WO2012102290A1 - 合成システム、タイヤ用ゴム薬品、タイヤ用合成ゴム及び空気入りタイヤ - Google Patents

合成システム、タイヤ用ゴム薬品、タイヤ用合成ゴム及び空気入りタイヤ Download PDF

Info

Publication number
WO2012102290A1
WO2012102290A1 PCT/JP2012/051503 JP2012051503W WO2012102290A1 WO 2012102290 A1 WO2012102290 A1 WO 2012102290A1 JP 2012051503 W JP2012051503 W JP 2012051503W WO 2012102290 A1 WO2012102290 A1 WO 2012102290A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis system
tires
aniline
synthesized
benzene
Prior art date
Application number
PCT/JP2012/051503
Other languages
English (en)
French (fr)
Inventor
服部 高幸
和田 孝雄
慶太郎 藤倉
結香 横山
俊朗 松尾
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011014495A external-priority patent/JP5552068B2/ja
Priority claimed from JP2011014494A external-priority patent/JP5552067B2/ja
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to EP12739791.7A priority Critical patent/EP2543654B1/en
Priority to BR112012030796A priority patent/BR112012030796A2/pt
Priority to US13/637,336 priority patent/US9115047B2/en
Priority to CN201280001255.9A priority patent/CN102918009B/zh
Publication of WO2012102290A1 publication Critical patent/WO2012102290A1/ja
Priority to US14/801,001 priority patent/US9663445B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • C07C15/46Styrene; Ring-alkylated styrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • C07C2/68Catalytic processes with halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/08Preparation of nitro compounds by substitution of hydrogen atoms by nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/18Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to carbon atoms of six-membered aromatic rings or from amines having nitrogen atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/45Monoamines
    • C07C211/46Aniline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by condensation involving hydroxy groups of phenols or alcohols or the ether or mineral ester group derived therefrom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • C12P7/28Acetone-containing products
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/06Halogens; Compounds thereof
    • C07C2527/125Compounds comprising a halogen and scandium, yttrium, aluminium, gallium, indium or thallium
    • C07C2527/126Aluminium chloride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a synthesis system capable of efficiently synthesizing aniline and / or styrene, a synthesis system capable of efficiently synthesizing butadiene (1,3-butadiene), and a tire rubber synthesized from aniline obtained from the synthesis system as a raw material.
  • the present invention relates to a chemical, a tire synthetic rubber synthesized using styrene and / or butadiene obtained from the synthesis system as raw materials, and a pneumatic tire using the tire rubber chemical and / or the tire synthetic rubber.
  • Aniline which is a raw material for rubber chemicals such as anti-aging agents, thiazole vulcanization accelerators, sulfenamide vulcanization accelerators, and styrene, butadiene, which are raw materials for synthetic rubbers such as styrene butadiene rubber and butadiene rubber, are usually used. It is synthesized from petroleum. However, since fossil fuels such as oil and natural gas are depleting and future price increases are expected, the use of fossil fuels will be reduced by improving yields and replacing fossil fuels with biomass resources. It is requested to do.
  • a method for synthesizing a vulcanization accelerator using a natural long chain amine synthesized by reductive amination of a saturated or unsaturated fatty acid obtained by hydrolyzing natural fats and oils as a raw material is known. It has been. However, it is a synthetic method in which mercaptobenzothiazoles and dibenzothiazolyl disulfide are used in the production process, and there is no description that these substances are produced from natural resources.
  • a method of synthesizing aromatic compounds such as benzene using low-grade hydrocarbons such as methane contained in biogas as raw materials is known, but the raw materials are gases and handling There is room for improvement in that it is difficult to do.
  • a method using biomethanol as a raw material is also known, but there is room for improvement in that the raw material is highly toxic. Further, in common with these methods, there is room for improvement in that it is difficult to ensure a sufficient yield.
  • Patent Documents 1 and 2 disclose a method of synthesizing aniline by microorganisms using glucose as a raw material. However, there are cases where improvement is necessary from the viewpoint of production speed, production scale, etc., utilization of various bacterial species, and improvement of production efficiency, and other methods are required.
  • the present invention solves the above-mentioned problems and provides a synthesis system capable of efficiently synthesizing aniline and / or styrene, a synthesis system capable of efficiently synthesizing butadiene (1,3-butadiene), and aniline obtained from the synthesis system as a raw material.
  • Synthetic rubber chemicals for tires synthetic rubber for tires synthesized from styrene and / or butadiene obtained from the synthesis system, and pneumatic using the rubber chemicals for tires and / or synthetic tire rubbers
  • the object is to provide a tire.
  • the present invention also provides a synthesis system capable of efficiently synthesizing aniline using a biomass raw material, rubber chemicals for tires synthesized using aniline obtained from the synthetic system as raw materials, and pneumatic tires using the rubber chemicals for tires The purpose is to provide.
  • the first aspect of the present invention relates to a synthesis system for synthesizing aniline and / or styrene via an aromatic compound using an alcohol having 2 or more carbon atoms as a raw material.
  • the alcohol is preferably ethanol.
  • the ethanol is preferably bioethanol.
  • the aromatic compound is benzene.
  • the benzene is synthesized via toluene and / or xylene.
  • the aromatic compound is preferably synthesized via an alkene.
  • the alcohol is preferably contacted with a solid acid catalyst.
  • the solid acid catalyst is preferably at least one selected from the group consisting of zeolite, alumina, and a titanium compound.
  • the solid acid catalyst is preferably MFI-type zeolite.
  • the alcohol is contacted with a solid acid catalyst, the obtained product is circulated, and further contacted with the solid acid catalyst.
  • the product is distilled and a compound other than the target product is circulated and further contacted with the solid acid catalyst.
  • the product is distilled, the obtained distillate is cooled to below the melting point of benzene, benzene is recovered, and a compound other than benzene is circulated to be further contacted with the solid acid catalyst. preferable.
  • the first aspect of the present invention also relates to a synthesis system for synthesizing butadiene using an alcohol having 2 or more carbon atoms as a raw material.
  • the first aspect of the present invention also relates to a rubber chemical for tires synthesized using aniline obtained by the above synthesis system as a raw material.
  • the first aspect of the present invention also relates to a synthetic rubber for tires synthesized from styrene obtained by the synthesis system and / or butadiene obtained by the synthesis system as a raw material.
  • the first aspect of the present invention also relates to a pneumatic tire using the tire rubber chemical and / or the tire synthetic rubber.
  • the second aspect of the present invention relates to a synthesis system for synthesizing aniline via phenol using a biomass material as a raw material.
  • the biomass material is preferably a saccharide or bioethanol.
  • the synthesis system preferably produces the phenol by a microorganism. Moreover, it is preferable that the said synthesis system produces the said phenol by the liquid culture of microorganisms.
  • the microorganism that produces phenol is preferably a microorganism having resistance to organic solvents.
  • the synthesis system preferably uses bioethanol as the biomass material and produces the phenol with a solid acid catalyst.
  • the solid acid catalyst is preferably zeolite.
  • the solid acid catalyst is preferably MFI-type zeolite.
  • the solid acid catalyst is preferably MFI-type zeolite supporting copper, titanium, platinum, ruthenium alone or a compound thereof.
  • the second aspect of the present invention also relates to a rubber chemical for tires synthesized using aniline obtained by the synthesis system as a raw material.
  • the rubber chemicals for tires are preferably synthesized using acetone obtained from a biomass raw material.
  • the acetone is preferably obtained by acetone / butanol fermentation by a microorganism using saccharides as a raw material.
  • the microorganism is preferably a genus Clostridium.
  • the microorganism is preferably a microorganism into which a gene belonging to the genus Clostridium is introduced.
  • the gene is preferably a gene encoding acetoacetate decarboxylase (EC 4.1.1.4), coenzyme A transferase or thiolase.
  • the acetone is preferably obtained by separation from a wood vinegar solution.
  • the acetone is preferably derived from bioethanol.
  • the second aspect of the present invention also relates to a pneumatic tire using the tire rubber chemical.
  • aniline since the synthesis system synthesizes aniline using a biomass material as a raw material via phenol, aniline can be synthesized efficiently and resource-saving without using fossil fuel. Therefore, by using aniline synthesized by the above synthesis system, the amount of fossil fuel used in the production of tire rubber chemicals and pneumatic tires can be reduced.
  • the first aspect of the present invention is a synthesis system (synthesis method) for synthesizing aniline and / or styrene via an aromatic compound using an alcohol having 2 or more carbon atoms as a raw material, and an alcohol having 2 or more carbon atoms as a raw material.
  • This is a synthesis system (synthesis method) for synthesizing butadiene.
  • Alcohols having 2 or more carbon atoms are not particularly limited, and general alcohols can be used, but alcohols having 2 to 8 carbon atoms are preferable from the viewpoint of low toxicity, easy transportation, and low cost. Ethanol is more preferred.
  • bioethanol synthesized from biomass resources can be suitably used as ethanol because it can be produced without depending on fossil resources and the yield of aromatic compounds and alkenes can also be expected.
  • Bioethanol reduces biomass resources (corn, sugarcane, bagasse, kenaf, legumes, straw, straw, rice husk, thinned wood, waste wood, waste paper, waste pulp, organic municipal waste, etc.) (process 1)
  • biomass resources corn, sugarcane, bagasse, kenaf, legumes, straw, straw, rice husk, thinned wood, waste wood, waste paper, waste pulp, organic municipal waste, etc.
  • process 1 The obtained saccharide is ethanol-fermented (step 2) and separated and purified (step 3).
  • Step 1 saccharides such as hexose and pentose, starch, cellulose, hemicellulose, lignin and the like are generated from biomass resources. These are used as they are or after being screened (step 2) for ethanol fermentation, and starch, cellulose and hemicellulose are used for ethanol fermentation (step 2) after saccharification by treatment such as steaming, hydrolysis, and enzymatic degradation. .
  • ethanol is produced from the monosaccharides obtained in (Step 1) using microorganisms.
  • microorganisms include wild strains such as yeast, Escherichia coli, and Zymomonas bacteria, and those obtained by transforming them.
  • Step 3 after separating the solid component and the liquid layer in the fermentation broth, the ethanol is concentrated by repeating evaporation and condensation in the distillation step. Further, a method of further concentration using a dehydrating agent or a separation membrane is also used.
  • a preferred example of a method for synthesizing an aromatic compound and / or alkene from the alcohol is a method in which the alcohol and a catalyst are contacted with each other.
  • the reaction temperature is preferably 280 to 500 ° C, more preferably 300 to 460 ° C.
  • the reaction pressure may be normal pressure or increased pressure (preferably 0.3 to 3.0 MPaG).
  • the supply rate of alcohol is preferably 0.1 to 3.0 / hr, more preferably 0.5 to 1.5 / hr in terms of LHSV.
  • a zeolite, alumina, titanium compounds, ions carrying zirconia sulfate can be used a solid acid catalyst such as WO 3 supported zirconia, among others, in that it can improve the reaction efficiency, zeolite, alumina And at least one selected from the group consisting of titanium compounds, zeolite alone, or a combination of alumina and zeolite is more preferred.
  • a zeolite is particularly preferable, and a zeolite having a molar ratio of SiO 2 and Al 2 O 3 and a pore diameter as described later is used as a target aromatic compound such as benzene. It is preferable because it can be selectively synthesized.
  • the alkene is synthesized with alumina and / or zeolite in the first stage, and the resulting alkene is contacted with zeolite or the like.
  • Aromatic compounds can be synthesized more economically and with higher efficiency.
  • alkenes such as ethylene and / or butadiene from alcohol
  • alumina and / or zeolite are preferred.
  • Zeolite is a crystalline aluminosilicate having a pore structure. Specific examples thereof include A-type zeolite, L-type zeolite, X-type zeolite, Y-type zeolite, MFI-type zeolite, MWW-type zeolite, and ⁇ -type zeolite. , Mordenite, ferrierite, erionite and the like. In addition, a metal other than aluminum such as Ga, Ti, Fe, Mn, Zn, B, Cu, Pt, Re, Mo, Gd, Nb, Y, Nd, W, La, P, or the like It may be substituted with the compound. Among them, MFI type ZSM-5 and MWW type MCM-22 are preferable in that benzene is selectively purified and side reactions such as further alkylation are minimized.
  • MFI type zeolite examples include those having an MFI (Mobile) structure such as ZSM-5, ZSM-8, Zeta 1, Zeta 3, Nu-4, Nu-5, TZ-1, TPZ-1, TS-1.
  • MFI Mobile
  • ZSM-5 type is particularly preferable from the viewpoint of high selectivity and reaction efficiency.
  • the cation occupied by the ion-exchangeable cation site of the zeolite is not particularly limited, and hydrogen ion (proton); alkali metal ion such as lithium ion, sodium ion, potassium ion; magnesium ion, calcium ion, strontium ion, barium Examples thereof include alkaline earth metal ions such as ions; transition metal ions such as iron ions and silver ions; and primary to quaternary ammonium ions. Of these, hydrogen ions (protons) are preferred because they can increase the surface activity and increase the reaction efficiency. 1 type may be sufficient as this cation, and 2 or more types may be sufficient as it. Of the above zeolites, proton type H-ZSM-5 having an MFI structure is particularly preferable.
  • the molar ratio of SiO 2 to Al 2 O 3 in the crystal structure of the zeolite varies depending on the reaction apparatus, temperature, and impurities of the raw material, but is preferably 5 to 2000, more preferably It is 10 to 500, more preferably 12 to 70, and particularly preferably 15 to 35. Within the above range, side reactions such as further alkylation of the produced benzene can be minimized.
  • the size of the zeolite crystal is preferably (0.001 to 50) ⁇ m ⁇ (0.01 to 100) ⁇ m.
  • the size of the zeolite particles is preferably 0.1 to 50 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the nitrogen adsorption specific surface area of the zeolite is preferably 10 ⁇ 1000m 2 / g, more preferably 100 ⁇ 500m 2 / g.
  • Examples of the aromatic compound synthesized from an alcohol having 2 or more carbon atoms include benzene, toluene, xylene, ethylbenzene, diethylbenzene, and butylbenzene. Among these, benzene and ethylbenzene are preferable and benzene is more preferable because aniline and styrene can be efficiently synthesized.
  • Benzene may be synthesized via toluene, xylene or the like, or synthesized via an alkene such as ethylene.
  • the apparatus for synthesizing the aromatic compound is not particularly limited.
  • an apparatus having a heating apparatus and a raw material supply system attached to a reaction tube holding a catalyst can be used.
  • the above apparatus has a circulation system in which alcohol is brought into contact with a solid acid catalyst and the resulting product is circulated and further brought into contact with a solid acid catalyst.
  • the above-mentioned circulation system is a system in which a product is distilled to separate a target product, and a compound other than the target product, such as a high-boiling product and a gas product, which has not been distilled, is circulated for further reaction with a catalyst.
  • the target product is benzene
  • a system that can be obtained by cooling the produced benzene to a melting point (5.5 ° C.) or lower is more preferable from the viewpoint of benzene conversion efficiency.
  • the circulation system is preferably a system that repeats these circulations.
  • the above apparatus connects two reaction columns, performs an alcohol dehydration reaction in the first column to produce alkenes, and generates an alkene in the second column. It is preferable to have a system for synthesizing a compound from the viewpoint of benzene yield and maintenance of catalyst life.
  • a method for synthesizing aniline from an aromatic compound is not particularly limited, and a known method can be used.
  • benzene is reacted with a mixed acid of concentrated nitric acid and concentrated sulfuric acid, and the obtained nitrobenzene is subjected to a Bechamp reduction method or a catalytic reduction method.
  • the method of reducing by, etc. is mentioned.
  • a known method can be used as a method for synthesizing styrene from an aromatic compound.
  • a known method for synthesizing styrene from an aromatic compound.
  • benzene is ethylated by Friedel-Crafts reaction or the like, and the obtained ethylbenzene is dehydrogenated with an iron catalyst or the like.
  • Ethylene used in the Friedel-Crafts reaction can be produced, for example, by dehydrating bioethanol, so that styrene can be produced regardless of petroleum resources.
  • ethylbenzene is directly synthesized as an aromatic compound, it can be used as it is and dehydrogenated to synthesize styrene.
  • the second aspect of the present invention is a synthesis system (synthesis method) for synthesizing aniline via phenol using a biomass material as a raw material.
  • the microorganism that can be used in the second invention is not particularly limited as long as it can assimilate biomass resources and biosynthesize phenol.
  • tpl gene encoding tyrosine phenol lyase (EC 4.11.99.2), which is an enzyme that catalyzes a reaction for producing phenol from tyrosine (eg, tpl listed in GenBank accession no. D13714).
  • Biomass can be biosynthesized by utilizing biomass resources by a microorganism obtained by introducing a gene) into a microorganism capable of biosynthesis of tyrosine.
  • Tyrosine phenol lyase is an enzyme dependent on pyridoxal 5'-phosphate and catalyzes a reaction for producing phenol, pyruvic acid, and ammonia from tyrosine.
  • Tyrosine phenol lyase is also known as ⁇ -tyrosinase or L-tyrosine phenol lyase.
  • the microorganism into which the tpl gene is introduced is not particularly limited as long as it is a microorganism capable of biosynthesis of tyrosine. Since almost all microorganisms existing on the earth can biosynthesize tyrosine, any microorganism can be used.
  • the microorganism into which the tpl gene is introduced is preferably a microorganism having resistance to organic solvents that is difficult to be killed by phenol (particularly, resistance to aromatic compounds).
  • the microorganism having organic solvent resistance include Pseudomonas putida S12. Since Pseudomonas putida S12 is excellent in resistance to aromatic compounds, it can be suitably used as a microorganism into which the tpl gene is introduced.
  • the method for introducing the tpl gene into the microorganism is not particularly limited, and a commonly used one may be used under generally known conditions.
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], protoplast method (Japanese Patent Laid-Open No. 63-248394), electroporation method [Nucleic Acids Res. 16, 6127 (1988)], heat shock method, particle gun method ("Biochemical Experimental Method 41 Introduction to Plant Cell Engineering", September 1, 1998, Academic Publishing Center, pages 255-326).
  • a method using calcium ions Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)
  • protoplast method Japanese Patent Laid-Open No. 63-248394
  • electroporation method Nucleic Acids Res. 16, 6127 (1988)
  • heat shock method particle gun method ("Biochemical Experimental Method 41 Introduction to Plant Cell Engineering", September 1, 1998, Academic Publishing Center, pages 255-326).
  • particle gun method Bio
  • the medium for culturing the microorganism into which the tpl gene has been introduced is not particularly limited as long as the microorganism to be cultured can grow, except that a biomass resource is used as a carbon source, a nitrogen source, inorganic ions, A normal medium containing an organic nutrient source may be used as necessary.
  • the biomass resource is not particularly limited as long as it contains sugar, for example, rice, wheat, honey, fruit, corn, sugarcane, bagasse, kenaf, legumes, straw, straw, rice husk, thinned wood, Examples include waste wood, waste paper, waste pulp, and organic municipal waste.
  • sugars such as glucose, sucrose, trihalose, fructose, lactose, galactose, xylose, mannitol, sorbitol, xylitol, erythritol, maltose, amylose, cellulose, chitin, chitosan and the like can also be mentioned. Of these, saccharides are preferred.
  • the biomass resource may be used directly as a carbon source.
  • a biomass resource other than the saccharide or a polysaccharide such as cellulose, chitin, chitosan is used, depending on the microorganism, for reasons such as being unable to assimilate or having a low ability to assimilate, it is preferable to use biomass resources and polysaccharides other than sugars after lowering the molecular weight.
  • the method for reducing the molecular weight is not particularly limited, and can be performed by a known method (for example, steaming, hydrolysis, enzymatic decomposition, etc.). Monosaccharides and the like can be obtained by reducing the molecular weight of biomass resources and polysaccharides other than saccharides.
  • glucose is particularly preferable because phenol can be efficiently generated.
  • glucose naturally occurring glucose (monosaccharide) may be used, or glucose obtained by reducing the molecular weight of biomass resources by the above method or the like may be used.
  • Nitrogen sources include ammonium salts of inorganic salts such as ammonium sulfate and ammonium chloride, ammonium salts of organic acids such as ammonium fumarate and ammonium citrate, nitrates such as sodium nitrate and potassium nitrate, peptone, yeast extract, meat extract, corn steep Organic nitrogen compounds such as liquor and soybean hydrolysate, ammonia gas, aqueous ammonia, or a mixture thereof can be used.
  • inorganic salts such as ammonium sulfate and ammonium chloride
  • ammonium salts of organic acids such as ammonium fumarate and ammonium citrate
  • nitrates such as sodium nitrate and potassium nitrate
  • peptone such as yeast extract, meat extract, corn steep
  • Organic nitrogen compounds such as liquor and soybean hydrolysate
  • ammonia gas such as ammonia gas, aqueous ammonia, or a mixture thereof
  • nutrient sources used in normal media such as inorganic salts, trace metal salts, vitamins, hormones, and the like can be used by appropriately mixing them.
  • the culture conditions There are no particular restrictions on the culture conditions. For example, while the pH and temperature are appropriately limited within the range of pH 5 to 8 and temperature 20 to 60 ° C. (preferably 20 to 35 ° C.) under aerobic conditions, Culture may be performed for about 480 hours.
  • the culture method may be either solid culture or liquid culture, but liquid culture is more preferable from the viewpoint of efficiency.
  • the liquid culture method may be any of batch culture, semi-batch culture, and continuous culture.
  • biomass resources can be assimilated to biosynthesize phenol.
  • Phenol can be recovered from the culture solution or extracted from the microorganisms.
  • the phenol accumulated in the culture solution may be extracted with an organic solvent, for example.
  • the organic solvent that can be used is not particularly limited, and examples thereof include diethyl ether, octanol, nonanol, dodecanol, benzene, toluene, xylene, and ethyl acetate.
  • phenol extracted with an organic solvent may be purified by a known purification operation such as chromatography.
  • the phenol accumulated in the microorganism can be obtained by pulverizing the microorganism with ultrasonic waves and then extracting with the organic solvent. Furthermore, after removing water from the culture solution alone or from both the culture solution and the microorganism, extraction with an organic solvent such as ethanol may be followed by purification to recover phenol.
  • bioethanol may be converted to phenol using a solid acid catalyst.
  • the solid acid catalyst include a zeolite catalyst and an alumina catalyst.
  • the solid acid catalyst is not limited to this, and a plurality of catalysts may be used simultaneously or stepwise.
  • the solid acid catalyst may be ion-exchanged, and further, alkali metal, alkaline earth metal, iron, aluminum, gallium, zinc, gadolinium, platinum, vanadium, palladium, niobium, molybdenum, yttrium, rhenium, Metals such as neodymium, tungsten, lanthanum, copper, titanium, ruthenium and their compounds, or phosphorus compounds, boron compounds, etc. may be supported, and copper, titanium, platinum, ruthenium alone or these compounds are supported. Those are preferred.
  • the solid acid catalyst is preferably a zeolite, and specific examples thereof include A type zeolite, L type zeolite, X type zeolite, Y type zeolite, MFI type zeolite, MWW type zeolite, ⁇ type zeolite, mordenite, ferrierite, Examples include erionite.
  • the MFI type is preferable, and the ZSM-5 type is particularly preferable.
  • the ZSM-5 catalyst is preferably used in combination with a proton type and a catalyst supporting a rare earth such as gadolinium or rhenium.
  • a method for synthesizing aniline from the biosynthesized phenol there can be mentioned a method for preparing aniline by reacting phenol and ammonia gas or a low molecular weight amine compound using various catalysts.
  • the catalyst include zeolite catalysts, niobium catalysts, titania-zirconia composite oxide catalysts, solid catalysts such as alumina catalysts, metallosilicate catalysts, various inorganic acids, organic acids, etc., but are not limited thereto.
  • a plurality of catalysts may be used simultaneously or stepwise.
  • the solid catalyst may be ion-exchanged, and further, alkali metal, alkaline earth metal, iron, copper, aluminum, gallium, zinc, gadolinium, platinum, vanadium, palladium, titanium, niobium, molybdenum, yttrium Further, metals such as rhenium, neodymium, tungsten, lanthanum and their compounds, or phosphorus compounds, boron compounds and the like may be supported.
  • the solid catalyst is particularly preferably a zeolite, and specific examples thereof include A-type zeolite, L-type zeolite, X-type zeolite, Y-type zeolite, MFI-type zeolite, MWW-type zeolite, ⁇ -type zeolite, mordenite, ferrierite, erio. Night etc. are mentioned.
  • MFI-type zeolite has an MFI (mobile) structure, and is ZSM-5, ZSM-8, Zeta 1, Zeta 3, Nu-4, Nu-5, TZ-1, TPZ-1, TS-1 ZSM-5 type is particularly preferable from the viewpoint of high selectivity and reaction efficiency.
  • the cation occupied by the ion-exchangeable cation site of the zeolite is not particularly limited, and hydrogen ion (proton); alkali metal ion such as lithium ion, sodium ion, potassium ion; magnesium ion, calcium ion, strontium ion, barium Examples thereof include alkaline earth metal ions such as ions; transition metal ions such as iron ions and silver ions; and primary to quaternary ammonium ions. Of these, hydrogen ions (protons) are preferred because they can increase the surface activity and increase the reaction efficiency. 1 type may be sufficient as this cation, and 2 or more types may be sufficient as it.
  • the molar ratio (SiO 2 / Al 2 O 3 ) between SiO 2 and Al 2 O 3 in the crystal structure of the zeolite varies depending on the reaction apparatus and impurities contained in the raw material, but is preferably 5 to 2000, more preferably 5 to 60. Within the above range, side reactions such as further alkylation of the produced phenol can be minimized.
  • the size of the zeolite crystal is preferably (0.001 to 50) ⁇ m ⁇ (0.01 to 100) ⁇ m.
  • the size of the zeolite particles is preferably 0.1 to 50 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the nitrogen adsorption specific surface area of the zeolite is preferably 10 ⁇ 1000m 2 / g, more preferably 100 ⁇ 500m 2 / g.
  • the reaction of the catalyst with phenol and ammonia can be performed in a gas phase or a liquid phase.
  • a fixed bed reactor, a fluidized bed reactor, or a moving bed reactor can be used as the reactor.
  • the reaction temperature is about 200 to 600 ° C. (preferably 300 to 500 ° C., more preferably 350 ° C. to 450 ° C.), and the reaction pressure may be normal pressure or increased pressure (preferably about 5 to 50 atm).
  • the molar ratio of ammonia to phenol is about 1 to 50 (preferably 5 to 30).
  • aniline prepared above it is possible to reduce the amount of petroleum resources used in the production of tire rubber chemicals such as anti-aging agents and vulcanization accelerators, and without using petroleum resources. It is also possible to manufacture the rubber chemicals for tires.
  • Anti-aging agents include p-phenylenediamine-based anti-aging agents, N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, quinoline-based anti-aging agents, 2,2,4- Examples thereof include trimethyl-1,2-dihydroquinoline polymer.
  • N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine can be produced by the method described later using aniline as a raw material.
  • methyl isobutyl ketone to be added to the intermediate amine can be synthesized by the following method.
  • diacetone alcohol which can be synthesized by aldol condensation of two molecules of acetone synthesized by the method described below is easily dehydrated and converted to mesityl oxide. By hydrogenating this mesityl oxide with a palladium catalyst or the like, methyl isobutyl ketone and become.
  • an anti-aging agent can be produced regardless of petroleum resources.
  • the 2,2,4-trimethyl-1,2-dihydroquinoline polymer can be synthesized by continuously supplying acetone at 140 ° C. at any time in the presence of an acidic catalyst using aniline as a raw material.
  • acetone can be manufactured with the following method, this polymer can be manufactured irrespective of petroleum resources.
  • Acetone necessary for the synthesis of the anti-aging agent can be synthesized by, for example, distilling a mixed solvent such as butanol and acetone when a biomass is used as a raw material to perform acetone / butanol fermentation by microorganisms.
  • a mixed solvent such as butanol and acetone
  • the biomass material cellulose, crops and wastes thereof, saccharides and the like are used, and saccharides are particularly preferable.
  • Microorganisms that perform acetone-butanol fermentation are not particularly limited, but are wild-type, mutant, or recombinant, such as Escherichia, Zymomonas, Candida, Saccharomyces, and Pichia.
  • a genus selected from the group consisting of Streptomyces, Bacillus, Lactobacillus, Coryne and Clostridium.
  • Clostridium is more preferable, and Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharobutyricum, and Clostridium saccharoperperylacetonicum are particularly preferable.
  • it may be a microorganism incorporating a gene encoding the clostridium acetoacetate decarboxylase (EC 4.1.1.4), coenzyme A transferase, or thiolase.
  • Acetone can also be obtained by further fractionating a wood vinegar solution obtained by dry distillation of wood or by fractionation with liquid chromatography or the like.
  • acetone can be synthesized by heating bioethanol to 400 ° C. or higher in the presence of a Zr—Fe catalyst.
  • a process of synthesizing ethylene by dehydrating bioethanol derived from saccharide raw materials, a process of synthesizing propylene from ethylene by a method widely used in petrochemistry, and preparing isopropanol from propylene by a hydration reaction, followed by dehydration Acetone can be synthesized through an elementary reaction step.
  • Acetone can be synthesized by neutralizing acetic acid obtained by pyrolyzing cellulose in the woody material with calcium hydroxide to obtain calcium acetate, followed by thermal decomposition.
  • Acetic acid is produced by the oxidation of ethanol during the fermentation process in the synthesis of bioethanol. Therefore, it can be synthesized by using the acetic acid and passing through the same process as described above.
  • acetone can be synthesized by advancing the conversion reaction of bioethanol derived from a saccharide raw material with a ZnO / CaO catalyst or the like.
  • vulcanization accelerator examples include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide, N-cyclohexyl-2-benzothiazylsulfenamide, N, N-dicyclohexyl-2-benzothiazyl.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide, N-cyclohexyl-2-benzothiazylsulfenamide, N, N-dicyclohexyl-2-benzothiazyl.
  • sulfenamide vulcanization accelerators such as sulfenamide and N-tert-butyl-2-benzothiazylsulfenamide.
  • 2-mercaptobenzothiazole can be produced by the following synthesis method using aniline as a raw material.
  • carbon disulfide can be separated and produced by reacting mustard oil with hydrogen sulfide contained in about 0.4% of mustard vegetable.
  • a vulcanization accelerator can be produced regardless of petroleum resources.
  • dibenzothiazyl disulfide can be synthesized by oxidizing the 2-mercaptobenzothiazole thus produced.
  • a synthetic rubber for tires can be produced without using petroleum resources.
  • Examples of the synthetic rubber for tire include styrene butadiene rubber (SBR) and butadiene rubber (BR).
  • SBR can be produced by copolymerization of styrene and 1,3-butadiene
  • BR can be produced by polymerization of 1,3-butadiene.
  • 1,3-butadiene is, for example, a method of reacting bioethanol at a high temperature in the presence of a solid acid catalyst such as zeolite, alumina, titanium compound, sulfate ion supported zirconia, WO 3 supported zirconia as described above, Synthetic rubber for tires can be produced without relying on petroleum resources, since it can be produced by oxidizing bioethanol to acetaldehyde and then heating it by adding bioethanol under a tantalum / silicon dioxide catalyst.
  • a solid acid catalyst such as zeolite, alumina, titanium compound, sulfate ion supported zirconia, WO 3 supported zirconia
  • tire rubber chemicals and tire synthetic rubber obtained above can be used for tire rubber compositions (treads, sidewalls, etc.).
  • the rubber composition includes inorganic fillers such as carbon black, silica, clay, aluminum hydroxide, calcium carbonate, silane coupling agents, process oils, softeners, vulcanizing agents, and vulcanization accelerators.
  • a compounding agent used in a normal rubber industry such as an agent is appropriately blended. Further, it may contain a part of an anti-aging agent derived from ordinary fossil resources such as petroleum, a vulcanization accelerator, and a synthetic rubber.
  • the above components are kneaded using a rubber kneader such as an open roll, a Banbury mixer, a closed kneader, and then vulcanized. It can be manufactured by a method or the like.
  • a rubber kneader such as an open roll, a Banbury mixer, a closed kneader, and then vulcanized. It can be manufactured by a method or the like.
  • the pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, a rubber composition containing each component as necessary is extruded in accordance with the shape of each member of the tire at an unvulcanized stage and molded by a normal method on a tire molding machine. After forming an unvulcanized tire, the tire can be manufactured by heating and pressing in a vulcanizer.
  • Example 1 As the raw material alcohol, industrial ethyl alcohol (petroleum-derived ethanol) obtained by a hydration reaction of petroleum-derived ethylene was used. Benzene synthesis from alcohol consists of a gas introduction tube 1, an alcohol introduction tube (raw material introduction tube) 2, a reaction tube 3 having an alcohol vaporization layer (raw material vaporization layer) 4 and a catalyst layer (reaction layer) 5, and the reaction.
  • a flow reactor (see FIG. 1) including a heating device (electric furnace) 6 that heats the tube 3, a product trap 7 that collects a product generated through the catalyst layer 5, and a cooling device 8a is used. I went. The product trap 7 was cooled to ⁇ 15 ° C. by the cooling device 8a.
  • Reaction conditions are: reaction temperature: 500 ° C., reaction pressure: normal pressure, feed rate of petroleum-derived ethanol: 1 / hr in terms of LHSV, molar ratio of petroleum-derived ethanol to nitrogen (petroleum-derived ethanol / nitrogen): 50/50 It was.
  • the reaction time was 2 hours.
  • the product was collected in a product trap 7 connected to the reaction tube 3.
  • the product was analyzed using a gas chromatograph.
  • PORAPAK P registered trademark, GL Sciences
  • SUPELCOWAX registered trademark, SUPELCO
  • the conversion rate of petroleum-derived ethanol was 100%, and the obtained product was benzene 12.0%, toluene 14.2%, xylene 7.6%, and other 66.2% in terms of carbon mole ratio. .
  • Example 2 Benzene was synthesized by the same method as in Example 1. At this time, by-products such as toluene and xylene were recovered and reacted again with the zeolite catalyst used in Example 1. The total yield of benzene was 17%.
  • Example 3 Benzene was synthesized by the same method as in Example 1 except that bioethanol was used instead of petroleum-derived ethanol.
  • the bioethanol used was derived from corn and contained about 20% moisture and about 8% of other components such as acetaldehyde. This bioethanol was only filtered and used without being purified by distillation. The total yield of benzene was 13%.
  • Example 6 Benzene was synthesized using petroleum-derived ethanol as a raw material and the zeolite catalyst used in Example 4.
  • a heating device 8b, a fractionation device (fractionation tube) 9, a distillate trap (target trap) 10, and reactant recirculation lines 12a and 12b are attached to the product trap 7 of the apparatus shown in FIG.
  • the reaction mixture produced by the catalytic reaction was fractionated to collect the low-boiling product, and then the system (circulation reactor) that can continuously supply the vaporized component and the high-boiling product to the reaction tube 3 was performed. (See FIG. 2).
  • the product trap 7 was heated by the heating device 8b so that the internal temperature was 90 ° C.
  • the reaction was carried out using the above apparatus under the conditions of Example 4, and the reaction product was continuously distilled through the fractionating tube 9. Thereafter, benzene in the distillate was solidified and recovered using the distillate trap 10 cooled to ⁇ 15 ° C. by the cooling device 11. The gas product that was not solidified or liquefied and the high-boiling product that was not distilled were continuously supplied to the reaction tube 3 from the reactant recirculation lines 12a and 12b. After supplying petroleum-derived ethanol under the same conditions as in Example 4, the supply was terminated, and the circulation reaction was continued under the same heating conditions for 14 hours. The total yield of benzene was 31%.
  • Example 7 Benzene was synthesized by the same method as in Example 6 except that bioethanol was used instead of petroleum-derived ethanol. The total yield of benzene was 39%.
  • Example 3 it was found that the reaction of the present invention proceeds even when bioethanol containing by-products mainly containing moisture is used.
  • the yields of benzene in Examples 1 and 3 were compared in terms of moles of carbon in consideration of the ethanol component ratio, the yield of Example 3 using bioethanol was slightly higher than that of Example 1.
  • Example 7 using bioethanol has a higher benzene yield than Example 6 using petroleum-derived ethanol.
  • the rate was high. This is not because the water contained in bioethanol does not greatly hinder the reaction, but also because other impurities are converted to benzene, or the impurities activate the conversion reaction and the catalyst. I guess that.
  • the dehydration reaction column 23 was charged with 10 g of aluminum oxide (101095100 manufactured by Merck & Co., Inc.) as a catalyst and heated to 300 ° C.
  • the column 26 for aromatic compound synthesis has the same configuration as the reaction tube 3 of FIG. Petroleum-derived ethanol is used as a raw material, supplied to the dehydration reaction column 23 under the same supply conditions as in Example 1, the obtained ethylene is reacted in the aromatic compound synthesis column 26, and the resulting product is Distillation and purification yielded benzene in a total yield of 27%.
  • Example 9 Benzene was synthesized by the same method as in Example 8 except that bioethanol was used instead of petroleum-derived ethanol. The total yield of benzene was 36%.
  • Example 10 Benzene was synthesized using an apparatus (see FIG. 4) having the same configuration as the apparatus of FIG. 3 except that a reactant recirculation line 28 for recovering by-products generated in the aromatic compound synthesis column 26 was added. did.
  • the dehydration reaction column 23 was heated to 300 ° C. and the aromatic compound synthesis column 26 was heated to 500 ° C., and petroleum-derived ethanol was supplied under the same conditions as in Example 8 to synthesize benzene.
  • the circulation reaction time was 14 hours as in Example 6.
  • the resulting product was distilled and produced to obtain benzene.
  • the total yield of benzene was 82%.
  • Example 11 Benzene was synthesized by the same method as in Example 10 except that bioethanol was used instead of petroleum-derived ethanol. The total yield of benzene was 90%.
  • aniline was synthesized by the following method. Sulfuric acid was put into a chloroform solution containing benzene, and then nitric acid was added and heated at 50 ° C. for 5 hours. After completion of the reaction, the organic layer was neutralized with 5% aqueous potassium carbonate solution, then washed with water and dried over magnesium sulfate. The white solid obtained by distilling off the solvent was recrystallized from petroleum-derived ethanol to obtain nitrobenzene. The obtained nitrobenzene was reacted with hydrogen gas at 200 ° C. in the presence of a nickel catalyst to obtain aniline.
  • Acetone procurement method outside petroleum resources (Method for procurement of acetone outside petroleum resources 1-1)
  • a 300 ml fermentor (DASGIP) was filled with 250 ml of the synthetic medium described in Soni et al (Soni et al, 1987, Appl. Microbiol. Biotechnol. 27: 1-5) and sparged with nitrogen for 30 minutes.
  • Clostridium acetobutyricum (ATCC824) was inoculated there under anaerobic conditions.
  • the culture temperature was kept constant at 35 ° C., and the pH was always adjusted to 5.5 using NH 4 OH solution. Anaerobic conditions were maintained during the fermentation period and the shaking speed was maintained at 300 rpm.
  • the culture broth was distilled and separated by an ion exchange resin method which has been conventionally known to obtain acetone.
  • Acetone was obtained by culturing and separating in the same manner except that Clostridium acetobutyricum in Procurement Method 1-1 was changed to strain IFP903 (ATCC39057).
  • Wood chips were placed in an autoclave equipped with a smoke induction tube with a cooling tube, heated to 400 ° C., and the generated wood vinegar was collected. The precipitated tar was removed from the obtained wood vinegar and extracted with diethyl ether. The extract was washed with a sodium bicarbonate solution, and fractional distillation was repeated to obtain acetone.
  • Carbon disulfide procurement method outside petroleum resources Carbon disulfide was obtained by reacting mustard oil contained in about 0.4% of mustard vegetables with hydrogen sulfide or heating charcoal and sulfur at 900 ° C.
  • n-butyllithium 13.1 mmol of n-butyllithium was added as an n-hexane solution to initiate polymerization.
  • the stirring rate was 130 rpm
  • the temperature in the polymerization reactor was 65 ° C.
  • copolymerization of 1,3-butadiene and styrene was carried out for 3 hours while continuously supplying the monomer into the polymerization reaction vessel.
  • the amount of 1,3-butadiene supplied in the entire polymerization was 821 g, and the amount of styrene supplied was 259 g.
  • 20 ml of hexane solution containing 0.54 ml of methanol was added to the polymer solution, and the polymer solution was further stirred for 5 minutes.
  • BR (BR-1 in Table 1) was polymerized by the following method using 1,3-butadiene obtained in the above (method for procuring 1,3-butadiene outside petroleum resources).
  • the reaction kettle (3L pressure-resistant stainless steel container) was purged with nitrogen, 1800 ml of cyclohexane, 150 g of 1,3-butadiene obtained by (procurement of 1,3-butadiene outside petroleum resources), THF while maintaining the nitrogen atmosphere 1.5 ml of (tetrahydrofuran) was added and stirring was started.
  • the content of the structural unit represented by the following formula (I) in the polymer calculated from the input amount was 0.01 mmol / g polymer.
  • the content of the structural unit based on the conjugated diene in the diene copolymer was 98.4% by mass.
  • X 1 , X 2 and X 3 each independently represent a group represented by the following formula (Ia), a hydroxyl group, a hydrocarbyl group or a substituted hydrocarbyl group, and at least one of X 1 , X 2 and X 3
  • One is a group or a hydroxyl group represented by the following formula (Ia).
  • R 1 and R 2 each independently represent a hydrocarbyl group having 1 to 6 carbon atoms, a substituted hydrocarbyl group having a carbon number of 1-6, a silyl group, or a substituted silyl group, R 1 and R 2 may be bonded to form a ring structure with the nitrogen atom.
  • BR (BR-2 in Table 1) was polymerized by the following method using 1,3-butadiene derived from ordinary fossil resources.
  • the reaction kettle (3L pressure-resistant stainless steel container) was replaced with nitrogen, and while maintaining the nitrogen atmosphere, 1800ml of cyclohexane, 150g of 1,3-butadiene derived from fossil resources (manufactured by Takachiho Chemical Co., Ltd.), and 1.5ml of THF were added. And stirring was started. Next, the temperature in the container was raised to 40 ° C., and 1 ml of a butyllithium solution was added to initiate polymerization.
  • the vinyl bond content of the polymer was 11.3 mol% in 100 mol% of the conjugated diene unit content.
  • the content of the structural unit based on the conjugated diene in the diene copolymer was 98.4% by mass.
  • Step 1 of Table 1 (Preparation of rubber composition for tread) Using a Banbury mixer, the compounding amount shown in Step 1 of Table 1 was added and kneaded for 5 minutes so that the discharge temperature was about 150 ° C. Thereafter, the kneaded product obtained in step 1 is added with sulfur and a vulcanization accelerator in the amounts shown in step 2, and is kneaded for about 3 minutes using a Banbury mixer so that the discharge temperature is 100 ° C. An unvulcanized rubber composition was obtained. The obtained unvulcanized rubber composition was molded into a tread shape, bonded to another tire member, and vulcanized at 170 ° C. for 20 minutes to prepare a test tire. Each unvulcanized rubber composition was vulcanized at 170 ° C. for 20 minutes to prepare a vulcanized rubber sheet.
  • S-SBR-2 SE0190 manufactured by Sumitomo Chemical Co., Ltd.
  • E-SBR-1 synthesized by the above method
  • E-SBR-2 SBR1502 manufactured by JSR Corporation
  • BR-1 synthesized by the above method
  • BR-2 synthesized by the above method
  • NR RSS # 3
  • Silica Ultrazil VN2 manufactured by Degussa (BET specific surface area: 125 m 2 / g)
  • Carbon black Niteron # 55S manufactured by Nippon Nisshin Carbon Co., Ltd.
  • Silane coupling agent Si69 manufactured by Degussa Mineral oil: PS-32 made by Idemitsu Kosan Co., Ltd.
  • Stearic acid Tungsten zinc oxide manufactured by NOF Corporation: Zinc oxide type 2 antioxidant 6PPD-1 manufactured by Mitsui Mining & Smelting Co., Ltd .: Synthetic antioxidant 6PPD-2: Ouchi Shinsei Chemical Industry ( Nocrack 6C Anti-aging agent TMDQ-1: Synthetic anti-aging agent TMDQ-2: Nocrack 224 manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. Wax: Sunnock wax manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Sulfur Powder sulfur vulcanization accelerator CBS-1 manufactured by Tsurumi Chemical Co., Ltd.
  • CBS-2 Synthetic vulcanization accelerator CBS-2: Emerging Ouchi Noxeller CZ made by Chemical Industry Co., Ltd.
  • Vulcanization accelerator MBT-1 Synthetic vulcanization accelerator MBT-2: Noxeller M manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Torque increase value A torque increase value obtained by subtracting the minimum torque (ML) value from the maximum torque (MH) value was calculated.
  • the torque increase value of each formulation was indicated as an index with the torque increase value of the reference formulation (comparative example) being 100.
  • the index is used as an index of crosslinking efficiency. The larger the index, the higher the crosslinking efficiency and the better.
  • tc of each formulation was displayed as an index with tc of the reference formulation (comparative example) being 100. The smaller the index, the faster the vulcanization rate.
  • the grip performance was evaluated based on the braking performance obtained by the anti-lock brake system (ABS) evaluation test. That is, the above-mentioned test tire is mounted on a passenger car equipped with 1800 cc class ABS, and the asphalt road surface (wet road surface state, skid number about 50) is actually driven, and braking is applied at a speed of 100 km / h. The deceleration until the passenger car stopped was calculated. Here, the deceleration is a distance until the passenger car stops.
  • blending was set to 100, and the deceleration of each mixing
  • blending was shown as a wet-grip performance index by the following formula. The larger the wet grip performance index, the better the braking performance and the better the wet grip performance. (Wet grip performance index) (Deceleration of reference blend (comparative example)) / (Deceleration of each blend) ⁇ 100
  • vulcanization characteristics rubber properties of fracture energy index, wear resistance, rolling resistance characteristics, tire characteristics such as wet / dry grip characteristics, vulcanization accelerators synthesized from current fossil resources, anti-aging And comparative examples using various synthetic rubbers. This shows that it can cope with the depletion of fossil resources without any practical problems.
  • Pantoea agglomerans AJ2985 genomic DNA was used as template DNA, and 5′-GCGGTACCATGAACTATCCTGCCGAGCC-3 ′ (forward), 5′-GCGGCCGCTTTAATAAAAGTCAAAAGCGC-3 ′ (reverse) was used by PCR amplification using the gene of PCR by the PCR method.
  • a primer is GenBank accession no. Based on the sequence of the tpl gene listed in D13714, it was designed to include sequences GGTACC and CGGCCG corresponding to the restriction enzymes KpnI and NotI. It was confirmed that there was no problem in the sequence of the amplified tpl gene by a known method.
  • the amplified tpl gene was incorporated into the ampicillin-resistant and gentamicin-resistant plasmid pTn-1 containing the salicylic acid-inducible NagR / pNagAa promoter using restriction enzymes KpnI and NotI to obtain pNW1.
  • the obtained pNW1 was incorporated into Pseudomonas putida S12 (ATCC7000080), which is an organic solvent resistant bacterium, by a known method to obtain a transformant.
  • the obtained transformant was cultured under the following conditions, and phenol was biosynthesized from glucose. Culturing was performed using BioFIo IIc fermentor (manufactured by New Brunswick Scientific) having an internal volume of 2.5 L. During the culture, oxygen was supplied to the head space of the incubator at a rate of 300 ml / min, and the supplied oxygen was mixed into the medium by rotating a stirring blade at the bottom of the incubator. During the culture, the pH was kept at 7.0 using 4M KOH. Furthermore, the dissolved oxygen pressure was kept at about 20% saturation by adjusting the rotation speed of the stirring blade. The amount of the culture solution at the start of the culture was 1.5 L.
  • the absorbance at 600 nm (OD 600 ) was measured, and after no change was observed in OD 600 , the feed solution was supplied.
  • the feed rate of the feed liquid is 4 ml / h when the cell dry weight (CDW) is less than 3 g / L, 9 ml / h when the CDW is 3 to 4.5 g / L, and the CDW exceeds 4.5 g / L. In this case, it was 20 ml / h.
  • the culture was performed at 30 ° C.
  • the medium composition and the feed liquid composition at the start of the culture are as follows.
  • ⁇ Medium composition at the start of culture (the following amounts indicate the amount per liter)> 30 mmol K 2 HPO 4 , 20.5 mmol NaH 2 PO 4 , 25 mmol D-glucose, 15 mmol NH 4 Cl, 1.4 mmol Na 2 SO 4 , 1.5 mmol MgCl 2 , 0.5 g yeast extract 10 ml trace solution 1, 10 mg Gentamicin, 0.1 mmol salicylic acid
  • ⁇ Feed liquid composition (the following amount indicates the amount per 1 L)> 750 mmol D-glucose, 225 mmol NH 4 Cl, 21 mmol Na 2 SO 4 , 7.4 mmol MgCl 2 , 13 mmol CaCl 2 , 0.5 g yeast extract, 100 ml trace solution 2 , 10 mg gentamicin, 1 mmol salicylic acid
  • ⁇ Composition of Trace solution 1 (the following amount indicates the amount per 1 L)> 4 g EDTA, 0.2 g ZnSO 4 .7H 2 O, 0.1 g CaCl 2 .2H 2 O, 1.5 g FeSO 4 .7H 2 O, 0.02 g Na 2 MoO 4 .2H 2 O, 0.2 g CuSO 4 ⁇ 5H 2 O, 0.04 g CoCl 2 .6H 2 O, 0.1 g MnCl 2 .4H 2 O
  • ⁇ Composition of Trace solution 2 (the following amount indicates the amount per 1 L)> 4 g EDTA, 0.2 g ZnSO 4 .7H 2 O, 0.1 g CaCl 2 .2H 2 O, 6.5 g FeSO 4 .7H 2 O, 0.02 g Na 2 MoO 4 .2H 2 O, 0.2 g CuSO 4 5H 2 O, 0.04 g CoCl 2 .6H 2 O, 0.1 g MnCl 2 .4H 2 O, 0.024 g H 3 BO 3 , 0.02 g NiCl ⁇ 6H 2 O
  • NH 4 —ZSM-5 was added to this aqueous solution, and the mixture was stirred for 24 hours while heating to 60 ° C., and ion exchange with copper ions was performed. Then, it filtered and wash
  • Cu / ZSM-5 synthesized by the above method were packed 10.0 g at a time, and nitrogen gas was supplied from the side of the catalyst column not supporting Cu. The supply rate of nitrogen gas was 1 / hr in terms of LHSV.
  • a quartz tube was installed in an electric furnace, heated to a predetermined temperature, and then a predetermined amount of distilled and purified bioethanol (manufactured by Nikkaku Ethanol Co., Ltd.) was supplied.
  • the reaction conditions at that time were a reaction temperature of 450 ° C., a reaction pressure of normal pressure, a bioethanol feed rate of 1 / hr in terms of LHSV, and a molar ratio of bioethanol to nitrogen (petroleum-derived ethanol / nitrogen) of 50/50. did.
  • the reaction mixture produced by the continuous supply of bioethanol was distilled and then separated by high performance liquid chromatography to obtain 5 g of pure phenol.
  • the reaction conditions at that time were a reaction temperature of 450 ° C., a reaction pressure of atmospheric pressure, a phenol supply rate of 1.29 / hr in terms of LHSV, and a molar ratio of ammonia to phenol of 9.
  • a steady state was reached 4 hours after the start of the reaction. Thereafter, a gas-liquid separator was placed at the outlet of the reaction tube to collect the reaction solution. Analysis of the product gave aniline in 21.2% yield.
  • Example 3 of production of aniline from phenol The reaction was conducted in the same manner as in Production Example 1 except that the ammonia in Production Example 2 was changed to monomethylamine and the pressure was changed to 2859 KPa, and aniline was obtained in a yield of 15.2%.
  • Example 4 of production of aniline from phenol A mixture of bayerite (LaRoche Chemical Versal B) and pseudoboemarite (LaRoche Chemical Versal 900) in a mass ratio of 4: 1 was mixed in a 0.4 M nitric acid aqueous solution, and then heated at 500 ° C. in a muffle furnace. An alumina catalyst was obtained by heat treatment for a period of time. Using this alumina catalyst, the reaction was carried out in the same manner as in Production Example 1 except that the reaction temperature was 365 ° C. and the pressure was 1.7 MPa, and aniline was obtained in a yield of 46.3%.
  • the yield of monomer was 19.1 g, and the yield was 6.9%.
  • Synthesize anti-aging agents in a very efficient and environmentally friendly manner by using aniline synthesized with biosynthesis, which can efficiently synthesize aniline while suppressing emissions. was made.
  • Anti-aging agent 6PPD was synthesized from the obtained aniline, nitrobenzene obtained by oxidizing the aniline by a known method, and the above methyl isobutyl ketone by the following method.
  • 187 g of 25% tetramethylammonium hydroxide aqueous solution (TMAOH) was distilled and concentrated at a temperature of 55 ° C. and a pressure of 75 mbar to obtain a 35% solution.
  • TMAOH tetramethylammonium hydroxide aqueous solution
  • the aniline / water azeotrope is distilled off at a temperature of 75 ° C. and a pressure of 75 mbar until the water: base molar ratio is about 4: 1.
  • the mixture was stirred for an additional 4 hours.
  • Step 1 of Table 2 (Preparation of rubber composition for tread) Using a Banbury mixer, the amount of chemicals shown in Step 1 of Table 2 was added and kneaded for 5 minutes so that the discharge temperature was about 150 ° C. Thereafter, the kneaded product obtained in step 1 is added with sulfur and a vulcanization accelerator in the amounts shown in step 2, and is kneaded for about 3 minutes using a Banbury mixer so that the discharge temperature is 100 ° C. An unvulcanized rubber composition was obtained. The obtained unvulcanized rubber composition was molded into a tread shape, bonded to another tire member, and vulcanized at 170 ° C. for 20 minutes to prepare a test tire. Each unvulcanized rubber composition was vulcanized at 170 ° C. for 20 minutes to prepare a vulcanized rubber sheet.
  • NR RSS # 3
  • Silica Ultrazil VN2 manufactured by Degussa (BET specific surface area 125 m 2 / g)
  • Silane coupling agent Si69 from Degussa Mineral oil: PS-32 made by Idemitsu Kosan Co., Ltd.
  • Stearic acid Tungsten zinc oxide manufactured by NOF Corporation: Zinc oxide type 2 antioxidant 6PPD-3 manufactured by Mitsui Mining & Smelting Co., Ltd .: Synthetic antioxidant 6PPD-4: Ouchi Shinsei Chemical Industry ( Nocrack 6C Anti-aging agent TMDQ-3: Synthetic anti-aging agent TMDQ-4: Nocrack 224 manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Wax Sunnock wax manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Sulfur Powder sulfur vulcanization accelerator CBS-3 manufactured by Tsurumi Chemical Co., Ltd. Noxeller CZ made by Chemical Industry Co., Ltd.
  • Vulcanization accelerator MBT-3 Synthetic vulcanization accelerator MBT-4: Noxeller M manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • vulcanization characteristics rubber properties of fracture energy index, wear resistance, rolling resistance characteristics, tire characteristics such as wet / dry grip characteristics, vulcanization accelerators synthesized from current fossil resources, anti-aging It was equivalent to the comparative example using the agent. This shows that it can cope with the depletion of fossil resources without any practical problems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Botany (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Tires In General (AREA)

Abstract

本発明は、アニリン及び/又はスチレンを効率良く合成できる合成システム、ブタジエン(1,3-ブタジエン)を効率良く合成できる合成システム、該合成システムから得られたアニリンを原料として合成されたタイヤ用ゴム薬品、該合成システムから得られたスチレン及び/又はブタジエンを原料として合成されたタイヤ用合成ゴム、及び該タイヤ用ゴム薬品及び/又は該タイヤ用合成ゴムを用いた空気入りタイヤを提供する。 本発明は、炭素数2以上のアルコールを原料として、芳香族化合物を経由してアニリン及び/又はスチレンを合成する合成システムに関する。

Description

合成システム、タイヤ用ゴム薬品、タイヤ用合成ゴム及び空気入りタイヤ
本発明は、アニリン及び/又はスチレンを効率良く合成できる合成システム、ブタジエン(1,3-ブタジエン)を効率良く合成できる合成システム、該合成システムから得られたアニリンを原料として合成されたタイヤ用ゴム薬品、該合成システムから得られたスチレン及び/又はブタジエンを原料として合成されたタイヤ用合成ゴム、及び該タイヤ用ゴム薬品及び/又は該タイヤ用合成ゴムを用いた空気入りタイヤに関する。
老化防止剤、チアゾール系加硫促進剤、スルフェンアミド系加硫促進剤などのゴム薬品の原料であるアニリンや、スチレンブタジエンゴム、ブタジエンゴムなどの合成ゴムの原料であるスチレン、ブタジエンは、通常、石油を原料として合成されている。しかし、石油や天然ガスなどの化石燃料は枯渇しつつあり、将来の価格高騰が予想されることから、収率の向上や、化石燃料からバイオマス資源への代替により、化石燃料の使用量を削減することが求められている。
天然資源の利用という観点から、天然油脂を加水分解して得られる飽和又は不飽和脂肪酸を還元アミノ化して合成された天然由来の長鎖アミンを原料とし、加硫促進剤を合成する方法が知られている。しかし、製造過程でメルカプトベンゾチアゾール類やジベンゾチアゾリルジスルフィドが使用される合成方法であり、これらの物質が天然資源から生産されているという記載はない。
バイオマス資源を原料とした合成の例として、バイオガスに含まれるメタンなどの低級炭化水素を原料とし、ベンゼンなどの芳香族化合物を合成する方法が知られているが、原料が気体であり、ハンドリングし難いという点で改善の余地がある。また、他の例として、バイオメタノールを原料とする方法も知られているが、原料の毒性が高いという点で改善の余地がある。更に、これらの方法に共通して、十分な収率を確保することが困難であるという点でも改善の余地がある。
特許文献1及び2には、グルコースを原料とし、微生物によってアニリンを合成する方法が開示されている。しかし、生産速度や生産スケール等の観点や、様々な菌種の利用、生産効率の改良の観点から改善が必要な場合があり、その他の手法が求められている。
特開2010-17176号公報 特開2008-274225号公報
本発明は、前記課題を解決し、アニリン及び/又はスチレンを効率良く合成できる合成システム、ブタジエン(1,3-ブタジエン)を効率良く合成できる合成システム、該合成システムから得られたアニリンを原料として合成されたタイヤ用ゴム薬品、該合成システムから得られたスチレン及び/又はブタジエンを原料として合成されたタイヤ用合成ゴム、及び該タイヤ用ゴム薬品及び/又は該タイヤ用合成ゴムを用いた空気入りタイヤを提供することを目的とする。
本発明はまた、バイオマス原料を用いてアニリンを効率良く合成できる合成システム、該合成システムから得られたアニリンを原料として合成されたタイヤ用ゴム薬品、及び該タイヤ用ゴム薬品を用いた空気入りタイヤを提供することを目的とする。
第一の本発明は、炭素数2以上のアルコールを原料として、芳香族化合物を経由してアニリン及び/又はスチレンを合成する合成システムに関する。
上記アルコールがエタノールであることが好ましい。
上記エタノールがバイオエタノールであることが好ましい。
上記芳香族化合物がベンゼンであることが好ましい。
上記ベンゼンがトルエン及び/又はキシレンを経由して合成されたものであることが好ましい。
上記芳香族化合物がアルケンを経由して合成されたものであることが好ましい。
上記合成システムでは、上記アルコールを固体酸触媒に接触反応させることが好ましい。
上記固体酸触媒が、ゼオライト、アルミナ及びチタン化合物からなる群より選択される少なくとも1種であることが好ましい。
上記固体酸触媒がMFI型ゼオライトであることが好ましい。
上記合成システムでは、上記アルコールを固体酸触媒に接触反応させ、得られた生成物を循環させて更に上記固体酸触媒に接触反応させることが好ましい。
上記合成システムでは、上記生成物を蒸留し、目的物以外の化合物を循環させて更に上記固体酸触媒に接触反応させることが好ましい。
上記合成システムでは、上記生成物を蒸留し、得られた蒸留物をベンゼンの融点以下に冷却してベンゼンを回収し、ベンゼン以外の化合物を循環させて更に上記固体酸触媒に接触反応させることが好ましい。
上記合成システムでは、上記循環が繰り返し行われることが好ましい。
第一の本発明はまた、炭素数2以上のアルコールを原料としてブタジエンを合成する合成システムに関する。
第一の本発明はまた、上記合成システムで得られたアニリンを原料として合成されたタイヤ用ゴム薬品に関する。
第一の本発明はまた、上記合成システムで得られたスチレン及び/又は上記合成システムで得られたブタジエンを原料として合成されたタイヤ用合成ゴムに関する。
第一の本発明はまた、上記タイヤ用ゴム薬品及び/又は上記タイヤ用合成ゴムを用いた空気入りタイヤに関する。
第二の本発明は、バイオマス材料を原料として、フェノールを経由してアニリンを合成する合成システムに関する。
上記バイオマス材料は、糖類又はバイオエタノールであることが好ましい。
上記合成システムは、微生物により上記フェノールを生産することが好ましい。また、上記合成システムは、微生物の液体培養により上記フェノールを生産することが好ましい。ここで、上記フェノールを産生する微生物は、有機溶媒耐性を有する微生物であることが好ましい。
上記合成システムは、上記バイオマス材料としてバイオエタノールを使用し、固体酸触媒により上記フェノールを生産することが好ましい。ここで、上記固体酸触媒は、ゼオライトであることが好ましい。また、上記固体酸触媒は、MFI型ゼオライトであることが好ましい。
更に、上記固体酸触媒は、銅、チタン、プラチナ、ルテニウムの単体又はこれらの化合物を担持したMFI型ゼオライトであることが好ましい。
第二の本発明はまた、上記合成システムで得られたアニリンを原料として合成されたタイヤ用ゴム薬品に関する。ここで、上記タイヤ用ゴム薬品は、更にバイオマス原料から得られたアセトンを用いて合成されたものが好ましい。
上記アセトンは、糖類を原料とした微生物によるアセトン・ブタノール発酵により得られたものであることが好ましい。ここで、上記微生物は、クロストリジウム属であることが好ましい。また、上記微生物は、クロストリジウム属の遺伝子が導入された微生物であることが好ましい。
上記遺伝子は、アセトアセテートデカルボキシラーゼ(EC4.1.1.4)、コエンザイムAトランスフェラーゼ又はチオラーゼをコードする遺伝子であることが好ましい。
上記アセトンは、木酢液より分離して得られたものであることが好ましい。また、上記アセトンは、バイオエタノールより誘導されたものであることが好ましい。
第二の本発明はまた、上記タイヤ用ゴム薬品を用いた空気入りタイヤに関する。
第一の本発明によれば、炭素数2以上のアルコールを原料として、芳香族化合物を経由してアニリン及び/又はスチレンを合成する合成システム、及び、炭素数2以上のアルコールを原料としてブタジエン(1,3-ブタジエン)を合成する合成システムであるので、アニリン、スチレン及びブタジエンを効率良く合成することができる。従って、上記合成システムで合成されたアニリン、スチレン及びブタジエンからなる群より選択される少なくとも1種を用いることで、タイヤ用ゴム薬品、タイヤ用合成ゴム及び空気入りタイヤの製造時における化石資源の使用量を削減することができる。
また、第二の本発明によれば、バイオマス材料を原料とし、フェノールを経由してアニリンを合成する合成システムであるので、化石燃料を用いることなく、省資源かつ効率的にアニリンを合成できる。従って、上記合成システムで合成されたアニリンを用いることで、タイヤ用ゴム薬品及び空気入りタイヤの製造時における化石燃料の使用量を削減できる。
アルコールから芳香族化合物を直接合成する装置の一形態を示す模式図である。 アルコールから芳香族化合物を直接合成する装置の一形態を示す模式図である(循環型)。 アルコールからアルケンを経由して芳香族化合物を合成する装置の一形態を示す模式図である。 アルコールからアルケンを経由して芳香族化合物を合成する装置の一形態を示す模式図である(循環型)。
第一の本発明は、炭素数2以上のアルコールを原料として、芳香族化合物を経由してアニリン及び/又はスチレンを合成する合成システム(合成方法)、及び、炭素数2以上のアルコールを原料としてブタジエンを合成する合成システム(合成方法)である。
炭素数2以上のアルコールとしては特に限定されず、一般的なものを使用できるが、毒性が低い点、輸送が容易である点、低コストである点から、炭素数2~8のアルコールが好ましく、エタノールがより好ましい。また、化石資源に依存せずに製造でき、芳香族化合物、アルケンの収率の向上も期待できるという点から、エタノールとしては、バイオマス資源から合成されたバイオエタノールを好適に使用できる。
以下、バイオエタノールの製造方法について説明する。
バイオエタノールは、バイオマス資源(トウモロコシ、サトウキビ、バガス、ケナフ、マメ科植物、藁、麦わら、籾殻、間伐材、廃木材、古紙、廃パルプ、有機系都市ごみなど)を低分子化し(工程1)、得られた糖類をエタノール発酵させ(工程2)、分離精製することにより得られる(工程3)。
(工程1)では、バイオマス資源から、六炭糖、五炭糖などの糖類や、でんぷん、セルロース、ヘミセルロース、リグニンなどを生成する。これらはそのまま、又は選別されて(工程2)のエタノール発酵に用いられ、でんぷん、セルロース、ヘミセルロースは蒸煮、加水分解、酵素分解などの処理により糖化してから(工程2)のエタノール発酵に用いられる。
(工程2)では、(工程1)で得られた単糖類などから微生物を利用してエタノールが生成される。用いられる微生物としては、酵母、大腸菌、ザイモモナス属細菌などの野生株や、これらを形質変換したものが挙げられる。
(工程3)では、発酵液中の固体成分と液層を分離した後、蒸留工程で蒸発と凝縮を繰り返してエタノールの濃縮を行う。また、脱水剤や分離膜を用いて更に濃縮する方法も用いられる。
上記アルコールから芳香族化合物及び/又はアルケンを合成する方法の好適な例として、上記アルコールと触媒とを接触反応させる方法が挙げられる。反応温度は、好ましくは280~500℃、より好ましくは300~460℃である。反応圧力は、常圧、加圧のいずれでもよい(好ましくは0.3~3.0MPaG)。アルコールの供給速度は、LHSV換算で好ましくは0.1~3.0/hr、より好ましくは0.5~1.5/hrである。
上記触媒としては、ゼオライト、アルミナ、チタン化合物、硫酸イオン担持ジルコニア、WO担持ジルコニアなどの固体酸触媒を使用することができ、なかでも、反応効率を高めることができるという点で、ゼオライト、アルミナ及びチタン化合物からなる群より選択される少なくとも1種が好ましく、ゼオライト単独、又は、アルミナ及びゼオライトの併用がより好ましい。
アルコールから芳香族化合物を合成する場合は、特にゼオライトが好ましく、更に後述する様なSiOとAlとのモル比や細孔径を持つゼオライトが、目的とするベンゼン等の芳香族化合物を選択的に合成できるという理由から好ましい。
アルミナ及びゼオライトを併用してアルコールから芳香族化合物を合成する場合、後述する様に一段目にアルミナ及び/又はゼオライト等でアルケンを合成し、更に得られたアルケンをゼオライト等に接触反応させることで、より経済的、より高効率で芳香族化合物を合成することができる。
また、アルコールからエチレン等のアルケン、及び/又はブタジエンを合成する場合は、アルミナ及び/又はゼオライトが好ましい。
ゼオライトは、細孔構造を有する結晶性のアルミノケイ酸塩であり、その具体例としては、A型ゼオライト、L型ゼオライト、X型ゼオライト、Y型ゼオライト、MFI型ゼオライト、MWW型ゼオライト、β型ゼオライト、モルデナイト、フェリエライト、エリオナイトなどが挙げられる。また、ゼオライト骨格に含まれるアルミニウム原子がGa、Ti、Fe、Mn、Zn、B、Cu、Pt、Re、Mo、Gd、Nb、Y、Nd、W、La、Pなどのアルミニウム以外の金属又はその化合物で置換されたものであってもよい。なかでも、ベンゼンを選択的に精製し、さらなるアルキル化等の副反応を最小限にとどめるという点から、MFI型のZSM-5及びMWW型のMCM-22が好ましい。
MFI型ゼオライトとしては、ZSM-5、ZSM-8、ゼータ1、ゼータ3、Nu-4、Nu-5、TZ-1、TPZ-1、TS-1等のMFI(Mobilfive)構造を有するものが挙げられ、この中でも選択性の高さ、反応効率の点からZSM-5型が特に好ましい。
ゼオライトのイオン交換可能なカチオンサイトに占有されているカチオンは特に限定されず、水素イオン(プロトン);リチウムイオン、ナトリウムイオン、カリウムイオンなどのアルカリ金属イオン;マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオンなどのアルカリ土類金属イオン;鉄イオン、銀イオンなどの遷移金属イオン;1~4級アンモニウムイオンなどが挙げられる。なかでも、表面活性を高くして反応効率を上げることができるという点から、水素イオン(プロトン)が好ましい。該カチオンは、1種であってもよいし、2種以上であってもよい。
上記ゼオライトのうち、MFI構造を有し、プロトン型のH-ZSM-5が特に好ましい。
ゼオライトの結晶構造中のSiOとAlとのモル比(SiO/Al)は、反応装置、温度及び原料の不純物によっても異なるが、好ましくは5~2000、より好ましくは10~500、更に好ましくは12~70、特に好ましくは15~35である。上記範囲内であれば、生成したベンゼンのさらなるアルキル化等の副反応を最小限に抑えることができる。同様の理由から、ゼオライトの結晶の大きさは、(0.001~50)μm×(0.01~100)μmが好ましい。また、ゼオライトの粒子の大きさは、0.1~50μmが好ましく、1~20μmがより好ましい。更に、ゼオライトの窒素吸着比表面積は、10~1000m/gが好ましく、100~500m/gがより好ましい。
炭素数2以上のアルコールから合成される芳香族化合物としては、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、ブチルベンゼンなどが挙げられる。なかでも、アニリン、スチレンを効率よく合成できるという点から、ベンゼン、エチルベンゼンが好ましく、ベンゼンがより好ましい。なお、ベンゼンは、トルエン、キシレンなどを経由して合成されるものであってもよいし、エチレンなどのアルケンを経由して合成されるものであってもよい。
上記芳香族化合物を合成する装置としては特に限定されず、例えば、触媒を保持する反応管等に、加熱装置、原料供給システムが付属した装置を使用できる。目的物の変換効率を高めるという観点から、上記装置は、アルコールを固体酸触媒に接触反応させ、得られた生成物を循環させて更に固体酸触媒に接触反応させる循環システムを有しているものが好ましい。
上記循環システムは、生成物を蒸留して目的物を分離し、蒸留されなかった高沸点生成物及び気体生成物などの目的物以外の化合物を循環させて更に触媒との反応に供するシステムであることが好ましく、目的物がベンゼンである場合、生成したベンゼンを融点(5.5℃)以下に冷却して取得できるシステムであれば、ベンゼン変換効率の観点からより好ましい。更に、上記循環システムは、これらの循環を繰り返し行うシステムであることが好ましい。
また、アルケンを経由して芳香族化合物を合成する場合、上記装置は、反応カラムを2本連結し、1本目でアルコールの脱水反応を行ってアルケン類を生成させ、2本目のカラムで芳香族化合物を合成するシステムを有することが、ベンゼン収率と触媒寿命維持の観点から好ましい。
芳香族化合物からアニリンを合成する方法としては特に限定されず、公知の方法を使用でき、例えば、ベンゼンを濃硝酸及び濃硫酸の混酸と反応させ、得られたニトロベンゼンをBechamp還元法や接触還元法などで還元する方法が挙げられる。
同様に、芳香族化合物からスチレンを合成する方法についても、公知の方法を使用でき、例えば、ベンゼンをフリーデル・クラフツ反応などによりエチル化し、得られたエチルベンゼンを鉄触媒などで脱水素する方法が挙げられる。フリーデル・クラフツ反応で使用するエチレンは、例えば、バイオエタノールを脱水反応することにより製造可能であるため、石油資源によらずにスチレンを製造できる。
また、芳香族化合物としてエチルベンゼンが直接合成される場合は、それをそのまま使用して脱水素し、スチレンを合成することができる。
第二の本発明は、バイオマス材料を原料として、フェノールを経由してアニリンを合成する合成システム(合成方法)である。
まず、微生物を使用してバイオマス資源からフェノールを生合成する工程について説明する。
第二の本発明で使用できる微生物は、バイオマス資源を資化してフェノールを生合成できるものであれば特に限定されない。
例えば、チロシンからフェノールを生成する反応を触媒する酵素であるチロシンフェノールリアーゼ(EC 4.1.99.2)をコードする遺伝子(tpl遺伝子)(例えば、GenBank accession no.D13714に収載されているtpl遺伝子)を、チロシンを生合成可能な微生物に導入して得られる微生物により、バイオマス資源を資化してフェノールを生合成できる。
なお、チロシンフェノールリアーゼは、ピリドキサール5’-リン酸依存性の酵素であり、チロシンから、フェノール、ピルビン酸、アンモニアを生成する反応を触媒する。チロシンフェノールリアーゼは、別名、β-チロシナーゼ、L-チロシンフェノールリアーゼともいう。
tpl遺伝子が導入される微生物としては、チロシンを生合成可能な微生物であれば特に限定されない。地球上に存在するほとんど全ての微生物は、チロシンを生合成することができるため、任意の微生物を使用することができるが、例えば、エシェリヒア(Escherichia)属、セラチア(Serratia)属、バチルス(Bachillus)属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属、ミクロバクテリウム属(Microbacterium)、シュードモナス(Pseudomonas)属、アグロバクテリウム(Agrobacterium)属、アリシクロバチルス属(Alicyclobacillus)、アナベナ(Anabena)属、アナシスティス(Anacystis)属、アスロバクター(Arthrobacter)属、アゾトバクター(Azotobacter)属、クロマチウム(Chromatium)属、エルビニア(Erwinia)属、メチロバクテリウム(Methylobacterium)属、フォルミディウム(Phormidium)属、ロドバクター(Rhodobacter)属、ロドシュードモナス(Rhodopseudomonas)属、ロドスピリウム(Rhodospirillum)属、セネデスムス(Scenedesmus)属、ストレプトマイセス(Streptomyces)属、シネコッカス(Synechoccus)属、ザイモモナス(Zymomonas)属等に属する微生物等を使用できる。なかでも、シュードモナス(Pseudomonas)属に属する微生物が好ましい。
また、通常の微生物は、生成物であるフェノールが高濃度になると死滅するおそれがある。そのため、tpl遺伝子が導入される微生物としては、フェノールにより死滅しにくい有機溶媒耐性(特に、芳香族化合物に対する耐性)を有する微生物が好ましい。有機溶媒耐性を有する微生物としては、例えば、Pseudomonas putida S12が挙げられる。Pseudomonas putida S12は、芳香族化合物に対する耐性に優れているため、tpl遺伝子が導入される微生物として好適に使用できる。
上記微生物へのtpl遺伝子の導入方法としては、特に限定されず、一般的に用いられているものを、通常知られた条件で使用すればよく、例えば、カルシウムイオンを用いる方法[Proc.Natl.Acad.Sci.,USA,69,2110(1972)]、プロトプラスト法(特開昭63-248394号公報)、エレクトロポレーション法[Nucleic Acids Res.,16,6127(1988)]、ヒートショック法、パーティクルガン法(「生物化学実験法41植物細胞工学入門」1998年9月1日、学会出版センター、第255頁~326頁)などがあるが、これらに限定されない。
tpl遺伝子が導入された微生物を培養するための培地は、炭素源としてバイオマス資源を使用する点以外は、培養する微生物が増殖し得るものであれば特に制限はなく、窒素源、無機イオン、更に必要に応じて有機栄養源を含む通常の培地でよい。
バイオマス資源としては、糖を含有するものであれば、特に限定されず、例えば、米、麦、蜂蜜、果実、トウモロコシ、サトウキビ、バガス、ケナフ、マメ科植物、藁、麦わら、籾殻、間伐材、廃木材、古紙、廃パルプ、有機系都市ごみ等が挙げられる。また、グルコース、スクロース、トリハロース、フルクトース、ラクトース、ガラクトース、キシロース、マンニトール、ソルビトール、キシリトール、エリスリトール、マルトース、アミロース、セルロース、キチン、キトサン等の糖類も挙げられる。なかでも、糖類が好ましい。
第二の本発明では、上記バイオマス資源を炭素源として直接使用してもよいが、上記糖類以外のバイオマス資源やセルロース、キチン、キトサン等の多糖類を使用する場合には、微生物によっては、直接資化できない、又は資化する能力が低い等の理由から、糖類以外のバイオマス資源や多糖類は、低分子化してから用いることが好ましい。低分子化する方法は、特に限定されず、公知の方法(例えば、蒸煮、加水分解、酵素分解等)により行うことができる。糖類以外のバイオマス資源や多糖類を低分子化することにより、単糖等を得ることができる。
上記バイオマス資源のなかでも、フェノールを効率的に生成できるという理由から、グルコースが特に好ましい。グルコースは、グルコース(単糖)として天然に存在するものを使用してもよいし、上記方法等によりバイオマス資源を低分子化することにより得られるグルコースを使用してもよい。
窒素源としては、硫酸アンモニウム、塩化アンモニウムなどの無機塩のアンモニウム塩、フマル酸アンモニウム、クエン酸アンモニウムなどの有機酸のアンモニウム塩、硝酸ナトリウム、硝酸カリウムなどの硝酸塩、ペプトン、酵母エキス、肉エキス、コーンスティープリカー、大豆加水分解物などの有機窒素化合物、アンモニアガス、アンモニア水等あるいはこれらの混合物を使用することができる。
他に無機塩類、微量金属塩、ビタミン類、ホルモン等、通常の培地に用いられる栄養源を適宜混合して用いることができる。
培養条件にも格別の制限はなく、例えば、好気的条件下にてpH5~8、温度20~60℃(好ましくは20~35℃)の範囲でpH及び温度を適当に制限しつつ12~480時間程度培養を行えばよい。また、培養方法は、固体培養、液体培養いずれの方法でもかまわないが、効率の点から液体培養がより好ましい。液体培養の方法は、回分培養、半回分培養、連続培養のいずれでもよい。
上記微生物を培養することにより、バイオマス資源を資化してフェノールを生合成できる。フェノールの回収は、培養液より抽出しても良いし、微生物中に蓄積されたものを抽出しても良い。
培養液に蓄積したフェノールは、例えば、有機溶媒により抽出すればよい。使用できる有機溶媒としては、特に限定されず、ジエチルエーテル、オクタノール、ノナノール、ドデカノール、ベンゼン、トルエン、キシレン、酢酸エチル等が挙げられる。更に、有機溶媒により抽出したフェノールをクロマトグラフィー等の公知の精製操作により精製してもよい。
また、微生物中に蓄積されたフェノールは、微生物を超音波により粉砕後、上記有機溶媒にて抽出することにより得られる。
更には培養液のみ若しくは培養液と微生物双方より水分を除去した後にエタノールなどの有機溶媒により抽出した後、精製してフェノールを回収しても良い。
また、バイオマス資源からのフェノール合成の他の方法として、バイオエタノールを固体酸触媒によりフェノールに変換してもよい。固体酸触媒としては、ゼオライト触媒、アルミナ触媒等が挙げられるが、これに限定されるものではなく、また複数の触媒を同時あるいは段階的に併用してもかまわない。
また、上記固体酸触媒は、イオン交換されていてもよいし、更にアルカリ金属、アルカリ土類金属、鉄、アルミニウム、ガリウム、亜鉛、ガドリウム、プラチナ、バナジウム、パラジウム、ニオブ、モリブデン、イットリウム、レニウム、ネオジウム、タングステン、ランタン、銅、チタン、ルテニウム等の金属及びそれらの化合物、又はリン化合物、ホウ素化合物などを担持させたものでもよく、銅、チタン、プラチナ、ルテニウムの単体又はこれらの化合物を担持したものが好ましい。
上記固体酸触媒は、特にゼオライト類が好ましく、その具体例としてはA型ゼオライト、L型ゼオライト、X型ゼオライト、Y型ゼオライト、MFI型ゼオライト、MWW型ゼオライト、β型ゼオライト、モルデナイト、フェリエライト、エリオナイトなどが挙げられる。上記ゼオライトの中でもMFI型が好ましく、ZSM-5型が特に好ましい。ZSM-5触媒はプロトン型とガドリウム、レニウム等の希土類担持のものを併用することが好ましい。
次に、上記で生合成されたフェノールからアニリンを合成する方法としては、各種触媒を用いてフェノールとアンモニアガスもしくは低分子量アミン化合物を反応させてアニリンを調製する方法が挙げられる。触媒としては、ゼオライト触媒、ニオブ触媒、チタニア-ジルコニア複合酸化物触媒、アルミナ触媒、メタロシリケート触媒等の固体触媒、種々の無機酸、有機酸等が挙げられるが、これらに限定されるものではなく、また複数の触媒を同時又は段階的に併用してもよい。
また、上記固体触媒は、イオン交換されていてもよいし、更にアルカリ金属、アルカリ土類金属、鉄、銅、アルミニウム、ガリウム、亜鉛、ガドリウム、プラチナ、バナジウム、パラジウム、チタン、ニオブ、モリブデン、イットリウム、レニウム、ネオジウム、タングステン、ランタン等の金属及びそれらの化合物、又はリン化合物、ホウ素化合物などを担持させてもよい。
上記固体触媒は、特にゼオライト類が好ましく、その具体例としてはA型ゼオライト、L型ゼオライト、X型ゼオライト、Y型ゼオライト、MFI型ゼオライト、MWW型ゼオライト、β型ゼオライト、モルデナイト、フェリエライト、エリオナイトなどが挙げられる。
上記ゼオライトとしては、MWW型のMCM-22型及びMFI型が好ましく、これらは他の触媒を担持させてもよい。MFI型ゼオライトとは、MFI(Mobilfive)構造を有しており、ZSM-5、ZSM-8、ゼータ1、ゼータ3、Nu-4、Nu-5、TZ-1、TPZ-1、TS-1等のMFI構造を有するものが挙げられ、なかでも、選択性の高さ、反応効率の点からZSM-5型が特に好ましい。
ゼオライトのイオン交換可能なカチオンサイトに占有されているカチオンは特に限定されず、水素イオン(プロトン);リチウムイオン、ナトリウムイオン、カリウムイオンなどのアルカリ金属イオン;マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオンなどのアルカリ土類金属イオン;鉄イオン、銀イオンなどの遷移金属イオン;1~4級アンモニウムイオンなどが挙げられる。なかでも、表面活性を高くして反応効率を上げることができるという点から、水素イオン(プロトン)が好ましい。該カチオンは、1種でもよいし、2種以上でもよい。
ゼオライトの結晶構造中のSiOとAlとのモル比(SiO/Al)は、反応装置、原料に含まれる不純物によっても異なるが、好ましくは5~2000、より好ましくは5~60である。上記範囲内であれば、生成したフェノールの更なるアルキル化等の副反応を最小限にとどめることが可能である。同様の理由から、ゼオライトの結晶の大きさは、(0.001~50)μm×(0.01~100)μmが好ましい。また、ゼオライトの粒子の大きさは、0.1~50μmが好ましく、1~20μmがより好ましい。更に、ゼオライトの窒素吸着比表面積は、10~1000m/gが好ましく、100~500m/gがより好ましい。
上記触媒とフェノール及びアンモニアの反応は気相又は液相で行える。反応器として固定床反応器、流動床反応器、移動床反応器を使用できる。反応温度は約200~600℃(好ましくは300~500℃、更に好ましくは350℃~450℃)、反応圧力は常圧、加圧のいずれでもよい(好ましくは約5~50気圧)。更にフェノールに対するアンモニアモル比は約1~50(好ましくは5~30)である。なお、反応時に必要に応じて、窒素、アルゴン、スチーム等の不活性ガスで希釈してもよい。
上記で調製されたアニリンを用いることで、老化防止剤、加硫促進剤などのタイヤ用ゴム薬品の製造時における石油資源の使用量を削減することができ、また、石油資源を使用せずに該タイヤ用ゴム薬品を製造することも可能となる。
老化防止剤としては、p-フェニレンジアミン系老化防止剤として、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、キノリン系老化防止剤として、2,2,4-トリメチル-1,2-ジヒドロキノリン重合物が挙げられる。
たとえば、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミンは、アニリンを原料として、後述の方法で製造できる。ここで、中間体のアミンに加えるメチルイソブチルケトンは、次の方法で合成できる。たとえば後述の方法で合成したアセトン2分子のアルドール縮合により合成できるジアセトンアルコールが、容易に脱水されてメシチルオキシドに変わり、このメシチルオキシドをパラジウム触媒等で水素添加することでメチルイソブチルケトンとなる。この方法により、石油資源によらずに老化防止剤を製造できる。
また、2,2,4-トリメチル-1,2-ジヒドロキノリン重合物は、アニリンを原料として、酸性触媒存在下140℃でアセトンを随時供給し続けることで合成できる。なお、アセトンは、以下の方法で製造可能であるため、石油資源によらずに該重合物を製造できる。
上記の老化防止剤の合成に必要なアセトンは、例えば、バイオマスを原料として微生物によりアセトン・ブタノール発酵を行うと、ブタノール、アセトン等の混合溶媒が得られるので、これを蒸留することで合成できる。上記バイオマス原料としては、セルロース、農作物及びその廃棄物、糖類等が用いられるが、糖類が特に好ましい。アセトン・ブタノール発酵を行う微生物は特に限定されないが、野生型、変異体、又は組換え体である、エシュリヒア(Escherichia)、ジモモナス(Zymomonas)、カンジダ(Candida)、サッカロミセス(Saccharomyces)、ピキア(Pichia)、ストレプトマイセス(Streptomyces)、バチルス(Bacillus)、ラクトバチルス(Lactobacillus)、コリネ(Coryne)及びクロストリジウム(Clostridium)からなる群より選択される属が好ましい。なかでも、クロストリジウム属がより好ましく、Clostridium acetobutylicum、Clostridium beijerinckii、Clostridium saccharobutylicum、及びClostridium saccharoperbutylacetonicumが特に好ましい。
また上記クロストリジウム属のアセトアセテートデカルボキシラーゼ(EC4.1.1.4)、コエンザイムAトランスフェラーゼ、チオラーゼをコードする遺伝子を組み込んだ微生物であっても構わない。
また、木材を乾留して得られる木酢液を更に分留、又は液体クロマトグラフィー等での分取などによりアセトンを取得することもできる。
また、バイオエタノールをZr-Fe触媒の存在下で400℃以上に加熱することでアセトンを合成できる。
また、糖質原料由来のバイオエタノールを脱水反応させてエチレンを合成する工程、石油化学で汎用されている手法でエチレンからプロピレンを合成する工程、水和反応によりプロピレンからイソプロパノールを調製し、更に脱水素反応させる工程を経てアセトンを合成できる。
また、木質原料中のセルロースを熱分解して得られた酢酸を水酸化カルシウムで中和して酢酸カルシウムを得、次いで熱分解することでアセトンを合成できる。バイオエタノールの合成における発酵過程でエタノールが酸化されることで酢酸が生成するので、その酢酸を利用し、上記と同様のプロセスを経ることでも合成できる。
更に、糖質原料由来のバイオエタノールを、ZnO/CaO触媒などで転換反応を進行させることでアセトンを合成できる。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィドなどのチアゾール系加硫促進剤、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-tert-ブチル-2-ベンゾチアジルスルフェンアミドなどのスルフェンアミド系加硫促進剤などが挙げられる。
2-メルカプトベンゾチアゾールは、アニリンを原料として、下記合成方法により製造できる。ここで、二硫化炭素は、たとえば、からし菜に約0.4%含まれるからし油に硫化水素を反応させることで分離生成させることができる。この方法によれば、石油資源によらずに加硫促進剤を製造できる。また、そのようにして製造された2-メルカプトベンゾチアゾールを酸化することにより、ジベンゾチアジルジスルフィドを合成できる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
また、上記で調製されたスチレン、1,3-ブタジエンを用いて、タイヤ用合成ゴムを石油資源を使用することなく製造できる。
タイヤ用合成ゴムとしては、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)などが挙げられる。SBRは、スチレンと1,3-ブタジエンとの共重合により製造でき、BRは、1,3-ブタジエンの重合により製造できる。ここで、1,3-ブタジエンは、たとえば前述する様なゼオライト、アルミナ、チタン化合物、硫酸イオン担持ジルコニア、WO担持ジルコニア等の固体酸触媒存在下で、バイオエタノールを高温で反応させる方法や、バイオエタノールを酸化してアセトアルデヒドとした後、タンタル/二酸化ケイ素の触媒下でバイオエタノールを加えて加熱する方法等で製造可能であるため、石油資源によらずにタイヤ用合成ゴムを製造できる。
以上で得られたタイヤ用ゴム薬品、タイヤ用合成ゴムは、タイヤ用ゴム組成物(トレッド、サイドウォールなど)に使用できる。
上記ゴム組成物には、上記成分以外に、カーボンブラック、シリカ、クレー、水酸化アルミニウム、炭酸カルシウムなどの無機充填剤、シランカップリング剤、プロセスオイル、軟化剤、加硫剤、加硫促進助剤など、通常のゴム工業で使用される配合剤が適宜配合される。また、通常の石油等化石資源由来の老化防止剤、加硫促進剤、合成ゴムを一部含んでいてもよい。
上記ゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、上記各成分をオープンロール、バンバリーミキサー、密閉式混練機などのゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各成分を配合したゴム組成物を、未加硫の段階でタイヤの各部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成型することで未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造できる。
以下、実施例に基づいて、第一の本発明を具体的に説明するが、第一の本発明はこれらのみに限定されるものではない。
(アルコールからのベンゼン合成)
(実施例1)
原料のアルコールとしては、石油由来のエチレンの水和反応によって得られた工業用エチルアルコール(石油由来エタノール)を用いた。
アルコールからのベンゼン合成は、ガス導入管1と、アルコール導入管(原料導入管)2と、アルコール気化層(原料気化層)4及び触媒層(反応層)5を有する反応管3と、該反応管3を加熱する加熱装置(電気炉)6と、触媒層5を経て生成された生成物を収集する生成物トラップ7と、冷却装置8aとを備える流通型反応装置(図1参照)を用いて行った。生成物トラップ7は冷却装置8aにより-15℃に冷却した。
触媒層5の内部の石英ウール上に、ゼオライト触媒H-ZSM-5(東ソー(株)製の840HOA(840NHA(SiO/Al=40(モル比)、窒素吸着比表面積:330m/g、結晶の大きさ:2μm×4μm、粒子の大きさ:10μm)を焼成処理したもの))を10.0gとり、上記ガス導入管1より窒素ガスを供給した。窒素ガスの供給速度はLHSV換算で1/hrとした。加熱装置6によって反応管3を所定温度まで昇温した後、アルコール導入管2より石油由来エタノールを所定量供給した。反応条件は、反応温度:500℃、反応圧力:常圧、石油由来エタノールの供給速度:LHSV換算で1/hr、石油由来エタノールと窒素とのモル比(石油由来エタノール/窒素):50/50とした。反応時間は2時間とした。生成物は反応管3に連結された生成物トラップ7に集められた。
生成物はガスクロマトグラフを用いて分析した。カラム充填剤として、ガス成分の分析には、PORAPAK P(登録商標、GLサイエンス社)、その他の分析には、SUPELCOWAX(登録商標、SUPELCO社)を用いた。
石油由来エタノールの転化率は100%であり、得られた生成物は炭素モル数比で、ベンゼン12.0%、トルエン14.2%、キシレン7.6%、その他66.2%であった。
上記生成物を蒸留し、ベンゼンを回収した。還流比は2、蒸気流速は0.2m/sとした。上記生成モル数比での蒸留での回収効率が90%であった。これより、以下の式により算出したベンゼンの合計収率は11%であった。
合計収率(%)=(単位時間に生成したベンゼンの炭素モル数)/(単位時間に供給したエタノールの炭素モル数)×蒸留での回収効率×100
(実施例2)
実施例1と同様の方法により、ベンゼンを合成した。このとき、副生成物であるトルエン、キシレンを回収し、再度、実施例1で使用したゼオライト触媒とともに反応させた。ベンゼンの合計収率は17%であった。
(実施例3)
石油由来エタノールの代わりにバイオエタノールを使用した以外は実施例1と同様の方法により、ベンゼンを合成した。用いたバイオエタノールはトウモロコシ由来のものであり、水分約20%、アセトアルデヒド等他の成分約8%が含まれるものを用いた。このバイオエタノールはろ過したのみで、蒸留精製せずに用いた。ベンゼンの合計収率は13%であった。
(実施例4)
東ソー(株)製の840HOAの代わりにゼオライト触媒H-ZSM-5:(東ソー(株)製の820HOA(820NHA(SiO/Al=23(モル比)、窒素吸着比表面積:350m/g、結晶の大きさ:0.03μm×0.1μm、粒子の大きさ:5μm)を焼成処理したもの))を使用した以外は実施例3と同様の方法により、ベンゼンを合成した。ベンゼンの合計収率は21%であった。
(実施例5)
東ソー(株)製の840HOAの代わりにゼオライト触媒H-モルデナイト(ゼオリスト社製のCBV90A(SiO/Al=90))を使用した以外は実施例1と同様の方法により、ベンゼンを合成した。ベンゼンの合計収率は1%であった。
(比較例1)
石油由来エタノールの代わりに石炭由来メタノール(石炭の部分酸化で製造した一酸化炭素(CO)に、酸化銅-酸化亜鉛/アルミナ複合酸化物を触媒として、50~100気圧、240~260℃で水素を反応させることにより得られた工業用メタノール)を使用した以外は実施例5と同様の方法により、ベンゼンを合成した。ベンゼンの合計収率は0.5%であった。
(実施例6)
石油由来エタノールを原料とし、実施例4で使用したゼオライト触媒を用いてベンゼンを合成した。合成は、図1で示した装置の生成物トラップ7に、加熱装置8b、分留装置(分留管)9、蒸留物トラップ(目的物トラップ)10、反応物再循環ライン12a及び12bを取り付け、触媒反応により生成した反応混合物を分留して低沸点生成物を分取した後、気化成分と高沸点生成物を連続的に反応管3に供給できるシステム(循環型反応装置)で行った(図2参照)。生成物トラップ7は内温90℃になるように加熱装置8bにより加熱した。
上記装置を用いて実施例4の条件にて反応させ、分留管9を通じて反応生成物を連続的に蒸留した。その後、冷却装置11で-15℃に冷却した蒸留物トラップ10を用いて、蒸留物中のベンゼンを固化させて回収した。固化もしくは液化しなかった気体生成物と蒸留されなかった高沸点生成物は反応物再循環ライン12a及び12bより連続的に反応管3に供給されるようにした。
実施例4と同様の条件で石油由来エタノールを供給した後、供給を終了し、14時間同様の加熱条件で循環反応を継続した。ベンゼンの合計収率は31%であった。
(実施例7)
石油由来エタノールの代わりにバイオエタノールを使用した以外は実施例6と同様の方法により、ベンゼンを合成した。ベンゼンの合計収率は39%であった。
(アルコールからのベンゼン合成例の考察)
実施例1及び2を比較することにより、副生成物について触媒反応を繰り返し行うことによりベンゼンの収率が向上することがわかる。これは、副生成物のトルエン、キシレンが触媒によりベンゼンに変換されることによると思われ、本プロセスにおいて触媒反応工程を繰り返すことの有用性を示すものである。
実施例3及び4を比較することにより、ゼオライト触媒のSi/Ai比(SiO/Al比)が異なると反応性、選択性が異なることが判明した。しかし、反応温度、装置の形態にも依存すると考えられ、適用する反応装置によりSi/Al比の最適化を図ることも場合によっては必要と考えられる。
実施例3より、水分を主とした副生成物を含んだバイオエタノールを用いても、本発明の反応が進行することが判明した。実施例1及び3のベンゼンの収率をエタノール成分比を考慮して炭素モル数換算で比較すると、バイオエタノールを用いた実施例3の方が実施例1よりもわずかに収率が高かった。
実施例1、2、4及び7を比較することにより、副生成物を触媒層に複数回もしくは連続的に繰り返し接触させることにより、ベンゼンの収率が大幅に向上することが判明した。
実施例6及び7をエタノール成分比を考慮して炭素モル換算で比較すると、驚くべきことに、バイオエタノールを用いた実施例7の方が石油由来エタノールを用いた実施例6よりもベンゼンの収率が高かった。これは、バイオエタノールに含まれる水分が反応を大きく阻害しないだけでなく、他の不純物がベンゼンに変換されたり、該不純物が変換反応や触媒を活性化したりする作用を発揮しているためではないかと推測される。
(アルコールからアルケンを経由したベンゼン合成)
(実施例8)
アルコール導入管(原料導入管)21と、導入されたアルコールを気化させる加熱装置22と、該アルコールを脱水反応させる脱水反応用カラム23と、該脱水反応で得られた生成物を冷却してアルケンを回収するための冷却装置24と、該アルケンを気化させる加熱装置25と、該アルケンから芳香族化合物を合成する芳香族化合物合成用カラム26と、生成した芳香族化合物を回収するための冷却装置27とを備える装置(図3参照)を用いて、アルコールを原料として、アルケンを経由して芳香族化合物を合成した。脱水反応用カラム23は、触媒として酸化アルミニウム(メルク(株)製の101095100)を10g充填し、300℃に加熱した。芳香族化合物合成用カラム26は、図1の反応管3と同じ構成とした。原料は石油由来エタノールを使用し、実施例1と同様の供給条件で脱水反応用カラム23に供給し、得られたエチレンを芳香族化合物合成用カラム26で反応させ、得られた生成物を、蒸留、精製し、ベンゼンを27%の合計収率で得た。
(実施例9)
石油由来エタノールの代わりにバイオエタノールを使用した以外は実施例8と同様の方法により、ベンゼンを合成した。ベンゼンの合計収率は36%であった。
(実施例10)
芳香族化合物合成用カラム26で生成した副生成物を回収する反応物再循環ライン28を追加した以外は図3の装置と同様の構成を有する装置(図4参照)を用いて、ベンゼンを合成した。脱水反応用カラム23を300℃に、芳香族化合物合成用カラム26を500℃に加熱し、実施例8と同じ条件で石油由来エタノールを供給し、ベンゼンを合成した。循環反応の時間は、実施例6同様14時間とした。得られた生成物を蒸留、生成してベンゼンを得た。ベンゼンの合計収率は82%であった。
(実施例11)
石油由来エタノールの代わりにバイオエタノールを使用した以外は実施例10と同様の方法により、ベンゼンを合成した。ベンゼンの合計収率は90%であった。
(ベンゼンからのアニリンの合成)
上記方法により得られたベンゼンを用い、下記の方法によりアニリンを合成した。
ベンゼンを含むクロロホルム溶液に硫酸を入れ、次いで硝酸を加えて50℃で5時間加熱した。反応終了後、有機層を5%炭酸カリウム水溶液で中和し、次いで水洗し、硫酸マグネシウムで乾燥した。溶媒を留去して得られた白色固体を石油由来エタノールから再結晶し、ニトロベンゼンを得た。得られたニトロベンゼンを、ニッケル触媒の存在化、200℃で水素ガスと反応させ、アニリンを得た。
(アセトンの石油資源外調達方法)
(アセトンの石油資源外調達方法1-1)
300mlの発酵槽(DASGIP)にSoni et al(Soni et al,1987,Appl.Microbiol.Biotechnol.27:1-5)に記載の250mlの合成培地を満たし、窒素で30分スパージした。そこにClostridium acetobutylicum(ATCC824)を嫌気性条件下で、接種した。培養温度は35℃に一定維持し、pHはNHOH溶液を用い、常に5.5に調節した。発酵期間中、嫌気性条件を維持し、振盪速度は300rpmで維持した。5日間培養後、培養液を蒸留し、従来より周知となっているイオン交換樹脂法により分離して、アセトンを得た。
(アセトンの石油資源外調達方法1-2)
上記調達方法1-1のClostridium acetobutylicumを菌株IFP903(ATCC39057)に変更した以外は同様にして培養、分離し、アセトンを得た。
(アセトンの石油資源外調達方法2)
冷却管付き煙誘導管を備えたオートクレーブに木材チップを入れ、400℃に加熱し、発生した木酢液を集めた。得られた木酢液より沈澱したタール分を除去し、ジエチルエーテルにより抽出した。抽出分を炭酸水素ナトリウム溶液にて洗浄した後、分留を繰り返してアセトンを得た。
(アニリンからの老化防止剤の製造例1(表1の老化防止剤TMDQ-1の合成方法))
アセトン導入装置、蒸留装置、温度計、及び攪拌機を備えたフラスコに、上記(ベンゼンからのアニリンの合成)で得られたアニリン190g(2.0モル)と、酸性触媒として塩酸(0.20モル)を加え、140℃まで加熱した。その後140℃で保温しながら、6時間にわたり上記(アセトンの石油資源外調達方法1-2)で得られたアセトン580g(10モル)を反応系に連続的に供給した。留出する未反応のアセトンやアニリンは、随時反応系に戻した。2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物180.7g(収率約30%)を得た。重合度は2~4であった。なお、未反応のアニリン、及び2,2,4-トリメチル-1,2-ジヒドロキノリンのモノマーは、減圧蒸留により回収した。140℃で未反応のアニリンが留出し、その後190℃まで昇温することにより、モノマーが留出した。モノマーの収量は19.1gであり、収率は6.9%であった。
(アニリンからの老化防止剤の製造例2(表1の老化防止剤6PPD-
1の合成方法))
上記(アセトンの石油資源外調達方法1-2)により合成したアセトン2分子をアルドール縮合により反応させて、ジアセトンアルコールを合成し更に、かかるジアセトンアルコールが容易に脱水されてメシチルオキシドに変わった。このメシチルオキシドをパラジウム触媒で水素添加することでメチルイソブチルケトンを合成した。
上記の方法で得たバイオマス由来アニリン、及びその途中で生成するニトロベンゼンを用い下記反応を行った。なお、バイオマス由来アニリンの一部を公知の方法で酸化することによりニトロベンゼンを合成してもよい。
25%水酸化テトラメチルアンモニウム水溶液(TMAOH)187gを、温度55℃、圧力75mbarで蒸留濃縮して、35%溶液を得た。上記バイオマス由来アニリン269mlを添加後、アニリン/水共沸混合物を、水:塩基のモル比が、約4:1になるまで、温度75℃、圧力75mbarで溜去し、次いで、上記ニトロベンゼン60gを加え、混合液を、更に4時間撹拌した。この間、水/アニリン共沸混合物の蒸留を継続した。Pt/C触媒(5%Pt)2.2gと水120mlを、この粗混合液に添加した。次に、温度80℃において、水素を用いて圧力を最大15barまで上昇させ、そして反応混合液を、水素のさらなる吸収が認められなくなるまで撹拌した。トルエン100mlを添加し、触媒を濾別し、有機相と水相を分液ロートにて分離した。次に、有機相を、分留によって精製することにより、4-アミノジフェニルアミンを91%の収率で得た。
攪拌式オートクレーブに、4-アミノジフェニルアミン129.3g、上記により合成されたメチルイソブチルケトン120.2g、白金触媒(エヌ・イーケムキャット社製、5%Ptカーボンサルファイド粉末含水品、水分55.26質量%)0.77g、及び活性炭(フタムラ化学(株)製、太閤活性炭S)0.65gを入れ、水素雰囲気下とした後、約1時間かけて内温を室温から150℃まで上昇させた。次いで、水素を30kgf/cm(2.94MPa)に加圧し、消費された水素を補給しながら、同温度、同圧力を保持して反応を行った。
水素加圧開始から2時間後に、オートクレーブから水素を抜いて常圧に戻すとともに、反応液を室温まで冷却した。反応液を濾過して触媒と活性炭を濾別し、反応生成物を高速液体クロマトグラフィーにて分取することにより、4-(1,3-ジメチルブチルアミノ)ジフェニルアミン(老化防止剤6PPD-1)を99.4%の収率で得た。
(二硫化炭素の石油資源外調達方法)
二硫化炭素は、からし菜に約0.4%含まれるからし油に硫化水素を反応させること、又は木炭と硫黄を900℃で加熱することによって得た。
(アニリンからの加硫促進剤MBTの製造例1(表1の加硫促進剤MBT-1の合成方法))
300ml加圧反応器内に、上記製造例により得られたアニリン93g(1.0モル)、上記(二硫化炭素の石油資源外調達方法)により得られた二硫化炭素80g(1.1モル)、及び硫黄16g(1.0モル)を投入し、250℃、10MPaの条件で2時間反応させた後、180℃まで冷却し、2-メルカプトベンゾチアゾール粗生成物を調製した。収量は130g(収率87%)であった。更に、得られた2-メルカプトベンゾチアゾールの粗生成物(純度:79%)をイソプロパノール中に沸騰温度において不活性気体としての窒素下で溶解させた。次に混合物を室温で放置して冷却した。沈澱した生成物を濾別し、イソプロパノールで洗浄し、そして乾燥した。薄黄色の生成物(高純度2-メルカプトベンゾチアゾール(融点:180.1~181.1℃、純度:98.1%))が得られた。
(アニリンからの加硫促進剤CBSの製造例1(表1の加硫促進剤CBS-1の合成方法))
上記で得られた2-メルカプトベンゾチアゾール粗生成物を水酸化ナトリウム水溶液に溶かし、メルカプトベンゾチアゾールのナトリウム塩の20%水溶液を作製した。この水溶液に等モル量のシクロヘキシルアミンを加え、更に40℃でメタノール100mLに混合した。これに次亜塩素酸ナトリウム13%溶液をメルカプトベンゾチアゾールのナトリウム塩に対して1.2倍モルとなる様に作用させて、1時間撹拌した。反応後、水分と有機溶媒を除去することで、N-シクロヘキシル-ベンゾチアゾリルスルフェンアミドの油状物を得た(収率93%)。
(ベンゼンからのスチレンの合成)
ベンゼンと、上記実施例9、11でバイオエタノールを脱水反応して得たエチレンとを用いて、塩化アルミニウムの存在下、反応温度320℃、ベンゼン/エチレン(モル比)10の条件で反応させ、エチルベンゼンを得た。得られたエチルベンゼンを鉄触媒下で脱水素し、スチレンを得た。
(1,3-ブタジエンの石油資源外調達方法)
バイオエタノールを酸化してアセトアルデヒドとした後、タンタル/二酸化ケイ素の触媒下でバイオエタノールを加えて加熱し、1,3-ブタジエンを得た。なお、上記実施例9、11でバイオエタノールを脱水反応した場合にも少量得られるので、それを分別して使用してもよい。
(SBRの合成)
上記合成例で得られたスチレン、1,3-ブタジエンを用いて、下記の方法によりSBRを重合した。
(溶液重合SBRの合成例(表1のS-SBR-1の合成方法))
内容積20リットルのステンレス製重合反応器内を洗浄、乾燥し、乾燥窒素で置換し、ヘキサン(比重0.68g/cm)10.2kg、上記(1,3-ブタジエンの石油資源外調達方法)により得た1,3-ブタジエン547g、上記(ベンゼンからのスチレンの合成)により得たスチレン173g、テトラヒドロフラン6.1ml、エチレングリコールジエチルエーテル5.0mlを重合反応容器内に投入した。次に、n-ブチルリチウム13.1mmolをn-ヘキサン溶液として投入し、重合を開始した。
撹拌速度を130rpm、重合反応器内温度を65℃とし、単量体を重合反応容器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。全重合での1,3-ブタジエンの供給量は821g、スチレンの供給量は259gであった。
次に、重合体溶液にメタノール0.54mlを含むヘキサン溶液20mlを加えて、更に重合体溶液を5分間撹拌した。
重合体溶液に3-(N,N-ジメチルアミノプロピル)-トリメトキシシラン(アヅマックス(株)製)を13.1mmol加え、次に、スチームストリッピングによって重合体溶液から溶液重合SBR(S-SBR-1)を回収した。
(乳化重合SBRの合成例(表1のE-SBR-1の合成方法))
撹拌機付き耐圧反応器に水2000g、ロジン酸石鹸(ハリマ化成(株)製)45g、脂肪酸石鹸(和光純薬工業(株)製)1.5g、リン酸ナトリウム(和光純薬工業(株)製)8g、上記(ベンゼンからのスチレンの合成)により得たスチレン250g、上記(1,3-ブタジエンの石油資源外調達方法)で合成した1,3-ブタジエン750g及びtert-ドデシルメルカプタン(和光純薬工業(株)製)2gを仕込んだ。反応器温度を5℃とし、パラメンタンヒドロペルオキシド(日油(株)製)1g及びソディウム・ホルムアルデヒド・スルホキシレート(和光純薬工業(株)製)1.5gを溶解した水溶液と、エチレンジアミン四酢酸ナトリウム(和光純薬工業(株)製)0.7g及び硫酸第二鉄(和光純薬工業(株)製)0.5gを溶解した水溶液とを反応器に添加して重合を開始した。重合開始から5時間後、N,N’-ジメチルジチオカルバメート(和光純薬工業(株)製)2gを添加して反応を停止させ、ラテックスを得た。
得られたラテックスから、水蒸気蒸留により、未反応単量体を除去した。その後、該ラテックスをアルコールに添加し、飽和塩化ナトリウム水溶液又はギ酸でpH3~5になるように調整しながら、凝固させ、クラム状の重合体を得た。該重合体を40℃の減圧乾燥機で乾燥し、固形ゴム(乳化重合SBR(E-SBR-1))を得た。
(BRの合成例)
(表1のBR-1の合成方法)
上記(1,3-ブタジエンの石油資源外調達方法)で得られた1,3-ブタジエンを用いて、下記の方法によりBR(表1のBR-1)を重合した。
反応釜(3Lの耐圧ステンレス容器)を窒素置換し、窒素雰囲気を保持しながらシクロヘキサンを1800ml、(1,3-ブタジエンの石油資源外調達方法)で得られた1,3-ブタジエンを150g、THF(テトラヒドロフラン)1.5mlを投入し、撹拌を開始した。次に容器内温度を40℃に昇温し、ブチルリチウム溶液を1ml投入し、重合を開始させた。3時間撹拌後、シラン溶液(1)(信越化学工業(株)製のビス(ジメチルアミノ)メチルビニルシラン3mlと無水シクロヘキサン7.5mlの混合溶液)を1ml、ビス(ジメチルアミノ)メチルビニルシランを1.49mmol添加し、15分撹拌した。重合体溶液にIPA(イソプロピルアルコール)0.5ml及びBHT(3,5-ジブチル-4-ヒドロキシトルエン)溶液1mlを添加し、更に重合体溶液を5分間撹拌した。次に、重合体溶液を3Lメタノール中に添加し、重合物を凝固させ、一晩風乾し、24時間減圧乾燥を行い、重合体(表1のBR-1)を得た。収率は96%であった。分析の結果、得られた重合体のMwは26.2×10、Mw/Mnは1.29であった。また、重合体のビニル結合量は、共役ジエン単位の含有量100モル%中11.4モル%であった。
なお、投入量から計算される、重合体中の下記式(I)で表される構成単位の含有量は、0.01mmol/g重合体であった。ジエン系共重合体中の共役ジエンに基づく構成単位の含有量は、98.4質量%であった。
Figure JPOXMLDOC01-appb-C000003
[式中、X、X及びXは、それぞれ独立に、下記式(Ia)で表される基、水酸基、ヒドロカルビル基又は置換ヒドロカルビル基を表し、X、X及びXの少なくとも1つが、下記式(Ia)で表される基又は水酸基である。]
Figure JPOXMLDOC01-appb-C000004
[式中、R及びRは、それぞれ独立に、炭素原子数が1~6のヒドロカルビル基、炭素原子数が1~6の置換ヒドロカルビル基、シリル基又は置換シリル基を表し、R及びRは結合して窒素原子とともに環構造を形成していてもよい。]
(表1のBR-2の合成方法)
比較として、通常の化石資源由来の1,3-ブタジエンを用いて、下記の方法によりBR(表1のBR-2)を重合した。
反応釜(3Lの耐圧ステンレス容器)を窒素置換し、窒素雰囲気を保持しながらシクロヘキサンを1800ml、化石資源由来の1,3-ブタジエン(高千穂化学工業(株)製)を150g、THF1.5mlを投入し、撹拌を開始した。次に容器内温度を40℃に昇温し、ブチルリチウム溶液を1ml投入し、重合を開始させた。3時間撹拌後、上記シラン溶液(1)を1ml、ビス(ジメチルアミノ)メチルビニルシランを1.49mmol添加し、15分撹拌した。重合体溶液にIPA0.5ml及びBHT溶液1mlを添加し、更に重合体溶液を5分間撹拌した。重合体溶液を3Lメタノール中に添加し、重合物を凝固させ、一晩風乾し、24時間減圧乾燥を行い、重合体(表1のBR-2)を得た。収率は96%であった。分析の結果、得られた重合体のMwは26.1×10、Mw/Mnは1.30であった。また、重合体のビニル結合量は、共役ジエン単位の含有量100モル%中11.3モル%であった。
なお、投入量から計算される、重合体中の上記式(I)で表される構成単位の含有量は、0.01mmol/g重合体であった。ジエン系共重合体中の共役ジエンに基づく構成単位の含有量は、98.4質量%であった。
(トレッド用ゴム組成物の作製)
バンバリーミキサーを用いて、表1の工程1に示す配合量の薬品を投入して、排出温度が約150℃となる様に5分間混練した。その後、工程1で得られた混練り物に、工程2に示す配合量の硫黄及び加硫促進剤を加え、バンバリーミキサーを用いて、排出温度が100℃となるように約3分間混練して、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッド形状に成型して、他のタイヤ部材とはりあわせ、170℃で20分間加硫することにより、試験用タイヤを作製した。
また、各未加硫ゴム組成物を170℃で20分間加硫することにより加硫ゴムシートを作製した。
なお、上記で使用した各種薬品は、以下のとおりである。
S-SBR-1:上記方法で合成(下記式(II)で表される化合物で末端が変性、結合スチレン量:25質量%、ビニル量:59質量%)
Figure JPOXMLDOC01-appb-C000005
(R、R及びR=-OCH、R及びR=-CH、n=3)
S-SBR-2:住友化学(株)製のSE0190(上記式(II)で表される化合物で末端が変性、結合スチレン量:25質量%、ビニル量:59質量%)
E-SBR-1:上記方法で合成
E-SBR-2:JSR(株)製のSBR1502
BR-1:上記方法で合成
BR-2:上記方法で合成
NR:RSS#3
シリカ:Degussa社製のウルトラジルVN2(BET比表面積:125m/g)
カーボンブラック:新日化カーボン(株)製のニテロン#55S(石炭系重質油を原料としたカーボンブラック、NSA:28×10/kg)
シランカップリング剤:Degussa社製のSi69
ミネラルオイル:出光興産(株)製のPS-32
ステアリン酸:日油(株)製の桐
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
老化防止剤6PPD-1:上記方法で合成
老化防止剤6PPD-2:大内新興化学工業(株)製のノクラック6C
老化防止剤TMDQ-1:上記方法で合成
老化防止剤TMDQ-2:大内新興化学工業(株)製のノクラック224
ワックス:大内新興化学工業(株)製のサンノックワックス
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤CBS-1:上記方法で合成
加硫促進剤CBS-2:大内新興化学工業(株)製のノクセラーCZ
加硫促進剤MBT-1:上記方法で合成
加硫促進剤MBT-2:大内新興化学工業(株)製のノクセラーM
得られた未加硫ゴム組成物、加硫ゴムシート、試験用タイヤを使用して、下記の評価を行った。それぞれの試験結果を表1に示す。
(加硫試験)
JSR(株)製キュラストメータW型を用い、JIS K 6300-2の「振動式加硫試験機による加硫試験」の「ダイ加硫試験A法」に従い、上記未加硫ゴム組成物に破壊しない程度の低振幅(ここでは、1°)の正弦波振動を与え、試験片から上ダイスに伝わるトルクを未加硫から過加硫に至るまで測定し、170℃における未加硫ゴム組成物の加硫曲線を得た。
(1)トルク上昇値
最大トルク(MH)値から最低トルク(ML)値を引いたトルク上昇値を算出した。基準配合(比較例)のトルク上昇値を100として、各配合のトルク上昇値を指数表示した。指数は架橋効率の指標として用いられ、指数が大きいほど架橋効率が高く、良好といえる。
(2)加硫時間
最適加硫時間の指標となるtc(95)(95%トルク上昇点:t95)[分]を算出した。(1)と同じく、基準配合(比較例)のtcを100として、各配合のtcを指数表示した。指数が小さいほど、加硫速度が早いことを示す。
(破壊エネルギー指数)
JIS K 6251「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に従って、各加硫ゴムシートの引張強度と破断伸びを測定した。更に、引張強度×破断伸び/2により破壊エネルギーを計算し、下記式にて、破壊エネルギー指数を計算した。破壊エネルギー指数が大きいほど、力学強度に優れることを示す。
(破壊エネルギー指数)=(各配合の破壊エネルギー)/(基準配合(比較例)の破壊エネルギー)×100
(耐摩耗性試験(摩耗試験))
製造した試験用タイヤを車に装着し、市街地を8000km走行後の溝深さの減少量を測定し、溝深さが1mm減少するときの走行距離を算出した。更に、基準比較例の耐摩耗性指数を100とし、下記計算式により、各配合の溝深さの減少量を指数表示した。なお、耐摩耗性指数が大きいほど、耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各配合で1mm溝深さが減るときの走行距離)/(基準配合(比較例)のタイヤの溝が1mm減るときの走行距離)×100
(転がり抵抗試験)
2mm×130mm×130mmの加硫ゴムシートを作製し、そこから測定用試験片を切り出し、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度50℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各試験片のtanδを測定した。基準比較例の転がり抵抗指数を100として、下記計算式により、転がり抵抗特性をそれぞれ指数表示した。指数が小さいほど、転がり抵抗が低く、低燃費性に優れることを示す。
(転がり抵抗指数)=(各配合のtanδ)/(基準配合(比較例)のtanδ)×100
(ウェットグリップ性能)
アンチロックブレーキシステム(ABS)評価試験により得られた制動性能をもとにして、グリップ性能を評価した。すなわち、1800cc級のABSが装備された乗用車に、上記試験用タイヤを装着して、アスファルト路面(ウェット路面状態、スキッドナンバー約50)を実車走行させ、時速100km/hの時点でブレーキをかけ、乗用車が停止するまでの減速度を算出した。ここで、減速度とは、乗用車が停止するまでの距離である。
そして、基準配合(比較例)のウェットグリップ性能指数を100とし、下記計算式により、各配合の減速度をウェットグリップ性能指数として示した。なお、ウェットグリップ性能指数が大きいほど制動性能が良好であり、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(基準配合(比較例)の減速度)/(各配合の減速度)×100
(ドライグリップ性能)
上記試験用タイヤを乗用車に装置してドライアスファルト路面のテストコースを走行し、ハンドル応答性、剛性感、グリップ等に関する特性をドライバーの官能評価により評価した。結果は、基準配合(比較例)を100とする指数で表示している。指数が大きい程良好であり、ドライグリップ性能、操縦安定性に優れていることを示す。
Figure JPOXMLDOC01-appb-T000006
実施例では、加硫特性、破壊エネルギー指数の各ゴム物性、耐摩耗性、転がり抵抗特性、ウエット・ドライのグリップ特性の各タイヤ特性とも、現在の化石資源から合成した加硫促進剤、老化防止剤、各種合成ゴムを用いた比較例と同等であった。このことから、実用上全く問題なく、化石資源の枯渇に対応できることを示す。
以下、実施例に基づいて、第二の本発明を具体的に説明するが、第二の本発明はこれらのみに限定されるものではない。
(バイオマス原料からのフェノールの合成1(微生物利用))
(形質転換体の調製)
Pantoea agglomerans AJ2985のゲノムDNAを鋳型DNAとし、プライマーとして、5’-GCGGTACCATGAACTATCCTGCCGAGCC-3’(forward)、5’-GCGGCCGCTTAAATAAAGTCAAAACGCGC-3’(reverse)を用いてPCR法によりtpl遺伝子の増幅を行った。なお、プライマーは、GenBank accession no.D13714に収載されているtpl遺伝子の配列に基づいて、制限酵素KpnI、NotIに対応する配列GGTACC、CGGCCGを含むように設計した。なお、公知の方法により、増幅したtpl遺伝子の配列に問題がないことを確認した。
次に、サリチル酸誘導NagR/pNagAaプロモーターを含み、アンピシリン耐性、ゲンタマイシン耐性のプラスミドpTn-1に、制限酵素KpnI、NotIを使用して、増幅したtpl遺伝子を組み込み、pNW1を得た。
次に、得られたpNW1を公知の方法により有機溶媒耐性菌であるPseudomonas putida S12(ATCC700801)に組み込み、形質転換体を得た。
(半回分培養)
次に、得られた形質転換体を以下の条件で培養し、グルコースから、フェノールを生合成した。培養は、内容積が2.5LのBioFIo IIc fermentor(New Brunswick Scientific社製)を使用して行った。培養中は、酸素を300ml/minの速度で培養器のヘッドスペースに供給し、培養器の底部において撹拌翼を回転させることにより、供給した酸素を培地中に混合した。培養中は、4M KOHを使用してpHを7.0に保った。更に、撹拌翼の回転速度を調整して溶存酸素圧を約20%飽和に保った。培養開始時の培養液量は、1.5Lとした。定期的に、600nmでの吸光度(OD600)を測定し、OD600に変化が見られなくなってから、フィード液を供給した。フィード液の供給速度は、cell dry weight(CDW)が3g/L未満の場合、4ml/h、CDWが3~4.5g/Lの場合、9ml/h、CDWが4.5g/Lを超える場合、20ml/hとした。なお、培養は、30℃で行った。
また、培養開始時の培地組成、フィード液組成は、以下の通りである。
<培養開始時の培地組成(下記量は、1Lあたりの量を示す)>
30mmol KHPO、20.5mmol NaHPO、25mmol D-グルコース、15mmol NHCl、1.4mmol NaSO、1.5mmol MgCl、0.5g yeast extract、10ml trace solution 1、10mg ゲンタマイシン、0.1mmol サリチル酸
<フィード液組成(下記量は、1Lあたりの量を示す)>
750mmol D-グルコース、225mmol NHCl、21mmol NaSO、7.4mmol MgCl、13mmol CaCl、0.5g yeast extract、100ml trace solution 2、10mg ゲンタマイシン、1mmol サリチル酸
<Trace solution 1の組成(下記量は、1Lあたりの量を示す)>
4g EDTA、0.2g ZnSO・7HO、0.1g CaCl・2HO、1.5g FeSO・7HO、0.02g NaMoO・2HO、0.2g CuSO・5HO、0.04g CoCl・6HO、0.1g MnCl・4H
<Trace solution 2の組成(下記量は、1Lあたりの量を示す)>
4g EDTA、0.2g ZnSO・7HO、0.1g CaCl・2HO、6.5g FeSO・7HO、0.02g NaMoO・2HO、0.2g CuSO・5HO、0.04g CoCl・6HO、0.1g MnCl・4HO、0.024g HBO、0.02g NiCl・6H
25時間培養を行った後、培養液にジエチルエーテルを加え、2回抽出を行った。粗抽出物をエバポレーターにより濃縮し、シリカゲル60を充填したフラッシュクロマトグラフィーにより精製を行い、フェノールを得た。フェノールの同定は、NMR及びIRによって行った。
(バイオマス原料からのフェノールの合成2-1(触媒の利用))
出発物質としては酢酸銅、及びNH-ZSM-5(東ソー(株)製:820NHA SiO/Al=23(モル比)、窒素吸着比表面積:350m/g、結晶の大きさ:0.03μm×0.1μm、粒子の大きさ:5μm)を用いてCu担持ZSM-5触媒を調整した。酢酸銅水溶液にアンモニア水を加えることによってpH=11に調整し、水溶液中の銅イオンを銅アンミン錯体[Cu(NH2+とした。この水溶液にNH-ZSM-5を加え、60℃に加熱しながら24時間撹拌を行い、銅イオンによるイオン交換を行った。その後、濾過、洗浄を行い100℃において24時間乾燥させた。乾燥した試料を1L/minの空気流通下において500℃で1時間焼成して触媒を得た。調製した触媒のCu担持量はイオン交換に用いる溶液の濃度を変化させることによってコントロールした。原子吸光分析による定量の結果、調製した触媒のCu担持量はCu/Al=0.13~1.67(Cu:0.54~6.83wt%)であった。
内径32mmの石英管を2本連結し、それぞれ中央部の石英ウール上に、ゼオライト触媒H-ZSM-5(東ソー(株)製:820HOA(820NHA SiO/Al=23を焼成処理したもの))、及び、上記の方法で合成したCu/ZSM-5を10.0gずつパッキングし、Cuを担持しない触媒カラム側より窒素ガスを供給した。窒素ガスの供給速度はLHSV換算で1/hrとした。石英管を電気炉に設置し、所定温度まで昇温した後、蒸留精製したバイオエタノール(日伯エタノール(株)製)を所定量供給した。その時の反応条件は、反応温度450℃、反応圧力は常圧、バイオエタノールの供給速度はLHSV換算で1/hr、バイオエタノールと窒素とのモル比(石油由来エタノール/窒素)は50/50とした。
バイオエタノールの連続供給により生成した反応混合物を蒸留後、高速液体クロマトグラフィーにて分離することにより、純粋なフェノールを5g得た。
(バイオマス原料からのフェノールの合成2-2)
上記Cu/ZSM-5のかわりに、メチルトリオキソレニウムをCVD法により担持させたRe/ZSM-5を用いたほかは2-1と同様にして、フェノールを20g得た。
(バイオマス原料からのフェノールの合成2-3)
塩化メチレン40mlにチタニルビスアセチルアセトナート[TiO(acac)]0.1642g(627μモル)を溶解させ、H-ZSM-5(東ソー(株)製:840HOA(840NHA SiO/Al=40(モル比)、窒素吸着比表面積:330m/g、結晶の大きさ:2μm×4μm、粒子の大きさ:10μm)を焼成処理したもの))0.950gを添加し、40℃で加熱撹拌しながら塩化メチレンを除去した。充分に乾燥させた後、空気流通下、マッフル炉で150℃で2時間、次いで600℃で4時間焼成し、1.00gの触媒〔TiOx/H-ZSM-5〕を調製した。調製した触媒中のチタン担持量は酸化チタン(TiO)換算で5.0質量%であった。
上記の方法で得られたTiOx/H-ZSM-5をCu/ZSM-5のかわりに用い、窒素の代わりに水素/酸素(1/20圧力比)に変更したほかは、合成例2-1と同様にして、8gのフェノールを得た。
(フェノールからのアニリンの製造例1)
ゼオライトβ(PQ社製CP811BL-25:シリカ/アルミナ比=12.5(モル比)、窒素吸着比表面積:750m/g)を触媒として用い、先ずゼオライトβを反応管に0.65g充填した。窒素とアンモニアガスを体積比50:16.6の割合で流通し、電気炉にて加熱し、所定温度まで昇温し、次にフェノールをポンプで所定量供給した。その時の反応条件は、反応温度450℃、反応圧力は常圧、フェノールの供給速度はLHSV換算で1.29/hr、アンモニアのフェノールに対する供給モル比は9とした。反応開始して4時間後に定常状態に達した。その後、反応管出口に気液分離器を置き、反応液を捕集した。生成物の分析を行ったところ、アニリンが収率21.2%で得られた。なお、分析はガスクロマトグラフィーで行った(カラム:FFAP及びCP-WAX)。また、収率は以下の式により算出した。
収率(%)=(単位時間に生成したアニリンのモル数)/(単位時間に供給したフェノールのモル数)×100
(フェノールからのアニリンの製造例2)
製造例1の触媒をH-ZSM-5(東ソー(株)製:820HOA(820NHA SiO/Al=23(モル比)、窒素吸着比表面積:350m/g、結晶の大きさ:0.03μm×0.1μm、粒子の大きさ:5μm)を焼成処理したもの)に、反応温度を500℃に、圧力を537KPaに、反応時間を8時間に変更した以外は製造例1と同様にして反応を行い、アニリンを収率84.3%で得た。
(フェノールからのアニリンの製造例3)
製造例2のアンモニアをモノメチルアミンに、圧力を2859KPaに変更した以外は製造例1と同様にして反応を行い、アニリンを15.2%の収率で得た。
(フェノールからのアニリンの製造例4)
バイヤライト(LaRoche Chemical社製 VersalB)とシュードベーマライト(LaRoche Chemical社製 Versal900)を質量比4:1で混合したものを0.4M硝酸水溶液に混合した後、マッフル炉内にて500℃8時間熱処理してアルミナ触媒を得た。このアルミナ触媒を用い、反応温度365℃、圧力1.7MPaにした他は製造例1と同様に反応を行って、アニリンを46.3%の収率で得た。
(アニリンからの老化防止剤の製造例3(表2の老化防止剤TMDQ-3の合成方法))
アセトン導入装置、蒸留装置、温度計、及び攪拌機を備えたフラスコに、上記の(バイオマス原料からのフェノールの合成1(微生物利用))及び(フェノールからのアニリンの製造例2)で得られたアニリン190g(2.0モル)と、酸性触媒として塩酸(0.20モル)を加え、140℃まで加熱した。その後140℃に保温しながら、6時間にわたり上記(アセトンの石油資源外調達方法1-1)で得られたアセトン580g(10モル)を反応系に連続的に供給した。留出する未反応のアセトンやアニリンは、随時反応系に戻した。2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物180.7g(収率約30%)を得た。重合度は2~4であった。なお、未反応のアニリン、及び2,2,4-トリメチル-1,2-ジヒドロキノリンのモノマーは、減圧蒸留により回収した。140℃で未反応のアニリンが留出し、その後190℃まで昇温することにより、モノマーが留出した。モノマーの収量は19.1gであり、収率は6.9%であった。
なお、本方法によると、バイオマス原料からバイオ合成でフェノールを合成すること、及び、それによって得られたフェノールから触媒を用いて非常に高効率でアニリンを合成することにより、トータルのエネルギー消費やCO排出量を抑制したまま効率的にアニリンを合成出来、更に、アセトンもバイオ合成で合成したものを用いることで、非常に効率的に、かつ環境に優しい状況で、老化防止剤を合成することが出来た。
(アニリンからの老化防止剤の製造例4(表2の老化防止剤6PPD-3の合成方法))
上記(アセトンの石油資源外調達方法1-1)により合成したアセトン2分子をアルドール縮合により反応させて、ジアセトンアルコールを合成し更に、かかるジアセトンアルコールが容易に脱水されてメシチルオキシドに変わった。このメシチルオキシドをパラジウム触媒で水素添加することでメチルイソブチルケトンを合成した。
また、上記と同様にして、(バイオマス原料からのフェノールの合成1(微生物利用))及び(フェノールからのアニリンの製造例2)でアニリンを得た。
得られたアニリンと、そのアニリンを公知の方法で酸化することにより得られたニトロベンゼンと、上記メチルイソブチルケトンとから、以下の方法にて老化防止剤6PPDを合成した。
25%水酸化テトラメチルアンモニウム水溶液(TMAOH)187gを、温度55℃、圧力75mbarで蒸留濃縮して、35%溶液を得た。上記バイオマス由来アニリン269mlを添加後、アニリン/水共沸混合物を、水:塩基のモル比が、約4:1になるまで、温度75℃、圧力75mbarで溜去し、次いで、上記ニトロベンゼン60gを加え、混合液を、更に4時間撹拌した。この間、水/アニリン共沸混合物の蒸留を継続した。Pt/C触媒(5%Pt)2.2gと水120mlを、この粗混合液に添加した。次に、温度80℃において、水素を用いて圧力を最大15barまで上昇させ、そして反応混合液を、水素のさらなる吸収が認められなくなるまで撹拌した。トルエン100mlを添加し、触媒を濾別し、有機相と水相を分液ロートにて分離した。次に、有機相を、分留によって精製することにより、4-アミノジフェニルアミンを91%の収率で得た。
攪拌式オートクレーブに、4-アミノジフェニルアミン129.3g、上記により合成されたメチルイソブチルケトン120.2g、白金触媒(エヌ・イーケムキャット(株)製、5%Ptカーボンサルファイド粉末含水品;水分55.26質量%)0.77g、及び活性炭(フタムラ化学(株)製、太閤活性炭S)0.65gを入れ、水素雰囲気下とした後、約1時間かけて内温を室温から150℃まで上昇させた。次いで、水素を30kgf/cm(2.94MPa)に加圧し、消費された水素を補給しながら、同温度、同圧力を保持して反応を行った。
水素加圧開始から2時間後に、オートクレーブから水素を抜いて常圧に戻すとともに、反応液を室温まで冷却した。反応液を濾過して触媒と活性炭を濾別し、反応生成物を高速液体クロマトグラフィーにて分取することにより、4-(1,3-ジメチルブチルアミノ)ジフェニルアミン(老化防止剤6PPD-3)を99.4%の収率で得た。
(アニリンからの加硫促進剤MBTの製造例2(表2の加硫促進剤MBT-3の合成方法))
300ml加圧反応器内に、上記の(バイオマス原料からのフェノールの合成1(微生物利用))及び(フェノールからのアニリンの製造例2)により得られたアニリン93g(1.0モル)、上記(二硫化炭素の石油資源外調達方法)により得られた二硫化炭素80g(1.1モル)、及び硫黄16g(1.0モル)を投入し、250℃、10MPaの条件で2時間反応させた後、180℃まで冷却し、2-メルカプトベンゾチアゾール粗生成物を調製した。収量は130g(収率87%)であった。更に、得られた2-メルカプトベンゾチアゾールの粗生成物(純度:79%)をイソプロパノール中に沸騰温度において不活性気体としての窒素下で溶解させた。次に混合物を室温で放置して冷却した。沈澱した生成物を濾別し、イソプロパノールで洗浄し、そして乾燥した。薄黄色の生成物(高純度2-メルカプトベンゾチアゾール:融点180.1~181.1℃、純度98.1%)が得られた。
(アニリンからの加硫促進剤CBSの製造例2(表2の加硫促進剤CBS-3の合成方法))
上記で得られた2-メルカプトベンゾチアゾール粗生成物を水酸化ナトリウム水溶液に溶かし、メルカプトベンゾチアゾールのナトリウム塩の20%水溶液を作製した。この水溶液に等モル量のシクロヘキシルアミンを加え、更に40℃でメタノール100mLに混合した。これに次亜塩素酸ナトリウム13%溶液をメルカプトベンゾチアゾールのナトリウム塩に対して1.2倍モルとなる様に作用させて、1時間撹拌した。反応後、水分と有機溶媒を除去することで、N-シクロヘキシル-ベンゾチアゾリルスルフェンアミドの油状物を得た(収率93%)。
(トレッド用ゴム組成物の作製)
バンバリーミキサーを用いて、表2の工程1に示す配合量の薬品を投入して、排出温度が約150℃となる様に5分間混練した。その後、工程1で得られた混練り物に、工程2に示す配合量の硫黄及び加硫促進剤を加え、バンバリーミキサーを用いて、排出温度が100℃となるように約3分間混練して、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッド形状に成型して、他のタイヤ部材とはりあわせ、170℃で20分間加硫することにより、試験用タイヤを作製した。
また、各未加硫ゴム組成物を170℃で20分間加硫することにより加硫ゴムシートを作製した。
なお、上記で使用した各種薬品は、以下のとおりである。
SBR:ニポールNS116(日本ゼオン(株)製の溶液重合SBR、結合スチレン量21質量%、Tg=-25℃)
BR:宇部興産(株)のBR150B(シス1,4結合量=97質量%、ML1+4(100℃)=40)
NR:RSS#3
シリカ:Degussa社製のウルトラジルVN2(BET比表面積125m/g)
カーボンブラック:新日化カーボン(株)製のニテロン#55S(石炭系重質油を原料としたカーボンブラック、NSA=28×10/kg)
シランカップリング剤:Degussa社のSi69
ミネラルオイル:出光興産(株)製のPS-32
ステアリン酸:日油(株)製の桐
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
老化防止剤6PPD-3:上記方法で合成
老化防止剤6PPD-4:大内新興化学工業(株)製のノクラック6C
老化防止剤TMDQ-3:上記方法で合成
老化防止剤TMDQ-4:大内新興化学工業(株)製のノクラック224
ワックス:大内新興化学工業(株)製のサンノックワックス
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤CBS-3:上記方法で合成
加硫促進剤CBS-4:大内新興化学工業(株)製のノクセラーCZ
加硫促進剤MBT-3:上記方法で合成
加硫促進剤MBT-4:大内新興化学工業(株)製のノクセラーM
得られた未加硫ゴム組成物、加硫ゴムシート、試験用タイヤを使用して、表1と同様の評価を行った。それぞれの試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
実施例では、加硫特性、破壊エネルギー指数の各ゴム物性、耐摩耗性、転がり抵抗特性、ウエット・ドライのグリップ特性の各タイヤ特性とも、現在の化石資源から合成した加硫促進剤、老化防止剤を用いた比較例と同等であった。このことから、実用上全く問題なく、化石資源の枯渇に対応できることを示す。
1 ガス導入管
2 アルコール導入管(原料導入管)
3 反応管
4 アルコール気化層(原料気化層)
5 触媒層(反応層)
6 加熱装置(電気炉)
7 生成物トラップ
8a 冷却装置
8b 加熱装置
9 分留装置(分留管)
10 蒸留物トラップ(目的物トラップ)
11 冷却装置
12a、12b 反応物再循環ライン
21 アルコール導入管(原料導入管)
22 加熱装置
23 脱水反応用カラム
24 冷却装置
25 加熱装置
26 芳香族化合物合成用カラム
27 冷却装置
28 反応物再循環ライン
 

Claims (35)

  1. 炭素数2以上のアルコールを原料として、芳香族化合物を経由してアニリン及び/又はスチレンを合成する合成システム。
  2. 前記アルコールがエタノールである請求項1記載の合成システム。
  3. 前記エタノールがバイオエタノールである請求項2記載の合成システム。
  4. 前記芳香族化合物がベンゼンである請求項1~3のいずれかに記載の合成システム。
  5. 前記ベンゼンがトルエン及び/又はキシレンを経由して合成されたものである請求項4記載の合成システム。
  6. 前記芳香族化合物がアルケンを経由して合成されたものである請求項1~5のいずれかに記載の合成システム。
  7. 前記アルコールを固体酸触媒に接触反応させる請求項1~6のいずれかに記載の合成システム。
  8. 前記固体酸触媒が、ゼオライト、アルミナ及びチタン化合物からなる群より選択される少なくとも1種である請求項7記載の合成システム。
  9. 前記固体酸触媒がMFI型ゼオライトである請求項7記載の合成システム。
  10. 前記アルコールを固体酸触媒に接触反応させ、得られた生成物を循環させて更に前記固体酸触媒に接触反応させる請求項1~9のいずれかに記載の合成システム。
  11. 前記生成物を蒸留し、目的物以外の化合物を循環させて更に前記固体酸触媒に接触反応させる請求項10記載の合成システム。
  12. 前記生成物を蒸留し、得られた蒸留物をベンゼンの融点以下に冷却してベンゼンを回収し、ベンゼン以外の化合物を循環させて更に前記固体酸触媒に接触反応させる請求項10又は11記載の合成システム。
  13. 前記循環が繰り返し行われる請求項10~12のいずれかに記載の合成システム。
  14. 炭素数2以上のアルコールを原料としてブタジエンを合成する合成システム。
  15. 請求項1~13のいずれかに記載の合成システムで得られたアニリンを原料として合成されたタイヤ用ゴム薬品。
  16. 請求項1~13のいずれかに記載の合成システムで得られたスチレン及び/又は請求項14記載の合成システムで得られたブタジエンを原料として合成されたタイヤ用合成ゴム。
  17. 請求項15記載のタイヤ用ゴム薬品及び/又は請求項16記載のタイヤ用合成ゴムを用いた空気入りタイヤ。
  18. バイオマス材料を原料として、フェノールを経由してアニリンを合成する合成システム。
  19. 前記バイオマス材料が糖類又はバイオエタノールである請求項18記載の合成システム。
  20. 微生物により前記フェノールを生産する請求項18又は19記載の合成システム。
  21. 微生物の液体培養により前記フェノールを生産する請求項18又は19記載の合成システム。
  22. 前記微生物が有機溶媒耐性を有する微生物である請求項20又は21記載の合成システム。
  23. 前記バイオマス材料としてバイオエタノールを使用し、固体酸触媒により前記フェノールを生産する請求項19記載の合成システム。
  24. 前記固体酸触媒がゼオライトである請求項23記載の合成システム。
  25. 前記固体酸触媒がMFI型ゼオライトである請求項23記載の合成システム。
  26. 前記固体酸触媒が銅、チタン、プラチナ、ルテニウムの単体又はこれらの化合物を担持したMFI型ゼオライトである請求項25記載の合成システム。
  27. 請求項18~26のいずれかに記載の合成システムで得られたアニリンを原料として合成されたタイヤ用ゴム薬品。
  28. 更にバイオマス原料から得られたアセトンを用いて合成された請求項27記載のタイヤ用ゴム薬品。
  29. 前記アセトンが、糖類を原料とした微生物によるアセトン・ブタノール発酵により得られたものである請求項28記載のタイヤ用ゴム薬品。
  30. 前記微生物がクロストリジウム属である請求項29記載のタイヤ用ゴム薬品。
  31. 前記微生物がクロストリジウム属の遺伝子が導入された微生物である請求項29記載のタイヤ用ゴム薬品。
  32. 前記遺伝子がアセトアセテートデカルボキシラーゼ(EC4.1.1.4)、コエンザイムAトランスフェラーゼ又はチオラーゼをコードする遺伝子である請求項31記載のタイヤ用ゴム薬品。
  33. 前記アセトンが木酢液より分離して得られたものである請求項28記載のタイヤ用ゴム薬品。
  34. 前記アセトンがバイオエタノールより誘導されたものである請求項28記載のタイヤ用ゴム薬品。
  35. 請求項27~34記載のタイヤ用ゴム薬品を用いた空気入りタイヤ。
PCT/JP2012/051503 2011-01-26 2012-01-25 合成システム、タイヤ用ゴム薬品、タイヤ用合成ゴム及び空気入りタイヤ WO2012102290A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12739791.7A EP2543654B1 (en) 2011-01-26 2012-01-25 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
BR112012030796A BR112012030796A2 (pt) 2011-01-26 2012-01-25 sistema de síntese, substância química de borracha para pneus, borracha sintética para pneus, e pneumático
US13/637,336 US9115047B2 (en) 2011-01-26 2012-01-25 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
CN201280001255.9A CN102918009B (zh) 2011-01-26 2012-01-25 合成系统、轮胎用橡胶化学药品、轮胎用合成橡胶以及充气轮胎
US14/801,001 US9663445B2 (en) 2011-01-26 2015-07-16 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-014495 2011-01-26
JP2011014495A JP5552068B2 (ja) 2011-01-26 2011-01-26 合成システム、タイヤ用ゴム薬品及び空気入りタイヤ
JP2011-014494 2011-01-26
JP2011014494A JP5552067B2 (ja) 2011-01-26 2011-01-26 合成システム、タイヤ用ゴム薬品、タイヤ用合成ゴム及び空気入りタイヤ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/637,336 A-371-Of-International US9115047B2 (en) 2011-01-26 2012-01-25 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
US14/801,001 Division US9663445B2 (en) 2011-01-26 2015-07-16 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire

Publications (1)

Publication Number Publication Date
WO2012102290A1 true WO2012102290A1 (ja) 2012-08-02

Family

ID=46580855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051503 WO2012102290A1 (ja) 2011-01-26 2012-01-25 合成システム、タイヤ用ゴム薬品、タイヤ用合成ゴム及び空気入りタイヤ

Country Status (5)

Country Link
US (2) US9115047B2 (ja)
EP (1) EP2543654B1 (ja)
CN (2) CN102918009B (ja)
BR (1) BR112012030796A2 (ja)
WO (1) WO2012102290A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031441A (ja) * 2012-08-03 2014-02-20 Bridgestone Corp ゴム組成物及びタイヤ
JP2014034598A (ja) * 2012-08-07 2014-02-24 Bridgestone Corp 加硫促進剤、ゴム組成物、及びタイヤ
JP2014074121A (ja) * 2012-10-04 2014-04-24 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物、及び空気入りタイヤ
JP2014077034A (ja) * 2012-10-09 2014-05-01 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用トレッド用ゴム組成物、及びスタッドレスタイヤ
WO2014074872A1 (en) * 2012-11-09 2014-05-15 Bridgestone Corporation Uses of biobased styryene
JP2014148683A (ja) * 2014-04-24 2014-08-21 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物、タイヤ部材、及び空気入りタイヤ
JP2014231605A (ja) * 2014-06-30 2014-12-11 住友ゴム工業株式会社 タイヤ用ゴム組成物、タイヤ部材、及び空気入りタイヤ
US20150266988A1 (en) * 2012-09-07 2015-09-24 Sumitomo Rubber Industries, Ltd. Rubber composition for tires, tire member, and pneumatic tire
JP2017206655A (ja) * 2016-05-20 2017-11-24 株式会社神鋼環境ソリューション リグノフェノールの製造方法、及び、リグノフェノールの製造装置
JP2018064514A (ja) * 2016-10-20 2018-04-26 株式会社ジェイコム バイオエタノールの製造方法と製造装置
WO2020158751A1 (ja) 2019-01-28 2020-08-06 積水化学工業株式会社 共役ジエン系重合体の製造方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097766B2 (ja) * 2009-12-25 2012-12-12 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP5638041B2 (ja) 2012-07-25 2014-12-10 住友ゴム工業株式会社 タイヤ用ゴム組成物、タイヤ部材、及び空気入りタイヤ
CN104736330B (zh) 2013-01-23 2017-02-22 积水化学工业株式会社 再循环材料的制造方法、轮胎及轮胎的制造方法
WO2014199348A2 (en) * 2013-06-13 2014-12-18 Basf Se Metal doped silicate catalysts for the selective conversion of ethanol to butadiene
JP6545157B2 (ja) * 2013-06-13 2019-07-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ブタジエンの製造方法
JPWO2014208757A1 (ja) * 2013-06-27 2017-02-23 株式会社ブリヂストン 老化防止剤、ゴム組成物、及びタイヤ
JP6332925B2 (ja) * 2013-08-26 2018-05-30 住友ゴム工業株式会社 乗用車タイヤ用キャップトレッドゴム組成物、乗用車タイヤ用キャップトレッドゴム、及び乗用車用空気入りタイヤ
CN103819346B (zh) * 2014-03-17 2015-11-04 山东尚舜化工有限公司 一种4-氨基二苯胺的前体的生产设备及生产工艺
KR101830345B1 (ko) * 2016-07-15 2018-02-22 한국화학연구원 가돌리니움(Gd) 함유 코킹 저감 고체산 촉매 및 이의 제조 방법 및 용도
EP3632541A4 (en) 2017-05-31 2021-03-10 National University Corporation Hokkaido University FUNCTIONAL STRUCTURE AND MANUFACTURING PROCESS FOR FUNCTIONAL STRUCTURE
JP7269169B2 (ja) 2017-05-31 2023-05-08 古河電気工業株式会社 メタノール改質触媒構造体、メタノール改質用装置、メタノール改質触媒構造体の製造方法及びオレフィンまたは芳香族炭化水素の少なくとも一方の製造方法
CN110730687A (zh) 2017-05-31 2020-01-24 古河电气工业株式会社 催化裂化用或加氢脱硫用催化剂结构体、具有该催化剂结构体的催化裂化装置以及加氢脱硫装置、以及催化裂化用或加氢脱硫用催化剂结构体的制造方法
WO2018221692A1 (ja) 2017-05-31 2018-12-06 国立大学法人北海道大学 機能性構造体及び機能性構造体の製造方法
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
AU2018277966B2 (en) 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
EP3632555A4 (en) 2017-05-31 2021-01-27 Furukawa Electric Co., Ltd. HYDRO DESULFURIZATION CATALYST STRUCTURE, HYDRO DESULFURIZATION DEVICE PROVIDED WITH THIS CATALYST STRUCTURE, AND METHOD FOR MANUFACTURING A HYDRODESULFURIZATION CATALYST STRUCTURE
AU2018277967B2 (en) 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
WO2018221698A1 (ja) 2017-05-31 2018-12-06 古河電気工業株式会社 Coシフトもしくは逆シフト触媒構造体及びその製造方法、coシフトまたは逆シフト反応装置、二酸化炭素と水素の製造方法、並びに一酸化炭素と水の製造方法
CN110678262A (zh) 2017-05-31 2020-01-10 古河电气工业株式会社 排气净化用氧化催化剂结构体及其制造方法、汽车的排气处理装置、催化剂成型体以及气体净化方法
CN110747241B (zh) * 2018-07-24 2023-05-02 中国石油化工股份有限公司 2,2,4-三甲基-1,2-二氢化喹啉的制备方法
CN110845440B (zh) * 2018-08-21 2022-11-08 中国石油化工股份有限公司 一种制备2-巯基苯并噻唑的方法
US11472924B2 (en) 2018-12-20 2022-10-18 Gas Technology Institute Methods and systems to decarbonize natural gas using sulfur to produce hydrogen and polymers
EP3935044B1 (de) 2019-03-05 2023-04-12 Bayer Aktiengesellschaft Verfahren zur herstellung von 4-amino-5-methylpyridon
WO2024028334A1 (en) * 2022-08-02 2024-02-08 Synthos S.A. Catalyst for the production of 1,3-butadiene having high activity
US20240117149A1 (en) 2022-09-28 2024-04-11 The Goodyear Tire & Rubber Company Rubber - forming additives from end of life tires through syngas production
US20240124683A1 (en) 2022-09-28 2024-04-18 The Goodyear Tire & Rubber Company Rubber - forming additives from biomass through syngas production
CN117383999B (zh) * 2023-12-12 2024-04-05 北京林业大学 利用木质素制备苯乙烯的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859928A (ja) * 1981-10-02 1983-04-09 Takeda Chem Ind Ltd ブタジエンの製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JP2006089552A (ja) * 2004-09-22 2006-04-06 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物および空気入りタイヤ
JP2008088140A (ja) * 2006-10-05 2008-04-17 Sangi Co Ltd 化学工業原料及び燃料組成物の合成方法
JP2008274225A (ja) * 2007-03-30 2008-11-13 Sumitomo Rubber Ind Ltd 微生物を利用した老化防止剤、加硫促進剤または変性天然ゴムの製造方法
JP2010017176A (ja) * 2008-06-10 2010-01-28 Sumitomo Rubber Ind Ltd 微生物または植物を利用した老化防止剤、加硫促進剤または変性天然ゴムの製造方法
JP2010535826A (ja) * 2007-08-13 2010-11-25 サウディ ベーシック インダストリーズ コーポレイション 脂肪族燃料促進物質を芳香族化合物に転化するプロセス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1365407A (en) * 1917-04-25 1921-01-11 Walter J Hund Production of phenols from redwood
US3384667A (en) * 1964-04-28 1968-05-21 Mobil Oil Corp Production of primary and secondary amines
GB8303772D0 (en) * 1983-02-11 1983-03-16 Coal Industry Patents Ltd Catalytic process
DE102006026356A1 (de) * 2006-05-30 2007-12-06 Süd-Chemie Zeolites GmbH Verfahren zur katalytischen Umwandlung biobasierter organischer sauerstoffhaltiger Verbindungen
KR101796797B1 (ko) * 2009-06-17 2017-11-10 헌트스만 인터내셔날, 엘엘씨 화학 설비
JP5552068B2 (ja) 2011-01-26 2014-07-16 住友ゴム工業株式会社 合成システム、タイヤ用ゴム薬品及び空気入りタイヤ
JP5552067B2 (ja) 2011-01-26 2014-07-16 住友ゴム工業株式会社 合成システム、タイヤ用ゴム薬品、タイヤ用合成ゴム及び空気入りタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859928A (ja) * 1981-10-02 1983-04-09 Takeda Chem Ind Ltd ブタジエンの製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JP2006089552A (ja) * 2004-09-22 2006-04-06 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物および空気入りタイヤ
JP2008088140A (ja) * 2006-10-05 2008-04-17 Sangi Co Ltd 化学工業原料及び燃料組成物の合成方法
JP2008274225A (ja) * 2007-03-30 2008-11-13 Sumitomo Rubber Ind Ltd 微生物を利用した老化防止剤、加硫促進剤または変性天然ゴムの製造方法
JP2010535826A (ja) * 2007-08-13 2010-11-25 サウディ ベーシック インダストリーズ コーポレイション 脂肪族燃料促進物質を芳香族化合物に転化するプロセス
JP2010017176A (ja) * 2008-06-10 2010-01-28 Sumitomo Rubber Ind Ltd 微生物または植物を利用した老化防止剤、加硫促進剤または変性天然ゴムの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Syokubutsu-Saibo Kogaku Nyumon", vol. 41, 1 September 1998, JAPAN SCIENTIFIC SOCIETIES PRESS, article "Experimental Methods in Biochemistry", pages: 255 - 326
NUCLEIC ACIDS RES., vol. 16, 1988, pages 6127
PROC. NATL. ACAD. SCI., vol. 69, no. 692110, - 1972, USA
See also references of EP2543654A4
SONI ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 27, 1987, pages 1 - 5

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031441A (ja) * 2012-08-03 2014-02-20 Bridgestone Corp ゴム組成物及びタイヤ
JP2014034598A (ja) * 2012-08-07 2014-02-24 Bridgestone Corp 加硫促進剤、ゴム組成物、及びタイヤ
US20150266988A1 (en) * 2012-09-07 2015-09-24 Sumitomo Rubber Industries, Ltd. Rubber composition for tires, tire member, and pneumatic tire
US9879109B2 (en) * 2012-09-07 2018-01-30 Sumitomo Rubber Industries, Ltd. Rubber composition for tires, tire member, and pneumatic tire
JP2014074121A (ja) * 2012-10-04 2014-04-24 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物、及び空気入りタイヤ
JP2014077034A (ja) * 2012-10-09 2014-05-01 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用トレッド用ゴム組成物、及びスタッドレスタイヤ
US9540502B2 (en) 2012-11-09 2017-01-10 Bridgestone Corporation Uses of biobased styrene
CN105026448A (zh) * 2012-11-09 2015-11-04 株式会社普利司通 生物基苯乙烯的用途
US9868853B2 (en) 2012-11-09 2018-01-16 Bridgestone Corporation Uses of biobased styrene
WO2014074872A1 (en) * 2012-11-09 2014-05-15 Bridgestone Corporation Uses of biobased styryene
JP2014148683A (ja) * 2014-04-24 2014-08-21 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物、タイヤ部材、及び空気入りタイヤ
JP2014231605A (ja) * 2014-06-30 2014-12-11 住友ゴム工業株式会社 タイヤ用ゴム組成物、タイヤ部材、及び空気入りタイヤ
JP2017206655A (ja) * 2016-05-20 2017-11-24 株式会社神鋼環境ソリューション リグノフェノールの製造方法、及び、リグノフェノールの製造装置
JP2018064514A (ja) * 2016-10-20 2018-04-26 株式会社ジェイコム バイオエタノールの製造方法と製造装置
WO2020158751A1 (ja) 2019-01-28 2020-08-06 積水化学工業株式会社 共役ジエン系重合体の製造方法

Also Published As

Publication number Publication date
BR112012030796A2 (pt) 2016-11-01
US9115047B2 (en) 2015-08-25
EP2543654A4 (en) 2016-06-22
CN102918009A (zh) 2013-02-06
US20130090445A1 (en) 2013-04-11
EP2543654A1 (en) 2013-01-09
US20150315125A1 (en) 2015-11-05
CN102918009B (zh) 2015-10-21
CN104498550A (zh) 2015-04-08
US9663445B2 (en) 2017-05-30
EP2543654B1 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
US9663445B2 (en) Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
JP5552067B2 (ja) 合成システム、タイヤ用ゴム薬品、タイヤ用合成ゴム及び空気入りタイヤ
JP5536840B2 (ja) タイヤ用ゴム組成物、タイヤ部材、及び空気入りタイヤ
EP2868697B1 (en) Method of producing rubber composition for tyres
EP1892300B1 (en) Method for producing 1,3-propanediol using crude glycerol, a by-product from biodiesel production
JP5552068B2 (ja) 合成システム、タイヤ用ゴム薬品及び空気入りタイヤ
JP6332925B2 (ja) 乗用車タイヤ用キャップトレッドゴム組成物、乗用車タイヤ用キャップトレッドゴム、及び乗用車用空気入りタイヤ
JP6532192B2 (ja) タイヤ用ゴム組成物、タイヤ部材、及び空気入りタイヤ
EP3770186B1 (en) Method for producing conjugated diene polymer
EP3067340B1 (en) Propene production method
JP5866413B2 (ja) タイヤ用ゴム組成物、タイヤ部材、及び空気入りタイヤ
CN111621034B (zh) 一种生物质改性的方法
JP6317497B2 (ja) トレッド用ゴム組成物、及び空気入りタイヤ
JP6317498B2 (ja) スタッドレスタイヤ用トレッド用ゴム組成物、及びスタッドレスタイヤ
JP2022179159A (ja) キャップトレッド及び乗用車タイヤ
JP2022179157A (ja) キャップトレッド及び乗用車タイヤ
EP4091836A1 (en) Passenger car tire rubber composition and passenger car tire
JP6385031B2 (ja) スタッドレスタイヤ用トレッド用ゴム組成物、及びスタッドレスタイヤ
JP2014074121A (ja) トレッド用ゴム組成物、及び空気入りタイヤ
JP2014105323A (ja) サイドウォール用ゴム組成物、及び空気入りタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001255.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13637336

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2896/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012739791

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201005742

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012030796

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012030796

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121203