WO2012103834A1 - 电池隔膜及其制备方法与锂离子电池 - Google Patents

电池隔膜及其制备方法与锂离子电池 Download PDF

Info

Publication number
WO2012103834A1
WO2012103834A1 PCT/CN2012/072801 CN2012072801W WO2012103834A1 WO 2012103834 A1 WO2012103834 A1 WO 2012103834A1 CN 2012072801 W CN2012072801 W CN 2012072801W WO 2012103834 A1 WO2012103834 A1 WO 2012103834A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery separator
battery
binder polymer
particles
base layer
Prior art date
Application number
PCT/CN2012/072801
Other languages
English (en)
French (fr)
Inventor
乐斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12741480.3A priority Critical patent/EP2672545B1/en
Publication of WO2012103834A1 publication Critical patent/WO2012103834A1/zh
Priority to US14/144,788 priority patent/US9620759B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery technologies, and in particular, to a battery separator, a preparation method, and a lithium ion battery. Background technique
  • the battery separator refers to the separator material between the positive and negative electrodes of the battery. It is a key component of the battery. Its main function is: to isolate the positive and negative stages of the battery, so that the electrons in the battery cannot pass freely, but allow the electrolyte to The ions pass freely between the positive and negative electrodes.
  • the performance of the battery separator determines the interface structure of the battery and the internal resistance of the battery, which in turn affects the battery capacity, cycle performance and charge and discharge current density.
  • the battery separator is generally made of polypropylene or polyethylene.
  • battery separators made of polyethylene and polypropylene have the disadvantages of poor affinity for electrolytes, low liquid absorption, low specific surface energy, high heat shrinkage at high temperatures, and extremely strong heat above 100 °C. Shrinkage can cause a short circuit between the positive and negative terminals of the battery.
  • Embodiments of the present invention provide a battery separator, a preparation method thereof, and a lithium ion battery to improve cycle performance and safety performance of the battery.
  • a battery separator comprising:
  • a base layer comprising a polyolefin and/or a nonwoven fabric
  • a method for preparing a battery separator comprising:
  • a lithium ion battery comprising:
  • Positive electrode, negative electrode, battery separator, electrolyte and package
  • the battery separator is the battery separator of any one of claims 1 to 3.
  • FIG. 1 is a schematic structural view of a battery separator according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method for preparing a battery separator according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the number of times of charge and discharge of a lithium ion battery according to an embodiment of the present invention.
  • Embodiments of the present invention provide a battery separator. By adding boride particles, the deterioration of the electrolyte can be prevented, and the cycle performance of the battery can be improved. By adding ceramic particles, the heat resistance of the battery separator can be improved, and the safety of the battery can be improved. Embodiments of the present invention also provide corresponding preparation methods and lithium ion batteries. The details are described below separately.
  • an embodiment of the present invention provides a battery separator, including:
  • a base layer 100 comprising a polyolefin and/or a nonwoven fabric
  • the boride has a weight ratio of 1% to 10%
  • the ceramic particles have a weight ratio of 80% to 98%
  • the binder polymer has a weight ratio of 1%. Up to 10%.
  • the base layer may specifically be a polyolefin porous film, or a nonwoven fabric, or a combination of the two.
  • the polyolefin porous film may be a single layer film or a multilayer composite film.
  • the binder polymer may be an ethylene-based polymer or a vinyl copolymer or a combination of the two.
  • it may be selected from one or more of the following components: polyvinylidene fluoride, polyacrylonitrile, polyethylene oxide, polypropylene oxide, decyl decyl acrylate, polyvinyl acetate, polyvinylidene fluoride - Hexafluoropropylene copolymer.
  • the boride is a binary compound of boron and a metal, and some non-metals such as carbon, and can be represented by the formula MmBn.
  • the boride may be selected from one or more of the following borides: boron oxide, calcium hexaboride, titanium diboride, chromium diboride, aluminum diboride.
  • the boride is dispersed in the binder polymer in the form of particles, and the size of the particles may be 0.001 to 25 ⁇ m.
  • the ceramic is a ceramic fiber in the form of particles, and the size of the particles may be 0.001 to 25 ⁇ m.
  • the ceramic may be selected from one or more of the following components: silicon nitride, zirconium diboride, aluminum silicate, boron carbide.
  • the composite layer may be attached to one surface or both surfaces of the substrate by printing, or spraying, or coating, or soaking.
  • the binder polymer may be added to a solvent such as a ruthenium-fluorenyl-2-pyrrolidone solvent or acetone to be uniformly dispersed to form a polymer solution, and the boride particles and ceramic particles are added to the polymer solution. After the stirring is hooked, it is set on the base layer by the above-mentioned treatment method, and then dried and solidified to form a battery separator.
  • the binder polymer is preferably decyl methacrylate and polyacrylonitrile. Since the carboxyl group in the polydecyl methacrylate has a strong interaction with the oxygen of the carbonate nonaqueous solvent in the electrolyte, the ability to adsorb the electrolyte is strong; and the lithium salt in the battery and the polar cyanide in the polyacrylonitrile The base can undergo coordination to form a complex, which can increase the creeping ability of the polymer segment and increase the conductivity.
  • the battery separator of the embodiment of the invention wherein the added boride particles have strong water absorption, can reduce the acid substance generated by the water contained in the battery electrolyte, prevent the electrolyte from deteriorating, improve the cycle performance of the battery, and further prolong the use of the battery. Lifetime;
  • the ceramic particles added have good stability, can improve the thermal stability of the battery separator, improve the heat resistance of the battery separator, and thereby improve the safety of the battery.
  • an embodiment of the present invention further provides a method for preparing a battery separator, including:
  • the binder polymer solution refers to a liquid binder polymer.
  • the binder polymer solution can be formed by adding a binder polymer to a certain solvent such as a fluorenyl-mercapto-2-pyrrolidone solvent or acetone. Wherein, after the binder polymer is added to the solvent, it is dissolved and dispersed by stirring; after the boride particles and the ceramic particles are added to the polymer solution, the dispersion is uniformly dispersed.
  • the mixed slurry may be printed, or sprayed, or coated on one or both sides of the base layer; or alternatively, the base layer may be immersed by the mixed slurry on one or both sides of the base layer.
  • the mixed slurry is adhered. After the mixed slurry is dried to form a composite layer adhered to at least one surface of the base layer, the battery separator is completed.
  • the solvent is not an indispensable material, but an auxiliary material used for the convenience of processing; the binder polymer, the boride particles and the ceramic particles are directly mixed and adhered to the substrate, The object of the invention can likewise be achieved.
  • the battery separator prepared by the method of the embodiment of the invention, wherein the added boride particles have strong water absorption, can reduce the acid substance generated by the water contained in the battery electrolyte, prevent the electrolyte from deteriorating, improve the cycle performance of the battery, and further prolong The service life of the battery; the added ceramic particles have good stability, can improve the thermal stability of the battery separator, improve the heat resistance of the battery separator, and further improve the safety of the battery.
  • the embodiment of the invention further provides a lithium ion battery, comprising: a positive electrode, a negative electrode, a battery separator, an electrolyte solution and a packaging shell; and the battery separator is the battery separator provided in the above embodiment. It is made of a material containing an anode active material carbon.
  • the battery separator is spaced between the adjacent positive and negative electrodes, and the positive electrode, the negative electrode and the battery separator are formed into a battery core by a winding or lamination process, and then the battery core and the electrolyte solution are enclosed in the package casing to constitute a battery.
  • the active material of the negative electrode may also be graphite, hard carbon, soft carbon, lithium titanate, silicon carbon, tin or a combination thereof; It may be lithium cobaltate, lithium nickelate, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminate, lithium manganate, lithium iron phosphate, lithium manganese phosphate, lithium vanadium phosphate or a combination thereof; the lithium salt in the electrolyte may be selected From lithium hexafluorophosphate, lithium tetrafluoroborate, lithium bis(oxalate), lithium oxalate difluoroborate, lithium bistrifluorodecylsulfonimide; the nonaqueous solvent in the electrolyte may be selected from the group consisting of ethylene carbonate and propylene carbonate.
  • the additive in the electrolyte may be selected from the group consisting of a solid electrolyte interface film (SEI) additive, an overcharge preventing additive, an electrolyte stabilizer, a conductivity improving additive, or a combination thereof.
  • SEI solid electrolyte interface film
  • the battery provided by the embodiment of the invention has strong water absorption due to the boride particles added in the battery separator, can reduce the acid substance generated by the water contained in the battery electrolyte, prevent the electrolyte from deteriorating, and improve the cycle performance of the battery, thereby further improving the cycle performance of the battery.
  • the ceramic particles added to the battery separator have good stability, can improve the thermal stability of the battery separator, improve the heat resistance of the battery separator, and thus improve the safety of the battery.
  • the binder polymer is polyvinylidene fluoride (PVDF), the solvent is N-mercapto-2-pyrrolidone (NMP), the boride particles are made of boron oxide particles, and the ceramic particles are made of aluminum silicate particles.
  • PVDF polyvinylidene fluoride
  • NMP N-mercapto-2-pyrrolidone
  • the boride particles are made of boron oxide particles
  • the ceramic particles are made of aluminum silicate particles.
  • the binder polymer still uses polyvinylidene fluoride, the solvent still uses N-mercapto-2-pyrrolidone, the boride particles use aluminum diboride particles, and the ceramic particles use silicon nitride particles.
  • the preparation process is as follows:
  • polyvinylidene fluoride 25g was added to an appropriate amount of NMP solvent, and then dissolved and dispersed by stirring to form a homogenous polymer solution; 950 g of silicon nitride ceramic particles were added to the polymer solution, and 25 g of boron carbide particles were added, followed by high speed. Stirring was carried out to obtain a uniformly dispersed mixed slurry; the slurry was printed on a polyolefin porous film base layer by gravure printing, and dried to prepare a battery separator.
  • the binder polymer is polyvinylidene fluoride
  • the solvent is acetone
  • the boride particles are boron oxide particles
  • the ceramic particles are aluminum silicate particles.
  • the battery separator of the embodiment of the present invention has a liquid absorption rate far exceeding that of the prior art battery separator.
  • the cycle performance of the battery separator of the embodiment of the present invention is much better than that of the prior art battery separator.
  • the battery separator of the embodiment of the present invention contains a boride, and the boride can suppress the oxide formed by the action of moisture in the electrolyte, particularly the effect caused by hydrofluoric acid, thereby improving the cycle performance of the battery and prolonging The life of the battery charge and discharge times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

电池隔膜及其制备方法与锂离子电池 技术领域
本发明涉及电池技术领域,具体涉及一种电池隔膜以及制备方法和锂离子 电池。 背景技术
电池隔膜是指电池正极和负极之间的隔膜材料, 是电池的关键组成部分, 其主要作用是: 隔离电池的正、 负级, 使电池内的电子不能自由穿过, 但允许 电解液中的离子在正负极之间自由通过。电池隔膜性能的优劣决定电池的界面 结构和电池内阻, 进而影响电池的容量, 循环性能和充放电电流密度等特性。 电池隔膜一般是用聚丙烯、 聚乙烯制成的。 但是聚乙烯、 聚丙烯制成的电池隔 膜存在对电解液亲和性较差的缺点, 吸液量低, 比表面能低, 同时高温受热收 缩率大, 在 100°C以上显示极强的热收缩性, 会导致电池正负极短路。
现有技术中,通过在聚乙烯、聚丙烯制成的隔膜基体的表面涂覆二氧化硅 或碳酸鈣等无机微粒, 可以在一定程度上改善了电池隔膜的热收缩性。 但是, 该种方法对电池性能的改善有限, 难以改善电池的循环性能和安全性能。 发明内容
本发明实施例提供一种电池隔膜及其制备方法和锂离子电池,以提高电池 的循环性能和安全性能。
一种电池隔膜, 包括:
包含聚烯烃和 /或无纺织布的基层;
设置在所述基层至少一个表面的复合层,所述复合层包含粘接剂聚合物以 及分散在所述粘接剂聚合物中的硼化物颗粒和陶瓷颗粒。
一种电池隔膜的制备方法, 包括:
在粘结剂聚合物溶液中加入硼化物颗粒和陶瓷颗粒, 获得混合浆料; 将所述混合浆料涂覆在包含聚烯烃和 /或无纺织布的基层的至少一个表 面, 干燥后得到电池隔膜。 一种锂离子电池, 包括:
正极, 负极, 电池隔膜, 电解液和包装壳;
所述电池隔膜为权利要求 1至 3中任一所述的电池隔膜。
本发明实施例提供的电池隔膜,通过添加硼化物颗粒,可以防止电解液的 恶化,提高电池的循环性能;通过添加陶瓷颗粒,可以提高电池隔膜的耐热性, 提高电池的安全性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例提供的电池隔膜的结构示意图;
图 2是本发明实施例提供的电池隔膜的制备方法的流程图;
图 3是本发明实施例提供的锂离子电池的充放电次数的示意图。
具体实施方式
本发明实施例提供一种电池隔膜,通过添加硼化物颗粒, 可以防止电解液 的恶化, 提高电池的循环性能; 通过添加陶瓷颗粒, 可以提高电池隔膜的耐热 性,提高电池的安全性。本发明实施例还提供相应的制备方法以及锂离子电池。 以下分别进行详细说明。
请参考图 1 , 本发明实施例提供一种电池隔膜, 包括:
包含聚烯烃和 /或无纺织布的基层 100;
设置在所述基层至少一个表面的复合层 200, 所述复合层包含粘接剂聚合 物 201以及分散在所述粘接剂聚合物中的硼化物颗粒 202和陶瓷颗粒 203。
其中:
所述复合层中, 所述硼化物的重量比介于 1%至 10 % , 所述陶瓷颗粒的重 量比介于 80%至 98 % , 所述粘接剂聚合物的重量比介于 1%至 10 %。
所说的基层具体可以是聚烯烃多孔膜, 或者无纺织布, 或者两者的结合。 所说的聚烯烃多孔膜可以是单层膜, 也可以是多层复合膜。
所说的粘接剂聚合物可以是乙婦基聚合物或乙烯基共聚物或两者的组合, 例如可以选自以下组分中的一种或几种: 聚偏二氟乙烯、 聚丙烯腈、 聚氧化乙 烯、 聚氧化丙烯、 聚曱基丙烯酸曱酯、 聚乙酸乙烯酯、 聚偏氟乙烯-六氟丙烯 共聚物。
所说的硼化物是硼与金属、 某些非金属(如碳)形成的二元化合物, 可用 通式 MmBn表示。 举例来说, 硼化物可以选自以下硼化物中的一种或几种: 氧化硼, 六硼化钙, 二硼化钛, 二硼化铬, 二硼化铝。 本实施例中, 硼化物以 颗粒的形式分散在粘接剂聚合物物中, 颗粒的大小可以是 0.001〜25 μ m。
所说的陶瓷是以颗粒形式存在的陶瓷纤维, 颗粒的大小可以是 0.001〜25 μ ιη。 举例来说, 所说的陶瓷可以选择以下组分中的一种或者几种: 氮化硅, 二硼化锆, 硅酸铝, 碳化硼。
所说的复合层可以通过印刷, 或喷涂, 或涂布, 或浸泡等处理方式附着在 基层一个表面或者两个表面。通常,将粘接剂聚合物可以加入到某些溶剂例如 Ν-曱基—2—吡咯烷酮溶剂或者丙酮中中搅拌分散均匀形成聚合物溶液, 再将硼 化物颗粒和陶瓷颗粒加入到聚合物溶液中搅拌均勾后 ,通过上述的处理方式设 置在基层上, 然后干燥凝固, 形成电池隔膜。
一种实施方式中, 粘接剂聚合物优选采用聚曱基丙烯酸曱酯和聚丙烯腈。 由于聚曱基丙烯酸曱酯中的羧基与电解液中碳酸酯类非水溶剂的氧相互作用 很强, 因而吸附电解液能力较强; 同时电池中的锂盐与聚丙烯腈中的极性氰基 可以发生配位作用, 形成络合物, 从而可以增加聚合物链段的蠕动能力, 提高 电导率。
本发明实施例的电池隔膜, 其中添加的硼化物颗粒具有强烈吸水性, 可以 减少电池电解液中因含有水分而产生的酸性物质, 防止电解液恶化,提高电池 的循环性能, 进而延长电池的使用寿命; 其中添加的陶瓷颗粒, 稳定性好, 可 以提高电池隔膜的热稳定性,提高电池隔膜的耐热性,进而提高电池的安全性。
请参考图 2, 本发明实施例还提供一种电池隔膜的制备方法, 包括:
301、在粘接剂聚合物溶液中加入硼化物颗粒和陶瓷颗粒, 获得混合浆料。 所述粘接剂聚合物溶液是指液态的粘结剂聚合物。可以通过将粘结剂聚合 物添加到某些溶剂例如 Ν-曱基 -2-吡咯烷酮溶剂或者丙酮中形成粘接剂聚合物 溶液。 其中, 粘接剂聚合物加入溶剂中后, 通过搅拌使其溶解分散; 硼化物颗 粒和陶瓷颗粒加入到聚合物溶液后, 也搅拌分散均匀。 302、将所述混合浆料涂覆在包含聚烯烃和 /或无纺织布的基层的至少一个 表面, 干燥后得到电池隔膜。
具体的, 可以将所述混合浆料印刷, 或者喷涂, 或者涂布在所述基层的一 面或者两面; 又或者, 可以利用所述混合浆料浸泡所述基层, 在所述基层的一 面或者两面粘附上所述混合浆料。混合浆料干燥后形成粘附于基层至少一个表 面上的复合层, 则电池隔膜制作完成。
需要说明的是, 所说的溶剂并非必不可少的材料, 只是为了方便加工而采 用的辅助材料; 直接将粘结剂聚合物、 硼化物颗粒和陶瓷颗粒混合均勾, 粘附 在基层上, 同样可以实现本发明目的。
采用本发明实施例方法制备的电池隔膜,其中添加的硼化物颗粒具有强烈 吸水性, 可以减少电池电解液中因含有水分而产生的酸性物质, 防止电解液恶 化, 提高电池的循环性能, 进而延长电池的使用寿命; 其中添加的陶瓷颗粒, 稳定性好, 可以提高电池隔膜的热稳定性, 提高电池隔膜的耐热性, 进而提高 电池的安全性。
本发明实施例还提供一种锂离子电池, 包括: 正极, 负极, 电池隔膜, 电 解液和包装壳; 所述电池隔膜为上述实施例提供的电池隔膜。 用含有阳极活性物质碳的材料制成。电池隔膜间隔于相邻的正负极之间,正极、 负极和电池隔膜三者通过卷绕或者叠片工艺组成电芯,然后电芯和电解液封装 在包装壳内, 构成电池。
需要说明的是, 本发明的其他实施例提供的锂离子电池中, 负极的活性物 质也可以是石墨、 硬碳、 软碳、 钛酸锂、 硅碳、 锡或其组合; 负极的活性物质 也可以是钴酸锂、 镍酸锂、 镍钴锰酸锂、 镍钴铝酸锂、 锰酸锂、 磷酸亚铁锂、 磷酸锰锂、 磷酸钒锂或其组合; 电解液中的锂盐可以选自六氟磷酸锂、 四氟硼 S炱锂、 双草酸硼酸锂、 草酸双氟硼酸锂、 双三氟曱基磺酰亚胺基锂; 电解液中 的非水溶剂可以是选自碳酸乙烯酯、 碳酸丙烯酯、 碳酸丁烯酯、 碳酸二曱酯、 碳酸二乙酯、 碳酸曱乙酯、 碳酸曱丙酯、 丁内酯、 乙酸乙酯、 乙酸丙酯、 乙酸 丁酯、 丙酸曱酯、 丙酸丙酯或其组合; 电解液中的添加剂可以选自固体电解质 界面膜(SEI )添加剂, 防过充添加剂, 电解质稳定剂、 电导率提高添加剂或 其组合。 本发明实施例提供的电池,因其电池隔膜中添加的硼化物颗粒具有强烈吸 水性,可以减少电池电解液中因含有水分而产生的酸性物质,防止电解液恶化, 提高电池的循环性能,进而延长电池的使用寿命;电池隔膜中添加的陶瓷颗粒, 稳定性好, 可以提高电池隔膜的热稳定性, 提高电池隔膜的耐热性, 进而提高 电池的安全' 1 "生。
下面提供几个具体应用例和一个比较例:
应用例一、
粘接剂聚合物采用聚偏氟乙烯(PVDF ) , 溶剂采用 N-曱基 -2-吡咯烷酮 (NMP), 硼化物颗粒采用氧化硼颗粒, 陶瓷颗粒采用硅酸铝颗粒, 制备过程如 下:
将 30g 聚偏氟乙烯加入到适量的 NMP溶剂中, 然后通过搅拌溶解分散, 形成均勾的聚合物溶液; 向聚合物溶液中加入硅酸铝陶瓷颗粒 950g, 再加入 20g氧化硼颗粒, 然后高速搅拌, 得到分散均勾的混合浆料; 使用凹版印刷方 式将混合浆料印刷在聚烯烃多孔膜基层上, 干燥后制得电池隔膜。
应用例二、
粘接剂聚合物仍采用聚偏氟乙烯, 溶剂仍采用 N-曱基 -2-吡咯烷酮, 硼化 物颗粒采用二硼化铝颗粒, 陶瓷颗粒采用氮化硅颗粒, 制备过程如下:
将 25g聚偏氟乙烯加入到适量的 NMP溶剂中, 然后通过搅拌溶解分散, 形成均勾的聚合物溶液; 向聚合物溶液中加入氮化硅陶瓷颗粒 950g, 再加入 25g碳化硼颗粒, 然后高速搅拌, 得到分散均匀的混合浆料; 使用凹版印刷方 式将浆料印刷在聚烯烃多孔膜基层上, 干燥后制得电池隔膜。
应用例三、
粘接剂聚合物采用聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP ) , 溶剂仍采 用 N-曱基 -2-吡咯烷酮, 硼化物颗粒采用二硼化铝颗粒, 陶瓷颗粒采用硅酸铝 颗粒, 制备过程如下:
将 30g聚偏氟乙烯-六氟丙烯共聚物加入到适量的 NMP溶剂中,然后通过 搅拌溶解分散, 形成均匀的聚合物溶液; 向聚合物溶液中加入硅酸铝陶瓷颗粒 950g, 再加入 20g二硼化铝颗粒, 然后高速搅拌, 得到分散均勾的混合浆料; 使用凹版印刷方式将浆料印刷在聚烯烃多孔膜基层上, 干燥后制得电池隔膜。
应用例四、 粘接剂聚合物采用聚偏氟乙烯, 溶剂采用丙酮,硼化物颗粒采用氧化硼颗 粒, 陶瓷颗粒采用硅酸铝颗粒, 制备过程如下:
将 40g聚偏氟乙烯加入到丙酮中, 然后通过搅拌溶解分散, 形成均匀的聚 合物溶液; 向聚合物溶液中加入硅酸铝陶瓷颗粒 940g, 再加入 20g氧化硼颗 粒, 然后高速搅拌, 得到分散均匀的混合浆料; 使用涂布方式将浆料涂布在无 纺布多孔基层上, 干燥后制得电池隔膜。
比较例一、
为现有技术中采用聚乙烯制备的,未涂覆硼化物和陶瓷颗粒的电池隔膜作 为比较例。
下面通过实验数据说明本发明实施例提供的电池隔膜的优良性能: 实验一、 测试上述应用例 1 ~ 4和比较例 1制备的电池隔膜的吸液率 在氮气保护的手套箱中将电池隔膜剪成所需形状并称重, 在 lmol/L LiPF6/EC-DEC (体积比 1 : 1)的电解液中充分浸泡, 然后用滤纸吸去电池隔膜 表面多余的电解液,再称重。 电池隔膜浸泡后增加的重量除以浸泡前的重量再 乘以 100 % , 即为电池隔膜的吸液率。 测试结果如表 1 :
表 1
Figure imgf000008_0001
从表 1所示的测试结果可以看出,本发明实施例的电池隔膜的吸液率远远 超过现有技术的电池隔膜。
实验二、 测试上述应用例 1 ~ 4和比较例 1制备的电池隔膜的稳定性 将各应用例和比较例制成的电池隔膜放入被加热至 150°C的烘箱中保存 1 小时, 然后取出测量热收缩率。 收缩率是指烘烤前的隔膜长度减去烘烤后的隔 膜长度再除以烘烤前的隔膜长度得到的比值。 测试结果如表 2。 表 2
Figure imgf000009_0001
从表 2所示的测试结果可以看出,本发明实施例的电池隔膜的收缩率远远 小于现有技术的电池隔膜,这反映了本发明实施例的电池隔膜的稳定性远远高 于现有技术的电池隔膜。这是因为, 本发明实施例的电池隔膜中添加有陶瓷颗 粒, 而陶瓷材料高温性能好, 粘接剂聚合物分子链相互缠绕形成的三维网状结 构将陶瓷颗粒包裹于其中,从而可以大大提高隔膜热稳定性, 进而可以防止电 池因受热导致正负极短路。
实验三、 测试上述应用例 1 ~ 4和比较例 1制备的电池隔膜的循环性能 分别用实施例 1、 2、 3以及比较例 1得到的电池隔膜, 制作 1500mA 容 量的锂离子电池, 进行 1C充电, 1C放电循环测试, 测试结果见图 3。 充放电 次数的多少, 表示循环性能的好坏。
从图 3可以看出,本发明实施例的电池隔膜的循环性能远远好于现有技术 的电池隔膜。这是由于本发明实施例的电池隔膜含硼化物, 而硼化物能够抑制 电解液中因水分作用而生成的氧化物,特别是由氢氟酸引起的影响,从而可以 改进电池的循环性能, 延长电池充放电次数的寿命。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种电池隔膜, 其特征在于, 包括:
包含聚烯烃和 /或无纺织布的基层;
设置在所述基层至少一个表面的复合层,所述复合层包含粘接剂聚合物以 及分散在所述粘接剂聚合物中的硼化物颗粒和陶瓷颗粒。
2、 根据权利要求 1所述的电池隔膜, 其特征在于, 所述复合层中各组分 占所述复合层的重量比为:
硼化物颗粒, 1〜10 %; 陶瓷颗粒, 80〜98 %; 粘接剂聚合物, 1〜10 %。
3、 根据权利要求 1所述的电池隔膜, 其特征在于:
所述硼化物颗粒和陶瓷颗粒的大小在 0.001微米至 25微米之间。
4、 根据权利要求 1至 3中任一所述的电池隔膜, 其特征在于:
所述硼化物包括氧化硼, 六硼化钙, 二硼化钛, 二硼化铬, 二硼化铝中的 至少一种。
5、 根据权利要求 1至 3中任一所述的电池隔膜, 其特征在于:
所述陶瓷包括硅酸铝, 氮化硅, 二硼化梧, 碳化硼中的至少一种。
6、 根据权利要求 1至 3中任一所述的电池隔膜, 其特征在于:
所述粘接剂聚合物包括乙婦基聚合物或乙婦基共聚物或两者的组合。
7、 根据权利要求 6所述的电池隔膜, 其特征在于:
所述粘接剂聚合物包括聚偏二氟乙烯、 聚丙烯腈、 聚氧化乙烯、 聚氧化丙 烯、 聚曱基丙烯酸曱酯、 聚乙酸乙烯酯、 聚偏氟乙烯-六氟丙烯共聚物中的至 少一种。
8、 一种电池隔膜的制备方法, 其特征在于, 包括:
在粘结剂聚合物溶液中加入硼化物颗粒和陶瓷颗粒, 获得混合浆料; 将所述混合浆料涂覆在包含聚烯烃和 /或无纺织布的基层的至少一个表 面, 干燥后得到电池隔膜。
9、 根据权利要求 8所述的电池隔膜, 其特征在于, 所述在粘结剂聚合物 溶液中加入硼化物颗粒和陶瓷颗粒之前还包括:
将粘接剂聚合物加入 N-曱基 -2-吡咯烷酮或丙酮中, 获得粘接剂聚合物溶 液。
10、 根据权利要求 8所述的电池隔膜, 其特征在于, 所述将所述混合浆料 涂覆在包含聚烯烃和 /或无纺织布的基层的至少一个表面包括:
将所述混合浆料印刷, 或者喷涂, 或者涂布在所述基层的一面或者两面; 或者, 利用所述混合浆料浸泡所述基层,在所述基层的一面或者两面粘附 上所述混合浆料。
11、 一种锂离子电池, 其特征在于, 包括:
正极, 负极, 电池隔膜, 电解液和包装壳;
所述电池隔膜为权利要求 1至 3中任一所述的电池隔膜。
PCT/CN2012/072801 2011-08-01 2012-03-22 电池隔膜及其制备方法与锂离子电池 WO2012103834A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12741480.3A EP2672545B1 (en) 2011-08-01 2012-03-22 Battery separator and preparation method thereof, and lithium ion battery
US14/144,788 US9620759B2 (en) 2011-08-01 2013-12-31 Battery separator and its constructing method, and lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110217966.7A CN102299286B (zh) 2011-08-01 2011-08-01 电池隔膜及其制备方法与锂离子电池
CN201110217966.7 2011-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/144,788 Continuation US9620759B2 (en) 2011-08-01 2013-12-31 Battery separator and its constructing method, and lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2012103834A1 true WO2012103834A1 (zh) 2012-08-09

Family

ID=45359559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072801 WO2012103834A1 (zh) 2011-08-01 2012-03-22 电池隔膜及其制备方法与锂离子电池

Country Status (4)

Country Link
US (1) US9620759B2 (zh)
EP (1) EP2672545B1 (zh)
CN (1) CN102299286B (zh)
WO (1) WO2012103834A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441228A (zh) * 2013-06-21 2013-12-11 中国科学院青岛生物能源与过程研究所 一种湿法抄纸工艺制备的聚芳砜酰胺基锂离子电池隔膜

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299286B (zh) 2011-08-01 2014-09-03 华为技术有限公司 电池隔膜及其制备方法与锂离子电池
CN102867931B (zh) * 2012-10-11 2015-02-04 山东天阳新能源有限公司 一种凝胶态聚合物锂离子动力电池用隔离膜
CN102881948B (zh) * 2012-10-11 2015-03-11 山东天阳新能源有限公司 一种方形锂离子电池及加工方法
CN103000850B (zh) * 2012-12-18 2015-07-01 龙能科技(苏州)有限公司 提高二次电池安全性的多层陶瓷复合隔膜的制备方法
CN103035866B (zh) * 2013-01-09 2015-01-07 厦门大学 一种陶瓷隔膜及其在电池中的应用及含该陶瓷隔膜的电池
CN103199301A (zh) * 2013-01-23 2013-07-10 浙江地坤键新能源科技有限公司 基于固态聚合物电解质的复合凝胶聚合物电解质及其制备方法与应用
US9666852B2 (en) * 2014-10-02 2017-05-30 Ford Global Technologies, Llc Composite separator with aligned particles
DE102014223299A1 (de) * 2014-11-14 2016-05-19 Bayerische Motoren Werke Aktiengesellschaft Separator für eine Lithium-Ionen-Zelle
CN104466062B (zh) * 2014-12-10 2016-09-07 厦门大学 一种含硼的陶瓷隔膜及其制备方法与应用
CN105428571B (zh) * 2015-11-06 2018-04-20 中国第一汽车股份有限公司 聚多巴胺改性陶瓷粒子制备pvdf‑hfp基聚合物隔膜及制备方法
CN105762411B (zh) * 2016-04-18 2018-05-11 合肥国轩高科动力能源有限公司 一种三元锂电池防过充安全性能的保障方法
CN105926347B (zh) * 2016-07-20 2018-10-19 浙江金昌特种纸股份有限公司 一种锂离子电池隔膜纸的生产方法
EP3367483A1 (de) * 2017-02-23 2018-08-29 Alevo International, S.A. Wiederaufladbare batteriezelle mit einem separator
CN107910489A (zh) * 2017-11-28 2018-04-13 广东省肇庆市质量计量监督检测所 一种锂离子电池负极材料及其制备方法
CN110010824B (zh) * 2019-03-29 2022-02-08 北京工业大学 一种聚烯烃锂离子电池隔膜改性方法
CN113363666B (zh) * 2021-05-06 2022-09-09 惠州锂威新能源科技有限公司 隔膜的制备方法、隔膜及应用隔膜的电化学装置
CN115133220A (zh) * 2022-06-27 2022-09-30 欣旺达电动汽车电池有限公司 复合材料及其制备方法、隔膜、电池
CN115911748A (zh) * 2022-11-03 2023-04-04 宁德时代新能源科技股份有限公司 隔膜及其制备方法、二次电池和用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457517A (zh) * 2001-03-05 2003-11-19 Lg化学株式会社 采用多组分复合膜的电化学电池
JP2005196999A (ja) * 2003-12-26 2005-07-21 Kakogawa Plastic Kk 電池用セパレータおよび電池用セパレータの製造方法
CN102299286A (zh) * 2011-08-01 2011-12-28 华为技术有限公司 电池隔膜及其制备方法与锂离子电池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461B2 (zh) * 1973-11-21 1979-01-05
CA2175755A1 (en) * 1996-05-03 1997-11-04 Huanyu Mao Use of b2o3 additive in non-aqueous rechargeable lithium batteries
DE10238944A1 (de) 2002-08-24 2004-03-04 Creavis Gesellschaft Für Technologie Und Innovation Mbh Separator zur Verwendung in Hochenergiebatterien sowie Verfahren zu dessen Herstellung
KR20060056287A (ko) 2004-01-05 2006-05-24 마쯔시다덴기산교 가부시키가이샤 리튬 2차전지
CN1691367A (zh) 2004-04-23 2005-11-02 东莞新能源电子科技有限公司 一种隔离膜预处理方法及采用该隔离膜的二次聚合物锂电池的制备方法
KR100775310B1 (ko) * 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
KR100727248B1 (ko) 2007-02-05 2007-06-11 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
JP5077131B2 (ja) * 2007-08-02 2012-11-21 ソニー株式会社 正極活物質、並びにそれを用いた正極、および非水電解質二次電池
CN101369645A (zh) 2008-09-23 2009-02-18 天津力神电池股份有限公司 一种高安全性锂离子二次电池用隔膜的制备方法
DE102009002680A1 (de) * 2009-04-28 2010-11-04 Evonik Litarion Gmbh Herstellung und Verwendung keramischer Kompositmaterialien basierend auf Polymer-Trägerfolie
KR101125013B1 (ko) 2009-07-29 2012-03-27 한양대학교 산학협력단 이온성 고분자를 포함하는 가교형 세라믹 코팅 분리막의 제조 방법, 이로부터 제조된 세라믹 코팅 분리막 및 이를 채용한 리튬이차전지
CN101707242A (zh) 2009-10-14 2010-05-12 东莞新能源科技有限公司 有机/无机复合多孔隔离膜
DE102009055944B4 (de) * 2009-11-26 2013-08-08 Continental Automotive Gmbh Separator für eine elektrochemische Zelle und elektrochemische Zelle mit einem solchen Separator
US9287540B2 (en) * 2011-05-31 2016-03-15 GM Global Technology Operations LLC Separators for a lithium ion battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457517A (zh) * 2001-03-05 2003-11-19 Lg化学株式会社 采用多组分复合膜的电化学电池
JP2005196999A (ja) * 2003-12-26 2005-07-21 Kakogawa Plastic Kk 電池用セパレータおよび電池用セパレータの製造方法
CN102299286A (zh) * 2011-08-01 2011-12-28 华为技术有限公司 电池隔膜及其制备方法与锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2672545A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441228A (zh) * 2013-06-21 2013-12-11 中国科学院青岛生物能源与过程研究所 一种湿法抄纸工艺制备的聚芳砜酰胺基锂离子电池隔膜

Also Published As

Publication number Publication date
EP2672545A1 (en) 2013-12-11
CN102299286B (zh) 2014-09-03
CN102299286A (zh) 2011-12-28
EP2672545A4 (en) 2014-04-16
US9620759B2 (en) 2017-04-11
EP2672545B1 (en) 2016-05-18
US20140113174A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
WO2012103834A1 (zh) 电池隔膜及其制备方法与锂离子电池
JP7274601B2 (ja) 負極材料、並びにそれを含む電気化学装置及び電子装置
AU2019411630B2 (en) Anode material, electrochemical device and electronic device using the same
CN109411681B (zh) 用于锂电池的复合隔膜及其制备方法和应用
CN111261834A (zh) 负极极片、电化学装置和电子装置
CN112467308B (zh) 一种隔膜及其制备方法、锂离子电池
CN112820869B (zh) 负极活性材料、电化学装置和电子装置
WO2022057666A1 (zh) 一种正极片及电池
JP7481795B2 (ja) 非水電解質二次電池の製造方法
WO2024077822A1 (zh) 隔离膜及其制备方法、二次电池和用电装置
JP2024501526A (ja) 負極片、電気化学装置及び電子装置
WO2023273652A1 (zh) 隔离膜、锂离子电池、电池模组、电池包及用电装置
JP2018147769A (ja) 電気化学素子用セパレータおよび非水電解質電池
JP2016058129A (ja) リチウムイオン電池及びリチウムイオン電池用セパレータ
WO2022206151A1 (zh) 负极极片及包含该负极极片的电化学装置、电子装置
CN112786832A (zh) 一种负极片及锂离子电池
JPWO2019044491A1 (ja) 蓄電デバイス用電極及びその製造方法
WO2023082247A1 (zh) 电极及其制备方法、电化学装置和电子装置
KR101657742B1 (ko) 이차전지용 양극 및 이의 제조 방법
WO2023179550A1 (zh) 一种复合油基隔膜及其制备方法和二次电池
JP2009135540A (ja) 非水系リチウム型蓄電素子および製造方法
CN116487686A (zh) 固态电解质材料及其制备方法、正极极片、固态电解质膜及全固态电池
JP2013218926A (ja) セパレータ及びそれを用いたリチウムイオン二次電池
WO2018199072A1 (ja) リチウムイオン二次電池
WO2023050230A1 (zh) 电极极片及包含其的二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012741480

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE