WO2012108516A1 - イオン交換クロマトグラフィー用充填剤及び核酸鎖の分離検出方法 - Google Patents

イオン交換クロマトグラフィー用充填剤及び核酸鎖の分離検出方法 Download PDF

Info

Publication number
WO2012108516A1
WO2012108516A1 PCT/JP2012/053010 JP2012053010W WO2012108516A1 WO 2012108516 A1 WO2012108516 A1 WO 2012108516A1 JP 2012053010 W JP2012053010 W JP 2012053010W WO 2012108516 A1 WO2012108516 A1 WO 2012108516A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cationic group
exchange chromatography
ion exchange
filler
Prior art date
Application number
PCT/JP2012/053010
Other languages
English (en)
French (fr)
Inventor
卓也 與谷
牛澤 幸司
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to US13/984,107 priority Critical patent/US20140030713A1/en
Priority to EP12744859.5A priority patent/EP2674753B1/en
Priority to JP2012556934A priority patent/JP5734320B2/ja
Priority to KR1020207000479A priority patent/KR102168723B1/ko
Priority to KR1020137023611A priority patent/KR102088639B1/ko
Priority to CN201280008145.5A priority patent/CN103392128B/zh
Publication of WO2012108516A1 publication Critical patent/WO2012108516A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/20Anion exchangers for chromatographic processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/101Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8827Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving nucleic acids

Definitions

  • the present invention relates to a packing material for ion exchange chromatography used for separation and detection of nucleic acid strands.
  • the present invention also relates to a method for separating and detecting a nucleic acid chain using the filler for ion exchange chromatography.
  • Nucleic acids are biopolymers in which nucleotides consisting of bases, sugars, and phosphates are linked by phosphate ester bonds, and are classified into deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) depending on the sugar structure.
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • SNPs single nucleotide polymorphisms
  • the SSCP method (Single-Stranded Formation Polymorphism) is known as a main method of SNP analysis (for example, Non-Patent Document 1).
  • the SSCP method is a method for detecting an SNP by utilizing a difference in higher order structure caused by a difference in base sequence in single-stranded DNA.
  • the SSCP method requires labeling with a radioisotope or a fluorescent substance, the process becomes complicated and the reagent becomes expensive.
  • polymorphism is separated and detected using electrophoresis, there are problems such as complicated work and time required for analysis.
  • an RFLP method (Restriction Fragment Length Polymorphism) is known.
  • a restriction enzyme that recognizes a gene mutation site in a PCR amplification product is present
  • a primer is set at the common sequence site, and amplified inside the PCR amplification product with a polymorphism
  • the obtained PCR product is cleaved with a restriction enzyme, and the presence or absence of a polymorphism is determined based on the length of the fragment.
  • a restriction enzyme since a restriction enzyme is used, there are problems such as an increase in analysis cost and a long analysis time.
  • the difference in chain length is detected by electrophoresis, there are problems such as complicated operations and a long analysis time.
  • ion exchange chromatography is widely used as a method for easily and accurately detecting biopolymers such as nucleic acids, proteins, and polysaccharides in a short time.
  • Ion exchange chromatography is a method that separates the target substance using electrostatic interaction between the ion exchange group of the packing material and the ions in the target substance. There is a thing by.
  • Anion exchange liquid chromatography can separate an anionic substance using a column packing material having a cationic functional group.
  • cation exchange liquid chromatography can separate a cationic substance by using a column filler having an anionic functional group.
  • anion exchange liquid chromatography is used by utilizing the negative charge of phosphate contained in the nucleic acid molecule.
  • the cationic functional group of the column packing material in anion exchange liquid chromatography there are weak cationic groups such as diethylaminoethyl group, and strong cationic groups such as quaternary ammonium group, and these cationic functional groups.
  • ion exchange chromatography using a conventional column packing cannot sufficiently detect a difference in base sequence or a single base substitution in a nucleic acid chain.
  • the present invention is a filler for ion exchange chromatography having a strong cationic group and a weak cationic group on the surface of a substrate fine particle.
  • the present invention is described in detail below.
  • the present inventors have used a filler having a strong cationic group and a weak cationic group as ion exchange groups on the surface of the substrate fine particle as a filler used in ion exchange chromatography, whereby the nucleic acid chain contains
  • the inventors have found that differences in base sequences and single base substitutions can be sufficiently detected, and have completed the present invention.
  • the strong cationic group means a cationic group that dissociates in a wide range of pH 1 to 14. That is, the strong cationic group can be kept dissociated (cationized) without being affected by the pH of the aqueous solution.
  • Examples of the strong cationic group include a quaternary ammonium group. Specific examples include trialkylammonium groups such as a trimethylammonium group, a triethylammonium group, and a dimethylethylammonium group. Examples of the counter ion of the strong cationic group include halide ions such as chloride ions, bromide ions, and iodide ions.
  • the amount of the strong cationic group introduced onto the surface of the substrate fine particles is not particularly limited, but the preferable lower limit per dry weight of the filler is 1 ⁇ eq / g, and the preferable upper limit is 500 ⁇ eq / g.
  • the amount of the strong cationic group is less than 1 ⁇ eq / g, the holding power is weak and the separation performance may be deteriorated.
  • the amount of the strong cationic group exceeds 500 ⁇ eq / g, the holding power becomes too strong to be easily eluted and problems such as an excessive analysis time may occur.
  • the weak cationic group means a cationic group having a pka of 8 or more. That is, the weak cationic group is affected by the pH of the aqueous solution, and the dissociation state changes. That is, when the pH is higher than 8, the protons of the weak cationic group are dissociated, and the proportion not having a positive charge increases. On the other hand, when the pH is lower than 8, the weak cationic group is protonated and the proportion having a positive charge increases.
  • the weak cationic group examples include a tertiary amino group, a secondary amino group, and a primary amino group. Of these, a tertiary amino group is preferable.
  • the amount of the weak cationic group introduced onto the surface of the substrate fine particles is not particularly limited, but a preferable lower limit is 0.5 ⁇ eq / g, and a preferable upper limit is 500 ⁇ eq / g.
  • the amount of the weak cationic group is less than 0.5 ⁇ eq / g, the separation performance may not be improved because the amount is too small.
  • the amount of the weak cationic group exceeds 500 ⁇ eq / g, the holding power becomes too strong as in the case of the strong cationic group, so that it cannot be easily eluted, and problems such as an excessive analysis time may occur.
  • substrate fine particles for example, synthetic polymer fine particles obtained using a polymerizable monomer or the like, silica-based inorganic fine particles, and the like can be used. Particles are preferred.
  • the hydrophobic crosslinked polymer is a hydrophobic crosslinked polymer obtained by copolymerizing at least one hydrophobic crosslinkable monomer and a monomer having at least one reactive functional group. Any of the hydrophobic cross-linked polymers obtained by copolymerizing a hydrophobic cross-linkable monomer, a monomer having at least one reactive functional group and at least one hydrophobic non-cross-linkable monomer There may be.
  • the hydrophobic crosslinkable monomer is not particularly limited as long as it has two or more vinyl groups in one monomer molecule.
  • ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) Di (meth) acrylates such as acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and tri (meth) such as trimethylol methane tri (meth) acrylate and tetramethylol methane tri (meth) acrylate
  • Acrylic acid esters or tetra (meth) acrylic acid esters, and aromatic compounds such as divinylbenzene, divinyltoluene, divinylxylene, divinylnaphthalene and the like can be mentioned.
  • the above (meth) acrylate means acrylate or methacrylate
  • (meth) acryl means acryl or methacryl.
  • Examples of the monomer having a reactive functional group include glycidyl (meth) acrylate and isocyanate ethyl (meth) acrylate.
  • the hydrophobic non-crosslinkable monomer is not particularly limited as long as it is a non-crosslinkable polymerizable organic monomer having hydrophobic properties.
  • methyl (meth) acrylate, ethyl (meth) acrylate examples thereof include (meth) acrylic acid esters such as butyl (meth) acrylate and t-butyl (meth) acrylate, and styrene monomers such as styrene and methylstyrene.
  • the hydrophobic cross-linked polymer is obtained by copolymerizing the hydrophobic cross-linkable monomer and the monomer having a reactive functional group, the hydrophobic property in the hydrophobic cross-linked polymer
  • the preferable lower limit of the content ratio of the segment derived from the crosslinkable monomer is 10% by weight, and the more preferable lower limit is 20% by weight.
  • the filler for ion exchange chromatography of the present invention preferably has a polymer layer having the strong cationic group and the weak cationic group on the surface of the substrate fine particles.
  • the strong cationic group and the weak cationic group are preferably derived from independent monomers.
  • the filler for ion-exchange chromatography of the present invention is a hydrophilic polymer having the above-mentioned hydrophobic crosslinked polymer particles and a strong cationic group copolymerized on the surface of the hydrophobic crosslinked polymer particles. It is preferable that a weak cationic group is introduced on the surface of the coated polymer particle comprising the above layer.
  • the hydrophilic polymer having a strong cationic group is composed of a hydrophilic monomer having a strong cationic group, and is derived from a hydrophilic monomer having one or more strong cationic groups. What is necessary is just to contain a segment. That is, as a method for producing the hydrophilic polymer having a strong cationic group, a method of polymerizing a hydrophilic monomer having a strong cationic group alone, a hydrophilic property having two or more strong cationic groups. Examples thereof include a method of copolymerizing monomers, a method of copolymerizing a hydrophilic monomer having a strong cationic group and a hydrophilic monomer having no strong cationic group.
  • the hydrophilic monomer having a strong cationic group is preferably one having a quaternary ammonium group.
  • a method for introducing the weak cationic group into the surface of the coated polymer particle a known method can be used. Specifically, for example, as a method of introducing a tertiary amino group as the weak cationic group, a hydrophobic crosslinked polymer particle comprising a hydrophobic crosslinked polymer having a segment derived from a monomer having a glycidyl group is used.
  • a method in which a hydrophilic monomer having a strong cationic group is copolymerized on the surface, and then a reagent having a tertiary amino group is reacted with a glycidyl group, hydrophobic having a segment derived from a monomer having an isocyanate group A method in which a hydrophilic monomer having a strong cationic group is copolymerized on the surface of a hydrophobic crosslinked polymer particle comprising a crosslinked polymer, and then a reagent having a tertiary amino group is reacted with an isocyanate group; A method of copolymerizing the hydrophilic monomer having a strong cationic group and a monomer having a tertiary amino group on the surface of the conductive crosslinked polymer particle A method of introducing a tertiary amino group to the surface of a coated polymer particle having a hydrophilic polymer layer having a strong cationic group using a silane
  • the hydrophilic monomer having a strong cationic group is copolymerized on the surface of a hydrophobic crosslinked polymer particle composed of a hydrophobic crosslinked polymer having a segment derived from a monomer having a glycidyl group, and then A method of reacting a reagent having a tertiary amino group with a glycidyl group, or the above strong cationic property on the surface of a hydrophobic crosslinked polymer particle comprising a hydrophobic crosslinked polymer having a segment derived from a monomer having an isocyanate group A method of copolymerizing a hydrophilic monomer having a group and then reacting a reagent having a tertiary amino group with an
  • the reagent having a tertiary amino group to be reacted with a reactive functional group such as a glycidyl group or an isocyanate group is not particularly limited as long as it has a functional group capable of reacting with the tertiary amino group and the reactive functional group.
  • a functional group capable of reacting with the tertiary amino group and the reactive functional group include a primary amino group and a hydroxyl group. Especially, it is preferable to have a primary amino group at the terminal.
  • Specific compounds include N, N-dimethylaminomethylamine, N, N-dimethylaminoethylamine, N, N-dimethylaminopropylamine, N, N-dimethylaminobutylamine, N, N-diethylaminoethylamine, N, N-diethylaminopropylethylamine, N, N-diethylaminobutylamine, N, N-diethylaminopentylamine, N, N-diethylaminohexylamine, N, N-dipropylaminobutylamine, N, N-dibutylaminopropylamine, etc. .
  • the relative position relationship between the strong cationic group, preferably a quaternary ammonium salt, and the weak cationic group, preferably a tertiary amino group is such that the strong cationic group is a substrate rather than the weak cationic group. It is preferable to be at a position far from the surface of the fine particles, that is, outside.
  • the weak cationic group is preferably within 30 mm from the surface of the substrate fine particle, and the strong cationic group is preferably within 300 mm from the surface of the substrate fine particle and outside the weak cationic group.
  • the average particle size of the filler for ion exchange chromatography of the present invention is not particularly limited, but the preferred lower limit is 0.1 ⁇ m and the preferred upper limit is 20 ⁇ m. If the average particle size is less than 0.1 ⁇ m, the inside of the column may become too high, resulting in poor separation. When the average particle diameter exceeds 20 ⁇ m, the dead volume in the column becomes too large, which may cause poor separation.
  • the average particle diameter indicates a volume average particle diameter, and can be measured using a particle size distribution measuring device (manufactured by AccuSizer 780 / Particle Sizing Systems).
  • the method for separating and detecting a nucleic acid chain using the packing material for ion exchange chromatography of the present invention is also one aspect of the present invention.
  • known conditions can be used as the composition of the eluent when analyzed by ion exchange chromatography.
  • the buffer solution used for the eluent it is preferable to use a buffer solution or an organic solvent containing a known salt compound.
  • Tris-HCl buffer solution Tris-HCl buffer solution
  • TE buffer solution composed of Tris and EDTA examples thereof include a TAE buffer solution composed of tris, acetic acid, and EDTA, a TBA buffer solution composed of tris, boric acid, and EDTA.
  • the pH of the eluent is not particularly limited, but a preferred lower limit is 5 and a preferred upper limit is 10. By setting in this range, it is considered that the weak cationic group also effectively acts as an ion exchange group (anion exchange group).
  • the more preferable lower limit of the pH of the eluent is 6, and the more preferable upper limit is 9.
  • salts used for elution in ion exchange chromatography include salts consisting of halides and alkali metals such as sodium chloride, potassium chloride, sodium bromide, potassium bromide, calcium chloride, calcium bromide, magnesium chloride, Use salts made of halides such as magnesium bromide and alkaline earth metals, and inorganic acid salts such as sodium perchlorate, potassium perchlorate, sodium sulfate, potassium sulfate, ammonium sulfate, sodium nitrate, and potassium nitrate. it can.
  • organic acid salts such as sodium acetate, potassium acetate, sodium succinate, potassium succinate, can also be used.
  • the salt concentration of the eluent may be appropriately adjusted according to the analysis conditions, but the preferred lower limit is 10 mmol / L, the preferred upper limit is 2000 mmol / L, the more preferred lower limit is 100 mmol / L, and the more preferred upper limit is 1500 mmol / L. L.
  • the filler for ion exchange chromatography which can fully detect the difference of the base sequence in a nucleic acid chain
  • a method for separating and detecting a nucleic acid chain using the filler for ion exchange chromatography can be provided.
  • FIG. 2 is a graph obtained by measuring oligonucleotides (specimens A and B) having different sequences using the anion exchange column filled with the filler prepared in Example 1.
  • FIG. 6 is a graph obtained by measuring oligonucleotides (specimens A and B) having different sequences using the anion exchange column packed with the filler prepared in Comparative Example 1.
  • FIG. 4 is a graph obtained by measuring oligonucleotides (specimens C and D) having different bases using the anion exchange column packed with the filler prepared in Example 1.
  • FIG. 4 is a graph obtained by measuring oligonucleotides (specimens C and D) having a single base difference using the anion exchange column packed with the filler prepared in Comparative Example 1.
  • Example 1 To 2000 mL of 3% by weight polyvinyl alcohol (manufactured by Nippon Synthetic Chemical) in a reactor equipped with a stirrer, 200 g of tetraethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), triethylene glycol dimethacrylate (Shin Nakamura Chemical Co., Ltd.) 100 g), 100 g of glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.0 g of benzoyl peroxide (manufactured by Kishida Chemical Co., Ltd.) were added. The mixture was heated with stirring and polymerized at 80 ° C.
  • the obtained coated polymer particles were measured using a particle size distribution analyzer (Accumizer 780 / Particle Sizing Systems), and the average particle size was 10 ⁇ m.
  • ethyl trimethyl ammonium chloride manufactured by Wako Pure Chemical Industries, Ltd.
  • a hydrophilic monomer having a strong cationic group was dissolved in ion-exchanged water. This was added to the same reactor and polymerized in the same manner at 80 ° C. for 2 hours under stirring in a nitrogen atmosphere. The obtained polymer composition was washed with water and acetone to obtain coated polymer particles having a hydrophilic polymer layer having a quaternary ammonium group on the surface.
  • the obtained coated polymer particles were measured in the same manner as in Example 1 using a particle size distribution analyzer (AccurSizer 780 / Particle Sizing Systems), and the average particle size was 10 ⁇ m.
  • Isolation sample of oligonucleotide with different sequence Oligonucleotide 20mer (manufactured by Operon Biotechnology) Specimen A ... 5'-AACTTGAGTTCGGCGATCAC-3 ' Specimen B ... 5'-CCAGCATCGATCATTGTG-3 ' Samples A and B differ only in sequence, and the number of contained bases is A5, T5, G5, and C5. The base sequence was arbitrarily determined using random numbers.
  • FIGS. Graphs obtained by measuring oligonucleotides with different sequences (samples A and B) using the anion exchange column packed with the filler prepared in Example 1 and Comparative Example 1 are shown in FIGS. . From the comparison of FIGS. 1 and 2, in the column packed with the filler of Example 1 in which a strong cationic group and a weak cationic group coexist on the surface of the base particle, oligonucleotides having different sequences can be separated well. all right. On the other hand, in the column packed with the packing material of Comparative Example 1, separation was insufficient.
  • FIGS. 3 and 4 show graphs obtained by measuring oligonucleotides (specimens C and D) having different bases using the anion exchange column packed with the filler prepared in Example 1 and Comparative Example 1, respectively. . From the comparison of FIGS. 3 and 4, in the column packed with the filler of Example 1 in which a strong cationic group and a weak cationic group coexist on the surface of the base particle, the single-base-substituted oligonucleotide can be well separated. I understood. On the other hand, in the column packed with the packing material of Comparative Example 1, separation was insufficient.
  • the filler for ion exchange chromatography which can fully detect the difference of the base sequence in a nucleic acid chain
  • a method for separating and detecting a nucleic acid chain using the filler for ion exchange chromatography can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、核酸鎖中の塩基配列の違いや一塩基置換の差を充分に検出できるイオン交換クロマトグラフィー用充填剤を提供することを目的とする。また、本発明は、該イオン交換クロマトグラフィー用充填剤を用いる核酸鎖の分離検出方法を提供することを目的とする。 本発明は、基材微粒子の表面に強カチオン性基と弱カチオン性基とを有するイオン交換クロマトグラフィー用充填剤である。

Description

イオン交換クロマトグラフィー用充填剤及び核酸鎖の分離検出方法
本発明は、核酸鎖の分離検出に用いるイオン交換クロマトグラフィー用充填剤に関する。また、本発明は、該イオン交換クロマトグラフィー用充填剤を用いる核酸鎖の分離検出方法に関する。
核酸は、塩基、糖、リン酸からなるヌクレオチドがリン酸エステル結合で連なった生体高分子であり、糖構造の違いによってデオキシリボ核酸(DNA)とリボ核酸(RNA)とに分類される。
近年、核酸において、様々な病気や薬の副作用との関連付けが明らかとなってきた一塩基多型(SNP;Single Nucleotide Polymorphism)を解析する技術が開発されており、簡便且つ短時間に精度良く検出することが重要な要素となっている。
SNP解析の主要な方法として、SSCP法(Single-Stranded Comformation Polymorphism)が知られている(例えば、非特許文献1)。SSCP法は、一本鎖DNAにおける塩基配列の違いによって生じる高次構造の差を利用してSNPを検出する方法である。しかしながら、SSCP法ではラジオアイソトープ又は蛍光物質での標識が必要なため、工程が煩雑になったり、試薬が高価になったりする。また、電気泳動を用いて多型を分離検出するため、作業が煩雑になったり、解析に時間を要したりする等の課題がある。
また、SNP解析の別の方法として、RFLP法(Restriction Fragment Length Polymorphism)が知られている。RFLP法は、PCR増幅産物中の遺伝子変異部位を認識する制限酵素が存在する場合、共通配列部位にプライマーを設定し、その内側、すなわち、PCR増幅産物内に多型性をもたせて増幅し、得られたPCR産物を制限酵素で切断し、その断片の長さにより、多型の有無を判定する方法である。しかしながら、制限酵素を用いるため、分析コストが上がったり、解析全体の時間が長くなったりする等の課題がある。また、電気泳動により鎖長差を検出するため、作業が煩雑になったり、解析全体の時間が長くなったりする等の課題もある。
一方、生化学や医学等の分野において、核酸、タンパク質、多糖類といった生体高分子の分離には、簡便且つ短時間に精度良く検出できる方法としてイオン交換クロマトグラフィーが汎用されている。
イオン交換クロマトグラフィーは、充填剤のイオン交換基と測定対象物質中のイオンとの間に働く静電的相互作用を利用して測定対象物質を分離する方法であり、アニオン交換によるものとカチオン交換によるものとがある。アニオン交換液体クロマトグラフィーは、カチオン性の官能基を有するカラム充填剤を用いて、アニオン性の物質を分離することができる。また、カチオン交換液体クロマトグラフィーは、アニオン性の官能基を有するカラム充填剤を用いて、カチオン性の物質を分離することができる。
核酸のPCR増幅産物を、イオン交換クロマトグラフィーを用いて分離する場合、核酸分子中に含まれるリン酸のマイナス電荷を利用して、アニオン交換液体クロマトグラフィーが用いられる。アニオン交換液体クロマトグラフィーにおけるカラム充填剤のカチオン性の官能基としては、ジエチルアミノエチル基のような弱カチオン性基、4級アンモニウム基のような強カチオン性基があり、これらのカチオン性の官能基を有するカラム充填剤は既に市販され、各種研究分野で使用されている。
しかしながら、従来のカラム充填剤を用いたイオン交換クロマトグラフィーでは、核酸鎖中の塩基配列の違いや一塩基置換の差を充分に検出することができなかった。
Orita,M.,et al.:Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms.Proc.Natl.Acad.Sci.USA,86:2766-2770,1989.
本発明は、核酸鎖中の塩基配列の違いや一塩基置換の差を充分に検出できるイオン交換クロマトグラフィー用充填剤を提供することを目的とする。また、本発明は、該イオン交換クロマトグラフィー用充填剤を用いる核酸鎖の分離検出方法を提供することを目的とする。
本発明は、基材微粒子の表面に強カチオン性基と弱カチオン性基とを有するイオン交換クロマトグラフィー用充填剤である。
以下に本発明を詳述する。
本発明者らは、イオン交換クロマトグラフィーに用いる充填剤として、基材微粒子の表面に、イオン交換基として強カチオン性基と弱カチオン性基とを有する充填剤を用いることによって、核酸鎖中の塩基配列の違いや一塩基置換の差を充分に検出できることを見出し、本発明を完成させるに至った。
本明細書において、上記強カチオン性基とは、pHが1から14の広い範囲で解離するカチオン性基を意味する。すなわち、強カチオン性基は、水溶液のpHに影響を受けず解離した(カチオン化した)状態を保つことが可能である。
上記強カチオン性基としては、4級アンモニウム基が挙げられる。具体的には例えば、トリメチルアンモニウム基、トリエチルアンモニウム基、ジメチルエチルアンモニウム基等のトリアルキルアンモニウム基等が挙げられる。
また、上記強カチオン性基のカウンターイオンとしては、例えば、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物イオンが挙げられる。
上記基材微粒子の表面に導入される強カチオン性基量は特に限定されないが、充填剤の乾燥重量あたりの好ましい下限は1μeq/g、好ましい上限は500μeq/gである。上記強カチオン性基量が1μeq/g未満であると、保持力が弱く分離性能が悪くなることがある。上記強カチオン性基量が500μeq/gを超えると、保持力が強くなりすぎ容易に溶出させることができず、分析時間が長くなりすぎる等の問題が生じることがある。
本明細書において上記弱カチオン性基とは、pkaが8以上のカチオン性基を意味する。すなわち、上記弱カチオン性基は、水溶液のpHによる影響を受け、解離状態が変化する。すなわち、pHが8より高くなると、上記弱カチオン性基のプロトンは解離し、プラスの電荷を持たない割合が増える。逆に、pHが8より低くなると、上記弱カチオン性基はプロトン化し、プラスの電荷を持つ割合が増える。
上記弱カチオン性基としては、例えば、3級アミノ基、2級アミノ基、1級アミノ基等が挙げられる。なかでも、3級アミノ基であることが好ましい。
また、上記基材微粒子の表面に導入される上記弱カチオン性基量は特に限定されないが、好ましい下限は0.5μeq/g、好ましい上限は500μeq/gである。上記弱カチオン性基量が0.5μeq/g未満であると、少なすぎて分離性能が向上しないことがある。上記弱カチオン性基量が500μeq/gを超えると、強カチオン性基と同様保持力が強くなりすぎ容易に溶出させることができず、分析時間が長くなりすぎる等の問題が生じることがある。
上記基材微粒子としては、例えば、重合性単量体等を用いて得られる合成高分子微粒子、シリカ系等の無機微粒子等を用いることができるが、合成有機高分子からなる疎水性架橋重合体粒子であることが好ましい。
上記疎水性架橋重合体は、少なくとも1種の疎水性架橋性単量体と少なくとも1種の反応性官能基を有する単量体を共重合して得られる疎水性架橋重合体、少なくとも1種の疎水性架橋性単量体と少なくとも1種の反応性官能基を有する単量体と少なくとも1種の疎水性非架橋性単量体とを共重合して得られる疎水性架橋重合体のいずれであってもよい。
上記疎水性架橋性単量体としては、単量体1分子中にビニル基を2個以上有するものであれば特に限定されず、例えば、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のジ(メタ)アクリル酸エステルやトリメチロールメタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート等のトリ(メタ)アクリル酸エステル又はテトラ(メタ)アクリル酸エステルや、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ジビニルナフタレン等の芳香族系化合物が挙げられる。なお、本明細書において上記(メタ)アクリレートとは、アクリレート又はメタクリレートを意味し、(メタ)アクリルとは、アクリル又はメタクリルを意味する。
上記反応性官能基を有する単量体としては、グリシジル(メタ)アクリレート、イソシアネートエチル(メタ)アクリレート等が挙げられる。
上記疎水性非架橋性単量体としては、疎水性の性質を有する非架橋性の重合性有機単量体であれば特に限定されず、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート等の(メタ)アクリル酸エステルや、スチレン、メチルスチレン等のスチレン系単量体が挙げられる。
上記疎水性架橋重合体が、上記疎水性架橋性単量体と上記反応性官能基を有する単量体とを共重合して得られるものである場合、上記疎水性架橋重合体における上記疎水性架橋性単量体に由来するセグメントの含有割合の好ましい下限は10重量%、より好ましい下限は20重量%である。
本発明のイオン交換クロマトグラフィー用充填剤は、上記基材微粒子の表面に、上記強カチオン性基と上記弱カチオン性基とを有する重合体層を有するものであることが好ましい。
また、上記強カチオン性基と上記弱カチオン性基とを有する重合体において、上記強カチオン性基と上記弱カチオン性基とはそれぞれ独立した単量体に由来するものであることが好ましい。具体的には、本発明のイオン交換クロマトグラフィー用充填剤は、上記疎水性架橋重合体粒子と、上記疎水性架橋重合体粒子の表面に共重合された強カチオン性基を有する親水性重合体の層とからなる被覆重合体粒子の表面に、弱カチオン性基が導入されたものであることが好適である。
上記強カチオン性基を有する親水性重合体は、強カチオン性基を有する親水性単量体から構成されるものであり、1種以上の強カチオン性基を有する親水性単量体に由来するセグメントを含有すればよい。すなわち、上記強カチオン性基を有する親水性重合体を製造する方法としては、強カチオン性基を有する親水性単量体を単独で重合させる方法、2種以上の強カチオン性基を有する親水性単量体を共重合させる方法、強カチオン性基を有する親水性単量体と強カチオン性基を有しない親水性単量体を共重合させる方法等が挙げられる。
上記強カチオン性基を有する親水性単量体としては、4級アンモニウム基を有するものであることが好ましい。具体的には例えば、メタクリル酸エチルトリエチルアンモニウムクロリド、メタクリル酸エチルトリエチルアンモニウムクロリド、メタクリル酸エチルジメチルエチルアンモニウムクロリド、メタクリル酸エチルジメチルベンジルアンモニウムクロリド、アクリル酸エチルジメチルベンジルアンモニウムクロリド、アクリル酸エチルトリエチルアンモニウムクロリド、アクリル酸エチルトリエチルアンモニウムクロリド、アクリル酸エチルジメチルエチルアンモニウムクロリド、アクリルアミドエチルトリメチルアンモニウムクロリド、アクリルアミドエチルトリエチルアンモニウムクロリド、アクリルアミドエチルジメチルエチルアンモニウムクロリド等が挙げられる。
上記被覆重合体粒子の表面に上記弱カチオン性基を導入する方法としては、公知の方法を用いることができる。具体的には例えば、上記弱カチオン性基として3級アミノ基を導入する方法としては、グリシジル基を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、次いでグリシジル基に3級アミノ基を有する試薬を反応させる方法、イソシアネート基を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、次いで、イソシアネート基に3級アミノ基を有する試薬を反応させる方法、上記疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体と3級アミノ基を有する単量体とを共重合する方法、3級アミノ基を有するシランカップリング剤を用いて上記強カチオン性基を有する親水性重合体の層を有する被覆重合体粒子の表面に3級アミノ基を導入する方法、カルボキシル基を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、次いで、カルボキシル基と3級アミノ基を有する試薬とを、カルボジイミドを用いて縮合させる方法、エステル結合を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、エステル結合部を加水分解した後、次いで、加水分解によって生成したカルボキシル基と3級アミノ基を有する試薬とを、カルボジイミドを用いて縮合させる方法等が挙げられる。なかでも、グリシジル基を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、次いで、グリシジル基に3級アミノ基を有する試薬を反応させる方法や、イソシアネート基を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、次いで、イソシアネート基に3級アミノ基を有する試薬を反応させる方法が好ましい。
グリシジル基やイソシアネート基等の反応性官能基に反応させる上記3級アミノ基を有する試薬としては、3級アミノ基と反応性官能基に反応可能な官能基を有していれば、特に限定されない。上記3級アミノ基と反応性官能基に反応可能な官能基としては、例えば、1級アミノ基、水酸基等が挙げられる。なかでも、末端に1級アミノ基を有していることが好ましい。具体的な化合物としては、N,N-ジメチルアミノメチルアミン、N,N-ジメチルアミノエチルアミン、N,N-ジメチルアミノプロピルアミン、N,N-ジメチルアミノブチルアミン、N,N-ジエチルアミノエチルアミン、N,N-ジエチルアミノプロピルエチルアミン、N,N-ジエチルアミノブチルアミン、N,N-ジエチルアミノペンチルアミン、N,N-ジエチルアミノヘキシルアミン、N,N-ジプロピルアミノブチルアミン、N,N-ジブチルアミノプロピルアミン等が挙げられる。
上記強カチオン性基、好ましくは4級アンモニウム塩と、上記弱カチオン性基、好ましくは3級アミノ基との相対的な位置関係は、上記強カチオン性基が上記弱カチオン性基よりも基材微粒子の表面から遠い位置、即ち外側にあることが好ましい。例えば、上記弱カチオン性基は基材微粒子表面から30Å以内にあり、上記強カチオン性基は基材微粒子表面から300Å以内で、かつ、弱カチオン性基よりも外側にあることが好ましい。
本発明のイオン交換クロマトグラフィー用充填剤の平均粒子径は特に限定されないが、好ましい下限は0.1μm、好ましい上限は20μmである。上記平均粒子径が0.1μm未満であると、カラム内が高圧になりすぎて分離不良を起こすことがある。上記平均粒子径が20μmを超えると、カラム内のデッドボリュームが大きくなりすぎて分離不良を起こすことがある。
なお、本明細書において上記平均粒子径は体積平均粒子径を示し、粒度分布測定装置(AccuSizer780/Particle Sizing Systems社製)を用いて測定することができる。
本発明のイオン交換クロマトグラフィー用充填剤を用いる核酸鎖の分離検出方法もまた、本発明の1つである。
本発明の核酸鎖の分離検出方法において、イオン交換クロマトグラフィーで分析する際の溶離液の組成としては、公知の条件を用いることができる。
上記溶離液に用いる緩衝液としては、公知の塩化合物を含む緩衝液類や有機溶媒類を用いることが好ましく、具体的には例えば、トリス塩酸緩衝液、トリスとEDTAとからなるTE緩衝液、トリスと酢酸とEDTAとからなるTAE緩衝液、トリスとホウ酸とEDTAとからなるTBA緩衝液等が挙げられる。
上記溶離液のpHは特に限定されないが、好ましい下限は5、好ましい上限は10である。この範囲に設定することで、上記弱カチオン性基も効果的にイオン交換基(アニオン交換基)として働くと考えられる。上記溶離液のpHのより好ましい下限は6、より好ましい上限は9である。
イオン交換クロマトグラフィーにおける溶出に用いる塩としては、例えば、塩化ナトリウム、塩化カリウム、臭化ナトリウム、臭化カリウム等のハロゲン化物とアルカリ金属とからなる塩や、塩化カルシウム、臭化カルシウム、塩化マグネシウム、臭化マグネシウム等のハロゲン化物とアルカリ土類金属とからなる塩や、過塩素酸ナトリウム、過塩素酸カリウム、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、硝酸ナトリウム、硝酸カリウム等の無機酸塩等を用いることができる。また、酢酸ナトリウム、酢酸カリウム、コハク酸ナトリウム、コハク酸カリウム等の有機酸塩を用いることもできる。
上記溶離液の塩濃度としては、分析条件に合わせ適宜調整すればよいが、好ましい下限は10mmol/L、好ましい上限は2000mmol/Lであり、より好ましい下限は100mmol/L、より好ましい上限は1500mmol/Lである。
本発明によれば、核酸鎖中の塩基配列の違いや一塩基置換の差を充分に検出できるイオン交換クロマトグラフィー用充填剤を提供することができる。また、本発明によれば、該イオン交換クロマトグラフィー用充填剤を用いる核酸鎖の分離検出方法を提供することができる。
実施例1で作製した充填剤を充填したアニオン交換カラムを用いて、配列違いのオリゴヌクレオチド(検体A、B)を測定して得られたグラフである。 比較例1で作製した充填剤を充填したアニオン交換カラムを用いて、配列違いのオリゴヌクレオチド(検体A、B)を測定して得られたグラフである。 実施例1で作製した充填剤を充填したアニオン交換カラムを用いて、一塩基違いのオリゴヌクレオチド(検体C、D)を測定して得られたグラフである。 比較例1で作製した充填剤を充填したアニオン交換カラムを用いて、一塩基違いのオリゴヌクレオチド(検体C、D)を測定して得られたグラフである。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
攪拌機付き反応器中の3重量%ポリビニルアルコール(日本合成化学社製)水溶液2000mLに、テトラエチレングリコールジメタアクリレート(新中村化学工業社製)200g、トリエチレングリコールジメタアクリレート(新中村化学工業社製)100g、グリシジルメタクリレート(和光純薬工業社製)100g及び過酸化ベンゾイル(キシダ化学社製)1.0gの混合物を添加した。攪拌しながら加熱し、窒素雰囲気下にて80℃で1時間重合した。次に、強カチオン性基を有する親水性単量体として、メタクリル酸エチルトリメチルアンモニウムクロリド(和光純薬工業社製)100gをイオン交換水に溶解した。これを同じ反応器に添加して、同様にして、攪拌しながら窒素雰囲気下にて80℃で2時間重合した。得られた重合組成物を水及びアセトンで洗浄することにより、4級アンモニウム基を有する親水性重合体の層を表面に有する被覆重合体粒子を得た。
得られた被覆重合体粒子について、粒度分布測定装置(AccuSizer780/Particle Sizing Systems社製)を用いて測定したところ、平均粒子径は10μmであった。
得られた被覆重合体粒子10gをイオン交換水100mLに分散させ、反応前スラリーを準備した。次いで、このスラリーを撹拌しながら、N,N-ジメチルアミノプロピルアミン(和光純薬工業社製)を10mL加え、70℃で4時間反応させた。反応終了後、遠心分離機(日立製作所社製、「Himac CR20G」)を用いて上澄みを除去し、イオン交換水で洗浄した。洗浄後、遠心分離機を用いて上澄みを除去した。このイオン交換水による洗浄を更に4回繰り返し、基材微粒子の表面に4級アンモニウム基と3級アミノ基とを有するイオン交換クロマトグラフィー用充填剤を得た。
(比較例1)
攪拌機付き反応器中の3重量%ポリビニルアルコール(日本合成化学社製)水溶液2000mLに、テトラエチレングリコールジメタアクリレート(新中村化学工業社製)300g、トリエチレングリコールジメタアクリレート(新中村化学工業社製)100g及び過酸化ベンゾイル(キシダ化学社製)1.0gの混合物を添加した。攪拌しながら加熱し、窒素雰囲気下にて80℃で1時間重合した。次に、強カチオン性基を有する親水性単量体として、メタクリル酸エチルトリメチルアンモニウムクロリド(和光純薬工業社製)100gをイオン交換水に溶解した。これを同じ反応器に添加して、同様にして、攪拌しながら窒素雰囲気下にて80℃で2時間重合した。得られた重合組成物を水及びアセトンで洗浄することにより、4級アンモニウム基を有する親水性重合体の層を表面に有する被覆重合体粒子を得た。
得られた被覆重合体粒子について、実施例1と同様にして粒度分布測定装置(AccuSizer780/Particle Sizing Systems社製)を用いて測定したところ、平均粒子径は10μmであった。
<評価>
実施例及び比較例で作製したイオン交換クロマトグラフィー用充填剤を液体クロマトグラフィーシステムのステンレス製カラム(カラムサイズ:内径4.6mm×長さ20mm)に充填した。
<分離性能の確認>
実施例及び比較例で作製したイオン交換クロマトグラフィー用充填剤を充填したアニオン交換カラムを用いて、表1に示した条件で下記の検体A~Dを測定し、分離性能の比較を行った。
Figure JPOXMLDOC01-appb-T000001
(1)配列違いのオリゴヌクレオチドの分離
検体:オリゴヌクレオチド20mer(オペロンバイオテクノロジー社製)
   検体A・・・5’-AACTTGAGTTCGGCGATCAC-3’
   検体B・・・5’-CCAGCATCGATCATATTGGG-3’
なお、上記検体A、Bは、配列のみ異なり、含まれる塩基の数は、A5、T5、G5、C5である。塩基配列は、乱数を用いて任意に決定した。
(2)一塩基置換のオリゴヌクレオチドの分離
検体:オリゴヌクレオチド20mer(オペロンバイオテクノロジー社製)
   検体C・・・5’-CCAGCATCGATCATATTGGG-3’
   検体D・・・5’-CCAGCATCGATCATATTGCG-3’
実施例1、比較例1で作製した充填剤を充填したアニオン交換カラムを用いて、配列違いのオリゴヌクレオチド(検体A、B)を測定して得られたグラフをそれぞれ図1、2に示した。
図1、2の比較から、基材微粒子の表面に強カチオン性基と弱カチオン性基とが共存する実施例1の充填剤を充填したカラムでは、配列違いのオリゴヌクレオチドを良好に分離できることがわかった。一方で、比較例1の充填剤を充填したカラムでは、分離は不充分であった。
実施例1、比較例1で作製した充填剤を充填したアニオン交換カラムを用いて一塩基違いのオリゴヌクレオチド(検体C、D)を測定して得られたグラフをそれぞれ図3、4に示した。
図3、4の比較から、基材微粒子の表面に強カチオン性基と弱カチオン性基とが共存する実施例1の充填剤を充填したカラムでは、一塩基置換のオリゴヌクレオチドを良好に分離できることがわかった。
一方で、比較例1の充填剤を充填したカラムでは、分離は不充分であった。
本発明によれば、核酸鎖中の塩基配列の違いや一塩基置換の差を充分に検出できるイオン交換クロマトグラフィー用充填剤を提供することができる。また、本発明によれば、該イオン交換クロマトグラフィー用充填剤を用いる核酸鎖の分離検出方法を提供することができる。

Claims (8)

  1. 基材微粒子の表面に強カチオン性基と弱カチオン性基とを有することを特徴とするイオン交換クロマトグラフィー用充填剤。
  2. 強カチオン性基は、4級アンモニウム基であることを特徴とする請求項1記載のイオン交換クロマトグラフィー用充填剤。
  3. 弱カチオン性基は、3級アミノ基であることを特徴とする請求項1記載のイオン交換クロマトグラフィー用充填剤。
  4. 強カチオン性基は4級アンモニウム基であり、弱カチオン性基は3級アミノ基であることを特徴とする請求項1記載のイオン交換クロマトグラフィー用充填剤。
  5. 基材微粒子の表面に、強カチオン性基と弱カチオン性基とを有する重合体層を有することを特徴とする請求項1、2、3又は4記載のイオン交換クロマトグラフィー用充填剤。
  6. 強カチオン性基と弱カチオン性基とは、それぞれ独立した単量体に由来するものであることを特徴とする請求項5記載のイオン交換クロマトグラフィー用充填剤。
  7. 基材微粒子は、合成有機高分子からなることを特徴とする請求項1、2、3、4、5又は6記載のイオン交換クロマトグラフィー用充填剤。
  8. 請求項1、2、3、4、5、6又は7記載のイオン交換クロマトグラフィー用充填剤を用いることを特徴とする核酸鎖の分離検出方法。
PCT/JP2012/053010 2011-02-10 2012-02-09 イオン交換クロマトグラフィー用充填剤及び核酸鎖の分離検出方法 WO2012108516A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/984,107 US20140030713A1 (en) 2011-02-10 2012-02-09 Filler for ion exchange chromatography and method for separating and detecting nucleic acid strand
EP12744859.5A EP2674753B1 (en) 2011-02-10 2012-02-09 Method for separating and detecting a nucleic acid strand
JP2012556934A JP5734320B2 (ja) 2011-02-10 2012-02-09 イオン交換クロマトグラフィー用充填剤及び核酸鎖の分離検出方法
KR1020207000479A KR102168723B1 (ko) 2011-02-10 2012-02-09 이온 교환 크로마토그래피용 충전제 및 핵산 사슬의 분리 검출 방법
KR1020137023611A KR102088639B1 (ko) 2011-02-10 2012-02-09 이온 교환 크로마토그래피용 충전제 및 핵산 사슬의 분리 검출 방법
CN201280008145.5A CN103392128B (zh) 2011-02-10 2012-02-09 离子交换色谱法用填充剂以及核酸链的分离检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-027493 2011-02-10
JP2011027493 2011-02-10

Publications (1)

Publication Number Publication Date
WO2012108516A1 true WO2012108516A1 (ja) 2012-08-16

Family

ID=46638728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053010 WO2012108516A1 (ja) 2011-02-10 2012-02-09 イオン交換クロマトグラフィー用充填剤及び核酸鎖の分離検出方法

Country Status (6)

Country Link
US (1) US20140030713A1 (ja)
EP (1) EP2674753B1 (ja)
JP (2) JP5734320B2 (ja)
KR (2) KR102168723B1 (ja)
CN (2) CN103392128B (ja)
WO (1) WO2012108516A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136930A1 (ja) 2013-03-07 2014-09-12 積水メディカル株式会社 メチル化dnaの検出方法
WO2016024634A1 (ja) * 2014-08-14 2016-02-18 国立大学法人山梨大学 インプリンティング疾患の診断に有効な染色体機能異常の判定方法
JP5897228B2 (ja) * 2014-02-28 2016-03-30 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
CN108026586A (zh) * 2015-09-02 2018-05-11 国立研究开发法人国立癌研究中心 肾细胞癌的预后判定方法
WO2019039532A1 (ja) 2017-08-23 2019-02-28 国立研究開発法人国立がん研究センター 肝細胞癌のリスク評価方法
WO2019039613A1 (ja) 2017-08-25 2019-02-28 積水メディカル株式会社 メチル化dna分離及び/又は検出用クロマトグラフィー用充填剤
WO2019181941A1 (ja) 2018-03-19 2019-09-26 学校法人慶應義塾 尿路上皮癌のリスクの判定方法
WO2020116573A1 (ja) 2018-12-05 2020-06-11 学校法人慶應義塾 子宮体癌の予後の判定方法
WO2021107081A1 (ja) 2019-11-27 2021-06-03 学校法人慶應義塾 上部尿路上皮癌の判定方法
WO2021117772A1 (ja) 2019-12-09 2021-06-17 学校法人慶應義塾 非アルコール性脂肪性肝炎から肝細胞がんを発症するリスクを判定する方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2024004859A (es) * 2021-10-21 2024-05-06 Energy Exploration Tech Inc Membrana de intercambio anionico selectiva monovalente para aplicacion en la extraccion de litio de fuentes naturales.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349258A (ja) * 1986-08-20 1988-03-02 Tokyo Organ Chem Ind Ltd 弱塩基性陰イオン交換樹脂の製造方法
JPS646755A (en) * 1987-01-21 1989-01-11 Du Pont Chromatography support body for oligonucleotide separation
JPH05333015A (ja) * 1992-05-26 1993-12-17 Neos Co Ltd 液体クロマトグラフィー用充填剤
JP2007522807A (ja) * 2004-02-18 2007-08-16 アプレラ コーポレイション 高分子電解質コーティングされたサイズ排除イオン交換粒子
JP2009113034A (ja) * 2007-10-16 2009-05-28 Kochi Prefecture イオン収着材、その製造方法およびその使用方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935342A (en) * 1986-12-01 1990-06-19 Syngene, Inc. Method of isolating and purifying nucleic acids from biological samples
JPH0564748A (ja) * 1991-09-06 1993-03-19 Tosoh Corp イオン交換体
JPH0623279A (ja) * 1992-07-10 1994-02-01 Babcock Hitachi Kk 液体クロマトグラフィー用強酸性陽イオン交換樹脂
SE9600590D0 (sv) * 1996-02-19 1996-02-19 Pharmacia Biotech Ab Sätt för kromatografisk separation av peptider och nukleinsyra samt ny högaffin jonbytesmatris
US7807822B2 (en) * 1996-08-01 2010-10-05 Robert Bridenbaugh Methods for purifying nucleic acids
US6024878A (en) * 1997-10-30 2000-02-15 Transgenomic, Inc. Method for high resolution liquid chromatographic separation of polynucleotides
SE9803838D0 (sv) * 1998-11-09 1998-11-09 Knut Irgum A chromatography method and a column material useful in said method
SE9904272D0 (sv) * 1999-11-25 1999-11-25 Amersham Pharm Biotech Ab A method for selective removal of a substance from samples containing compounds having nucleic acid structure
US6770441B2 (en) * 2000-02-10 2004-08-03 Illumina, Inc. Array compositions and methods of making same
SE0004932D0 (sv) * 2000-12-31 2000-12-31 Apbiotech Ab A method for mixed mode adsorption and mixed mode adsorbents
WO2003014205A1 (en) * 2001-08-02 2003-02-20 Asahi Kasei Chemicals Corporation Sinter, resin particles, and process for producing the same
US20040127648A1 (en) * 2002-12-31 2004-07-01 Ciphergen Biosystems, Inc. Sorbent and method for the separation of plasmid DNA
US20050196856A1 (en) * 2004-02-18 2005-09-08 Applera Corporation Polyelectrolyte-coated size-exclusion ion-exchange particles
SE0400490D0 (sv) * 2004-02-26 2004-02-26 Amersham Biosciences Ab Plasmid purification
US7098253B2 (en) * 2004-05-20 2006-08-29 3M Innovative Properties Company Macroporous ion exchange resins
US20090209623A1 (en) * 2005-07-25 2009-08-20 Jon Tomono Anti-sense nucleic acid derived from organism
EP1955764A4 (en) * 2005-12-02 2012-08-15 Sekisui Chemical Co Ltd HYDROPHILIC POLYMERMIC PARTICLES, FILLER FOR ION EXCHANGE LIQUID CHROMATOGRAPHY AND METHOD FOR PRODUCING FILLER FOR ION EXCHANGE LIQUID CHROMATOGRAPHY
US7674835B2 (en) * 2005-12-21 2010-03-09 3M Innovative Properties Company Method of making macroporous anion exchange resins
US8226985B2 (en) * 2010-01-28 2012-07-24 International Business Machines Corporation Surface modified nanoparticles, methods of their preparation, and uses thereof for gene and drug delivery
JP5911046B2 (ja) * 2010-07-01 2016-04-27 積水メディカル株式会社 核酸測定用液体クロマトグラフィー用カラム充填剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349258A (ja) * 1986-08-20 1988-03-02 Tokyo Organ Chem Ind Ltd 弱塩基性陰イオン交換樹脂の製造方法
JPS646755A (en) * 1987-01-21 1989-01-11 Du Pont Chromatography support body for oligonucleotide separation
JPH05333015A (ja) * 1992-05-26 1993-12-17 Neos Co Ltd 液体クロマトグラフィー用充填剤
JP2007522807A (ja) * 2004-02-18 2007-08-16 アプレラ コーポレイション 高分子電解質コーティングされたサイズ排除イオン交換粒子
JP2009113034A (ja) * 2007-10-16 2009-05-28 Kochi Prefecture イオン収着材、その製造方法およびその使用方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASATO ORITA ET AL.: "Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 86, no. 8, April 1989 (1989-04-01), pages 2766 - 2770, XP000310584 *
ORITA, M. ET AL.: "Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms", PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 2766 - 2770
See also references of EP2674753A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550426B2 (en) 2013-03-07 2020-02-04 Sekisui Medical Co., Ltd. Method for detecting methylated DNA
JPWO2014136930A1 (ja) * 2013-03-07 2017-02-16 積水メディカル株式会社 メチル化dnaの検出方法
WO2014136930A1 (ja) 2013-03-07 2014-09-12 積水メディカル株式会社 メチル化dnaの検出方法
EP2966179A4 (en) * 2013-03-07 2016-11-02 Sekisui Medical Co Ltd METHOD FOR DETECTING METHYLATED DNA
CN105074010A (zh) * 2013-03-07 2015-11-18 积水医疗株式会社 甲基化dna的检测方法
JPWO2015129916A1 (ja) * 2014-02-28 2017-03-30 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
US10190172B2 (en) 2014-02-28 2019-01-29 National Cancer Center Method for determining prognosis of renal cell carcinoma
JP5897228B2 (ja) * 2014-02-28 2016-03-30 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
WO2016024634A1 (ja) * 2014-08-14 2016-02-18 国立大学法人山梨大学 インプリンティング疾患の診断に有効な染色体機能異常の判定方法
CN108026586A (zh) * 2015-09-02 2018-05-11 国立研究开发法人国立癌研究中心 肾细胞癌的预后判定方法
WO2019039532A1 (ja) 2017-08-23 2019-02-28 国立研究開発法人国立がん研究センター 肝細胞癌のリスク評価方法
WO2019039613A1 (ja) 2017-08-25 2019-02-28 積水メディカル株式会社 メチル化dna分離及び/又は検出用クロマトグラフィー用充填剤
WO2019181941A1 (ja) 2018-03-19 2019-09-26 学校法人慶應義塾 尿路上皮癌のリスクの判定方法
WO2020116573A1 (ja) 2018-12-05 2020-06-11 学校法人慶應義塾 子宮体癌の予後の判定方法
WO2021107081A1 (ja) 2019-11-27 2021-06-03 学校法人慶應義塾 上部尿路上皮癌の判定方法
WO2021117772A1 (ja) 2019-12-09 2021-06-17 学校法人慶應義塾 非アルコール性脂肪性肝炎から肝細胞がんを発症するリスクを判定する方法

Also Published As

Publication number Publication date
JPWO2012108516A1 (ja) 2014-07-03
KR102088639B1 (ko) 2020-03-16
CN105911183A (zh) 2016-08-31
EP2674753B1 (en) 2020-05-13
KR20200006179A (ko) 2020-01-17
CN103392128A (zh) 2013-11-13
CN103392128B (zh) 2016-05-04
CN105911183B (zh) 2019-03-22
JP2015129775A (ja) 2015-07-16
EP2674753A4 (en) 2015-01-28
EP2674753A1 (en) 2013-12-18
JP5734320B2 (ja) 2015-06-17
US20140030713A1 (en) 2014-01-30
JP5930443B2 (ja) 2016-06-08
KR102168723B1 (ko) 2020-10-22
KR20140056154A (ko) 2014-05-09

Similar Documents

Publication Publication Date Title
JP5930443B2 (ja) 核酸鎖分離検出用イオン交換クロマトグラフィー用充填剤及び核酸鎖分離検出用イオン交換クロマトグラフィー用カラム
WO2014136930A1 (ja) メチル化dnaの検出方法
US9447460B2 (en) Method for detecting single nucleotide polymorphisms
EP2692863B1 (en) Pcr primers for preparing samples for single nucleotide polymorphism detection comprising allele-specific pcr and ion exchange chromatographic detection
JP6090985B2 (ja) 核酸鎖の分離方法
CN111050903B (zh) 甲基化dna分离和/或检测用色谱用填充剂
JP5812464B2 (ja) 標的核酸の分離検出方法、標的核酸分離検出用イオン交換クロマトグラフィー用充填剤、及び標的核酸分離検出用イオン交換クロマトグラフィー用カラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280008145.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13984107

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137023611

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012744859

Country of ref document: EP