WO2012104904A1 - ハイブリッド車両の駆動制御装置、制御方法、およびハイブリッド車両 - Google Patents

ハイブリッド車両の駆動制御装置、制御方法、およびハイブリッド車両 Download PDF

Info

Publication number
WO2012104904A1
WO2012104904A1 PCT/JP2011/000533 JP2011000533W WO2012104904A1 WO 2012104904 A1 WO2012104904 A1 WO 2012104904A1 JP 2011000533 W JP2011000533 W JP 2011000533W WO 2012104904 A1 WO2012104904 A1 WO 2012104904A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
target
target engine
engine torque
engine
Prior art date
Application number
PCT/JP2011/000533
Other languages
English (en)
French (fr)
Inventor
幸弘 細江
伊藤 芳輝
雅章 田川
仁 大熊
Original Assignee
スズキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スズキ株式会社 filed Critical スズキ株式会社
Priority to CN201180066383.7A priority Critical patent/CN103339007B/zh
Priority to PCT/JP2011/000533 priority patent/WO2012104904A1/ja
Priority to JP2012555556A priority patent/JPWO2012104904A1/ja
Priority to US13/981,005 priority patent/US9150217B2/en
Priority to DE112011104801T priority patent/DE112011104801T5/de
Publication of WO2012104904A1 publication Critical patent/WO2012104904A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1884Avoiding stall or overspeed of the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Definitions

  • the present invention relates to a hybrid vehicle drive control technique for preventing over-rotation of a motor generator.
  • the motor generator has an outputable torque that can be output during driving, power generation, or the like, depending on its unique characteristics.
  • This outputable torque is substantially constant in a predetermined rotation speed range (rotational speed range) that is a normal range of the motor generator.
  • the rotational speed of the motor generator that is rotationally driven exceeds the inherent upper limit rotational speed.
  • the engine may reach an overspeed range and become over-rotated.
  • the output torque of the motor generator comes closer to zero than a constant value in the normal range. That is, the absolute value of the torque of the motor generator is reduced.
  • the absolute value of the command torque for the motor generator is smaller than the absolute value of the outputtable torque, a torque commensurate with the command torque can be generated.
  • Patent Document 1 controls based on the maximum output correction value set by giving a margin value to the maximum output of the motor generator, and can prevent over-rotation of the motor generator. it can.
  • an engine control unit ECU
  • a target rotation in the rotational speed feedback control of the internal combustion engine is determined according to the output torque of the internal combustion engine.
  • the number is corrected so as to decrease. That is, in the technique disclosed in Patent Document 2, the rotational speed of the internal combustion engine is managed so that the motor generator does not overspeed.
  • Patent Document 1 has a problem that the range is always limited by the margin value, and there is room for improvement. Further, the technique disclosed in Patent Document 2 is independent control when communication is abnormal, and is control that does not consider the magnitude of the torque command of the motor generator at all.
  • the present invention has been made in view of the above-described problems, and it is an object of the present invention to easily control the rotational speed of an internal combustion engine and prevent over-rotation of a motor generator.
  • a first aspect of the present invention is a drive control device for driving and controlling a hybrid vehicle using outputs from an internal combustion engine and a motor generator, and the target engine torque of the internal combustion engine is determined from target engine power and overall system efficiency.
  • a target engine torque setting unit that sets a torque command value of the motor generator, a target engine torque that is set based on the torque command value of the motor generator and an outputable torque
  • An engine torque correction unit that corrects the target engine torque with a correction value.
  • the engine torque correction unit can correct the target engine torque when the absolute value of the outputtable torque of the motor generator is smaller than the absolute value of the torque command value.
  • the engine torque correction unit calculates an outputable torque of the motor generator based on the rotation speed of the motor generator, the torque command value of the motor generator, A differential torque calculation unit that calculates a differential torque from the outputable torque, an engine torque correction component calculation unit that calculates an engine torque correction component obtained by converting the differential torque, the engine torque correction component, and the target engine torque You may provide the synthetic
  • the engine torque correction unit sets a minimum engine torque to the target engine torque, and the target engine torque correction value setting unit compares the combined torque with the minimum engine torque. The larger one may be set as the target engine torque correction value.
  • the motor generator is a pair of a first motor generator and a second motor generator, the internal combustion engine, the first motor generator, and the second motor.
  • Four elements composed of a generator and an output unit are connected on the alignment chart so that the first motor generator, the internal combustion engine, the output unit, and the second motor generator are arranged in this order.
  • the planetary gear mechanism is provided, and the engine torque correction unit calculates the target engine torque correction value for correcting the target engine torque, the torque command value of the first motor generator, and the output of the first motor generator. It can be set based on the possible torque.
  • the target engine torque setting unit sets a target engine operating point for determining the target engine torque and the target engine rotation speed of the internal combustion engine from the target engine power and the overall system efficiency. It can be set as the structure contained in an operating point setting part.
  • the accelerator opening degree detection part which detects the said accelerator opening degree It is good also as a structure provided.
  • a vehicle speed detector that detects the vehicle speed may be provided, or a battery charge state detector that detects a state of charge of the battery may be provided.
  • a hybrid vehicle drive control method for driving and controlling a vehicle using outputs from an internal combustion engine and a motor generator, wherein the absolute value of output possible torque of the motor generator is a torque command value.
  • the control is performed so that the target engine torque of the internal combustion engine set from the target engine power and the overall system efficiency is reduced.
  • a minimum engine torque is set as the target engine torque, and control is performed so that the target engine torque does not fall below the minimum engine torque when the target engine torque decreases.
  • a third aspect of the present invention is a hybrid vehicle, and is characterized in that the drive control device according to the first aspect is mounted.
  • the engine rotational speed is suppressed by correcting the target engine torque and suppressing the engine torque based on the relationship between the torque command value of the motor generator and the outputtable torque.
  • the motor generator can be prevented from over-rotating.
  • the control can be performed by using the trigger when the absolute value of the torque that can be output from the motor generator becomes smaller than the absolute value of the torque command value, and before the motor generator is over-rotated.
  • the target engine torque since the target engine torque is corrected, the engine speed can be quickly reduced. As a result, over-rotation of the motor generator can be prevented.
  • the motor generator by controlling when the absolute value of the output possible torque of the motor generator becomes smaller than the absolute value of the torque command value, the motor generator can be controlled to prevent over-rotation of the motor generator more than necessary. Therefore, unnecessary suppression of the output torque of the internal combustion engine can be reduced.
  • the target engine torque is remarkably determined from the relationship between the torque command value of the motor generator and the outputable torque. Even if the situation is suppressed, the minimum target engine torque can be ensured. Therefore, according to this first aspect, the engine torque can be stabilized and the reliability of the system can be ensured.
  • the drive control method of the second aspect of the present invention it is only necessary to use a trigger when the absolute value of the output possible torque of the motor generator becomes smaller than the torque command value. Since prevention control is not performed, unnecessary suppression of the output torque of the internal combustion engine can be reduced.
  • the minimum required target engine torque can be ensured even in a situation where the target engine torque is significantly suppressed. Therefore, according to the second aspect, the engine torque can be stabilized and the reliability of the system can be ensured.
  • the motor generator can be prevented from over-rotation, it becomes possible to prevent the control of the drive system from being disabled, and to ensure stable traveling. .
  • FIG. 1 is a system configuration diagram of a drive control apparatus for a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a target driving force search map that is referred to when setting the target driving force in the target driving force setting unit.
  • FIG. 3 is a diagram illustrating a target charge / discharge power search map referred to when setting the target charge / discharge power in the target charge / discharge power setting unit.
  • FIG. 4 is a diagram showing a target engine operating point search map that is referred to when setting the target engine operating point in the target engine operating point setting unit.
  • FIG. 5 is a control block diagram of the target engine operating point setting unit.
  • FIG. 6 is a flowchart showing the flow of control in the target engine operating point setting unit.
  • FIG. 1 is a system configuration diagram of a drive control apparatus for a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a target driving force search map that is referred to when setting the target driving force in the
  • FIG. 7 is a control block diagram of the motor torque command value calculation unit.
  • FIG. 8 is a flowchart showing a flow of control in the motor torque command value calculation unit.
  • FIG. 9 is a control block diagram of the engine torque correction unit.
  • FIG. 10 is a flowchart showing a flow of control by the drive control apparatus according to the embodiment of the present invention.
  • FIG. 11 is a timing chart showing a case where the control is performed by the drive control device according to the embodiment of the present invention, and showing transitions of each torque and the number of rotations accompanying control for preventing normal over-rotation.
  • FIG. 12 is a timing chart showing a case where control is performed by the drive control apparatus according to the embodiment of the present invention, and shows transitions of torques and rotation speeds accompanying control for preventing normal over-rotation.
  • FIG. 13 is a collinear diagram showing states of the first motor, the engine, the output unit, and the second motor before and after correction of the engine torque in the drive control device according to the embodiment of the present invention.
  • the hybrid vehicle travels under drive control using outputs from the internal combustion engine and the motor generator.
  • the drive control device mounted on the hybrid vehicle includes a target engine operating point setting unit that sets a target engine operating point for determining a target engine torque and a target engine speed of the internal combustion engine from the target engine power and the overall system efficiency, Motor torque command value calculating means for setting respective torque command values of the motor generators. Then, the drive control device mounted on the hybrid vehicle corrects the target engine torque by a target engine torque correction value that is set based on the torque command value of the motor generator and the outputtable torque of the motor generator, and reduces the torque. It adds control.
  • FIG. 1 is a system configuration diagram of a drive control apparatus for a hybrid vehicle
  • FIG. 2 is a view showing a target drive force search map to be referred to when setting a target drive force in a target drive force setting unit
  • FIG. 3 is a target charge / discharge power
  • FIG. 4 is a diagram showing a target charge / discharge power search map to be referred to when setting the target charge / discharge power in the setting unit
  • FIG. 4 is a target engine operation point referred to when setting the target engine operation point in the target engine operation point setting unit.
  • FIG. 5 is a control block diagram of a target engine operating point setting unit
  • FIG. 6 is a flowchart showing a control flow in the target engine operating point setting unit
  • FIG. 7 is a control block diagram of a motor torque command value calculating unit.
  • 8 is a flowchart showing the flow of control in the motor torque command value calculation unit
  • FIG. 9 is a control block diagram of the engine torque correction unit
  • FIG. 11 is a flowchart showing a flow of control by the drive control apparatus according to the embodiment
  • FIG. 11 is a timing chart showing transitions of torques and rotation speeds accompanying control for preventing normal over-rotation
  • FIG. 12 responds to over-rotation prevention.
  • FIG. 13 is a nomographic chart of the first motor, the engine, the output unit, and the second motor, and shows the state before and after correction of the engine torque. Show.
  • the hybrid vehicle 100 includes a drive mechanism 1 and a drive control device 32.
  • a drive mechanism 1 includes an output shaft 3 of an engine 2 and a first motor 4 (also referred to as MG1) that is a first motor generator that generates electric power while being driven by electricity. ) And a second motor 5 (also referred to as MG2) as a second motor generator, a drive shaft 7 connected to the drive wheels 6 of the hybrid vehicle 100, the output shaft 3, the first motor 4, the second motor 5, A first planetary gear mechanism 8 and a second planetary gear mechanism 9 connected to the drive shaft 7 are provided.
  • the engine 2 includes an air amount adjusting unit 10 such as a slot valve that adjusts the amount of air to be sucked according to the accelerator opening (the amount of depression of the accelerator pedal), and a fuel injection valve that supplies fuel corresponding to the amount of air to be sucked And an ignition unit 12 such as an ignition device that ignites the fuel.
  • an air amount adjusting unit 10 such as a slot valve that adjusts the amount of air to be sucked according to the accelerator opening (the amount of depression of the accelerator pedal), and a fuel injection valve that supplies fuel corresponding to the amount of air to be sucked
  • an ignition unit 12 such as an ignition device that ignites the fuel.
  • the combustion state of the fuel is controlled by the air amount adjustment unit 10, the fuel supply unit 11, and the ignition unit 12, and a driving force is generated by the combustion of the fuel.
  • the first motor 4 includes a first motor rotor shaft 13, a first motor rotor 14, and a first motor stator 15.
  • the second motor 5 includes a second motor rotor shaft 16, a second motor rotor 17, and a second motor stator 18.
  • the first motor stator 15 of the first motor 4 is connected to the first inverter 19.
  • the second motor stator 18 of the second motor 5 is connected to the second inverter 20.
  • the first motor 4 and the second motor 5 are controlled by the first inverter 19 and the second inverter 20 respectively, and the amount of electricity supplied from the battery 21 that is a power storage device is controlled, and the driving power is generated by the supplied power.
  • the battery 21 is charged by generating electrical energy by driving during regeneration.
  • the first planetary gear mechanism 8 includes a first sun gear 22, a first planetary carrier 24 that supports the first planetary gear 23 that meshes with the first sun gear 22, a first ring gear 25 that meshes with the first planetary gear 23, It has.
  • the second planetary gear mechanism 9 includes a second sun gear 26, a second planetary carrier 28 that supports a second planetary gear 27 that meshes with the second sun gear 26, a second ring gear 29 that meshes with the second planetary gear 27, It has.
  • the rotation center lines of the respective rotating elements are arranged on the same axis, and the first motor 4 is arranged between the engine 2 and the first planetary gear mechanism 8.
  • the second motor 5 is arranged on the side away from the engine 2 of the second planetary gear mechanism 9.
  • the 2nd motor 5 is equipped with the performance which can drive the hybrid vehicle 100 only by single output.
  • the first motor rotor shaft 13 of the first motor 4 is connected to the first sun gear 22 of the first planetary gear mechanism 8.
  • the first planetary carrier 24 of the first planetary gear mechanism 8 and the second sun gear 26 of the second planetary gear mechanism 9 are coupled and connected to the output shaft 3 of the engine 2.
  • the first ring gear 25 of the first planetary gear mechanism 8 and the second planetary carrier 28 of the second planetary gear mechanism 9 are coupled and coupled to the output unit 30.
  • the output unit 30 is connected to the drive shaft 7 via an output transmission mechanism 31 such as a gear or a chain.
  • the second motor rotor shaft 16 of the second motor 5 is connected to the second ring gear 29 of the second planetary gear mechanism 9. In such a driving mechanism 1 ⁇ / b> A, driving force is exchanged among the engine 2, the first motor 4, the second motor 5, and the driving shaft 7.
  • the air amount adjustment unit 10 the fuel supply unit 11, the ignition unit 12, the first motor stator 15 of the first motor 4, and the second motor stator 18 of the second motor 5 are connected to the drive control device 32. It is connected.
  • the drive control device 32 is connected to an accelerator opening detector 33, a vehicle speed detector 34, an engine speed detector 35, and a battery charge state detector 36.
  • the drive control device 32 includes a target driving force setting unit 37, a target driving power setting unit 38, a target charge / discharge power setting unit 39, a target engine power calculation unit 40, a target engine operating point setting unit 41, and a motor torque.
  • a command value calculation unit 42, an internal combustion engine control unit 43, and an engine torque correction unit 44 are provided.
  • the accelerator opening detector 33 detects an accelerator opening tvo that is the amount of depression of the accelerator pedal.
  • the vehicle speed detector 34 detects a vehicle speed (vehicle speed) Vs of the hybrid vehicle.
  • the engine speed detector 35 detects the engine speed Ne of the engine 2.
  • the battery charge state detection unit 36 detects the charge state SOC of the battery 21.
  • FIG. 5 is a control block diagram showing a target driving force calculation unit 37, a target driving power calculation unit 38, a target charge / discharge power calculation unit 39, a target engine power calculation unit 40, and a target engine operating point calculation unit 41.
  • the function of the target engine torque calculation unit 41A is shown.
  • the target driving force calculation unit 37 drives the hybrid vehicle 100 according to the accelerator opening (depression amount) tvo detected by the accelerator opening detection unit 33 and the vehicle speed Vs detected by the vehicle speed detection unit 34.
  • the target driving force Fdrv for searching is set by searching with a target driving force search map as shown in FIG.
  • the target drive power calculation unit 38 sets the target drive power Pdrv based on the accelerator opening tvo detected by the accelerator opening detection unit 33 and the vehicle speed Vs detected by the vehicle speed detection unit 34.
  • the target driving power Pdrv is set by multiplying the target driving force Fdrv and the vehicle speed Vs.
  • the target charge / discharge power calculation unit 39 sets the target charge / discharge power Pbat based on at least the charge state SOC of the battery 21 detected by the battery charge state detection unit 36. In this embodiment, for example, according to the state of charge SOC of the battery 21 and the vehicle speed Vs, the target charge / discharge power Pbat is searched and set, for example, using a target charge / discharge power search map as shown in FIG.
  • the target engine power calculation unit 40 calculates the target engine power Peg from the target drive power Pdrv set by the target drive power setting unit 38 and the target charge / discharge power Pbat calculated by the target charge / discharge power calculation unit 39. .
  • the target engine power Peg is obtained by subtracting the target charge / discharge power Pbat from the target drive power Pdrv.
  • a target engine operating point (target engine speed, target engine torque) corresponding to the target engine power Peg and the vehicle speed is obtained from a target engine operating point search map as shown in FIG. Search and set.
  • the target engine operating point setting unit 41 includes a target engine torque calculation unit 41A.
  • FIG. 6 is a flowchart showing control until the target engine operating point (target engine rotational speed, target engine torque) is calculated from the amount of depression of the accelerator pedal of the driver and the vehicle speed by the drive control device 32 described above.
  • the control operation until the target engine operating point is calculated will be described with reference to FIG. This routine is repeatedly executed every predetermined time.
  • step S1 various signals such as the accelerator opening tvo and the vehicle speed Vs are captured (step S1).
  • the target driving force corresponding to the accelerator opening (depression amount) tvo and the vehicle speed Vs is calculated (step S2).
  • the high vehicle speed range when the accelerator opening is 0 is set to a negative value so that the driving force in the deceleration direction corresponding to the engine brake is obtained, and positive so that the vehicle can creep while the accelerator opening is 0 and the speed is low. Value.
  • target driving power the power necessary for driving the vehicle with the target driving force
  • a target charge / discharge amount is searched and calculated from, for example, a target charge / discharge amount search map as shown in FIG. S4). Note that when the state of charge SOC is low, the charging power is increased to prevent overdischarge of the battery 21, and when the SOC is high, the discharge power is increased to prevent overcharging. As shown in FIG. 3, for the sake of convenience, the discharge side is treated as a positive value and the charge side is treated as a negative value.
  • the power to be output by the engine (target engine power) is calculated from the target drive power and the target charge / discharge power (step S5).
  • the power to be output by the engine is a value obtained by adding (subtracting in the case of discharging) the power for charging the battery 21 to the power required for driving the vehicle.
  • the target engine power is calculated by subtracting the target charge / discharge power from the target drive power.
  • a target engine operating point corresponding to the target engine power and the vehicle speed is calculated from the target engine operating point search map as shown in FIG. 4 (step S6), and the process goes to return.
  • the efficiency of the power transmission system constituted by the first planetary gear 23, the second planetary gear 27, the first motor 4, and the second motor 5 is set to the efficiency of the engine 2 on the equal power line.
  • a line that selects and connects points that improve the overall efficiency in consideration of each power is set as a target operating point line.
  • the target operating point line is set for each vehicle speed. This set value may be obtained experimentally or calculated from the efficiency of the engine 2, the first motor 4, and the second motor 5.
  • FIG. 7 is a control block diagram showing a motor torque command value calculation function unit performed by the motor torque command value calculation unit 42, and FIG. 8 shows a flowchart thereof.
  • the motor torque command value calculation unit 42 uses the torque balance formula including the target engine torque obtained from the target engine operating point and the power balance formula including the target charge / discharge power, and uses the first motor 4 (MG1). Then, each torque command value of the second motor 5 (MG2) is calculated.
  • the torque balance type and power balance type will be described later.
  • the first motor 4 and the second motor 5 are determined from the target engine speed calculated from the target engine operating point calculated by the target engine operating point setting unit 41 (see FIG. 5) and the vehicle speed.
  • the respective rotation speeds (Nmg1, Nmg2) are calculated, and the torque command of the first motor 4 is calculated based on the rotation speeds (Nmg1, Nmg2) of the first motor 4 and the second motor 5, the target charge / discharge power, and the target engine torque.
  • the value (Tmg1i) is calculated.
  • the torque command value (Tmg2i) of the second motor 5 is calculated based on the torque command value (Tmg1i) of the first motor 4 and the target engine torque. Further, the motor torque command value calculation unit 42 feeds back the torque command values of the first motor 4 and the second motor 5 to the actual engine rotation speed so as to converge the target engine rotation speed obtained from the target engine operating point. Correction amounts (Tmg1fb, Tmg2fb) are set. Then, the torque command value (Tmg1) of the first motor 4 is calculated from the feedback correction amount (Tmg1fb) of the first motor 4 and the torque command value (Tmg1i), and the feedback correction amount (Tmg2fb) of the second motor 5 is calculated. Then, the torque command value (Tmg2) of the second motor 5 is calculated from the torque command value (Tmg2i).
  • step S11 the drive shaft rotational speed No of the first planetary gear mechanism 8 and the second planetary gear mechanism 9 is calculated from the vehicle speed. Then, the rotation speed Nmg1 of the first motor 4 and the rotation speed Nmg2 of the second motor 5 when the engine rotation speed becomes the target engine rotation speed Net are calculated by the following equations (1) and (2). This arithmetic expression is obtained from the relationship between the rotational speeds of the first planetary gear mechanism 8 and the second planetary gear mechanism 9.
  • Nmg1 (Net-No) * k1 + Net (1)
  • Nmg2 (No ⁇ Net) * k2 + No (2)
  • Torque Tmg1i (Pbat * 60 / 2 ⁇ Nmg2 * Tet / k2) / (Nmg1 + Nmg2 * (1 + k1) / k2) (3)
  • step S13 the basic torque Tmg2i of the second motor 5 is calculated from Tmg1i and the target engine torque by the following equation (6).
  • Tmg2i (Tet + (1 + k1) * Tmg1i) / k2 (6)
  • This equation (6) is derived from the above equation (4).
  • step S14 in order to bring the engine speed close to the target, the deviation from the target value of the engine speed is multiplied by a predetermined feedback gain set in advance, and the feedback correction of the first motor 4 and the second motor 5 is performed. Torques Tmg1fb and Tmg2fb are calculated.
  • step S15 the feedback correction torques Tmg1fb and Tmg2fb of the first motor 4 and the second motor 5 are added to the basic torques Tmg1i and Tmg2i, and the torque command values Tmg1 and Tmg1 of the first motor 4 and the second motor 5, respectively.
  • Tmg2i the torque command values
  • FIG. 9 is a diagram showing a control block of the engine torque correction unit 44.
  • the engine torque correction unit 44 sets a target engine torque correction value and corrects the engine torque.
  • the engine torque correction unit 44 includes an outputable torque calculation unit 44A, a differential torque calculation unit 44B, an engine torque correction component calculation unit 44C, a combined torque calculation unit 44D, and a target engine torque correction value. And a calculation unit 44E.
  • the outputable torque calculation unit 44A calculates an outputable torque (minimum value) from the rotation speed Nmg1 of the first motor 4 (MG1).
  • the differential torque calculation unit 44B is the differential torque between the torque command value calculated by the output torque calculation unit 44A and the first motor 4 (MG1) calculated by the above-described motor torque command value calculation method. ⁇ T is calculated.
  • the engine torque correction component calculation unit 44C converts (multiplies) the differential torque ⁇ T calculated by the differential torque calculation unit 44B by a constant (reciprocal of (1 + k1): 1 / (1 + k1)) composed of the gear ratio in the planetary gear mechanism. E) Calculate the engine torque correction component.
  • the combined torque calculation unit 44D calculates the combined torque from the target engine torque and the engine torque correction component.
  • the target engine torque correction value calculation unit 44E is configured to output a target engine torque correction value for engine torque correction from the minimum engine torque and the combined torque.
  • the minimum engine torque is an engine torque (motoring torque specific to the engine 2) for maintaining a minimum rotational drive and guarding a decrease in rotation based on a characteristic unique to the engine 2.
  • FIG. 10 is a flowchart showing the control performed using the target engine torque correction value calculated by the engine torque correction unit 44 in order to prevent the first motor 4 from over-rotating.
  • This routine is repeatedly executed every predetermined time.
  • step S21 the basic target engine torque before performing engine torque correction, the torque command value of the first motor 4 (MG1), and the output possible torque (minimum value) of the first motor 4 ) And various signals such as minimum engine torque (motoring torque).
  • the engine torque correction unit 44 determines whether or not the torque command value of the first motor 4 is smaller than the output possible torque (minimum value) (step S22).
  • step S22 when the torque command value of the first motor 4 is larger (NO) than the output possible torque (minimum value), the target engine torque is the same as the basic target engine torque, and engine torque correction is performed. If not (step S23), the process goes to return (flow chart flow F1).
  • step S22 when the torque command value of the first motor 4 is smaller than the output possible torque (minimum value) (YES) (in the absolute value, the torque command value is larger than the output possible torque), A difference torque ⁇ T (see FIG. 11) between the torque command value of the first motor 4 and the output possible torque of the first motor 4 is calculated (step S24).
  • the basic target engine torque is multiplied by the torque obtained by converting the differential torque ⁇ T calculated in step S24 with a constant composed of a gear ratio, thereby calculating the basic target engine torque (step S25).
  • step S26 it is determined whether or not the combined torque is larger than the minimum engine torque.
  • step S26 if the combined torque is larger than the minimum engine torque (YES), the combined torque becomes the target engine torque (step S27), and the process goes to return (flow F2 in the flowchart).
  • step S26 if the combined torque is not greater than the engine minimum torque (NO), the minimum engine torque becomes the target engine torque (step S28), and the process returns (flow F3 in the flowchart).
  • FIGS. 11 and 12 the torque and the rotational speed of the first motor 4 in the control example for preventing over-rotation of the first motor 4 in the drive control method and the drive control device 32 according to the present embodiment.
  • the transition of the torque and the rotational speed of the engine 2 will be described.
  • FIG. 11 is a timing chart showing transitions of torques and rotation speeds in accordance with control for preventing normal over-rotation.
  • FIG. 12 shows torques and rotation speeds when there is a response delay in over-rotation prevention. It is a timing chart which shows transition.
  • the torque command value (MG1 torque command value) for the first motor 4 (MG1) is constant.
  • the output possible torque (MG1 output minimum torque) of the first motor 4 is a value smaller than the torque command value (because it is on the negative side, the absolute value is a large value). That is, both the torque command value of the first motor 4 and the outputtable torque generate negative torque, and are treated as torque values that can take both positive and negative values in the control. It becomes small as a numerical value.
  • the value of the accelerator opening detection unit 33 shown in FIG. 1 is a normal state and a predetermined opening (depression amount). Since this is a normal state, the target engine torque (basic target engine torque) is constant as shown in FIG. Then, for example, due to a disturbance caused by a change in the environment or the like, the rotational speed of the first motor 4 and the engine rotational speed tend to increase. During the period of time t0 to t1, no correction is applied to the target engine torque, so the control state is the flow F1 in the flowchart of FIG.
  • the state of the period from t1 to t2 shown in FIG. 11 indicates that the rotational speed of the first motor 4 to be rotationally driven is unique when the output characteristics of the engine change due to the disturbance such as the environmental change described above.
  • the case where it reaches the high rotation speed range which exceeds the upper limit rotation speed and goes to the over rotation state can be mentioned. That is, it is a period in which the first motor 4 is directed in the direction in which overspeed occurs (in the present embodiment, overspeed is prevented because engine torque correction is performed).
  • the output possible torque generates a negative torque, so that the absolute value of the output possible negative torque becomes smaller and approaches the torque command value. That is, the rotation speed of the first motor 4 approaches the upper limit range, and the absolute value of the minimum outputtable torque starts to decrease toward zero (0).
  • the constant torque command value is still large as a numerical value of the torque that can take both positive and negative values compared with the output possible torque of the first motor 4 (in absolute value comparison, the minimum torque that can be output from the torque command value Is bigger).
  • the torque of the first motor 4 is a torque command value.
  • the control state is the flow F1 in the flowchart of FIG.
  • the output possible torque of the first motor 4 and the torque command value coincide.
  • the actual torque command value is output. Possible torque. There is a deviation between the torque command value and the actual torque command value (outputtable torque).
  • the target engine torque is corrected to a combined torque by the torque obtained by converting the differential torque ⁇ T in the first motor 4 with a constant composed of a gear ratio, This is the final target engine torque command value.
  • the calculation of the final target engine torque command value is performed by the target engine torque correction value setting unit 44E of the engine torque correction unit 44 as shown in FIG.
  • the difference between the torque command value and the outputtable torque gradually increases, so that the target engine torque (synthetic torque) tends to decrease gradually due to the engine torque correction based on step S27. Yes.
  • the target engine torque tends to decrease, and a rapid increase in the rotational speed of the first motor 4 and the engine rotational speed can be suppressed.
  • the minus torque of the first motor 4 (MG1) is substantially eliminated, the engine speed increases, and the engine speed increases as shown by a one-dot chain line in FIG. .
  • the rotational speed of the first motor 4 (MG1) also increases as shown by the alternate long and short dash line. For this reason, the engine torque correction control can prevent the first motor 4 (MG1) from over-rotating.
  • the control state is the flow F2 in the flowchart of FIG.
  • the target engine torque and the minimum engine torque coincide.
  • the actual target engine torque is the minimum engine torque.
  • the minimum engine torque is set as a lower limit value, and the target engine torque is guarded from falling below the minimum engine torque.
  • the engine torque is in an equilibrium state at a low value, and the rotational speed of the engine 2 and the rotational speed of the first motor 4 tend to converge to an arbitrary rotational speed from a decreasing tendency.
  • the control state is the flow F3 in the flowchart of FIG. If the target engine torque does not drop to the minimum engine torque during the period from t3 to t4, the target engine torque is balanced at a predetermined torque value without being guarded by the minimum engine torque.
  • the accelerator opening detection unit 33 detects accelerator off, and this triggers, and engine torque correction starts to change upon return to the target engine torque.
  • the rotational speed of the engine 2 and the rotational speed of the first motor 4 (MG1) begin to decrease, and the absolute value of the output possible torque (minus side maximum torque) of the first motor 4 (MG1) gradually increases.
  • the differential torque ⁇ T is reduced.
  • the amount of reduction in the torque correction control of the engine 2 gradually decreases, and is completely restored at time t5.
  • the constant torque command value is a torque that can take both positive and negative values as compared with the minimum output possible torque of the first motor 4.
  • the numerical value is large. Therefore, there is no correction applied to the engine torque because no deviation occurs.
  • the engine torque tends to decrease due to a change in the running state in the process of returning after preventing overspeed, and the rotational speed of the first motor 4 and the engine speed are also decreasing.
  • the flow F1 in the flowchart of FIG. 10 is in the state.
  • the torque correction control (torque reduction control) of the engine 2 when the torque correction control (torque reduction control) of the engine 2 is delayed, the rotation of the engine 2 greatly increases and overshoots.
  • the state up to time t2 shown in FIG. 12 is the same as the state up to t2 shown in FIG.
  • the target engine torque is set to the target engine torque by a combined torque obtained by adding a value obtained by converting the difference between the torque command value of the first motor 4 (MG1) and the outputtable torque with a constant composed of a gear ratio.
  • the differential torque ⁇ T increases at the initial stage of the first motor 4 (MG1) due to a response delay with respect to the increase in the rotational speed.
  • the amount of decrease in the torque correction control (reduction control) of the engine 2 gradually decreases, eventually overshooting disappears, and an equilibrium state is reached in the same manner as the overspeed prevention control shown in FIG. Then, similarly to the control for preventing overspeed shown in FIG. 11, the target engine torque is corrected toward the recovery by using a slight return of the accelerator by the driver as a trigger.
  • FIG. 13 is a collinear diagram showing before and after correction of the target engine torque. Note that k1 and k2 shown in FIG. 13 are values determined by the gear ratio in the first planetary gear mechanism 8 and the second planetary gear mechanism 9.
  • both the rotation speed of the engine 2 and the rotation speed of the first motor 4 are high, and the torque command value Tmg1 of the first motor 4 is larger than the minimum outputable torque Tmg1min.
  • the target engine torque becomes the corrected combined torque, so that the engine torque Te decreases to Te ′.
  • the rotational speed of the engine 2 and the rotational speed of the first motor 4 decrease.
  • Such an engine torque correction can prevent the first motor 4 from over-rotating.
  • the engine torque can be suppressed in advance by correcting the target engine torque based on the relationship between the torque command value of the first motor 4 and the minimum outputtable torque.
  • the rotation speed can be easily controlled.
  • the first motor 4 can be prevented from over-rotating.
  • the minimum engine torque is set as the target engine torque of the engine 2, and the corrected target engine torque and minimum engine torque are set.
  • the larger one is the final target engine torque.
  • the target engine torque is not corrected. In this case, it is possible to prevent the engine torque from being limited more than necessary without limiting the engine torque.
  • the engine Control for changing the target engine speed 2 to be decreased may be used in combination.
  • the rotation speed may be set to be lower than the target engine rotation speed by a predetermined rotation speed.
  • the output shaft 3 of the engine 2 the first motor 4 (MG1) and the second motor 5 (MG2), the drive shaft 7,
  • the planetary gear mechanism composed of the first planetary gear mechanism 8 and the second planetary gear mechanism 9 to which the four elements are coupled is used.
  • other planetary gear mechanisms to which the four elements are connected may be used. Needless to say, this is within the scope of the invention.

Abstract

 本発明は、内燃機関の回転速度の制御を容易とし、その結果、モータジェネレータの過回転を防止するハイブリッド車両の駆動制御装置の提供をする。エンジンと複数のモータジェネレータとからの出力を用いて車両を駆動制御するハイブリッド車両の駆動制御装置において、目標エンジンパワーとシステム全体効率からエンジンの目標エンジントルクおよび目標エンジン回転速度を決定する目標エンジン動作点を設定する目標エンジン動作点設定部と、前記複数のモータジェネレータのそれぞれのトルク指令値を設定するモータトルク指令値演算部と、前記目標エンジントルクを、前記モータジェネレータの前記トルク指令値と前記モータジェネレータの出力可能トルクに基づいて設定する目標エンジントルク補正値により補正するエンジントルク補正部と、を備える。

Description

ハイブリッド車両の駆動制御装置、制御方法、およびハイブリッド車両
 本発明は、モータジェネレータの過回転を防止するハイブリッド車両の駆動制御技術に関する。
 従来から、走行用の内燃機関(以下、単にエンジンともいう。)の他にモータジェネレータを備えたハイブリッド車両が提案されている。このようなハイブリッド車両において、モータジェネレータは、固有の特性によって、駆動時や発電時などに出力が可能となる出力可能トルクが決まっている。モータジェネレータの常用域となる決められた回転数域(回転速度域)では、この出力可能トルクがほぼ一定となっている。
 例えば、吸入空気の温度や大気圧などの環境の変化などの外乱によって内燃機関の出力特性が変化したときに、回転駆動されるモータジェネレータの回転数が、固有の上限回転数を超えてある高い回転数域に達して過回転状態になる場合がある。このようにモータジェネレータが過回転状態となると、モータジェネレータの出力可能トルクが常用域の一定値よりもゼロに近づくようになる。つまり、モータジェネレータのトルクの絶対値が小さくなる。モータジェネレータに対する指令トルクの絶対値がその出力可能トルクの絶対値より小さい場合は、指令トルクに見合うトルクを発生することができる。しかし、モータジェネレータに対する指令トルクの絶対値がその出力可能トルクの絶対値よりが大きい場合は、指令トルクに見合うトルクを発生することができなくなる。モータジェネレータで発生するトルクは出力可能トルク以下に制限され、出力可能トルクの絶対値が小さくなってゼロに近づけば、発生するトルクは極めて制限されてしまう。このようにモータジェネレータが必要なトルクを発生できない場合には、このモータジェネレータを含む駆動系システムの制御ができなくなり、車両の走行に支障を来すという不都合があった。
 このようなモータジェネレータの過回転を防止するために、内燃機関の出力トルクを抑制する技術が知られている(例えば、特許文献1および2参照)。特許文献1に開示された技術は、モータジェネレータの最大出力に対して余裕値を与えて設定された最大出力補正値に基づいて制御するものであり、モータジェネレータの過回転の防止を果たすことができる。特許文献2に開示された技術は、エンジンコントロールユニット(ECU)がハイブリッド用制御ユニットとの通信異常を判定したときに、内燃機関の出力トルクに応じて、内燃機関の回転数フィードバック制御における目標回転数を減少するように補正するようになっている。すなわち、特許文献2に開示された技術では、モータジェネレータが過回転とならないように内燃機関の回転数を管理している。
特開2001-304010号公報 特開2007-55287号公報
 しかしながら、特許文献1に開示された技術では、常に余裕値の分だけ範囲が制限されるという問題点を有し、改良の余地があった。また、特許文献2に開示された技術は、通信異常の際の独立制御であり、モータジェネレータのトルク指令の大きさを全く考慮しない制御であった。
 本発明は、上記の課題に鑑みてなされたものであって、内燃機関の回転速度の制御を容易となし、モータジェネレータの過回転を防止することを目的とする。
 本発明の第1の態様は、内燃機関とモータジェネレータとからの出力を用いてハイブリッド車両を駆動制御する駆動制御装置であって、目標エンジンパワーとシステム全体効率とから前記内燃機関の目標エンジントルクを設定する目標エンジントルク設定部と、前記モータジェネレータのトルク指令値を設定するモータトルク指令値演算部と、前記モータジェネレータの前記トルク指令値と出力可能トルクとに基づいて設定される目標エンジントルク補正値により前記目標エンジントルクの補正を行うエンジントルク補正部と、を備えることを特徴とする。
 上記第1の態様としては、前記エンジントルク補正部が、前記モータジェネレータの前記出力可能トルクの絶対値が前記トルク指令値の絶対値より小さい場合に、前記目標エンジントルクの補正を行うことができる。
 上記第1の態様としては、前記エンジントルク補正部が、前記モータジェネレータの回転数に基づいて当該モータジェネレータの出力可能トルクを算出する出力可能トルク算出部と、前記モータジェネレータの前記トルク指令値と前記出力可能トルクとの差分トルクを算出する差分トルク算出部と、前記差分トルクを変換したエンジントルク補正成分を算出するエンジントルク補正成分算出部と、前記エンジントルク補正成分と前記目標エンジントルクとを加算して合成トルクを算出する合成トルク算出部と、前記合成トルクに基づいて前記目標エンジントルク補正値を設定する目標エンジントルク補正値設定部と、を備えてもよい。
 上記第1の態様としては、前記エンジントルク補正部が、前記目標エンジントルクに最小エンジントルクを設定し、前記目標エンジントルク補正値設定部は、前記合成トルクと前記最小エンジントルクとを比較して大きい方を目標エンジントルク補正値に設定してもよい。
 上記第1の態様としては、前記モータジェネレータが、第1のモータジェネレータと、第2のモータジェネレータと、の一対であり、前記内燃機関と、前記第1のモータジェネレータと、前記第2のモータジェネレータと、出力部と、から構成される4つの要素を、共線図上で、前記第1のモータジェネレータ、前記内燃機関、前記出力部、前記第2のモータジェネレータの順になるように連結した遊星歯車機構を備えてなり、前記エンジントルク補正部は、前記目標エンジントルクを補正する前記目標エンジントルク補正値を、前記第1のモータジェネレータの前記トルク指令値と前記第1のモータジェネレータの出力可能トルクに基づいて設定することができる。
 上記第1の態様としては、前記目標エンジントルク設定部が、目標エンジンパワーとシステム全体効率とから前記内燃機関の前記目標エンジントルクおよび目標エンジン回転速度を決定する目標エンジン動作点を設定する目標エンジン動作点設定部に含まれる構成とすることができる。
 上記第1の態様としては、前記目標エンジンパワーを、目標駆動パワーと目標充放電パワーとから算出する目標エンジンパワー算出部を備えてもよいし、前記目標駆動パワーを、アクセル開度と車両速度とに基づいて設置する目標駆動パワー算出部を備える構成としてもよい。
 上記第1の態様としては、前記目標充放電パワーを、バッテリの充電状態に基づいて算出する目標充放電パワー算出部を備えてもよいし、前記アクセル開度を検出するアクセル開度検出部を備える構成としてもよい。
 上記第1の態様としては、前記車両速度を検出する車両速度検出部を備えてもよく、前記バッテリの充電状態を検出するバッテリ充電状態検出部を備える構成としてもよい。
 本発明の第2の態様は、内燃機関とモータジェネレータとからの出力を用いて車両を駆動制御するハイブリッド車両の駆動制御方法であって、前記モータジェネレータの出力可能トルクの絶対値がトルク指令値より小さい場合に、目標エンジンパワーとシステム全体効率とから設定した前記内燃機関の目標エンジントルクが小さくなるように制御することを特徴とする。
 上記第2の態様としては、前記目標エンジントルクに最小エンジントルクを設定し、前記目標エンジントルクが減少したときに、前記目標エンジントルクが、前記最小エンジントルクを下回らないように制御することが好ましい。
 本発明の第3の態様は、ハイブリッド車両であって、上記第1の態様に係る駆動制御装置を搭載したことを特徴とする。
 本発明の第1の態様に係るハイブリッド車両の駆動制御装置によれば、モータジェネレータのトルク指令値と出力可能トルクとの関係によって目標エンジントルクを補正してエンジントルクを抑制するため、エンジン回転速度の制御を容易となし、その結果、モータジェネレータの過回転を防止できるという効果を奏する。
 また、本発明の第1の態様によれば、モータジェネレータの出力可能トルクの絶対値がトルク指令値の絶対値より小さくなった時点をトリガとして制御を行え、モータジェネレータが過回転状態となる前に場合に、目標エンジントルクの補正を行うため、エンジン回転数を速やかに減じることができる。その結果、モータジェネレータの過回転を防止することができる。加えて、この第1の態様によれば、モータジェネレータの出力可能トルクの絶対値がトルク指令値の絶対値より小さくなった時点をトリガすることにより、必要以上にモータジェネレータの過回転防止の制御を行うことがないため、内燃機関の出力トルクの不要な抑制を低減できる。
 また、本発明の第1の態様によれば、モータジェネレータの回転数が、上限回転数に達するような場合において、モータジェネレータのトルク指令値と出力可能トルクとの関係から、目標エンジントルクが著しく抑制される状況であっても、必要最低限の目標エンジントルクを確保することができる。したがって、この第1の態様によれば、エンジントルクを安定させ、システムの信頼性を確保することができる。
 本発明の第2の態様に係る駆動制御方法によれば、モータジェネレータの出力可能トルクの絶対値がトルク指令値より小さくなった時点をトリガとすればよいため、必要以上にモータジェネレータの過回転防止の制御を行うことがないため、内燃機関の出力トルクの不要な抑制を低減できる。
 また、本発明の第2の態様によれば、目標エンジントルクが著しく抑制される状況であっても、必要最低限の目標エンジントルクを確保することができる。したがって、この第2の態様によれば、エンジントルクを安定させ、システムの信頼性を確保することができる。
 本発明の第3の態様に係るハイブリッド車両によれば、モータジェネレータの過回転が防止できるため、駆動系の制御が不能となることを未然に回避でき、安定した走行を確保できるという効果がある。
図1は、本発明の実施の形態に係るハイブリッド車両の駆動制御装置のシステム構成図である。 図2は、目標駆動力設定部において目標駆動力の設定を行う際に参照する目標駆動力検索マップを示す図である。 図3は、目標充放電パワー設定部において目標充放電パワーの設定を行う際に参照する目標充放電パワー検索マップを示す図である。 図4は、目標エンジン動作点設定部において目標エンジン動作点を設定する際に参照する目標エンジン動作点検索マップを示す図である。 図5は、目標エンジン動作点設定部の制御ブロック図である。 図6は、目標エンジン動作点設定部における制御の流れを示すフローチャートである。 図7は、モータトルク指令値演算部の制御ブロック図である。 図8は、モータトルク指令値演算部における制御の流れを示すフローチャートである。 図9は、エンジントルク補正部の制御ブロック図である。 図10は、本発明の実施の形態に係る駆動制御装置による制御の流れを示すフローチャートである。 図11は、本発明の実施の形態に係る駆動制御装置で制御した場合を示し、通常の過回転を防止する制御に伴った各トルクと回転数の推移を示すタイミングチャートである。 図12は、本発明の実施の形態に係る駆動制御装置で制御した場合を示し、通常の過回転を防止する制御に伴った各トルクと回転数の推移を示すタイミングチャートである。 図13は、本発明の実施の形態に係る駆動制御装置における、第1モータ、エンジン、出力部、第2モータのエンジントルク補正前と補正後の状態を示す共線図である。
 本発明の実施の形態に係るハイブリッド車両は、内燃機関とモータジェネレータとからの出力を用いて駆動制御して走行するものである。このハイブリッド車両に搭載される駆動制御装置は、目標エンジンパワーとシステム全体効率から内燃機関の目標エンジントルクおよび目標エンジン回転速度を決定する目標エンジン動作点を設定する目標エンジン動作点設定部と、一対のモータジェネレータのそれぞれのトルク指令値を設定するモータトルク指令値演算手段と、を備える。そして、このハイブリッド車両に搭載される駆動制御装置は、目標エンジントルクを、モータジェネレータのトルク指令値とモータジェネレータの出力可能トルクに基づいて設定する目標エンジントルク補正値により補正を加えてトルクを減じる制御を加えるものである。
 以下、本発明の実施の形態に係るハイブリッド車両およびこれに搭載される駆動制御装置の詳細を図1~13に基づいて説明する。
 図1はハイブリッド車両の駆動制御装置のシステム構成図、図2は目標駆動力設定部において目標駆動力の設定を行う際に参照する目標駆動力検索マップを示す図、図3は目標充放電パワー設定部において目標充放電パワーの設定を行う際に参照する目標充放電パワー検索マップを示す図、図4は目標エンジン動作点設定部において目標エンジン動作点を設定する際に参照する目標エンジン動作点検索マップを示す図、図5は目標エンジン動作点設定部の制御ブロック図、図6は目標エンジン動作点設定部における制御の流れを示すフローチャート、図7はモータトルク指令値演算部の制御ブロック図、図8はモータトルク指令値演算部における制御の流れを示すフローチャート、図9はエンジントルク補正部の制御ブロック図、図10は本実施の形態に係る駆動制御装置による制御の流れを示すフローチャート、図11は通常の過回転を防止する制御に伴った各トルクと回転数の推移を示すタイミングチャート、図12は過回転防止に応答遅れがある場合の各トルクと回転数の推移を示すタイミングチャート、図13は、第1モータ、エンジン、出力部、第2モータの共線図であり、エンジントルク補正前と補正後の状態を示す。
[ハイブリッド車両のシステム構成]
 先ず、図1を用いて本実施の形態に係るハイブリッド車両100のシステム構成を説明する。ハイブリッド車両100は、駆動機構1と、駆動制御装置32とを備えている。
[駆動機構の構成]
 先ず、駆動機構1について説明する。図1に示すように、駆動機構1は、エンジン2の出力軸3と、電気により駆動力を発生するとともに駆動されて電気エネルギーを発生する第1モータジェネレータである第1モータ4(MG1とも記す)および第2モータジェネレータである第2モータ5(MG2とも記す)と、ハイブリッド車両100の駆動輪6に接続される駆動軸7と、上記出力軸3、第1モータ4、第2モータ5、駆動軸7にそれぞれ連結された第1遊星歯車機構8および第2遊星歯車機構9と、を備えている。
 エンジン2は、アクセル開度(アクセルペダルの踏み込み量)に対応して吸入する空気量を調整するスロットバルブなどの空気量調整部10と、吸入する空気量に対応する燃料を供給する燃料噴出弁などの燃料供給部11と、燃料に着火する点火装置などの着火部12と、を備えている。エンジン2は、空気量調整部10と、燃料供給部11と、着火部12とにより、燃料の燃焼状態が制御され、燃料の燃焼により駆動力を発生する。
 第1モータ4は、第1モータロータ軸13と、第1モータロータ14と、第1モータステータ15と、を備えている。第2モータ5は、第2モータロータ軸16と、第2モータロータ17と、第2モータステータ18と、を備えている。
 第1モータ4の第1モータステータ15は、第1インバータ19に接続されている。第2モータ5の第2モータステータ18は、第2インバータ20に接続されている。第1モータ4と第2モータ5は、それぞれ第1インバータ19と第2インバータ20とにより、蓄電装置であるバッテリ21から供給される電気量を制御され、供給される電力により駆動力を発生するとともに、回生時の駆動により電気エネルギーを発生してバッテリ21を充電するようになっている。
 第1遊星歯車機構8は、第1サンギア22と、この第1サンギア22に噛み合う第1プラネタリギア23を支持する第1プラネタリキャリア24と、第1プラネタリギア23に噛み合う第1リングギア25と、を備えている。第2遊星歯車機構9は、第2サンギア26と、この第2サンギア26に噛み合う第2プラネタリギア27を支持する第2プラネタリキャリア28と、第2プラネタリギア27に噛み合う第2リングギア29と、を備えている。
 第1遊星歯車機構8と第2遊星歯車機構9は、各回転要素の回転中心線を同一軸上に配置され、エンジン2と第1遊星歯車機構8との間に第1モータ4が配置され、第2遊星歯車機構9のエンジン2から離れる側に第2モータ5が配置されている。なお、第2モータ5は、単独出力のみでハイブリッド車両100を走行させることができる性能を備えている。
 第1遊星歯車機構8の第1サンギア22には、第1モータ4の第1モータロータ軸13が接続されている。第1遊星歯車機構8の第1プラネタリキャリア24と、第2遊星歯車機構9の第2サンギア26とは、結合してエンジン2の出力軸3に接続されている。第1遊星歯車機構8の第1リングギア25と、第2遊星歯車機構9の第2プラネタリキャリア28は、結合して出力部30に連結している。この出力部30は、歯車やチェーンなどの出力伝達機構31を介して駆動軸7に接続されている。第2遊星歯車機構9の第2リングギア29には、第2モータ5の第2モータロータ軸16が接続されている。このような駆動機構1Aにおいては、エンジン2と第1モータ4と第2モータ5と駆動軸7との間で、駆動力の授受を行う。
 エンジン2の空気量調整部10と、燃料供給部11と、着火部12と、第1モータ4の第1モータステータ15と、第2モータ5の第2モータステータ18は、駆動制御装置32に接続されている。
[駆動制御装置の構成]
 図1に示すように、駆動制御装置32は、アクセル開度検出部33と、車両速度検出部34と、エンジン回転数検出部35と、バッテリ充電状態検出部36と、に接続されている。
 駆動制御装置32は、目標駆動力設定部37と、目標駆動パワー設定部38と、目標充放電パワー設定部39と、目標エンジンパワー算出部40と、目標エンジン動作点設定部41と、モータトルク指令値演算部42と、内燃機関制御部43と、エンジントルク補正部44と、を備えている。
 アクセル開度検出部33は、アクセルペダルの踏み込み量であるアクセル開度tvoを検出する。車両速度検出部34は、ハイブリッド車両の車両速度(車速)Vsを検出する。エンジン回転数検出部35は、エンジン2のエンジン回転数Neを検出する。バッテリ充電状態検出部36は、バッテリ21の充電状態SOCを検出する。
 図5は、制御ブロック図であり、目標駆動力算出部37と、目標駆動パワー算出部38と、目標充放電パワー算出部39と、目標エンジンパワー算出部40と、目標エンジン動作点算出部41(目標エンジントルク算出部41Aを含む)の機能を示す。
 目標駆動力算出部37は、アクセル開度検出部33により検出されたアクセル開度(踏み込み量)tvoと、車両速度検出部34により検出された車両速度Vsとに応じて、ハイブリッド車両100を駆動するための目標駆動力Fdrvを、例えば、図2に示すような目標駆動力検索マップにより検索して設定する。
 目標駆動パワー算出部38は、アクセル開度検出部33により検出されたアクセル開度tvoと、車両速度検出部34により検出された車両速度Vsとに基づいて、目標駆動パワーPdrvを設定する。この実施の形態では、目標駆動力Fdrvと車両速度Vsとを乗算して、目標駆動パワーPdrvを設定する。
 目標充放電パワー算出部39は、少なくともバッテリ充電状態検出部36により検出されたバッテリ21の充電状態SOCに基づいて、目標充放電パワーPbatを設定する。この実施の形態においては、例えばバッテリ21の充電状態SOCと車両速度Vsに応じて、目標充放電パワーPbatを、例えば、図3に示すような目標充放電パワー検索マップにより検索して設定する。
 目標エンジンパワー算出部40は、目標駆動パワー設定部38により設定された目標駆動パワーPdrvと、目標充放電パワー算出部39により算出された目標充放電パワーPbatとから、目標エンジンパワーPegを算出する。この実施の形態では、目標駆動パワーPdrvから目標充放電パワーPbatを減算することにより、目標エンジンパワーPegを得る。
 目標エンジン動作点算出部41では、例えば、図4に示すような目標エンジン動作点検索マップから、上記目標エンジンパワーPegと車速に応じた目標エンジン動作点(目標エンジン回転速度、目標エンジントルク)を検索して設定する。なお、目標エンジン動作点設定部41は、目標エンジントルク算出部41Aを備えている。
 ところで、上記した内燃機関制御部43では、目標エンジンパワー算出部40で算出された目標エンジンパワーPegに基づいて、図4に示すようなエンジン2の運転効率が良い動作点(エンジン回転速度とエンジントルク)で、エンジン2が動作するように、上記した空気量調整部10と燃焼供給部11と着火部12との駆動制御を行う。
[目標エンジントルク動作点の算出方法]
 図6は、上記の駆動制御装置32により、運転者のアクセルペダルの踏み込み量と車速から目標エンジン動作点(目標エンジン回転速度、目標エンジントルク)を演算するまでの制御を示すフローチャートである。以下、図6を用いて目標エンジン動作点を算出するまでの制御動作を説明する。このルーチンは、所定時間毎に繰り返し実行される。
 先ず、アクセル開度tvoや車両速度Vsの各種信号の取り込みを行う(ステップS1)。
 次に、例えば、図2に示すような目標駆動力検索マップから、アクセル開度(踏み込み量)tvoや車両速度Vsに応じた目標駆動力を算出する(ステップS2)。なお、アクセル開度=0での高車速域はエンジンブレーキ相当の減速方向の駆動力となるように負の値に設定し、アクセル開度=0で速度が低い領域ではクリープ走行できるよう正の値としている。
 次に、上記ステップS2で算出した目標駆動力と車速を乗算して、目標駆動力で車両を駆動するのに必要なパワー(目標駆動パワー)を算出する(ステップS3)。
 次に、バッテリ21の充電状態SOCを通常使用範囲内に制御するために、目標とする充放電量を、例えば、図3に示すような目標充放電量検索マップから検索して算出する(ステップS4)。なお、充電状態SOCが低い場合には、充電パワーを大きくしてバッテリ21の過放電を防止するようにし、SOCが高い場合は放電パワーを大きくして過充電を防止するようにしている。図3に示すように、便宜上、放電側を正の値、充電側を負の値として取り扱う。
 次に、目標駆動パワーと目標充放電パワーからエンジンが出力すべきパワー(目標エンジンパワー)を算出する(ステップS5)。このステップS5では、エンジンが出力すべきパワーは車両の駆動に必要なパワーにバッテリ21を充電するパワーを加算(放電の場合は減算)した値となる。ここでは、充電側を負の値として取り扱っているので、目標駆動パワーから目標充放電パワーを減算して、目標エンジンパワーを算出する。
 次に、例えば、図4に示すような目標エンジン動作点検索マップから、目標エンジンパワーと車速に応じた目標エンジン動作点を算出し(ステップS6)、リターンに行く。
 上記目標エンジン動作点検索マップは、等パワーライン上でエンジン2の効率に第1プラネタリギア23、第2プラネタリギア27と第1モータ4、第2モータ5により構成される動力伝達系の効率を加味した全体の効率が良くなるポイントを各パワー毎に選定して結んだラインを目標動作点ラインとして設定する。そして、目標動作点ラインは、各車速毎に設定する。この設定値は実験的に求めてもよいし、エンジン2、第1モータ4、第2モータ5の効率から計算して求めてもよい。
[モータトルク指令値の演算方法]
 以下、図7および図8を用いて、第1モータ4の第2モータ5のモータトルク指令値の演算を行うモータトルク指令値部42の構成および演算方法について説明する。図7は、モータトルク指令値演算部42で行うモータトルク指令値の演算機能部を示す制御ブロック図であり、図8はそのフローチャートを示す。
 モータトルク指令値演算部42は、上記した目標エンジン動作点から求められる目標エンジントルクを含むトルクバランス式と、目標充放電パワーを含む電力バランス式と、を用いて、第1モータ4(MG1)、第2モータ5(MG2)のそれぞれのトルク指令値を算出する。トルクバランス式および電力バランス式については、後述する。
 図7に示すように、目標エンジン動作点設定部41(図5参照)で算出された目標エンジン動作点から求められる目標エンジン回転速度と、車速と、から第1モータ4、第2モータ5のそれぞれの回転速度(Nmg1,Nmg2)を算出し、これら第1モータ4、第2モータ5の回転速度(Nmg1,Nmg2)と目標充放電パワーと目標エンジントルクに基づいて第1モータ4のトルク指令値(Tmg1i)を算出する。
 そして、この第1モータ4のトルク指令値(Tmg1i)と目標エンジントルクに基づいて第2モータ5のトルク指令値(Tmg2i)を算出する。さらに、モータトルク指令値演算部42は、目標エンジン動作点から求められる目標エンジン回転速度に実際のエンジン回転速度を収束させるように第1モータ4、第2モータ5のトルク指令値にそれぞれのフィードバック補正量(Tmg1fb,Tmg2fb)を設定する。そして、第1モータ4のフィードバック補正量(Tmg1fb)と、トルク指令値(Tmg1i)と、から第1モータ4のトルク指令値(Tmg1)を算出し、第2モータ5のフィードバック補正量(Tmg2fb)と、トルク指令値(Tmg2i)と、から第2モータ5のトルク指令値(Tmg2)を算出する。
 以下、図8に示すフローチャートに沿って説明する。このルーチンは、所定時間毎に繰り返し実行される。図8に示すステップS11においては、先ず、車速から第1遊星歯車機構8と第2遊星歯車機構9の駆動軸回転速度Noを算出する。そして、エンジン回転速度が目標エンジン回転速度Netとなった場合の、第1モータ4の回転速度Nmg1と第2モータ5の回転速度Nmg2を以下の式(1)、(2)により算出する。この演算式は、第1遊星歯車機構8と第2遊星歯車機構9の回転速度の関係から求められる。
Nmg1=(Net-No)*k1+Net       (1)
Nmg2=(No-Net)*k2+No         (2)
 ここで、k1,k2は、第1遊星歯車機構8と第2遊星歯車機構9におけるギア比により定まる値であり、図13に示す共線図に示すk1,k2である。さらに具体的には、本実施の形態では、k1,k2は以下のように定義する。
k1=ZR1/ZS1
k2=ZR2/ZS2
ZS1:第1遊星歯車機構8の第1サンギア22の歯数
ZR1:第1遊星歯車機構8の第1リングギア25の歯数
ZS2:第2遊星歯車機構8の第2サンギア26の歯数
ZR2:第2遊星歯車機構8の第2リングギア29の歯数
 次に、ステップS12では、上記のステップS11で求めた第1モータ4の回転速度Nmg1と、第2モータ5のNmg2、および目標充放電パワーPbat、目標エンジントルクTetから、第1モータ4の基本トルクTmg1iを以下の演算式(3)により算出する。
Tmg1i=(Pbat*60/2π-Nmg2*Tet/k2)/(Nmg1+Nmg2*(1+k1)/k2)        (3)
 この演算式(3)は、以下に示す遊星歯車機構に入力されるトルクのバランスを表すトルクバランス式(4)、および第1モータ4と第2モータ5で発電または消費される電力とバッテリ21への入出力電力(Pbat)が等しいことを表す電力バランス式(5)から成る連立方程式を解くことにより導き出せる。
Tet+(1+k1)*Tmg1=k2*Tmg2          (4)
Nmg1*Tmg1*2π/60+Nmg2*Tmg2*2π/60=Pbat(5)
 次に、ステップS13では、Tmg1i、目標エンジントルクから第2モータ5の基本トルクTmg2iを以下の式(6)により算出する。
Tmg2i=(Tet+(1+k1)*Tmg1i)/k2            (6)
 なお、この式(6)は、上記式(4)から導き出したものである。
 次に、ステップS14では、エンジン回転速度を目標に近づけるために、エンジン回転速度の目標値との偏差に予め設定した所定のフィードバックゲインを乗算し、第1モータ4、第2モータ5のフィードバック補正トルクTmg1fb、Tmg2fbを算出する。
 次に、ステップS15では、第1モータ4、第2モータ5のフィードバック補正トルクTmg1fb、Tmg2fbを各基本トルクTmg1i、Tmg2iに加算して、第1モータ4、第2モータ5のトルク指令値Tmg1、Tmg2を算出する。この制御指令値に従って第1モータ4、第2モータ5を制御することにより、目標とする駆動力を出力しつつ、バッテリ21への充放電を目標値とすることができる。
[エンジントルク補正部の構成]
 次に、図9を用いてエンジントルク補正部44について説明する。図9はエンジントルク補正部44の制御ブロックを示す図である。このエンジントルク補正部44は、目標エンジントルク補正値を設定して、エンジントルクの補正を行うようになっている。
 図9に示すように、エンジントルク補正部44は、出力可能トルク算出部44Aと、差分トルク算出部44Bと、エンジントルク補正成分算出部44Cと、合成トルク算出部44Dと、目標エンジントルク補正値算出部44Eと、を備える。
 出力可能トルク算出部44Aは、第1モータ4(MG1)の回転数Nmg1から出力可能トルク(最小値)を算出する。
 差分トルク算出部44Bは、出力可能トルク算出部44Aで算出した出力可能トルクと、上述したモータトルク指令値の演算方法で求めた、第1モータ4(MG1)と、のトルク指令値の差分トルクΔTを算出する。
 エンジントルク補正成分算出部44Cは、差分トルク算出部44Bで算出した差分トルクΔTを遊星歯車機構におけるギヤ比からなる定数((1+k1)の逆数:1/(1+k1))で変換して(乗算して)エンジントルク補正成分を算出する。
 合成トルク算出部44Dは、目標エンジントルクと、エンジントルク補正成分と、から合成トルクを算出する。
 目標エンジントルク補正値算出部44Eは、最小エンジントルクと、上記合成トルクと、からエンジントルク補正のための目標エンジントルク補正値を出力するようになっている。なお、最小エンジントルクは、エンジン2の固有の特性に基づいて最低限の回転駆動を維持して回転低下をガードするためのエンジントルク(エンジン2に固有のモータリングトルク)である。
[過回転防止の制御]
 図10は、第1モータ4の過回転を防止するために、エンジントルク補正部44で算出された目標エンジントルク補正値を用いて行う制御を示すフローチャートである。以下、図10に示すフローチャートを用いて第1モータ4の過回転を防止する制御内容を説明する。このルーチンは、所定時間毎に繰り返し実行される。
 先ず、図10に示すように、ステップS21では、エンジントルク補正を行う前の基本目標エンジントルクと、第1モータ4(MG1)のトルク指令値と、第1モータ4の出力可能トルク(最小値)と、最小エンジントルク(モータリングトルク)などの各種信号の取り込みを行う。
 次に、エンジントルク補正部44において、第1モータ4のトルク指令値が、出力可能トルク(最小値)よりも小さいか否かの判定を行う(ステップS22)。
 ステップS22において、第1モータ4のトルク指令値が、出力可能トルク(最小値)よりも大きい(NOである)場合、目的エンジントルクは、基本目標エンジントルクと同じであり、エンジントルク補正は行なわれず(ステップS23)、リターンに行く(フローチャートの流れF1)。
 ステップS22において、第1モータ4のトルク指令値が、出力可能トルク(最小値)よりも小さい(YESである)場合(絶対値では、トルク指令値の方が出力可能トルクより大きい場合)では、第1モータ4のトルク指令値と、この第1モータ4の出力可能トルクと、の差分トルクΔT(図11参照)を計算する(ステップS24)。
 次に、基本目標エンジントルクに、上記ステップS24で計算した差分トルクΔTをギヤ比からなる定数にて変換したトルクを乗算して、基本目標エンジントルクを計算して合成トルクとする(ステップS25)。
 次に、合成トルクが最小エンジントルクよりも大きいか否かを判定する(ステップS26)。
 ステップS26において、合成トルクが最小エンジントルクより大きい(YESの)場合は、合成トルクが目標エンジントルクとなり(ステップS27)、リターンに行く(フローチャートの流れF2)。
 上記ステップS26において、合成トルクがエンジン最小トルクより大きくない(NOの)場合は、最小エンジントルクが目標エンジントルクとなり(ステップS28)、リターンに行く(フローチャートの流れF3)。
 次に、図11および図12を用いて、本実施の形態に係る駆動制御方法および駆動制御装置32において第1モータ4の過回転を防止する制御例における、第1モータ4のトルクと回転数、エンジン2のトルクと回転数の推移を説明する。なお、図11は、通常の過回転を防止する制御に伴った各トルクと回転数の推移を示すタイミングチャートであり、図12は過回転防止に応答遅れがある場合の各トルクと回転数の推移を示すタイミングチャートである。
[通常状態の過回転防止制御例]
 図11に示すタイミングチャートは、例えば、吸入空気の温度や大気圧などの環境の変化などの外乱によってエンジン2の出力特性が変化したときに、回転駆動される第1モータ4の回転数が、固有の上限回転数を超えてある高い回転数域に達して過回転状態になり得る場合に、本実施の形態に係る駆動制御方法および駆動制御装置32により行われる制御を示している。
 図11に示す時間t0~t1の期間では、第1モータ4(MG1)に対するトルク指令値(MG1トルク指令値)を一定としている。また、第1モータ4の出力可能トルク(MG1出力可能最小トルク)は、トルク指令値よりも小さい値(マイナス側であるため、絶対値は大きい値)である。すなわち、第1モータ4のトルク指令値および出力可能トルクがともに負のトルクを発生しており、制御上では、正負両方を採りうるトルクの数値として扱うため、絶対値で大きい値が制御上の数値としては小さくなる。
 また、図1に示すアクセル開度検出部33の値は、通常の状態であり所定の開度(踏み込み量)の状態にある。この状態では、通常の状態であるため、図11に示すように、目標エンジントルク(基本目標エンジントルク)は一定である。そして、例えば、環境などの変化にともなう外乱などに起因して、第1モータ4の回転数およびエンジン回転数は、増加傾向にある。この時間t0~t1の期間では、目標エンジントルクに補正が加えられないため、図10のフローチャートの流れF1の制御状態にある。
 次に、図11に示すt1~t2の期間の状態は、上述した環境の変化などの外乱によってエンジンの出力特性が変化したときに、回転駆動される第1モータ4の回転数が、固有の上限回転数を超えてある高い回転数域に達して過回転状態に向かう場合を挙げることができる。すなわち、第1モータ4において過回転が起きる方向に向かう期間である(本実施の形態において、エンジントルク補正を行うため過回転は、防止される。)。
 この期間t1~t2では、出力可能トルクがマイナストルクを発生するため、出力可能なマイナストルクの絶対値が小さくなりトルク指令値に近づき始めている。すなわち、第1モータ4の回転数が上限域に近づき、出力可能最小トルクがゼロ(0)に向かって、その絶対値が減少し始めている。一方、一定のトルク指令値は、第1モータ4の出力可能トルクと比較して、まだ、正負両方を採りうるトルクの数値としては大きい(絶対値の比較ではトルク指令値より出力可能最小トルクの方が大きい)。この期間t1~t2では、第1モータ4のトルクは、トルク指令値となっている。このt1~t2の期間においては、t0~t1の期間と同様に、図10のフローチャートの流れF1の制御状態にある。
 次に、図11に示すt2の時点においては、第1モータ4の出力可能トルクとトルク指令値が一致する。t2~t3の期間では、正負両方を採りうる第1モータ4のトルクの数値として、出力可能トルクがトルク指令値を上回ることになる(絶対値が小さくなる)ため、実際のトルク指令値は出力可能トルクとなる。トルク指令値と実際のトルク指令値(出力可能トルク)との間に偏差が生じている。
 ここで、図10に示したフローチャートにおけるステップS25の計算のように、第1モータ4における差分トルクΔTをギヤ比からなる定数にて変換したトルクによって、目標エンジントルクを補正して合成トルクとし、これを最終目標エンジントルク指令値としている。なお、このような最終目標エンジントルク指令値の算出は、図9に示すように、エンジントルク補正部44の目標エンジントルク補正値設定部44Eで行っている。
 この期間t2~t3では、トルク指令値と出力可能トルクの差分が徐々に増大しているため、ステップS27に基づくエンジントルク補正により、目標エンジントルク(合成トルク)が徐々に減少する傾向となっている。結果、目標エンジントルクは減少傾向となり、第1モータ4の回転数およびエンジン回転数は急激な増加が抑えられる。このようなエンジントルク補正制御を行わない場合、第1モータ4(MG1)のマイナストルクが実質的に無くなり、エンジン回転数は吹き上がり、図11に一点鎖線で示すような回転数の上昇を起こす。これに伴い、第1モータ4(MG1)の回転数も一点鎖線で示すように上昇する。このため、エンジントルク補正制御により、第1モータ4(MG1)の過回転は防止できる。このように、t2~t3の期間では、図10のフローチャートの流れF2の制御状態にある。
 図11に示すt3の時点においては、目標エンジントルクと、最小エンジントルク(エンジン2に固有のモータリングトルク)が一致する。t3~t4の期間では、正の値のみ採る目標エンジントルクが最小エンジントルクを下回ることとなるため、実際の目標エンジントルクは最小エンジントルクとなる。つまり、最小エンジントルクが下限値として目標エンジントルクが、最小エンジントルクを下回ることをガードするようになっている。エンジントルクは低い値で平衡状態となり、エンジン2の回転数および第1モータ4の回転数は、減少傾向から任意の回転数に収束する傾向となっている。このようにt3~t4の時期では、図10のフローチャートの流れF3の制御状態にある。なお、このt3~t4の時期において、目標エンジントルクが最小エンジントルクまで下がらない場合は、最小エンジントルクでガードされずに、目標エンジントルクが所定のトルク値で平衡状態となる。
 図11に示すt4の時点では、アクセル開度検出部33でアクセルオフを検出し、これがトリガとなり、目標エンジントルクへの復帰に受けてエンジントルク補正が変化を始める。このトリガによって、エンジン2の回転速度および第1モータ4(MG1)の回転速度が下がり始め、第1モータ4(MG1)の出力可能トルク(マイナス側最大トルク)の絶対値が徐々に大きくなり、差分トルクΔTが小さくなる。これに伴い、エンジン2のトルク補正制御における低減量も徐々に小さくなり、t5の時点で完全に復帰する。t4~t5の期間では、図10に示すフローチャートの流れF2の状態となる。
 図11に示すt5~t6の期間では、上記t1~t2の期間と類似して、一定のトルク指令値は、第1モータ4の出力可能最小トルクと比較して、正負両方を採りうるトルクの数値としては大きい。したがって、偏差は生じないため、エンジントルクに加えられる補正はない。過回転を防止して復帰する過程での走行状態の変化によって、エンジントルクは減少傾向にあり、第1モータ4の回転数およびエンジン回転数も減少傾向にある。t5~t6の期間では、図10のフローチャートの流れF1の状態にある。
[回転防止に応答遅れがある場合の過回転防止制御例]
 エンジントルク補正に伴う過回転防止に応答遅れがある場合は、図12のタイミングチャートに示すような過回転防止の制御例となる。
 図12に示すように、エンジン2のトルク補正制御(トルク低減制御)が遅れた場合は、エンジン2の回転は大きく上昇してオーバーシュートすることになる。なお、図12に示したt2の時点までは、図11に示したt2までの状態と同様である。t2~t3の期間では、目標エンジントルクに、第1モータ4(MG1)のトルク指令値と出力可能トルクとの差分をギア比からなる定数で変換した値を加えた合成トルクで目標エンジントルクを制御しているが、回転速度の上昇に対し応答遅れなどにより、第1モータ4(MG1)の初期は差分トルクΔTが増大する。
 そのため、エンジントルク補正により、図12に示すように、エンジン2のトルクが下がり続け、いずれ下限トルク(モータリングトルク)に達する。この下限トルク(モータリングトルク)は、エンジン2の固有値であり変更できない。何らかの要因で回転速度が上がっていても、駆動力が供給されているわけではないので、徐々に回転速度の上昇も鈍くなり、やがて回転速度は下がり始める(t4の時点)。これに伴い、第1モータ4(MG1)のトルク指令値と出力可能トルクとの差分が小さくなり、エンジン2のトルク補正制御(低減制御)の量も小さくなる。なお、図11および図12においてエンジン回転数に沿って描いた二点鎖線は、目標エンジン回転数である。
 エンジン2のトルク補正制御(低減制御)の減少量は徐々に小さくなり、やがてオーバーシュートはなくなり、図11に示した過回転防止の制御と同じように平衡状態となる。そして、図11に示した過回転防止の制御と同様に、運転者がアクセルを少し戻すことをトリガとして、目標エンジントルクを復帰に向けて補正を行う。
 図13は、目標エンジントルクの補正前と補正後を示す共線図である。なお、図13に示すk1,k2は第1遊星歯車機構8と第2遊星歯車機構9におけるギア比により定まる値である。
 図13に示すように、エンジントルクの補正前では、エンジン2の回転数と第1モータ4の回転数がともに高く、第1モータ4のトルク指令値Tmg1が出力可能最小トルクTmg1minより大きい。エンジントルクの補正後では、目標エンジントルクが補正された合成トルクとなるため、エンジントルクTeがTe’に減少する。このエンジントルクの減少に伴いエンジン2の回転数および第1モータ4の回転数が減少する。このようなエンジントルクの補正により、第1モータ4の過回転が防止できる。
 上述のようなハイブリッド車両100の駆動制御装置32によれば、第1モータ4のトルク指令値と出力可能最小トルクとの関係によって目標エンジントルクを補正してエンジントルクを予め抑制できるため、エンジン2の回転速度の制御を容易にすることができる。この結果、第1モータ4の過回転を防止することができる。
 また、本実施の形態に係るハイブリッド車両の駆動制御装置1では、図11に示すように、エンジン2の目標エンジントルクに最小エンジントルクを設定し、補正後の目標エンジントルクと最小エンジントルクとを比較して大きい方を最終的な目標エンジントルクとしている。このため、第1モータ4のトルク指令値と出力可能トルクとの関係によって目標エンジントルクが著しく抑制される状況であっても、必要最低限の最小エンジントルクを確保することができる。したがって、エンジントルクを安定させることができ、システムの信頼性を確保できる。
 さらに、本実施の形態に係るハイブリッド車両の駆動制御装置1では、第1モータ4のトルク指令値が、出力可能トルクより大きい場合には、目標エンジントルクの補正を行わないようにしている。この場合には、エンジントルクの制限を行わず、必要以上にエンジントルクを制限することを防止できる。
[その他の実施の形態]
 以上、実施の形態について説明したが、本発明は、これらの実施の形態の開示の一部をなす論述および図面はこの発明を限定するものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施の形態をも含む。さらに、本発明の範囲は、特許請求の範囲により画される発明の特徴の組み合わせに限定されるものではなく、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画され得るものである。
 例えば、上記の実施の形態に係るハイブリッド車両100、駆動制御装置32において、エンジントルク補正制御に加えて、第1モータ4(MG1)の実際の回転数が上限回転数に達した場合に、エンジン2の目標エンジン回転数を下げるように変更する制御を併用してもよい。この場合、例えば、目標エンジン回転数から所定回転数だけ下げた回転数に設定しておけばよい。
 また、上記した実施の形態では、駆動系として、図1に示すような、エンジン2の出力軸3と、第1モータ4(MG1)および第2モータ5(MG2)と、駆動軸7と、の4要素がそれぞれ連結される、第1遊星歯車機構8および第2遊星歯車機構9でなる遊星歯車機構を用いたが、上記4要素が接続されるその他の遊星歯車機構を用いることも、本発明の適用範囲であることは云うまでもない。
 1 駆動機構
 2 エンジン(内燃機関)
 3 出力軸
 4 第1モータ
 5 第2モータ
 6 車輪
 7 駆動軸
 8 第1遊星歯車機構
 9 第2遊星歯車機構
 30 出力部
 32 駆動制御装置
 33 アクセル開度検出部
 34 車両速度検出部
 35 エンジン回転数検出部
 37 目標駆動力設定部
 41A 目標エンジントルク設定部
 44 エンジントルク補正部
 44A 出力可能トルク算出部
 44B 差分トルク算出部
 44C エンジントルク補正成分算出部
 44D 合成トルク算出部
 44F 目標エンジントルク補正値設定部
 100 ハイブリッド車両

Claims (15)

  1.  内燃機関とモータジェネレータとからの出力を用いてハイブリッド車両を駆動制御する駆動制御装置であって、
     前記内燃機関の目標エンジントルクを設定する目標エンジントルク設定部と、
     前記モータジェネレータのトルク指令値を設定するモータトルク指令値演算部と、
     前記モータジェネレータの前記トルク指令値と出力可能トルクとに基づいて設定される目標エンジントルク補正値により前記目標エンジントルクの補正を行うエンジントルク補正部と、
     を備えることを特徴とするハイブリッド車両の駆動制御装置。
  2.  前記エンジントルク補正部は、前記モータジェネレータの前記出力可能トルクの絶対値が前記トルク指令値の絶対値より小さい場合に、前記目標エンジントルクが低下するように補正を行うことを特徴とする請求項1に記載のハイブリッド車両の駆動制御装置。
  3.  前記エンジントルク補正部は、
     前記モータジェネレータの回転数に基づいて当該モータジェネレータの出力可能トルクを算出する出力可能トルク算出部と、
     前記モータジェネレータの前記トルク指令値と前記出力可能トルクとの差分トルクを算出する差分トルク算出部と、
     前記差分トルクを変換したエンジントルク補正成分を算出するエンジントルク補正成分算出部と、
     前記エンジントルク補正成分と前記目標エンジントルクとを加算して合成トルクを算出する合成トルク算出部と、
     前記合成トルクに基づいて前記目標エンジントルク補正値を設定する目標エンジントルク補正値設定部と、
     を備えることを特徴とする請求項1または請求項2に記載のハイブリッド車両の駆動制御装置。
  4.  前記エンジントルク補正部は、前記目標エンジントルクに最小エンジントルクを設定し、前記合成トルクと前記最小エンジントルクとを比較して大きい方を目標エンジントルク補正値に設定することを特徴とする請求項1~3のいずれか一つに記載のハイブリッド車両の駆動制御装置。
  5.  前記モータジェネレータは、第1のモータジェネレータと、第2のモータジェネレータと、の一対であり、
     前記内燃機関と、前記第1のモータジェネレータと、前記第2のモータジェネレータと、出力部と、から構成される4つの要素を、共線図上で、前記第1のモータジェネレータ、前記内燃機関、前記出力部、前記第2のモータジェネレータの順になるように連結した遊星歯車機構を備えてなり、
     前記エンジントルク補正部は、前記目標エンジントルク補正値を、前記第1のモータジェネレータの前記トルク指令値と前記第1のモータジェネレータの出力可能トルクに基づいて設定することを特徴とする請求項1~4のいずれか一つに記載のハイブリッド車両の駆動制御装置。
  6.  前記目標エンジントルク設定部は、目標エンジンパワーとシステム全体効率とから前記内燃機関の前記目標エンジントルクおよび目標エンジン回転速度を決定する目標エンジン動作点を設定する目標エンジン動作点設定部に含まれることを特徴とする請求項1~5のいずれか一つに記載のハイブリッド車両の駆動制御装置。
  7.  前記目標エンジンパワーを、目標駆動パワーと目標充放電パワーとから算出する目標エンジンパワー算出部を、さらに備えることを特徴とする請求項6に記載のハイブリッド車両の駆動制御装置。
  8.  前記目標駆動パワーを、アクセル開度と車両速度とに基づいて設置する目標駆動パワー算出部を、さらに備えることを特徴とする請求項7に記載のハイブリッド車両の駆動制御装置。
  9.  前記目標充放電パワーを、バッテリの充電状態に基づいて算出する目標充放電パワー算出部を、さらに備えることを特徴とする請求項7に記載のハイブリッド車両の駆動制御装置。
  10.  前記アクセル開度を検出するアクセル開度検出部を、さらに備えることを特徴とする請求項8に記載のハイブリッド車両の駆動制御装置。
  11.  前記車両速度を検出する車両速度検出部を、さらに備えることを特徴とする請求項8に記載のハイブリッド車両の駆動制御装置。
  12.  前記バッテリの充電状態を検出するバッテリ充電状態検出部を、さらに備えることを特徴とする請求項9に記載のハイブリッド車両の駆動制御装置。
  13.  内燃機関とモータジェネレータとからの出力を用いて車両を駆動制御するハイブリッド車両の駆動制御方法であって、
    前記モータジェネレータの出力可能トルクの絶対値がトルク指令値より小さい場合に、目標エンジンパワーとシステム全体効率とから設定した前記内燃機関の目標エンジントルクが小さくなるように制御することを特徴とするハイブリッド車両の駆動制御方法。
  14.  前記目標エンジントルクに最小エンジントルクを設定し、前記目標エンジントルクが減少したときに、前記目標エンジントルクが、前記最小エンジントルクを下回らないように制御することを特徴とする請求項13に記載のハイブリッド車両の駆動制御方法。
  15.  請求項1~12のいずれか一つに記載の駆動制御装置を搭載したことを特徴とするハイブリッド車両。
PCT/JP2011/000533 2011-01-31 2011-01-31 ハイブリッド車両の駆動制御装置、制御方法、およびハイブリッド車両 WO2012104904A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180066383.7A CN103339007B (zh) 2011-01-31 2011-01-31 混合动力车辆的驱动控制设备和控制方法及混合动力车辆
PCT/JP2011/000533 WO2012104904A1 (ja) 2011-01-31 2011-01-31 ハイブリッド車両の駆動制御装置、制御方法、およびハイブリッド車両
JP2012555556A JPWO2012104904A1 (ja) 2011-01-31 2011-01-31 ハイブリッド車両の駆動制御装置、制御方法、およびハイブリッド車両
US13/981,005 US9150217B2 (en) 2011-01-31 2011-01-31 Drive control apparatus and control method for hybrid vehicles and hybrid vehicle
DE112011104801T DE112011104801T5 (de) 2011-01-31 2011-01-31 Antriebssteuergerät und Steuerverfahren für Hybridfahrzeuge und Hybridfahrzeug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000533 WO2012104904A1 (ja) 2011-01-31 2011-01-31 ハイブリッド車両の駆動制御装置、制御方法、およびハイブリッド車両

Publications (1)

Publication Number Publication Date
WO2012104904A1 true WO2012104904A1 (ja) 2012-08-09

Family

ID=46602158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000533 WO2012104904A1 (ja) 2011-01-31 2011-01-31 ハイブリッド車両の駆動制御装置、制御方法、およびハイブリッド車両

Country Status (5)

Country Link
US (1) US9150217B2 (ja)
JP (1) JPWO2012104904A1 (ja)
CN (1) CN103339007B (ja)
DE (1) DE112011104801T5 (ja)
WO (1) WO2012104904A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012104904A1 (ja) * 2011-01-31 2014-07-03 スズキ株式会社 ハイブリッド車両の駆動制御装置、制御方法、およびハイブリッド車両
CN104343554A (zh) * 2013-07-31 2015-02-11 通用汽车环球科技运作有限责任公司 控制提供到车轮的扭矩量以防止非故意加速的系统和方法
JP2021049805A (ja) * 2019-09-20 2021-04-01 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011104905T5 (de) * 2011-02-17 2013-12-12 Suzuki Motor Corporation Fahrzeugsteuerung für ein Hybridfahrzeug
WO2013038811A1 (ja) * 2011-09-13 2013-03-21 本田技研工業株式会社 電動車両のモータ制御装置
JP5850035B2 (ja) * 2013-12-12 2016-02-03 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR101619212B1 (ko) * 2014-09-25 2016-05-10 현대자동차 주식회사 하이브리드 차량의 제어 방법
JP6380304B2 (ja) * 2015-09-03 2018-08-29 トヨタ自動車株式会社 ハイブリッド自動車
JP6354769B2 (ja) * 2016-02-16 2018-07-11 トヨタ自動車株式会社 ハイブリッド車両
CN108730047B (zh) * 2017-04-13 2020-07-31 上海汽车集团股份有限公司 一种发动机目标扭矩图谱的生成方法及装置
KR102478125B1 (ko) * 2017-11-24 2022-12-16 현대자동차주식회사 모터 구동 차량 제어방법 및 제어시스템
KR102370944B1 (ko) * 2017-12-12 2022-03-07 현대자동차주식회사 하이브리드 전기차량의 모터속도 발산 방지 방법
JP7027937B2 (ja) * 2018-02-16 2022-03-02 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR102529518B1 (ko) * 2018-06-22 2023-05-04 현대자동차주식회사 친환경자동차의 구동 토크 지령 생성 장치 및 방법
JP7183924B2 (ja) * 2019-04-05 2022-12-06 トヨタ自動車株式会社 ハイブリッド車両
MX2021012565A (es) * 2019-04-16 2021-11-12 Nissan Motor Metodo de control para vehiculo hibrido y dispositivo de control para vehiculo hibrido.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153946A (ja) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd ハイブリッド車のモータ過回転防止制御装置
JP2004360608A (ja) * 2003-06-05 2004-12-24 Aisin Aw Co Ltd ハイブリッド型車両駆動制御装置、ハイブリッド型車両駆動制御方法及びそのプログラム
JP2007296937A (ja) * 2006-04-28 2007-11-15 Suzuki Motor Corp ハイブリッド車両の制御装置
JP2008247205A (ja) * 2007-03-30 2008-10-16 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4407002B2 (ja) 2000-04-19 2010-02-03 トヨタ自動車株式会社 動力装置
JP2007055287A (ja) 2005-08-22 2007-03-08 Toyota Motor Corp ハイブリッド車
JP4973165B2 (ja) * 2006-12-08 2012-07-11 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4983453B2 (ja) * 2007-07-18 2012-07-25 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP2009083583A (ja) * 2007-09-28 2009-04-23 Toyota Motor Corp 車両の制御装置
US9187100B2 (en) * 2010-12-20 2015-11-17 Cummins Inc. Hybrid power train flexible control integration
US9150217B2 (en) * 2011-01-31 2015-10-06 Suzuki Motor Corporation Drive control apparatus and control method for hybrid vehicles and hybrid vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153946A (ja) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd ハイブリッド車のモータ過回転防止制御装置
JP2004360608A (ja) * 2003-06-05 2004-12-24 Aisin Aw Co Ltd ハイブリッド型車両駆動制御装置、ハイブリッド型車両駆動制御方法及びそのプログラム
JP2007296937A (ja) * 2006-04-28 2007-11-15 Suzuki Motor Corp ハイブリッド車両の制御装置
JP2008247205A (ja) * 2007-03-30 2008-10-16 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012104904A1 (ja) * 2011-01-31 2014-07-03 スズキ株式会社 ハイブリッド車両の駆動制御装置、制御方法、およびハイブリッド車両
CN104343554A (zh) * 2013-07-31 2015-02-11 通用汽车环球科技运作有限责任公司 控制提供到车轮的扭矩量以防止非故意加速的系统和方法
JP2021049805A (ja) * 2019-09-20 2021-04-01 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP7272213B2 (ja) 2019-09-20 2023-05-12 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
US9150217B2 (en) 2015-10-06
CN103339007A (zh) 2013-10-02
JPWO2012104904A1 (ja) 2014-07-03
DE112011104801T5 (de) 2013-10-31
CN103339007B (zh) 2016-07-06
US20130304294A1 (en) 2013-11-14

Similar Documents

Publication Publication Date Title
WO2012104904A1 (ja) ハイブリッド車両の駆動制御装置、制御方法、およびハイブリッド車両
US9026293B2 (en) Drive control device of hybrid vehicle
US9283948B2 (en) Vehicle and control method for vehicle
WO2012111124A1 (ja) ハイブリッド車両の駆動制御装置
JP5818231B2 (ja) ハイブリッド車両の駆動制御装置
WO2012114429A1 (ja) ハイブリッド車両の駆動制御装置
US9555799B2 (en) Control device for hybrid vehicle, hybrid vehicle provided with same, and control method for hybrid vehicle
WO2006006293A1 (ja) 動力出力装置およびこれを搭載する車両並びにその制御方法
US9045135B2 (en) Drive control device for hybrid vehicle
US8983700B2 (en) Drive control device of hybrid vehicle
JP4826657B2 (ja) 車両の制御装置
JP5704415B2 (ja) ハイブリッド車両の駆動制御装置
JP6617668B2 (ja) ハイブリッド車両の制御装置
JP4998286B2 (ja) 動力出力装置およびその制御方法並びに車両
KR101755418B1 (ko) 하이브리드차의 제어 장치
JP2011235750A (ja) ハイブリッド自動車
JP2010163090A (ja) ハイブリッド車
JP2009303414A (ja) 車両及びその制御方法
JP2014217112A (ja) 車両の制御装置
JP5024892B2 (ja) 車両及び車両の制御方法
JP2013107511A (ja) ハイブリッド自動車
JP2010215016A (ja) ハイブリッド自動車
JP6350031B2 (ja) 車両用制御装置
JP2010221823A (ja) ハイブリッド自動車
JP6133721B2 (ja) 自動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13981005

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012555556

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011104801

Country of ref document: DE

Ref document number: 1120111048017

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857695

Country of ref document: EP

Kind code of ref document: A1