WO2012105576A1 - 固体酸化物形燃料電池 - Google Patents

固体酸化物形燃料電池 Download PDF

Info

Publication number
WO2012105576A1
WO2012105576A1 PCT/JP2012/052178 JP2012052178W WO2012105576A1 WO 2012105576 A1 WO2012105576 A1 WO 2012105576A1 JP 2012052178 W JP2012052178 W JP 2012052178W WO 2012105576 A1 WO2012105576 A1 WO 2012105576A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solid electrolyte
solid
mol
yttria
Prior art date
Application number
PCT/JP2012/052178
Other languages
English (en)
French (fr)
Inventor
めぐみ 島津
上野 晃
阿部 俊哉
元泰 宮尾
樋渡 研一
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to JP2012555912A priority Critical patent/JP5652753B2/ja
Priority to US13/983,018 priority patent/US20130309583A1/en
Priority to CN201280016367.1A priority patent/CN103636042B/zh
Priority to EP12741512.3A priority patent/EP2672554B1/en
Publication of WO2012105576A1 publication Critical patent/WO2012105576A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid oxide fuel cell.
  • SOFC solid electrolyte material such as zirconia in which scandia is dissolved
  • ScSZ scandia is dissolved
  • SOFC solid oxide fuel cell
  • the basic configuration of the SOFC includes a solid electrolyte layer, a fuel electrode layer, and an oxygen electrode layer, and a fuel gas such as hydrogen (H 2 ) flows through and contacts the fuel electrode layer facing one side of the solid electrolyte layer.
  • a fuel gas such as hydrogen (H 2 ) flows through and contacts the fuel electrode layer facing one side of the solid electrolyte layer.
  • an oxidant gas such as air or oxygen (O 2 ) flows through the oxygen electrode layer facing the opposite side of the electrolyte layer
  • oxygen ions (O 2 ⁇ ) generated in the oxygen electrode layer move through the solid electrolyte layer and become fuel.
  • O 2 ⁇ reacts with H 2 and an electric output is obtained by an electrochemical reaction.
  • the characteristics required for SOFC solid electrolyte materials include (1) high oxygen ion conductivity, (2) excellent long-term durability, and (3) high material strength. ScSZ is the most preferable material among the zirconia-based solid electrolyte materials.
  • LSM lanthanum manganite in solid solution of strontium
  • LSF lanthanum ferrite in solid solution of strontium
  • LSCF lanthanum cobalt in the solid solution of strontium and iron Tight
  • the SOFC according to the present invention includes a solid electrolyte layer, an oxygen electrode layer provided on one surface of the solid electrolyte layer, and a fuel electrode layer provided on the other surface of the solid electrolyte layer.
  • the oxygen layer is made of a material containing iron or manganese
  • the solid electrolyte layer is made of an ScSZ electrolyte material containing alumina
  • the ScSZ electrolyte material The lanthanoid oxide and / or yttria are dissolved therein.
  • the solid electrolyte layer has a lanthanoid oxide and / or yttria solid solution amount on the fuel electrode side larger than a lanthanoid oxide and / or yttria solid solution amount on the oxygen electrode side.
  • the lanthanoid oxide solid solution amount is inclined and decreased from the fuel electrode side to the oxygen electrode side. Thereby, it can suppress to the minimum that oxygen ion conductivity of the whole solid oxide layer falls, preventing pulverization peeling on the fuel electrode layer side.
  • the zirconia contains 9 to 15 mol% of scandia based on the total amount of zirconia, scandia, and lanthanoid oxide and / or yttria in the solid electrolyte material (total molar amount). More preferably, it is 9 to 11 mol%, and lanthanoid oxide and / or yttria is 2 to 5 mol%, more preferably 3 to 5 mol%.
  • alumina is contained in an amount of more than 1 mol% relative to the total amount (total molar amount) of zirconia, scandia, lanthanoid oxide and / or yttria in the solid electrolyte material.
  • the reason why the amount of scandia is 9 to 15 mol% is that tetragonal crystals may be formed when the amount is less than 9 mol%, and rhombohedral crystals may be formed when the amount exceeds 15 mol%. 2-5 mol% solid solution of lanthanoid oxide and / or yttria is preferable.
  • the solid electrolyte material of the present invention preferably contains 5 mol% or less of alumina. This is because when the alumina content is 5 mol% or less, the oxygen ion conductivity of the solid electrolyte material is not lowered or even if it is brought to a minimum.
  • the lanthanoid oxide is ceria.
  • the reason why ceria is preferable is that not only the scandia extraction when Mn and Fe escape from ScSZ can be suppressed, but also the oxygen ion conductivity of the solid electrolyte material can be improved.
  • the solid electrolyte layer comprises two layers, a first layer formed on the oxygen electrode layer side and a second layer formed on the fuel electrode layer side,
  • the solid solution amount of the lanthanoid oxide and / or yttria in the second layer is larger than the solid solution amount of the lanthanoid oxide and / or yttria in the first layer, and the alumina content in the second layer The amount is greater than the alumina content in the first layer. More preferably, the lanthanoid oxide and / or yttria are not dissolved in the first layer, and the first layer does not contain the alumina.
  • the first layer may be one using scandia-stabilized zirconia or one using yttria-stabilized zirconia.
  • the SOFC provided with the present solid electrolyte layer has a high efficiency and a lifetime of 90000 hours required in the popularization period. This is because, in the second layer on the fuel electrode layer side, pulverization and peeling can be prevented, while the ionic conductivity is reduced due to the inclusion of alumina or the like, whereas in the first layer on the oxygen electrode layer side, This is because the oxygen ion conductivity is high and the internal resistance remains small, so that the occurrence of pulverization peeling can be prevented while minimizing the decrease in oxygen ion conductivity of the entire solid oxide layer.
  • the first layer of the solid electrolyte layer is formed thicker than the second layer.
  • the SOFC of the present invention provided with such a solid electrolyte layer has a high efficiency and a lifetime of 90000 hours required in the popularization period. This is because the contribution of high oxygen ion conductivity by the first layer is increased by making the thickness of the second layer the minimum necessary to prevent pulverization and peeling, and the power generation efficiency can be further increased. is there.
  • the minimum thickness of the second layer necessary for preventing powder peeling is, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more.
  • the Mn and Fe dissolved in ScSZ are exposed to the reducing atmosphere, so that the stabilizer can be removed from the ScSZ.
  • the powder accompanying the zirconia crystal transformation is provided with a solid electrolyte layer that suppresses the pulling of scandia from the crystal and has an improved intergranular strength in order to eliminate intergranular fracture associated with the crystal transformation even if the crystal transformation occurs.
  • a fuel cell can be provided.
  • FIG. 2 shows an SOFC according to an embodiment of the present invention, in which an oxygen electrode layer 101 is provided on one surface of the solid electrolyte layer 102 and a fuel electrode layer 103 is provided on the other surface of the solid electrolyte layer 102.
  • ScSZ has been used as the solid electrolyte layer from the viewpoint of high oxygen ion conductivity.
  • Mn and Fe diffused from the oxygen electrode layer are exposed to a reducing atmosphere and are stable when leaving the ScSZ.
  • a solid electrolyte layer having a 10Sc1CeSZ composition corresponding to Comparative Example 1 in which several mol% of Mn is dissolved has a cubic structure 110 at the time of manufacture.
  • Mn is released in the form of MnO or Mn (OH) 2 and scandia (Sc 2 O 3 ) is extracted from the crystalline phase, and the crystalline phase is cubic as shown in the phase diagram of FIG. (c) Change from 110 to tetragonal (t) 111.
  • the lattice constant decreases and the volume shrinks.
  • the amount of lanthanoid oxide and / or yttria solid solution is increased in order to suppress the extraction of scandia (Sc 2 O 3 ) from the crystal phase, and the scandia is extracted from the crystal phase.
  • the preferred composition of the solid electrolyte layer is 9 to 15 mol% of scandia and lanthanoid oxide based on the total amount of zirconia, scandia, and lanthanoid oxide and / or yttria in the solid electrolyte material (total molar amount). And / or 2 to 5 mol% of yttria is dissolved.
  • a more preferable composition of the solid electrolyte material of the present invention is more than 1 mol% of alumina with respect to the total amount (total molar amount) of zirconia, scandia, lanthanoid oxide and / or yttria in the solid electrolyte material. It is contained.
  • the amount of scandia is preferably 9 to 15 mol% because tetragonal crystals may be formed if the amount is less than 9 mol%, and rhombohedral crystals may be formed if the amount exceeds 15 mol%, and lanthanoid oxide and / or Alternatively, 2 to 5 mol% solid solution of yttria is preferable. If it is less than 2 mol%, the effect of suppressing the extraction of scandia when Mn and Fe escape from ScSZ is low, and if it exceeds 5 mol%, tetragonal crystals are formed and crystal transformation occurs. This is because it tends to occur.
  • the reason why alumina is contained in an amount of more than 1 mol% is that if it is 1 mol% or less, the effect of suppressing the grain boundary breakage against the volume change accompanying the crystal transformation is small.
  • the solid electrolyte layer is a solid electrolyte material in which a lanthanoid oxide and / or yttria is dissolved in ScSZ on the fuel electrode layer side 103 on the oxygen electrode layer 101 side and the first layer 107 having high oxygen ion conductivity. Further, it is preferably composed of two layers with the second layer 108 formed of a composition containing alumina (see FIG. 5). From the viewpoint of high efficiency, it is more preferable that the first layer is formed thicker than the second layer.
  • the fuel electrode layer 103 in the SOFC of the present invention has high electronic conductivity, O 2 ⁇ reacts with H 2 to obtain an electrical output by an electrochemical reaction, is chemically stable, and has a thermal expansion coefficient of solid. Any material that satisfies conditions close to those of the electrolyte layer 102 may be used, and there is no particular limitation on those used conventionally. Typical examples include Ni and ScSZ cermets, Ni and yttria stabilized zirconia (hereinafter referred to as YSZ) cermets, and Ni and cerium oxide cermets.
  • the oxygen electrode layer 101 in the SOFC of the present invention has high electronic conductivity, high catalytic activity for replacing an oxidant gas such as oxygen (O 2 ) with oxygen ions (O 2 ⁇ ), and chemical stability.
  • an oxidant gas such as oxygen (O 2 ) with oxygen ions (O 2 ⁇ )
  • chemical stability As long as the coefficient of thermal expansion satisfies the conditions close to those of the solid electrolyte layer 102, there is no particular limitation on those used conventionally.
  • LSM Lanthanum manganite with solid solution of strontium
  • LSF lanthanum ferrite with solid solution of strontium
  • LSCF lanthanum cobaltite with solid solution of strontium and iron
  • any method commonly used in this technical field may be used, and is not particularly limited.
  • zirconia particles, scandia particles, lanthanoid oxide particles and / or yttria particles are mixed at a predetermined mixing ratio, and the mixture is pulverized by a ball mill or the like.
  • the solid electrolyte material of the present invention is manufactured by sintering after pulverization with a machine, and then pulverizing the sintered body with a pulverizer such as a ball mill and mixing with alumina and binder components, and molding and sintering the mixture. can do.
  • the SOFC of the present invention can be manufactured by forming an oxygen electrode layer on one surface of the solid electrolyte material using a screen printing method or the like, and forming a fuel electrode layer on the other surface, followed by sintering.
  • the SOFC of the present invention may be of any type such as a flat plate stripe type, a flat plate horizontal stripe type, a flat cylindrical type, a cylindrical vertical stripe type, a cylindrical horizontal stripe type, and a microtube.
  • Example 1 A description will be given of the production and testing of the type 2 cell.
  • ZrO 2 raw material (average particle size 0.3 ⁇ m), Sc 2 O 3 raw material (average particle size 0.3 ⁇ m), CeO 2 raw material (average particle size 0.3 ⁇ m) are represented by the general formula 87 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) Weighed so as to have a 10Sc3CeSZ composition represented by ⁇ 3 mol% (CeO 2 ), wet-mixed in a solvent ethanol for 50 hr, dried and pulverized, and sintered at 1200 ° C.
  • Al 2 O 3 (average particle size 0.5 ⁇ m) is added to the total amount of zirconia, scandia, lanthanoid oxide and / or yttria in the solid electrolyte material ( 2 mol% of MnO 2 (average particle size 0.5 ⁇ m) and 5 wt% of binder PVA were added to the powder, and the mixture was mixed in a mortar.
  • the PVA-containing powder was press-molded at 50 MPa, and sintered at 1450 ° C. for 5 hours. A dense solid electrolyte layer with 10Sc3CeSZ2Al composition was obtained.
  • LSM average particle size 2 ⁇ m
  • a cermet of Ni and YSZ as a fuel electrode layer on the opposite side 40 wt% NiO-60 wt% YSZ (average particle diameter 2 ⁇ m) was formed by screen printing so that the thickness after sintering was 20 ⁇ m, and sintered at 1400 ° C. for 2 hr.
  • Example 2 Al 2 O 3 in 10Sc3CeSZ composition represented by the general formula 87mol% (ZrO 2 ) -10mol% (Sc 2 O 3 ) -3mol% (CeO 2 ), zirconia, scandia and lanthanoid oxidation in solid electrolyte materials 2 mol% of the total amount of substances and / or yttria (total molar amount), Fe 2 O 3 (average particle size 0.5 ⁇ m) is 2 wt% Fe content, and binder PVA is 5 wt% %, And a dense solid electrolyte layer having a composition of 10Sc3CeSZ2Al was obtained, and the same procedure as in Example 1 was performed except that the oxygen electrode layer was LSF (average particle size 2 ⁇ m).
  • Example 3 Al 2 O 3 in 10Sc3CeSZ composition represented by the general formula 87mol% (ZrO 2 ) -10mol% (Sc 2 O 3 ) -3mol% (CeO 2 ), zirconia, scandia and lanthanoid oxidation in solid electrolyte materials 1% by weight of MnO 2 (average particle size of 0.5 ⁇ m) and Fe 2 O 3 (average particle size) with respect to the total amount of substances and / or yttria (total molar amount) Except that the fine solid electrolyte layer having a composition of 10Sc3CeSZ2Al was obtained by adding 1 wt% of Fe content and 5 wt% of binder PVA, and that the oxygen electrode layer was LSF (average particle size 2 ⁇ m). Same as Example 1.
  • Example 3 The same as Example 1 except that a dense solid electrolyte layer was obtained without adding Al 2 O 3 to the 10ScSZ composition represented by the general formula 90 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ). did.
  • Example 4 The same as Example 2 except that a dense solid electrolyte layer was obtained without adding Al 2 O 3 to the 10ScSZ composition represented by the general formula 90 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ). did.
  • Fig. 6 shows an outline of the test equipment.
  • a glass seal (SiO 2 + B 2 O 3 ) 104 was placed on the apparatus held by the zirconia tube 105, and the fabricated SOFC 100 was placed thereon. Furthermore, a zirconia tube 105 was placed on the upper surface of the SOFC100.
  • the temperature of the electric furnace 106 was increased to 1000 ° C. while flowing Air on the upper surface of the SOFC and 97% N 2 + 3% H 2 on the lower surface.
  • Table 1 shows the test results.
  • the notation is c: cubic and t: tetragonal. While all of Comparative Examples 1 to 6 were confirmed to be powdered, Examples 1 to 3 were not powdered. From this, it was confirmed that powdering can be suppressed by adopting the composition of the present invention.
  • Examples 1 to 3 maintained the c phase, and it was found that all of Comparative Examples 1 to 6 were transformed to the t phase. It was confirmed that the composition of the present invention makes it difficult for powdering and crystal transformation to occur even when Mn and Fe are contained.
  • Table 2 shows the analysis results.
  • pulverization was not observed, but in Comparative Examples 1 and 2, the crystal phase had already changed to the t phase, and cracks were confirmed at the grain boundaries.
  • Comparative Examples 1 and 2 there was no powdering, the crystal phase was not changed, and no cracks were observed at the grain boundaries.
  • Comparative Examples 1 and 2 it was suggested that pulverization occurred after a longer operation, and that there was a possibility of pulverization and separation between the fuel electrode layer 103 and the solid electrolyte layer 102.
  • composition optimization (Example 4) Al 2 O 3 in 10Sc1CeSZ composition represented by the general formula 89mol% (ZrO 2 ) -10mol% (Sc 2 O 3 ) -1mol% (CeO 2 ), zirconia, scandia and lanthanoid oxidation in solid electrolyte materials The amount was 1 mol% with respect to the total amount of substances and / or yttria (total molar amount), and the same procedure as in Example 1 was performed except that a dense solid electrolyte layer was obtained.
  • Example 5 Al 2 O 3 in 10Sc1CeSZ composition represented by the general formula 89mol% (ZrO 2 ) -10mol% (Sc 2 O 3 ) -1mol% (CeO 2 ), zirconia, scandia and lanthanoid oxidation in solid electrolyte materials The amount was 2 mol% relative to the total amount of substances and / or yttria (total molar amount), and the same procedure as in Example 1 was performed except that a dense solid electrolyte layer was obtained.
  • Example 6 Al 2 O 3 in 10Sc3CeSZ composition represented by general formula 87mol% (ZrO 2 ) -10mol% (Sc 2 O 3 ) -3mol% (CeO 2 ), zirconia, scandia and lanthanoid oxidation in solid electrolyte materials The amount was 5 mol% relative to the total amount of substances and / or yttria (total molar amount), and the same procedure as in Example 1 was performed except that a dense solid electrolyte layer was obtained.
  • Example 7 Al 2 O 3 in 10Sc5CeSZ composition represented by the general formula 85mol% (ZrO 2 ) -10mol% (Sc 2 O 3 ) -5mol% (CeO 2 ), zirconia in the solid electrolyte material, scandia, and lanthanoid oxidation
  • the amount was 2 mol% relative to the total amount of substances and / or yttria (total molar amount), and the same procedure as in Example 1 was performed except that a dense solid electrolyte layer was obtained.
  • Example 8 Al 2 O 3 in 10Sc6CeSZ composition represented by the general formula 84mol% (ZrO 2 ) -10mol% (Sc 2 O 3 ) -6mol% (CeO 2 ), zirconia, scandia and lanthanoid oxidation in solid electrolyte materials The amount was 2 mol% relative to the total amount of substances and / or yttria (total molar amount), and the same procedure as in Example 1 was performed except that a dense solid electrolyte layer was obtained.
  • Example 9 Formula 89 mol% of (ZrO 2) -8mol% (Sc 2 O 3) -3mol% Al 2 O 3 in 8Sc3CeSZ composition represented by (CeO 2), zirconia solid electrolyte material, and scandia, lanthanide oxide The amount was 2 mol% relative to the total amount of substances and / or yttria (total molar amount), and the same procedure as in Example 1 was performed except that a dense solid electrolyte layer was obtained.
  • Example 10 General formula 88mol% (ZrO 2 ) -9mol% (Sc 2 O 3 ) -3mol% (CeO 2 ) 9Sc3CeSZ composition Al 2 O 3 , zirconia in solid electrolyte material, scandia, lanthanoid oxidation The amount was 2 mol% relative to the total amount of substances and / or yttria (total molar amount), and the same procedure as in Example 1 was performed except that a dense solid electrolyte layer was obtained.
  • Example 11 Al 2 O 3 in the 15Sc3CeSZ composition represented by the general formula 82mol% (ZrO 2 ) -15mol% (Sc 2 O 3 ) -3mol% (CeO 2 ), zirconia in the solid electrolyte material, scandia, and lanthanoid oxidation
  • the amount was 2 mol% relative to the total amount of substances and / or yttria (total molar amount), and the same procedure as in Example 1 was performed except that a dense solid electrolyte layer was obtained.
  • Example 12 Al 2 O 3 in the 16Sc3CeSZ composition represented by the general formula 81mol% (ZrO 2 ) -16mol% (Sc 2 O 3 ) -3mol% (CeO 2 ), zirconia in the solid electrolyte material, scandia, and lanthanoid oxidation
  • the amount was 2 mol% relative to the total amount of substances and / or yttria (total molar amount), and the same procedure as in Example 1 was performed except that a dense solid electrolyte layer was obtained.
  • the electric furnace 106 was heated to 1000 ° C. while flowing Air on the SOFC upper surface of Examples 1 and 4 to 12 and 97% N 2 + 3% H 2 on the lower surface. Hold air at 1000 ° C for 400 hours while flowing air on the upper surface of the SOFC and fuel gas (70% H 2 + 30% H 2 O) on the lower surface, then air on the upper surface of the SOFC and 97% N 2 + 3% H 2 on the lower surface. The temperature was lowered to room temperature while flowing. Similarly, the exposed surface of the solid electrolyte layer 102 of SOFC 100 not in contact with the glass seal 104 was analyzed by SEM and Raman spectroscopy, and the presence or absence of powdering and the crystalline phase were confirmed.
  • Table 3 shows the test results.
  • the notation is c: cubic, t: tetragonal, and r: rhombohedral.
  • t cubic
  • tetragonal tetragonal
  • r rhombohedral
  • the crystalline phase was transformed into the t phase in Examples 4, 5, 8, and 9, whereas in Example 12, the r phase that caused the phase transformation was left in the vicinity of 630 ° C., whereas Examples 1, 6, 7, 10, and 11 remained in the c phase. From this, a more preferable composition is shown in Examples 1, 6, 7, 10, and 11.
  • Scandia is 9 to 15 mol%
  • lanthanoid oxide is 2 to 5 mol%
  • alumina is further added from 1 mol%. It contains a lot.
  • Lanthanoid oxides other than CeO 2 and yttria (Example 13) Al 2 O 3 in a 10Sc3SmSZ composition represented by the general formula 87 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) -3 mol% (Sm 2 O 3 ), zirconia in a solid electrolyte material, scandia, The same procedure as in Example 1 was performed except that 2 mol% of the total amount of the lanthanoid oxide and / or yttria (total molar amount) was mixed to obtain a dense solid electrolyte layer having a 10Sc3SmSZ2Al composition.
  • Example 14 Al 2 O 3 in a 10Sc3YbSZ composition represented by the general formula 87 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) -3 mol% (Yb 2 O 3 ), zirconia in a solid electrolyte material, scandia,
  • the same procedure as in Example 1 was performed except that 2 mol% of the total amount (total molar amount) of the lanthanoid oxide and / or yttria was mixed to obtain a dense solid electrolyte layer having a 10Sc3YbSZ2Al composition.
  • Example 15 Al 2 O 3 in a 10Sc3LaSZ composition represented by the general formula 87 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) -3 mol% (La 2 O 3 ), zirconia in a solid electrolyte material, scandia,
  • the same procedure as in Example 1 was conducted except that 2 mol% of the total amount of lanthanoid oxide and / or yttria (total molar amount) was mixed to obtain a dense solid electrolyte layer having a 10Sc3LaSZ2Al composition.
  • Example 16 Al 2 O 3 in the 10Sc3YSZ composition represented by the general formula 87 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) -3 mol% (Y 2 O 3 ), zirconia in the solid electrolyte material, scandia,
  • the same procedure as in Example 1 was conducted, except that 2 mol% of the total amount of the lanthanoid oxide and / or yttria (total molar amount) was mixed to obtain a dense solid electrolyte layer having a 10Sc3YSZ2Al composition.
  • the electric furnace 106 was heated to 1000 ° C. while flowing Air on the SOFC upper surface of Examples 1 and 13 to 16 and 97% N 2 + 3% H 2 on the lower surface. Hold air at 1000 ° C for 400 hours while flowing air on the upper surface of the SOFC and fuel gas (70% H 2 + 30% H 2 O) on the lower surface, then air on the upper surface of the SOFC and 97% N 2 + 3% H 2 on the lower surface. The temperature was lowered to room temperature while flowing. Similarly, the surface of the solid electrolyte layer 102 of SOFC 100 in contact with the glass seal 104 was analyzed by SEM and Raman spectroscopy, and the presence or absence of powdering and the crystal phase were confirmed.
  • Table 4 shows the analysis results after the test. In all of Examples 13 to 16, no pulverization was observed, and the crystal phase remained in the c phase. This result was the same as in Example 1, and it was confirmed that even when lanthanoid oxides other than CeO 2 or yttria were dissolved, the same effect as that obtained when CeO 2 was dissolved was confirmed.
  • the electrical conductivity of the solid electrolyte materials of Examples 1, 13, 14, 15, and 16 was measured. Each solid electrolyte material was press-molded and sintered at 1450 ° C. for 5 hours, and then a platinum electrode was attached to both sides and a reference electrode was attached to the side surface, and impedance measurement was performed at 1000 ° C. in an air atmosphere.
  • Table 5 shows the conductivity results. It was confirmed that Example 1 had the highest conductivity, and ceria was most preferable as the lanthanoid oxide to be dissolved.
  • Solid electrolyte layer 2-layer structure (Example 17) (1) Preparation of the first layer ZrO 2 raw material (average particle size 0.3 ⁇ m), Sc 2 O 3 raw material (average particle size 0.3 ⁇ m), CeO 2 raw material (average particle size 0.3 ⁇ m) are represented by the general formula 90 mol% (ZrO 2 ) Weighed so as to have a 10ScSZ composition represented by ⁇ 10 mol% (Sc 2 O 3 ), wet-mixed in a solvent ethanol for 50 hr, dried and pulverized, and sintered at 1200 ° C.
  • Second layer ZrO 2 raw material (average particle size 0.3 ⁇ m), Sc 2 O 3 raw material (average particle size 0.3 ⁇ m), and CeO 2 raw material (average particle size 0.3 ⁇ m) are represented by the general formula 87 mol% (ZrO 2) -10mol% (Sc 2 O 3) -3mol% ( weighed so as to 10Sc3CeSZ composition represented by CeO 2), and 50hr wet mixing in a solvent of ethanol, sintered at 1200 ° C. after drying and milling I let you.
  • Al 2 O 3 (average particle size 0.5 ⁇ m) is added to the total amount of zirconia, scandia, lanthanoid oxide and / or yttria in the second layer.
  • 2 mol% equivalent, 2% by weight of MnO 2 (average particle size 0.5 ⁇ m) and 5 wt% of binder PVA were added to the powder, and mixed in a mortar.
  • the PVA-containing powder was press-molded at 50 MPa to produce a compact with a 10Sc3CeSZ2Al composition.
  • a film is formed by screen printing so that 40 wt% NiO-60 wt% YSZ (average particle size 2 ⁇ m) is formed as a fuel electrode layer on the surface of the second layer to a thickness of 20 ⁇ m after sintering.
  • the film was formed by screen printing so that it was sintered at 1400 ° C. for 2 hours.
  • Example 18 The composition of the first layer is Al 2 O 3 (average particle size 0.5 ⁇ m) in the 10Sc1CeSZ composition represented by the general formula 89 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) -1 mol% (CeO 2 ). The same as in Example 17 except that 1 mol% was added to the total amount of zirconia, scandia, lanthanoid oxide and / or yttria in the first layer (total molar amount). did.
  • Example 1 the exposed surface of the solid electrolyte layer 102 of SOFC 100 not in contact with the glass seal 104 was analyzed by SEM and Raman spectroscopy to confirm the presence or absence of powdering and the crystalline phase, and were compared with Example 1.
  • Table 6 shows the analysis results after the test. In all of Examples 17 and 18, powdering was not observed, and the crystal phase remained in the c phase. It was confirmed that powdering and crystal transformation could be suppressed by adopting an electrolyte two-layer structure, the first layer having the composition of Comparative Examples 1 and 3, and the second layer having the composition of Example 1.
  • the electrical conductivity of the solid electrolyte materials of Examples 1, 17, and 18 was measured. Each solid electrolyte material was press-molded and sintered at 1450 ° C. for 5 hours, platinum electrodes were attached to both sides, reference electrodes were attached to the side surfaces, and impedance measurement was performed in an air atmosphere at 1000 ° C.
  • Table 7 shows the conductivity results. It was confirmed that by providing a layer having high oxygen ion conductivity in the first layer, the conductivity was higher than that in Example 1 and the power generation efficiency was improved. From the above, it was confirmed that it is more effective to form the second layer with a minimum thickness necessary for preventing powder peeling.
  • Example 19 The composition of the first layer is the same as that of Example 17 except that Al 2 O 3 is not added to the 10YSZ composition represented by the general formula 90 mol% (ZrO 2 ) -10 mol% (Y 2 O 3 ). did.
  • the electric furnace 106 was run while flowing Air on the upper surface (first layer side) of SOFC and 97% N 2 + 3% H 2 on the lower surface (second layer side) of Example 19.
  • the temperature was raised to 1000 ° C. Hold the air on the SOFC upper surface (first layer side) and fuel gas (70% H 2 + 30% H 2 O) on the lower surface for 400 hours at 1000 ° C, then air on the SOFC upper surface (first layer side).
  • the bottom surface was lowered to room temperature while 97% N 2 + 3% H 2 was allowed to flow.
  • Example 1 the exposed surface of the solid electrolyte layer 102 of SOFC 100 not in contact with the glass seal 104 was analyzed by SEM and Raman spectroscopy to confirm the presence or absence of powdering and the crystalline phase, and were compared with Example 1.
  • Table 8 shows the analysis results after the test. In all of Example 19, no pulverization was observed, and the crystal phase remained in the c phase. Even if the electrolyte has a two-layer structure and the first layer uses yttria as a stabilizer, the same effect was confirmed by setting the second layer to the composition of the solid electrolyte layer in the SOFC of the present invention. .
  • the SOFC design has been described as a flat plate type, but any type such as a flat cylindrical type, a cylindrical vertical stripe type, and a micro tube has the same effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inert Electrodes (AREA)
  • Conductive Materials (AREA)

Abstract

 SOFCの普及期に必要とされる90000時間程度の寿命を有する固体酸化物形燃料電池を提供する。本発明の固体酸化物形燃料電池は、固体電解質層と、前記固体電解質層の一方の面に設けられた酸素極層と、前記固体電解質層の他方の面に設けられた燃料極層とを備える固体酸化物形燃料電池であって、前記酸素極層は、鉄又はマンガンを含む材料から構成されており、前記固体電解質層はアルミナを含有したスカンジア安定化ジルコニア電解質材料から構成され、且つ前記固体電解質層には、ランタノイド酸化物および/またはイットリアが固溶されていることを特徴とする。

Description

固体酸化物形燃料電池
 本発明は、固体酸化物形燃料電池に関する。
 従来、スカンジアを固溶させたジルコニア(以下、ScSZと記す)のような固体電解質材料は、固体酸化物形燃料電池(以下、SOFCと略す)などの用途に適用されている。SOFCは、他の燃料電池であるリン酸型、溶融炭酸塩型などと比較して発電効率が高く、排熱温度も高いため、次世代型の省エネ発電システムとして注目されている。
 SOFCの基本構成は、固体電解質層と、燃料極層と、酸素極層とを備え、固体電解質層の一方に面した燃料極層に水素(H2)などの燃料ガスが貫流接触し、固体電解質層の反対面に面した酸素極層に空気もしくは酸素(O2)などの酸化剤ガスが貫流接触すると、酸素極層で発生した酸素イオン(O2-)が固体電解質層を移動し燃料極層に達し、燃料極層でO2-がH2と反応し電気化学反応により電気出力が得られるものである。
 このような反応メカニズムにおいて、SOFCの固体電解質材料に要求される特性としては、(1)高い酸素イオン導電性を有すること (2)長期耐久性に優れること (3)高い材料強度を有することなどが挙げられ、ジルコニア系固体電解質材料の中で最も好ましい材料は、ScSZである。
 SOFCの酸素極層として、ストロンチウムを固溶させたランタンマンガイト(以下、LSMと示す)、ストロンチウムを固溶させたランタンフェライト(以下、LSFと示す)およびストロンチウムと鉄を固溶させたランタンコバルタイト(以下、LSCF)が一般的に使用される。これらの材料を用いて酸素極層を焼結法で製造する際及び運転時にはセルが高温となるため、LSMの場合マンガン(Mn)が、LSFおよびLSCFの場合、鉄(Fe)が固体電解質層であるScSZに拡散し、酸素イオン導電性を低下させる。この拡散を抑制するためにScSZにアルミナを含有させた固体電解質層が提案されている(特開平8-250135号公報参照)。
 ScSZにアルミナを含有させることで、ScSZ内部に酸素極からMn、Feが固溶拡散することを抑制することができる。しかし、Mn、Feの固溶量を完全に0にすることはできず、ScSZの燃料極層界面近傍においてもMn、Feが微量ながら依然固溶拡散している。
 酸素極層にLSMを用い、固体電解質層にScSZを備えたSOFCにおいて、数百~数千時間の長期耐久試験を行ったところ、燃料極近傍において固体電解質層の一部が粉末化していることが確認された。様々な調査の結果、ScSZに固溶拡散したMnが還元雰囲気に晒されることでScSZから抜けることを発見し、この際に安定化剤のスカンジアが一緒に結晶から引き抜かれ、固体電解質層の結晶変態(立方晶から正方晶へ変化)が生じることが明らかになった。
 燃料極界面近傍におけるMnの固溶拡散量は雰囲気により変化し、SOFCが還元雰囲気に曝された際には、固溶していたMnの一部がScSZから燃料極側に抜け出ていくと考えられ、FeについてもMnと同様の現象が生じると推定された。
 固体電解質層のうち燃料極層に覆われた部分においては、数千時間の長期耐久試験では粉末化は確認されなかったが、粉末化が生じた部分と同様に結晶変態が生じていることから、数万時間運転することでやはり粉末化が生じ、固体電解質層と燃料極層の間で剥離(以下、粉化剥離と示す)が生じると推定された。粉化剥離が生じれば電気が取り出せなくなり、発電不能となる。SOFCは、導入期で40000時間、普及期で90000時間程度の寿命が要求されており、ここで示す粉化剥離は市場導入において解決しなければならない技術課題である。
 粉末化部分についてSEM観察した結果、粒界から粒子が脱落し、粉末化していることがわかった。これは、立方晶から正方晶へ変化することで体積が収縮し、粒界で破断したためと推定された(図1参照)。
 本発明者らは、酸素極層からのMn、Feが拡散したScSZを固体電解質層として備えたSOFCにおいて、ScSZに固溶拡散したMn、Feが還元雰囲気に晒されることでScSZから抜ける際に安定化剤のスカンジアが結晶から引き抜かれることを抑制するとともに、結晶変態が生じても結晶変態に伴う粒界破断を無くすために粒子間強度の向上を備えた固体電解質層を備えたSOFCを提供する。
 上記課題を解決するために本発明に係るSOFCは、固体電解質層と、固体電解質層の一方の面に設けられた酸素極層と、固体電解質層の他方の面に設けられた燃料極層とを備える固体酸化物形燃料電池であって、前記酸素層は、鉄又はマンガンを含む材料から構成されており、前記固体電解質層はアルミナを含有したScSZ電解質材料から構成され、且つ前記ScSZ電解質材料中にランタノイド酸化物および/またはイットリアが固溶していることを特徴とする。ScSZにアルミナを含有させることで、ScSZ内部にMn、Feが固溶拡散する量が低減されるため、Mn、FeがScSZから抜ける際に安定化剤のスカンジアが一緒に結晶から引き抜かれる量も低減される。しかし、これだけではMn、Feの固溶量を0にすることはできないため、微量のMn、FeがScSZから抜けるという現象を無くすことはできない。そこで本発明では、ScSZにアルミナを含有させることに加えてランタノイド酸化物および/またはイットリアを固溶することで、Mn、FeがScSZから抜けたとしても、スカンジアがScSZから引き抜かれるという現象自体の発生を抑制することができる。更に、アルミナはScSZ粒子の粒界に存在し、前記ScSZ粒子同士を強固につなぐため、結晶変態に伴う微量な体積変化が生じたとしても、粒界の破断を抑制するという効果も合わせて奏する。その結果、粉末化が生じないため、普及期で必要とされる90000時間の寿命を有するSOFCを提供することができる。さらに好ましい態様においては、前記固体電解質層は、前記燃料極側におけるランタノイド酸化物および/またはイットリアの固溶量が、前記酸素極側におけるランタノイド酸化物および/またはイットリアの固溶量よりも大きい。例えば、燃料極側から酸素極側にかけてランタノイド酸化物の固溶量が傾斜して減少しているものなどが挙げられる。これにより、燃料極層側での粉化剥離を防止しつつ、固体酸化物層全体の酸素イオン伝導性が低下することを最低限に抑えることができる。
 本発明の好ましい態様においては、ジルコニアには、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、スカンジアが9~15mol%、より好ましくは9~11mol%、ランタノイド酸化物および/またはイットリアが2~5mol%、より好ましくは3~5mol%固溶されている。本発明のさらに好ましい態様においては、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、アルミナを1mol%より多く含有している。スカンジア量が9~15mol%が好ましいのは、9mol%未満だと正方晶が、15mol%超えでは菱面体晶が生じる可能性があり、それぞれ酸素イオン導電性が低下するためである。ランタノイド酸化物および/またはイットリアの2~5mol%固溶が好ましいのは、2mol%未満だとMn、FeがScSZから抜ける際のスカンジア引き抜きを抑制する効果が低く、5mol%超えだと正方晶が生成し結晶変態が生じやすくなるためである。アルミナを1mol%より多く含有させるのは、1mol%以下では、Mn、Feの固溶量を低減する効果が小さく、結晶変態に伴う体積変化に対する粒界破断を抑制する効果も小さいためである。また、本発明の固体電解質材料は、アルミナを5mol%以下含有することが好ましい。アルミナ含有量が5mol%以下であると、固体電解質材料の酸素イオン導電性の低下をもたらさない又はもたらしても最小限に抑えられるためである。
 本発明の好ましい態様においては、ランタノイド酸化物は、セリアであることを特徴とする。セリアが好ましい理由は、Mn、FeがScSZから抜ける際のスカンジア引き抜きを抑制するだけでなく、固体電解質材料の酸素イオン導電性を向上させることができるためである。
 本発明の好ましい態様においては、固体電解質層は、前記酸素極層側に形成された第一の層と、前記燃料極層側に形成された第二の層との二層からなり、前記第二の層における前記ランタノイド酸化物および/またはイットリアの固溶量は、前記第一の層における前記ランタノイド酸化物および/またはイットリアの固溶量よりも大きく、前記第二の層における前記アルミナの含有量は、前記第一の層における前記アルミナの含有量よりも大きい。より好ましくは、第一の層には、前記ランタノイド酸化物および/またはイットリアが固溶しておらず、且つ第一の層は、前記アルミナを含有していないことを特徴とする。また、第一の層は、スカンジア安定化ジルコニアを用いたものであっても、イットリア安定化ジルコニアを用いたものであってもよい。本固体電解質層を備えたSOFCは、高効率かつ普及期で必要とされる90000時間の寿命を有する。これは、燃料極層側である第二の層では、粉化剥離を防止できる一方でアルミナ含有等によりイオン導電性が低下してしまうのに対し、酸素極層側である第一の層では酸素イオン導電性が高く内部抵抗が小さいままであるので、固体酸化物層全体の酸素イオン伝導性が低下することを最低限に抑えつつ、粉化剥離の発生を防止できるためである。
 本発明の好ましい態様においては、固体電解質層の第一の層は、前記第二の層よりも厚く形成されていることを特徴とする。このような固体電解質層を備えた本発明のSOFCは、高効率かつ普及期で必要とされる90000時間の寿命を有する。これは、第二の層の厚みを粉化剥離防止に最低限必要なものとすることで第一の層による高酸素イオン伝導性の寄与が大きくなり、より発電効率を高めることができるためである。粉化剥離防止に最低限必要な第二の層の厚みは、例えば、1μm以上であり、好ましくは3μm以上である。
 本発明によれば、酸素極層からのMn、Feが拡散したScSZを備えたSOFCにおいて、ScSZに固溶拡散したMn、Feが還元雰囲気に晒されることでScSZから抜ける際に安定化剤のスカンジアが結晶から引き抜かれることを抑制するとともに、結晶変態が生じても結晶変態に伴う粒界破断を無くすために粒子間強度の向上を有する固体電解質層を備えることで、ジルコニア結晶変態に伴う粉末化および数万時間後に発生する可能性のある燃料極層と固体電解質層との間の粉化剥離を抑制し、SOFCの普及期に必要とされる90000時間程度の寿命を有する固体酸化物形燃料電池を提供することができる。
本発明における固体電解質層粉末化の現象を示すSEM写真である。 本発明におけるSOFCの一例を示す図である。 固体電解質層の結晶変態に伴う変化について、従来と本発明の差異を示す図である。 ScSZのSc2O3濃度と温度における結晶状態を示す図である。 本発明におけるSOFCの最良形態を示す図である。 本発明の効果を実証する試験装置を示す図である。
 以下、本発明の実施形態について図を参照して説明する。図2は、本発明の実施形態におけるSOFCであり、固体電解質層102の一方の面に酸素極層101、固体電解質層102の他方の面に燃料極層103を設けている。固体電解質層としては酸素イオン導電性が高いという観点から、従来は、ScSZが利用されていた。しかし、同組成の固体電解質層を有するSOFCでは数百~数千時間の長期耐久試験を行うと、酸素極層から拡散してきたMn、Feが還元雰囲気に晒されることでScSZから抜ける際に安定化剤のスカンジアが結晶から引き抜かれ、固体電解質層102の結晶変態(立方晶から正方晶へ変化)が生じることが明らかになった。また、固体電解質層102がむき出しになっているところでは、粉末化していることが確認されており、固体電解質層102の燃料極層103で覆われた部分においても同様に結晶変態が生じており、数万時間運転することで固体電解質層102と燃料極層103の間で粉化剥離が生じると推定された。
 固体電解質層の結晶変態に伴う変化について、比較例と本発明の差異を図3を用いて説明する。比較例1相当の10Sc1CeSZ組成を有する固体電解質層にMnが数mol%固溶されたものは製造時は立方晶構造110である。これが還元雰囲気に晒されることでMnがMnOまたはMn(OH)2の形で抜けるとともにスカンジア(Sc2O3)が結晶相から引き抜かれ、図4の状態図に示すように結晶相が立方晶(c)110から正方晶(t)111に変わる。立方晶(c)110から正方晶(t)111に変わると格子定数が小さくなり体積が収縮する。その結果、粒界破断が生じ、図1のSEM像のような粉末化が生じると考えられた。本発明のSOFCにおける固体電解質材料では、スカンジア(Sc2O3)が結晶相から引き抜かれることを抑制するためにランタノイド酸化物および/またはイットリア固溶量を増やし、スカンジアが結晶相から引き抜かれて結晶変態が生じても粒界破断しないように粒界を強固なものにするために更にアルミナ112を含有させ、粉末化を発生させないようにすることが好ましい。
 好ましい固体電解質層の組成は、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、スカンジアが9~15mol%、ランタノイド酸化物および/またはイットリアが2~5mol%固溶されているものである。本発明の固体電解質材料のさらに好ましい組成は、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、アルミナを1mol%より多く含有しているものである。スカンジア量が9~15mol%が好ましいのは、9mol%未満だと正方晶が、15mol%超えでは菱面体晶が生じる可能性があり酸素イオン導電性が低下するためであり、ランタノイド酸化物および/またはイットリアの2~5mol%固溶が好ましいのは、2mol%未満だとMn、FeがScSZから抜ける際のスカンジア引き抜きを抑制する効果が低く、5mol%超えだと正方晶が生成し結晶変態が生じやすくなるためである。アルミナを1mol%より多く含有させるのは、1mol%以下では結晶変態に伴う体積変化に対する粒界破断を抑制する効果が小さいためである。
 本発明のSOFCにおける固体電解質層は酸素極層から拡散してきたMnやFeが還元雰囲気でScSZから抜け出す際の劣化を防止することが主要課題であり、SOFC高効率化、高耐久性の観点から、固体電解質層は、酸素極層101側に酸素イオン導電性が高い第一の層107と、燃料極層側103にScSZにランタノイド酸化物および/またはイットリアが固溶された固体電解質材料であって、更にアルミナを含有している組成のものから形成された第二の層108との二層からなることが好ましい(図5参照)。高効率の観点から前記第一の層は、前記第二の層よりも厚く形成されていることがより好ましい。
 本発明のSOFCにおける燃料極層103は、電子導電性が高く、O2-がH2と反応し電気化学反応により電気出力を得られること、化学的に安定であることおよび熱膨張係数が固体電解質層102に近い条件を満たしているものであればよく、従来使用されるものに対して特に限定はない。NiとScSZのサーメット、Niとイットリア安定化ジルコニア(以下、YSZと示す)のサーメットおよびNiとセリウム酸化物のサーメットなどが代表的である。
 本発明のSOFCにおける酸素極層101は、電子導電性が高く、酸素(O2)などの酸化剤ガスを酸素イオン(O2-)に替える触媒活性が高いこと、化学的に安定であることおよび熱膨張係数が固体電解質層102に近い条件を満たしているものであればよく、従来使用されるものに対して特に限定はない。ストロンチウムを固溶させたランタンマンガナイト(以下、LSMと示す)、ストロンチウムを固溶させたランタンフェライト(以下、LSFと示す)およびストロンチウムと鉄を固溶させたランタンコバルタイト(以下、LSCF)等が挙げられる。
 本発明のSOFCにおいて用いられる固体電解質材料の製造においては、本技術分野において通常用いられるいずれの方法を用いてもよく、特に限定されるものではない。例えば、以下に限定されるものではないが、ジルコニアの粒子と、スカンジアの粒子と、ランタノイド酸化物の粒子および/またはイットリアの粒子とを所定の配合比率で混合し、該混合物をボールミル等の粉砕機で粉砕した後焼結させ、該焼結体をボールミル等の粉砕機で粉砕した後アルミナやバインダー成分と混合し、該混合物を成型及び焼結することによって、本発明の固体電解質材料を製造することができる。
 本発明のSOFCの製造においては、本技術分野において通常用いられるいずれの方法を用いてもよく、特に限定されるものではない。例えば、スクリーン印刷法等を用いて上記固体電解質材料の一方の面に酸素極層を、他方の面に燃料極層を形成させ、焼結することによって、本発明のSOFCを製造することができる。
 本発明のSOFCは、平板縦縞型、平板横縞型、扁平円筒型、円筒縦縞型、円筒横縞型、マイクロチューブなどのいずれのタイプであってもよい。
(実施例1)
 図2タイプのセルを製作し試験を行ったので説明する。ZrO2原料(平均粒径0.3μm)、Sc2O3原料(平均粒径0.3μm)、CeO2原料(平均粒径0.3μm)を一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2)で表される10Sc3CeSZ組成になるように秤量し、溶媒エタノールの中で50hr湿式混合し、乾燥および粉砕後1200℃で焼結させた。該焼結体を粉砕して粉末にした後、Al2O3(平均粒径0.5μm)を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当と、前記粉末に対して、MnO2(平均粒径0.5μm)をMn含有量で2重量%およびバインダーPVAを5wt%加え、乳鉢で混合した。50MPaで前記PVAを含んだ粉末をプレス成形し、1450℃で5hr焼結させた。10Sc3CeSZ2Al組成の緻密質な固体電解質層を得た。厚み200μm程度まで研磨した後、酸素極層としてLSM(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、反対面に燃料極層としてNiとYSZのサーメットになるよう40wt%NiO―60wt%YSZ(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、1400℃で2hr焼結させた。
(実施例2)
 一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2)で表される10Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、Fe2O3(平均粒径0.5μm)をFeの含有量で2重量%およびバインダーPVAを5wt%加え、10Sc3CeSZ2Al組成の緻密質な固体電解質層を得たことと、酸素極層をLSF(平均粒径2μm)とした以外は実施例1と同様とした。
(実施例3)
 一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2)で表される10Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、MnO2(平均粒径0.5μm)をMn含有量で1重量%、Fe2O3(平均粒径0.5μm)をFe含有量で1重量%およびバインダーPVAを5wt%加え、10Sc3CeSZ2Al組成の緻密質な固体電解質層を得たことと、酸素極層をLSF(平均粒径2μm)とした以外は実施例1と同様とした。
(比較例1)
 一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3を添加しないで緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(比較例2)
  一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3を添加しないで緻密質な固体電解質層を得たこと以外は実施例2と同様とした。
(比較例3)
  一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成にAl2O3を添加しないで緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(比較例4)
  一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成にAl2O3を添加しないで緻密質な固体電解質層を得たこと以外は実施例2と同様とした。
(比較例5)
  一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、1mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(比較例6)
  一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、1mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例2と同様とした。
(試験方法)
 図6に試験装置の概略を示す。ジルコニアチューブ105で保持された装置にガラスシール(SiO2+B2O3)104を置き、その上に作製したSOFC100を乗せた。さらにSOFC100の上面にジルコニアチューブ105を乗せた。実施例1~10および比較例1~3のSOFC上面にAirを、下面に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で400hr保持した後、SOFC上面にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。
(分析1)
 SOFC100をガラスシール104から引き剥がした後、ガラスシール104と接触していないSOFC100の固体電解質層102の露出面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認した。また、すべてのSOFCに対して試験前にラマン分光法で結晶相を確認した。
 SEM観察はS-4100,Hitachi High-Technologies Co.,Japanを用いて、加速電圧15kV,1000倍で実施した。ラマン分光はNRS-2100,JASCO Co.,Japanを用いて、電解質表面のZr-O振動モードを分析した。検出器はトリプルモノクロメータを搭載し、波数分解能1cm-1、観察スポットφ8μm、励起波長523nmで測定した。
Figure JPOXMLDOC01-appb-T000001
 表1に試験結果を示す。表記はc:立方晶、t:正方晶である。比較例1~6はいずれも粉末化が確認されたのに対して、実施例1~3はいずれも粉末化は認められなかった。このことから本発明の組成を採用することで粉末化を抑制できることが確認された。また、結晶相についても実施例1~3はc相を維持し、比較例1~6のすべてがt相に変態していることがわかった。本発明の組成とすることでMnやFeを含んでいても粉末化および結晶変態が起こりにくくなることを確認することができた。
(分析2)
 実施例1,2および比較例1,2のSOFCについては、燃料極層103を剥がし、燃料極層103で覆われていた固体電解質層102表面についてSEMおよびラマン分光法で分析した。
Figure JPOXMLDOC01-appb-T000002
 表2に分析結果を示す。燃料極層で覆われていた固体電解質層では粉末化は認められなかったが、比較例1,2ではすでに結晶相がt相に変化しており、粒界に亀裂が確認された。一方、実施例1,2では粉末化は無く、結晶相も変化しておらず、粒界に亀裂も認められなかった。比較例1,2の場合、さらなる長時間運転で粉末化が起こり、燃料極層103と固体電解質層102の間で粉化剥離する可能性が示唆された。
(組成の最適化)
(実施例4)
  一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、1mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例5)
  一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例6)
  一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2) で表される10Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、5mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例7)
  一般式85mol%(ZrO2)-10mol%(Sc2O3)-5mol%(CeO2) で表される10Sc5CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例8)
  一般式84mol%(ZrO2)-10mol%(Sc2O3)-6mol%(CeO2) で表される10Sc6CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例9)
  一般式89mol%(ZrO2)-8mol%(Sc2O3)-3mol%(CeO2) で表される8Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例10)
  一般式88mol%(ZrO2)-9mol%(Sc2O3)-3mol%(CeO2) で表される9Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例11)
  一般式82mol%(ZrO2)-15mol%(Sc2O3)-3mol%(CeO2) で表される15Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例12)
  一般式81mol%(ZrO2)-16mol%(Sc2O3)-3mol%(CeO2) で表される16Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
 図6に示す試験装置を用いて、実施例1,4~12のSOFC上面にAirを、下面に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で400hr保持した後、SOFC上面にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。同様にガラスシール104と接触していないSOFC100の固体電解質層102露出面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認した。
Figure JPOXMLDOC01-appb-T000003
 表3に試験結果を示す。表記はc:立方晶、t:正方晶、r:菱面体晶である。実施例1,4~12のいずれも粉末化は認められなかった。このことから本発明の組成を採用することで粉末化を抑制できることが確認された。また、結晶相については実施例4,5,8,9でt相に変態し、実施例12では630℃近傍で相変態を引き起こすr相が一部残った状態であったのに対して、実施例1,6,7,10,11はc相のままであった。このことからより好ましい組成は実施例1,6,7,10,11で示されるものであり、スカンジアが9~15mol%、ランタノイド酸化物が2~5mol%固溶され、さらにアルミナを1mol%より多く含有しているものである。
CeO2以外のランタノイド酸化物およびイットリアについて
(実施例13)
  一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(Sm2O3) で表される10Sc3SmSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3SmSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例14)
  一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(Yb2O3) で表される10Sc3YbSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3YbSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例15)
  一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(La2O3) で表される10Sc3LaSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3LaSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例16)
  一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(Y2O3) で表される10Sc3YSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3YSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
 図6に示す試験装置を用いて、実施例1,13~16のSOFC上面にAirを、下面に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で400hr保持した後、SOFC上面にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。同様にガラスシール104と接触したSOFC100の固体電解質層102表面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認した。
Figure JPOXMLDOC01-appb-T000004
 表4に試験後の分析結果を示す。実施例13~16のいずれも粉末化が認められず、結晶相もc相のままであった。この結果は実施例1と同様で、CeO2以外のランタノイド酸化物またはイットリアを固溶した場合でも、CeO2を固溶した場合と同様の効果があることを確認した。
 実施例1,13,14,15,16の固体電解質材料の導電率を測定した。各々の固体電解質材料をプレス成形し、1450℃で5hr焼結させた後、両面に白金電極を取り付けるとともに側面に参照極を取り付け、1000℃大気雰囲気下でインピーダンス測定を行った。
Figure JPOXMLDOC01-appb-T000005
 表5に導電率の結果を示す。実施例1が最も導電率が高く、固溶させるランタノイド酸化物として最も好ましいのはセリアであることを確認した。
固体電解質層2層構造について
(実施例17)
(1)第一の層の作製
 ZrO2原料(平均粒径0.3μm),Sc2O3原料(平均粒径0.3μm),CeO2原料(平均粒径0.3μm)を一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成になるように秤量し、溶媒エタノールの中で50hr湿式混合し、乾燥および粉砕後1200℃で焼結させた。該焼結体を粉砕して粉末にした後、前記粉末に対して、MnO2(平均粒径0.5μm)をMn含有量で2重量%およびバインダーPVAを5wt%加え、乳鉢で混合した。50MPaで前記PVAを含んだ粉末をプレス成形し、10Sc1CeSZ1Al組成の成形体を作製した。
(2)第二の層の作製
 ZrO2原料(平均粒径0.3μm),Sc2O3原料(平均粒径0.3μm),CeO2原料(平均粒径0.3μm)を一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2) で表される10Sc3CeSZ組成になるように秤量し、溶媒エタノールの中で50hr湿式混合し、乾燥および粉砕後1200℃で焼結させた。該焼結体を粉砕して粉末にした後、Al2O3(平均粒径0.5μm)を、第二の層中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当と、前記粉末に対して、MnO2(平均粒径0.5μm)をMn含有量で2重量%およびバインダーPVAを5wt%加え、乳鉢で混合した。50MPaで前記PVAを含んだ粉末をプレス成形し、10Sc3CeSZ2Al組成の成形体を作製した。
(3)セル作製
 10Sc1CeSZ1Al組成からなる第一の層の成形体と10Sc3CeSZ2Al組成からなる第二の層の成形体を積層し熱圧着させた後、1450℃で5hr焼結させた。第一の層の厚みが190μm、第二の層が10μm程度になるよう研磨した後、第一の層の表面に酸素極層としてLSM(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、第二の層の表面に燃料極層としてNiとYSZのサーメットになるよう40wt%NiO―60wt%YSZ(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、1400℃で2hr焼結させた。
(実施例18)
 第一の層の組成を一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3(平均粒径0.5μm)を、第一層中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、1mol%相当添加したものにしたこと以外は実施例17と同様とした。
 図6に示す試験装置を用いて、実施例17および18のSOFC上面(第一層側)にAirを、下面(第二層側)に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面(第一層側)にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で400hr保持した後、SOFC上面(第一層側)にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。同様にガラスシール104と接触していないSOFC100の固体電解質層102露出面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認し、実施例1と比較検討した。
Figure JPOXMLDOC01-appb-T000006
 表6に試験後の分析結果を示す。実施例17,18のいずれも粉末化が認められず、結晶相もc相のままであった。電解質2層構造とし、第一の層を比較例1,3の組成とし第二の層において実施例1の組成とすることで粉末化および結晶変態を抑制できることを確認した。
 実施例1,17,18の固体電解質材料の導電率を測定した。各々の固体電解質材料をプレス成形して1450℃で5hr焼結させたものの両面に白金電極を取り付けるとともに側面に参照極を取り付け、1000℃大気雰囲気下でインピーダンス測定を行った。
Figure JPOXMLDOC01-appb-T000007
 表7に導電率の結果を示す。酸素イオン導電性が高い層を第一の層に設けることで実施例1よりも導電率が高くなり、発電効率が高められることを確認した。以上により、第二の層は粉化剥離防止に最低限必要な厚みを形成することがより効果的であることを確認することができた。
(実施例19)
 第一の層の組成を一般式90mol%(ZrO2)-10mol%(Y2O3)で表される10YSZ組成にAl2O3を添加しないものにしたこと以外は実施例17と同様とした。
 図6に示す試験装置を用いて、実施例19のSOFC上面(第一層側)にAirを、下面(第二層側)に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面(第一層側)にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で400hr保持した後、SOFC上面(第一層側)にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。同様にガラスシール104と接触していないSOFC100の固体電解質層102露出面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認し、実施例1と比較検討した。
Figure JPOXMLDOC01-appb-T000008
 表8に試験後の分析結果を示す。実施例19のいずれも粉末化が認められず、結晶相もc相のままであった。電解質2層構造とし、第一の層を安定化剤にイットリアを用いたものであっても第二の層を本発明のSOFCにおける固体電解質層の組成とすることで同様の効果が確認された。
 本発明の効果を固体電解質層を支持体とするタイプで説明したが、酸素極層および燃料極層を支持体とするSOFCも同様の効果を有する。
 SOFCデザインについては、平板型で説明したが、扁平円筒型、円筒縦縞型、マイクロチューブなどのいずれのタイプも同様の効果を有する。
 上記実施例においては、ScSZ電解質材料に、ランタノイド酸化物やイットリアなど1種類のみを固溶させた場合について試験したが、ScSZ電解質材料に、2種類以上のランタノイド酸化物の組合せやランタノイド酸化物とイットリアとの組合せを固溶させた場合においても、上記実施例と同様の効果が得られるものと考えられる。
 100 SOFC
 101 酸素極層
 102 固体電解質層
 103 燃料極層
 104 ガラスシール(SiO2+B2O3
 105 ジルコニアチューブ
 106 電気炉
 107 固体電解質層(第一の層)
 108 固体電解質層(第二の層)
 110 10Sc1CeSZ(立方晶)
 111 10Sc1CeSZ(正方晶)
 112 アルミナ(Al2O3)

Claims (9)

  1.  固体電解質層と、前記固体電解質層の一方の面に設けられた酸素極層と、前記固体電解質層の他方の面に設けられた燃料極層とを備える固体酸化物形燃料電池であって、前記酸素極層は、鉄又はマンガンを含む材料から構成されており、前記固体電解質層は、アルミナを含有したスカンジア安定化ジルコニア電解質材料を含み、前記固体電解質材料には、ランタノイド酸化物および/またはイットリアが固溶されていることを特徴とする固体酸化物形燃料電池。
  2.  前記固体電解質材料には、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総モル量に対して、スカンジアが9~15mol%、ランタノイド酸化物および/またはイットリアが2~5mol%固溶されていることを特徴とする請求項1に記載の固体酸化物形燃料電池。
  3.  前記固体電解質材料は、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総モル量に対して、アルミナを1mol%より多く含有していることを特徴とする請求項2に記載の固体酸化物形燃料電池。
  4.  前記ランタノイド酸化物は、セリアであることを特徴とする、請求項2に記載の固体酸化物形燃料電池。
  5.  前記固体電解質層は、前記燃料極側におけるランタノイド酸化物および/またはイットリアの固溶量が、前記酸素極側における前記ランタノイド酸化物および/またはイットリアの固溶量よりも大きいことを特徴とする請求項1乃至4のいずれか一に記載の固体酸化物形燃料電池。
  6.  前記固体電解質層は、前記酸素極層側に形成された第一の層と、前記燃料極層側に形成された第二の層との二層からなり、前記第二の層における前記ランタノイド酸化物および/またはイットリアの固溶量は、前記第一の層における前記ランタノイド酸化物および/またはイットリアの固溶量よりも大きいことを特徴とする請求項1乃至4のいずれか一に記載の固体酸化物形燃料電池。
  7.  前記第二の層における前記アルミナの含有量は、前記第一の層における前記アルミナの含有量よりも大きいことを特徴とする請求項6に記載の固体酸化物形燃料電池。
  8.  前記第一の層は、前記ランタノイド酸化物および/またはイットリアが固溶しておらず、且つ前記アルミナを含有していないことを特徴とする請求項7に記載の固体酸化物形燃料電池。
  9.  前記第一の層は、前記第二の層よりも厚く形成されていることを特徴とする、請求項8に記載の固体酸化物形燃料電池。
PCT/JP2012/052178 2011-01-31 2012-01-31 固体酸化物形燃料電池 WO2012105576A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012555912A JP5652753B2 (ja) 2011-01-31 2012-01-31 固体酸化物形燃料電池
US13/983,018 US20130309583A1 (en) 2011-01-31 2012-01-31 Solid oxide fuel cell
CN201280016367.1A CN103636042B (zh) 2011-01-31 2012-01-31 固体氧化物型燃料电池
EP12741512.3A EP2672554B1 (en) 2011-01-31 2012-01-31 Solid oxide fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011018761 2011-01-31
JP2011-018761 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012105576A1 true WO2012105576A1 (ja) 2012-08-09

Family

ID=46602783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052178 WO2012105576A1 (ja) 2011-01-31 2012-01-31 固体酸化物形燃料電池

Country Status (5)

Country Link
US (1) US20130309583A1 (ja)
EP (1) EP2672554B1 (ja)
JP (1) JP5652753B2 (ja)
CN (1) CN103636042B (ja)
WO (1) WO2012105576A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521263B1 (en) * 2016-09-30 2023-01-11 Kyushu University, National University Corporation Cerium-oxide-stabilized zirconium-oxide-based composition, and method for producing same
JP6597943B1 (ja) * 2018-03-29 2019-10-30 堺化学工業株式会社 固体酸化物形燃料電池の空気極材料粉体
CN115784738B (zh) * 2022-12-06 2023-12-01 郑州方铭高温陶瓷新材料有限公司 用于氢能源sofc电堆的耐高温氧化锆高熵陶瓷管的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250135A (ja) 1995-03-14 1996-09-27 Toho Gas Co Ltd 固体電解質型燃料電池及びその電池セルの製造方法
JPH1069916A (ja) * 1996-08-28 1998-03-10 Nippon Telegr & Teleph Corp <Ntt> 希土類酸化物及びSc2O3,Al2O3添加ZrO2系固体電解質材料
JP2002134131A (ja) * 2000-10-23 2002-05-10 Toho Gas Co Ltd 支持膜式固体電解質型燃料電池
JP2005322547A (ja) * 2004-05-11 2005-11-17 Toho Gas Co Ltd 低温作動型固体酸化物形燃料電池単セル
JP2008305804A (ja) * 2008-07-28 2008-12-18 Toho Gas Co Ltd 高イオン導電性固体電解質材料及びその製造方法、焼結体、固体電解質型燃料電池
JP2010027359A (ja) * 2008-07-18 2010-02-04 Nippon Shokubai Co Ltd リサイクルジルコニア粉末の製造方法、当該製造方法によるリサイクルジルコニア粉末、およびそれを用いたジルコニア焼結体の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620800B2 (ja) * 1993-06-17 2005-02-16 東邦瓦斯株式会社 固体電解質焼結体の製造方法
JP3777903B2 (ja) * 1998-10-14 2006-05-24 三菱マテリアル株式会社 電極−電解質間に傾斜組成を持つ固体酸化物型燃料電池
US6558831B1 (en) * 2000-08-18 2003-05-06 Hybrid Power Generation Systems, Llc Integrated SOFC
JP4771579B2 (ja) * 2000-10-23 2011-09-14 東邦瓦斯株式会社 固体電解質型燃料電池
JP4524791B2 (ja) * 2002-08-06 2010-08-18 Toto株式会社 固体酸化物形燃料電池
US7160647B2 (en) * 2003-12-22 2007-01-09 The Gillette Company Battery cathode
JP5031187B2 (ja) * 2004-11-19 2012-09-19 東邦瓦斯株式会社 固体酸化物形燃料電池用燃料極および固体酸化物形燃料電池
US20060136328A1 (en) * 2004-12-17 2006-06-22 Raytheon Company (Copy) Method and system for analyzing the risk of a project
JP4914588B2 (ja) * 2005-08-25 2012-04-11 株式会社日本触媒 ジルコニアシートの製造方法
US7820332B2 (en) * 2006-09-27 2010-10-26 Corning Incorporated Electrolyte sheet with regions of different compositions and fuel cell device including such
US20080261099A1 (en) * 2007-04-13 2008-10-23 Bloom Energy Corporation Heterogeneous ceramic composite SOFC electrolyte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250135A (ja) 1995-03-14 1996-09-27 Toho Gas Co Ltd 固体電解質型燃料電池及びその電池セルの製造方法
JPH1069916A (ja) * 1996-08-28 1998-03-10 Nippon Telegr & Teleph Corp <Ntt> 希土類酸化物及びSc2O3,Al2O3添加ZrO2系固体電解質材料
JP2002134131A (ja) * 2000-10-23 2002-05-10 Toho Gas Co Ltd 支持膜式固体電解質型燃料電池
JP2005322547A (ja) * 2004-05-11 2005-11-17 Toho Gas Co Ltd 低温作動型固体酸化物形燃料電池単セル
JP2010027359A (ja) * 2008-07-18 2010-02-04 Nippon Shokubai Co Ltd リサイクルジルコニア粉末の製造方法、当該製造方法によるリサイクルジルコニア粉末、およびそれを用いたジルコニア焼結体の製造方法
JP2008305804A (ja) * 2008-07-28 2008-12-18 Toho Gas Co Ltd 高イオン導電性固体電解質材料及びその製造方法、焼結体、固体電解質型燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2672554A4

Also Published As

Publication number Publication date
EP2672554B1 (en) 2017-07-12
CN103636042B (zh) 2016-02-17
EP2672554A1 (en) 2013-12-11
EP2672554A4 (en) 2014-10-15
JPWO2012105576A1 (ja) 2014-07-03
US20130309583A1 (en) 2013-11-21
JP5652753B2 (ja) 2015-01-14
CN103636042A (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5725449B2 (ja) 固体酸化物形燃料電池
EP2698852B1 (en) Solid electrolyte fuel cell
JP5225336B2 (ja) 燃料電池セル及び燃料電池
JP5729572B2 (ja) 固体電解質材料およびこれを備えた固体酸化物形燃料電池
JP6573243B2 (ja) 空気極組成物、空気極およびこれを含む燃料電池
JP5652752B2 (ja) 固体電解質材料およびこれを備えた固体酸化物形燃料電池
JP2009259746A (ja) 固体酸化物形燃料電池
JP6338342B2 (ja) 固体酸化物形燃料電池ハーフセル、及び固体酸化物形燃料電池
JP5652753B2 (ja) 固体酸化物形燃料電池
JP6042320B2 (ja) 電極材料とその利用
JP4496749B2 (ja) 固体酸化物型燃料電池
JP4739665B2 (ja) 燃料電池セル及び燃料電池
JP2015191810A (ja) 固体酸化物形燃料電池用アノード支持基板及び固体酸化物形燃料電池用セル
KR20120085488A (ko) 고체산화물 연료전지용 고체 전해질, 및 상기 고체전해질을 포함하는 고체산화물 연료전지
Liang et al. Effect of MgO and Fe2O3 dual sintering aids on the microstructure and electrochemical performance of the solid state Gd0. 2Ce0. 8O2-δ electrolyte in intermediate-temperature solid oxide fuel cells
WO2024134975A1 (ja) Soecまたはsofcの電極用材料、そのような電極用材料を含む粉末、そのような粉末を含むペースト、soecまたはsofcの電極、soec、およびsofc
JP2002316872A (ja) ランタンガレート系固体電解質材料、その製造方法および固体電解質型燃料電池
JP2012074304A (ja) 固体酸化物形燃料電池用発電セル
Toyofuku et al. Durability of SOFCs using inexpensive Ca-doped ZrO2 electrolytes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280016367.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13983018

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012741512

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012741512

Country of ref document: EP