10~20か所程度の膜厚を測定した際の平均値を意味する。
(グラファイト薄膜の電気伝導率の測定)
 上記のニッケル箔から分離したグラファイト薄膜のシート抵抗を、四探針法を用いて測定した。金合金製のプローブ(探針)を使用し、プローブ間距離は300μmであった。直径6mmのサンプルに対して10点において測定を実施した。電気伝導率σは電気抵抗率ρと逆数の関係を持つことから、触針式段差計によって得た平均膜厚の値と四探針法によって得たシート抵抗Rsの値を用いて算出した。電気抵抗率ρはグラファイト薄膜の厚さtとシート抵抗Rsからρ=Rs×tで与えられ、また電気伝導率σはσ=1/(Rs×t)で与えられる。本発明で得られたグラファイト薄膜の平均シート抵抗は3.2±0.3Ωであり、また、膜厚は約350nmであったので、電気伝導率はおよそ9000S/cmとなる。
(XRD測定(2θ-θ測定))
 上記の自立グラファイト薄膜のエックス線回折測定を行った。以下、測定の詳細を記す。使用したX線回折装置は株式会社リガク製X線回折測定装置RINT2100XRD-DSCIIであり、ゴニオメーターは理学社製UltimaIII水平ゴニオメーターである。このゴニオメーターに薄膜標準用多目的試料台を取り付けてある。測定した試料は上記のニッケル箔から分離したグラファイト薄膜を薄い石英ガラスに接着したものである。試料の大きさはおよそ10mm角であった。X線は銅(Cu)のKα1線を用いた。X線管の印加電圧及び電流は40kV及び40mAであった。X線の検出器にはシンチレーションカウンターを用いた。まず、シリコンの標準試料を用いて、散乱角(2θ角)の校正を行った。2θ角のズレは±0.02°以下であった。次に測定用試料を試料台に固定し、2θ角を0°、すなわち検出器にX線が直接入射する条件で、X線入射方向と試料表面とが平行となり、かつ、入射するX線の半分が試料によって遮られるように調整した。このようにして試料表面に対するX線の入射角(θ角)0°を決定した。この状態からゴニオメーターを回転させ、2θ角を10°から90°まで0.02°きざみで変化させ、θ角を2θ角の半分になるように変化させながらX線を照射し、それぞれの2θ-θ角で試料から散乱するX線の強度を測定した。測定に用いたコンピュータープログラムは、株式会社リガク製RINT2000/PCソフトウェアWindow(登録商標)版である。
 測定したX線回折のスペクトルを図7に示す。2θ角が26.54°に強く明瞭なピークがあることがわかる。さらに2θ角が54.64°に小さいがはっきりとしたピークがある。これらピークの2θ角から、それぞれはグラファイトの(002)および(004)回折ピークであることがわかった。
 次に、θ角を0.5°に固定し、2θ角を21°から30°まで0.02°刻みで変化させながらX線を照射し、それぞれの2θ角で試料から散乱するX線の強度を測定した。この測定で得た2θ角が26.54°のピークの強度は図7の2θ-θ測定の(002)回折ピーク強度の百分の1以下であった。このことは、測定試料の結晶面が試料膜面にたいへんよく揃っており、本手法で作製したグラファイト薄膜が高い配向性を有することを示している。
(周期加熱法によるグラファイト薄膜の熱拡散率測定)
 ニッケル箔から分離したグラファイト薄膜の熱拡散率を周期加熱法で測定した。周期加熱法は、強度を周期的に変調させた熱流エネルギーを測定試料に与え、加熱領域からある距離だけ離れた位置における温度応答の振幅または位相差から熱拡散率を求める方法である。熱流エネルギーとして、レーザー光やヒーターのジュール熱を利用し、これを周期的に変調して試料に与える。本測定ではレーザー光照射による加熱を用いた。また温度応答の検出には、温度センサ(熱電対など)やサーモリフレクタンス法などが利用されているが、本測定では放射温度計を用いた非接触による温度検出を行った。周期加熱法による熱拡散率測定の詳細については、文献(H.Kato, T.Baba, M.Okaji, “Anisotropic thermal-diffusivity measurements by a new laser-spot-heating technique”, Meas. Sci. Technol. Vol. 12 (2001) pp.2074-2080)を参照のこと。
 測定したグラファイト薄膜の大きさは直径6mmであった。また平均膜厚はおよそ350nmであった。図8(a)に測定結果を示す。横軸は加熱点(レーザー光の照射位置)からの距離L、縦軸は温度応答の位相差θである。加熱周波数fは70、140、200及び400Hz、加熱のためのレーザー出力は30mWである。熱拡散率αと位相差θは以下に表すような関係を有する。
Figure JPOXMLDOC01-appb-M000001
この関係を使い、Lの正および負の領域それぞれから熱拡散率αを求める。これにより得た熱拡散率αは加熱周波数fの関係を図8(b)に示す。熱拡散率αは加熱周波数fが70、140、200、400Hzのそれぞれにおいて、1.1×10-3、9.3×10-4、9.1×10-4、9.2×10-42/sであった。
 また熱伝導率kは、熱拡散率α、密度ρ、比熱cを用いて以下のように与えられる。
k=αρc     (2)
ここでグラファイトの密度2.26g/cm3、比熱710J/(kgK)を用いて、本発明の実施例に係るグラファイト薄膜の熱伝導率はおよそ1570W/mKであった。

Claims (10)

  1.  平均膜厚が300~400nmのグラファイト薄膜であって、そのラマン分光スペクトルにおいて、1580cm-1付近と2680cm-1付近にピークを備え、かつ、1350cm-1付近にピークを有しないか又はピークを有していてもそのピーク強度が1580cm-1付近のピークの5%以下であるグラファイト薄膜。
  2.  シート抵抗が0.5~5Ω、および/または、熱伝導率が1500~1700W/mKである請求項1に記載のグラファイト薄膜。
  3.  X線回折の2θ-θ測定スペクトルにおいて、2θ角が26.54°に(002)回折の強く明瞭なピークがあり、2θ角が54.64°に(004)回折の小さいピークがあり、かつ、θ角を0.5°に固定した2θ測定スペクトルにおいて、2θ角が26.54°のピーク強度が、2θ-θ測定スペクトルの2θ角が26.54°のピーク強度の2%以下である請求項1に記載のグラファイト薄膜。
  4.  自立した薄膜である請求項1に記載のグラファイト薄膜。
  5.  請求項1~4のいずれか1項に記載のグラファイト薄膜と、該グラファイト薄膜を支持するニッケル箔を具備するグラファイト薄膜積層体。
  6.  前記グラファイト薄膜を前記ニッケル箔の両表面に具備する請求項5に記載のグラファイト薄膜積層体。
  7.  真空下でニッケル箔を加熱して1250~1350℃の温度まで昇温し、前記ニッケル箔に加熱を行いながら炭素含有ガスのプラズマ処理を行い、その後、プラズマ処理を継続しながらニッケル箔を830~870℃まで冷却して、該ニッケル箔の表面にグラファイト薄膜を生成させるグラファイト薄膜またはグラファイト薄膜積層体の製造方法。
  8.  前記グラファイト薄膜は、炭素含有ガスがプラズマ処理により分解して生成された炭素がニッケル箔に溶け込み、その後の830~870℃までの冷却過程および/またはその温度でのプラズマ処理時に、前記溶け込んだ炭素がニッケル箔表面に析出し、結晶化することによりニッケル箔上に生成する請求項7に記載のグラファイト薄膜またはグラファイト薄膜積層体の製造方法。
  9.  前記グラファイト薄膜またはグラファイト薄膜積層体は、ロールツーロールを用いて製造される請求項7または8に記載のグラファイト薄膜またはグラファイト薄膜積層体の製造方法。
  10.  請求項7~9のいずれか1項に記載のグラファイト薄膜またはグラファイト薄膜積層体の製造方法において、製造されたグラファイト薄膜積層体からニッケル箔を除去するグラファイト薄膜の製造方法。
PCT/JP2019/017497 2018-05-16 2019-04-24 グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法 WO2019220903A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020519548A JP7012393B2 (ja) 2018-05-16 2019-04-24 グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018094787 2018-05-16
JP2018-094787 2018-05-16

Publications (1)

Publication Number Publication Date
WO2019220903A1 true WO2019220903A1 (ja) 2019-11-21

Family

ID=68540222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017497 WO2019220903A1 (ja) 2018-05-16 2019-04-24 グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法

Country Status (2)

Country Link
JP (1) JP7012393B2 (ja)
WO (1) WO2019220903A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022176083A (ja) * 2021-05-14 2022-11-25 ソウル大学校産学協力団 金属-グラフェン複合体
CN115849349A (zh) * 2022-12-15 2023-03-28 上海利物盛纳米科技有限公司 一种制备高导热石墨烯散热膜的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201735A (ja) * 2010-03-26 2011-10-13 Fujitsu Ltd グラフェン膜の製造方法及び半導体装置の製造方法
WO2012108526A1 (ja) * 2011-02-10 2012-08-16 独立行政法人産業技術総合研究所 グラフェンの製造方法およびグラフェン
JP2012162442A (ja) * 2010-03-17 2012-08-30 National Institute Of Advanced Industrial Science & Technology 透明導電性炭素膜の製造方法及び透明導電性炭素膜
JP2012246193A (ja) * 2011-05-30 2012-12-13 National Institute Of Advanced Industrial Science & Technology 炭素膜の形成装置、及び炭素膜の形成方法
JP2013079176A (ja) * 2011-10-05 2013-05-02 Dic Corp 修飾グラフェン、膜、及び成形体
WO2016129442A1 (ja) * 2015-02-12 2016-08-18 株式会社カネカ 平滑表面黒鉛膜およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162442A (ja) * 2010-03-17 2012-08-30 National Institute Of Advanced Industrial Science & Technology 透明導電性炭素膜の製造方法及び透明導電性炭素膜
JP2011201735A (ja) * 2010-03-26 2011-10-13 Fujitsu Ltd グラフェン膜の製造方法及び半導体装置の製造方法
WO2012108526A1 (ja) * 2011-02-10 2012-08-16 独立行政法人産業技術総合研究所 グラフェンの製造方法およびグラフェン
JP2012246193A (ja) * 2011-05-30 2012-12-13 National Institute Of Advanced Industrial Science & Technology 炭素膜の形成装置、及び炭素膜の形成方法
JP2013079176A (ja) * 2011-10-05 2013-05-02 Dic Corp 修飾グラフェン、膜、及び成形体
WO2016129442A1 (ja) * 2015-02-12 2016-08-18 株式会社カネカ 平滑表面黒鉛膜およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASEGAWA, MASATAKA ET AL.: "High quality large- area graphene synthesis with high growth rate using plasma-enhanced CVD, -Toward a high throughput process", SYNTHESIOLOGY, vol. 9, no. 3, 2016, pages 124 - 138 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022176083A (ja) * 2021-05-14 2022-11-25 ソウル大学校産学協力団 金属-グラフェン複合体
CN115849349A (zh) * 2022-12-15 2023-03-28 上海利物盛纳米科技有限公司 一种制备高导热石墨烯散热膜的方法

Also Published As

Publication number Publication date
JPWO2019220903A1 (ja) 2021-02-18
JP7012393B2 (ja) 2022-02-14

Similar Documents

Publication Publication Date Title
JP5692794B2 (ja) 透明導電性炭素膜の製造方法
Zhang et al. Clean transfer of large graphene single crystals for high‐intactness suspended membranes and liquid cells
JP5569825B2 (ja) 炭素膜積層体
KR101939615B1 (ko) 그래핀의 제조 방법 및 그래핀
Oh et al. Centimeter-sized epitaxial h-BN films
Xu et al. Fast batch production of high‐quality graphene films in a sealed thermal molecular movement system
WO2019220903A1 (ja) グラファイト薄膜、グラファイト薄膜積層体、およびそれらの製造方法
JP6800401B2 (ja) グラフェン透明導電膜の製造用電解銅箔
Im et al. Xenon Flash Lamp‐Induced Ultrafast Multilayer Graphene Growth
Sosnowchik et al. Titanium dioxide nanoswords with highly reactive, photocatalytic facets
CN112938951B (zh) 石墨烯以及石墨烯的制法
Pham et al. Optimum reproduction and characterization of graphene on copper foils by low pressure chemical vapor deposition
Pizzocchero et al. Chemical vapor-deposited graphene on ultraflat copper foils for van der Waals hetero-assembly
JP2014055086A (ja) グラフェンの製造方法
WO2013003083A1 (en) Method of growing graphene nanocrystalline layers
US8834597B1 (en) Copper nanowire production for interconnect applications
JP2021076620A (ja) 炭素質膜を含むペリクル及び炭素質膜を含むペリクルの製造方法
Mo et al. Template-directed synthesis of Ag nanowire arrays by a simple paired cell method for SERS
Li et al. Substrate Engineering toward Selective Growth of Ultrathin WC Crystals and Heterostructures via Liquid Cu‐Zn Catalyst
JP6893347B2 (ja) 透明導電膜の製造方法および透明導電膜
JP2012224485A (ja) 透明導電性炭素膜の転写方法
TWI631077B (zh) 複合石墨結構、其製造方法及其複合電極結構
Lou et al. Growth of wrinkle-free and ultra-flat Bi-layer graphene on sapphire substrate using Cu sacrificial layer
JP2013237575A (ja) グラフェン膜の形成方法
Jing et al. Different etching evolution from initial to etched ZnO nanorods on substrates of dissimilar geometries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802884

Country of ref document: EP

Kind code of ref document: A1