WO2012105566A1 - 不織布及び繊維製品 - Google Patents

不織布及び繊維製品 Download PDF

Info

Publication number
WO2012105566A1
WO2012105566A1 PCT/JP2012/052160 JP2012052160W WO2012105566A1 WO 2012105566 A1 WO2012105566 A1 WO 2012105566A1 JP 2012052160 W JP2012052160 W JP 2012052160W WO 2012105566 A1 WO2012105566 A1 WO 2012105566A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
mass
layers
layer
olefin polymer
Prior art date
Application number
PCT/JP2012/052160
Other languages
English (en)
French (fr)
Inventor
洋平 郡
智明 武部
南 裕
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP12742149.3A priority Critical patent/EP2671993B1/en
Priority to JP2012555902A priority patent/JP5914367B2/ja
Priority to US13/982,640 priority patent/US20130323995A1/en
Publication of WO2012105566A1 publication Critical patent/WO2012105566A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/671Multiple nonwoven fabric layers composed of the same polymeric strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]

Definitions

  • the present invention relates to a nonwoven fabric excellent in low-temperature heat sealability and a fiber product using the nonwoven fabric.
  • Patent Document 1 discloses an elastic nonwoven fabric that has excellent elastic recoverability, has no stickiness, and has a good touch, and a fiber product using the elastic nonwoven fabric.
  • sanitary products such as disposable diapers are disposable products, so it is desirable to reduce the cost of products by simplifying the manufacturing process, especially to improve the secondary processability of nonwoven fabrics.
  • One of the indexes of the secondary processability includes heat sealability and laminate property between nonwoven fabrics or nonwoven fabric and film. Furthermore, in order to obtain necessary heat seal strength at low cost, low temperature heat sealability Is required.
  • an object of the present invention is to provide a nonwoven fabric excellent in secondary processability, particularly low temperature heat sealability, and a fiber product using the nonwoven fabric.
  • the present inventors have a certain range of melting point (Tm) and certain range of melting absorption heat ( ⁇ H), and the melting point and melting absorption heat satisfy a specific relationship. It has been found that by using a crystalline resin composition containing a certain amount of a low crystalline olefin-based polymer, a nonwoven fabric excellent in low-temperature heat sealability and a fiber product using the nonwoven fabric can be provided. It came to complete.
  • a nonwoven fabric composed of one or more layers A non-woven fabric consisting of one layer Or at least 1 layer of the nonwoven fabric which consists of two layers, Or at least one of the outermost two layers of the multilayer nonwoven fabric composed of three or more layers, A nonwoven fabric comprising a crystalline resin composition containing 1 to 99% by mass of a low crystalline olefin polymer satisfying the following property (a).
  • a nonwoven fabric composed of one or more layers The fibers constituting the nonwoven fabric consisting of one layer are Or the fiber which comprises at least 1 layer in the nonwoven fabric which consists of 2 layers, Or the fiber which comprises the outermost layer of the multilayer nonwoven fabric which consists of three or more layers, A core-sheath type composite fiber having a sheath component of a crystalline resin composition containing 1 to 99% by mass of a low crystalline olefin polymer satisfying the following property (a), and the ratio of the sheath component is the core component And a non-woven fabric which is a core-sheath type composite fiber of 1 to 99% by mass with respect to the total amount of the sheath component.
  • the ratio of the outermost layer made of the crystalline resin composition to the entire layer is 1 to 99% on a basis weight basis.
  • the nonwoven fabric in any one of.
  • the nonwoven fabric of the present invention is particularly excellent in low-temperature heat sealability (for example, heat seal strength at 160 to 180 ° C.), it is excellent in secondary processability and can stably provide various fiber products at low cost.
  • the nonwoven fabric of the present invention is produced using a crystalline resin composition containing a certain amount of a low crystalline olefin polymer.
  • the low crystalline olefin polymer is a crystalline olefin polymer having a moderate disorder in stereoregularity, and specifically, an olefin polymer that satisfies the following property (a): Refers to coalescence.
  • an olefin polymer that does not satisfy the characteristic (a) may be referred to as a highly crystalline olefin polymer (or a highly crystalline polypropylene when the olefin polymer is polypropylene).
  • the melting point (Tm) and the melting endotherm ( ⁇ H) satisfy the following relationship. ⁇ H ⁇ 6 ⁇ (Tm-140 °C)
  • the characteristic (a) indicates that the melting endotherm is high instead of the melting point, and the one obtained by the method for producing a low crystalline olefin polymer described later satisfies the characteristic (a).
  • An olefin polymer produced using a conventional Ziegler-Natta catalyst having a plurality of different active sites usually does not satisfy the characteristic (a).
  • the crystalline resin composition used in the present invention is a composition containing a low crystalline olefin polymer as described above.
  • the low crystalline olefin polymer preferably further satisfies the following characteristics (b) or (c), and more preferably satisfies the following characteristics (b) and (c).
  • fusing point (Tm) is 0 degreeC or more and less than 120 degreeC.
  • Tm melting
  • ⁇ H The melting endotherm ( ⁇ H) is 1 to 100 J / g.
  • the low crystalline olefin polymer used in the present invention is preferably an olefin polymer obtained by polymerizing one or more monomers selected from ethylene and an ⁇ -olefin having 3 to 28 carbon atoms.
  • An olefin polymer obtained by polymerizing one or more monomers selected from 28 ⁇ -olefins is particularly preferable.
  • Examples of the ⁇ -olefin having 3 to 28 carbon atoms include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-undecene and 1-dodecene.
  • ⁇ -olefins having 3 to 16 carbon atoms are preferable, ⁇ -olefins having 3 to 10 carbon atoms are more preferable, ⁇ -olefins having 3 to 6 carbon atoms are more preferable, and propylene is particularly preferable.
  • olefin polymer obtained by polymerizing one of these alone may be used, or an olefin copolymer obtained by copolymerizing two or more of them may be used.
  • the term “olefin polymer” simply includes an olefin copolymer.
  • the low crystalline olefin polymer is particularly preferably low crystalline polypropylene.
  • the polypropylene may be a copolymer with the ⁇ -olefin other than propylene as long as the property (a) is satisfied.
  • the use ratio of the ⁇ -olefin other than propylene is preferably 2% by mass or less, more preferably 1% by mass or less, based on the total amount of propylene and the other ⁇ -olefins.
  • the low crystalline olefin polymer satisfying the above-mentioned property (a) may be used alone or in combination of two or more.
  • the low crystalline olefin polymer used in the present invention is an olefin polymer represented by the above characteristic (a) and preferably satisfies the above characteristic (b), that is, preferably has a melting point (Tm) of 0. It is an olefin polymer having a low melting point of not lower than 120 ° C and lower than 120 ° C. If the melting point is 0 ° C. or higher, it is difficult to become a sticky component or a liquid component. If it is less than 120 degreeC, the fall of the fusion
  • the low crystalline olefin polymer used in the present invention preferably satisfies the above characteristic (c), that is, preferably has a melting endotherm ( ⁇ H) of 1 to 100 J / g. If the melting endotherm is 1 J / g or more, it will not be in a completely amorphous or molten state at room temperature, and if it is 100 J / g or less, the crystallinity of the nonwoven fabric is low and the effect of improving the low-temperature heat sealability is improved. Easy to get.
  • the melting endotherm is preferably 2 to 90 J / g, more preferably 2 to 60 J / g, more preferably 5 to 50 J / g, still more preferably 10 to 50 J / g, and particularly preferably 15 to 40 J / g.
  • the low crystalline olefin polymer used in the present invention needs to satisfy the following relationship between the melting point (Tm) and the melting endotherm ( ⁇ H), as shown by the above characteristic (a).
  • Tm melting point
  • ⁇ H melting endotherm
  • ⁇ H ⁇ 6 ⁇ Tm-140 °C
  • ⁇ H ⁇ 3 ⁇ Tm ⁇ 120 ° C.
  • ⁇ H ⁇ 2 ⁇ Tm ⁇ 100 ° C.
  • the low crystalline olefin polymer used in the present invention preferably has a crystallization temperature (Tc) of 10 to 60 ° C., more preferably 20 to 50 ° C., further preferably 30 to 40 ° C. is there.
  • the melt flow rate (MFR) is preferably 20 to 400 g / 10 minutes, more preferably 20 to 200 g / 10 minutes, still more preferably 20 to 100 g / 10 minutes, and particularly preferably 40 to 80 g / 10 minutes. It is.
  • the crystallization temperature and MFR are values measured by the method described in Examples.
  • the low crystalline olefin polymer used in the present invention is particularly preferably a low crystalline olefin polymer satisfying the following characteristics (d) to (i), and the following characteristics (d) to (i It is more preferable that it is a low crystalline polypropylene satisfying the above.
  • the low crystalline polypropylene preferably used in the present invention has a [mmmm] (mesopentad fraction) of preferably 20 to 60 mol%. If [mmmm] is 20 mol% or more, solidification after melting does not slow down, and it is possible to suppress stickiness of the fibers, so that there is no difficulty in adhering to the winding roll and making continuous molding difficult. Moreover, if [mmmm] is 60 mol% or less, it will be excellent in low-temperature heat-sealing property, and crystallinity will not be too high, and elastic recoverability will become favorable. From such a viewpoint, [mmmm] is preferably 30 to 50 mol%, more preferably 40 to 50 mol%.
  • the low crystalline polypropylene preferably used in the present invention has [rrrr] / (1- [mmmm]) of preferably 0.1 or less.
  • [Rrrr] / (1- [mmmm]) is an index indicating the uniformity of the regularity distribution of the low crystalline polypropylene. When this value is increased, it becomes a mixture of highly stereoregular polypropylene and atactic polypropylene like conventional polypropylene produced using an existing catalyst system, which causes stickiness.
  • [rrrr] / (1- [mmmm]) is preferably 0.001 to 0.05, more preferably 0.001 to 0.04, and still more preferably 0.01 to 0.04. It is.
  • the low crystalline polypropylene preferably used in the present invention has [rmrm] preferably exceeding 2.5 mol%. If [rmrm] exceeds 2.5 mol%, the randomness of the low crystalline polypropylene can be maintained, so that the crystallinity increases due to crystallization by the isotactic polypropylene block chain, and the elastic recovery property decreases. There is no such thing. From such a viewpoint, [rmrm] is preferably 2.6 mol% or more, more preferably 2.7 mol% or more. The upper limit is usually preferably about 10 mol%, more preferably 7 mol%, still more preferably 5 mol%, and particularly preferably 4 mol%.
  • the low crystalline polypropylene preferably used in the present invention has [mm] ⁇ [rr] / [mr] 2 of preferably 2.0 or less.
  • [Mm] ⁇ [rr] / [mr] 2 represents an index of randomness of the polymer. If this value is 2.0 or less, sufficient elastic recovery is obtained in the fiber obtained by spinning, and stickiness is also suppressed.
  • [mm] ⁇ [rr] / [mr] 2 is preferably more than 0.25 and 1.8 or less, more preferably 0.5 to 1.8, and still more preferably 1 to 1. 8, particularly preferably 1.2 to 1.6.
  • Weight average molecular weight (Mw) 10,000 to 200,000
  • the low crystalline polypropylene preferably used in the present invention has a weight average molecular weight of preferably 10,000 to 200,000. If the weight average molecular weight is 10,000 or more, the viscosity of the low crystalline polypropylene is not too low and is moderate, and thus breakage during spinning is suppressed. If the weight average molecular weight is 200,000 or less, the viscosity of the low crystalline polypropylene is not too high, and the spinnability is improved. From such a viewpoint, the weight average molecular weight is preferably 30,000 to 200,000, more preferably 40,000 to 150,000, still more preferably 80,000 to 150,000, and particularly preferably 100,000 to 140,000.
  • the low crystalline polypropylene preferably used in the present invention has a molecular weight distribution (Mw / Mn) of preferably less than 4. If the molecular weight distribution is less than 4, the occurrence of stickiness in the fiber obtained by spinning is suppressed.
  • This molecular weight distribution is preferably 3 or less, more preferably 2.5 or less, and further preferably 1.5 to 2.5.
  • the method for producing a low crystalline olefin polymer used in the present invention is obtained by combining (A) a transition metal compound forming a crosslinked structure via two crosslinking groups and (B) a cocatalyst.
  • a method of polymerizing or copolymerizing the ⁇ -olefin such as propylene using a metallocene catalyst is preferable. According to this method, it is possible to easily produce a low crystalline olefin polymer that satisfies the above characteristic (a).
  • a transition metal compound (A) represented by the following general formula (I), and a compound that can form an ionic complex by reacting with the transition metal compound of the component (A) or a derivative thereof examples thereof include a method of polymerizing or copolymerizing the ⁇ -olefin such as propylene in the presence of a polymerization catalyst containing a promoter component (B) selected from B-1) and aluminoxane (B-2).
  • M represents a group 3-10 group element or a lanthanoid series metal element
  • E 1 and E 2 represent a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, a heterocyclo group, respectively.
  • X represents a ⁇ -bonding ligand, and when there are a plurality of X, the plurality of X may be the same or different and may be cross-linked with other X, E 1 , E 2 or Y.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, may be cross-linked with other Y, E 1 , E 2 or X, and
  • a 1 and A 2 are A divalent bridging group that binds two ligands, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group , -O -, - CO -, - S -, - SO 2 -, - Se -, - NR 1 -, - PR 1 -, - P (O) R 1 -
  • transition metal compound represented by the general formula (I) include (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-n-butylindenyl) zirconium dichloride, ( 1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3 -Phenylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (4,5-benzoindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2 , 1′-dimethylsilylene) bis (4-isopropylindenyl) zirconium dichloride, (1,2′-dimethyl) Silylene) (2,1'
  • dimethylanilinium tetrakispentafluorophenyl borate triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate
  • examples thereof include tetraethylammonium tetraphenylborate, methyl (tri-n-butyl) ammonium tetraphenylborate, and benzyl (tri-n-butyl) ammonium tetraphenylborate.
  • the component (B-1) may be used alone or in combination of two or more.
  • examples of the aluminoxane as the component (B-2) include methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, and the like. These aluminoxanes may be used individually by 1 type, and may be used in combination of 2 or more type. Further, one or more of the component (B-1) and one or more of the component (B-2) may be used in combination.
  • an organoaluminum compound can be used as the component (C) in addition to the components (A) and (B).
  • the organoaluminum compound of component (C) trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride, diisobutyl Aluminum hydride, diethylaluminum hydride, ethylaluminum sesquichloride, etc. are mentioned.
  • These organoaluminum compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • at least one catalyst component can be supported on a suitable carrier and used.
  • the polymerization method is not particularly limited, and any method such as a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, and a suspension polymerization method may be used, but a bulk polymerization method and a solution polymerization method are particularly preferable. preferable.
  • the polymerization temperature is usually from ⁇ 100 to 250 ° C.
  • the ratio of the catalyst to the reaction raw material is preferably “raw material monomer / component (A)” (molar ratio) of preferably 1 to 10 8 , more preferably 10 to 10 5 , Preferably, it is 10 2 to 10 5 .
  • the polymerization time is usually preferably 5 minutes to 10 hours
  • the reaction pressure is usually preferably normal pressure to 20 MPa (gauge pressure).
  • the crystalline resin composition used in the present invention contains 1 to 99% by mass of a low crystalline olefin polymer.
  • the content of the olefin polymer is less than 1% by mass, the effect of improving the low-temperature heat sealability of the nonwoven fabric is poor, and when it exceeds 99% by mass, the formability due to the stickiness of the nonwoven fabric and the feeling of touch are reduced. It also leads to a decrease in strength.
  • the content of the olefin polymer is preferably 1 to 49% by mass, more preferably 1 to 40% by mass, and more preferably 3 to 40% by mass.
  • the preferable range may be different between the case where the single fiber is used and the case where the core-sheath type composite fiber is used, and the preferable range in each case will be described later.
  • the crystalline resin composition may contain other thermoplastic resins and additives as components other than the low-crystalline olefin polymer.
  • other thermoplastic resins include the highly crystalline olefin polymer, ethylene-vinyl acetate copolymer, hydrogenated styrene elastomer, polyester resin, polyamide resin, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the above highly crystalline olefin polymer is preferable from the viewpoints of compatibility, touch feeling, flexibility, and the like.
  • the melting point (Tm) of the highly crystalline olefin polymer is preferably 120 to 200 ° C., more preferably 130 to 180 ° C., still more preferably 150 to 175 ° C.
  • the melting endotherm ( ⁇ H) is preferably Is 50 to 200 J / g, more preferably 55 to 190 J / g, more preferably 60 to 150 J / g, more preferably 70 to 130 J / g, still more preferably 70 to 110 J / g, particularly preferably 80 to 110 J / g. g.
  • the melt flow rate (MFR) of the highly crystalline olefin polymer is preferably 1 to 100 g / 10 minutes, more preferably 10 to 80 g / 10 minutes, still more preferably 15 to 80 g / 10 minutes, particularly The amount is preferably 15 to 50 g / 10 minutes.
  • MFR melt flow rate
  • the highly crystalline olefin polymer is preferably an olefin polymer obtained by polymerizing one or more monomers selected from ethylene and an ⁇ -olefin having 3 to 28 carbon atoms, and more preferably having 3 to 28 carbon atoms.
  • An olefin polymer obtained by polymerizing one or more monomers selected from ⁇ -olefins is preferred. Examples of the ⁇ -olefin are the same as those described above.
  • a propylene homopolymer, a propylene-ethylene random copolymer, a propylene-ethylene-1-butene random copolymer, and a propylene-ethylene block copolymer are particularly preferable.
  • a homopolymer (polypropylene) is more preferred.
  • additives conventionally known additives can be blended, for example, foaming agents, crystal nucleating agents, anti-glare stabilizers, ultraviolet absorbers, light stabilizers, heat stabilizers, antistatic agents, mold release agents, Flame retardant, synthetic oil, wax, electrical property improver, anti-slip agent, anti-blocking agent, viscosity modifier, anti-coloring agent, anti-fogging agent, lubricant, pigment, dye, plasticizer, softener, anti-aging agent, Examples include hydrochloric acid absorbents, chlorine scavengers, antioxidants, and anti-sticking agents.
  • the crystalline resin composition used in the present invention will melt the low crystalline polyolefin component as long as the temperature is higher than the melting point of the low crystalline polyolefin. And it becomes possible to express heat-sealing property (heat-fusion property). Based on such a principle, a composition comprising a low crystalline polyolefin rather than a single component of a high crystalline polyolefin enables heat sealing at a low temperature, and in particular, the content of the low crystalline polyolefin is large. The higher the heat seal strength is.
  • the nonwoven fabric of the present invention is (1) a crystalline resin comprising 1 to 99% by mass of a low crystalline olefin polymer satisfying the above characteristic (a), wherein the nonwoven fabric comprises one or more layers.
  • a non-woven fabric using the composition which takes any one of the following Embodiments 1 to 3.
  • (Embodiment 1) A nonwoven fabric comprising a crystalline resin composition containing 1 to 99% by mass of a low crystalline olefin polymer satisfying the above-mentioned characteristic (a).
  • Embodiment 2 A crystalline resin comprising 1 to 99% by mass of a low crystalline olefin polymer satisfying the above-mentioned characteristic (a), wherein the nonwoven fabric is composed of two layers.
  • a non-woven fabric using the composition (Embodiment 3) A multi-layered nonwoven fabric composed of three or more layers, wherein at least one of the two outermost layers of the nonwoven fabric is a low crystalline olefin polymer that satisfies the above-mentioned property (a) 1 to 99 A nonwoven fabric using a crystalline resin composition containing mass%.
  • the two layers are formed using the crystalline resin composition.
  • both of the outermost layer 2 layers use the said crystalline resin composition.
  • the outermost layer means an (AA) layer and a (CC) layer.
  • at least one of the outermost (AA) layer and (CC) layer may be a layer formed using the crystalline resin composition, and both layers are crystalline.
  • the layer using a resin composition may be sufficient.
  • the content of the low crystalline olefin polymer in the crystalline resin composition is preferably 1 to 49% by mass, more preferably 3%, from the viewpoint of low temperature heat sealability. From 49 to 99% by mass, more preferably from 3 to 30% by mass, preferably from 7 to 99% by mass, more preferably from 7 to 49% by mass from the viewpoint that the effect of improving low-temperature heat sealability is particularly remarkable.
  • the content is preferably 7 to 30% by mass.
  • the ratio of the outermost layer using the crystalline resin composition to the total layer is 1 to 99 on a basis weight basis from the viewpoint of low temperature heat sealability.
  • the basis weight refers to the weight per unit area.
  • the ratio of the outermost layer to the whole layer is large, the low-temperature heat sealability is further favorable, and when the ratio is small, the strength of the nonwoven fabric can be enhanced while showing good low-temperature heat sealability. It is effective and preferable.
  • the layer which does not use the said crystalline resin composition exists in the nonwoven fabric which consists of two layers of Embodiment 2, in the multilayer nonwoven fabric which consists of the layer and Embodiment 3 of Embodiment 3, and the said crystalline resin
  • limiting in particular as a component of the layer which does not use a composition The normal thermoplastic resin used for a nonwoven fabric can be used. Among these, the highly crystalline olefin polymer is preferable, and the highly crystalline polypropylene is more preferable.
  • the same thermoplastic resin and additive as in the case of the crystalline resin composition may be contained.
  • Nonwoven fabric using core-sheath type composite fiber Another non-woven fabric of the present invention is (2) a low-crystalline olefin polymer in which the fibers constituting the non-woven fabric consisting of at least one layer satisfy the above-mentioned characteristic (a).
  • a a core-sheath type composite fiber having a crystalline resin composition containing 1 to 99% by mass as a sheath component, and the ratio of the sheath component is 1 to 99% by mass with respect to the total amount of the core component and the sheath component.
  • a non-woven fabric which is a core-sheath type composite fiber and takes any one of the following Embodiments 4 to 6.
  • a core comprising a crystalline resin composition containing 1 to 99% by mass of a low crystalline olefin polymer satisfying the above-mentioned characteristic (a) as a fiber constituting a single layer nonwoven fabric as a sheath component
  • a non-woven fabric which is a sheath-type composite fiber and is a core-sheath type composite fiber having a sheath component ratio of 1 to 99% by mass based on the total amount of the core component and the sheath component.
  • Embodiment 5 A crystalline resin composition containing 1 to 99% by mass of a low crystalline olefin polymer satisfying the above-mentioned characteristic (a) in the fibers constituting at least one layer in a two-layer nonwoven fabric A non-woven fabric which is a core-sheath type composite fiber which is a core-sheath type composite fiber as a component, and the ratio of the sheath component is 1 to 99% by mass with respect to the total amount of the core component and the sheath component.
  • a crystalline resin composition wherein the fiber constituting the outermost layer of a multilayer nonwoven fabric composed of 3 or more layers contains 1 to 99% by mass of a low crystalline olefin polymer satisfying the above-mentioned characteristic (a) A non-woven fabric which is a core-sheath type composite fiber having a sheath component as a sheath component, and the ratio of the sheath component is 1 to 99% by mass with respect to the total amount of the core component and the sheath component.
  • the crystalline resin composition may contain other thermoplastic resins and additives as components other than the low-crystalline olefin polymer.
  • the content of the core-sheath type composite fiber in such a nonwoven fabric is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, more preferably 30 to 100% by mass, and more preferably 50 to 100%. % By mass, more preferably 70 to 100% by mass, still more preferably 80 to 100% by mass, particularly preferably 90 to 100% by mass, and most preferably substantially 100% by mass.
  • the ratio of the sheath component of the core-sheath composite fiber needs to be 1 to 99% by mass with respect to the total amount of the core component and the sheath component from the viewpoint of heat seal strength and low temperature heat sealability.
  • the ratio of the sheath component is less than 1% by mass, the thickness of the sheath part becomes too thin and the effect of improving the low-temperature heat sealability of the nonwoven fabric cannot be obtained, and when it exceeds 99% by mass, the strength of the nonwoven fabric decreases.
  • the ratio of the sheath component of the core-sheath composite fiber is preferably 1 to 49% by mass, more preferably 5 to 49% by mass, and more preferably 15 to 15% by mass with respect to the total amount of the core component and the sheath component. It is 49% by mass, more preferably 25 to 49% by mass, particularly preferably 30 to 49% by mass.
  • the fibers constituting both the two layers are core-sheath type composite fibers having the crystalline resin composition as a sheath component.
  • the fibers constituting both of the outermost two layers are core-sheath type composite fibers having the crystalline resin composition as a sheath component.
  • the content of the low crystalline olefin polymer in the crystalline resin composition is preferably 1 to 49% by mass, more preferably 3%, from the viewpoint of low temperature heat sealability. It is ⁇ 49 mass%, more preferably 3 to 40 mass%, further preferably 10 to 40 mass%, particularly preferably 15 to 35 mass%.
  • the ratio of the outermost layer made of the crystalline resin composition to the total layers is 1 to 99 on a basis weight basis from the viewpoint of low-temperature heat sealability. %, More preferably 1 to 60%, more preferably 5 to 60%, more preferably 10 to 60%, still more preferably 20 to 60%, and particularly preferably 40 to 60%.
  • the sheath component is described as described above.
  • the core component is not particularly limited, and a normal thermoplastic resin used for a nonwoven fabric or a composition containing the resin can be used.
  • the thermoplastic resins the highly crystalline olefin is used. Polymers are preferred, and the highly crystalline polypropylene is more preferred.
  • the core component may also contain other thermoplastic resins and additives similar to the case of the crystalline resin composition of the sheath component.
  • the crystalline resin composition defined as the sheath component may be used as long as it is different from the sheath component to be used.
  • the layer and a multilayer nonwoven fabric composed of three or more layers are composed of other than the core-sheath conjugate fiber.
  • the layer component is not particularly limited, and ordinary thermoplastic resins used for nonwoven fabrics can be used. Among them, the highly crystalline olefin polymer is preferable, and the highly crystalline polypropylene is more preferable. preferable. Also as a component of this layer, you may contain the other thermoplastic resin and additive agent similar to the case of the said crystalline resin composition.
  • the fiber of the layer comprised other than the said core-sheath-type composite fiber may be a core-sheath-type composite fiber outside the said prescribed
  • the thermoplastic resin constituting the core component and the component constituting the sheath component that is, the low crystalline olefin polymer contained in the crystalline resin composition described above, the low crystal
  • the difference in melting point with at least one of other thermoplastic resins and additives as a component other than the functional olefin polymer is less than 20 ° C.
  • the melting point difference is more preferably 18 ° C. or less, further preferably 15 ° C. or less, and particularly preferably includes a material having the same melting point.
  • Nonwoven fabric There is no restriction
  • the nonwoven fabric produced by the spunbond method is referred to as a spunbond nonwoven fabric.
  • a melt-kneaded crystalline resin composition is spun, stretched and opened to form continuous long fibers, and the continuous long fibers are subsequently deposited on the moving collection surface in a continuous process.
  • the nonwoven fabric is manufactured by entanglement.
  • a nonwoven fabric can be produced continuously, and since the fibers constituting the nonwoven fabric are continuous long fibers drawn, the strength is high.
  • a conventionally known method can be adopted as the spunbond method.
  • fibers can be produced by extruding molten polymer from a large nozzle having several thousand holes or a small nozzle group having, for example, about 40 holes.
  • the discharge rate of the fibers per single hole is preferably 0.1 to 1 g / min, and more preferably 0.3 to 0.7 g / min.
  • the molten fiber is cooled by a cross-flow chilled air system, then pulled away from the nozzle and drawn by high velocity air.
  • the first method is a method in which a filament is stretched using a suction slot (slot stretching), and performed at the nozzle width or the machine width.
  • the filament is drawn through a nozzle or a suction gun. Filaments formed in this manner are collected on a screen (wire) or a pore-forming belt to form a web.
  • the web passes through a compression roll, and then passes between heated calender rolls, where the raised portions on one roll are joined at a portion containing 10% to 40% area of the web to form a nonwoven fabric. It is.
  • thermal bonding such as embossing, hot air, and calendar, adhesive bonding, mechanical entanglement such as needle punching, water punching, and the like can be employed.
  • a non-woven fabric is first produced using a crystalline resin composition containing the low crystalline olefin polymer, and a non-woven fabric is formed on the non-woven fabric by a spunbond method, a melt blow method, or the like. Furthermore, the method of laminating a nonwoven fabric on it and fusing it by heating and pressurization is mentioned.
  • laminating means such as thermal bonding and adhesive bonding as a laminating means for forming a multilayer nonwoven fabric
  • a simple and inexpensive thermal bonding laminating means in particular, a hot embossing roll method can also be adopted.
  • the hot embossing roll method can be laminated using a known laminating apparatus using an embossing roll and a flat roll.
  • embossing roll various shapes of embossing patterns can be adopted, and there are a lattice shape in which each welded portion is continuous, an independent lattice shape, an arbitrary distribution, and the like.
  • the flexibility of the nonwoven fabric can be controlled by adjusting the temperature during embossing or adjusting the spinning speed.
  • the temperature is preferably in the range of 90 to 130 ° C.
  • the embossing temperature is 90 ° C. or higher, the fibers are sufficiently fused to increase the strength of the nonwoven fabric.
  • the embossing temperature is 130 ° C. or lower, there is no possibility that the low crystalline olefin polymer is completely melted to form a film, and the nonwoven fabric has high flexibility.
  • Examples of textile products using the nonwoven fabric of the present invention include disposable diaper members, elastic members for diaper covers, elastic members for sanitary products, elastic members for sanitary products, elastic tapes, adhesive bandages, and elastic materials for clothing.
  • Various automotive parts such as door trims, various cleaning materials such as cleaning materials for copying machines, carpets Table material and the backing of the door, agriculture winding cloth, mention may be made of wood drain, shoes for members such as sports shoes skin, a bag member, industrial sealing material, such as wiping material and sheets.
  • the physical properties of the low crystalline polypropylene obtained in the following Production Example 1 were measured as follows.
  • [Melting point measurement] Using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer), a melting endotherm obtained by holding 10 mg of a sample at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The melting point (Tm) was determined from the peak top of the peak observed on the highest temperature side of the curve. (Measurement of crystallization temperature) Using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer Co., Ltd.), 10 mg of a sample was held at 220 ° C. for 5 minutes in a nitrogen atmosphere, and then lowered to ⁇ 30 ° C. at 20 ° C./min. The crystallization temperature (Tc) was determined from the peak top of the peak of the exothermic curve.
  • Zambelli et al The meso fraction, the racemic fraction, and the racemic meso-racemic meso in the pentad unit in the polypropylene molecular chain measured by the methyl group signal in the 13 C-NMR spectrum were obtained according to the proposed method. It is a fraction. As the mesopentad fraction [mmmm] increases, the stereoregularity increases. The triad fractions [mm], [rr] and [mr] were also calculated by the above method.
  • Weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) measurement The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) were determined by gel permeation chromatography (GPC). For the measurement, the following apparatus and conditions were used, and a weight average molecular weight in terms of polystyrene was obtained.
  • ⁇ GPC measurement device Column: TOSO GMHHR-H (S) HT Detector: RI detector for liquid chromatogram WATERS 150C ⁇ Measurement conditions> Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C Flow rate: 1.0 ml / min Sample concentration: 2.2 mg / ml Injection volume: 160 ⁇ l Calibration curve: Universal Calibration Analysis program: HT-GPC (Ver.1.0)
  • MFR Melt flow rate
  • Production Example 1 (Production of low crystalline polypropylene) To a stainless steel reactor with an internal volume of 20 L equipped with a stirrer, n-heptane was 20 L / h, triisobutylaluminum was 15 mmol / h, dimethylanilinium tetrakispentafluorophenylborate and (1,2'-dimethylsilylene) (2 , 1′-Dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride, triisobutylaluminum and propylene in a mass ratio of 1: 2: 20 in advance were converted into zirconium. Continuous supply at 6 ⁇ mol / h.
  • the polymerization temperature was set to 67 ° C., and propylene and hydrogen were added so that the hydrogen concentration in the gas phase part of the reactor was maintained at 0.8 mol% and the total pressure in the reactor was maintained at 0.7 MPa (gauge pressure).
  • the polymerization reaction was carried out continuously.
  • “Irganox 1010” manufactured by Ciba Specialty Chemicals) as a stabilizer is added to the resulting polymerization solution so that the content is 500 mass ppm, and then n-heptane as a solvent is removed.
  • a low crystalline polypropylene having the physical properties shown in Table 1 was obtained.
  • the heat seal strength at each temperature was measured as follows. [Measurement of heat seal strength] From the obtained nonwoven fabric, a test piece having a length of 200 mm and a width of 40 mm was sampled with respect to the machine direction (MD). Using a heat seal tester (manufactured by Toyo Seiki Kogyo Co., Ltd., thermal gradient tester), the two nonwoven fabrics were heat sealed at 165 ° C., 170 ° C. or 175 ° C. for 2 seconds at a pressure of 0.2 MPa. There are five heat blocks, and the heat bonding area of one block is 250 mm 2 (25 mm ⁇ 10 mm).
  • the unbonded portions of the two nonwoven fabrics are each gripped with a chuck and stretched at a tensile speed of 200 mm / min. And the load when nonwoven fabrics peeled was measured, and the heat seal strength was determined. In addition, when the nonwoven fabric broke before the nonwoven fabrics peeled off, it was described as “material breakage”.
  • PP manufactured by Nippon Polypro Co., Ltd.
  • melting point about 164 ° C.
  • melting endotherm 94 J / g
  • the raw material is melt-extruded at a resin temperature of 230 ° C using a single screw extruder, and the molten resin is discharged at a rate of 0.5 g / min per single hole from a core-sheath composite nozzle (number of holes: 841 holes) with a nozzle diameter of 0.3 mm. And spun. While cooling the fibers obtained by spinning with air, the fibers are sucked at an ejector pressure of 2.0 kg / cm 2 and laminated on the net surface moving at a line speed of 49 m / min. First layer] was obtained.
  • the above-mentioned spunbond method is used to directly deposit high crystalline polypropylene fibers to form the spunbond nonwoven fabric (C) [second layer].
  • the non-woven fabric (S) [third layer] produced in the same manner as described above was superposed and fused by heating and pressing with a 135 ° C. heat roll to obtain a spunbond non-woven fabric (S) / spunbond non-woven fabric (C) / A multilayer nonwoven fabric having the structure of the spunbond nonwoven fabric (S) was obtained.
  • Table 2 shows the basis weight (gsm: g / m 2 ) of each layer and the heat seal strength of the obtained nonwoven fabric at a predetermined temperature.
  • Example 2 (Production of multilayer spunbond nonwoven fabric)
  • S spunbonded nonwoven fabric
  • PP low crystalline polypropylene and high crystalline polypropylene
  • Table 2 shows the basis weight (gsm: g / m 2 ) of each layer and the heat seal strength of the obtained nonwoven fabric at a predetermined temperature.
  • Example 1 Production of multilayer spunbond nonwoven fabric
  • S spunbonded nonwoven fabric
  • a crystalline resin composition consisting only of highly crystalline polypropylene (PP, manufactured by Nippon Polypro Co., Ltd., NOVATEC SA03) was used in the production of the spunbonded nonwoven fabric (S).
  • PP highly crystalline polypropylene
  • Table 2 shows the basis weight (gsm: g / m 2 ) of each layer and the heat seal strength of the obtained nonwoven fabric at a predetermined temperature.
  • the multilayer nonwoven fabric produced in Example 1 has a markedly higher heat seal strength at 170 to 175 ° C. than the multilayer nonwoven fabric produced in Comparative Example 1, and 30 gf at 170 ° C. As described above (higher than 70 gf or higher), a heat seal strength of 270 gf or higher is obtained at 175 ° C., and it is understood that the low temperature heat sealability is excellent.
  • the multilayer nonwoven fabric produced in Example 2 is also superior in low temperature heat sealability as compared with the multilayer nonwoven fabric produced in Comparative Example 1. In Example 1 where the content of low crystalline polypropylene in the first layer and the third layer was 10% by mass, the low-temperature heat sealability was significantly improved compared to Example 2 in which the content was 5% by mass. I understand.
  • Example 3 Manufacture of a spunbond nonwoven fabric using a core-sheath type composite fiber
  • a crystalline resin composition mixed in a blending ratio of 25% by mass of the low crystalline polypropylene obtained in Production Example 1 and 75% by mass of highly crystalline polypropylene (PP, manufactured by Nippon Polypro Co., Ltd., NOVATEC SA03).
  • PP manufactured by Nippon Polypro Co., Ltd., NOVATEC SA03
  • a non-woven fabric was manufactured as follows using a spunbond apparatus using only a highly crystalline polypropylene (PP, manufactured by Nippon Polypro Co., Ltd., NOVATEC SA03) as a core component. The raw material is melt-extruded from the sheath component resin and the core component resin at a resin temperature of 230 ° C.
  • Example 4 (Production of a spunbonded nonwoven fabric using a core-sheath type composite fiber) A nonwoven fabric was produced in the same manner as in Example 3, except that spinning was performed such that the ratio of the sheath component [sheath component / (sheath component + core component)] was 20% by mass. Table 3 shows the heat seal strength of the obtained nonwoven fabric at a predetermined temperature.
  • Example 5 Manufacture of spunbonded nonwoven fabric using core-sheath type composite fiber
  • a nonwoven fabric was produced in the same manner as in Example 3 except that spinning was performed so that the ratio of the sheath component [sheath component / (sheath component + core component)] was 10% by mass.
  • Table 3 shows the heat seal strength of the obtained nonwoven fabric at a predetermined temperature.
  • a nonwoven fabric was produced in the same manner except that. Table 3 shows the heat seal strength of the obtained nonwoven fabric at a predetermined temperature.
  • the nonwoven fabrics produced in Examples 3 to 5 have significantly higher heat seal strength at 165 to 175 ° C. than the nonwoven fabric produced in Comparative Example 2, and 40 gf or more at 165 ° C.
  • the heat seal strength is 200 gf or higher at 170 ° C. (400 gf or higher at higher temperatures). At 175 ° C., the heat seal strength is high enough to break the material, and it can be seen that the heat seal strength is excellent.
  • Non-woven fabrics of the present invention are various fiber products, such as disposable diaper members, elastic members for diaper covers, elastic members for sanitary products, elastic members for hygiene products, elastic tapes, adhesive bandages, elastic members for clothing, Insulation materials for clothing, heat insulation materials for clothing, protective clothing, hats, masks, gloves, supporters, elastic bandages, bases for poultices, non-slip base fabrics, vibration absorbers, finger sack, air filters for clean rooms, electret processing Electret filters, separators, insulation materials, coffee bags, food packaging materials, automotive ceiling skin materials, soundproof materials, cushion materials, speaker dustproof materials, air cleaner materials, insulator skins, backing materials, adhesive nonwoven fabric sheets, door trims, etc.
  • fiber products such as disposable diaper members, elastic members for diaper covers, elastic members for sanitary products, elastic members for hygiene products, elastic tapes, adhesive bandages, elastic members for clothing, Insulation materials for clothing, heat insulation materials for clothing, protective clothing, hats, masks, gloves, supporters, elastic bandages, bases for poultice
  • the nonwoven fabric of the present invention is preferably used for sanitary products such as disposable diapers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Multicomponent Fibers (AREA)

Abstract

 二次加工性、特に低温ヒートシール性に優れた不織布及び該不織布を用いてなる繊維製品を提供する。より具体的には、1層以上からなる不織布であって、1層からなる不織布が、又は2層からなる不織布のうちの少なくとも1層が、又は3層以上からなる多層の不織布の最外層2層のうち少なくとも1層が、下記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を用いてなる不織布を提供する。 (a)融点(Tm)と融解吸熱量(ΔH)が、 ΔH≧6×(Tm-140℃) の関係を満たす。

Description

不織布及び繊維製品
 本発明は、低温ヒートシール性に優れた不織布及び該不織布を用いてなる繊維製品に関する。
 近年、ポリプロピレン系の繊維及び不織布は、使い捨ておむつ、生理用品、その他の衛生製品、衣料素材、包帯、包装材等の各種用途に供せられている。このように当該繊維及び不織布は、直接身体と接触する用途で用いられることが多く、身体への良好な装着感や装着後の身体の動き易さなどの観点から、適度な伸縮性や弾性回復性が要求され、これまでに種々の技術開発が行われてきた。例えば特許文献1は、優れた弾性回復性を有すると共に、べたつきがなく、肌触りが良好な弾性不織布及び当該弾性不織布を用いた繊維製品を開示する。
 このような技術開発の一方で、紙おむつなどの衛生製品は使い捨ての製品であるため、製造工程の簡略化などによる製品の低コスト化、特に不織布の二次加工性を改善することが望まれている。当該二次加工性の指標の一つとして、不織布同士又は不織布とフィルムのヒートシール性やラミネート性が挙げられ、さらに、低コストにて必要なヒートシール強度を得るためには、低温ヒートシール性が求められる。
特開2009-62667号公報
 ところが、従来用いられていた高結晶性のポリプロピレン不織布は、要求されるヒートシール強度を得るために必要なヒートシール温度が高いという問題があった。
 そこで、本発明の課題は、二次加工性、特に低温ヒートシール性に優れた不織布及び該不織布を用いてなる繊維製品を提供することにある。
 本発明者等は、上記課題について鋭意検討を行った結果、一定範囲の融点(Tm)及び一定範囲の融解吸収熱(ΔH)を有し、該融点と融解吸収熱とが特定の関係を満たす低結晶性のオレフィン系重合体を一定量含有する結晶性樹脂組成物を用いることにより、低温ヒートシール性に優れた不織布及び該不織布を用いてなる繊維製品を提供し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記[1]~[9]に関する。
[1]1層以上からなる不織布であって、
 1層からなる不織布が、
又は2層からなる不織布のうちの少なくとも1層が、
又は3層以上からなる多層の不織布の最外層2層のうち少なくとも1層が、
下記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を用いてなる不織布。
(a)融点(Tm)と融解吸熱量(ΔH)が下記の関係を満たす。
       ΔH≧6×(Tm-140℃)
[2]1層以上からなる不織布であって、
 1層からなる不織布を構成する繊維が、
又は2層からなる不織布において少なくとも1層を構成する繊維が、
又は3層以上からなる多層の不織布の最外層を構成する繊維が、
下記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を鞘成分とした芯鞘型複合繊維であり、且つ鞘成分の比率が、芯成分と鞘成分の合計量に対して1~99質量%の芯鞘型複合繊維である不織布。
(a)融点(Tm)と融解吸熱量(ΔH)が下記の関係を満たす。
       ΔH≧6×(Tm-140℃)
[3]前記芯鞘型複合繊維の鞘成分の比率が、芯成分と鞘成分の合計量に対して1~49質量%である、上記[2]に記載の不織布。
[4]前記3層以上からなる多層の不織布において、前記結晶性樹脂組成物を用いてなる最外層の全層に対する比率が、目付け基準で1~99%である、上記[1]~[3]のいずれかに記載の不織布。
[5]前記結晶性樹脂組成物を用いてなる最外層の全層に対する比率が、目付け基準で1~60%である、上記[4]に記載の不織布。
[6]前記結晶性樹脂組成物において、特性(a)を満たす低結晶性のオレフィン系重合体の含有量が1~49質量%である、上記[1]~[5]のいずれかに記載の不織布。
[7]前記低結晶性のオレフィン系重合体がポリプロピレン系重合体である、上記[1]~[6]のいずれかに記載の不織布。
[8]前記低結晶性のオレフィン系重合体が、さらに以下の特性(d)~(i)を満たす低結晶性ポリプロピレンである、上記[1]~[7]のいずれかに記載の不織布。
(d)[mmmm]=20~60モル%
(e)[rrrr]/(1-[mmmm])≦0.1
(f)[rmrm]>2.5モル%
(g)[mm]×[rr]/[mr]2≦2.0
(h)重量平均分子量(Mw)=10,000~200,000
(i)分子量分布(Mw/Mn)<4
(上記において、[mmmm]はメソペンタッド分率、[rrrr]はラセミペンタッド分率、[rmrm]はラセミメソラセミメソペンタッド分率、[mm]はメソトリアッド分率、[rr]はラセミトリアッド分率、[mr]はメソラセミトリアッド分率を表す。)
[9]上記[1]~[8]のいずれかに記載の不織布を用いてなる繊維製品。
 本発明の不織布は、特に低温ヒートシール性(例えば160~180℃におけるヒートシール強度)に優れているため、二次加工性に優れ、各種繊維製品を安価で安定的に提供することができる。
 本発明の不織布は、低結晶性のオレフィン系重合体を一定量含有する結晶性樹脂組成物を用いて製造される。なお、本発明において、低結晶性のオレフィン系重合体は、立体規則性が適度に乱れた結晶性のオレフィン系重合体であって、具体的には以下の特性(a)を満たすオレフィン系重合体を指す。一方、該特性(a)を満たさないオレフィン系重合体を、高結晶性のオレフィン系重合体(オレフィン系重合体がポリプロピレンの場合には、高結晶性のポリプロピレン)ということがある。
(a)融点(Tm)と融解吸熱量(ΔH)が下記の関係を満たす。
       ΔH≧6×(Tm-140℃)
 該特性(a)は、融点のわりに融解吸熱量が高いことを示すものであり、後述する低結晶性のオレフィン系重合体の製造方法によって得られたものは該特性(a)を満たすが、複数の異なる活性点を有する従来型のチーグラー・ナッタ系触媒を用いて製造したオレフィン系重合体は、通常、該特性(a)を満たさない。
 本発明で用いる結晶性樹脂組成物は、前述の通り、低結晶性のオレフィン系重合体を含有する組成物である。
 該低結晶性のオレフィン系重合体は、さらに、下記特性(b)又は(c)を満たすものであることが好ましく、下記特性(b)及び(c)を満たすものであることがより好ましい。
(b)融点(Tm)が0℃以上、120℃未満である。
(c)融解吸熱量(ΔH)が1~100J/gである。
(低結晶性のオレフィン系重合体)
 本発明で使用する低結晶性のオレフィン系重合体は、エチレン及び炭素数3~28のα-オレフィンから選ばれる1種以上のモノマーを重合してなるオレフィン系重合体が好ましく、炭素数3~28のα-オレフィンから選ばれる1種以上のモノマーを重合してなるオレフィン系重合体が特に好ましい。
 炭素数3~28のα-オレフィンとしては、例えばプロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン及び1-イコセン等が挙げられる。これらの中でも、好ましくは炭素数3~16のα-オレフィン、より好ましくは炭素数3~10のα-オレフィン、さらに好ましくは炭素数3~6のα-オレフィン、特に好ましくはプロピレンである。これらのうちの1種を単独で重合したオレフィン系重合体を使用してもよいし、2種以上を組み合わせて共重合して得られるオレフィン系共重合体を使用してもよい。なお、本発明において、単に「オレフィン系重合体」という場合には、オレフィン系共重合体も含まれる。
 以上より、低結晶性のオレフィン系重合体としては、特に低結晶性のポリプロピレンが好ましい。該ポリプロピレンは、上記特性(a)を満たしている限り、プロピレン以外の上記α-オレフィンとの共重合体であってもよい。この場合、プロピレン以外の上記α-オレフィンの使用比率は、プロピレン及びそれ以外のα-オレフィンの全量に対して好ましくは2質量%以下、より好ましくは1質量%以下である。
 また、上記特性(a)を満たす低結晶性のオレフィン系重合体は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明で使用する低結晶性のオレフィン系重合体は、上記特性(a)で示されるオレフィン系重合体であり、好ましくは前記特性(b)を満たす、つまり、好ましくは融点(Tm)が0℃以上120℃未満であり、低融点のオレフィン系重合体である。該融点が0℃以上であれば、ベタつき成分又は液状成分となり難い。120℃未満であれば、不織布同士の融着温度の低下が阻害されることがなく、低温ヒートシール性の改善効果が得られ易い。この観点から、該融点は、好ましくは20℃以上120℃未満、より好ましくは20~100℃、より好ましくは40~100℃、さらに好ましくは50~90℃、特に好ましくは60~80℃である。
 なお、示差走査型熱量計(パーキン・エルマー社製、DSC-7)を用い、試料10mgを窒素雰囲気下230℃で3分間保持した後、10℃/分で0℃まで降温し、さらに0℃で3分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最大ピークのピークトップが融点であり、この場合の融解熱量がΔHとして定義される。
 本発明で使用する低結晶性のオレフィン系重合体は、好ましくは前記特性(c)を満たす、つまり、好ましくは融解吸熱量(ΔH)が1~100J/gである。融解吸熱量が1J/g以上であれば、室温において完全非晶状態、溶融状態とはならず、100J/g以下であれば、不織布の結晶化度が低く、低温ヒートシール性の改善効果を得易い。この観点から、該融解吸熱量は、好ましくは2~90J/g、より好ましくは2~60J/g、より好ましくは5~50J/g、さらに好ましくは10~50J/g、特に好ましくは15~40J/gである。
 本発明で使用する低結晶性のオレフィン系重合体は、上記特性(a)で示されるように、融点(Tm)と融解吸熱量(ΔH)が下記の関係を満たす必要がある。
       ΔH≧6×(Tm-140℃)
 好ましくは、ΔH≧3×(Tm-120℃)であり、
 より好ましくはΔH≧2×(Tm-100℃)である。
 さらに、本発明で使用する低結晶性のオレフィン系重合体は、結晶化温度(Tc)が10~60℃であることが好ましく、より好ましくは20~50℃、さらに好ましくは30~40℃である。また、メルトフローレート(MFR)が20~400g/10分であることが好ましく、より好ましくは20~200g/10分、さらに好ましくは20~100g/10分、特に好ましくは40~80g/10分である。該結晶化温度及びMFRは、実施例に記載の方法によって測定した値である。
 本発明で使用する低結晶性のオレフィン系重合体は、特に、下記特性(d)~(i)を満たす低結晶性のオレフィン系重合体であることが好ましく、下記特性(d)~(i)を満たす低結晶性のポリプロピレンであることがより好ましい。
(d)[mmmm]=20~60モル%
(e)[rrrr]/(1-[mmmm])≦0.1
(f)[rmrm]>2.5モル%
(g)[mm]×[rr]/[mr]2≦2.0
(h)重量平均分子量(Mw)=10,000~200,000
(i)分子量分布(Mw/Mn)<4
 上記において、[mmmm]はメソペンタッド分率、[rrrr]はラセミペンタッド分率、[rmrm]はラセミメソラセミメソペンタッド分率、[mm]はメソトリアッド分率、[rr]はラセミトリアッド分率、[mr]はメソラセミトリアッド分率を表し、いずれも実施例に記載の方法により求めた値である。
 以下に、上記特性(d)~(i)について順に説明する。
(d)[mmmm]=20~60モル%
 本発明で好ましく使用される低結晶性のポリプロピレンは、[mmmm](メソペンタッド分率)が好ましくは20~60モル%である。[mmmm]が20モル%以上であれば、溶融後の固化が遅くならず、繊維がベタつくのを抑制できるため、巻取りロールに付着して連続成形が困難になるようなことがない。また、[mmmm]が60モル%以下であれば、低温ヒートシール性に優れ、また、結晶化度が高過ぎることがなく、弾性回復性が良好となる。このような観点から、[mmmm]は、好ましくは30~50モル%、より好ましくは40~50モル%である。
(e)[rrrr]/(1-[mmmm])≦0.1
 本発明で好ましく使用される低結晶性のポリプロピレンは、[rrrr]/(1-[mmmm])が好ましくは0.1以下である。[rrrr]/(1-[mmmm])は、低結晶性ポリプロピレンの規則性分布の均一さを示す指標である。この値が大きくなると既存触媒系を用いて製造される従来のポリプロピレンのように高立体規則性ポリプロピレンとアタクチックポリプロピレンの混合物となり、べたつきの原因となる。このような観点から、[rrrr]/(1-[mmmm])は、好ましくは0.001~0.05、より好ましくは0.001~0.04、さらに好ましくは0.01~0.04である。
(f)[rmrm]>2.5モル%
 本発明で好ましく使用される低結晶性のポリプロピレンは、[rmrm]が好ましくは2.5モル%を超えるものである。[rmrm]が2.5モル%を超えていれば、低結晶性ポリプロピレンのランダム性を保持できるため、アイソタクチックポリプロピレンブロック鎖による結晶化によって結晶化度が高くなって弾性回復性が低下するということがない。このような観点から、[rmrm]は、好ましくは2.6モル%以上、より好ましくは2.7モル%以上である。その上限は、通常、好ましくは10モル%程度であり、より好ましくは7モル%、さらに好ましくは5モル%、特に好ましくは4モル%である。
(g)[mm]×[rr]/[mr]2≦2.0
 本発明で好ましく使用される低結晶性のポリプロピレンは、[mm]×[rr]/[mr]2が、好ましくは2.0以下である。[mm]×[rr]/[mr]2は、重合体のランダム性の指標を示す。この値が2.0以下であれば、紡糸により得られた繊維において十分な弾性回復性が得られ、且つべたつきも抑制される。このような観点から、[mm]×[rr]/[mr]2は、好ましくは0.25を超え1.8以下、より好ましくは0.5~1.8、さらに好ましくは1~1.8、特に好ましくは1.2~1.6である。
(h)重量平均分子量(Mw)=10,000~200,000
 本発明で好ましく使用される低結晶性のポリプロピレンは、重量平均分子量が好ましくは10,000~200,000である。重量平均分子量が10,000以上であれば、低結晶性ポリプロピレンの粘度が低過ぎずに適度となるため、紡糸の際の糸切れが抑制される。また、重量平均分子量が200,000以下であれば、低結晶性ポリプロピレンの粘度が高すぎず、紡糸性が向上する。このような観点から、重量平均分子量は、好ましくは30,000~200,000、より好ましくは40,000~150,000、さらに好ましくは80,000~150,000、特に好ましくは100,000~140,000である。
(i)分子量分布(Mw/Mn)<4
 本発明で好ましく使用される低結晶性のポリプロピレンは、分子量分布(Mw/Mn)が好ましくは4未満である。分子量分布が4未満であれば、紡糸により得られた繊維におけるべたつきの発生が抑制される。この分子量分布は、好ましくは3以下、より好ましくは2.5以下であり、さらに好ましくは1.5~2.5である。
〔低結晶性のオレフィン系重合体の製造方法〕
 本発明で用いられる低結晶性のオレフィン系重合体の製造方法としては、(A)2個の架橋基を介して架橋構造を形成している遷移金属化合物と(B)助触媒を組み合わせて得られるメタロセン触媒を用いてプロピレン等の前記α-オレフィンを重合又は共重合する方法が好ましい。当該方法によれば、前記特性(a)を満たす低結晶性のオレフィン系重合体を容易に製造することができる。
 具体的には、下記一般式(I)で表される遷移金属化合物(A)、及び該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物(B-1)及びアルミノキサン(B-2)から選ばれる助触媒成分(B)を含有する重合用触媒の存在下、プロピレン等の前記α-オレフィンを重合又は共重合させる方法が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(I)中、Mは周期律表第3~10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基、インデニル基、置換インデニル基、ヘテロシクロペンタジエニル基、置換ヘテロシクロペンタジエニル基、アミド基、ホスフィド基、炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、またそれらはたがいに同一でも異なっていてもよい。Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX、E1、E2又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY、E1、E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、-O-、-CO-、-S-、-SO2-、-Se-、-NR1-、-PR1-、-P(O)R1-、-BR1-又は-AlR1-を示し、R1は水素原子、ハロゲン原子、炭素数1~20の炭化水素基又は炭素数1~20のハロゲン含有炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。qは1~5の整数で〔(Mの原子価)-2〕を示し、rは0~3の整数を示す。
 一般式(I)で表される遷移金属化合物の具体例としては、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-n-ブチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-フェニルインデニル)ジルコニウムジクロリド,(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(4,5-ベンゾインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(4-イソプロピルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(4,7-ジ-イソプロピルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(4-フェニルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-メチル-4-イソプロピルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(5,6-ベンゾインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-イソプロピリデン)-ビス(インデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-イソプロピリデン)-ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-イソプロピリデン)-ビス(3-イソプロピルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-イソプロピリデン)-ビス(3-n-ブチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-イソプロピリデン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド等、及びこれらの化合物におけるジルコニウムをチタン又はハフニウムに置換したものが挙げられる。
 次に、(B)成分のうちの(B-1)成分としては、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、テトラフェニル硼酸トリエチルアンモニウム、テトラフェニル硼酸トリ-n-ブチルアンモニウム、テトラフェニル硼酸トリメチルアンモニウム、テトラフェニル硼酸テトラエチルアンモニウム、テトラフェニル硼酸メチル(トリ-n-ブチル)アンモニウム、テトラフェニル硼酸ベンジル(トリ-n-ブチル)アンモニウム等が挙げられる。
 (B-1)成分は1種を単独で用いてもよく、また2種以上を組み合わせて用いてもよい。一方、(B-2)成分のアルミノキサンとしては、メチルアルミノキサン、エチルアルミノキサン、イソブチルアルミノキサン等が挙げられる。これらのアルミノキサンは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、前記(B-1)成分1種以上と(B-2)成分1種以上とを併用してもよい。
 上記重合用触媒としては、上記(A)成分及び(B)成分に加えて(C)成分として有機アルミニウム化合物を用いることができる。ここで、(C)成分の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、ジメチルアルミニウムフルオリド、ジイソブチルアルミニウムヒドリド、ジエチルアルミニウムヒドリド、エチルアルミニウムセスキクロリド等が挙げられる。これらの有機アルミニウム化合物は1種を単独で用いてもよく、2種以上を組合せて用いてもよい。ここで、プロピレンの重合に際しては、触媒成分の少なくとも1種を適当な担体に担持して用いることができる。
 重合方法は特に制限されず、スラリー重合法、気相重合法、塊状重合法、溶液重合法、懸濁重合法などのいずれの方法を用いてもよいが、塊状重合法、溶液重合法が特に好ましい。重合温度は通常-100~250℃、反応原料に対する触媒の使用割合は、「原料モノマー/上記(A)成分」(モル比)が好ましくは1~108、より好ましくは10~105、さらに好ましくは102~105である。さらに、重合時間は、通常、好ましくは5分~10時間、反応圧力は、通常、好ましくは常圧~20MPa(ゲージ圧)である。
(結晶性樹脂組成物)
 本発明で使用する前記結晶性樹脂組成物は、低結晶性のオレフィン系重合体を1~99質量%含有する。該オレフィン系重合体の含有量が1質量%未満であると、不織布の低温ヒートシール性の改善効果に乏しく、99質量%を超えると、不織布のべたつきによる成形性及び手触り感が低下し、不織布強度の低下にもつながる。この観点から、該オレフィン系重合体の含有量は、好ましくは1~49質量%、より好ましくは1~40質量%、より好ましくは3~40質量%である。なお、単一繊維を用いた場合と芯鞘型複合繊維を用いた場合とでは好ましい範囲が異なることがあり、それぞれの場合の好ましい範囲については後述する。
 前記結晶性樹脂組成物には、前記低結晶性のオレフィン系重合体以外の成分として、他の熱可塑性樹脂や添加剤を含有してもよい。
 他の熱可塑性樹脂としては、例えば、前記高結晶性のオレフィン系重合体、エチレン-酢酸ビニル共重合体、水素添加スチレン系エラストマー、ポリエステル樹脂、ポリアミド樹脂等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの熱可塑性樹脂の中でも、相容性、手触り感、柔軟性等の観点から、前記高結晶性のオレフィン系重合体が好ましい。該高結晶性のオレフィン系重合体の融点(Tm)は、好ましくは120~200℃、より好ましくは130~180℃、さらに好ましくは150~175℃であり、融解吸熱量(ΔH)は、好ましくは50~200J/g、より好ましくは55~190J/g、より好ましくは60~150J/g、より好ましくは70~130J/g、さらに好ましくは70~110J/g、特に好ましくは80~110J/gである。なお、該高結晶性のオレフィン系重合体のメルトフローレート(MFR)は、好ましくは1~100g/10分、より好ましくは10~80g/10分、さらに好ましくは15~80g/10分、特に好ましくは15~50g/10分である。このような高結晶性のオレフィン系重合体は、例えば特開2006-103147号公報等に記載の方法により容易に製造することができる。
 前記高結晶性のオレフィン系重合体としては、エチレン及び炭素数3~28のα-オレフィンから選ばれる1種以上のモノマーを重合してなるオレフィン系重合体が好ましく、中でも炭素数3~28のα-オレフィンから選ばれる1種以上のモノマーを重合してなるオレフィン系重合体が好ましい。該α-オレフィンとしては、前記したものと同じものを例示できる。該高結晶性のオレフィン系重合体としては、特に、プロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-エチレン-1-ブテンランダム共重合体、プロピレン-エチレンブロック共重合体が好ましく、プロピレン単独重合体(ポリプロピレン)がより好ましい。
 添加剤としては、従来公知の添加剤を配合することができ、例えば、発泡剤、結晶核剤、耐侯安定剤、紫外線吸収剤、光安定剤、耐熱安定剤、帯電防止剤、離型剤、難燃剤、合成油,ワックス、電気的性質改良剤、スリップ防止剤、アンチブロッキング剤、粘度調整剤、着色防止剤、防曇剤、滑剤、顔料、染料、可塑剤、軟化剤、老化防止剤、塩酸吸収剤、塩素捕捉剤、酸化防止剤、粘着防止剤などが挙げられる。
 本発明で使用する結晶性樹脂組成物は、ヒートシール温度が熱可塑性樹脂や添加剤の融点より低い場合でも、低結晶性ポリオレフィンの融点より高い温度であれば、低結晶性ポリオレフィンの成分が融解し、ヒートシール性(熱融着性)を発現することが可能となる。
 このような原理で、高結晶性ポリオレフィン単一成分であるよりも、低結晶性ポリオレフィンとから成る組成物であった方が、低温でのヒートシールが可能となり、特に低結晶性ポリオレフィン含量が多くなるほど、そのヒートシール強度も高くなります。
[不織布]
 本発明の不織布は、(1)1層以上からなる不織布であって、少なくとも1層が、前記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を用いてなる不織布であり、以下の実施形態1~3のいずれかをとる。
(実施形態1)1層からなる不織布が、前記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を用いてなる不織布。
(実施形態2)2層からなる不織布であって、該不織布のうちの少なくとも1層が、前記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を用いてなる不織布。
(実施形態3)3層以上からなる多層の不織布であって、該不織布の最外層2層のうち少なくとも1層が、前記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を用いてなる不織布。
 実施形態2の2層からなる不織布の場合、2層とも前記結晶性樹脂組成物を用いてなることが好ましい。
 また、実施形態3の3層以上からなる多層の不織布の場合、最外層2層のうちの両方が前記結晶性樹脂組成物を用いてなることが好ましい。ここで、例えば(AA)/(BB)/(CC)の3層からなる多層不織布で説明すると、最外層とは、(AA)層と(CC)層を意味する。本発明においては、最外層である(AA)層と(CC)層のうち、少なくとも1層が、前記結晶性樹脂組成物を用いてなる層であればよく、また、両層が前記結晶性樹脂組成物を用いてなる層であってもよい。
 前記(1)の不織布においては、前記結晶性樹脂組成物における前記低結晶性のオレフィン系重合体の含有量は、低温ヒートシール性の観点から、好ましくは1~49質量%、より好ましくは3~49質量%、さらに好ましくは3~30質量%であり、特に低温ヒートシール性の改善効果が顕著であるという観点から、好ましくは7~99質量%、より好ましくは7~49質量%、さらに好ましくは7~30質量%である。
 また、実施形態3の3層以上からなる多層の不織布の場合、低温ヒートシール性の観点から、前記結晶性樹脂組成物を用いてなる最外層の全層に対する比率が、目付け基準で1~99%であることが好ましく、より好ましくは1~60%、より好ましくは5~60%、より好ましくは10~60%、さらに好ましくは20~60%、特に好ましくは40~60%である。なお、目付とは、単位面積当たりの重さのことを言う。
 ここで、最外層の全層に対する比率が大きい場合は、更に低温ヒートシール性が良好となり好ましく、また、該比率が小さい場合は、良好な低温ヒートシール性を示しつつ、不織布の強度を高められる効果があり好ましい。
 なお、実施形態2の2層からなる不織布において前記結晶性樹脂組成物を用いていない層が存在する場合にはその層、及び実施形態3の3層以上からなる多層の不織布において前記結晶性樹脂組成物を用いていない層の成分としては特に制限はなく、不織布に用いられる通常の熱可塑性樹脂を用いることができる。それらの中でも、前記高結晶性のオレフィン系重合体が好ましく、前記高結晶性のポリプロピレンがより好ましい。該層の成分としても、前記結晶性樹脂組成物の場合と同様の熱可塑性樹脂や添加剤を含有していてもよい。
(芯鞘型複合繊維を用いてなる不織布)
 また、本発明の別の不織布は、(2)1層以上からなる不織布であって、少なくとも1層からなる不織布を構成する繊維が、前記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を鞘成分とした芯鞘型複合繊維であり、且つ鞘成分の比率が、芯成分と鞘成分の合計量に対して1~99質量%の芯鞘型複合繊維である不織布であり、以下の実施形態4~6のいずれかをとる。
(実施形態4)1層からなる不織布を構成する繊維が、前記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を鞘成分とした芯鞘型複合繊維であり、且つ鞘成分の比率が、芯成分と鞘成分の合計量に対して1~99質量%の芯鞘型複合繊維である不織布。
(実施形態5)2層からなる不織布において少なくとも1層を構成する繊維が、前記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を鞘成分とした芯鞘型複合繊維であり、且つ鞘成分の比率が、芯成分と鞘成分の合計量に対して1~99質量%の芯鞘型複合繊維である不織布。
(実施形態6)3層以上からなる多層の不織布の最外層を構成する繊維が、前記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を鞘成分とした芯鞘型複合繊維であり、且つ鞘成分の比率が、芯成分と鞘成分の合計量に対して1~99質量%の芯鞘型複合繊維である不織布。
 前記結晶性樹脂組成物には、前記低結晶性のオレフィン系重合体以外の成分として、前記の通り、他の熱可塑性樹脂や添加剤を含有してもよい。
 なお、このような不織布中の芯鞘型複合繊維の含有量は、好ましくは1~100質量%、より好ましくは10~100質量%、より好ましくは30~100質量%、より好ましくは50~100質量%、より好ましくは70~100質量%、さらに好ましくは80~100質量%、特に好ましくは90~100質量%、最も好ましくは実質的に100質量%である。
 芯鞘型複合繊維の鞘成分の比率は、ヒートシール強度及び低温ヒートシール性の観点から、芯成分と鞘成分の合計量に対して1~99質量%である必要がある。該鞘成分の比率が1質量%未満であると、鞘部位の厚みが薄くなり過ぎ、不織布の低温ヒートシール性の改善効果が得られず、99質量%を超えると、不織布強度が低下する。この観点から、芯鞘型複合繊維の鞘成分の比率は、芯成分と鞘成分の合計量に対して、好ましくは1~49質量%、より好ましくは5~49質量%、より好ましくは15~49質量%、さらに好ましくは25~49質量%、特に好ましくは30~49質量%である。
 なお、実施形態5の2層からなる不織布の場合、2層両方を構成する繊維が前記結晶性樹脂組成物を鞘成分とした芯鞘型複合繊維であることが好ましく、また、実施形態6の3層以上からなる多層の不織布の場合、最外層2層のうちの両方を構成する繊維が前記結晶性樹脂組成物を鞘成分とした芯鞘型複合繊維であることが好ましい。
 前記(2)の不織布においては、前記結晶性樹脂組成物における前記低結晶性のオレフィン系重合体の含有量は、低温ヒートシール性の観点から、好ましくは1~49質量%、より好ましくは3~49質量%、より好ましくは3~40質量%であり、さらに好ましくは10~40質量%、特に好ましくは15~35質量%である。
 また、実施形態6の3層以上からなる多層の不織布の場合、低温ヒートシール性の観点から、前記結晶性樹脂組成物を用いてなる最外層の全層に対する比率が、目付け基準で1~99%であることが好ましく、より好ましくは1~60%、より好ましくは5~60%、より好ましくは10~60%、さらに好ましくは20~60%、特に好ましくは40~60%である。
 芯鞘型複合繊維において、鞘成分については前述のとおりに説明される。芯成分については、特に制限されるものではなく、不織布に用いられる通常の熱可塑性樹脂又は該樹脂を含有する組成物を用いることができるが、該熱可塑性樹脂の中でも、前記高結晶性のオレフィン系重合体が好ましく、前記高結晶性のポリプロピレンがより好ましい。芯成分においても、鞘成分の結晶性樹脂組成物の場合と同様の他の熱可塑性樹脂や添加剤を含有していてもよい。また、芯成分としては、使用する鞘成分と異なっていれば、鞘成分として規定される前記結晶性樹脂組成物を用いてもよい。
 さらに、2層からなる不織布において前記芯鞘型複合繊維以外から構成される層が存在する場合にはその層、及び3層以上からなる多層の不織布において前記芯鞘型複合繊維以外から構成される層の成分としては特に制限はなく、不織布に用いられる通常の熱可塑性樹脂を用いることができるが、それらの中でも、前記高結晶性のオレフィン系重合体が好ましく、前記高結晶性のポリプロピレンがより好ましい。該層の成分としても、前記結晶性樹脂組成物の場合と同様の他の熱可塑性樹脂や添加剤を含有していてもよい。なお、前記芯鞘型複合繊維以外から構成される層の繊維は、前記規定範囲外の芯鞘型複合繊維であってもよいが、特に必要性がなければ単一繊維であることが好ましい。
 また、芯鞘型複合繊維において、芯成分を構成する熱可塑性樹脂と、鞘成分を構成する成分(つまり、前述の結晶性樹脂組成物に含まれる低結晶性のオレフィン系重合体、前記低結晶性のオレフィン系重合体以外の成分としての他の熱可塑性樹脂や添加剤のうちの少なくとも1種)との融点差が20℃未満であることが、不織布強度及び紡糸性の観点から好ましい。該融点差は、18℃以下であることがより好ましく、15℃以下であることがさらに好ましく、同一の融点を有する材料を含むことが特に好ましい。
〔不織布の製造方法〕
 本発明の不織布の製造方法に特に制限はなく、公知の乾式法、湿式法、スパンボンド法(メルトブロー法を含む)等を利用することができ、これらの中でも、スパンボンド法が好ましい。以下、スパンボンド法によって製造された不織布を、スパンボンド不織布と称する。
 通常、スパンボンド法においては溶融混練した結晶性樹脂組成物を紡糸し、延伸、開繊することによって連続長繊維を形成し、引き続き連続した工程で連続長繊維を移動捕集面上に堆積させ、絡合することによって不織布を製造する。当該方法は、不織布を連続的に製造することができ、また、該不織布を構成する繊維が延伸された連続の長繊維であるため、強度が大きい。
 該スパンボンド法としては、従来公知の方法を採用することができる。例えば、数千の孔を有する大ノズルや、或いは例えば40程度の孔を有する小ノズル群などから、溶融ポリマーの押出しにより繊維を製造することができる。ここで、単孔当たりの繊維の吐出量は、0.1~1g/分であることが好ましく、0.3~0.7g/分であることがより好ましい。ノズルを出た後、溶融繊維はクロスフロー冷気システムにより冷却され、次にノズルから引き離され、高速空気により延伸される。通常、2種類の空気減衰方法があり、その両方ともベンチュリー効果を用いる。第1の方法は、吸引スロットを用いてフィラメントを延伸し(スロット延伸)、ノズルの幅又は機械の幅で行う方法である。また、第2の方法は、ノズル又は吸引銃を通してフィラメントを延伸する。この方法で形成されるフィラメントはスクリーン(ワイヤー)上又は細孔形成ベルト上で収集されウェブを形成する。次に、ウェブは圧縮ロールを通過し、続いて加熱カレンダーロール間を通り、1つのロール上の盛り上がり部分がウェブの10%~40%の面積を含む部分で結合して、不織布を形成する方法である。
 ボンディング形式としては、エンボス、ホットエヤー、カレンダーなどの熱接着、接着剤接着、ニードルパンチ、ウォーターパンチなどの機械的交絡などが採用できる。
 なお、多層不織布の製造方法にも特に制限はなく、公知の方法により製造できる。例えば、最初に前記低結晶性のオレフィン系重合体を含有する結晶性樹脂組成物を用いてなる不織布を製造し、この上にスパンボンド法やメルトブロー法等によって不織布を形成し、必要に応じてさらにその上に不織布を重ね合わせて、加熱加圧によって融着させる方法が挙げられる。多層不織布にする際の積層手段としては、熱接着、接着剤接着などの各種積層手段があるが、簡便、安価な熱接着積層手段、特に熱エンボスロール法も採用できる。該熱エンボスロール法は、エンボスロールとフラットロールによる公知の積層装置を用いて積層することができる。エンボスロールとしては、各種形状のエンボスパターンを採用でき、各溶着部が連続した格子状、独立した格子状、任意分布などがある。
 本発明において、不織布の柔軟性は、エンボス加工をする際の温度調節や紡糸速度の調節によって制御することができる。
 エンボス加工をする際の温度調節により柔軟性の高いスパンボンド不織布を得る場合、当該温度は90~130℃の範囲が好ましい。エンボス温度が90℃以上であることで、繊維同士が十分に融着し不織布の強度が上がる。また、エンボス温度が130℃以下であることで、低結晶性のオレフィン系重合体が完全溶融してフィルム状になるおそれがなく、不織布が高い柔軟性を有する。
 本発明の不織布を用いた繊維製品としては、例えば、使い捨ておむつ用部材、おむつカバー用伸縮性部材、生理用品用伸縮性部材、衛生製品用伸縮性部材、伸縮性テープ、絆創膏、衣料用伸縮性部材、衣料用絶縁材、衣料用保温材、防護服、帽子、マスク、手袋、サポーター、伸縮性包帯、湿布剤の基布、スベリ止め基布、振動吸収材、指サック、クリーンルーム用エアフィルター、エレクトレット加工を施したエレクトレットフィルター、セパレーター、断熱材、コーヒーバッグ、食品包装材料、自動車用天井表皮材、防音材、クッション材、スピーカー防塵材、エアクリーナー材、インシュレーター表皮、バッキング材、接着不織布シート、ドアトリム等の各種自動車用部材、複写機のクリーニング材等の各種クリーニング材、カーペットの表材や裏材、農業捲布、木材ドレーン、スポーツシューズ表皮等の靴用部材、かばん用部材、工業用シール材、ワイピング材及びシーツなどを挙げることができる。特に、本発明の不織布は、紙おむつ等の衛生製品に好ましく用いられる。
 以下に実施例により本発明を更に具体的に説明するが、本発明はこれらの例によってなんら限定されるものではない。
 以下の製造例1で得られた低結晶性のポリプロピレンの各物性の測定は、以下のとおりに行った。
〔融点測定〕
 示差走査型熱量計(パーキン・エルマー社製、DSC-7)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップから融点(Tm)を求めた。
〔結晶化温度測定〕
 示差走査型熱量計(パーキン・エルマー社製、DSC-7)を用い、試料10mgを窒素雰囲気下、220℃で5分間保持した後、20℃/分で-30℃まで降温させることにより得られた発熱カーブのピークのピークトップから結晶化温度(Tc)を求めた。
〔立体規則性の評価:NMR測定〕
 以下に示す装置及び条件で、13C-NMRスペクトルの測定を行った。なお、ピークの帰属は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,8,687(1975)」で提案された方法に従った。
 装置:日本電子(株)製、JNM-EX400型13C-NMR装置
 方法:プロトン完全デカップリング法
 濃度:220mg/ml
 溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
 温度:130℃
 パルス幅:45°
 パルス繰り返し時間:4秒
 積算:10,000回
<計算式>
  M=m/S×100
  R=γ/S×100
  S=Pββ+Pαβ+Pαγ
  S:全プロピレン単位の側鎖メチル炭素原子のシグナル強度
  Pββ:19.8~22.5ppm
  Pαβ:18.0~17.5ppm
  Pαγ:17.5~17.1ppm
  γ:ラセミペンタッド連鎖:20.7~20.3ppm
  m:メソペンタッド連鎖:21.7~22.5ppm
 メソペンタッド分率[mmmm]、ラセミペンタッド分率[rrrr]及びラセミメソラセミメソペンダッド分率[rmrm]は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,6,925(1973)」で提案された方法に準拠して求めたものであり、13C-NMRスペクトルのメチル基のシグナルにより測定されるポリプロピレン分子鎖中のペンタッド単位でのメソ分率、ラセミ分率、及びラセミメソラセミメソ分率である。メソペンタッド分率[mmmm]が大きくなると、立体規則性が高くなる。また、トリアッド分率[mm]、[rr]及び[mr]も上記方法により算出した。
〔重量平均分子量(Mw)、分子量分布(Mw/Mn)測定〕
 ゲルパーミエイションクロマトグラフィ(GPC)法により、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。測定には、下記の装置及び条件を使用し、ポリスチレン換算の重量平均分子量を得た。
<GPC測定装置>
 カラム    :TOSO GMHHR-H(S)HT
 検出器    :液体クロマトグラム用RI検出器 WATERS 150C
<測定条件>
 溶媒     :1,2,4-トリクロロベンゼン
 測定温度   :145℃
 流速     :1.0ml/分
 試料濃度   :2.2mg/ml
 注入量    :160μl
 検量線    :Universal Calibration
 解析プログラム:HT-GPC(Ver.1.0)
〔メルトフローレート(MFR)測定〕
 JIS K7210に準拠し、温度230℃、加重21.18Nの条件でMFRを測定した。
製造例1(低結晶性ポリプロピレンの製造)
 攪拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを20L/h、トリイソブチルアルミニウムを15mmol/h、さらにジメチルアニリニウムテトラキスペンタフルオロフェニルボレートと(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドとトリイソブチルアルミニウムとプロピレンとを質量比1:2:20で事前に接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hで連続供給した。
 重合温度を67℃に設定し、反応器の気相部の水素濃度が0.8モル%、反応器内の全圧が0.7MPa(ゲージ圧)に保たれるように、プロピレンと水素を連続供給し、重合反応を行った。
 得られた重合溶液に、安定剤として「イルガノックス1010」(チバ・スペシャルティ・ケミカルズ社製)をその含有割合が500質量ppmになるように添加し、次いで溶媒であるn-ヘプタンを除去することにより、表1に記載の物性を有する低結晶性のポリプロピレンを得た。
Figure JPOXMLDOC01-appb-T000002
 以下の実施例1、2及び比較例1で得られたスパンボンド不織布について、各温度におけるヒートシール強度を以下のとおりにして測定した。
〔ヒートシール強度測定〕
 得られた不織布から、長さ200mm×幅40mmの試験片を、機械方向(MD)に対しサンプリングした。ヒートシールテスター(東洋精機工業(株)製、熱傾斜試験機)を用いて、圧力0.2MPaで2秒間、165℃、170℃又は175℃で2枚の不織布をヒートシールした。ヒートブロックは5連となっており、1ブロックの熱接着面積が250mm2(25mm×10mm)である。
 前述のようにして、ヒートシールした不織布サンプルについて、引張試験機(INTESCO製、オートグラフ201型)を用いて、2枚の不織布の未接着部をそれぞれチャックで掴み、引張速度200mm/分で伸張し、不織布同士が剥離したときの荷重を測定し、ヒートシール強度を決定した。なお、不織布同士が剥離する前に、不織布が破断したときは、「材破」と記載した。
実施例1(多層スパンボンド不織布の製造)
 製造例1で得られた低結晶性のポリプロピレン10質量%、高結晶性ポリプロピレン(PP、日本ポリプロ(株)製、NOVATEC SA03;MFR=30g/10分、融点=約164℃、融解吸熱量=94J/g)90質量%の配合比で混合した結晶性樹脂組成物を用い、スパンボンド装置を用いて以下のとおりにして不織布を製造した。
 単軸押出機を用いて樹脂温度230℃で原料を溶融押出し、ノズル径0.3mmの芯鞘複合ノズル(孔数841ホール)より、単孔当たり0.5g/分の速度で溶融樹脂を吐出させて紡糸した。紡糸により得られた繊維を空気で冷却しながら、エジェクター圧力2.0kg/cm2で吸引して、49m/minのライン速度で移動しているネット面に繊維を積層して不織布(S)[第1層]を得た。
 この不織布(S)の上に、上記スパンボンド法を用いて、高結晶性のポリプロピレンの繊維を直接堆積させてスパンボンド不織布(C)[第2層]を形成した後、さらにその上に、別途前記同様にして製造した不織布(S)[第3層]を重ね合わせて、135℃の熱ロールで加熱加圧により融着させて、スパンボンド不織布(S)/スパンボンド不織布(C)/スパンボンド不織布(S)の構造を有する多層不織布を得た。各層の目付(gsm:g/m2)及び得られた不織布の所定温度におけるヒートシール強度を表2に示す。
実施例2(多層スパンボンド不織布の製造)
 実施例1において、スパンボンド不織布(S)の製造において、低結晶性ポリプロピレン5質量%、高結晶性ポリプロピレン(PP、日本ポリプロ(株)製、NOVATEC SA03)を95質量%の配合比で混合した結晶性樹脂組成物を用いたこと以外は同様の方法により不織布を製造した。各層の目付(gsm:g/m2)及び得られた不織布の所定温度におけるヒートシール強度を表2に示す。
比較例1(多層スパンボンド不織布の製造)
 実施例1において、スパンボンド不織布(S)の製造において、高結晶性ポリプロピレン(PP、日本ポリプロ(株)製、NOVATEC SA03)のみからなる結晶性樹脂組成物を用いたこと以外は同様の方法により不織布を製造した。各層の目付(gsm:g/m2)及び得られた不織布の所定温度におけるヒートシール強度を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2より、実施例1で製造した多層不織布は、比較例1で製造した多層不織布に比べて特に170~175℃でのヒートシール強度が顕著に高くなっており、且つ、170℃にて30gf以上(より高いものでは70gf以上)、175℃にて270gf以上のヒートシール強度を得ており、低温ヒートシール性に優れていることがわかる。また、実施例2で製造した多層不織布も、比較例1で製造した多層不織布に比べて低温ヒートシール性に優れている。なお、第1層及び第3層において、低結晶性のポリプロピレンの含有量が10質量%である実施例1では、5質量%である実施例2によりも顕著に低温ヒートシール性が向上したことがわかる。
 以下の実施例3~5及び比較例2で得られたスパンボンド不織布について、前述同様にして所定温度におけるヒートシール強度の測定を行った。
実施例3(芯鞘型複合繊維を用いてなるスパンボンド不織布の製造)
 鞘成分としては、製造例1で得られた低結晶性ポリプロピレン25質量%、高結晶性ポリプロピレン(PP、日本ポリプロ(株)製、NOVATEC SA03)75質量%の配合比で混合した結晶性樹脂組成物を用い、芯成分としては、高結晶性ポリプロピレン(PP、日本ポリプロ株式会社製、NOVATEC SA03)のみを用い、スパンボンド装置を用いて以下のとおりにして不織布を製造した。
 鞘成分樹脂と芯成分樹脂を別々の単軸押出機を用いて樹脂温度230℃で原料を溶融押出し、ノズル径0.6mmの芯鞘複合ノズル(孔数797ホール)より、単孔当たり0.5g/分の速度で、溶融樹脂を鞘成分の比率[鞘成分/(鞘成分+芯成分)]が40質量%となるように吐出させて紡糸した。
 紡糸により得られた繊維を空気で冷却しながら、エジェクター圧力2.0kg/cm2で吸引して、45m/minのライン速度で移動しているネット面に繊維を積層した。ネット面に積層された繊維束を115℃に加熱したエンボスロールで線圧40kg/cmでエンボス加工し、引取りロールに巻き取った。
 得られた不織布の所定温度におけるヒートシール強度を表3に示す。
実施例4(芯鞘型複合繊維を用いてなるスパンボンド不織布の製造)
 実施例3において、鞘成分の比率[鞘成分/(鞘成分+芯成分)]が20質量%となるように吐出させて紡糸した以外は同様の方法により不織布を製造した。
 得られた不織布の所定温度におけるヒートシール強度を表3に示す。
実施例5(芯鞘型複合繊維を用いてなるスパンボンド不織布の製造)
 実施例3において、鞘成分の比率[鞘成分/(鞘成分+芯成分)]が10質量%となるように吐出させて紡糸した以外は同様の方法により不織布を製造した。
 得られた不織布の所定温度におけるヒートシール強度を表3に示す。
比較例2
 実施例3において、鞘成分に、高結晶性ポリプロピレン(PP、日本ポリプロ(株)製、NOVATEC SA03;MFR=30g/10分、融点=約164℃、融解吸熱量=94J/g)を用いた以外は同様の方法により不織布を製造した。
 得られた不織布の所定温度におけるヒートシール強度を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 表3より、実施例3~5で製造した不織布は、比較例2で製造した不織布に比べて165~175℃でのヒートシール強度が顕著に高くなっており、且つ、165℃にて40gf以上のヒートシール強度、170℃にて200gf以上(より高いものでは400gf以上)、175℃では材破する程度のヒートシール強度を得ており、低温ヒートシール性に優れていることがわかる。
 本発明の不織布は、各種繊維製品、例えば、使い捨ておむつ用部材、おむつカバー用伸縮性部材、生理用品用伸縮性部材、衛生製品用伸縮性部材、伸縮性テープ、絆創膏、衣料用伸縮性部材、衣料用絶縁材、衣料用保温材、防護服、帽子、マスク、手袋、サポーター、伸縮性包帯、湿布剤の基布、スベリ止め基布、振動吸収材、指サック、クリーンルーム用エアフィルター、エレクトレット加工を施したエレクトレットフィルター、セパレーター、断熱材、コーヒーバッグ、食品包装材料、自動車用天井表皮材、防音材、クッション材、スピーカー防塵材、エアクリーナー材、インシュレーター表皮、バッキング材、接着不織布シート、ドアトリム等の各種自動車用部材、複写機のクリーニング材等の各種クリーニング材、カーペットの表材や裏材、農業捲布、木材ドレーン、スポーツシューズ表皮等の靴用部材、かばん用部材、工業用シール材、ワイピング材及びシーツなどに有用である。特に、本発明の不織布は、紙おむつ等の衛生製品に好ましく用いられる。

Claims (9)

  1.  1層以上からなる不織布であって、
     1層からなる不織布が、
    又は2層からなる不織布のうちの少なくとも1層が、
    又は3層以上からなる多層の不織布の最外層2層のうち少なくとも1層が、
    下記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を用いてなる不織布。
    (a)融点(Tm)と融解吸熱量(ΔH)が下記の関係を満たす。
           ΔH≧6×(Tm-140℃)
  2.  1層以上からなる不織布であって、
     1層からなる不織布を構成する繊維が、
    又は2層からなる不織布において少なくとも1層を構成する繊維が、
    又は3層以上からなる多層の不織布の最外層を構成する繊維が、
    下記特性(a)を満たす低結晶性のオレフィン系重合体を1~99質量%含有する結晶性樹脂組成物を鞘成分とした芯鞘型複合繊維であり、且つ鞘成分の比率が、芯成分と鞘成分の合計量に対して1~99質量%の芯鞘型複合繊維である不織布。
    (a)融点(Tm)と融解吸熱量(ΔH)が下記の関係を満たす。
           ΔH≧6×(Tm-140℃)
  3.  前記芯鞘型複合繊維の鞘成分の比率が、芯成分と鞘成分の合計量に対して1~49質量%である、請求項2に記載の不織布。
  4.  前記3層以上からなる多層の不織布において、前記結晶性樹脂組成物を用いてなる最外層の全層に対する比率が、目付け基準で1~99%である、請求項1~3のいずれかに記載の不織布。
  5.  前記結晶性樹脂組成物を用いてなる最外層の全層に対する比率が、目付け基準で1~60%である、請求項4に記載の不織布。
  6.  前記結晶性樹脂組成物において、特性(a)を満たす低結晶性のオレフィン系重合体の含有量が1~49質量%である、請求項1~5のいずれかに記載の不織布。
  7.  前記低結晶性のオレフィン系重合体がポリプロピレン系重合体である、請求項1~6のいずれかに記載の不織布。
  8.  前記低結晶性のオレフィン系重合体が、さらに以下の特性(d)~(i)を満たす低結晶性ポリプロピレンである、請求項1~7のいずれかに記載の不織布。
    (d)[mmmm]=20~60モル%
    (e)[rrrr]/(1-[mmmm])≦0.1
    (f)[rmrm]>2.5モル%
    (g)[mm]×[rr]/[mr]2≦2.0
    (h)重量平均分子量(Mw)=10,000~200,000
    (i)分子量分布(Mw/Mn)<4
    (上記において、[mmmm]はメソペンタッド分率、[rrrr]はラセミペンタッド分率、[rmrm]はラセミメソラセミメソペンタッド分率、[mm]はメソトリアッド分率、[rr]はラセミトリアッド分率、[mr]はメソラセミトリアッド分率を表す。)
  9.  請求項1~8のいずれかに記載の不織布を用いてなる繊維製品。
PCT/JP2012/052160 2011-02-01 2012-01-31 不織布及び繊維製品 WO2012105566A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12742149.3A EP2671993B1 (en) 2011-02-01 2012-01-31 Nonwoven fabric and textile product
JP2012555902A JP5914367B2 (ja) 2011-02-01 2012-01-31 不織布及び繊維製品
US13/982,640 US20130323995A1 (en) 2011-02-01 2012-01-31 Nonwoven fabric and textile product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011020151 2011-02-01
JP2011-020151 2011-02-01

Publications (1)

Publication Number Publication Date
WO2012105566A1 true WO2012105566A1 (ja) 2012-08-09

Family

ID=46602777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052160 WO2012105566A1 (ja) 2011-02-01 2012-01-31 不織布及び繊維製品

Country Status (4)

Country Link
US (1) US20130323995A1 (ja)
EP (1) EP2671993B1 (ja)
JP (1) JP5914367B2 (ja)
WO (1) WO2012105566A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065416A1 (ja) * 2012-10-25 2014-05-01 出光興産株式会社 ポリオレフィン系成形体
WO2015178423A1 (ja) * 2014-05-20 2015-11-26 三井化学株式会社 不織布積層体、および衛生材料
JP2016040428A (ja) * 2014-03-20 2016-03-24 出光興産株式会社 捲縮繊維及び不織布
JPWO2014042253A1 (ja) * 2012-09-14 2016-08-18 出光興産株式会社 多層不織布及びその製造方法
JP2016159430A (ja) * 2015-02-26 2016-09-05 出光興産株式会社 不織布積層体及び不織布積層体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110236683A1 (en) * 2008-08-12 2011-09-29 Idemitsu Kosan Co., Ltd. Method for producing polypropylene elastic fiber and polypropylene elastic fiber
WO2017164410A1 (ja) * 2016-03-24 2017-09-28 凸版印刷株式会社 化粧シート及び化粧シートの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191463A (ja) * 1999-11-05 2001-07-17 Idemitsu Petrochem Co Ltd ポリオレフィン樹脂多層積層体
JP2003027331A (ja) * 2001-07-16 2003-01-29 Idemitsu Petrochem Co Ltd ポリオレフィン系繊維
JP2006103147A (ja) 2004-10-05 2006-04-20 Japan Polypropylene Corp 積層フィルム
WO2009001871A1 (ja) * 2007-06-26 2008-12-31 Idemitsu Kosan Co., Ltd. 弾性不織布、その製造方法及び該弾性不織布を用いた繊維製品
JP2009062667A (ja) 2007-06-26 2009-03-26 Idemitsu Kosan Co Ltd 弾性不織布及びこれを用いた繊維製品
WO2010018789A1 (ja) * 2008-08-12 2010-02-18 出光興産株式会社 ポリプロピレン弾性繊維の製造方法およびポリプロピレン系弾性繊維
WO2011030893A1 (ja) * 2009-09-14 2011-03-17 出光興産株式会社 スパンボンド不織布および繊維製品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188885A (en) * 1989-09-08 1993-02-23 Kimberly-Clark Corporation Nonwoven fabric laminates
JP4847638B2 (ja) * 1999-03-31 2011-12-28 出光興産株式会社 プロピレン系樹脂組成物、その製造方法及び成形体
KR100733191B1 (ko) * 2000-08-22 2007-06-27 이데미쓰 고산 가부시키가이샤 1-부텐계 중합체 및 상기 중합체로 이루어진 성형체
DE112005002790B4 (de) * 2004-11-11 2018-02-22 Idemitsu Kosan Co., Ltd. Polypropylenharz, Faser und Vliesgewebe
US20060141886A1 (en) * 2004-12-29 2006-06-29 Brock Thomas W Spunbond-meltblown-spunbond laminates made from biconstituent meltblown materials
KR101289591B1 (ko) * 2005-10-26 2013-07-26 다우 글로벌 테크놀로지스 엘엘씨 다층 사전-연신된 탄성 물품
KR20080060289A (ko) * 2005-10-26 2008-07-01 다우 글로벌 테크놀로지스 인크. 다층 탄성 물품

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191463A (ja) * 1999-11-05 2001-07-17 Idemitsu Petrochem Co Ltd ポリオレフィン樹脂多層積層体
JP2003027331A (ja) * 2001-07-16 2003-01-29 Idemitsu Petrochem Co Ltd ポリオレフィン系繊維
JP2006103147A (ja) 2004-10-05 2006-04-20 Japan Polypropylene Corp 積層フィルム
WO2009001871A1 (ja) * 2007-06-26 2008-12-31 Idemitsu Kosan Co., Ltd. 弾性不織布、その製造方法及び該弾性不織布を用いた繊維製品
JP2009062667A (ja) 2007-06-26 2009-03-26 Idemitsu Kosan Co Ltd 弾性不織布及びこれを用いた繊維製品
WO2010018789A1 (ja) * 2008-08-12 2010-02-18 出光興産株式会社 ポリプロピレン弾性繊維の製造方法およびポリプロピレン系弾性繊維
WO2011030893A1 (ja) * 2009-09-14 2011-03-17 出光興産株式会社 スパンボンド不織布および繊維製品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. ZAMBELLI ET AL., MACROMOLECULES, vol. 6, 1973, pages 925
ZAMBELLI ET AL., MACROMOLECULES, vol. 8, 1975, pages 687

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014042253A1 (ja) * 2012-09-14 2016-08-18 出光興産株式会社 多層不織布及びその製造方法
WO2014065416A1 (ja) * 2012-10-25 2014-05-01 出光興産株式会社 ポリオレフィン系成形体
JPWO2014065416A1 (ja) * 2012-10-25 2016-09-08 出光興産株式会社 ポリオレフィン系成形体
US10062472B2 (en) 2012-10-25 2018-08-28 Idemitsu Kosan Co., Ltd. Polyolefin molded product
JP2016040428A (ja) * 2014-03-20 2016-03-24 出光興産株式会社 捲縮繊維及び不織布
WO2015178423A1 (ja) * 2014-05-20 2015-11-26 三井化学株式会社 不織布積層体、および衛生材料
KR20160005346A (ko) * 2014-05-20 2016-01-14 미쓰이 가가쿠 가부시키가이샤 부직포 적층체 및 위생 재료
JP5851669B1 (ja) * 2014-05-20 2016-02-03 三井化学株式会社 不織布積層体、および衛生材料
KR101629626B1 (ko) 2014-05-20 2016-06-10 미쓰이 가가쿠 가부시키가이샤 부직포 적층체 및 위생 재료
JP2016159430A (ja) * 2015-02-26 2016-09-05 出光興産株式会社 不織布積層体及び不織布積層体の製造方法

Also Published As

Publication number Publication date
JP5914367B2 (ja) 2016-05-11
JPWO2012105566A1 (ja) 2014-07-03
US20130323995A1 (en) 2013-12-05
EP2671993A4 (en) 2016-12-21
EP2671993B1 (en) 2018-10-31
EP2671993A1 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5722222B2 (ja) スパンボンド不織布および繊維製品
JP6231481B2 (ja) 多層不織布及びその製造方法
JP5663189B2 (ja) ポリプロピレン系不織布
JP5973920B2 (ja) スパンボンド不織布の製造方法及びスパンボンド不織布
JP6521963B2 (ja) スパンボンド不織布及びその製造方法
JP6618002B2 (ja) 捲縮繊維及び不織布
JP5914367B2 (ja) 不織布及び繊維製品
WO2014142275A1 (ja) フィルター及びフィルター積層体、並びにこれらを有する繊維製品
WO2011108504A1 (ja) 弾性不織布及び繊維製品
WO2018212211A1 (ja) 捲縮繊維及び不織布
JP2018159158A (ja) スパンボンド不織布
JP2018145536A (ja) スパンボンド不織布
JP2019148032A (ja) 繊維及び不織布
JP4959497B2 (ja) 不織布
JP2020076178A (ja) 不織布及びその製造方法
JPWO2020095948A1 (ja) 不織布及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555902

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13982640

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012742149

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE