WO2012108470A1 - 凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法及び算出装置 - Google Patents

凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法及び算出装置 Download PDF

Info

Publication number
WO2012108470A1
WO2012108470A1 PCT/JP2012/052871 JP2012052871W WO2012108470A1 WO 2012108470 A1 WO2012108470 A1 WO 2012108470A1 JP 2012052871 W JP2012052871 W JP 2012052871W WO 2012108470 A1 WO2012108470 A1 WO 2012108470A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
degree
drying
sublimation
dried
Prior art date
Application number
PCT/JP2012/052871
Other languages
English (en)
French (fr)
Inventor
寛如 澤田
一憲 利根川
博 細見
良二 砂間
Original Assignee
共和真空技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共和真空技術株式会社 filed Critical 共和真空技術株式会社
Priority to EP12745272.0A priority Critical patent/EP2674712B1/en
Priority to ES12745272T priority patent/ES2814824T3/es
Priority to JP2012556912A priority patent/JP5876424B2/ja
Priority to US13/984,200 priority patent/US9488410B2/en
Publication of WO2012108470A1 publication Critical patent/WO2012108470A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing

Definitions

  • the present invention relates to a sublimation surface of a material to be dried which is applied for optimization and monitoring of a drying process in a freeze-drying apparatus which is a product obtained by drying a raw material solution such as food or medicine to a predetermined moisture content by freeze-drying.
  • the present invention relates to a calculation method and a calculation device for temperature, bottom part temperature and sublimation speed.
  • freeze-drying of pharmaceuticals, etc. is carried out using a freeze-drying device that is automatically controlled by a control device, and a large number of containers such as trays and vials filled with the material to be dried are placed in the drying chamber of the freeze-drying device.
  • the material to be dried in each container is dried until a predetermined moisture content is reached.
  • it is necessary to accurately measure the average sublimation surface temperature of all the materials to be dried filled in a large number of containers. It is important to realize monitoring and optimization.
  • a temperature sensor such as a thermocouple is inserted into at least one of a large number of containers charged in a drying cabinet, and the container A method for directly measuring the temperature of a material to be dried filled therein is known.
  • the drying process is monitored by the temperature of the shelf in the drying cabinet (shelf temperature) where the container filled with the material to be dried is placed, the degree of vacuum in the drying cabinet, and the sublimation surface temperature of the drying material (product temperature). Is measured continuously from the start of freezing.
  • the product temperature detected by the temperature sensor is the temperature of the thermocouple insertion site for the material to be dried in which the temperature sensor is inserted, and the product temperature for all the materials to be dried inserted in the drying chamber. Does not reflect.
  • the place where the temperature sensor is installed is not the same every time, the reproducibility is difficult.
  • the material to be dried in the container in which the temperature sensor is inserted is affected by the nucleation temperature and ice crystal growth, and the degree of supercooling is reduced. The water vapor resistance decreases and the sublimation rate increases.
  • the material to be dried in the container placed at a position away from the drying cabinet wall is the drying speed.
  • the whole container cannot be represented.
  • primary drying is performed when the temperature difference between the product temperature and the shelf temperature of the material to be dried in which the temperature sensor is inserted is eliminated. Judging from the end point, the material to be dried in the container placed in the center of the shelf may still have ice, and after entering the secondary drying process without sublimation, the material to be dried is collapsed (to be dried).
  • a method called an MTM (Manometric Temperature Measurement) method has been conventionally proposed in which the sublimation surface temperature of the material to be dried is not directly measured but is calculated from the measured values of other parameters.
  • MTM Manometric Temperature Measurement
  • a drying chamber DC for charging a material to be dried, and a cold trap CT for condensing and collecting water vapor generated from the material to be dried charged in the drying chamber DC This is applied to the freeze-drying apparatus W communicated via the main pipe a provided with the main valve MV.
  • the main valve MV is closed at a certain time interval for a few dozen seconds. This is a method of measuring the vacuum degree change in the drying chamber DC using an absolute vacuum gauge at a measurement speed of 1 second or less, and calculating the sublimation surface temperature Ts and the dry layer water vapor resistance Rp from the vacuum degree change ( (Refer nonpatent literature 1.).
  • the drying cabinet DC and the cold trap CT are periodically arranged at regular intervals.
  • the main valve MV between and the drying chamber DC and the cold trap CT water vapor generated from the material to be dried in the drying chamber DC cannot be condensed and collected by the cold trap CT.
  • the pressure in the drying chamber DC rapidly rises to the sublimation surface pressure of the material to be dried due to water vapor sublimated from the material to be dried, and then the temperature in the drying chamber increases with the rise in product temperature.
  • the vacuum pressure increases.
  • the average sublimation surface temperature of the material to be dried is determined by calculation from the change in the degree of vacuum in the drying chamber.
  • a vacuum gauge b capable of measuring absolute pressure must be used, and data must be collected at a high recording speed within one second.
  • this MTM method has the following two problems. (1) By fully closing the main valve MV, the pressure in the drying chamber DC rises above the sublimation surface pressure of the material to be dried, and the sublimation surface temperature rises above the collapse temperature of the material to be dried. There is a risk of collapse and freeze-drying failure. (2) In order to implement the MTM method, it is necessary to open and close the main valve MV instantaneously. However, in a general production machine, it takes several minutes to open and close the main valve MV. It becomes complicated. In addition, since the degree of vacuum in the drying cabinet DC is further lowered by delaying the opening and closing of the main valve MV, the material to be dried is easily collapsed from this point.
  • Fig. 2 shows an example of monitoring results of a freeze-drying process using the MTM method.
  • the material to be dried was a 5% aqueous solution of sucrose (sucrose), and the sublimation surface temperature Ts was calculated for the material to be dried charged on the shelf of the drying cabinet DC by the MTM method in the primary drying period.
  • a temperature sensor thermocouple
  • Tm shelf end product temperature
  • Th shelf temperature
  • the sublimation surface temperature Ts of the material to be dried calculated by the MTM method is the product temperature Tm (side) at the shelf edge and the product temperature Tm (center at the center of the shelf) measured by the temperature sensor. It is understood that the sublimation surface temperature Ts of the material to be dried can be accurately calculated using the MTM method.
  • the MTM method lowers the degree of vacuum in the drying chamber DC (increases the pressure in the drying chamber DC) while the main valve MV is closed.
  • the sublimation surface temperature Ts of the material to be dried rises and the material to be dried is easily collapsed. That is, as shown in FIG. 2, in the initial stage of the primary drying period, the shelf temperature Th is set to ⁇ 20 ° C., and the sublimation surface temperature of the material to be dried calculated by the MTM method is ⁇ 34 ° C. or lower. It was. Since the collapse temperature of sucrose is ⁇ 32 ° C., there is no possibility that the material to be dried collapses in this state.
  • FIG. 2 shows that the sublimation surface temperature in the primary drying period can be calculated by the MTM method.
  • the MTM method since the MTM method repeatedly closes the main valve MV in the primary drying period, the main valve MV is closed.
  • the degree of vacuum in the drying cabinet DC decreases and the product temperature rises by 1 to 2 ° C. Therefore, if the sublimation surface temperature of the product to be dried approaches the coplus temperature of the product to be dried during this time, there is a risk that the material to be dried will collapse.
  • the present invention has been made to solve the problems of the prior art, and its purpose is to obtain an average sublimation surface temperature and a bottom part for all the materials to be dried charged in the drying chamber of the freeze-drying apparatus.
  • An object of the present invention is to provide a calculation method and a calculation device capable of calculating the temperature and the average sublimation rate without contaminating and collapsing the material to be dried.
  • the present invention relates to a method for calculating a sublimation surface temperature and a sublimation speed of a material to be dried applied to a freeze-drying apparatus, a drying cabinet (DC) in which the material to be dried is charged, and the drying A cold trap (CT) for condensing and collecting water vapor generated from the material to be dried charged in the storage (DC), and a main pipe (a) communicating the drying storage (DC) and the cold trap (CT)
  • a main valve (MV) for opening and closing the main pipe (a)
  • a vacuum degree adjusting means for adjusting a vacuum degree in the drying cabinet (DC), an absolute pressure in the drying cabinet (DC), and the cold trap Freezing
  • a vacuum detection means for detecting the absolute pressure in (CT) and a control device (CR) for automatically controlling the operation of the drying chamber (DC), the cold trap (CT) and the opening degree adjusting means.
  • the control device (CR) stores the necessary relational expression and calculation program, and the degree of vacuum during the primary drying period of the material to be dried
  • the adjusting means is driven to change the degree of vacuum (Pdc) in the drying cabinet (DC) in a temporarily increasing direction, and at least the degree of vacuum (Pdc) in the drying cabinet (DC) before and after the change and the above
  • the average sublimation surface temperature, average bottom part temperature and sublimation speed of the material to be dried in the primary drying period are calculated from the measurement data including the degree of vacuum (Pdt) in the cold trap (CT) and the relational expression.
  • the present invention also provides an opening controller (C) in the main pipe (a) as the vacuum degree adjusting means in the calculation method of the sublimation surface temperature, bottom part temperature and sublimation speed of the material to be dried having the above structure.
  • the control device includes, as the relational expression, the sublimation speed (Qm) due to water load and the opening angle ( ⁇ ) of the opening controller (C) in a state where the main valve (MV) is fully opened.
  • the relational expression with the main pipe resistance R ( ⁇ ) is stored, and the controller (CR) is configured to adjust the opening degree controller during the primary drying period of the material to be dried charged in the drying cabinet (DC).
  • the degree of vacuum (Pdc) in the drying cabinet (DC) is changed to increase, and the opening degree controller (C) in the opening direction is changed.
  • the opening angle ( ⁇ ) of the opening controller (C) before and after the rotation operation and the drying cabinet (DC The average sublimation surface temperature, bottom part temperature, and sublimation speed of the material to be dried in the primary drying period are calculated from the measured data of the degree of vacuum (Pdc) and the degree of vacuum (Pdt) in the cold trap (CT) And
  • the vacuum control circuit (f) with a leak control valve (LV) is used as the vacuum degree adjusting means.
  • the control device While being provided in a drying cabinet (DC), the control device includes, as the relational expression, a sublimation speed (Qm) due to water load and a steam flow resistance of the main pipe (a) in a state where the main valve (MV) is fully opened.
  • a relational expression with a coefficient (Cr) is stored, and the control device (CR) is configured so that the leak control valve (LV) is in a primary drying period of the material to be dried charged in the drying cabinet (DC).
  • the drying chamber (DC) in which the material to be dried is charged and the inside of the drying chamber (DC)
  • a cold trap (CT) that condenses and collects water vapor generated from the material to be dried charged in the vessel a main pipe (a) that communicates the drying chamber (DC) and the cold trap (CT), and the main pipe ( a) Main valve (MV) for opening / closing, vacuum degree adjusting means for adjusting the degree of vacuum in the drying cabinet (DC), absolute pressure in the drying cabinet (DC) and in the cold trap (CT)
  • the present invention is applied to a freeze-drying apparatus having a vacuum detection means for detecting an absolute pressure, and a controller (CR) for automatically controlling the operation of the drying chamber (DC), the cold trap (CT), and the opening degree adjusting means.
  • Sublimation surface temperature of the material to be dried In the component temperature and sublimation speed calculation device, a sequencer (PLC) or a personal computer (PC) storing a required relational expression and calculation program is provided as the control device (CR), and the control device (CR)
  • the vacuum degree adjusting means In the primary drying period of the dry material, the vacuum degree adjusting means is driven to change the degree of vacuum (Pdc) in the drying chamber (DC) to temporarily increase, and at least the drying chamber (before and after the change) DC) and the average value of the material to be dried in the primary drying period from the measurement data including the degree of vacuum (Pdc) and the degree of vacuum (Pdt) in the cold trap (CT) and the calculated data obtained by the relational expression.
  • the sublimation surface temperature, the average bottom part temperature, and the sublimation speed are calculated.
  • the opening degree adjuster (C) is provided in the main pipe (a) as the vacuum degree adjusting means.
  • the main valve (MV) is fully opened as the relational expression in the controller (CR).
  • the degree of vacuum (Pdc) in the inside is changed in the direction to increase the opening degree regulator (
  • the opening angle ( ⁇ ) of the opening controller (C) the degree of vacuum (Pdc) in the drying chamber (DC), and the vacuum in the cold trap (CT) before and after the rotation operation in the opening direction of C)
  • the average sublimation surface temperature, bottom part temperature, and sublimation speed of the material to be dried in the primary drying period are calculated from the measurement data of degree (Pdt).
  • the present invention provides the apparatus for calculating the sublimation surface temperature, bottom part temperature and sublimation speed of the material to be dried having the above-described configuration, wherein the vacuum control circuit (f) with a leak control valve (LV) is used as the vacuum degree adjusting means.
  • the vacuum control circuit (f) with a leak control valve (LV) is used as the vacuum degree adjusting means.
  • the control device (CR) has the relational expression as A relational expression between the sublimation speed (Qm) due to water load and the steam flow resistance coefficient (Cr) of the main pipe (a) in a state where the main valve (MV) is fully opened is stored, and the control device (CR)
  • the degree of vacuum (Pdc) in the drying cabinet (DC) Change the direction to increase From the measurement data of the degree of vacuum (Pdc) in the drying chamber (DC) and the degree of vacuum (Pdt) in the cold trap (CT) before and after the closing operation of the leak control valve (LV), the object to be dried in the primary drying period
  • the average sublimation surface temperature, average bottom part temperature, and sublimation speed of the material are calculated.
  • the degree of vacuum in the drying chamber is changed at least before and after the change by driving the vacuum degree adjusting means to temporarily increase the degree of vacuum in the drying chamber.
  • the average sublimation surface temperature, average bottom part temperature and sublimation speed of the material to be dried in the primary drying period are calculated from the measurement data including the degree of vacuum in the cold trap. Since the transition is made to be higher than the vacuum control value, and thereby the sublimation surface temperature is lowered, the danger of the material to be dried collapsing can be completely eliminated.
  • the calculation method and the calculation device include a channel opening degree provided with an opening degree adjuster (damper) for adjusting the degree of vacuum in the drying cabinet in the main pipe connecting the drying cabinet and the cold trap.
  • the present invention is applied to a vacuum control type freeze-drying apparatus.
  • the vacuum drying apparatus W ⁇ b> 1 generates a drying chamber DC in which the material to be dried is charged, and water vapor generated from the material to be dried charged in the drying chamber DC.
  • Cold trap CT that condenses and collects in the trap coil Ct
  • main pipe a that communicates the drying chamber DC and the cold trap CT
  • a main valve MV that opens and closes the main pipe a
  • a damper-type opening provided in the main pipe a
  • a control panel incorporating a sequencer PLC and a recorder e is used as the control device CR, and the sequencer PLC is opened with a sublimation speed Qm due to a water load when the main valve MV is fully opened.
  • a relational expression between the opening angle ⁇ of the degree adjuster C and the main pipe resistance R ( ⁇ ) and a required calculation program are stored in advance.
  • a personal computer in which the above relational expressions and calculation programs are recorded can be used as the control device CR.
  • a differential pressure for detecting the differential pressure between the absolute pressure in the drying cabinet DC and the absolute pressure in the cold trap CT can also be provided.
  • the opening angle ⁇ refers to the rotation angle of the opening adjuster C from the fully open state (0 °).
  • the controller CR calculates the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm of the material to be dried in the primary drying period of the material to be dried charged in the drying cabinet DC.
  • the opening degree controller C is rotated at least once in the opening direction to change the degree of vacuum Pdc in the drying chamber DC for each operation, and the opening degree controller Measurement data of the opening angle ⁇ of the opening controller C, the degree of vacuum Pdc in the drying cabinet DC, and the degree of vacuum Pdt in the cold trap CT before and after the rotation operation of C in the opening direction are obtained.
  • the water vapor flow rate (sublimation rate) Qm moving from the sublimation surface through the already dried layer of the material to be dried into the drying chamber is such that the sublimation surface pressure is Ps (Pa), the vacuum in the drying chamber is Pdc (Pa),
  • Ps sublimation surface pressure
  • Pdc vacuum in the drying chamber
  • the water vapor movement resistance of the dried layer of the dried material is Rp (KPa ⁇ S / Kg)
  • the water vapor flow rate before changing in the direction of increasing the degree of vacuum Pdc in the drying chamber DC is Qm1
  • the sublimation surface pressure is Ps1
  • the degree of vacuum in the drying chamber is Pdc1
  • the degree of vacuum Pdc in the drying chamber DC is increased.
  • ⁇ Ps is a decrease in sublimation surface pressure due to a decrease in sublimation surface temperature that occurs while the degree of vacuum Pdc in the drying cabinet DC is increased.
  • the total average bottom part temperature Tb of the material to be dried in the primary drying period and the transition period from the primary drying to the secondary drying can be calculated from the following equation.
  • the amount of heat input Qh from the shelf due to gas conduction to the bottom of the container is calculated by the following equation.
  • Qh Ae ⁇ K ⁇ (Th ⁇ Tb)
  • Ae is an effective heat transfer area (m 2 )
  • K is a heat transfer coefficient from the shelf stage to the container bottom by gas conduction
  • Th is the shelf temperature (° C.)
  • Tb is the bottom part temperature (° C.).
  • Av is the container bottom area (m 2 )
  • At is the tray frame area (m 2 ).
  • is the gap at the container bottom and the unit is mm.
  • the width incident heat quantity Qr from the drying cabinet wall to all containers is obtained from the following equation.
  • Qr 5.67 ⁇ ⁇ ⁇ Ae ⁇ [(Tw / 100) 4 ⁇ (Tb / 100) 4 ]
  • is a radiation coefficient
  • Tw is a drying cabinet wall temperature
  • Tb is a bottom part temperature.
  • the width incident heat quantity Qr from the drying chamber wall to all containers can be approximately calculated by the following equation.
  • Qr Ae ⁇ Kr ⁇ (Tw ⁇ Tb)
  • Kr are equivalent heat transfer coefficient due to radiation heat input
  • Tb [K ⁇ Th + Kr ⁇ Tw ⁇ (Qm ⁇ ⁇ Hs) / (3.6 ⁇ Ae)] / (K + Kr) Therefore, if the sublimation rate Qm is measured in the primary drying period and the transition period from the primary drying to the secondary drying, the average bottom part temperature Tb of the entire material to be dried can be calculated from the above calculation formula.
  • the sublimation speed Qm is calculated from the drying chamber vacuum degree Pdc and the cold trap vacuum degree Pct measured by the vacuum gauges b attached to the drying chamber DC and the cold trap CT of the freeze-drying apparatus W1, respectively. According to this method, since it is not necessary to equip an expensive measuring instrument other than a vacuum gauge, the sublimation speed Qm can be calculated easily and at low cost.
  • the water vapor sublimated from the sublimation surface of the material to be dried flows into the cold trap CT from the drying chamber DC through the main pipe a, and is condensed and collected by the trap coil Ct.
  • the flow path opening vacuum control Pct / Pdc ⁇ 0.53
  • the flow of water vapor in the main pipe a is in a jet state, so the sublimation speed Qm from the material to be dried is when the main pipe resistance is R.
  • the sublimation speed Qm from the material to be dried is when the main pipe resistance is R.
  • Qm 3.6 ⁇ Pdc / R
  • the sublimation speed from the material to be dried, the drying chamber vacuum degree, and the main pipe resistance before changing the degree of vacuum Pdc in the drying cabinet DC to be increased are set to Qm1, Pdcl, and R ( ⁇ 1), respectively.
  • Qm2 3.6 ⁇ Pdc2 / R ( ⁇ 2)
  • the main pipe resistance R is obtained by measuring or calculating the amount of sublimation from the material to be dried when a water load is applied. If the main pipe resistance R is obtained, the sublimation speed Qm can be obtained from the measurement data of the drying chamber vacuum degree Pdc and the cold trap vacuum degree Pct.
  • the freeze-drying apparatus W1 shown in FIG. 4 is operated with the material to be dried in the drying cabinet DC, the shelf temperature is set to Th, and the degree of vacuum Pdc in the drying cabinet DC is set.
  • the opening degree controller C increases the degree of vacuum in the drying cabinet DC at regular time intervals (0.5 hours or 1 hour) during the primary drying period.
  • C is rotated, and the opening angle ⁇ of the opening controller C before and after that, the degree of vacuum Pdc in the drying chamber DC, and the degree of CT vacuum Pct are recorded with a recorder e.
  • sublimation surface pressure Ps [C ⁇ (Pdc2 + ⁇ Ps) ⁇ Pdc1] / (C ⁇ 1) is calculated.
  • ⁇ Ps is a decrease in sublimation surface pressure due to a decrease in sublimation surface temperature when opening control valve C is opened.
  • Claudius-Claveyron equation LnPs 28.91-
  • the opening angle ⁇ of the opening controller C, the degree of vacuum Pdc in the drying cabinet DC, and the degree of vacuum Pct in the cold trap CT are measured. If recorded, the primary drying can be performed without measuring the product temperature of the individual container from the relational expression between the opening angle ⁇ of the opening controller C and the water vapor resistance R ( ⁇ ) obtained by measuring the water load described above.
  • the overall average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm in the period can be monitored.
  • ⁇ Derivation of relationship between opening angle of opening controller and main pipe resistance> a relational expression between the opening angle ⁇ of the opening controller C and the main pipe resistance R ( ⁇ ) is obtained.
  • the freeze-drying device W1 is loaded with a tray filled with water in the drying cabinet DC and controlled by the control device CR to start a predetermined drying process.
  • the water in the tray is frozen to ⁇ 45 ° C.
  • the shelf temperature Th is set to ⁇ 20 ° C. during primary drying
  • the degree of vacuum Pdc in the drying cabinet DC is 4 Pa, 6.7 Pa, 10 Pa, 13.3 Pa, 20 Pa, 30 Pa. , 40 Pa and 60 Pa, respectively, held for 3 hours, and a total of 8 water load tests were conducted.
  • the opening angle ⁇ of the opening controller C, the shelf temperature Th, the ice temperature Tb at the bottom of the tray, the degree of vacuum Pdc in the drying chamber DC, and the degree of vacuum Pct in the cold trap CT were measured and recorded.
  • the ice sublimation speed Qm (Kg / h) was determined by measuring the sublimation amount and calculating the heat input, and the relational expression between the opening angle ⁇ of the opening controller C and the main pipe resistance R ( ⁇ ) was obtained.
  • Table 2 and FIG. 5 show the relationship between the opening angle ⁇ of the opening controller C and the main pipe resistance R ( ⁇ ) obtained by calculation, and the main pipe obtained by measurement of the opening ⁇ of the opening controller C. The relationship with the resistance R ( ⁇ ) is shown.
  • D is the inner diameter of the main pipe a
  • d1 is the diameter of the opening controller C
  • t is the thickness of the opening controller C.
  • the freeze-drying apparatus W1 is equipped with 660 vials in which a 10% aqueous solution of the material to be dried mannitol (Mannitol, molecular formula: C 6 H 14 O 6 ) is dispensed in the drying cabinet DC, and is controlled by the control apparatus CR to be predetermined. The drying process is started.
  • a product temperature sensor is inserted into the three vials inserted in the center of the shelf, and the dispensed material is dispensed into the vials.
  • the product temperature of the dried material mannitol was measured.
  • the solution is frozen at ⁇ 45 ° C. for 3 hours, the shelf temperature Th is set to ⁇ 10 ° C. during primary drying, and the opening angle ⁇ of the opening controller C is adjusted to set the degree of vacuum Pdc in the drying chamber DC to 13 Controlled to 3 Pa, the material to be dried was freeze-dried.
  • the opening angle ⁇ of the opening controller C is rotated in the opening direction for 120 seconds at intervals of 30 minutes, and the degree of vacuum Pdc1, Pdc2 in the drying chamber DC before and after the rotation and the opening controller C Opening angles ⁇ 1, ⁇ 2, main pipe cross-sectional areas A1, A2, main pipe resistances R1, R2, sublimation speeds Qm1, Qm2, sublimation speed Qm1, sublimation speed Qm2, ratio C, sublimation surface pressure Ps, The sublimation surface temperature Ts and the actual measured value Tm of the product temperature were measured and calculated and recorded. Table 3 shows the measurement / calculation results.
  • the opening angle ⁇ of the opening controller C is changed from 71.37 ° to 57.78 °, and the degree of vacuum Pdc in the drying cabinet DC is 13.26 Pa to 7.26 Pa.
  • the calculated sublimation surface temperature Ts was ⁇ 30.1 ° C.
  • the measured product temperature Tb was ⁇ 27.7 ° C.
  • the sublimation rate Qm was 0.131 Kg / hr.
  • the opening angle ⁇ of the opening controller C changes from 74.349 ° to 60.705 °
  • the degree of vacuum Pdc in the drying cabinet DC changes from 13.32 Pa to 6.52 Pa.
  • the calculated sublimation surface temperature Ts was ⁇ 27.2 ° C., the actual measured temperature Tb was ⁇ 24.0 ° C., and the sublimation rate Qm was 0.107 Kg / hr.
  • the opening angle ⁇ of the opening controller C changes from 76.878 ° to 63.288 °, and the degree of vacuum Pdc in the drying cabinet DC changes from 13.32 Pa to 6.02 Pa.
  • the calculated sublimation surface temperature Ts was ⁇ 24.5 ° C.
  • the actual measured value Tb of the product temperature was ⁇ 21.7 ° C.
  • the sublimation rate Qm was 0.089 Kg / hr.
  • the calculated sublimation surface temperature Ts was lower by about 2.1 to 3.5 ° C. than the actual measured product temperature. This difference corresponds to the temperature difference between the sublimation surface temperature Ts and the container bottom part temperature Tb.
  • the calculation method and the calculation apparatus of the present example rotate the opening angle ⁇ of the opening adjuster C in the opening direction at regular time intervals with respect to the vacuum control value in the primary drying period, and the inside of the drying cabinet DC. Therefore, by measuring the opening angle ⁇ of the opening controller C before and after the change of the vacuum degree, the vacuum degree Pdc of the drying chamber DC, and the vacuum degree Pct of the cold trap CT, the whole degree is changed. It was proved that the average sublimation surface temperature, the average bottom part temperature, and the sublimation rate of the above were calculated. Therefore, the end point of the primary drying can be monitored accurately and safely compared to the case where the temperature of the material to be dried charged in the drying chamber DC is directly measured using the temperature sensor.
  • the product temperature (actually measured value) is reduced by about 0.5 ° C. during the period in which the opening adjuster C is rotated in the opening direction, and the sublimation surface temperature Ts is calculated as in the conventional MTM method. It was proved that the collapse of the material to be dried can be completely prevented without the degree of vacuum in the drying chamber sometimes deteriorating and the sublimation surface temperature of the material to be dried rising.
  • the vacuum drying apparatus W2 generates a drying chamber DC in which the material to be dried is charged, and water vapor generated from the material to be dried in the drying chamber DC.
  • a cold trap CT that condenses and collects in the trap coil Ct
  • a main pipe a that communicates the dryer DC with the cold trap CT
  • a main valve MV that opens and closes the main pipe a
  • a leak control valve LV connected to the dryer DC Vacuum control circuit f
  • inlet valve V attached to cold trap CT vacuum pump P connected to inlet valve V
  • absolute pressure in dryer DC and absolute pressure in cold trap CT are detected
  • This is mainly composed of a vacuum gauge b that performs the above and a control device CR that automatically controls the operation of each part of the device described above.
  • a control panel incorporating a sequencer PLC and a recorder e is used as the controller CR, and the sequencer PLC has a sublimation rate Qm due to a water load obtained with the main valve MV fully opened.
  • a relational expression between the steam flow resistance coefficient Cr in the main pipe a and a necessary calculation program are stored in advance. Since others are the same as those of the freeze-drying apparatus W1 according to the first embodiment, the corresponding parts are denoted by the same reference numerals and description thereof is omitted.
  • the controller CR calculates the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm of the material to be dried in the primary drying period of the material to be dried charged in the drying cabinet DC. As shown in FIG. 7, by closing the leak control valve LV at least once for several tens of seconds, the degree of vacuum Pdc in the drying chamber DC is increased for each operation, and the leak control valve LV is closed.
  • the degree of vacuum Pdc in the drying chamber DC and the degree of vacuum Pct in the cold trap CT before and after the recording are recorded on a recorder e, and these measurement data are taken into a sequencer (PLC), and the average average sublimation surface of the material to be dried Temperature Ts, average bottom part temperature Tb, and sublimation rate Qm are calculated.
  • PLC sequencer
  • the calculation method for the sublimation speed Qm according to the second embodiment is a vacuum gauge b attached to the drying chamber DC and the cold trap CT of the freeze-drying apparatus W2. It calculates from the measured drying chamber vacuum degree Pdc and cold trap vacuum degree Pct. According to this method, since it is not necessary to equip an expensive measuring instrument other than a vacuum gauge, the sublimation speed Qm can be calculated easily and at low cost.
  • the water vapor sublimated from the sublimation surface of the material to be dried flows into the cold trap CT from the drying chamber DC through the main pipe a, and is condensed and collected by the trap coil Ct.
  • the flow of water vapor in the main pipe a becomes a viscous flow, and therefore the sublimation speed Qm from the material to be dried can be calculated by the following equation.
  • the differential pressure ⁇ P is expressed as follows from the calculation formula of the pipe pressure drop of the viscous flow.
  • Cr is the water vapor flow resistance coefficient of the main pipe flow path
  • is a value represented by the equation of state of ideal gas
  • P ⁇ M / (R ⁇ T) (P is the pressure of the gas, M is the molecular weight of the gas, and R is Gas constant, T is gas temperature)
  • A is the flow passage area of the main pipe a.
  • the steam flow resistance coefficient Cr of the main pipe flow path can be obtained by two methods: a method of measuring an actual sublimation amount with a water load and a method of calculation.
  • the above-mentioned Qm A ⁇ [(Pdc 2 ⁇ Pct 2 ) / (8314 ⁇ 288 / (18 ⁇ 36002) ⁇ Cr)] 1 / 2
  • the sublimation speed Qm can be calculated by measuring the drying chamber vacuum degree Pdc and the cold trap vacuum degree Pct. It should be noted that a high-precision vacuum gauge b is required to measure the drying chamber vacuum Pdc and the cold trap vacuum Pct.
  • the differential pressure ⁇ P Pdc ⁇ Pct between the drying chamber vacuum Pdc and the cold trap vacuum Pct decreases, so that depending on the accuracy of the vacuum gauge b, Pdc becomes lower than Pct, and ⁇ P This is because ⁇ 0 and sublimation speed Qm ⁇ 0, and the sublimation speed may not be calculated.
  • a vacuum differential pressure gauge is installed between the drying chamber DC and the cold trap CT instead of the vacuum gauge b, and the differential pressure ⁇ P between the drying chamber vacuum degree Pdc and the cold trap vacuum degree Pct is directly measured. More preferably, the measurement is performed.
  • the freeze-drying apparatus W2 shown in FIG. 6 is operated with the material to be dried in the drying chamber DC, the shelf temperature is set to Th, and the degree of vacuum Pdc in the drying chamber is leaked.
  • the control value is set by opening / closing the control valve LV and drying is performed, the leak control valve LV is automatically closed for several tens of seconds at a fixed time interval (0.5 hour or 1 hour) during the primary drying period.
  • the leak control valve LV is closed, the degree of vacuum Pdc in the drying cabinet DC and the degree of vacuum Pct in the cold trap CT change in the direction of increasing both, so the degree of vacuum in the drying cabinet DC before and after closing the leak control valve LV. Record Pdc and CT vacuum degree Pct with recorder e.
  • ⁇ Ps [C ⁇ (Pdc2 + ⁇ Ps) ⁇ Pdcl] / (C ⁇ 1)
  • ⁇ Ps is a decrease in sublimation surface pressure due to a decrease in sublimation surface temperature while the leak control valve LV is switched to the closed state
  • the steam flow resistance coefficient Cr is the sum of the steam flow resistance coefficients of each section from the inlet to the outlet of the main pipe a.
  • the main pipe a is defined as the main pipe inlet, the main pipe outlet, the elbow portion, and the main valve MV.
  • a product temperature sensor is attached to the bottom of the tray, water is added to the tray, frozen to -40 ° C, and primary dried.
  • the shelf temperature is set in the period, the degree of vacuum in the drying cabinet is sequentially controlled from 26.7 Pa to 6.7 Pa, the shelf temperature Th and the bottom component temperature Tb are measured, and the degree of vacuum Pdc in the drying cabinet DC
  • the degree of vacuum Pct in the cold trap CT is recorded with an absolute pressure gauge.
  • the leak type vacuum control of this example when actually setting the freeze-drying program and freeze-drying the material to be dried, if the vacuum degree Pdc in the drying chamber and the vacuum degree Pct in the CT are measured and recorded, Using the relational expression between the water vapor resistance coefficient Cr and the sublimation rate Qm of the main pipe flow path obtained by measuring the water load, the flow rate of water vapor sublimated during the primary drying is obtained, and the sublimation rate can also be calculated.
  • a relational expression between the steam flow resistance coefficient Cr of the main pipe channel and the sublimation speed Qm is obtained.
  • the water load test is performed by controlling the operation of the freeze-drying device W2 by the control device CR and executing a predetermined drying process in a state where a tray filled with water is loaded in the drying cabinet DC.
  • the shelf temperature Th is set to ⁇ 20 ° C. and the degree of vacuum Pdc in the drying cabinet DC is set to 6.7 Pa. Held for hours.
  • the shelf temperature Th was set to ⁇ 10 ° C., and the degree of vacuum Pdc in the drying cabinet DC was controlled to 6.7 Pa, 13.3 Pa, and 20 Pa, and held for 3 hours, respectively. Further, the shelf temperature Th was set to 5 ° C., and the degree of vacuum Pdc in the drying cabinet DC was controlled to 6.7 Pa and 13.3 Pa, and held for 3 hours. Further, the shelf temperature Th was set to 20 ° C., and the degree of vacuum Pdc in the drying cabinet DC was controlled to 6.7 Pa and 13.3 Pa, and held for 3 hours, respectively. While carrying out the water load test under the above nine conditions, the shelf temperature Th, the tray bottom component temperature Tb, the drying cabinet vacuum Pdc, and the cold trap vacuum Pct were measured and recorded.
  • Table 4 shows the shelf temperature Th, the drying chamber vacuum degree Pdc, the cold trap vacuum degree Pct, the sublimation rate Qm, and the water vapor flow resistance coefficient Cr obtained in the water load test.
  • the leak control valve LV was closed for 40 seconds.
  • the average drying cabinet vacuum Pdc for the first 3 seconds from the time of closing the leak control valve LV was 12.926 Pa, and the average cold trap vacuum Pct was 12.580 Pa.
  • the average drying chamber vacuum Pdc for 3 seconds from the time point 10 seconds after the leak control valve LV was closed was 10.604 Pa, and the average cold trap vacuum Pct was 10.106 Pa.
  • the sublimation surface temperature Ts calculated from these measurement data is ⁇ 31.1 ° C.
  • the sublimation speed Qm is changed from 0.133 Kg / hr to 0.148 Kg / hr
  • the actual measured value Tb of the product temperature is ⁇ It was 28.7 ° C.
  • the average drying chamber vacuum degree Pdc for 3 seconds from the time point 10 seconds after the leak control valve LV was closed was 11.0666 Pa
  • the average cold trap vacuum degree Pct was 10.515 Pa.
  • the sublimation surface temperature Ts calculated from these measurement data was ⁇ 30.5 ° C.
  • the sublimation rate Qm was changed from 0.148 Kg / hr to 0.163 Kg / hr
  • the actual measured value Tb of the product temperature was ⁇ It was 27.9 ° C. (3)
  • the leak control valve LV was closed for 40 seconds.
  • the average drying cabinet vacuum Pdc for the first 3 seconds from the time of closing the leak control valve LV was 13.315 Pa, and the average cold trap vacuum Pct was 12.902 Pa. Further, the average drying cabinet vacuum Pdc for 3 seconds from the time point 10 seconds after the leak control valve LV was closed was 10.769 Pa, and the average cold trap vacuum degree Pct was 10.195 Pa.
  • the sublimation surface temperature Ts calculated from these measurement data was ⁇ 27.7 ° C.
  • the sublimation rate Qm was changed from 0.153 Kg / hr to 0.164 Kg / hr
  • the actual measured value Tb of the product temperature was ⁇ It was 26.2 ° C.
  • the leak control valve LV was closed for 40 seconds.
  • the average drying cabinet vacuum Pdc for the first 3 seconds from the closing time of the leak control valve LV was 12.580 Pa, and the average cold trap vacuum Pct was 12.180 Pa.
  • the average drying cabinet vacuum Pdc for 3 seconds from the time point 10 seconds after closing the leak control valve LV was 10.353 Pa, and the average cold trap vacuum degree Pct was 9.820 Pa.
  • the sublimation surface temperature Ts calculated from these measurement data was ⁇ 27.2 ° C.
  • the sublimation rate Qm was changed from 0.144 Kg / hr to 0.152 Kg / hr
  • the actual measured value Tb of the product temperature was ⁇ It was 24.7 ° C.
  • the leak control valve LV was closed for 40 seconds.
  • the average drying cabinet vacuum Pdc for the first 3 seconds from the time of closing the leak control valve LV was 12.860 Pa, and the average cold trap vacuum Pct was 12.486 Pa.
  • the average drying chamber vacuum degree Pdc for three seconds from the time point 10 seconds after the leak control valve LV was closed was 10.209 Pa
  • the average cold trap vacuum degree Pct was 9.689 Pa.
  • the sublimation surface temperature Ts calculated from these measurement data was ⁇ 26.4 ° C.
  • the sublimation rate Qm was changed from 0.139 Kg / hr to 0.148 Kg / hr
  • the actual measured value Tb of the product temperature was ⁇ It was 24.5 ° C.
  • the calculated sublimation surface temperature Ts is about 0.6 to 1.9 ° C. lower than the actual measurement value of the product temperature. This corresponds to the temperature difference between the sublimation surface temperature and the container bottom temperature.
  • the product temperature (measured value) is reduced by about 0.5 ° C., and the vacuum in the drying chamber is calculated when the sublimation surface temperature Ts is calculated as in the case of the conventional MTM method. It has been proved that collapse of the material to be dried can be completely prevented without deterioration of the degree of temperature and increase of the sublimation surface temperature of the material to be dried. Moreover, from the data of Table 5, it is demonstrated that the method for calculating the sublimation surface temperature of the material to be dried according to the present invention can accurately calculate the average sublimation surface temperature of a large number of materials to be dried charged in the drying chamber DC. It was done.
  • the main valve MV is closed in the primary drying period. Therefore, the vacuum in the drying chamber DC is lowered while the main valve MV is closed, and the product temperature is increased by 1 to 2 ° C. There is a risk that the dry material will collapse.
  • the sublimation surface temperature and sublimation speed calculation method and calculation device of the material to be dried according to the present invention change the direction of increasing the Pdc vacuum in the drying cabinet DC during the primary drying period of the material to be dried. As shown in FIG. 10, the sublimation surface temperature Ts of the material to be dried can be lowered, and unlike the MTM method, the collapse of the material to be dried can be completely prevented.
  • the sublimation surface temperature and sublimation rate calculation method and calculation apparatus monitor the average sublimation surface temperature Ts and the sublimation rate Qm of the material to be dried in the primary drying period without human intervention. Because it is possible to do the preparation using a freeze-drying device that automatically loads the raw material solution from the filling machine to the freeze-drying device, the non-contact process monitoring method recommended by the US FDA (Food and Drug Drug Administration) PAT (Process Analytical Technology) can be realized.
  • the present invention can be used for a freeze-drying apparatus used for freeze-drying foods and medicines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

【課題】凍結乾燥装置の乾燥庫内に装入された全ての被乾燥材料についての平均昇華面温度、底部品温及び昇華速度を、被乾燥材料を汚染及びコラプスすることなく算出可能な算出方法及び算出装置を提供する。 【解決手段】乾燥庫DCと、コールドトラップCTと、乾燥庫DC内の真空度を調節する真空度調節手段と、これらの稼働を自動制御する制御装置CRとを備えた凍結乾燥装置に適用する。制御装置CRは、所要の関係式及び計算プログラムを記憶しており、被乾燥材料の一次乾燥期に、真空度調節手段を駆動して乾燥庫真空度Pdcを一時的に高める方向に変化させ、当該変化の前後における乾燥庫真空度Pdc及びコールドトラップ真空度Pdtを含む測定データと前記関係式とから、一次乾燥期における被乾燥材料の平均昇華面温度Ts、底部品温Tb及び昇華速度Qmを算出する。

Description

凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法及び算出装置
 本発明は、食品や医薬品等の原材料液を凍結乾燥により所定の含水率まで乾燥させて製品とする凍結乾燥装置において、乾燥プロセスの最適化と監視のために適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法及び算出装置に関する。
 一般に、医薬品等の凍結乾燥は、制御装置により自動制御される凍結乾燥装置を用い、当該凍結乾燥装置の乾燥庫内に、被乾燥材料を充填した多数のトレイやバイアル等の容器を装入し、各容器内の被乾燥材料を所定の含水率になるまで乾燥させることにより行われる。この種の凍結乾燥装置を用いた被乾燥材料の凍結乾燥工程では、多数の容器内に充填された全ての被乾燥材料についての平均昇華面温度を正確に測定することが、乾燥プロセスの適正な監視と最適化を実現する上で重要である。従来、凍結乾燥工程の一次乾燥期における被乾燥材料の昇華面温度の測定方法としては、乾燥庫内に装入された多数の容器の少なくとも1つに熱電対等の温度センサを挿入し、当該容器内に充填された被乾燥材料の温度を直接測定する方法が知られている。乾燥プロセスの監視は、被乾燥材料を充填した容器が載置される乾燥庫内の棚段の温度(棚温)、乾燥庫内の真空度、及び被乾燥材料の昇華面温度(品温)を凍結開始から継続的に測定することにより行われる。
 しかしながら、温度センサを用いて品温の測定を行った場合には、以下の問題がある。
(1)温度センサにより検出される品温は、温度センサが挿入された被乾燥材料についての熱電対挿入部位の温度であり、乾燥庫内に装入された全ての被乾燥材料についての品温を反映していない。
(2)温度センサを設置する場所が毎回同じとならないことから、再現性に難がある。
(3)温度センサが挿入された容器内の被乾燥材料は、核形成温度と氷晶成長に影響を受け、過冷却度が減少するので、平均氷晶サイズの増大が引き起こされ、既乾燥層の水蒸気抵抗が減少して昇華速度が増大する。また、温度センサが挿入される容器の棚内の位置によっては乾燥庫壁からの輻射入熱を受けるので、乾燥庫壁から離れた位置に装入された容器内の被乾燥材料とは乾燥速度が異なり、全体の容器を代表できない。
(4)上述のように温度センサが挿入された被乾燥材料は乾燥速度が速いので、この温度センサが挿入された被乾燥材料の品温と棚温度との温度差がなくなったときを一次乾燥終了点として判断すると、棚中央部に配置される容器内の被乾燥材料にはまだ氷がある場合があり、昇華未了のまま二次乾燥工程に入って、被乾燥材料がコラプス(被乾燥材料が所要の乾燥度まで乾燥されず、再生不可能な不良品となる状態)する危険性がある。
(5)容器内への温度センサのセットは、作業効率を考慮した場合、人が手作業で行わざるを得ない。しかしながら、薬品の無菌製剤に際しては、半打栓状態の容器は重要プロセスゾーンで取り扱わなければならないと定められているにも拘らず、そのグレードAの層流の上に身を乗り出し、容器配列の上に覆い被さって温度センサを取り付けることは問題であるとの指摘が規制当局からされている。そのために、少なくとも薬品の無菌製剤に関しては、温度センサをセットするためにグレードAに人が立ち入ることは困難となっている。今日では、薬液を充填されて半打栓状態の容器を凍結乾燥装置の棚に移動させる工程についても、各国の規制ガイドラインは厳しい規制を打ち出してきている。この扱いは、人手による搬送、棚への移載は、半打栓容器への汚染の原因を発生させる危険性を指摘しており、半打栓状態の容器を充填機から凍結乾燥装置の棚上に移動させる工程を自動化することが最新技術となっている。しかし、自動ローディング装置では、個々の容器についての品温測定を行うことができないので、品温の測定をしていない。このため、薬品の無菌製剤においては、生産立ち上げ段階の3ロットのバリデーション時に個々の容器についての品温測定を実施し、所要の製品評価が得られた場合には、棚温度及び真空度のパラメータ管理のみで、以後の生産をしているのが実情である。
 このような事情から、被乾燥材料の昇華面温度を直接測定するのではなく、他のパラメータの測定値より計算により求める、MTM(Manometric Temperature Measurement)法と呼ばれる方法が従来提案されている。この方法は、図1に示すように、被乾燥材料を装入する乾燥庫DCと、乾燥庫DC内に装入された被乾燥材料から発生する水蒸気を凝結捕集するコールドトラップCTとが、主弁MVを備えた主管aを介して連通されている凍結乾燥装置Wに適用されるもので、被乾燥材料の一次乾燥期に一定時間間隔毎に主弁MVを十数秒間閉じて、その間の乾燥庫DC内の真空度変化を絶対真空計を用いて1秒以下の測定速度で測定し、その真空度変化から昇華面温度Tsと既乾燥層水蒸気抵抗Rpを計算により求める方法である(非特許文献1参照。)。
 このように、MTM法は、被乾燥材料を乾燥庫DCに装入し、凍結真空乾燥装置を作動させて一次乾燥工程を開始するとき、一定時間間隔で周期的に乾燥庫DCとコールドトラップCTとの間の主弁MVを閉じ、乾燥庫DCとコールドトラップCTとを遮断することで、一時的に乾燥庫DC内の被乾燥材料から発生する水蒸気を、コールドトラップCTで凝結捕集できなくするものである。乾燥庫DCとコールドトラップCTとを遮断すると、被乾燥材料から昇華した水蒸気により乾燥庫DC内の圧力が急速に被乾燥材料の昇華面圧力へ上昇し、その後品温の上昇と共に乾燥庫内の真空圧力が上がってゆく。この乾燥庫内の真空度変化から被乾燥材料の平均昇華面温度を計算により求める。なお、乾燥庫内の真空度測定には、絶対圧を計測可能な真空計bを用いなくてはならず、かつ1秒以内の早い記録速度でデータを収集する必要がある。
 しかるに、このMTM法には、以下の2つの問題点がある。
(1)主弁MVを全閉することで、乾燥庫DC内の圧力が被乾燥材料の昇華面圧力以上に上昇し、昇華面温度が被乾燥材料のコラプス温度以上まで上昇するので、乾燥品がコラプスして凍結乾燥が失敗する危険性がある。
(2)MTM法を実施するためには、主弁MVを瞬間的に開閉する必要があるが、一般的な生産機では、主弁MVの開閉に数分間かかるので、昇華面温度の計算が複雑なものとなる。また、主弁MVの開閉が遅れることによって乾燥庫DC内の真空度がさらに低くなるので、この点からも被乾燥材料がコラプスしやすくなる。
 図2に、MTM法による凍結乾燥プロセスの監視結果の一例を示す。被乾燥材料はスクロース(Sucrose:ショ糖)の5%水溶液で、一次乾燥期にMTM法により、乾燥庫DCの棚上に装入された被乾燥材料について昇華面温度Tsを算出した。また、検証のために棚端部と棚中央部に装入されたバイアル中の被乾燥材料について温度センサ(熱電対)を装入し、棚端部の品温Tm(side)と棚中央部の品温Tm(center)を測定すると共に、棚温(Th)の測定も行った。図2から明らかなように、MTM法により算出された被乾燥材料の昇華面温度Tsは、温度センサにより測定された棚端部の品温Tm(side)及び棚中央部の品温Tm(center)とほぼ一致しており、MTM法を用いて被乾燥材料の昇華面温度Tsを正確に算出可能であることが分かる。
Evaluation of Manometric Temperature Measurement as a Method of Monitoring Product Temperature During Lyophiliation,PDA Journal of Pharmaceutical Science and Technology,51(1)7-16(1977)
 しかしながら、図2の実験結果から明らかなように、MTM法は、主弁MVを閉じている間に乾燥庫DC内の真空度を下げる(乾燥庫DC内の圧力を上げる)ので、この過程において被乾燥材料の昇華面温度Tsが上昇し、被乾燥材料がコラプスしやすくなるという問題がある。即ち、図2に示すように、一次乾燥期の初期においては、棚温Thが-20℃に設定されており、MTM法で算出された被乾燥材料の昇華面温度は-34℃以下であった。スクロースのコラプス温度は-32℃であるので、この状態では被乾燥材料がコラプスする虞はない。しかるに、凍結乾燥開始から約21時間経過後に、棚温Thを0℃まで上げると、MTM法で算出された被乾燥材料の昇華面温度が-30℃まで上昇する。図2は、MTM法により一次乾燥期の昇華面温度を算出できることを示しているが、上述したように、MTM法は一次乾燥期に主弁MVを繰り返し閉じるので、主弁MVを閉じている間に乾燥庫DC内の真空度が下がって品温が1~2℃上昇する。したがって、この間に被乾燥品の昇華面温度が当該被乾燥品のコプラス温度に近づくと、被乾燥材料がコラプスする危険性が生じる。また、一次乾燥後期と一次乾燥から二次乾燥への過渡期には、昇華終了の容器が多くなり、昇華量が減少するので、MTM法による場合には、算出される昇華面温度が急速に下がってしまい、一次乾燥後期と一次乾燥から二次乾燥への過渡期における品温の変化を監視できなくなる。
 乾燥品がコラプスすると、再度の真空乾燥が不可能になり、原材料が無駄になるので、特に医薬品のように原材料価格が高いものについては、被乾燥材料のコプラスを確実に防止することが強く求められる。
 本発明は、かかる従来技術の問題を解決するためになされたものであり、その目的は、凍結乾燥装置の乾燥庫内に装入された全ての被乾燥材料についての平均昇華面温度、底部品温及び平均昇華速度を、被乾燥材料を汚染及びコラプスすることなく算出可能な算出方法及び算出装置を提供することにある。
 本発明は、前記課題を解決するため、凍結乾燥装置に適用される被乾燥材料の昇華面温度と昇華速度の算出方法に関しては、被乾燥材料を装入する乾燥庫(DC)と、該乾燥庫(DC)内に装入された被乾燥材料から発生する水蒸気を凝結捕集するコールドトラップ(CT)と、前記乾燥庫(DC)と前記コールドトラップ(CT)とを連通する主管(a)と、該主管(a)を開閉する主弁(MV)と、前記乾燥庫(DC)内の真空度を調節する真空度調節手段と、前記乾燥庫(DC)内の絶対圧力及び前記コールドトラップ(CT)内の絶対圧力を検出する真空検出手段と、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記開度調節手段の稼働を自動制御する制御装置(CR)とを備えた凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法において、前記制御装置(CR)は、所要の関係式及び計算プログラムを記憶しており、前記被乾燥材料の一次乾燥期に、前記真空度調節手段を駆動して前記乾燥庫(DC)内の真空度(Pdc)を一時的に高める方向に変化させ、少なくとも当該変化の前後における前記乾燥庫(DC)内の真空度(Pdc)及び前記コールドトラップ(CT)内の真空度(Pdt)を含む測定データと前記関係式とから、前記一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出することを特徴とする。
 また本発明は、前記構成の被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法において、前記真空度調節手段として、開度調節器(C)を前記主管(a)内に備えると共に、前記制御装置には、前記関係式として、前記主弁(MV)を全開とした状態における水負荷による昇華速度(Qm)と前記開度調節器(C)の開度角度(θ)と主管抵抗R(θ)との関係式を記憶しておき、前記制御装置(CR)は、前記乾燥庫(DC)内に装入された被乾燥材料の一次乾燥期に、前記開度調節器(C)を少なくとも1回開方向に回動操作することにより、前記乾燥庫(DC)内の真空度(Pdc)を高める方向に変化させ、当該開度調節器(C)の開方向への回動操作の前後における前記開度調節器(C)の開度角度(θ)と乾燥庫(DC)内の真空度(Pdc)及びコールドトラップ(CT)内の真空度(Pdt)の測定データから、一次乾燥期における被乾燥材料の平均昇華面温度、底部品温及び昇華速度を算出することを特徴とする。
 また本発明は、前記構成の被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法において、前記真空度調節手段として、リーク制御弁(LV)付きの真空制御回路(f)を前記乾燥庫(DC)に備えると共に、前記制御装置には、前記関係式として、前記主弁(MV)を全開とした状態における水負荷による昇華速度(Qm)と前記主管(a)の水蒸気流動抵抗係数(Cr)との関係式を記憶しておき、前記制御装置(CR)は、前記乾燥庫(DC)内に装入された被乾燥材料の一次乾燥期に、前記リーク制御弁(LV)を少なくとも1回閉操作することにより、前記乾燥庫(DC)内の真空度(Pdc)を高める方向に変化させ、当該リーク制御弁(LV)の閉操作の前後における前記乾燥庫(DC)内の真空度(Pdc)及び前記コールドトラップ(CT)内の真空度(Pdt)の測定データから、一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出することを特徴とする。
 一方、凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出装置に関しては、被乾燥材料を装入する乾燥庫(DC)と、該乾燥庫(DC)内に装入された被乾燥材料から発生する水蒸気を凝結捕集するコールドトラップ(CT)と、前記乾燥庫(DC)と前記コールドトラップ(CT)とを連通する主管(a)と、該主管(a)を開閉する主弁(MV)と、前記乾燥庫(DC)内の真空度を調節する真空度調節手段と、前記乾燥庫(DC)内の絶対圧力及び前記コールドトラップ(CT)内の絶対圧力を検出する真空検出手段と、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記開度調節手段の稼働を自動制御する制御装置(CR)とを備えた凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出装置において、所要の関係式及び計算プログラムを記憶したシーケンサ(PLC)又はパーソナルコンピュータ(PC)を前記制御装置(CR)として備え、前記制御装置(CR)は、前記被乾燥材料の一次乾燥期に、前記真空度調節手段を駆動して前記乾燥庫(DC)内の真空度(Pdc)を一時的に高める方向に変化させ、少なくとも当該変化の前後における前記乾燥庫(DC)内の真空度(Pdc)及び前記コールドトラップ(CT)内の真空度(Pdt)を含む測定データと前記関係式により求められた計算データとから、前記一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出することを特徴とする。
 また本発明は、前記構成の被乾燥材料の昇華面温度、底部品温及び昇華速度の算出装置において、前記真空度調節手段として、開度調節器(C)が前記主管(a)内に備えられた凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出装置において、前記制御装置(CR)には、前記関係式として、前記主弁(MV)を全開とした状態における水負荷による昇華速度(Qm)と前記開度調節器(C)の開度角度(θ)と主管抵抗R(θ)との関係式が記憶され、前記制御装置(CR)は、前記乾燥庫(DC)内に装入された被乾燥材料の一次乾燥期に、前記開度調節器(C)を少なくとも1回開方向に回動操作することにより、前記乾燥庫(DC)内の真空度(Pdc)を高める方向に変化させ、当該開度調節器(C)の開方向への回動操作の前後における前記開度調節器(C)の開度角度(θ)と乾燥庫(DC)内の真空度(Pdc)及びコールドトラップ(CT)内の真空度(Pdt)の測定データから、一次乾燥期における被乾燥材料の平均昇華面温度、底部品温及び昇華速度を算出することを特徴とする。
 また本発明は、前記構成の被乾燥材料の昇華面温度、底部品温及び昇華速度の算出装置において、前記真空度調節手段として、リーク制御弁(LV)付きの真空制御回路(f)が前記乾燥庫(DC)に備えられた凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出装置において、前記制御装置(CR)には、前記関係式として、前記主弁(MV)を全開とした状態における水負荷による昇華速度(Qm)と前記主管(a)の水蒸気流動抵抗係数(Cr)との関係式が記憶され、前記制御装置(CR)は、前記乾燥庫(DC)内に装入された被乾燥材料の一次乾燥期に、前記リーク制御弁(LV)を少なくとも1回閉操作することにより、前記乾燥庫(DC)内の真空度(Pdc)を高める方向に変化させ、当該リーク制御弁(LV)の閉操作の前後における前記乾燥庫(DC)内の真空度(Pdc)及び前記コールドトラップ(CT)内の真空度(Pdt)の測定データから、一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出することを特徴とする。
 本発明によると、被乾燥材料の一次乾燥期に、真空度調節手段を駆動して乾燥庫内の真空度を一時的に高める方向に変化させ、少なくとも当該変化の前後における乾燥庫内の真空度及びコールドトラップ内の真空度を含む測定データから、一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出するので、測定データの収集時に乾燥庫内の真空度が真空制御値よりも高くなる方向に遷移し、これによって昇華面温度が下がるため、被乾燥材料がコラプスする危険性を完全に排除することができる。
従来のMTM法による被乾燥材料の昇華面温度の算出に適用される凍結乾燥装置の構成図である。 MTM法の問題点を示すグラフである。 第1実施形態に係る流路開度真空制御方式の算出方法及び算出装置が適用される凍結乾燥装置の構成図である。 流路開度真空制御のフローチャートである。 水負荷による第1実施形態に係る流路開度真空制御方式の算出方法及び算出装置で求められた開度調節器の開度θと主管抵抗Rとの関係を示すグラフである。 第2実施形態に係るリーク式真空制御方式の算出方法及び算出装置が適用される凍結乾燥装置の構成図である。 リーク式真空制御方式のフローチャートである。 被乾燥材料の昇華面温度、底部品温及び昇華速度の算出に使用した実験機の構成図である。 水負荷による第2実施形態に係るリーク式真空制御方式の算出方法及び算出装置で求められた主管流路の水蒸気流動抵抗係数Crとの関係を示すグラフである。 本発明の効果をMTM法と比較して示すグラフである。
 以下、本発明に係る凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法及び算出装置を、実施形態毎に説明する。
[第1実施形態]
 第1実施形態に係る算出方法及び算出装置は、乾燥庫とコールドトラップとをつなぐ主管内に、乾燥庫内の真空度を調節するための開度調節器(ダンパ)を備えた流路開度真空制御方式の凍結乾燥装置に適用されるものである。
 即ち、図3に示すように、第1実施形態に係る真空乾燥装置W1は、被乾燥材料を装入する乾燥庫DCと、乾燥庫DC内に装入された被乾燥材料から発生する水蒸気をトラップコイルCtにて凝結捕集するコールドトラップCTと、乾燥庫DCとコールドトラップCTを連通する主管aと、主管aを開閉する主弁MVと、主管a内に備えられたダンパ方式の開度調節器Cと、コールドトラップCTに付設された引口弁Vと、引口弁Vに接続された真空ポンプPと、乾燥庫DC内の絶対圧力及びコールドトラップCT内の絶対圧力を検出する真空計bと、上述した装置各部の稼働を自動制御する制御装置CRとから主に構成されている。本例においては、制御装置CRとして、シーケンサPLC及び記録計eが組み込まれた制御盤が用いられており、シーケンサPLCには、主弁MVを全開とした状態における水負荷による昇華速度Qmと開度調節器Cの開度角度θと主管抵抗R(θ)との関係式と、所要の計算プログラムとが予め記憶されている。なお、制御盤を用いる構成に代えて、上述の関係式及び計算プログラムが記録されたパーソナルコンピュータを制御装置CRとして用いることもできる。また、乾燥庫DCとコールドトラップCTのそれぞれに絶対圧力を検出する真空計bを備える構成に代えて、乾燥庫DC内の絶対圧力とコールドトラップCT内の絶対圧力の差圧を検出する差圧真空計を備えることもできる。開度角度θとは、全開状態(0°)からの開度調節器Cの回転角度をいう。
 制御装置CRは、乾燥庫DC内に装入された被乾燥材料の一次乾燥期における被乾燥材料の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを算出するに際し、一次乾燥期に、図4に示すように、開度調節器Cを少なくとも1回開方向に回動することにより、各操作毎に乾燥庫DC内の真空度Pdcを高める方向に変化させ、当該開度調節器Cの開方向への回動操作の前後における開度調節器Cの開度角度θと乾燥庫DC内の真空度Pdc及びコールドトラップCT内の真空度Pdtの測定データを求める。
〈平均昇華面温度Tsの算出方法〉
 乾燥庫DC内の真空度Pdcを高める方向に変化させると、その真空度変化の測定データから被乾燥材料の全体の平均昇華面温度Tsを以下の計算により求めることができる。
 まず、昇華面から被乾燥材料の既乾燥層を通して乾燥庫内へ移動する水蒸気流量(昇華速度)Qmは、昇華面圧力をPs(Pa)、乾燥庫内の真空度をPdc(Pa)、被乾燥材料の既乾燥層の水蒸気移動抵抗をRp(KPa・S/Kg)としたとき、
 Qm=dm/dt=(Ps-Pdc)/Rp
で求められる。
 ここで、乾燥庫DC内の真空度Pdcを高める方向に変化させる前の水蒸気流量をQm1、昇華面圧力をPs1、乾燥庫内の真空度をPdc1とし、乾燥庫DC内の真空度Pdcを高める方向に変化させた後の水蒸気流量をQm2、昇華面圧力をPs2、乾燥庫DC内の真空度をPdc2とすると、
 乾燥庫DC内の真空度Pdcを高める方向に変化させる前の水蒸気流量Qm1は、
 Qm1=3.6×(Ps1-Pdc1)/Rp
で表され、
 乾燥庫DC内の真空度Pdcを高める方向に変化させた後の水蒸気流量Qm2は、
 Qm2=3.6×(Ps2-Pdc2)/Rp
で表される。
 Pdc2はPdc1より小さいので、乾燥庫DC内の真空度Pdcを変化させた後においては、昇華面温度Tsが下がる。
 即ち、乾燥庫DC内の真空度Pdcを高める方向に変化させる前後の昇華速度Qmの比をCとすると、上式より、
 C=Qm1/Qm2=(Ps1-Pdc1)/(Ps2-Pdc2)
と表される。ここで、Ps1=Ps、Ps2=Ps-ΔPsと置くと、
 C=(Ps-Pdc1)/(Ps-ΔPs-Pdc2)
 Ps-C×Ps=Pdc1-C×(ΔPs+Pdc2)
 Ps=〔C×(Pdc2+ΔPs)-Pdc1〕/(C-1)
 ここで、ΔPsは、乾燥庫DC内の真空度Pdcを高める方向に変化させる間に発生する昇華面温度の降下による昇華面圧力の減少分である。
 また、クラウジウス・クラベイロンの式LnPs=28.91-6144.96/Tsを微分すると、ΔPs/Ps=6144.96×ΔTs/Tsとなるので、この式から、被乾燥材料の平均昇華面温度Ts=6144.96/(28.911-LnPs)-273.15が得られる。
 以上の計算式から、一次乾燥時に一定間隔で乾燥庫DC内の真空度Pdcを高める方向に変化させた前後の昇華速度Qm1とQm2を正確に測定すれば、被乾燥材料の全体の平均昇華面温度を算出することができる。
〈平均底部品温Tbの算出方法〉
 一次乾燥期と、一次乾燥から二次乾燥への過渡期における被乾燥材料の全体の平均底部品温Tbは、次式から算出できる。
 まず、気体伝導による棚段から容器底部への入熱量Qhは、次の式で計算される。
 Qh=Ae×K×(Th-Tb)
 但し、Aeは有効伝熱面積(m)、Kは気体伝導による棚段から容器底部への熱伝達係数、Thは棚温(℃)、Tbは底部品温(℃)である。
 有効伝熱面積Aeは、Ae=2/(1/Av+1/At)で算出でき、
 気体伝導による棚段から容器底部への熱伝達係数K(W/m℃)は、
 K=16.86/(δ+2.12×29×0.133/Pdc)である。
 有効伝熱面積Aeの計算式において、Avは容器底部面積(m)であり、Atはトレイ枠面積(m)である。
 容器底部面積Avは、Av=π/4×n1×d(但し、n1はバイアル本数、dはバイアル直径)で算出でき、トレイ枠面積Atは、At=n2×W×L(但し、n2は枠枚数;Wは枠の幅寸法、Lは枠の長さ寸法)で算出できる。
 また、気体伝導による棚段から容器底部への熱伝達係数Kの計算式において、δは容器底部の隙間であり、単位はmmである。
 一方、乾燥庫壁から全容器への幅射入熱量Qrは、次式から求められる。
 Qr=5.67×ε×Ae×〔(Tw/100)-(Tb/100)
 但し、式中のεは輻射係数、Twは乾燥庫壁温度、Tbは底部品温である。
 また、この乾燥庫壁から全容器への幅射入熱量Qrは、次式で近似的に計算できる。
 Qr=Ae×Kr×(Tw-Tb)
 但し、Krは輻射入熱による相当熱伝達係数であり、試験機でKr=0.7W/m℃、生産機でKr=0.2W/m℃と近似できる。
 入熱量と昇華潜熱との関係から、下式が成り立つ。
 Qm×ΔHs=3.6×〔Ae ×K×(Th-Tb)+Ae×Kr×(Tw-Tb)〕但し、ΔHsは昇華潜熱であり、ΔHs=2850KJ/Kgである。
 被乾燥材料の平均底部品温は以下の式で計算できる。
 Tb=〔K×Th+Kr×Tw-(Qm×ΔHs)/(3.6×Ae) 〕/(K+Kr)
 したがって、以上の計算式から、一次乾燥期と一次乾燥から二次乾燥への過渡期に昇華速度Qmを測定すれば、被乾燥材料の全体の平均底部品温Tbを算出することができる。
〈昇華速度Qmの算出方法〉
 昇華速度Qmについては、凍結乾燥装置W1の乾燥庫DCとコールドトラップCTにそれぞれ付設した真空計bで測定した乾燥庫真空度Pdcとコールドトラップ真空度Pctとから算出する。この方法によると、真空計以外の高価な計測器機を装備する必要がないので、昇華速度Qmの算出を容易かつ低コストに行うことができる。
 以下に、第1実施形態に係る昇華速度Qmの算出方法について説明する。
 上述したように、被乾燥材料の昇華面から昇華した水蒸気は、乾燥庫DCから主管aを通してコールドトラップCT内に流れ、トラップコイルCtにて凝結捕集される。流路開度真空制御の場合、Pct/Pdc<0.53になり、主管a内における水蒸気の流れが噴流状態となるので、被乾燥材料からの昇華速度Qmは、主管抵抗をRとしたとき、次の式で計算できる。
 Qm=3.6×Pdc/R
 ここで、乾燥庫DC内の真空度Pdcを高める方向に変化させる前における被乾燥材料からの昇華速度、乾燥庫真空度、主管抵抗をそれぞれQm1、Pdcl、R(θ1)とし、乾燥庫DC内の真空度Pdcを高める方向に変化させた後における被乾燥材料からの昇華速度、乾燥庫真空度、主管抵抗をそれぞれQm2、Pdc2、R(θ2)とすると、
 Qml=3.6×Pdcl/R(θ1)
 Qm2=3.6×Pdc2/R(θ2)
と表記できる。
 主管抵抗Rは、水負荷を掛けたときの被乾燥材料からの昇華量を測定するか、算出することにより求められる。また、主管抵抗Rが求まれば、乾燥庫真空度Pdcとコールドトラップ真空度Pctの測定データから昇華速度Qmを求めることができる。
 具体的には、乾燥庫DC内に被乾燥材料を装入した状態で図4に示した凍結乾燥装置W1を作動させ、棚温をThに設定し、かつ乾燥庫DC内の真空度Pdcを開度調節器Cにて制御値に設定して乾燥するとき、その一次乾燥期間に一定時間間隔(0.5時間あるいは1時間)で乾燥庫DC内の真空度を高める方向に開度調節器Cを回転させ、その前後の開度調節器Cの開度角度θ、乾燥庫DC内の真空度Pdc及びCT真空度Pctを記録計eにて記録する。そして、それらの測定データをシーケンサ(PLC)に取り込み、該シーケンサ(PLC)に記憶された計算プログラムに従って、以下の手順で被乾燥材料の全体の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを計算する。
(1)乾燥庫DC内の真空度を高める方向に変化させる前後の乾燥庫真空度Pdc1,Pdc2とコールドトラップ真空度Pct1,Pct2との圧力差ΔPを計算する。
(2)水負荷で測定した主管抵抗R(θ)と開度調節器Cの開度角度θとの関係から、乾燥庫DC内の真空度を高める方向に変化させる前後の主管抵抗R1,R2を計算する。
(3)主管a内の水蒸気流動が噴流状態となるPct/Pdc<0.53で、Qm1=3.6×Pdc1/R1と、Qm2=3.6×Pdc2/R2と、C=Qm1/Qm2を計算する。
(4)これらの計算結果に基づいて、昇華面圧力Ps=〔C×(Pdc2+ΔPs)-Pdc1〕/(C-1)を計算する。ΔPsは、開度調節弁Cを開操作したときに昇華面温度が降下することに伴う昇華面圧力の減少分であり、先に説明したように、クラウジウス・クラベイロンの式LnPs=28.91-6144.96/Tsを微分することにより得られる式ΔPs/Ps=6144.96×ΔTs/Ts式に、開度調節弁Cの開操作前後の昇華面温度の降下分ΔTsを代入することにより求められる。
(5)クラウジウス・クラベイロンの式に氷の定数を入れて、昇華面温度Ts=6144.96/(28.911-LnPs)-273.15を計算する。
(6)昇華速度Qm(Kg/hr)=3.6×Pdc1/R1を計算する。
(7)底部品温Tb=〔K×Th+Kr×Tw-(Qm×ΔHs)/(3.6×Ae) 〕/(K+Kr)を計算する。
 流路開度真空制御方式の凍結乾燥装置W1では、乾燥庫DCとコールドトラップCTを連通する主管aと開度調節器Cとを通して流れる水蒸気の主管抵抗R(θ)は、R(θ)=(Pdc-Pct)/Qmで表され、Pct/Pdc<0.53で水蒸気の流れが噴流となるので、R(θ)=Pdc/Qmで計算できる。以下にその計算方法を示す。
(1)主管aの入口、主弁MV及び主管a内の抵抗R1(θ)は、圧力降下の粘性流計算式Pdc-P1=Cr×ρ×u/2から、Pdc-P1=R1(θ)×Qm、R1(θ)=Cr×R×T/(2×Pdc×M×A0)×Qmで計算できる。
(2)開度調節器Cの抵抗R2(θ)は、開度調節器Cの前後の圧力の比Pct/Plが0.53以下となったときに噴流となり、噴流の計算式は、
 Qm=ρ×A´×u´で表される。
 但し、u´は局所音速であり、u´=(K×R×T/M)1/2である。
 また、A´は収縮面積であり、A´=0.6~0.7×Aである。
 従って、噴流の計算式は、R2(θ)=(R×T/(K×M))1/2/A´と置いたとき、
 Qm=P1×A´×〔K×M/(R×T)〕1/2=P1/R2(θ)
 と書き換えられる。
(3)一方、主管抵抗R(θ)は、
 R(θ)=R1(θ)+R2(θ)
     =[〔CO+(R2(θ)/2)1/2+R2(θ)/2
で表される。
 但し、CO=Cr×R×T/(2×Pdc×M×A0)=3408.65、
 R2(θ)=・2223.7/Aであり、
 開度調節器Cの断面積A(cm)は、Dを主管aの内径、d1を開度調節器Cの直径、tを開度調節器Cの厚みとしたとき、
 A=0.01×(π×D/4-d1×t×cosθ-π×d1/4×sinθ)
で計算される。
 この事例の計算結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
〈開度調節器Cの開度角度θと主管抵抗R(θ)との関係式の導出〉
 昇華面温度Ts及び昇華速度Qmの算出に際しては、事前に、水負荷で昇華速度Qm(Kg/hr)と乾燥庫真空度Pdcとコールドトラップ真空度Pctを測定し、開度調節器Cの開度角度θと主管抵抗R(θ)との関係式を求める。その方法は、トレイ底部に品温センサを取り付け、トレイに水を入れ、-40℃まで凍結し、一次乾燥時に棚温を設定して、乾燥庫内の真空度を26.7Paから6.7Paまで順次に制御し、棚温Thと底部品温Tbを測定し、庫内圧力PdcとCT圧力Pctを絶対圧真空計にて記録する。各真空制御値における開度調節器Cの開度角度θも計測する。
 昇華速度抵抗Qm(Kg/hr)の確定は、昇華前後の被乾燥材料の重量差から昇華量を求める方法と、入熱量計算から解析する方法の二つの方法がある。解析による場合には、乾燥庫DC内の真空度Pdcにて棚からトレイ底部への熱伝達係数αを計算し、次にQ=A1×α×(Th-Tb)の計算式でトレイ底部への熱流量を計算し、昇華速度Qmが氷の昇華潜熱2850KJ/Kgより計算式Qm=Q/2850で求められる。それにより開度調節器Cの開度角度θと主管抵抗R(θ)との関係式が得られる。
 次いで、凍結乾燥プログラムにしたがって被乾燥材料の凍結乾燥を行うときに、開度調節器Cの開度角度θ、乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctを計測して記録すれば、上述した水負荷の測定で得られた開度調節器Cの開度角度θと水蒸気抵抗R(θ)との関係式から、個別容器の品温を測定することなく、一次乾燥期における全体の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmの監視が可能になる。
 以下、流路開度真空制御方式の凍結乾燥装置に適用される被乾燥材料の昇華面温度Tsと昇華速度Qmの算出方法及び算出装置のより具体的な実施例を示す。
〈開度調節器の開度角度と主管抵抗との関係式の導出〉
 先ず、水負荷の試験で、開度調節器Cの開度角度θと主管抵抗R(θ)との関係式を求める。凍結乾燥装置W1は、乾燥庫DC内に、水を充填したトレイが装入され、制御装置CRにより制御されて所定の乾燥工程を開始している。トレイ内の水を-45℃まで凍結し、一次乾燥時に棚温Thを-20℃に設定し、乾燥庫DC内の真空度Pdcを4Pa、6.7Pa、10Pa、13.3Pa、20Pa、30Pa、40Pa、60Paに制御して、それぞれ3時間保持し、合計8例の水負荷試験を実施した。そのときの開度調節器Cの開度角度θ、棚温Th、トレイ底部の氷温度Tb、乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctをそれぞれ測定して記録した。
 氷の昇華速度Qm(Kg/h)を昇華量の測定や入熱量による計算で決定し、開度調節器Cの開度角度θと主管抵抗R(θ)との関係式を求めた。表2及び図5に、開度調節器Cの開度角度θと計算により求められた主管抵抗R(θ)との関係、及び開度調節器Cの開度θと測定により求められた主管抵抗R(θ)との関係を示す。
Figure JPOXMLDOC01-appb-T000002
 次いで、図5から、以下に示す主管抵抗R(θ)の計算式、及び開度調節器Cの断面積A(cm)の計算式を求めた。
 R(θ)=〔3408.65+(2223.7/A)1/2+2223.7/A、
 A=0.01×(π×D/4-d1×t×cosθ-π×d1/4×sinθ)
 但し、Dは主管aの内径、d1は開度調節器Cの直径、tは開度調節器Cの厚みである。
 以上の手順で水負荷テストで開度調節器Cの開度角度θと主管抵抗R(θ)と昇華速度Qmとの関係式が得られる。
〈平均昇華面温度Ts、品温Tb及び昇華速度Qmの算出〉
 次に、実負荷を用いた凍結乾燥テストを行って、被乾燥材料の全体の平均昇華面温度を計算した。凍結乾燥装置W1は、乾燥庫DC内に被乾燥材料マンニトール(Mannitol、分子式:C14)の10%水溶液を分注したバイアル660本が装入され、制御装置CRにより制御され所定の乾燥工程を開始している。なお、本発明に係る算出方法及び算出装置の適切性を検証するために、棚中央部に装入された3本のバイアルには品温センサを挿入して、バイアル内に分注された被乾燥材料マンニトールの品温を測定した。溶液を-45℃で3時間凍結させ、一次乾燥時に棚温Thを-10℃に設定すると共に、開度調節器Cの開度角度θを調整して乾燥庫DC内の真空度Pdcを13.3Paに制御し、被乾燥材料を凍結乾燥した。この一次乾燥中に30分間隔で開度調節器Cの開度角度θを120秒間開方向へ回動し、回動前後における乾燥庫DC内の真空度Pdc1,Pdc2と、開度調節器Cの開度角度θ1,θ2と、主管の断面積A1,A2と、主管抵抗R1,R2と、昇華速度Qm1,Qm2と、昇華速度Qm1と昇華速度Qm2の比Cと、昇華面圧力Psと、昇華面温度Tsと、品温の実測値Tmとを測定・算出して記録した。表3に、その測定・算出結果を示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、
(1)乾燥開始から1時間で、開度調節器Cの開度角度θを120秒間開方向へ回転させ、角度θが70.794°から57.195°へ、乾燥庫DC内の真空度Pdcが13.31Paから7.53Paに変化し、算出した昇華面温度Tsは-31.1℃、品温の実測値Tbは―28.6℃、昇華速度Qmは0.137Kg/hrであった。
(2)乾燥開始から1時間30分で、開度調節器Cの開度角度θが71.37°から57.78°へ、乾燥庫DC内の真空度Pdcが13.26Paから7.26Paに変化し、算出した昇華面温度Tsは-30.1℃、品温の実測Tbは-27.7℃、昇華速度Qmは0.131Kg/hrであった。
(3)乾燥開始から5時間で、開度調節器Cの開度角度θが74.349°から60.705°へ、乾燥庫DC内の真空度Pdcが13.32Paから6.52Paに変化し、算出した昇華面温度Tsは-27.2℃、品温の実測値Tbは―24.0℃、昇華速度Qmは0.107Kg/hrであった。
(4)乾燥開始から10時間で、開度調節器Cの開度角度θが76.878°から63.288°へ、乾燥庫DC内の真空度Pdcが13.32Paから6.02Paに変化し、算出した昇華面温度Tsは-24.5℃、品温の実測値Tbは-21.7℃、昇華速度Qmは0.089Kg/hrであった。
 算出した昇華面温度Tsは、品温の実測値よりも約2.1~3.5℃低かった。この差は、昇華面温度Tsと容器底部品温Tbの温度差に相当する。
 このように、本例の算出方法及び算出装置は、一次乾燥期に真空制御値に対して、一定時間間隔で開度調節器Cの開度角度θを開方向へ回転させ、乾燥庫DC内の真空度を高める方向に変化するので、真空度の変化前後の開度調節器Cの開度角度θ、乾燥庫DCの真空度Pdc及びコールドトラップCTの真空度Pctを測定することにより、全体の平均昇華面温度、平均底部品温及び昇華速度を計算により求められることが実証された。よって、温度センサを用いて乾燥庫DC内に装入された被乾燥材料の品温を直接測定する場合に比べて、一次乾燥の終点の監視を正確かつ安全に行うことができる。また、開度調節器Cを開方向へ回転する期間中において、品温(実測値)が約0.5℃低下しており、従来のMTM法による場合のように、昇華面温度Tsの算出時に乾燥庫内の真空度が劣化して被乾燥材料の昇華面温度が上昇するということがなく、被乾燥材料のコラプスを完全に防止できることが実証された。
[第2実施形態]
 第2実施形態に係る算出方法及び算出装置は、乾燥庫内の真空度を調節するためのリーク弁を乾燥庫に備えたリーク式真空制御方式の凍結乾燥装置に適用されるものである。
 即ち、図6に示すように、第2実施形態に係る真空乾燥装置W2は、被乾燥材料を装入する乾燥庫DCと、乾燥庫DC内に装入された被乾燥材料から発生する水蒸気をトラップコイルCtにて凝結捕集するコールドトラップCTと、乾燥庫DCとコールドトラップCTを連通する主管aと、主管aを開閉する主弁MVと、乾燥庫DCに接続されたリーク制御弁LV付きの真空制御回路fと、コールドトラップCTに付設された引口弁Vと、引口弁Vに接続された真空ポンプPと、乾燥庫DC内の絶対圧力及びコールドトラップCT内の絶対圧力を検出する真空計bと、上述した装置各部の稼働を自動制御する制御装置CRとから主に構成されている。本例においては、制御装置CRとして、シーケンサPLC及び記録計eが組み込まれた制御盤が用いられており、シーケンサPLCには、主弁MVを全開とした状態において求めた水負荷による昇華速度Qmと主管a内の水蒸気流動抵抗係数Crとの関係式と、所要の計算プログラムとが予め記憶されている。その他については、第1実施形態に係る凍結乾燥装置W1と同じであるので、対応する部分に同一の符号を付して説明を省略する。
 制御装置CRは、乾燥庫DC内に装入された被乾燥材料の一次乾燥期における被乾燥材料の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを算出するに際し、一次乾燥期に、図7に示すように、少なくとも1回リーク制御弁LVを数十秒間閉めることにより、各操作毎に乾燥庫DC内の真空度Pdcを高める方向に変化させ、当該リーク制御弁LVの閉操作の前後における乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctを記録計eに記録し、それらの測定データをシーケンサ(PLC)に取り込んで、被乾燥材料の全体の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを計算する。
〈平均昇華面温度Ts及び平均底部品温Tbの算出方法〉
 平均昇華面温度Ts及び平均底部品温Tbについては、第1実施形態と同様の方法で算出される。従って、本項では、重複を避けるために説明を省略する。
〈昇華速度Qmの算出方法〉
 第2実施形態に係る昇華速度Qmの算出方法も、第1実施形態に係る昇華速度Qmの算出方法と同様に、凍結乾燥装置W2の乾燥庫DCとコールドトラップCTにそれぞれ付設した真空計bで測定した乾燥庫真空度Pdcとコールドトラップ真空度Pctとから算出する。この方法によると、真空計以外の高価な計測器機を装備する必要がないので、昇華速度Qmの算出を容易かつ低コストに行うことができる。
 以下に、第2実施形態に係る昇華速度Qmの算出方法について説明する。
 上述したように、被乾燥材料の昇華面から昇華した水蒸気は、乾燥庫DCから主管aを通してコールドトラップCT内に流れ、トラップコイルCtにて凝結捕集される。リーク式真空制御の場合、主管a内における水蒸気の流れは粘性流となるので、被乾燥材料からの昇華速度Qmは、次の式で計算できる。
 Qm=3・6×(Pdc-Pct)/R=3・6×ΔP/R
 上式において、Pdcは乾燥庫DC内の真空度(乾燥庫真空度)
 PctはコールドトラップCT内の真空度(コールドトラップ真空度)
 ΔPは乾燥庫真空度Pdcとコールドトラップ真空度Pctとの差圧
 Rは主管抵抗である。
 差圧ΔPは、粘性流の管路圧力降下の計算式から、以下のように表される。
 ΔP=Cr/2×ρ×u=Cr/2×ρ×〔Qm/(3600×A×ρ)〕
 但し、Crは主管流路の水蒸気流動抵抗係数
 ρは理想気体の状態方程式ρ=P×M/(R×T)で表される値(Pは気体の圧力、Mは気体の分子量、Rは気体定数、Tは気体の温度)
 Aは主管aの流路面積である。
 上記ΔPの式に、理想気体状態方程式ρ=P×M/(R×T)、分子量M=18、気体定数R=8314、気体温度T=288、ΔP=Pdc-Pctを代入し、昇華速度Qmの式に変換すると、
 Qm=A×〔(Pdc-Pct)/(8314×288/(18×36002)×Cr)〕1/2
 となる。
 したがって、リーク制御弁LVを閉めて乾燥庫DC内の真空度を高める方向へ変化させる前における被乾燥材料の昇華速度をQm1とすると、Qm1は下式で表わせる。
 Qm1=A×〔(Pdc1-Pct1)/(0.0103×Cr)〕1/2
 また、リーク制御弁LVを閉めて乾燥庫DC内の真空度を高める方向へ変化させた後の被乾燥材料の昇華速度をQm2とすると、Qm2は下式で表わせる。
 Qm2=A×〔(Pdc2-Pct2)/(0.0103×Cr)〕1/2
〈昇華速度Qmと主管流路の水蒸気流動抵抗係数Crとの関係式の導出〉
 主管流路の水蒸気流動抵抗係数Crは、水負荷で実際の昇華量を測定する方法と計算による方法の二つ方法で求めることができる。
 計算により求める場合には、主管aの流路面積Aは既知であるので、上述した
 Qm=A×〔(Pdc-Pct)/(8314×288/(18×36002)×Cr)〕1/2
 の式より、主管流路の水蒸気流動抵抗係数Crが求めれば、乾燥庫真空度Pdcとコールドトラップ真空度Pctを測定することによって、昇華速度Qmを算出できる。なお、乾燥庫真空度Pdcの測定及びコールドトラップ真空度Pctの測定には、高精度の真空計bを設置することが要求される。
 即ち、昇華速度Qmが小さくなると、乾燥庫真空度Pdcとコールドトラップ真空度Pctの差圧ΔP=Pdc-Pctが小さくなるので、真空計bの精度によっては、PdcがPctより低くなって、ΔP<0、昇華速度Qm<0となり、昇華速度の算出ができなくなる場合もあるからである。
 このような不都合を回避するため、真空計bに代えて真空差圧計を乾燥庫DCとコールドトラップCTとの間に設置し、乾燥庫真空度Pdcとコールドトラップ真空度Pctの差圧ΔPを直接測定する構成とすることがより好ましい。
 具体的には、乾燥庫DC内に被乾燥材料を装入した状態で図6に示した凍結乾燥装置W2を稼動させ、棚温をThに設定し、かつ乾燥庫内の真空度Pdcをリーク制御弁LVの開閉にて制御値に設定して乾燥するとき、その一次乾燥期間に一定時間間隔(0.5時間或いは1時間)で自動でリーク制御弁LVを数十秒間閉める。リーク制御弁LVを閉じると、乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctが共に高くなる方向に変化するので、リーク制御弁LVを閉じる前後の乾燥庫DC内の真空度Pdc及びCT真空度Pctを記録計eにて記録する。そして、それらの測定データをシーケンサ(PLC)に取り込み、該シーケンサ(PLC)に記憶された計算プログラムに従って、以下の手順で被乾燥材料の全体の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを計算する。
(1)リーク制御弁LVを閉めた時点から最初3秒間の乾燥庫DC内の平均真空度Pdc1及びコールドトラップCT内の平均真空度Pct1と、リーク制御弁LVを閉めてから10秒後の時点から3秒間の乾燥庫DC内の平均真空度Pdc2及びコールドトラップCT内の平均真空度Pct2を計算する。
(2)水負荷で測定した主管aの水蒸気流動抵抗係数Crと昇華速度Qmとの関係式から、リーク制御弁LVを開閉する前後の水蒸気流動抵抗係数Cr値と主管流路の断面積Aをシーケンサ(PLC)に取り込む。
(3)粘性流の管路圧力降下の計算式
 ΔP=Cr/2×ρ×u=Cr/2×ρ×〔Qm/(3600×A×ρ)〕
から、リーク制御弁LVを閉める前の昇華速度Qm1と、リーク制御弁LVを閉めた後の昇華速度Qm2と、それらの比とを、下式により算出する。
 Qml=A×〔(Pdc1-Pct1)/(0.0103×Cr)〕1/2
 Qm2=A×〔(Pdc2-Pct2)/(0.0103×Cr)〕1/2
 C=Qm1/Qm2
(4)次に、これらの計算結果に基づいて、被乾燥材料の昇華面圧力Psを下式により算出する。
 Ps=〔C×(Pdc2+ΔPs)-Pdcl〕/(C-1)
 ここで、ΔPsは、リーク制御弁LVが閉状態に切り換えられている間における昇華面温度の降下による昇華面圧力の減少分であり、クラウジウス・クラベイロンの式LnPs=28.91-6144.96/Tsを微分することにより得られる式ΔPs/Ps=6144.96×ΔTs/Tsに、リーク制御弁LVを閉じる前後の昇華面温度の降下分ΔTsを代入することにより求められる。なお、リーク制御弁LVを10秒間閉じた場合の昇華面温度の降下ΔTsは僅かである。
(5)クラウジクス・クラベイロンの式により氷の定数を入れて、昇華面温度Ts=6144.96/(28.911-LnPs)-273.15を求める。
(6)昇華速度Qm=A×〔(Pdc1-Pct1)/(0.0103×Cr)]1/2を計算する。
(7)底部品温Tb=〔K×Th+Kr×Tw-(Qm×ΔHs)/(3.6×Ae) 〕/(K+Kr)を計算する。
 次いで、乾燥庫DCとコールドトラップCTを連通する主管aを通して流れる水蒸気の流動抵抗係数Crを求める。水蒸気の流動抵抗係数Crは、主管aの入口から出口までに至る各区間の水蒸気流動抵抗係数の総和であり、本試験例では、主管aを、主管入口、主管出口、エルボ箇所、主弁MVの設置箇所、及び主管aの入口区間(水蒸気の流れの助走区間)を除く流れが十分に発達した区間の5区間に分け、主管入口の流動抵抗係数Cr1=0.5、主管出口の流動抵抗係数Cr2=0.5、エルボ箇所の流動抵抗係数Cr3=1.2、主弁MVの設置箇所の流動抵抗係数Cr4=1.7とした。
 なお、エルボ箇所の流動抵抗係数Cr3は、1.13×n(90°×n箇所)で求められる。本試験例においては、図8に示すように、乾燥庫DCとコールドトラップCTとをつなぐ主管a内に開度調節器Cを備えると共に、乾燥庫DCに乾燥庫DC内の真空度を調節するためのリーク弁LVを備えた凍結乾燥装置を用いたので、これをエルボに相当する流動抵抗として、Cr3=1.2とした。
 主管aの入口区間(水蒸気の流れの助走区間)を除く流れが十分発達する区間の流動抵抗係数Cr5は、Cr5=λ×L/D+ξ(但し、ξ=2.7、Lは主管の長さ、Dは主管内径、λは摩擦係数)で求められ、摩擦係数λは、λ=64/Re(但し、Reはレイノルズ数)で求められ、レイノルズ数Reは、Re=u×D/ν≒40×Qm/D(但し、Qmは昇華速度、Dは主管aの内径)で求められる。
 本例の試験機では、L=0.7mで、Qm=0.17Kg/hrのとき、Cr=6.6+1.6×0.7/0.17=13.19となった。
 一方、測定により主管流路の水蒸気流動抵抗係数Crと昇華速度Qmの関係式を求める場合には、トレイ底部に品温センサを取り付け、トレイに水を入れ、-40℃まで凍結し、一次乾燥期に棚温を設定して、乾燥庫内の真空度を26.7Paから6.7Paまで順次に制御し、棚温Thと底部品温Tbを測定し、乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctとを絶対圧真空計にて記録する。
 昇華速度Qm(Kg/hr)の確定は、昇華前後の被乾燥材料の重量差から昇華量を求める方法と、入熱量計算から解析する方法の二つの方法がある。解析による場合には、乾燥庫DC内の真空度Pdcにて棚からトレイ底部への熱伝達係数αを計算し、次にQ=A1×α×(Th-Tb)の計算式でトレイ底部への熱流量を計算し、昇華速度Qmが氷の昇華潜熱2850KJ/Kgより計算式Qm=Q/2850で求められる。それにより主管流路の水蒸気流動抵抗係数Crと昇華速度Qmとの関係式が得られる。
 本例のリーク式真空制御では、実際に凍結乾燥プログラムを設定して被乾燥材料の凍結乾燥を行うとき、乾燥庫内の真空度PdcとCT内の真空度Pctを計測して記録すれば、水負荷の測定で得られた主管流路の水蒸気抵抗係数Crと昇華速度Qmとの関係式を利用して、一次乾燥時に昇華した水蒸気流量が求められ、昇華速度も算出できる。
 以下に、リーク式真空制御方式の凍結乾燥装置W2に適用される被乾燥材料の昇華面温度と昇華速度の算出方法及び算出装置のより具体的な実施例を示す。
〈水蒸気流動抵抗係数Crと昇華速度Qmとの関係式の導出〉
 先ず、水負荷の試験で、主管流路の水蒸気流動抵抗係数Crと昇華速度Qmとの関係式を求める。水負荷の試験は、乾燥庫DC内に水を充填したトレイを装入した状態で、制御装置CRにより凍結乾燥装置W2の稼動を制御し、所定の乾燥工程を実行することにより行われる。本例においては、トレイ内の水を-45℃まで凍結した後の一次乾燥時に、棚温Thを-20℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Paに設定して3時間保持した。また、棚温Thを-10℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Pa、13.3Pa、20Paに制御してそれぞれ3時間保持した。また、棚温Thを5℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Pa、13.3Paに制御して、3時間保持した。また、棚温Thを20℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Pa、13.3Paに制御して、それぞれ3時間保持した。上記9条件の水負荷試験を実施しながら、棚温Th、トレイ底部品温Tb、乾燥庫真空度Pdc及びコールドトラップ真空度Pctを測定して記録した。更に、これらの測定結果から、氷の昇華速度Qm(Kg/h)と主管流路の水蒸気流動抵抗係数Crを求めた。表4に、水負荷の試験で求められた棚温Th、乾燥庫真空度Pdc、コールドトラップ真空度Pct、昇華速度Qm及び水蒸気流動抵抗係数Crを示す。
Figure JPOXMLDOC01-appb-T000004
 図9に、表4のデータに基づいて作成した主管流路の水蒸気流動抵抗係数Crと昇華速度Qmとの関係を表すグラフを示す。このグラフから、
 Cr=5.4+0.85/Qm1.25
 の関係式が得られた。
 本実施例では、主管aの長さが比較的短いために、主管a全体が入口区間(助走区間)となっており、水蒸気の流れが十分に発達した区間での計算式Cr=6.6+1.6×L/Qmと比べると、水蒸気流動抵抗係数Crが昇華速度Qm1.25に反比例している。
〈被乾燥材料の平均昇華面温度Tsと昇華速度Qmの算出〉
 真空制御回路fに備えられた可変リーク弁及びリーク制御弁LVを経由して、外部空気を凍結乾燥装置W2内に導入することによって、乾燥庫DC内の真空度Pdcを13.3Paに制御し、しかる後に30分間隔でリーク制御弁LVを40秒間閉じ、その間に乾燥庫真空度Pdcとコールドトラップ真空度Pctをそれぞれ測定して記録し、シーケンサPLCに記憶された計算ソフトを用いて、被乾燥材料の平均昇華面温度Tsと昇華速度Qmを計測した。表5に、その計測結果を示す。
Figure JPOXMLDOC01-appb-T000005
(1)乾燥開始から35分経過後、リーク制御弁LVを40秒間閉じた。リーク制御弁LVの閉止時点から最初3秒間の平均乾燥庫真空度Pdcは12.926Pa、平均コールドトラップ真空度Pctは12.580Paであった。また、リーク制御弁LVを閉じてから10秒後の時点から3秒間の平均乾燥庫真空度Pdcは10.604Pa、平均コールドトラップ真空度Pctは10.106Paであった。その結果、これらの測定データから算出した昇華面温度Tsは-31.1℃であり、昇華速度Qmは0.133Kg/hrから0.148Kg/hrに変化し、品温の実測値Tbは-28.7℃であった。
(2)乾燥開始から1時間3分経過後、リーク制御弁LVを40秒間閉じた。リーク制御弁LVの閉止時点から最初3秒間の平均乾燥庫真空度Pdcは13.369Pa、平均コールドトラップ真空度Pctは12.977Paであった。また、リーク制御弁LVを閉じてから10秒後の時点から3秒間の平均乾燥庫真空度Pdcは11.066Pa、平均コールドトラップ真空度Pctは10.515Paであった。その結果、これらの測定データから算出した昇華面温度Tsは-30.5℃であり、昇華速度Qmは0.148Kg/hrから0.163Kg/hrに変化し、品温の実測値Tbは-27.9℃であった。
(3)乾燥開始から2時間8分経過後、リーク制御弁LVを40秒間閉じた。リーク制御弁LVの閉止時点から最初3秒間の平均乾燥庫真空度Pdcは13.315Pa、平均コールドトラップ真空度Pctは12.902Paであった。また、リーク制御弁LVを閉じてから10秒後の時点から3秒間の平均乾燥庫真空度Pdcは10.769Pa、平均コールドトラップ真空度Pctは10.195Paであった。その結果、これらの測定データから算出した昇華面温度Tsは-27.7℃であり、昇華速度Qmは0.153Kg/hrから0.164Kg/hrに変化し、品温の実測値Tbは-26.2℃であった。
(4)乾燥開始から3時間40分経過後、リーク制御弁LVを40秒間閉じた。リーク制御弁LVの閉止時点から最初3秒間の平均乾燥庫真空度Pdcは12.580Pa、平均コールドトラップ真空度Pctは12.180Paであった。また、リーク制御弁LVを閉じてから10秒後の時点から3秒間の平均乾燥庫真空度Pdcは10.353Pa、平均コールドトラップ真空度Pctは9.820Paであった。その結果、これらの測定データから算出した昇華面温度Tsは-27.2℃であり、昇華速度Qmは0.144Kg/hrから0.152Kg/hrに変化し、品温の実測値Tbは-24.7℃であった。
(5)乾燥開始から4時間40分経過後、リーク制御弁LVを40秒間閉じた。リーク制御弁LVの閉止時点から最初3秒間の平均乾燥庫真空度Pdcは12.860Pa、平均コールドトラップ真空度Pctは12.486Paであった。また、リーク制御弁LVを閉じてから10秒後の時点から3秒間の平均乾燥庫真空度Pdcは10.209Pa、平均コールドトラップ真空度Pctは9.689Paであった。その結果、これらの測定データから算出した昇華面温度Tsは-26.4℃であり、昇華速度Qmは0.139Kg/hrから0.148Kg/hrに変化し、品温の実測値Tbは-24.5℃であった。
 表5から明らかなように、算出した昇華面温度Tsは、品温の実測値よりも約0.6~1.9℃低くなる。これは昇華面温度と容器底部温度の温度差に相当する。
 リーク制御弁LVを閉じた40秒間では、品温(実測値)が約0.5℃低下しており、従来のMTM法による場合のように、昇華面温度Tsの算出時に乾燥庫内の真空度が劣化して被乾燥材料の昇華面温度が上昇するということがなく、被乾燥材料のコラプスを完全に防止できることが実証された。また、表5のデータから、本発明に係る被乾燥材料の昇華面温度の算出方法は、乾燥庫DC内に装入された多数の被乾燥材料の平均昇華面温度を正確に算出できることが実証された。
 以下に、本発明に係る被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法及び算出装置の利点を列挙する。
 上述のように、MTM法は、一次乾燥期に主弁MVを閉じるので、主弁MVを閉じている間に乾燥庫DC内の真空度が下がって品温が1~2℃上昇し、被乾燥材料がコラプスする危険性がある。これに対して、本発明に係る被乾燥材料の昇華面温度と昇華速度の算出方法及び算出装置は、被乾燥材料の一次乾燥期に乾燥庫DC内のPdc真空度を高める方向へ変化させるので、図10に示すように被乾燥材料の昇華面温度Tsを下げることができ、MTM法とは異なり被乾燥材料のコラプスを完全に防止することができる。
 また、本発明に係る被乾燥材料の昇華面温度と昇華速度の算出方法及び算出装置は、人が介在することなく、一次乾燥期における被乾燥材料の平均昇華面温度Tsと昇華速度Qmを監視できるので、原材料液を充填機から凍結乾燥装置へ自動ローディングする凍結乾燥装置を用いて製剤を行うことにより、米国FDA(Food and Drug Administration:米国食品医薬品局)が推奨する非接触による工程監視方法PAT(Process Analytical Technology)を実現できる。
 また、本発明に係る被乾燥材料の昇華面温度と昇華速度の算出方法及び算出装置によると、凍結乾燥の一次乾燥期に、個別容器の品温を測定せずに被乾燥材料全体の平均昇華面温度Tsの算出と同時に、昇華面から昇華した水蒸気流量、即ち昇華速度Qm(Kg/h)も算出できるので、一次乾燥期における昇華速度Qmの変化曲線が得られて、乾燥工程のより適正な監視が可能になる。薬品は力価により、容器への原材料液の分注量が変更されるので、可変となる製剤では毎回一次乾燥時間が変動する。このため、棚温度Thと乾燥時間のみの管理では一次乾燥終了の判断が困難である。本発明に係る被乾燥材料の昇華面温度と昇華速度の算出方法及び算出装置によれば、昇華速度Qmの変化曲線が得られるので、一次乾燥の終了の判断を正確におこなうことができる。
 さらに、平均昇華面温度Tsと昇華速度Qmを測定することにより、既乾燥層からの水蒸気移動抵抗のデータも収集できるので、コラプス温度を考慮した被乾燥材料の最適乾燥プログラムを作成することができる。
 本発明は、食品や薬品等の凍結乾燥に用いられる凍結乾燥装置に利用できる。
 C  開度調節器
 CT  コールドトラップ
 CR  制御装置
 DC  乾燥庫
 MV  主弁
 P  真空ポンプ
 PLC  シーケンサ
 V  引口弁
 W  凍結乾燥装置
 a  主管
 b  真空計
 ct  トラップコイル(プレート)
 e  記録計
 f  真空制御回路

Claims (6)

  1.  被乾燥材料を装入する乾燥庫(DC)と、該乾燥庫(DC)内に装入された被乾燥材料から発生する水蒸気を凝結捕集するコールドトラップ(CT)と、前記乾燥庫(DC)と前記コールドトラップ(CT)とを連通する主管(a)と、該主管(a)を開閉する主弁(MV)と、前記乾燥庫(DC)内の真空度を調節する真空度調節手段と、前記乾燥庫(DC)内の絶対圧力及び前記コールドトラップ(CT)内の絶対圧力を検出する真空検出手段と、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記開度調節手段の稼働を自動制御する制御装置(CR)とを備えた凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法において、
     前記制御装置(CR)は、所要の関係式及び計算プログラムを記憶しており、前記被乾燥材料の一次乾燥期に、前記真空度調節手段を駆動して前記乾燥庫(DC)内の真空度(Pdc)を一時的に高める方向に変化させ、少なくとも当該変化の前後における前記乾燥庫(DC)内の真空度(Pdc)及び前記コールドトラップ(CT)内の真空度(Pdt)を含む測定データと前記関係式とから、前記一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出することを特徴とする、凍結乾燥装置に適用される被乾燥材料の昇華面温度と昇華速度の算出方法。
  2.  前記真空度調節手段として、ダンパ方式の開度調節器(C)を前記主管(a)内に備えると共に、前記制御装置には、前記関係式として、前記主弁(MV)を全開とした状態における水負荷による昇華速度(Qm)と前記開度調節器(C)の開度角度(θ)と主管抵抗R(θ)との関係式を記憶しておき、
     前記制御装置(CR)は、前記乾燥庫(DC)内に装入された被乾燥材料の一次乾燥期に、前記開度調節器(C)を少なくとも1回開方向に回動操作することにより、前記乾燥庫(DC)内の真空度(Pdc)を高める方向に変化させ、当該開度調節器(C)の開方向への回動操作の前後における前記開度調節器(C)の開度角度(θ)と乾燥庫(DC)内の真空度(Pdc)及びコールドトラップ(CT)内の真空度(Pdt)の測定データから、一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出することを特徴とする、請求項1に記載の凍結乾燥装置に適用される被乾燥材料の昇華面温度と昇華速度の算出方法。
  3.  前記真空度調節手段として、リーク制御弁(LV)付きの真空制御回路(f)を前記乾燥庫(DC)に備えると共に、前記制御装置には、前記関係式として、前記主弁(MV)を全開とした状態における水負荷による昇華速度(Qm)と前記主管(a)の水蒸気流動抵抗係数(Cr)との関係式を記憶しておき、
     前記制御装置(CR)は、前記乾燥庫(DC)内に装入された被乾燥材料の一次乾燥期に、前記リーク制御弁(LV)を少なくとも1回閉操作することにより、前記乾燥庫(DC)内の真空度(Pdc)を高める方向に変化させ、当該リーク制御弁(LV)の閉操作の前後における前記乾燥庫(DC)内の真空度(Pdc)及び前記コールドトラップ(CT)内の真空度(Pdt)の測定データから、一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出することを特徴とする、請求項1に記載の凍結乾燥装置に適用される被乾燥材料の昇華面温度と昇華速度の算出方法。
  4.  被乾燥材料を装入する乾燥庫(DC)と、該乾燥庫(DC)内に装入された被乾燥材料から発生する水蒸気を凝結捕集するコールドトラップ(CT)と、前記乾燥庫(DC)と前記コールドトラップ(CT)とを連通する主管(a)と、該主管(a)を開閉する主弁(MV)と、前記乾燥庫(DC)内の真空度を調節する真空度調節手段と、前記乾燥庫(DC)内の絶対圧力及び前記コールドトラップ(CT)内の絶対圧力を検出する真空検出手段と、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記開度調節手段の稼働を自動制御する制御装置(CR)とを備えた凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出装置において、
     所要の関係式及び計算プログラムを記憶したシーケンサ(PLC)又はパーソナルコンピュータ(PC)を前記制御装置(CR)として備え、
     前記制御装置(CR)は、前記被乾燥材料の一次乾燥期に、前記真空度調節手段を駆動して前記乾燥庫(DC)内の真空度(Pdc)を一時的に高める方向に変化させ、少なくとも当該変化の前後における前記乾燥庫(DC)内の真空度(Pdc)及び前記コールドトラップ(CT)内の真空度(Pdt)を含む測定データと前記関係式により求められた計算データとから、前記一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出することを特徴とする、凍結乾燥装置に適用される被乾燥材料の昇華面温度と昇華速度の算出装置。
  5.  前記真空度調節手段として、ダンパ方式の開度調節器(C)が前記主管(a)内に備えられた凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出装置であり、
     前記制御装置(CR)には、前記関係式として、前記主弁(MV)を全開とした状態における水負荷による昇華速度(Qm)と前記開度調節器(C)の開度角度(θ)と主管抵抗R(θ)との関係式が記憶され、
     前記制御装置(CR)は、前記乾燥庫(DC)内に装入された被乾燥材料の一次乾燥期に、前記開度調節器(C)を少なくとも1回開方向に回動操作することにより、前記乾燥庫(DC)内の真空度(Pdc)を高める方向に変化させ、当該開度調節器(C)の開方向への回動操作の前後における前記開度調節器(C)の開度角度(θ)と乾燥庫(DC)内の真空度(Pdc)及びコールドトラップ(CT)内の真空度(Pdt)の測定データから、一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出することを特徴とする、請求項4に記載の凍結乾燥装置に適用される被乾燥材料の昇華面温度と昇華速度の算出装置。
  6.  前記真空度調節手段として、リーク制御弁(LV)付きの真空制御回路(f)が前記乾燥庫(DC)に備えられた凍結乾燥装置に適用される被乾燥材料の昇華面温度と昇華速度の算出装置であり、
     前記制御装置(CR)には、前記関係式として、前記主弁(MV)を全開とした状態における水負荷による昇華速度(Qm)と前記主管(a)の水蒸気流動抵抗係数(Cr)との関係式が記憶され、
     前記制御装置(CR)は、前記乾燥庫(DC)内に装入された被乾燥材料の一次乾燥期に、前記リーク制御弁(LV)を少なくとも1回閉操作することにより、前記乾燥庫(DC)内の真空度(Pdc)を高める方向に変化させ、当該リーク制御弁(LV)の閉操作の前後における前記乾燥庫(DC)内の真空度(Pdc)及び前記コールドトラップ(CT)内の真空度(Pdt)の測定データから、一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出することを特徴とする、請求項4に記載の凍結乾燥装置に適用される被乾燥材料の昇華面温度と昇華速度の算出装置。
PCT/JP2012/052871 2011-02-08 2012-02-08 凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法及び算出装置 WO2012108470A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12745272.0A EP2674712B1 (en) 2011-02-08 2012-02-08 Calculation method and calculation device for sublimation interface temperature, bottom part temperature, and sublimation rate of material to be dried in freeze-drying device
ES12745272T ES2814824T3 (es) 2011-02-08 2012-02-08 Método de cálculo y dispositivo de cálculo para la temperatura de interfaz de sublimación, temperatura de la parte inferior y tasa de sublimación del material a secar en dispositivo de secado por congelación
JP2012556912A JP5876424B2 (ja) 2011-02-08 2012-02-08 凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法及び算出装置
US13/984,200 US9488410B2 (en) 2011-02-08 2012-02-08 Calculation method and calculation device for sublimation interface temperature, bottom part temperature, and sublimation rate of material to be dried in freeze-drying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011025069 2011-02-08
JP2011-025069 2011-02-08

Publications (1)

Publication Number Publication Date
WO2012108470A1 true WO2012108470A1 (ja) 2012-08-16

Family

ID=46638683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052871 WO2012108470A1 (ja) 2011-02-08 2012-02-08 凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法及び算出装置

Country Status (5)

Country Link
US (1) US9488410B2 (ja)
EP (1) EP2674712B1 (ja)
JP (1) JP5876424B2 (ja)
ES (1) ES2814824T3 (ja)
WO (1) WO2012108470A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202429A (ja) * 2013-04-05 2014-10-27 共和真空技術株式会社 凍結乾燥機に適用される被乾燥材料の乾燥状態監視装置及び乾燥状態監視方法
JP2015031486A (ja) * 2013-08-06 2015-02-16 共和真空技術株式会社 凍結乾燥機に適用される被乾燥材料の凍結乾燥状態監視方法及びその凍結乾燥状態監視装置
JP2016125682A (ja) * 2014-12-26 2016-07-11 共和真空技術株式会社 凍結乾燥機に適用される被乾燥材料の乾燥状態監視装置及び乾燥状態監視方法
JP2016523353A (ja) * 2013-06-25 2016-08-08 ミルロック テクノロジー, インコーポレイテッドMillrock Technology, Inc. フリーズドライ工程を監視および制御するための表面熱流束測定の利用
CN110824316A (zh) * 2019-11-28 2020-02-21 四川大学 基于极化-去极化电流测试的xlpe电缆中陷阱参数测量方法
CN112870171A (zh) * 2020-12-31 2021-06-01 海南葫芦娃药业集团股份有限公司 一种注射用阿奇霉素的冷冻干燥方法
CN114353440A (zh) * 2021-12-23 2022-04-15 青岛海尔生物医疗股份有限公司 用于冻干机的控制方法及装置、冻干机
CN114405046A (zh) * 2022-02-28 2022-04-29 中国科学院长春应用化学研究所 一种基于真空升华提纯设备的降温装置
WO2023286137A1 (ja) * 2021-07-12 2023-01-19 株式会社アルバック 凍結乾燥装置及び凍結乾燥方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3222952B1 (en) 2011-09-06 2019-01-02 Rheavita B.V. Method and system for freeze-drying injectable compositions, in particular pharmaceutical compositions
US11384904B2 (en) * 2013-12-05 2022-07-12 Praxair Technology, Inc. Method and system for filling thermally insulated containers with liquid carbon dioxide
US10605527B2 (en) 2015-09-22 2020-03-31 Millrock Technology, Inc. Apparatus and method for developing freeze drying protocols using small batches of product
MY181430A (en) 2016-08-16 2020-12-21 Rheavita Bv Method and apparatus and container for freeze-drying
BR112021020755A2 (pt) * 2019-05-13 2021-12-14 Praxair Technology Inc Método para estimar um tempo de permanência restante de co2 sólido em um recipiente, método para estimar um tempo de permanência restante de um refrigerante em um recipiente, método de preparação de um recipiente com co2, método de preparação de um recipiente com refrigerante no interior do recipiente, e, sistema
US20230194166A1 (en) * 2020-05-12 2023-06-22 Amgen Inc. Monitoring Vial Conditions During a Lyophilization Process
TW202202792A (zh) * 2020-05-18 2022-01-16 日商Mii股份有限公司 真空凍結乾燥裝置及真空凍結乾燥方法
EP4105585B1 (en) * 2021-06-18 2023-10-11 Cryogenic And Vacuum Systems, Sia Freeze-drying method and apparatus
JP7085088B1 (ja) * 2021-08-03 2022-06-16 株式会社エムアイアイ 凍結乾燥物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146797A (ja) * 1998-11-05 2000-05-26 Ohbayashi Corp フレッシュコンクリートの含水量計測方法及び装置並びに土木建築資材の乾燥促進方法
JP2004232965A (ja) * 2003-01-30 2004-08-19 Mitsubishi Heavy Ind Ltd 真空乾燥システム、真空乾燥方法およびプログラム
US6971187B1 (en) * 2002-07-18 2005-12-06 University Of Connecticut Automated process control using manometric temperature measurement
WO2008034855A2 (en) * 2006-09-19 2008-03-27 Telstar Technologies, S.L. Method and system for controlling a freeze drying process
JP2011252654A (ja) * 2010-06-02 2011-12-15 Kyowa Shinku Gijutsu Kk 凍結乾燥装置に於ける被乾燥材料の昇華面温度と既乾燥層水蒸気移動抵抗の測定方法及び装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2507632A (en) * 1944-11-30 1950-05-16 Eastman Kodak Co Process for dehydrating materials under low-pressure conditions
US2765236A (en) * 1954-03-31 1956-10-02 Henry P Wager Preserving of foodstuffs
FR1286002A (fr) * 1961-01-17 1962-03-02 Usifroid Procédé pour la régulation des opérations de congélation-dessication et installation pour sa mise en oeuvre
US3178829A (en) * 1962-05-25 1965-04-20 J P Devine Mfg Company Process and apparatus for freeze dehydrating of food material
US4353222A (en) * 1979-07-04 1982-10-12 Kyowa Vacuum Engineering, Ltd. Vacuum apparatus
US4547977A (en) * 1984-05-21 1985-10-22 The Virtis Company, Inc. Freeze dryer with improved temperature control
US4780964A (en) * 1987-11-30 1988-11-01 Fts Systems, Inc. Process and device for determining the end of a primary stage of freeze drying
US5208998A (en) * 1991-02-25 1993-05-11 Oyler Jr James R Liquid substances freeze-drying systems and methods
DK0811153T3 (da) * 1995-02-14 1999-06-23 Georg Wilhelm Oetjen Fremgangsmåde til bestemmelse af restfugtigheden under eftertørringen i en frysetørringsproces
DE19719398A1 (de) * 1997-05-07 1998-11-12 Amsco Finn Aqua Gmbh Verfahren zur Steuerung eines Gefriertrocknungsprozesses
US6122836A (en) * 1998-05-07 2000-09-26 S.P. Industries, Inc., The Virtis Division Freeze drying apparatus and method employing vapor flow monitoring and/or vacuum pressure control
SE0001453D0 (sv) * 2000-04-19 2000-04-19 Astrazeneca Ab Method of monitoring a freeze drying process
MXPA03009996A (es) * 2001-05-01 2004-05-27 Pepsico Inc Uso de eritritol y d-tagatosa en bebidas y productos alimenticios de cero o bajas calorias.
DE102004007526A1 (de) * 2004-02-17 2005-09-01 Oetjen, Georg-Wilhelm, Dr. Verfahren und Einrichtung zur Gefriertrocknung von Produkten
FR2880105B1 (fr) * 2004-12-23 2007-04-20 Cie Financiere Alcatel Sa Dispositif et procede de pilotage de l'operation de deshydratation durant un traitement de lyophilisation
DE102006019641B4 (de) * 2005-04-28 2013-08-01 Martin Christ Gefriertrocknungsanlagen Gmbh Gefriertrocknungsanlage
EP2008047B1 (en) * 2006-04-10 2012-11-14 F. Hoffmann-La Roche AG Apparatus for monitoring freeze-drying process
JP4942001B2 (ja) * 2006-11-10 2012-05-30 松谷化学工業株式会社 D−プシコース含有甘味料およびそれを使用して得られた飲食品など
JP5283173B2 (ja) * 2006-11-10 2013-09-04 松谷化学工業株式会社 希少糖を含む非う蝕性素材および抗う蝕剤
JP4911377B2 (ja) * 2006-11-22 2012-04-04 共和真空技術株式会社 被乾燥材料の乾燥終了の判断方法および判断装置
US8277862B2 (en) * 2007-03-14 2012-10-02 Concentrate Manufacturing Company Of Ireland Beverage products having steviol glycosides and at least one acid
JP5859191B2 (ja) * 2010-09-29 2016-02-10 松谷化学工業株式会社 高甘味度甘味料に対する呈味改良組成物およびその応用
US20120189739A1 (en) * 2010-12-20 2012-07-26 Imperial Sugar Company Naturally-Sweetened Reduced-Calorie Base Syrup Compositions and Compositions Sweetened Therewith
US20140272068A1 (en) * 2013-03-14 2014-09-18 Indra Prakash Beverages containing rare sugars
US20140342044A1 (en) * 2013-05-14 2014-11-20 Pepsico, Inc. Compositions and Comestibles
US20150110940A1 (en) * 2013-10-22 2015-04-23 Pepsico, Inc. D-Psicose In Zero Or Low Calorie Frozen Beverages

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146797A (ja) * 1998-11-05 2000-05-26 Ohbayashi Corp フレッシュコンクリートの含水量計測方法及び装置並びに土木建築資材の乾燥促進方法
US6971187B1 (en) * 2002-07-18 2005-12-06 University Of Connecticut Automated process control using manometric temperature measurement
JP2004232965A (ja) * 2003-01-30 2004-08-19 Mitsubishi Heavy Ind Ltd 真空乾燥システム、真空乾燥方法およびプログラム
WO2008034855A2 (en) * 2006-09-19 2008-03-27 Telstar Technologies, S.L. Method and system for controlling a freeze drying process
JP2011252654A (ja) * 2010-06-02 2011-12-15 Kyowa Shinku Gijutsu Kk 凍結乾燥装置に於ける被乾燥材料の昇華面温度と既乾燥層水蒸気移動抵抗の測定方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Evaluation of Manometric Temperature Measurement as a Method of Monitoring Product Temperature During Lyophilization", PDA JOURNAL OF PHARMACEUTICAL SCIENCE AND TECHNOLOGY, vol. 51, no. 1, 1977, pages 7 - 16

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202429A (ja) * 2013-04-05 2014-10-27 共和真空技術株式会社 凍結乾燥機に適用される被乾燥材料の乾燥状態監視装置及び乾燥状態監視方法
JP2016523353A (ja) * 2013-06-25 2016-08-08 ミルロック テクノロジー, インコーポレイテッドMillrock Technology, Inc. フリーズドライ工程を監視および制御するための表面熱流束測定の利用
JP2015031486A (ja) * 2013-08-06 2015-02-16 共和真空技術株式会社 凍結乾燥機に適用される被乾燥材料の凍結乾燥状態監視方法及びその凍結乾燥状態監視装置
JP2016125682A (ja) * 2014-12-26 2016-07-11 共和真空技術株式会社 凍結乾燥機に適用される被乾燥材料の乾燥状態監視装置及び乾燥状態監視方法
CN110824316A (zh) * 2019-11-28 2020-02-21 四川大学 基于极化-去极化电流测试的xlpe电缆中陷阱参数测量方法
CN110824316B (zh) * 2019-11-28 2020-07-28 四川大学 基于极化-去极化电流测试的xlpe电缆中陷阱参数测量方法
CN112870171A (zh) * 2020-12-31 2021-06-01 海南葫芦娃药业集团股份有限公司 一种注射用阿奇霉素的冷冻干燥方法
CN112870171B (zh) * 2020-12-31 2023-03-28 海南葫芦娃药业集团股份有限公司 一种注射用阿奇霉素的冷冻干燥方法
WO2023286137A1 (ja) * 2021-07-12 2023-01-19 株式会社アルバック 凍結乾燥装置及び凍結乾燥方法
CN114353440A (zh) * 2021-12-23 2022-04-15 青岛海尔生物医疗股份有限公司 用于冻干机的控制方法及装置、冻干机
CN114353440B (zh) * 2021-12-23 2023-06-16 青岛海尔生物医疗股份有限公司 用于冻干机的控制方法及装置、冻干机
CN114405046A (zh) * 2022-02-28 2022-04-29 中国科学院长春应用化学研究所 一种基于真空升华提纯设备的降温装置
CN114405046B (zh) * 2022-02-28 2023-08-29 中国科学院长春应用化学研究所 一种基于真空升华提纯设备的降温装置

Also Published As

Publication number Publication date
US20140026434A1 (en) 2014-01-30
EP2674712A1 (en) 2013-12-18
ES2814824T3 (es) 2021-03-29
EP2674712A4 (en) 2017-11-22
JP5876424B2 (ja) 2016-03-02
JPWO2012108470A1 (ja) 2014-07-03
US9488410B2 (en) 2016-11-08
EP2674712B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP5876424B2 (ja) 凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法及び算出装置
JP5859495B2 (ja) 凍結乾燥機に適用される被乾燥材料の凍結乾燥状態監視方法及びその凍結乾燥状態監視装置
Gieseler et al. Evaluation of tunable diode laser absorption spectroscopy for in‐process water vapor mass flux measurements during freeze drying
JP5093786B2 (ja) 凍結乾燥装置に於ける被乾燥材料の昇華面温度と既乾燥層水蒸気移動抵抗の測定方法及び装置
Patel et al. Choked flow and importance of Mach I in freeze-drying process design
US6226887B1 (en) Freeze drying methods employing vapor flow monitoring and/or vacuum pressure control
CN101529189B (zh) 用于控制冷冻干燥处理的方法和系统
Bosca et al. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature
Schneid et al. Non-invasive product temperature determination during primary drying using tunable diode laser absorption spectroscopy
JP6099463B2 (ja) 凍結乾燥機に適用される被乾燥材料の乾燥状態監視装置及び乾燥状態監視方法
EP2516948B1 (en) Method for monitoring primary drying of a freeze-drying process
US9726556B2 (en) Method for calibrating a temperature sensor of a vapour compression system
Hunter et al. The use of dynamic vapour sorption methods for the characterisation of water uptake in amorphous trehalose
US20200340743A1 (en) Process monitoring and control for lyophilization using a wireless sensor network
US20100018073A1 (en) Method for monitoring the secondary drying in a freeze-drying process
Pisano et al. A new method based on the regression of step response data for monitoring a freeze-drying cycle
CN108593701A (zh) 一种全自动凝点测定装置和方法
Tchessalov et al. Best Practices and guidelines (2022) for Scale-up and Tech transfer in Freeze-Drying based on Case Studies. Part 1: challenges during Scale up and transfer
JP6099622B2 (ja) 凍結乾燥機に適用される被乾燥材料の乾燥状態監視装置及び乾燥状態監視方法
Issa et al. Implications of density correction in gravimetric method for water flux determination using rat single-pass intestinal perfusion technique: a technical note
CN105869689A (zh) 一种测量阀门微泄漏率的装置及方法
JP2015102317A (ja) 凍結乾燥機に適用される被乾燥材料の乾燥状態監視装置及び乾燥状態監視方法
Jameel et al. Chapter 21: Rational Design of a Freeze-Drying Process for Protein Products
Ganguly et al. Recommended best practices in freeze dryer equipment performance qualification: 2022
Jia et al. Characterization techniques: The stepping stone to liposome lyophilized product development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012745272

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13984200

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012556912

Country of ref document: JP

Kind code of ref document: A