WO2012100636A1 - 涡旋式冷热气体分离装置 - Google Patents

涡旋式冷热气体分离装置 Download PDF

Info

Publication number
WO2012100636A1
WO2012100636A1 PCT/CN2012/000014 CN2012000014W WO2012100636A1 WO 2012100636 A1 WO2012100636 A1 WO 2012100636A1 CN 2012000014 W CN2012000014 W CN 2012000014W WO 2012100636 A1 WO2012100636 A1 WO 2012100636A1
Authority
WO
WIPO (PCT)
Prior art keywords
vortex
cylindrical inner
cold
intake
hot
Prior art date
Application number
PCT/CN2012/000014
Other languages
English (en)
French (fr)
Inventor
姚其槐
姚镇
Original Assignee
北京星旋世纪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京星旋世纪科技有限公司 filed Critical 北京星旋世纪科技有限公司
Priority to US13/981,444 priority Critical patent/US9017440B2/en
Priority to JP2013550743A priority patent/JP5855681B2/ja
Publication of WO2012100636A1 publication Critical patent/WO2012100636A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect

Definitions

  • This invention relates generally to energy separation devices, and more particularly to a scroll-type hot and cold gas separation device for separating a gas into a hot and cold gas stream using the Ranque-Hilsch effect.
  • the temperature of the cold air flowing out of the vortex tube is about -20 ° C - 10 ° C by the vortex temperature separation effect, while the hot air flow
  • the temperature can reach about 100 °C.
  • George's explanation of temperature separation confused the concept of total temperature (stagnation temperature) and static temperature, he was questioned by the participating scientists.
  • the phenomenon of hot and cold gas separation of vortex tubes was generally negated. This, in turn, led to the disruption of the full-rotation temperature separation effect and further investigation of the corresponding full flow tube device.
  • the conventional vortex tube 10 is mainly composed of a nozzle 11 and a vortex generating chamber 12,
  • the vortex popular inlet pipe (or temperature separation pipe) 13 the hot gas flow outlet 14, the cold air outlet 15 and the eddy current blocking reflow body 16 are formed.
  • the vortex tube 10 injects compressed gas into the vortex generating chamber 12 through the nozzle 11 through a peripheral gas compressor (not shown in Fig.
  • the vortex is injected
  • the gas of the chamber 12 first expands and then enters the vortex inlet tube 13 in a tangential direction at a very high speed, traveling in the form of a spiral vortex; the traveling vortex is blocked by the eddy current blocking reversal body 16 before reaching the hot gas outlet 14 A portion of the gas will recirculate in the opposite direction in the form of a relatively small inner core vortex having a relatively small vortex diameter, and the unreturned gas will be discharged through the hot gas flow outlet 14, and the refluxed gas will be discharged through the cold gas flow outlet 15.
  • the temperature of the outer vortex gas discharged through the hot gas flow outlet 14 is higher than the temperature of the inner core vortex gas discharged from the cold air outlet 15. Therefore, the airflow discharged through the hot airflow outlet 14 is referred to as a hot airflow, and the airflow discharged through the cold airflow outlet 15 is referred to as a cold airflow.
  • hot gas flow and cold gas flow here should not be limited to be higher or lower than a certain absolute temperature value, but to compare the gases flowing out of the two gas flow outlets with each other. of. That is, the concepts of the terms "hot air flow” and "cold air flow” are clear and defined in the art.
  • the airflow in the vortex tube device undergoes complex motion, the outer vortex gas moves toward the hot airflow outlet, and the inner core vortex gas moves toward the cold airflow outlet.
  • the two vortices rotate in the same direction, and it is especially important that the two eddy currents Rotating at the same angular velocity, although there is a strong turbulent flow between the two vortex gases from the starting end to the end, the two eddy currents can be regarded as a whole from the viewpoint of rotational motion.
  • Inner core eddy current is subject to the outer layer Eddy current, so the inner core eddy current is a passive vortex, and the outer eddy current is a driving vortex.
  • the tangential linear velocity of the particles in the water vortex is inversely proportional to the eddy current radius. Therefore, when the particles in the water vortex move toward the outlet core, when the driving vortex radius is reduced to half, the tangential linear velocity of the particles along the vortex doubles, while the particles of the passive vortex that maintain a certain angular velocity of rotation follow the vortex.
  • the tangential line speed is reduced by half. The particles that drive the vortex flow into the drain at a line speed four times faster than the particles of the passive vortex.
  • the energy of motion is proportional to the square of the line speed.
  • the kinetic energy of the particles of the passive vortex at the point where it flows into the drain is only 1/16 of the kinetic energy of the particles that drive the vortex into the drain.
  • the popular traditional theory holds that in the vortex tube for hot and cold gas separation, the situation is similar to the above example, and the difference between the kinetic energy of the passive vortex gas and the driving vortex gas (total of 15/16 of the available kinetic energy) Where have you gone?
  • This traditional theory holds that this is the key to exploring the principle of cold and hot gas separation in the Rank-Herzen effect, that is, the difference in kinetic energy will be transferred from the passive vortex at the inner core to the outer layer at the outer layer. Drive the vortex. In this way, the passive vortex gas becomes a cold airflow, and the driving vortex gas becomes a hot airflow!
  • Their energy relationship is consistent with the law of conservation of heat and the law of conservation of energy.
  • the diameter should not be too large, because it is generally accepted by those skilled in the art that in order to obtain the maximum temperature difference of the hot and cold air flow, the ratio of the length of the vortex inlet pipe 13 to the inner diameter (this ratio is usually also referred to simply as the aspect ratio of the vortex tube) should be Large, and it is further believed that the aspect ratio is preferably greater than 10, or even greater than 45. That is, in the state of the art in the art, it is generally recognized by the skilled person that the length of the vortex pop inlet pipe 13 should preferably be longer, and the vortex pop inside the pipe 13 under conditions capable of generating eddy currents and achieving inner core vortex reflow.
  • the diameter should preferably be small.
  • prior art vortex tubes generally require the use of a gas compressor or the like to provide compressed gas.
  • a gas compressor or the like to provide compressed gas.
  • Such a vortex tube has a large assembly device and a small output, and has a large limitation in the application field.
  • commercially available vortex tubes typically have a small diameter of about 30 mm and a length of about 300 mm with a small internal volume.
  • the compressed gas is injected into the vortex tube at a speed close to the speed of sound (for example, between 1/3 Mach and 7/8).
  • the vortex tube is said to be able to separate the ultra-low temperature cold flow as low as -60 °C. .
  • such a vortex tube device requires a large amount of compressed gas, so that the operation is harsh and the energy consumption is extremely high.
  • the diameter of the vortex tube is too small, the vortex disk is too small, the time of the hot and cold gas separation process is too short, and the hot and cold gas separation function cannot be fully utilized;
  • the eddy current blocking reflow pusher will generate a large amount of unhelpful turbulence at the tail of the vortex pop-in tube, reducing the efficiency of the device;
  • the existing vortex tube device structure is not suitable for the manufacture of large scroll type hot and cold gas separation devices, such as a large-caliber, low-speed, large-caliber (such as a diameter of several hundred millimeters or more) scroll-type hot and cold gas separation device.
  • the inventor of the present application recognizes two problems for a gas disk that is freely rotating in space.
  • the centrifugal force or the rotational speed does not need to be large, as long as sufficient time is passed, the gas disk particles are elapsed for a certain period of time.
  • the instantaneous velocity which is increased by the centrifugal force can have a sufficient influence on the gas pressure and thus have a sufficient influence on the gas temperature.
  • the circumferential tangential linear velocity of the rotation does not need to be large, as long as the vortex disk particles
  • the diameter of the rotating orbit is small enough that centrifugal forces can be generated that have sufficient effect on the gas pressure to have a sufficient effect on the gas temperature.
  • the inventors of the present application have fully recognized that in the case of using a scroll type hot and cold gas separation device, in many cases, it is desirable in many cases to use it as a cold air generating device that changes the ambient temperature, which is desired at this time. Is the temperature not too low (for example let The human body feels comfortable at a temperature of about 20 ° C to 30 ° C), a gas with a large air volume and a low flow rate, and of course, it is desirable that the scroll type hot and cold gas separation device has a simple structure, low noise, and no use. compressed gas.
  • the hot gas separation device is designed and manufactured.
  • a further object of the present invention is to provide a scroll type hot and cold gas separation apparatus which has a large air volume, a low flow rate, and a large diameter of the output air flow can be manufactured.
  • Still another object of the present invention is to make the above-described scroll type cold and hot gas separation apparatus of the present invention simple in construction, low in noise, and/or high in energy efficiency ratio.
  • the present invention provides a scroll type hot and cold gas separation apparatus, comprising: a body having a cylindrical inner wall surface, the cylindrical inner wall surface defining a cylindrical inner cavity, the cylindrical shape
  • the inner cavity has a first end in its axial direction and a second end opposite the first end; an intake and agitation fan device attached to the body at a first end of the cylindrical inner cavity
  • the intake and agitation fan device is configured to draw external air into the cylindrical inner cavity and agitate to form a rotation along the cylindrical inner wall surface and toward the second end of the cylindrical inner cavity a first vortex;
  • a hot gas discharge port disposed at or adjacent an edge of the second end of the cylindrical inner cavity such that a portion of the gas of the first vortex traveling to the hot gas discharge port passes through
  • the hot gas discharge port is discharged to the outside of the cylindrical inner cavity;
  • a vortex reflux device is disposed at the two ends of the cylindrical inner cavity to discharge the first eddy current Residual gas reflux at the hot gas discharge port a second vortex
  • the intake and agitation fan device comprises a plurality of intake and agitation blades, each of the intake and agitation blades itself comprising an integral intake portion and an agitation portion, the intake portion being set It is adapted to draw outside air into the cylindrical inner chamber such that gas aspirating into the cylindrical inner chamber agitates by the agitating portion to form a first vortex.
  • the intake and agitation fan device comprises: a ring member; a central hub sleeve located radially inward of the ring member; and a plurality of connecting the ring member and the central hub sleeve a rib; wherein the annular member and the central hub have the same central axis as the cylindrical inner cavity, and a space between the central hub and the annular inner wall of the annular member is adjacent and surrounding The cold air discharge port at a radial center of the first end of the cylindrical inner cavity, and the plurality of intake and agitation blades are disposed on an outer circumferential wall of the ring member.
  • each of the ribs is provided in the form of an exhaust vane to form a negative pressure at the cold air discharge outlet to facilitate the discharge of gas in the second vortex from the cold air discharge port.
  • the air intake and agitation fan device further includes: a prime mover disposed outside the cylindrical inner cavity; and a fan main shaft, one end of the fan main shaft is connected to the central hub sleeve, and the other end is connected And an output shaft of the prime mover, such that the prime mover drives the central hub to rotate by the fan main shaft, and drives the rib, the ring member and the intake and agitating blades to rotate.
  • a prime mover disposed outside the cylindrical inner cavity
  • a fan main shaft one end of the fan main shaft is connected to the central hub sleeve, and the other end is connected
  • an output shaft of the prime mover such that the prime mover drives the central hub to rotate by the fan main shaft, and drives the rib, the ring member and the intake and agitating blades to rotate.
  • the prime mover is disposed outside the vortex reflow device along a central axis of the cylindrical inner cavity, and the vortex reflow device has a through hole at a center thereof for the output shaft of the prime mover or The fan spindle passes therethrough.
  • the intake and agitation fan device includes a separate intake fan and an agitation fan, wherein the intake fan includes a plurality of intake blades, the intake vanes being configured to draw external air into the In the cylindrical inner chamber, the agitating fan includes a plurality of agitating blades, the agitating blades being configured to agitate a gas sucked into the cylindrical inner cavity to form a first flow
  • the intake and agitation fan device includes a separate intake fan drive wheel and an agitation fan drive wheel, wherein the intake fan drive wheel is coupled to the intake fan to drive the intake fan The air vane rotates, the agitating fan drive wheel is coupled to the agitating fan to drive the agitating fan of the agitating fan to rotate, and the intake fan drive wheel and the agitating fan drive wheel respectively pass through respective drive belts or The chain is connected to a respective prime mover disposed outside the body of the scroll type hot and cold gas separation device.
  • a rolling bearing is disposed on the center socket; the central socket is fixed to the body of the scroll type hot and cold gas separation device by a web bracket; and a central passage defined by the annular inner wall surface of the central socket constitutes a The cold air discharge port at a radial center of the first end of the cylindrical inner cavity.
  • the intake and agitation fan means are arranged such that they agitate or stir The linear velocity of the outer edge of the moving blade is above 1/8 Mach, but less than the range of Mach 9/10.
  • the intake and agitation fan device further includes an inlet and outlet gas separation cover, the inlet and outlet gas separation cover has a flow guiding channel, and one end of the flow guiding channel is disposed adjacent to or adjacent to the cold air discharge port to receive The cold gas stream discharged from the cold gas discharge port is guided away from the scroll type hot and cold gas separation device.
  • the present invention provides a scroll type hot and cold gas separation apparatus, comprising: a body having a cylindrical inner wall surface, the cylindrical inner wall surface defining a cylindrical inner cavity, the cylindrical shape
  • the inner cavity has a crucible end along its axial direction and a second end opposite to the first end; a fan disposed outside the machine body; an air inlet disposed on the body and adjacent to the cylindrical shape a first end of the chamber, an air duct of the fan is coupled to the air inlet, and the air inlet is configured to direct an air flow output by the fan substantially along a circumference of the cylindrical inner cavity a tangential direction is injected into the cylindrical inner cavity to form a first vortex that rotates along the cylindrical inner wall surface and travels toward the second end of the cylindrical inner cavity; a hot air discharge port, which is Provided at or adjacent to an edge of the second end of the cylindrical inner cavity such that a portion of the gas of the first vortex traveling to the hot gas discharge port is discharged to the cylindrical shape through the hot gas discharge port External
  • the scroll type hot and cold gas separation device further includes a stem fixing flange having a central through hole, the cold airflow exiting the central stem passing through the stem fixing flange The central through hole is fixed to the body of the scroll type hot and cold gas separation device through the stem fixing flange.
  • the scroll type hot and cold gas separation device further includes a cyclone bushing, wherein the cyclone bushing is disposed in the cylindrical inner cavity and the cold airflow is discharged from the center socket Surrounding, and having a frustoconical portion that tapers in a direction toward the second end of the cylindrical inner cavity to guide the rotation of the first vortex to reduce turbulence of the first vortex Loss.
  • a cyclone bushing wherein the cyclone bushing is disposed in the cylindrical inner cavity and the cold airflow is discharged from the center socket Surrounding, and having a frustoconical portion that tapers in a direction toward the second end of the cylindrical inner cavity to guide the rotation of the first vortex to reduce turbulence of the first vortex Loss.
  • a maximum diameter of the frustoconical portion of the cyclone sleeve extends a cylindrical portion, and a boundary between the cylindrical portion and the frustoconical portion is in the cylindrical cavity a distance in the axial direction relative to the first end of the cylindrical inner cavity that is greater than or equal to a maximum distance of a perimeter of the air inlet relative to a first end of the cylindrical inner cavity, the boundary circumference The radius is set such that the extension of the lowest point of the inlet is substantially tangent to the boundary of the intersection.
  • the end of the cylindrical portion of the cyclone sleeve is sleeved and fixed on an annular step of the socket fixing flange protruding in the cylindrical inner cavity, and the central ring of the annular step
  • the aperture forms part of the central through opening of the socket mounting flange.
  • a heat insulating material is disposed between the cyclone bushing and the cold airflow discharge center pipe seat to discharge the cold airflow from the second vortex in the central through hole of the center pipe seat and the cyclone bushing diameter
  • the outer vortex is thermally isolated.
  • the scroll type hot and cold gas separation device further includes an axial rectifying device fixed to the cold air discharge center tube extending into the cylindrical cavity The end portion is configured to rectify the first eddy current passing through the axial rectifying device, thereby reducing turbulent loss of the first eddy current, and causing the rectified first eddy current to be circumferential in comparison with the first eddy current before rectification
  • the vortex gas flow at various points in the direction is more uniform.
  • the axial rectifying device is configured to spiral a disc-shaped member, the spiral disc-shaped member has a central annular member, and an outer circumferential surface of the central annular member is fixed with a diameter perpendicular to the outer circumferential surface a plurality of fan-shaped baffles uniformly distributed in the circumferential direction extending outward, wherein the plurality of fan-shaped baffles are disposed such that airflow is allowed between the adjacent two of the fan-shaped baffles Wedge gap.
  • each of the fan-shaped baffles is the same size and shape; each of the fan-shaped baffles has a fan angle of between 40° and 80°; two adjacent fan-shaped baffles are on the axis
  • each of the fan-shaped baffles is a flat baffle or a baffle having a curved cross section.
  • the fan is a high speed fan that stabilizes the output airflow at a speed above 1/8 Mach, but less than 9/10 Mach.
  • the present invention provides a scroll type hot and cold gas separation device, comprising: a body having a cylindrical inner wall surface, the cylindrical inner wall surface defining a cylindrical inner cavity, the cylindrical shape
  • the inner cavity has a first end in its axial direction and a second end opposite to the first end; a fan disposed outside the machine; an end intake fairing having an intake port at the cylinder a first end of the shaped cavity is fixed to the body, and an air duct of the fan is connected to the air inlet to inject a flow of air output by the fan into the end air intake fairing.
  • the end intake fairing is configured to form an airflow output by the fan into an initial swirling airflow and rectify it to rotate along the cylindrical inner wall surface and toward the second end of the cylindrical inner cavity a first vortex; a hot gas discharge port disposed at or adjacent an edge of the second end of the cylindrical inner chamber such that a portion of the gas of the first vortex traveling to the hot gas discharge port is a hot air discharge port is discharged to the cylindrical shape a vortex reflow device disposed at a second end of the cylindrical inner chamber to recirculate the remaining gas of the first vortex that is not discharged from the hot gas discharge port to pass through a swirling inner core of the vortex flows toward the second vortex of the cylindrical inner cavity; the cold airflow having the cold air discharge passage exits the center socket, which is disposed at the first end of the cylindrical inner cavity And extending axially inwardly along the central axis of the cylindrical inner cavity into the cylindrical inner cavity, extending axially outwardly outside the end intake fairing, the cold air discharge passage Receiving
  • the end intake fairing comprises: an annular casing wall defining a cavity having a larger diameter than a cylindrical inner cavity of the body of the scroll type hot and cold gas separation device,
  • the cavity has the same central axis as the cylindrical inner cavity and is in direct communication with the cylindrical inner cavity, the air inlet is disposed on the annular casing wall, and the air inlet is provided Discharging the airflow output by the fan substantially into the cavity of the end intake fairing along a tangential direction of the circumference of the cavity of the end intake cowl to form an initial swirling airflow; and radial a fairing disposed in the cavity of the end intake fairing and having the same central axis as the cavity of the end intake fairing, the radial fairing being configured to receive an initial rotational flow And rectify it into a first eddy current.
  • the end intake fairing further includes a socket fixing method having a central through hole a cooling airflow discharge center socket passes through a central through hole of the socket fixing flange and is fixed to an outer end of the annular casing wall of the end intake fairing through the socket fixing flange, and The radial fairing is fixed to an inner side surface of the stem fixing flange.
  • the end intake fairing further includes an end intake fairing fixing flange, and an inner end of the annular casing wall of the end intake fairing is fixed to the end intake fairing fixing method
  • the outer edge portion of the blue, the annular step of the end intake fairing fixing flange is fixed to the outer circumferential wall of the body at the first end of the cylindrical inner cavity.
  • the radial rectifying device has a substrate on which a plurality of curved baffles perpendicular to the side surface and uniformly distributed in the circumferential direction are fixed on one side surface of the substrate, the curved guiding flow
  • the sheet is configured to rectify the initial vortex flow into a first vortex having a reduced diameter of rotation, and to cause the first vortex to have a faster flow rate and a smaller turbulence loss than the initial vortex flow, each in the circumferential direction
  • the vortex gas flow at the point is more uniform.
  • a tapered wedge gap is formed between two adjacent curved guide vanes of the radial rectifying device to allow airflow therethrough, and the narrowest portion of the wedge-shaped gap is disposed to be substantially along The tangential direction of the circumference of the cylindrical inner cavity ejects the rectified gas to form a first eddy current.
  • each of the curved guide vanes of the radial rectifying device is disposed to have the same axial width with each other in an axial direction perpendicular to the substrate, the axial width being substantially equal to the end The axial length of the cavity of the intake fairing.
  • the bisector plane on the axial width of the plurality of curved guide vanes of the radial rectifying device is on the same plane as the central axis of the air inlet; and/or the air inlet
  • An extension line of the lowest point is substantially tangent to an outer circumference circumference of the outer edges of the plurality of curved guide sheets; and/or an inner envelope circumference of the inner edges of the plurality of curved guide sheets
  • the wire is concentric with the cylindrical inner cavity and has a diameter equal to or smaller than the diameter of the cylindrical inner cavity.
  • a cross-sectional shape of each curved guide vane in the flow guiding direction of the radial rectifying device is enclosed by an inner surface curve, an outer surface curve and an end connecting transition line, wherein the inner surface curve Formed by a segment of elliptical curve, a segment of the Vitosinsky curve, and a section of straight line at the exit of the airflow, the curve of the outer surface consisting of a segment of a circular curve and a section near the exit of the airflow Straight sections are smoothly joined.
  • the scroll type hot and cold gas separation device is further A stem fixing flange having a central through hole, the cold airflow exiting the central stem passing through a central through hole of the stem fixing flange and being fixed to the end intake fairing through the stem fixing flange
  • the fan is a high speed fan that stabilizes the output airflow at a speed above 1/8 Mach, but less than 9/10 Mach.
  • the present invention provides a scroll type hot and cold gas separation device including a body, a hot gas discharge port, a vortex return device, and a cold air discharge port, wherein the vortex reflow device is configured to have a concave curved surface a shaped airflow focusing the reflecting surface, and wherein the hot air discharging port is disposed radially outward of the airflow focusing reflecting surface in the vortex reflow device, such that the first eddy current passing through the hot air discharge port is not discharged
  • the remaining gas travels along the airflow focusing reflective surface, the radius of the cyclone gradually shrinks, the rotational speed gradually increases, the centrifugal force is strengthened, and is attracted by the negative core of the first vortex, thereby forming a cyclone through the first eddy current.
  • the second vortex that flows back toward the end of the cylindrical inner cavity.
  • the airflow focusing reflecting surface is an airflow focusing reflecting surface of a concave paraboloid shape, or an airflow focusing reflecting surface of a concave ellipsoidal shape, or a gas flow focusing reflecting surface of a concave spherical shape.
  • a heat insulating layer is disposed outside the airflow focusing and reflecting surface to prevent the airflow temperature at the focusing and reflecting surface of the airflow from being affected by the outside.
  • the scroll type hot and cold gas separation device further comprises an air intake means for introducing external air into the cylindrical cavity in the body to form a first eddy current.
  • the vortex reflow device is provided as an air flow focusing reflection surface having a concave curved shape, and the hot air discharge port is disposed in the In the vortex reflow device, the airflow is focused on a radially outer side of the reflecting surface such that the uncirculated residual gas of the first eddy current passing through the hot air discharge port travels along the airflow focusing reflecting surface, and the cyclone radius gradually shrinks.
  • the rotation speed is gradually increased, the centrifugal force is strengthened, and is attracted by the negative core of the first vortex, thereby forming a second flow of the cyclone inner core passing through the first vortex toward the first end of the cylindrical inner cavity.
  • the gas flow focusing reflecting surface is a gas flow focusing reflecting surface having a concave paraboloid shape, or a concave convex spherical shape air current focusing reflecting surface, or The airflow in the shape of a concave spherical surface focuses the reflecting surface.
  • a heat insulating layer is disposed outside the airflow focusing reflecting surface to prevent the airflow temperature at the focusing surface of the airflow from being affected by the outside.
  • the vortex reflow device is detachably mounted to the scroll type cold at a second end of the cylindrical inner cavity a body of the hot gas separation device;
  • the hot gas discharge port is constituted by a ring of annular grooves on a side of the vortex reflow device facing the cylindrical cavity; and the radial outer wall of the annular groove There is at least one opening to the outside.
  • the annular IHJ tank is provided with an inner valve ring for controlling a discharge amount of the hot air flow
  • an outer circumference of the inner valve ring has a circle toward the circle a frustoconical surface having a tapered inner cylindrical cavity, the frustoconical surface of the inner valve ring and the corresponding frustoconical surface of the end face of the body extending into the annular 1HJ groove together define
  • the opening of the hot gas discharge port is such that the amount of hot gas flow is adjusted by adjusting the axial position of the inner valve I, 1 in the annular groove.
  • the vortex reflow device is fixed to the scroll type hot and cold gas separation at a second end of the cylindrical inner cavity
  • the body of the device, or the vortex reflow device is an integral part of the body of the scroll-type hot and cold gas separation device that continues to extend at the second end of the cylindrical inner cavity.
  • the hot gas discharge port is constituted by at least one opening on the vortex reflow device.
  • the scroll type hot and cold gas separation device further includes a valve plate device for adjusting a discharge amount of the hot gas flow, the valve plate device
  • the utility model comprises a hand wheel, a rod body, a screw hole seat fixed to an outer side of the vortex flow recirculating device, and a valve claw member having at least one valve claw, wherein the rod body is formed as a screw segment on a section near one end thereof, a portion of the screw segment is operatively screwed into the threaded socket, and the other end of the shaft is secured to the hand wheel; one end of the valve member is coupled to the hand wheel or the shaft , so that the valve jaw member can be used
  • the hand wheel and the rod body move axially together, but do not rotate with the hand wheel and the rod body; each end of the valve claw is provided with a valve piece, the valve piece and the vortex flow device
  • the spacing of the at least one opening defines the opening of the hot gas discharge port such that the amount of
  • a heat dissipation or cooling device is disposed outside the machine body of the scroll type hot and cold gas separation device to cool the body wall, thereby Thermal conduction of the body wall to cool the hot gas flow rotating along the cylindrical inner wall surface of the body; or thermal insulation device disposed outside the body of the scroll type hot and cold gas separation device to reduce the body wall to the surrounding environment Heat is dissipated, thereby reducing heat loss of the hot gas flow rotating along the cylindrical inner wall surface of the body to the surrounding environment; or providing an insulated cooling multiplexing device outside the body of the scroll type hot and cold gas separation device, Can be operatively configured to cool the body wall to cool the flow of hot air along the cylindrical inner wall surface of the body through heat transfer from the body wall, or to reduce heat loss from the body wall to the surrounding environment, Thereby, heat loss from the hot air current rotating along the cylindrical inner wall surface of the body to the surrounding environment is reduced.
  • FIG. 1 is a schematic view showing a prior art vortex tube for performing hot and cold gas separation using a Rank-Herzen effect
  • Figure 2 is a schematic side view of a scroll type hot and cold gas separation device in accordance with a first embodiment of the present invention
  • Figure 3 is a schematic cross-sectional view of a scroll type hot and cold gas separation apparatus according to an embodiment of the present invention taken along line A - A of Figure 2;
  • FIG. 4 and 5 are respectively schematic exploded perspective views of the scroll type cold and hot gas separation device of Fig. 2 viewed from different angles of view;
  • Figure 6 is a schematic cross-sectional view of a scroll type hot and cold gas separation device according to a modification of the first embodiment of the present invention, showing a gas flow process in the scroll type hot and cold gas separation device, and the vortex
  • the airflow focusing and reflecting surface of the hot and cold gas separation device is inside Concave spherical shape ⁇ ;
  • Figure 7 is a schematic cross-sectional view of a scroll type hot and cold gas separation device according to another variation of the first embodiment of the present invention, wherein the swirling and reflecting surface of the scroll type hot and cold gas separation device has a concave ellipsoidal shape;
  • Figure 8 is a schematic cross-sectional view of a scroll type hot and cold gas separation device in accordance with a second embodiment of the present invention.
  • Figure 9 is a schematic end view of the scroll type hot and cold gas separation device as seen in the direction indicated by an arrow B in Figure 8, in which two bodies disposed outside the body of the scroll type hot and cold gas separation device are also shown. Independent prime mover;
  • Figure 10 is a schematic partial cross-sectional view of the scroll type hot and cold gas separation device of Figure 8, showing the hot gas discharge port of the scroll type hot and cold gas separation device and the gas flow path in the vicinity of the vortex return device;
  • Figure 1 is a schematic end view of the scroll type hot and cold gas separation device as viewed in the direction of arrow C in Figure 8;
  • Figure 12 is a schematic cross-sectional view of a scroll type hot and cold gas separation device in accordance with a third embodiment of the present invention.
  • Figure 13 is a schematic view showing a vortex forming process of the scroll type hot and cold gas separation device of Figure 12;
  • Figure 14 is a schematic cross-sectional view of the scroll type hot and cold gas separation device of Figure 12, showing the scroll type hot and cold gas separation device The gas flow process within, and for the sake of clarity, the hatching of the preferred insulating material within the cyclone bushing is omitted in the figure;
  • Figure 15 is a schematic partial cross-sectional view showing a scroll type cold and hot gas separation device according to a modification of the third embodiment of the present invention, wherein the scroll type hot and cold gas separation device is provided with an axial rectifying device, and the figure Also shown is a fan disposed outside the body of the scroll type hot and cold gas separation device;
  • Figure 16 is a schematic perspective view of the axial type rectifying device used in the scroll type hot and cold gas separation device of Figure 15;
  • Figure 17 is a schematic side view of the axial type rectifying device used in the scroll type hot and cold gas separation device of Figure 15;
  • Figure 18 is a schematic end elevational view of the axial rectifying device used in the scroll type hot and cold gas separation device of Figure 15;
  • Figure 19 is a plan view showing a schematic 1/2 circumference of the axial rectifying device used in the scroll type hot and cold gas separation device of Figure 15;
  • Figure 20 is a schematic cross-sectional view of a scroll type hot and cold gas separation device in accordance with a fourth embodiment of the present invention;
  • Figure 21 is a schematic perspective view of a radial type rectifying device used in the scroll type hot and cold gas separation device of Figure 20;
  • Figure 22 is a schematic view showing the eddy current formation and the radial rectification process of the scroll type hot and cold gas separation device of Figure 20;
  • Figure 23 is a schematic plan view of a radial type rectifying device used in the scroll type hot and cold gas separation device of Figure 20;
  • Figure 24 is a schematic plan view of another radial rectifying device usable in the scroll type hot and cold gas separation device of Figure 20;
  • Figure 25 is a schematic exploded perspective view of the scroll type hot and cold gas separation device of Figure 20;
  • Figure 26 is a schematic perspective view of the assembled scroll type cold and hot gas separation device of Figure 20;
  • Figure 27 is a schematic cross-sectional view of a scroll type cold and hot gas separation device according to a modification of the fourth embodiment of the present invention, wherein the gas flow focusing reflecting surface is in the shape of a concave spherical surface;
  • Figure 28 is a schematic cross-sectional view of the scroll type hot and cold gas separation device similar to Figure 27, but wherein the gas flow focusing reflection surface is in the shape of a concave ellipsoid;
  • Figure 29 is a schematic cross-sectional view of the scroll type hot and cold gas separation device similar to Figure 27, but wherein the gas flow focusing reflecting surface is in the shape of a concave paraboloid;
  • Figure 30 is a schematic partially exploded perspective view of the scroll type hot and cold gas separation apparatus of Figures 27-29 (since the gas flow focusing reflection surface is not visible in Figure 30, only the same figure can be used to represent the similarity in Figures 27-29 Vortex type hot and cold gas separation device).
  • FIGS. 2 - 5 there are shown schematic side views, cross-sectional views, and schematic exploded perspective views from two different viewing angles, respectively, of a scroll-type hot and cold gas separation apparatus 100 in accordance with a first embodiment of the present invention.
  • 6 and 7 are schematic cross-sectional views of a scroll type hot and cold gas separation apparatus 100' and 100" according to a modification of the first embodiment of the present invention, in which air flow focusing reflection surfaces of different shapes are used.
  • the scroll type hot and cold gas separation device 100 includes a body 1 10, an air intake and agitation fan device 120, a hot air discharge port 130, and The vortex reflux device 140 and the cold air discharge port 150.
  • the body 1 10 has a cylindrical inner wall surface 112, which defines a cylindrical inner cavity 112. Round
  • the cylindrical inner chamber 112 has a first end 113 in its axial direction and a second end 114 opposite the first end.
  • An intake and agitation fan device 120 is attached to the body 110 at a first end 113 of the cylindrical inner cavity 112 and is configured to draw external air into the cylindrical inner cavity 112 for agitation to form along the cylinder A first vortex that rotates the inner wall surface 111 and travels toward the second end 114 of the cylindrical inner cavity 112.
  • the hot gas discharge port 130 is disposed adjacent to the edge 115 of the second end 114 of the cylindrical inner chamber 112 such that a portion of the gas of the first vortex traveling to the hot gas discharge port 130 is discharged through the hot gas discharge port 130 Outside the cylindrical inner cavity 112.
  • the vicinity of the hot gas discharge port 130 is preferably arranged such that the hot gas stream is smoothly and smoothly discharged to reduce turbulence loss.
  • the vortex reflow device 140 is disposed at the second end 114 of the cylindrical inner chamber 112 to reflect the remaining gas of the first vortex that is not discharged from the hot gas discharge port 130 into a cyclone inner core that passes through the first vortex A second vortex that flows back from the first end 113 of the cylindrical inner cavity 112.
  • the cold air discharge port 150 is disposed adjacent to and around the first end of the cylindrical inner chamber 112
  • the scroll type hot and cold gas separation device 100 further includes an adjustment means for adjusting the amount of exhaust gas flow at or near the hot gas discharge port 130. By adjusting the amount of exhaust gas from the hot gas stream, the temperature of the discharged cold gas stream can be adjusted within a certain range.
  • the intake and agitation fan assembly 120 preferably includes a plurality of intake and agitation blades 121.
  • Each of the intake and agitation blades 121 itself includes an integral intake portion 122 and an agitating portion 123, wherein the intake portion 122 is configured to draw external air into the cylindrical inner cavity 112, thereby being agitated by the agitating portion 123 agitates the gas drawn into the cylindrical inner chamber 112 into a first vortex.
  • the intake and agitation blades 121 are preferably made of a high-strength heat-resistant rust-resistant light alloy material such as a high-strength aluminum alloy or a titanium steel.
  • the intake and agitation blades 121 can be made longer, and the cylindrical inner wall surface 111 of the scroll type hot and cold gas separation device 100 can be made slightly tapered (e.g. Less than 1° or 0.5° or less, the intake and agitation blades 121 are matched with the slightly tapered cylindrical inner wall surface 111 to increase the density of the vortex flow.
  • the specific shape of the intake and agitation blades 121 the flow rate of gas suction and discharge need not be too large.
  • the intake and agitation fan assembly 120 also preferably includes an annulus 124, a central hub 125 located radially inward of the annulus 124, and a connecting annulus 124 and a central hub A plurality of ribs 126 of 125.
  • the ring member 124 and the central hub 125 preferably have the same central axis as the cylindrical inner cavity 1 12 .
  • the space between the center hub 125 and the annular inner wall of the ring member 124 constitutes the cold air discharge port 150 of the scroll type hot and cold gas separation device 100.
  • a plurality of intake and agitation blades 121 are disposed on the outer circumferential wall of the ring member 124.
  • each of the ribs 126 is provided in the form of an exhaust vane to form a certain negative pressure at the cold air discharge port 150 to facilitate the discharge of the gas in the second vortex from the cold air discharge port 150.
  • the negative pressure formed by the exhaust vanes should not be too large, so that the gas in the second vortex can be easily discharged from the cold air discharge port 150, and the first eddy current in the cylindrical inner cavity 1 12 cannot be affected.
  • the intake and agitation fan assembly 120 may further include a prime mover 128, preferably an electric motor, more preferably a high speed motor having an output speed of up to 10,000 rpm, and preferably having a rotational speed of Adjusted to control the temperature and flow of the discharged cold air flow.
  • the prime mover 128 is disposed outside the cylindrical inner chamber 12, and its output shaft drives the central hub 125 to rotate by the fan main shaft 127 of the air intake and agitation fan unit 120, and drives the rib.
  • the plate 126, the ring member 124, and the intake and agitation blades 121 rotate.
  • the prime mover 28 can be disposed outside the vortex reflow device 140 along the central axis of the cylindrical inner chamber 1 12 .
  • a through hole 141 is provided at the center of the vortex reflow device 140 for the output shaft of the prime mover 128 or the fan main shaft 127 to pass therethrough to be connected to the center hub 125.
  • the transmission from the prime mover 128 to the central hub 125 and further to the transmission of the intake and agitation blades 121 may have other forms, such as a more complicated situation
  • the output shaft of the engine 128 and the fan spindle 127 may also have a shifting mechanism (such as a gear shifting mechanism or a pulley shifting structure, etc.).
  • the choice of the prime mover 128 speed and the intermediate transmission speed ratio (if an intermediate transmission is present) will determine the angular velocity at which the intake and agitation blades 121 rotate, while the rotational radius of the intake and agitation blades 121 determines the intake and agitation.
  • the blade linear velocity at a particular angular velocity which is well known to those skilled in the art and readily selects and designs the rotational speed of the prime mover, the gear ratio of the intermediate transmission, and the radius of rotation of the intake and agitation blades 121, depending on the requirements of the particular application. .
  • these selections and designs should be such that the linear velocity of the agitating portion of the air intake and agitation fan assembly or the outer edge of the agitating blade is above 1/8 Mach (actually, the speed is substantially a linear velocity equal to the outer edge of the disk of the first eddy formed, the linear velocity of the outer edge of the vortex disk in the confined space Usually also referred to as the linear velocity of the eddy current), for example, specifically 1/7 Mach, 1/6 Mach, 1/5 Mach, 1/4 Mach, 1/3 Mach, 1/2 Mach, 1/2, 2/3 Mach, 3/4 Mach, 4/5 Mach, 5/6 Mach, 6 Mach, 7/8 Mach, even close to 9/10 Mach (the so-called "tone barrier” known to those skilled in the art) ) , and any specific value or any interval between any two numerical points given above.
  • the linear velocity of the eddy current for example, specifically 1/7 Mach, 1/6 Mach, 1/5 Mach, 1/4 Mach, 1/3 Mach, 1/2 Mach, 1/2, 2/3 Mach, 3/4 Mach, 4/5 Mach, 5/6 Mach, 6 Mach, 7/8
  • the linear velocity of the first eddy current when the linear velocity of the first eddy current is close to 9/10 Mach (the threshold value of the sound barrier), the obtained cold airflow is about the temperature of the intake airflow. Lower 60. C, and the effect of the separation of the hot and cold gases is roughly proportional to the square of the linear velocity of the first eddy current. As the velocity of the first eddy current decreases, the effect of the separation of the hot and cold gases is affected by many other factors. Thus, for example, when the linear velocity of the first vortex is 1/3 Mach, a cold airflow which is lowered by about 6 ° C - 7 ° C with respect to the temperature of the intake air flow can be expected.
  • a high-pressure compressed gas is not used as a gas source, and the pressure of the injected gas is not emphasized, but the centrifugal force of the vortex rotation is emphasized, and then the linear velocity of the eddy current is rotated and can be lowered.
  • the cold air temperature is designed as a new structure of the scroll type hot and cold gas separation device.
  • the cylindrical inner cavity 1 12 may have a diameter of, for example, 100 mm, 200 mm, 300 mm, 400 mm, 500 mm, 1 m, 2 m or more, and Conducive to meeting the needs of high air volume, low wind speed, large diameter applications.
  • the intake and agitation fan assembly 120 may also include an inlet and outlet hood 160.
  • the inlet and outlet partition 160 has a flow guiding passage 161, one end of which is disposed adjacent to or adjacent to the cold air discharge port 150 to receive the cold air discharged from the cold air discharge port 150 and guide it away from the cylindrical inner cavity At a certain distance other than 1 12, the cold air flow is finally discharged to the outside of the scroll type hot and cold gas separation device 100 for disposal or utilization, so that the discharged cold air flow is prevented from being re-sucked into the scroll type hot and cold gas separation device 100.
  • the flow guiding passage 161 of the inlet and outlet air separation hood 160 can also be regarded as a part of the cold air discharge opening 150 from the viewpoint of the cold air discharge function.
  • the end opening of the inlet and outlet partition can be configured in a bar shape or any other suitable shape or has an adapter to facilitate the diffusion or collection of cold airflow;
  • members such as ribs, ribs and/or annular rings may be disposed outside the wall of the flow guiding passage of the inlet and outlet partition cover, so that the inlet and outlet partition 160 also serves as the intake and agitation fan unit 120.
  • the intake and agitating blades 121 have a function of a shield and/or an intake shroud and/or a cold airflow exhaust shroud.
  • the arrangement of these additional components can be easily understood and implemented by those skilled in the art, and will not be further described herein.
  • the vortex reflow device 140 is preferably provided with an airflow focused reflective surface 142 having a concave paraboloid shape (see, for example, Figures 8, 12, 20), or a concave ellipse
  • the spherical shape of the airflow focuses the reflecting surface 142 (see, for example, FIG. 7), or the concave spherical shape of the airflow focusing reflecting surface 142 (see, for example, FIG. 3, FIG. 6), and the hot air discharge port 130 is disposed in the vortex reflow device.
  • the radially outer side of the reflecting surface 142 in 140 such that when the undischarged residual gas passing through the first vortex of the hot air discharge port 130 travels along the airflow focusing reflecting surface 142, the radius of the cyclone gradually shrinks, and the rotational speed gradually increases.
  • the centrifugal force is reinforced and attracted by the negative core of the first vortex, thereby forming a second vortex that flows back through the first inner end 1 13 of the cylindrical inner cavity 1 12 through the inner core of the first vortex.
  • the vortex reflow device 140 of the present invention may also employ other cylindrical shapes that are capable of collecting vortices into the scroll-type hot and cold gas separation device 100 by reflection of eddy currents.
  • the concave curved shape of the inner portion of the inner cavity 1 12 i.e., the portion of the inner core of the first vortex around the central axis of the cylindrical inner cavity 1 12
  • the diameter of the cyclone inner core of the first vortex is, for example, generally not more than 3/4, or 2/3, or 1/2, or 1/3, or 1/4 of the inner diameter of the cylindrical inner cavity 1 12 or the like.
  • the vortex reflow device 140 is detachable at the second end 114 of the cylindrical inner chamber 112. It is installed in the body 1 10 of the scroll type hot and cold gas separation device.
  • the hot gas discharge port 130 is preferably constituted by a ring of annular grooves 143 on the side of the vortex reflow device 140 facing the cylindrical inner chamber 112.
  • the radially outer wall of the annular groove 143 has at least one opening 144 leading to the outside.
  • An inner valve ring 132 for controlling the amount of discharge of the hot air is disposed in the annular groove 143.
  • the outer circumference of the inner valve ring 132 has a frustoconical surface that tapers in the direction of the cylindrical inner cavity 126.
  • the frustoconical surface and the end face edge 15 of the body 1 10 extend into the annular groove 143.
  • the tapered surfaces collectively define the opening of the hot gas discharge port 130 such that the amount of hot gas flow is adjustable by adjusting the axial position of the inner valve ring within the annular groove.
  • the ring body of the inner valve ring 132 preferably extends out of each of the rods distributed in the circumferential direction, and the rods can extend through the housing cover of the reflective reflow device 140. Holes, thus facilitating in various ways The axial position of the inner valve ring 132 is adjusted.
  • the specific technique for adjusting the axial position of such inner valve ring 132 is well known and readily accomplished by those skilled in the art (e.g., threaded, tight fit, etc.) and will not be described again.
  • a device 170 for dissipating heat or cooling is disposed outside the body 110 of the scroll type hot and cold gas separation device to cool the body wall, thereby The hot air flow rotating along the cylindrical inner wall surface 111 of the body 110 is cooled by heat conduction of the body wall; or alternatively, the device 170 for heat insulation is provided outside the body 110 of the scroll type hot and cold gas separation device (for example It may be a vacuum vacuum sandwich wall) to reduce heat loss from the body wall to the surrounding environment, thereby reducing heat loss from the hot air flow rotating along the cylindrical inner wall surface 111 of the body 110 to the surrounding environment; or alternatively, in the vortex
  • the body 110 of the rotary hot and cold gas separation device is provided with a device 170 having an insulation cooling multiplexing function (for example, it may be a sandwich wall suitable for both vacuuming and injection of cooling water or other cooling medium, and the user can To select its specific function), which can be
  • Fig. 8-11 shows various schematic views of a scroll type hot and cold gas separation device 200 according to a second embodiment of the present invention.
  • the scroll type hot and cold gas separation device 200 also includes a body 110, an intake and agitation fan unit 120, a hot gas discharge port 130, a vortex return device 140, and a cold. Airflow discharge port 150.
  • the intake and agitation fan unit 120 includes separate inlets.
  • the intake fan 210 includes a plurality of intake vanes 211 that are configured to be adapted to draw external air into the cylindrical interior 112.
  • the agitation fan 220 includes a plurality of agitating blades 221. It is configured to agitate the gas drawn into the cylindrical interior 112 into a first vortex.
  • the flow rate of the gas intake and discharge of the intake vane 211 does not have to be too large, but the agitating vane 221 is strongly agitated.
  • the intake vane 211 and the agitating vane 221 may be made of the same or different materials.
  • the intake vane 21 1 is made of high-strength aluminum alloy, and the agitating vane 221 is made of titanium steel); alternatively, the intake vane 21 1 is made of a material of ordinary strength, and the agitating vane 221 is made of high-strength heat-resistant Made of rust light alloy material.
  • the intake fan 210 and the agitation fan 220 are preferably driven by separate intake fan drive wheels 212 and agitator fan drive wheels 222, respectively.
  • the intake fan drive wheel 212 and the agitation fan drive wheel 222 are coupled to respective ones disposed in the scroll type hot and cold gas separation device 200 via respective drive belts or chains 213 and 223, respectively.
  • the prime movers 214 and 224 outside the body 1 10. This arrangement enables the intake fan 210 and the agitation fan 220 to be independently controlled for greater flexibility in application.
  • a base 270 that the scroll type hot and cold gas separation device 200 can have, a device 170 for the heat dissipation or cooling of the scroll type hot and cold gas separation device 200, and the body 1 10 and the prime mover 214 and 224 and the like are all fixed on the base 270.
  • the center header 230 is fixed to the body 1 10 of the scroll type hot and cold gas separation device 200 by a web holder ⁇ 231.
  • the central passage defined by the annular inner wall surface of the central header 230 defines a cold air discharge opening 150 at the radial center of the first end 1 13 of the cylindrical inner chamber 1 12 .
  • the vortex reflux device 140 is in the cylindrical cavity
  • the second end 1 14 of the 1 12 is fixed to the body 1 10 of the scroll type hot and cold gas separation device 200; or, the vortex reflux device 140 is the body 1 of the scroll type hot and cold gas separation device 200.
  • An integral portion of the cylindrical inner lumen 1 12 continues to extend from the second end 114.
  • the hot gas discharge port 130 is preferably formed by at least one opening in the vortex reflow device 140 adjacent the body 1 10 at the edge at the second end 114 of the cylindrical inner chamber 1 12 .
  • the at least one opening is preferably a plurality of openings that are uniformly distributed in the circumferential direction, for example, three or more, or four or more, or five or more, or six or more, or seven or more, or eight or more, or 9 or more, or 10 or more, 8 in the example shown in Fig. 8 - 11.
  • a regulating device for the amount of hot gas flow comprising a valve device for regulating the amount of exhaust of the hot gas stream
  • the valve plate assembly 240 can include a hand wheel 241, a shaft 242, a threaded seat 244, and a valve jaw member 245.
  • the rod 242 is threaded on a section near one end thereof to form a screw segment 243.
  • a portion of the screw segment 243 is operatively threaded into a threaded socket 244 that is secured to the outside of the vortex reflow device 140.
  • the other end of the rod 242 is fixed to the hand wheel 241, preferably to the convex joint of the hand wheel 241.
  • One end of the pawl member 245 is coupled to the hand wheel 241 or the shaft 242 in such a manner that the pawl member 245 can move axially with the hand wheel 241 and the body 242 but does not rotate with the hand wheel 241 and the body 242.
  • a stage of increasing diameter may be formed at a portion of the rod body 242 near the screw section 243.
  • the rod body 242 is a polished rod section on the side opposite to the screw section of the stage stage, and the end of the polished rod section is fixed at
  • the fixing hole in the protruding connecting portion of the hand wheel 241 is in the fixed hole in the protruding portion of the hand wheel 241; and the valve pin member 245 is fit-fitted over the center of the rod body 242 and the protruding portion of the hand wheel 241 through the center through hole on the end plate thereof.
  • the diameter of the end plate center through hole is preferably larger than the diameter of the polished rod section, but smaller than the diameter of the stage stage and the diameter of the protruding joint of the hand wheel 241), and the stage of the rod body 242 is ensured
  • the spacing between the raised joints of the hand wheel 241 is substantially equal to or slightly greater than the thickness of the end plate of the valve jaw member 245, such that the valve jaw member 245 can move axially with the hand wheel 241 and the shaft 242, but substantially It does not rotate with the hand wheel 241 and the rod 242 (the influence of friction is temporarily ignored here).
  • the other end of the pawl member 245 extends out of at least one of the valve jaws, preferably in the same number as the number of openings constituting the hot air discharge port 130, and the end of each of the valve pawls 245 is provided with a corresponding valve piece 246.
  • the depth of the screw segment 243 screwed into the screw hole holder 244 can be adjusted by rotating the hand wheel 241 of the valve device.
  • the purpose of adjusting the opening degree of the hot air discharge port 130 that is, the purpose of adjusting the amount of exhaust of the hot air flow
  • valve plate assembly 240 can also include a rear cover flange 247 with a plurality of through holes between the hand wheel 241 and the valve pawl 245.
  • the rear cover flange 247 is fixed directly or indirectly to the body 1 10, preferably directly to the extension of the device 170 for heat dissipation or cooling, and in turn to the body 1 10 indirectly.
  • the reflux device 140 preferably, may also be provided with a hot gas flow exit shield 248.
  • a cylindrical hot air discharge venting spacer 248 is disposed outside the vortex reflow device 140.
  • a notch groove 249 is provided at the rear end of the hot air discharge venting cover 248 in sliding engagement with the valve pawl to limit possible rotation of the valve jaw member 245 (eg, friction may cause the pawl member 245 to have a small rotational tendency).
  • the position of the cover of the retaining claw and the hot air discharge port 130 is relatively uniform (for ease of understanding, reference may be made to Fig. 25, in which the notch groove 249 is clearly shown).
  • the means for regulating the amount of exhaust from the hot gas stream can also take many other forms, which are not enumerated here.
  • a separate shield 260 may be provided for the intake fan 210, and thus, as shown in Fig. 8, the scroll type hot and cold gas separation device
  • the inlet and outlet partition cover 160 of the 200 is not provided with members such as ribs, ribs, and/or annular turns. These structures are well known or readily understood and implemented by those skilled in the art and will not be described again.
  • FIGS. 12-14 show various schematic views of a scroll type hot and cold gas separation device 300 in accordance with a third embodiment of the present invention.
  • the scroll type hot and cold gas separation device 300 includes a body 1 10 and a fan 310 disposed outside the machine body (not shown in FIG. 12, see FIG. 13 or Fig. 15), an air inlet 320 disposed on the body 1 10, a hot air discharge port 130, a vortex return device 140, and a cold air flow discharge center pipe holder 330 having a cold air discharge passage.
  • the blower 310 used in the present invention is preferably a high speed blower capable of stabilizing the output airflow at a speed of 1/8 Mach or more, for example, specifically 1 Mach, 1/6 Mach, 1/5 Mach, 1/4 Mach, 1/3 Mach, 1/2 Mach, 1/2, 2/3 Mach, 3/4 Mach, 4/5 Mach, 5/6 Mach, 6/7 Mach, 7/8 Mach, even close to 9/10 Mach (tone barrier threshold), and any specific value or arbitrary interval between any two numerical points given above.
  • the body 1 10 of the scroll type hot and cold gas separation device 300 also has a cylindrical inner wall surface 1 1 1 which defines a cylindrical inner chamber 112.
  • the cylindrical inner chamber 1 12 has a first end 1 13 along its axial direction and a second end 14 14 opposite the first end.
  • the hot gas discharge port 130 and the vortex reflow device 140 in the third embodiment of the present invention are substantially the same as those in the second embodiment of the present invention.
  • the hot gas discharge port 130 and the vortex reflow device 140 in the third embodiment of the present invention can also be used in the first embodiment of the present invention.
  • the main difference between the scroll type hot and cold gas separation device 300 of the third embodiment of the present invention and the first and second embodiments 100 and 200 of the present invention is that the intake mode and the first eddy current are formed differently.
  • an air inlet 320 is disposed on the body 1 10 adjacent to the first end 1 13 of the cylindrical inner chamber 1 12 .
  • the air duct 31 1 of the blower 310 is connected to the air inlet 320.
  • the air inlet 320 is disposed to inject the airflow output from the fan 310 into the cylindrical inner cavity 1 12 substantially in a tangential direction of the circumference of the cylindrical inner cavity 112 to form a cylindrical inner wall surface 1 1 A first vortex that rotates and travels toward the second end 1 14 of the cylindrical inner chamber 1 12 .
  • the scroll type hot and cold gas separation device 300 includes a cold air discharge center pipe holder 330 having a cold air discharge passage 331.
  • the cold air discharge center socket 330 is disposed at the first end 136 of the cylindrical inner chamber 1 12 and extends axially into the cylindrical inner chamber along the central axis of the cylindrical inner chamber 112.
  • the cold air discharge passage 331 receives the second eddy current to be isolated from the first eddy current, and discharges the second vortex gas to the outside of the scroll type hot and cold gas separation device 300.
  • the scroll type hot and cold gas separation device 300 further includes a stem fixing flange 332 having a central through hole.
  • the cold air discharge center pipe holder 330 passes through the center through hole of the pipe fixing flange 332 and is fixed to the body 1 10 of the scroll type hot and cold gas separation device 300 through the pipe fixing flange 332.
  • the scroll type hot and cold gas separation device 300 preferably further includes a cyclone sleeve 340 disposed in the cylindrical inner chamber 1 12 around the cold air discharge center socket 330 and having a cylindrical inner chamber 1
  • the frustoconical portion 341 which is tapered in the direction of the second end 144 of 12, guides the rotation of the first vortex to reduce turbulent losses of the first vortex.
  • a cylindrical portion 342 extends at a maximum diameter of the frustoconical portion 341 of the cyclone sleeve 340.
  • the distance between the circumference of the cylindrical portion 342 and the frustoconical portion 341 in the axial direction of the cylindrical inner chamber 12 is preferably greater than or equal to the distance from the first end 1 13 of the cylindrical inner chamber 1 12
  • the circumference of the air inlet 320 is at a maximum distance relative to the first end 1 13 of the cylindrical inner cavity 1 12 .
  • the air inlet 320 can be disposed adjacent the inside surface of the socket mounting flange 332.
  • the radius of the boundary of the junction may preferably be set such that the extension of the lowest point of the inlet is substantially tangent to the circumference of the junction.
  • the end of the cylindrical portion 342 of the cyclone sleeve 340 is preferably sleeved and fixed within the cylindrical shape of the socket fixing flange 332.
  • An annular step 333 projects in the cavity 1 12 .
  • the central annular bore of the annular step 333 forms a portion of the central through bore of the stem retaining flange 332 through which the cold airflow exits the central header 330.
  • a heat insulating material for example, a porous heat insulating material or a fiber-based heat insulating material or the like
  • a heat insulating material may be disposed in a space between the cyclone bushing 340 and the cold airflow discharge center socket 330 to discharge the cold airflow to the center stem.
  • the second vortex in the central through hole of the 330 is thermally isolated from the first vortex on the radially outer side of the cyclone sleeve 340.
  • Figure 15 is a schematic partial cross-sectional view of a scroll type hot and cold gas separation device 300' according to a modification of the third embodiment of the present invention, wherein the scroll type hot and cold gas separation device 300' is provided with an axial type rectifying device 350 And fixed to the end portion of the cold air discharge center socket 330 extending into the cylindrical inner cavity 112 to rectify the first eddy current passing through the axial rectifying device 350, thereby reducing the turbulence of the first eddy current The loss, and the rectified first vortex flow is more uniform at the points of the vortex gas at various points in the circumferential direction than the first eddy current before rectification.
  • Figures 16-19 illustrate various more detailed schematic views of the axial rectifying device 350 used in the scroll-type hot and cold gas separation unit 300'.
  • the axial rectifying device 350 is a spiral disc-shaped member having a central annular member 351 having an outer circumferential surface fixed with a circumferential direction extending radially outwardly from the outer circumferential surface.
  • a plurality of fan-shaped baffles 352 are evenly distributed in the direction.
  • the plurality of fan-shaped baffles 352 are disposed such that a substantially wedge-shaped gap that allows airflow therethrough is formed between adjacent two fan-shaped baffles.
  • the first eddy current is ejected through the wedge gaps to form a rectified first vortex.
  • each of the fan-shaped baffles 352 is the same size and shape.
  • the fan angle of each of the fan-shaped guide vanes 352 is preferably 40° - 80.
  • both are 60°.
  • the area of the overlapping portion of the adjacent two fan-shaped baffles 352 on the axial projection is preferably 1/3 to 2/3 of the area of each of the fan-shaped guide sheets, and may be, for example, 1/2.
  • the wedge angle of the tip of each wedge gap and the spacing at the narrowest point are arranged to reduce the turbulent loss of the first eddy current, and to cause the rectified first eddy current to be circumferentially compared to the first eddy current before rectification
  • the vortex gas flow rate at each point is more uniform, and the specific design can be carried out according to the related art of fluid mechanics in the form of a planar development view in FIG. 19, which is a person skilled in the art according to the content of the present application and the corresponding fluid. The mechanics knowledge is easy to carry out and will not be repeated here.
  • Each of the fan-shaped baffles 352 can have a simple flat shape. Fan-shaped baffle 352 also The baffle having a streamlined curved cross section may be preferred. The design of the specific curved shape is easily performed by those skilled in the art according to the content of the present application and the corresponding hydrodynamics knowledge, and will not be described herein.
  • Fig. 20 is a schematic cross-sectional view showing a scroll type hot and cold gas separation device 400 according to a fourth embodiment of the present invention.
  • the scroll type hot and cold gas separation device 400 according to the fourth embodiment of the present invention is generally similar to the scroll type hot and cold gas separation device 300 or 300' according to the third embodiment of the present invention.
  • the main difference between the two is that the intake mode and the first eddy current are formed differently.
  • the scroll type hot and cold gas separation device 400 is provided with an end intake cowl 410, which is disposed on the end intake cowl 410 instead of the body 1 10.
  • the end inlet fairing 410 is secured to the body 1 10 at a first end 133 of the cylindrical inner chamber 1 12 .
  • the air duct 31 1 of the blower 310 is connected to the air inlet 320 to inject the air flow output from the fan into the end air intake cowl 410.
  • the end intake fairing 410 is configured to form an initial swirling airflow of the airflow output by the fan and rectify it to rotate along the cylindrical inner wall surface 1 1 1 and toward the second end 1 14 of the cylindrical inner cavity 1 12 The first eddy current.
  • the scroll type hot and cold gas separation device 400 it is not necessary to provide the cyclone sleeve 340 and the axial rectifying device 350 to obtain a good rectifying effect.
  • thermal insulation measures on the necessary portion of the cold airflow discharge center socket 330 of the scroll type hot and cold gas separation device 400 (for example, a sleeve having a slightly larger diameter, which is sleeved with The outer circumferential wall of the central tube seat is filled with a heat insulating material, or the cold air current of the scroll type hot and cold gas separation device 400 is discharged from the center tube holder 330 itself to have a certain heat insulation capability (for example, the wall design thereof) Double-layered hollow pipe wall, the wall sandwich can be vacuumed or filled with insulation material).
  • the end intake fairing 410 has an annular casing wall 41 1 having a cavity 412 having a diameter greater than the diameter of the cylindrical inner cavity 1 12 of the body 1 10 of the scroll-type hot and cold gas separation device 400.
  • the cavity 412 has the same central axis as the cylindrical inner cavity 126 and is in direct communication with the cylindrical inner cavity 112.
  • the air inlet 320 is disposed on the annular casing wall 41 1 and the air inlet 320 is disposed to inject the airflow output by the fan substantially into the cavity along a circumferential tangential direction of the cavity 412 of the end intake fairing 410. Medium, forming an initial swirling airflow.
  • the end intake fairing 410 has a radial fairing 420 disposed in the cavity 412 of the end intake fairing and having the same central axis as the cavity, the radial fairing It is arranged to receive the initial vortex flow and rectify it into a first vortex.
  • the end intake fairing 410 further includes a stem retaining flange 413 having a central through bore.
  • the cold airflow discharge center stem 330 passes through the central through hole of the stem fixing flange 413 and is fixed to the outer end of the annular casing wall 41 1 of the end intake fairing through the stem fixing flange 413.
  • the radial fairing 420 is fixed to the inner side surface of the stem fixing flange 413.
  • the end intake fairing 410 further includes an end intake fairing retaining flange 414.
  • the inner end of the annular casing wall 41 1 of the end intake fairing 410 is fixed to the outer edge of the end intake fairing fixing flange 414, and the annular step 415 of the end intake fairing fixing flange 414 is in the cylinder
  • the first end 1 13 of the inner cavity 1 12 is fixed to the outer circumferential wall of the body 1 10.
  • FIG 21 there is shown a schematic perspective view of a radial fairing 420 of the scroll-type hot and cold gas separation apparatus 400 of Figure 20.
  • the radial rectifying device 420 has a substrate 421 which is preferably a circular flat plate. On the one side surface of the substrate 421, a plurality of curved guide vanes 422 perpendicular to the surface and uniformly distributed in the circumferential direction are fixed.
  • the substrate 421 may also have other suitable shapes as long as the curved baffles are fixed on the surface thereof, and the central portion has a central hole through which the cold airflow can be discharged through the central stem 330.
  • the curved baffle 422 is configured to rectify the initial vortex flow into a first vortex having a reduced diameter of rotation, and such that the first vortex has a faster flow rate and a smaller turbulence loss than the initial vortex flow
  • the flow of vortex gas at each point in the circumferential direction is more uniform.
  • a tapered substantially wedge-shaped gap is formed between the adjacent two curved vanes 422 to allow airflow therethrough.
  • the narrowest portion of the wedge-shaped gap forms an airflow outlet, which is preferably arranged to eject a rectified gas substantially in a tangential direction of the circumference of the cylindrical inner cavity to form a first eddy current. Referring to Figure 22, the rectification process of such a radial rectifying device 420 is schematically illustrated.
  • each of the curved guide vanes 422 is disposed to have the same axial width with each other in an axial direction perpendicular to the substrate 421, the axial width being substantially equal to the cavity 412 of the end intake fairing 410.
  • the bisector plane in the axial width of each of the curved baffles 422 is preferably in the same plane as the central axis of the air inlet 320.
  • Each of the curved baffles 422 is preferably arranged such that the extension of the lowest point of the inlet 320 is substantially tangent to the outer circumference of each of the outer edges of the curved baffles. Alternatively, this extension line may also be slightly above or slightly below the circumference of the outer envelope of the curved baffle.
  • the inner envelope circumference of each inner edge of all of the curved baffles is preferably concentric with the cylindrical inner cavity 1 12, and further preferably, the inner envelope circle
  • the circumference has a diameter that is substantially the same as or slightly smaller than the cylindrical inner cavity 112.
  • the cross-sectional shape of each of the curved guide vanes 422 of the radial rectifying device 420 in the flow guiding direction is enclosed by an inner surface curve, an outer surface curve, and an end connecting transition line.
  • the curved guide vanes are generally in the shape of a sheet, the end transition line at the end of the inner surface curve and the outer surface curve is very short, and the curved guide is The effect of the flow of the strip 422 is minimal and no discussion is necessary. Therefore, the shape of the inner surface curve and the outer surface curve of the curved guide vane 422 will be mainly discussed below.
  • the inner surface curve of the radial rectifying device 420 is preferably arranged to include a segment of elliptical curve, a segment of the Vitosinsky curve segment, and a straight line segment at the exit of the airflow at the wedge gap.
  • a smooth transition between the elliptical curve segment and the Vitosinsky curve segment is preferred.
  • the inner surface curve of each curved guide vane 422 starts from the elliptical curve section first on the radially outer side, then smoothly transitions to the Vitosinsky curve section, and then smoothly transitions. A straight line segment to the inner surface curve.
  • the elliptic curve segment can directly connect with the Vitosinsky curve segment and form a smooth transition; however, the elliptical curve segment can also pass through a transition curve region.
  • a segment is coupled to the Vitosinsky curve segment to form a smooth transition between the elliptical curve segment and the Vitosinsky curve segment.
  • the Vitosinsky curve section of the inner surface curve is directly and smoothly connected to the straight section.
  • the outer surface curve is arranged to include a length of arcuate curve section and a straight line section at the airflow outlet near the wedge gap.
  • the arcuate curve segments of the outer surface curve are preferably connected directly and smoothly in a straight transition.
  • the extension line of the elliptical curve section of the inner surface curve of each of the curved guide vanes 422 is substantially tangent to the outer circumferential circumference of each of the curved guide vanes, and each curved guide is
  • the arcuate curve section of the outer surface curve of the sheet 422 can also be substantially tangential to the outer circumference of the outer envelope to ensure that the airflow in the cavity 412 follows the inner surface curve and the outer surface curve at the airflow inlet. The tangential direction flows into the diversion region formed by the wedge gap.
  • the straight line segments of the inner surface curves of the respective curved guide vanes 422 are substantially tangent to the inner envelope circumferential lines of the inner edges of all the curved guide vanes, and are outside the respective curved guide vanes 422.
  • An extension of the straight section of the surface curve may also be substantially tangential to the inner envelope circumferential line to ensure that the airflow from the wedge gap can be ejected substantially along the tangential direction of the inner envelope circumferential line to form a first vortex.
  • the outer circumference of the toroidal substrate 421 of the radial rectifying device 420 may be disposed to coincide with the outer circumferential line of the curved baffle, and the toroidal substrate 421
  • the inner circumference may be arranged to coincide with the inner envelope circumference of the curved baffle.
  • the specially designed curved baffles described above are highly advantageous in effectively reducing turbulence losses in the apparatus of the present invention and enhancing the uniformity of vortex gas flow at various points in the circumferential direction.
  • the scroll type hot and cold gas separation device 400 of the fourth embodiment of the present invention may also adopt another radial type rectifying device 420' having a cross section of a curved baffle 422.
  • the shape is relatively simple, and both the inner surface curve and the outer surface curve are composed of elliptical curve segments.
  • the alternative radial rectifying device 420' has the advantages of simple structure, easy manufacture, and also can effectively reduce the turbulence loss to a certain extent and enhance the uniformity of the vortex gas flow at various points in the circumferential direction.
  • the radial rectifying means 420 is preferably fixed by its base plate 421 in the annular recessed portion 416 on the inner side surface of the stem fixing flange 413.
  • the recessed depth of the annular recess 416 is preferably substantially equal to the thickness of the substrate 421.
  • FIG. 25 shows a schematic exploded perspective view of the scroll type hot and cold gas separation apparatus 400. See Figure 26 for the assembled scroll hot and cold gas separation unit 400.
  • FIG 27 is a schematic cross-sectional view of a scroll type hot and cold gas separation device 400' according to a modification of the fourth embodiment of the present invention.
  • an alternative adjustment device 440 for regulating the amount of hot gas flow is also employed, which also includes a hand wheel 241, a rod 242, and a screw socket 244.
  • a slider fixing flange 441 is sleeve-fitted over the optical rod section between the stage of the shaft 242 and the protruding connection of the hand wheel 241 through its central through hole (obviously, the diameter of the central through hole is also preferably larger than The diameter of the polished rod section, but smaller than the diameter of the stage stage and the diameter of the protruding joint of the hand wheel 241), and the rod body is secured The thickness of the slider fixing flange 441.
  • a plurality of slide bars 442 are fixed to the slide bar fixing flange 441. The slider 442 extends through a corresponding through hole in the slider 443, and the slider end is fixed relative to the body 1 10.
  • the airflow focusing reflecting surface 142 of the concave spherical shape is fixed to the radially inner side of the slider 443.
  • a heat insulating layer 445 is specifically disposed outside the airflow focusing reflecting surface 142 to prevent the temperature of the airflow at that portion from being affected by the outside (mainly for cooling and insulating the second eddy current which is gradually formed and accumulated therein).
  • the insulating layer 445 can be constructed of any suitable insulating material, such as a porous insulating material or a fibrous insulating material.
  • a heat insulating material fixing cover 444 is provided outside the heat insulating layer 445.
  • the heat insulating material fixing cover 444 is fixed on the sliding seat 443, and the screw hole seat 244 is fixed to the heat insulating material fixing cover 444, so that the screw portion 243 of the rod body 242 can be screwed in the screw hole seat 244 by rotating the hand wheel 241.
  • the middle rotates and axially moves, so that the slide 443 slides axially on the slide bar 442 to adjust the opening degree of the annular hot air discharge port 130 (as shown in FIG. 27, the hot air discharge port 130 in this example) It is defined by the gap between the body 1 10 and the carriage 443, thereby adjusting the discharge amount of the hot air current. Adjusting the amount of discharge of the hot gas stream, for example, can adjust the temperature and flow rate of the discharged cold gas stream.
  • a cyclone sleeve 340 is disposed on the cold air discharge center socket 330, which is similar to the cyclone sleeve 340 of the third embodiment of the present invention, but does not have the cylindrical portion 342.
  • a heat insulating material for example, a porous heat insulating material or a fiber heat insulating material or the like
  • the second vortex in the central through hole is thermally isolated from the first vortex on the radially outer side of the cyclone sleeve 340'.
  • Figures 28 and 29 also show two other scroll-type hot and cold gas separation devices 400" and 400"' similar to those of Figure 27.
  • the scroll type hot and cold gas separation devices 400" and 400"' of Figs. 28 and 29 respectively have a concave ellipsoidal shape and a concave paraboloid shape.
  • the airflow focuses the reflective surface 142.
  • Fig. 30 is a schematic partially exploded perspective view showing the scroll type hot and cold gas separation device of Figs. 27-29.
  • FIG. 30 can actually serve as a common schematic of three similar scrolling hot and cold gas separating devices in FIGS. 27-29. Partially exploded perspective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cyclones (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

涡旋式冷热气体分离装置 技术领域
本发明一般性地涉及能量分离装置, 更具体地涉及利用兰克 -赫尔 胥 ( Ranque-Hilsch ) 效应将气体分离成冷热气流的涡旋式冷热气体分 离装置。
背景技术
历史上,兰克-赫尔胥效应的现象首先是在 1930年由法国冶金工程 师乔治' 兰克 (Georges Ranque)发现的。 当时, 乔治' 兰克在实验中发 现了旋风分离装置中的涡流冷却效应, 即旋风分离装置中气流的中心 温度和周边各层的温度不同, 中心具有较低的温度, 而外缘具有较高 的温度。 根据此现象, 乔治' 兰克随后设计出了人类历史上首个能够 进行能量分离的涡流管装置,并于 1931年在法国申请了专利。 1933年, 乔治, 兰克在法国物理学会作了关于涡流管装置及其涡旋温度分离效 应实验的专题报告。 该报告指出, 温度为 20°C的压缩气体进入涡流管 后, 通过涡旋温度分离效应, 从涡流管中流出的冷气流的温度约为 - 20°C - - 10°C , 而热气流的温度可达约 100°C。 当时, 由于乔治' 兰克 对温度分离现象的阐述混淆了流体总温 (滞止温度) 与静温的概念, 因而遭到了与会科学家的质疑, 会议上对涡流管的冷热气体分离现象 普遍否定, 而这最终导致对满旋温度分离效应以及相应滿流管装置的 进一步研究被中断下来。
1945年, 德国物理学家鲁道夫 · 赫尔胥 (Rudolph Hilsch)发表了一 篇令世人瞩目的有关涡流管的科学报告, 其中运用了详细的资料证实 了涡旋温度分离效应, 并就涡流管的装置设计、 应用、 温度效应的定 义等提出了一系列的研究成果和有价值的建议。 至此, 涡旋温度分离 效应才被人们正式接受和确认。 为纪念乔治, 兰克和鲁道夫 · 赫尔胥 在这一领域作出的杰出贡献, 人们通常也将这种涡旋温度分离效应称 为兰克-赫尔胥效应。
时至今日, 世界上许多国家的科研机构、 大学和企业对兰克 -赫尔 胥效应及其实现装置进行了大量的实验研究和理论探索。 但是, 无论 在基础理论还是在装置结构上均进展甚微。
如图 1 所示, 传统的涡流管 10主要由喷嘴 1 1、 涡流发生腔 12、 涡流行进管(或称温度分离管) 13、 热气流出口 14、 冷气流出口 15以 及涡流阻挡回流推体 16构成。 根据现有技术中的一种主流观点, 工作 时, 涡流管 10通过外设的气体压缩机(图 1 中未示出)将压缩气体经 喷嘴 1 1喷入涡流发生腔 12;喷入涡流发生腔 12的气体首先发生膨胀, 然后以很高的速度沿切线方向进入涡流行进管 13, 以螺旋状涡流形式 行进; 行进的涡流在到达热气流出口 14之前, 受到涡流阻挡回流推体 16 的阻挡, 一部分气体将以旋涡直径相对较小的内芯涡流形式朝相反 方向回流, 未回流的气体将经由热气流出口 14排出, 而回流的气体将 经由冷气流出口 15排出。 由于气体在涡流管中出现兰克-赫尔胥效应, 因而经由热气流出口 14排出的外层涡流气体的温度要高于冷气流出口 15排出的内芯涡流气体的温度。 故此, 将经由热气流出口 14排出的气 流称为热气流, 将经由冷气流出口 15排出的气流称为冷气流。 本领域 技术人员均可认识到, 这里所谓的热气流和冷气流不应被限制成要高 于或低于某一绝对的温度值, 而是将两个气流出口中流出的气体相互 比较而言的。 也就是说, 在本领域中, 术语 "热气流" 和 "冷气流" 的概念是清楚、 确定的。
虽然这种涡流管装置在结构和操作上都非常简单, 但是在该装置 内发生的兰克-赫尔胥效应的能量交换过程却极其复杂。 由于内摩擦的 结果, 使得传热过程不可逆。 而且科学界一般认为气体在涡流管装置 内进行的应该是某种复杂的三维可压缩湍流流动, 因而在兰克-赫尔胥 效应的应用上, 至今不能给出能够精确预测涡流管装置性能的数学模 型。 在基础理论上, 科学界对兰克-赫尔胥效应的解释也是众说纷纭, 一直没有一种令人非常满意的理论解释, 甚至某些理论自身的观点之 间还相互矛盾。 可以说, 对兰克-赫尔胥效应的理论研究是目前科学界 的一个重大难题。
对于兰克-赫尔胥效应的冷热气体分离原理, 业界目前流行的是一 种动能转换理论, 其说法大致如下:
涡流管装置中的气流进行着复杂的运动, 外层涡流气体向热气流 出口运动, 内芯涡流气体向冷气流出口运动, 这两个涡流以相同的方 向旋转, 尤为重要的是这两个涡流以同样的角速度旋转, 虽然在两个 涡流气体之间从起始端至末端的交界处存在强烈的乱流, 但是从旋转 运动的角度来说, 这两个涡流可视为一个整体。 内芯涡流受制于外层 涡流, 故内芯涡流为被动涡, 而外层涡流为驱动涡。 以浴缸中产生的 水旋涡流为例来形象地说明, 在排水时, 水向出口芯部运动, 其旋转 速度为了保持角运动量因而会增加。 由于水旋涡流中的粒子切向线速 度与涡流半径成反比。 因此, 在水旋涡流中的粒子向出口芯部运动时, 当驱动涡半径减至一半时, 粒子沿旋涡的切向线速度增加一倍, 而维 持一定旋转角速度的被动涡的粒子沿旋涡的切向线速度则减少一半。 驱动涡的粒子与被动涡的粒子相比, 以快其四倍的线速度流入排污口。 因为运动能量和线速度的平方成正比。 在这个例子中, 被动涡在流入 排污口处的粒子的运动能量只有驱动涡在流入排污口处的粒子的运动 能量的 1/16。 流行的传统理论认为, 在进行冷热气体分离的涡流管中, 情况和上面的例子类似, 被动涡气体和驱动涡气体的运动能量之差 (合 计为可以利用的运动能量的 15/16)向何处去了呢? 这种传统理论认为 这正是探讨兰克 -赫尔胥效应中冷热气体分离原理的关键所在, 即, 运 动能量之差将以热量的方式从位于内芯的被动涡传递到了位于外层的 驱动涡中。 这样, 被动涡气体就变成了冷气流, 而驱动涡气体则变成 了热气流! 它们的能量关系符合热量守恒定律和能量守恒定律。
显然, 上述理论并没有从流体温度的微观本质上直接回答问题, 而只是给出了一个在热量守恒定律和能量守恒定律这种宏观层面上的 笼统解释。 由于对兰克 -赫尔胥效应微观本质认识上的不深入, 也导致 了长期以来利用兰克 -赫尔胥效应实现冷热气体分离的装置都仅仅局限 于如前所述的涡流管基本结构。 而且, 人们并不清楚该结构中何种几 何尺寸关系能够获得最大的冷热气流温差, 即不清楚何种几何尺寸关 系能够获得最佳的冷热气体分离效果。 然而, 即使对于传统的涡流管 基本结构而言, 设计变量也高达至少 15个以上, 并且这些变量每个均 有无穷多的选择。 由于每个变量以及各个变量之间的关系对于涡流管 效果的影响基本上都是未知或不确定的, 故涡流管装置的基本结构长 时间以来一直改进不大。
特别地, 传统的涡流管装置都要求使用压力很大的压缩气体, 并 且要求将压缩气体喷入涡流发生腔 12使其发生高速膨胀, 继而使高速 膨胀的气体进入直径较小的涡流行进管 13中产生高速涡流, 并最终利 用兰克 -赫尔胥效应实现冷热气体分离。 在现有的不够清晰的理论指导 下, 本领域技术人员普遍认为在涡流管装置中, 涡流行进管 13的内直 径不宜过大, 因为本领域技术人员普遍认为, 为了获得冷热气流的最 大温差, 涡流行进管 13的长度与内直径之比 (该比值通常也被简称为 涡流管的长径比) 应该较大, 并且还进一步认为该长径比优选要大于 10, 甚至大于 45。 也就是说, 在本领域现有技术的状态下, 技术人员 普遍认为在能够产生涡流和实现内芯涡流回流的条件下, 涡流行进管 13的长度优选应该较长, 而涡流行进管 13的内直径优选应该较小。
此外, 现有技术的涡流管一般都需要使用气体压缩机或类似装置 来提供压缩气体。 这种涡流管, 其总成设备较大, 输出较小, 应用领 域存在较大局限。 典型地, 市售涡流管的细小直径一般为 30 mm左右, 长度为 300 mm左右, 内部容积很小。 工作时, 压缩气体以接近音速的 速度 (例如 1/3马赫 ~ 7/8之间的速度) 喷入涡流管内 , 厂商标称这样 的涡流管可以分离出低达 -60°C的超低温冷气流。 但是, 这样的涡流管 装置由于需要使用大量的压缩气体, 因此工作时噪音刺耳, 能耗极高。 进一步研究可以发现, 由于这种涡流管内部容积很小, 当过量气体进 入涡流管内时, 从喷嘴喷出的压缩气体会出现激剧的失压膨胀降温现 象。 这种失压膨胀降温现象在物理学上被称为焦耳 · 汤姆逊 (Joule Thomson)冷却过程, 其与兰克-赫尔胥效应并无必然的直接关系, 但是 事实上却成为这类装置获得冷气流的一个主要原因。
本申请的发明人现已创造性地认识到, 现有理论上的未知直接导 致了现有用于冷热气体分离的涡流管普遍存在以下缺陷:
1. 需要使用气体压缩机或类似装置来提供压力很大的压缩气体, 压缩气体的急剧膨胀本身就会降温, 噪音大, 效率低;
2. 需要设置较大的供压缩气体膨胀的涡流发生腔, 其中只有部分 气体能够沿切线方向进入涡流行进管形成涡流, 效率较低;
3. 涡流管直径太细, 旋涡气盘太小, 冷热气体分离过程的时间太 短, 冷热气体分离功能不能充分发挥;
4. 涡流阻挡回流推体会在涡流行进管尾部产生大量无益紊流, 降 低装置效率;
5. 现有的涡流管装置结构不适于制造大型的涡旋式冷热气体分离 装置,例如大风量低风速的大口径 (如直径数百毫米以上)的涡旋式冷热 气体分离装置。
发明内容 本申请的发明人认识到, 只有进一步探究兰克 -赫尔胥效应中冷热 气流为何能得以成功分离的机理, 才可能突破目前现有技术的较盲目 状态甚至某些思想桎梏, 构想到具有全新结构的利用兰克 -赫尔胥效应 实现冷热气体分离的装置。
1845年, 英国物理学家焦耳 (J. P. Joule ) 完成了著名的研究气体 内能的焦耳自由膨胀实验, 提出了 "通过改变可压缩流体的压力就能 够使其温度发生变化" 的原理。 本申请的发明人认为, 根据这一原理 来认识兰克 -赫尔胥效应的本质也许对技术人员更有帮助。 当理想涡流 气体圆盘 (可简称气盘) 被约束在圆筒壁内的空间中时, 其直径便不 能因离心力而无限扩张, 故气体粒子群将沿圆筒内壁表面旋转, 高速 旋转产生的离心力将在这一受限空间内形成增大的气体压力。 这样就 会使得涡流外层气体的温度随压力的升高而升高, 涡流内芯气体的温 度随压力的降低而降低。
由上述对旋涡冷热气体分离的认识可知, 只要将气体的流动变成 高速旋转的涡旋气流, 通过旋涡冷热分离效应就有望从其中心部分离 出冷气流, 从其外围部分离出热气流。
此外, 本申请的发明人对于一个在空间自由旋转的气盘还认识到 两个问题, 第一, 离心力或者说旋转速度并不需要很大, 只要经过足 够的时间, 气盘粒子在经过一定时间后受到离心力影响而增大的瞬时 速度就可以对气体压力产生足够的影响, 从而对气体温度产生足够的 影响; 第二, 旋转的圆周切向线速度并不需要很大, 只要旋涡气盘粒 子旋转的轨道直径足够小, 也会发生能对气体压力产生足够影响的离 心力, 从而对气体温度产生足够的影响。
综合考虑各种理论以及本申请发明人的创造性认识, 本申请的发 明人认为:
1. 有可能通过延长涡流旋转的时间来增强冷热气体分离的效果;
2. 有可能通过增大涡流旋转的直径来增强冷热气体分离的效果;
3. 有可能通过在同样的旋转圆周切向线速度下收缩涡流旋转的直 径来增强冷热气体分离的效果。
此外, 本申请的发明人充分认识到, 在使用涡旋式冷热气体分离 装置时, 日常生活中人们在很多情况下希望能够将其作为改变环境温 度的冷风发生装置使用, 此时希望得到的是温度并不太低的 (例如让 人体感觉比较舒适的大约 20 °C ~ 30 °C的温度) 、 风量较大、 流速较低 的气体, 并且当然还希望这种涡旋式冷热气体分离装置的构造简单, 噪音小, 无需使用压缩气体。 这就对利用兰克-赫尔胥效应的涡旋式冷 热气体分离装置构造提出了新的要求, 特别是在大风量低风速的大口 径 (如直径达数百毫米以上)涡旋式冷热气体分离装置的设计制造上。
本发明的一个目的旨在克服现有技术的至少一个缺陷, 提供至少 一种具有新型结构的涡旋式冷热气体分离装置。
本发明的一个进一步的目的旨在提供风量较大、 流速较低且输出 气流的口径能够被制造得较大的涡旋式冷热气体分离装置。
本发明的又一个进一步的目的旨在使本发明的上述涡旋式冷热气 体分离装置的构造简单、 噪音小和 /或能效比高。
第一方面, 本发明提供了一种涡旋式冷热气体分离装置, 包括: 具有圆筒形内壁表面的机体, 所述圆筒形内壁表面限定了圆筒形内腔, 所述圆筒形内腔沿其轴线方向具有第一端以及与所述第一端相对的第 二端; 进气及搅动风扇装置, 其在所述圆筒形内腔的第一端处附接到 所述机体, 所述进气及搅动风扇装置被设置成将外部气体吸入所述圆 筒形内腔中并搅动形成沿所述圆筒形内壁表面旋转且朝所述圆筒形内 腔的第二端行进的第一涡流; 热气流排出口, 其被设置成位于或邻近 所述圆筒形内腔的第二端的边缘处, 从而使得行进到所述热气流排出 口的第一涡流的一部分气体经所述热气流排出口排出到所述圓筒形内 腔之外; 涡流回流装置, 其被设置成位于所述圆筒形内腔的笫二端处, 以将第一涡流的未被排出所述热气流排出口的剩余气体回流成穿过第 一涡流的气旋内芯朝所述圆筒形内腔的第一端行进的第二涡流; 冷气 流排出口, 其被设置成位于所述圆筒形内腔的第一端的径向中心处或 者被设置成邻近并围绕所述径向中心, 从所述热气流排出口中排出的 气体的温度高于从所述冷气流排出口中排出的气体的温度。
优选地, 所述进气及搅动风扇装置包括多个进气及搅动叶片, 每 个所述进气及搅动叶片本身包括被制成一体的进气部分和搅动部分, 所述进气部分被设置成适于将外部气体吸入所述圆筒形内腔中, 从而 由所述搅动部分将吸入所述圆筒形内腔中气体搅动形成第一涡流。
优选地, 所述进气及搅动风扇装置包括: 环形件; 位于所述环形 件径向内侧的中心毂套; 以及连接所述环形件和所述中心毂套的多个 肋板; 其中所述环形件和所述中心毂套具有与所述圆筒形内腔相同的 中心轴线, 所述中心毂套与所述环形件的环形内壁之间的空间构成了 邻近并围绕所述圆筒形内腔的第一端的径向中心的所述冷气流排出 口, 且所述多个进气及搅动叶片均设置在所述环形件的外圆周壁上。
优选地, 每个所述肋板被设置成排气叶片的形式, 以在所述冷气 流排出口处形成负压, 从而便于第二涡流中的气体从所述冷气流排出 口中排出。
优选地, 所述进气及搅动风扇装置还包括: 设置在所述圆筒形内 腔之外的原动机; 和风扇主轴, 所述风扇主轴的一端连接于所述中心 毂套, 另一端连接于所述原动机的输出轴, 从而使得所述原动机通过 所述风扇主轴驱动所述中心毂套转动, 并带动所述肋板、 所述环形件 以及所述进气及搅动叶片转动。
优选地, 所述原动机沿所述圆筒形内腔的中心轴线设置在所述涡 流回流装置的外側, 所述涡流回流装置的中心处具有通孔, 以供所述 原动机的输出轴或所述风扇主轴从中穿过。
优选地, 所述进气及搅动风扇装置包括分离的进气扇和搅动扇, 其中所述进气扇包括多个进气叶片, 所述进气叶片被设置成适于将外 部气体吸入所述圆筒形内腔中, 所述搅动扇包括多个搅动叶片, 所述 搅动叶片被设置成适于搅动吸入所述圆筒形内腔中的气体以形成第一 ¾流
优选地, 所述进气及搅动风扇装置包括分离的进气扇传动轮和搅 动扇传动轮, 其中所述进气扇传动轮连接到所述进气扇, 以驱动所述 进气扇的进气叶片转动, 所述搅动扇传动轮连接到所述搅动扇, 以驱 动所述搅动扇的搅动叶片转动, 而且所述进气扇传动轮和所述搅动扇 传动轮分别通过各自的传动皮带或链条连接到各自的设置在所述涡旋 式冷热气体分离装置的机体之外的原动机。 滚动轴承设置在中心管座上; 所述中心管座通过辐板支架固定于所述 涡旋式冷热气体分离装置的机体; 而且所述中心管座的环形内壁表面 限定出的中心通道构成了位于所述圆筒形内腔的第一端的径向中心处 的所述冷气流排出口。
优选地, 所述进气及搅动风扇装置被设置成使得其搅动部分或搅 动叶片的外缘的线速度在 1/8马赫以上, 但小于 9/10马赫的范围内。 优选地, 所述进气及搅动风扇装置还包括进出气分隔罩, 所述进 出气分隔罩具有导流通道, 所述导流通道的一端设置成邻近或邻接所 述冷气流排出口, 以接收从所述冷气流排出口中排出的冷气流, 将其 导离所述涡旋式冷热气体分离装置。
第二方面, 本发明提供了一种涡旋式冷热气体分离装置, 包括: 具有圆筒形内壁表面的机体, 所述圆筒形内壁表面限定了圓筒形内腔, 所述圆筒形内腔沿其轴线方向具有笫一端以及与所述第一端相对的第 二端; 设置在所述机体外的风机; 进气口, 其设置在所述机体上且邻 近所迷圆筒形内腔的第一端, 所述风机的导风管连接到所述进气口, 而且所述进气口被设置成将所述风机输出的气流基本上沿所述圆筒形 内腔的圆周的切线方向喷入所述圆筒形内腔中, 形成沿所述圆筒形的 内壁表面旋转且朝所述圆筒形内腔的第二端行进的第一涡流; 热气流 排出口, 其被设置成位于或邻近所述圆筒形内腔的第二端的边缘处, 从而使得行进到所述热气流排出口的第一涡流的一部分气体经所述热 气流排出口排出到所述圆筒形内腔外; 涡流回流装置, 其被设置成位 于所述圆筒形内腔的第二端处, 以将第一涡流的未被排出所述热气流 排出口的剩余气体回流成穿过笫一涡流的气旋内芯朝所述圆筒形内腔 的第一端行进的第二涡流; 具有冷气流排出通道的冷气流排出中心管 座, 其设置在所述圆筒形内腔的第一端处并沿所述圆筒形内腔的中心 轴线轴向延伸到所述圆筒形内腔中, 所述冷气流排出通道接收第二涡 流使其与第一涡流隔离, 并将第二涡流的气体排出到所述涡旋式冷热 气体分离装置外, 从所述热气流排出口中排出的气体的温度高于从所 述冷气流排出通道中排出的气体的温度。
优选地, 根据本发明第二方面的所述涡旋式冷热气体分离装置还 包括具有中央通孔的管座固定法兰, 所述冷气流排出中心管座穿过所 述管座固定法兰的中央通孔并通过所述管座固定法兰固定到所述涡旋 式冷热气体分离装置的机体上。
优选地, 根据本发明第二方面的所述涡旋式冷热气体分离装置还 包括旋风轴套, 所述旋风轴套设置在所述圆筒形内腔中所述冷气流排 出中心管座的周围, 而且具有朝所述圆筒形内腔的第二端的方向渐缩 的截锥形部分, 以对第一涡流的旋转进行导引, 减少笫一涡流的紊流 损失。
优选地, 所述旋风轴套的截锥形部分的最大直径处延伸有一段圆 筒形部分, 所述圆筒形部分与所述截锥形部分的交界圆周在所述圆筒 形内腔的轴线方向上相对于所述圆筒形内腔的第一端的距离大于或等 于所述进气口的周界相对于所述圆筒形内腔的第一端的最大距离, 所 述交界圆周的半径被设置成使得所述进气口的最低点的延长线与所述 交界圆周基本上相切。
优选地, 所述旋风轴套的圆筒形部分的末端套接固定在所述管座 固定法兰的朝所述圆筒形内腔中凸出的环形台阶上, 所述环形台阶的 中央环孔构成了所述管座固定法兰的中央通孔的一部分。
优选地, 所述旋风轴套与所述冷气流排出中心管座之间设置有隔 热材料, 以对所述冷气流排出中心管座的中央通孔中的第二涡流与所 述旋风轴套径向外侧的笫一涡流进行热隔离。
优选地, 根据本发明第二方面的所述涡旋式冷热气体分离装置还 包括轴向式整流装置, 其固定在所述冷气流排出中心管座的延伸入所 述圆筒形内腔的末端部分上, 以对经过所述轴向式整流装置的第一涡 流进行整流, 从而减少第一涡流的紊流损失, 并且使得整流后的第一 涡流相比于整流前的第一涡流在圆周方向上各点处的旋涡气体流量更 加均匀。
优选地, 所述轴向式整流装置被构造成盘旋碟状构件, 所述盘旋 碟状构件具有中央环状件, 所述中央环状件的外圆周表面上固定有垂 直于该外圆周表面径向向外延伸出的沿圆周方向均匀分布的多个扇形 导流片, 其中所述多个扇形导流片被设置成使得相邻的两个所述扇形 导流片之间形成允许气流通过的楔形间隙。
优选地, 每个所述扇形导流片尺寸和形状皆相同; 每个所述扇形 导流片的扇形角皆为 40° ~ 80° 之间; 相邻两个所述扇形导流片在轴 向投影上的重叠部分的面积为每个所述扇形导流片的面积的 1/3 - 2/3 之间; 各个所述楔形间隙的尖部的楔形角以及最窄处的间距被设置成 有利于减少第一涡流的紊流损失, 并且使得整流后的第一涡流相比于 整流前的第一涡流在圆周方向上各点处的旋涡气体流量更加均匀。
优选地, 每个所述扇形导流片为平板式导流片或具有曲线截面的 导流片。 优选地, 所述风机是高速风机, 其稳定输出气流的速度在 1/8马赫 以上, 但小于 9/10马赫的范围内。
第三方面, 本发明提供了一种涡旋式冷热气体分离装置, 包括: 具有圆筒形内壁表面的机体, 所述圆筒形内壁表面限定了圆筒形内腔, 所述圆筒形内腔沿其轴线方向具有第一端以及与所述第一端相对的笫 二端; 设置在所述机体外的风机; 具有进气口的端部进气整流罩, 其 在所述圓筒形内腔的第一端处固定到所述机体, 所述风机的导风管连 接到所述进气口以将所述风机输出的气流喷入到所述端部进气整流罩 中, 所述端部进气整流罩被设置成将所述风机输出的气流形成初始转 动气流并将其整流成沿所述圆筒形内壁表面旋转且朝所述圆筒形内腔 的第二端行进的第一涡流; 热气流排出口, 其被设置成位于或邻近所 述圆筒形内腔的第二端的边缘处, 从而使得行进到所述热气流排出口 的第一涡流的一部分气体经所述热气流排出口排出到所述圆筒形内腔 夕卜; 涡流回流装置, 其被设置成位于所述圆筒形内腔的第二端处, 以 将第一涡流的未被排出所述热气流排出口的剩余气体回流成穿过第一 涡流的气旋内芯朝所述圆筒形内腔的笫一端行进的第二涡流; 具有冷 气流排出通道的冷气流排出中心管座, 其设置在所述圆筒形内腔的第 一端处并沿所述圆筒形内腔的中心轴线轴向向内延伸到所述圆筒形内 腔中、 轴向向外延伸到所述端部进气整流罩外, 所述冷气流排出通道 接收第二涡流使其与第一涡流隔离, 并将第二涡流的气体排出到所述 涡旋式冷热气体分离装置外, 从所述热气流排出口中排出的气体的温 度高于从所述冷气流排出通道中排出的气体的温度。
优选地, 所述端部进气整流罩包括: 环形壳壁, 其内限定有相比 于所述涡旋式冷热气体分离装置的机体的圆筒形内腔直径更大的空 腔, 所述空腔具有与所述圆筒形内腔相同的中心轴线且与所述圓筒形 内腔直接连通, 所述进气口设置在所述环形壳壁上, 而且所述进气口 被设置成将所述风机输出的气流基本上沿所述端部进气整流罩的空腔 的圆周的切线方向喷入所述端部进气整流罩的空腔中, 形成初始转动 气流; 以及径向整流装置, 其设置在所述端部进气整流罩的空腔中且 与所述端部进气整流罩的空腔具有相同的中心轴线, 所述径向整流装 置被设置成接收初始转动气流并将其整流成第一涡流。
优选地, 所述端部进气整流罩还包括具有中央通孔的管座固定法 兰, 所述冷气流排出中心管座穿过所迷管座固定法兰的中央通孔并通 过所述管座固定法兰固定到所述端部进气整流罩的环形壳壁的外側 端, 而且所述径向整流装置固定在所述管座固定法兰的内侧表面上。
优选地, 所述端部进气整流罩还包括端部进气整流罩固定法兰, 所述端部进气整流罩的环形壳壁的内側端固定到所述端部进气整流罩 固定法兰的外缘部, 所述端部进气整流罩固定法兰的环形台阶在所述 圆筒形内腔的第一端处固定到所述机体的外圆周壁上。
优选地, 所述径向整流装置具有基板, 在所述基板的一个侧表面 上固定有垂直于所述侧表面且沿圆周方向均匀分布的多个曲线形导流 片, 所述曲线形导流片被设置成将所述初始转动气流整流成旋转直径 缩小的第一涡流, 并且使得第一涡流相比于所述初始转动气流不但流 速更快, 而且紊流损失更小, 在圆周方向上各点处的旋涡气体流量更 加均匀。
优选地, 所述径向整流装置的相邻两个曲线形导流片之间形成允 许气流通过的渐缩的楔形间隙, 所迷楔形间隙的尖部最窄处被设置成 能够基本上沿所述圓筒形内腔的圓周的切线方向喷出经整流的气体, 形成第一涡流。
优选地, 所述径向整流装置的每个曲线形导流片被设置成在垂直 于所述基板的轴向方向上具有彼此相同的轴向宽度, 所迷轴向宽度基 本上等于所述端部进气整流罩的空腔的轴向长度。
优选地, 所述径向整流装置的所述多个曲线形导流片的轴向宽度 上的等分平面与所述进气口的中心轴线处于同一平面上; 和 /或所述进 气口的最低点的延长线与所述多个曲线形导流片的外缘的外包络圆周 线基本上相切; 和 /或所述多个曲线形导流片的内缘的内包络圆周线与 所述圆筒形内腔同中心, 且直径等于或小于所述圓筒形内腔的直径。
优选地, 所述径向整流装置的每个曲线形导流片的沿导流方向的 截面形状由内表面曲线、 外表面曲线以及端部连接过渡线围合而成, 其中所述内表面曲线由一段椭圆曲线区段、 一段维托辛斯基曲线区段 以及位于气流出口处的一段直线区段平滑连接而成, 所述外表面曲线 由一段圆孤曲线区段和接近气流出口处的一段直线区段平滑连接而 成。
优选地, 根据本发明第三方面的所述涡旋式冷热气体分离装置还 包括具有中央通孔的管座固定法兰, 所述冷气流排出中心管座穿过所 述管座固定法兰的中央通孔并通过所述管座固定法兰固定到所述端部 进气整流罩的环形壳壁的外侧端; 所述径向整流装置通过所述基板固 定在所述管座固定法兰的内側表面上的环形凹陷部中, 所述环形凹陷 部的凹陷深度基本上等于所述基板的厚度。
优选地, 所述风机是高速风机, 其稳定输出气流的速度在 1/8马赫 以上, 但小于 9/10马赫的范围内。
第四方面, 本发明提供了一种涡旋式冷热气体分离装置, 其包括 机体、 热气流排出口、 涡流回流装置和冷气流排出口, 其中所迷涡流 回流装置被设置成具有内凹曲面形状的气流聚焦反射面, 而且所述热 气流排出口设置在所述涡流回流装置中所述气流聚焦反射面的径向外 側, 从而使得经过所述热气流排出口的第一涡流的未被排出的剩余气 体沿所述气流聚焦反射面行进时, 气旋半径逐渐收缩, 旋转速度逐渐 加快, 加强了离心力, 并被第一涡流的气旋内芯负压吸引, 从而形成 穿过第一涡流的气旋内芯朝所述圆筒形内腔的笫一端回流的笫二涡 流。
优选地, 所述气流聚焦反射面为内凹抛物面形状的气流聚焦反射 面, 或内凹椭圆球面形状的气流聚焦反射面, 或内凹圆球面形状的气 流聚焦反射面。
优选地, 在所述气流聚焦反射面的外側设置有隔热层, 以避免所 述气流聚焦反射面处的气流温度受外界影响。
优选地, 根据本发明第四方面的所述涡旋式冷热气体分离装置还 包括将外部气体输入所述机体内的圆筒形空腔内形成第一涡流的进气 装置。
在根据本发明各个方面的涡旋式冷热气体分离装置中, 优选地, 所述涡流回流装置被设置成具有内凹曲面形状的气流聚焦反射面, 而 且所述热气流排出口设置在所述涡流回流装置中所述气流聚焦反射面 的径向外侧, 从而使得经过所述热气流排出口的第一涡流的未被排出 的剩余气体沿所述气流聚焦反射面行进时, 气旋半径逐渐收缩, 旋转 速度逐渐加快, 加强了离心力, 并被第一涡流的气旋内芯负压吸引, 从而形成穿过第一涡流的气旋内芯朝所迷圆筒形内腔的第一端回流的 第二 流。 在根据本发明各个方面的涡旋式冷热气体分离装置中, 优选地, 所述气流聚焦反射面为内凹抛物面形状的气流聚焦反射面, 或内凹椭 圆球面形状的气流聚焦反射面, 或内凹圆球面形状的气流聚焦反射面。
在根据本发明各个方面的涡旋式冷热气体分离装置中, 优选地, 在所述气流聚焦反射面的外侧设置有隔热层, 以避免所述气流聚焦反 射面处的气流温度受外界影响。
在根据本发明各个方面的涡旋式冷热气体分离装置中, 优选地, 所述涡流回流装置在所述圆筒形内腔的第二端处被可拆卸地安装于所 述涡旋式冷热气体分离装置的机体; 所述热气流排出口由所述涡流回 流装置的朝向所述圆筒形内腔的側面上的一圈环形凹槽构成; 而且所 述环形凹槽的径向外壁上具有至少一个通向外部的开口。
在根据本发明各个方面的涡旋式冷热气体分离装置中, 优选地, 所述环形 IHJ槽内设置有控制热气流排出量的内阀门环, 所述内阀门环 的外周具有朝所述圆筒形内腔的方向渐缩的截锥形表面, 所述内阀门 环的截锥形表面与所述机体的端面边缘上伸入所述环形 1HJ槽内的相应 截锥形表面共同限定了所述热气流排出口的开度, 从而使得能够通过 调节所述内阀 I、 1环在所述环形凹槽内所处的轴向位置来调节热气流排 气量。
在根据本发明各个方面的涡旋式冷热气体分离装置中, 优选地, 所述涡流回流装置在所述圆筒形内腔的第二端处固接于所述涡旋式冷 热气体分离装置的机体, 或者, 所述涡流回流装置是所述涡旋式冷热 气体分离装置的机体在所述圆筒形内腔的第二端处继续延伸出的整体 式部分。
在根据本发明各个方面的涡旋式冷热气体分离装置中, 优选地, 所述热气流排出口由所述涡流回流装置上的至少一个开口构成。
在根据本发明各个方面的涡旋式冷热气体分离装置中, 优选地, 所述涡旋式冷热气体分离装置还包括用于调节热气流排气量的阀片装 置, 所述阀片装置包括手轮、 杆体、 固定于所迷涡流回流装置的外侧 的螺孔座、 以及具有至少一个阀爪的阀爪构件, 其中所述杆体在靠近 其一端的区段上形成为螺杆段, 所述螺杆段的一部分可操作地旋入固 定于所述螺孔座中, 而所述杆体的另一端固定到所述手轮上; 所述阀 爪构件的一端连接到所述手轮或所述杆体, 使得所述阀爪构件可随所 述手轮和所述杆体一起轴向运动, 但不随所述手轮和所述杆体转动; 每个所述阀爪的末端设置有阀片, 所述阀片与所述涡流回流装置上的 所述至少一个开口的间距限定了所述热气流排出口的开度, 从而使得 能够通过所述阀片装置来调节热气流排气量。
在根据本发明各个方面的涡旋式冷热气体分离装置中, 优选地, 在所述涡旋式冷热气体分离装置的机体外设置有散热或冷却装置, 以 冷却机体壁, 从而通过所述机体壁的热传导来冷却沿所述机体的圆筒 形内壁表面旋转的热气流; 或者在所述涡旋式冷热气体分离装置的机 体外设置有隔热装置, 以减少机体壁向周围环境的热散失, 从而减少 沿所述机体的圆筒形内壁表面旋转的热气流向周围环境的热散失; 或 者在所述涡旋式冷热气体分离装置的机体外设置有隔热冷却复用装 置, 其能够被可操作设置成用来冷却机体壁, 从而通过所述机体壁的 热传导来冷却沿所述机体的圆筒形内壁表面旋转的热气流, 或用来减 少机体壁向周围环境的热散失, 从而减少沿所述机体的圆筒形内壁表 面旋转的热气流向周围环境的热散失。
根据下文对本发明优选实施例的详细描述并结合附图, 本领域技 术人员将会更加明了本发明的上述以及其他目的、 优点和特征。
附图说明
后文将会参照附图并以示例性而非限制性的方式对本发明的优选 实施例进行详细描述, 附图中相同的附图标记标示了相同或类似的部 件或部分, 而且这些附图未必是按比例绘制的。 附图中:
图 1是现有技术的利用兰克-赫尔胥效应进行冷热气体分离的涡流 管的示意图;
图 2 是根据本发明第一实施例的涡旋式冷热气体分离装置的示意 性側视图;
图 3是沿图 2 中的剖切线 A - A获取的根据本发明笫一实施例的 涡旋式冷热气体分离装置的示意性剖视图;
图 4和图 5分别是从不同视角观察的图 2涡旋式冷热气体分离装 置的示意性分解透视图;
图 6 是根据本发明第一实施例的一个变型的涡旋式冷热气体分离 装置的示意性剖视图, 其中示出了该涡旋式冷热气体分离装置内的气 体流动过程, 而且该涡旋式冷热气体分离装置的气流聚焦反射面为内 凹圆球面形^ ;
图 7是根据本发明第一实施例的另一个变型的涡旋式冷热气体分 离装置的示意性剖视图, 其中该涡旋式冷热气体分离装置的气流聚焦 反射面为内凹椭圆球面形状;
图 8 是根据本发明第二实施例的涡旋式冷热气体分离装置的示意 性剖视图;
图 9是沿图 8中的箭头 B所示方向观察的涡旋式冷热气体分离装 置的示意性端视图, 其中还示出了设置在涡旋式冷热气体分离装置的 机体外的两个独立的原动机;
图 10是图 8涡旋式冷热气体分离装置的示意性局部剖视图, 其中 示出了该涡旋式冷热气体分离装置的热气流排出口以及涡流回流装置 附近的气体流动路径;
图 1 1是沿图 8中的箭头 C所示方向观察的涡旋式冷热气体分离装 置的示意性端视图;
图 12是根据本发明第三实施例的涡旋式冷热气体分离装置的示意 性剖视图;
图 13是图 12涡旋式冷热气体分离装置的涡流形成过程示意图; 图 14是图 12涡旋式冷热气体分离装置的示意性剖视图, 其中示 出了该涡旋式冷热气体分离装置内的气体流动过程, 而且为清楚起见, 该图中省略了旋风轴套内优选隔热材料的剖面线;
图 15是根据本发明第三实施例的一个变型的涡旋式冷热气体分离 装置的示意性局部剖视图, 其中该涡旋式冷热气体分离装置增设了一 个轴向式整流装置, 而且该图中还示出了设置在涡旋式冷热气体分离 装置的机体外的风机;
图 16是图 15 涡旋式冷热气体分离装置所用的轴向式整流装置的 示意性透视图;
图 17是图 15 涡旋式冷热气体分离装置所用的轴向式整流装置的 示意性侧视图;
图 18是图 15 涡旋式冷热气体分离装置所用的轴向式整流装置的 示意性端视图;
图 19是图 15 涡旋式冷热气体分离装置所用的轴向式整流装置的 示意性 1/2周长平面展开图; 图 20是根据本发明第四实施例的涡旋式冷热气体分离装置的示意 性剖视图;
图 21是图 20涡旋式冷热气体分离装置所用的径向式整流装置的 示意性透视图;
图 22是图 20涡旋式冷热气体分离装置的涡流形成以及径向整流 过程示意图;
图 23是图 20涡旋式冷热气体分离装置所用的径向式整流装置的 示意性平面图;
图 24是图 20涡旋式冷热气体分离装置可用的另一种径向式整流 装置的示意性平面图;
图 25是图 20涡旋式冷热气体分离装置的示意性分解透视图; 图 26是组装完成的图 20涡旋式冷热气体分离装置的示意性透视 图;
图 27是根据本发明第四实施例的一个变型的涡旋式冷热气体分离 装置的示意性剖视图, 其中的气流聚焦反射面为内凹圓球面形状;
图 28是类似于图 27的涡旋式冷热气体分离装置的示意性剖视图, 但其中的气流聚焦反射面为内凹椭圆球面形状;
图 29是类似于图 27的涡旋式冷热气体分离装置的示意性剖视图, 但其中的气流聚焦反射面为内凹抛物面形状;
图 30是图 27 - 29的涡旋式冷热气体分离装置的示意性部分分解 透视图(由于气流聚焦反射面在图 30中不可见,故可仅用该图来表示图 27 - 29中类似的涡旋式冷热气体分离装置) 。
具体实施方式
参见图 2 - 5 , 其中分别示出了根据本发明第一实施例的涡旋式冷 热气体分离装置 100 的示意性側视图、 剖视图以及从两个不同视角观 察的示意性分解透视图。 图 6和图 7是根据本发明第一实施例的变型 的涡旋式冷热气体分离装置 100'和 100"的示意性剖视图, 其中使用了 不同形状的气流聚焦反射面。
如图 2 - 7所示, 从运行机理上考虑, 根据本发明第一实施例的涡 旋式冷热气体分离装置 100包括机体 1 10、 进气及搅动风扇装置 120、 热气流排出口 130、 涡流回流装置 140以及冷气流排出口 150。
机体 1 10具有圆筒形内壁表面 1 1 1, 其限定了圆筒形内腔 1 12。 圆 筒形内腔 112 沿其轴线方向具有第一端 113 以及与所述第一端相对的 第二端 114。
进气及搅动风扇装置 120在所述圆筒形内腔 112的第一端 113处 附接到机体 110, 并且被设置成将外部气体吸入圆筒形内腔 112中, 以 搅动形成沿圆筒形内壁表面 111旋转且朝圆筒形内腔 112的第二端 114 行进的第一涡流。
热气流排出口 130被设置成邻近所述圆筒形内腔 112的第二端 114 的边缘 115处, 从而使得行进到热气流排出口 130的第一涡流的一部 分气体经热气流排出口 130排出到圆筒形内腔 112之外。 热气流排出 口 130 附近优选设置成使得热气流被圆滑平顺地排出, 以便减少紊流 损失。
涡流回流装置 140被设置成位于圓筒形内腔 112的第二端 114处, 以将第一涡流的未被排出热气流排出口 130 的剩余气体反射成穿过第 一涡流的气旋内芯朝圆筒形内腔 112的第一端 113回流的第二涡流。
冷气流排出口 150被设置成邻近并围绕圆筒形内腔 112的第一端
113的径向中心。 优选地, 涡旋式冷热气体分离装置 100还包括设置于 热气流排出口 130 处或附近的调节热气流排气量的调节装置。 通过调 节热气流的排气量, 可以在一定范围内调节排出的冷气流的温度。
在本发明的第一实施例中, 进气及搅动风扇装置 120 优选包括多 个进气及搅动叶片 121。每个进气及搅动叶片 121本身包括被制成一体 的进气部分 122和搅动部分 123,其中进气部分 122被设置成适于将外 部气体吸入圆筒形内腔 112 中, 从而由搅动部分 123将吸入圆筒形内 腔 112 中的气体搅动成第一涡流。 进气及搅动叶片 121 优选使用高强 度耐热防锈轻合金材料制成, 例如高强度铝合金或钛钢。 为进一步达 到强力旋涡气流发生效果, 进气及搅动叶片 121 可以被制得较长, 而 且涡旋式冷热气体分离装置 100的圆筒形内壁表面 111 可以被制得略 有很小锥度(例如小于 1° 或 0.5° 或更小), 这种进气及搅动叶片 121 与略有锥度的圆筒形内壁表面 111 相匹配, 起到旋涡气流增速增密的 作用。 设计进气及搅动叶片 121 的具体形状时, 气体的吸入和排出的 流量不必太大。
更具体地, 进气及搅动风扇装置 120还优选包括环形件 124、 位于 环形件 124径向内侧的中心毂套 125、以及连接环形件 124和中心毂套 125的多个肋板 126。环形件 124和中心毂套 125优选与圆筒形内腔 1 12 具有相同的中心轴线。 中心毂套 125与环形件 124 的环形内壁之间的 空间构成了涡旋式冷热气体分离装置 100的冷气流排出口 150。 而且, 多个进气及搅动叶片 121均设置在环形件 124的外圆周壁上。
更优选地, 每个肋板 126 被设置成排气叶片的形式, 以在冷气流 排出口 150 处形成一定的负压, 从而便于第二涡流中的气体从冷气流 排出口 150 中排出。 此处由排气叶片形成的负压不宜过大, 能够便于 第二涡流中的气体从冷气流排出口 150 中排出即可, 不能对圆筒形内 腔 1 12中的第一涡流造成影响。
如本领域技术人员均可认识到的, 进气及搅动风扇装置 120 还可 包括原动机 128 , 优选是电动机, 更优选地是输出转速能够达到 10000 rpm以上的高速电动机, 而且其转速优选是可以调节的, 以控制排出的 冷风流的温度和流量。 在本发明的笫一实施例中, 原动机 128 设置在 圆筒形内腔 1 12之外, 其输出轴通过进气及搅动风扇装置 120的风扇 主轴 127驱动中心毂套 125转动, 并带动肋板 126、 环形件 124以及进 气及搅动叶片 121 转动。 更具体地, 原动机 】28可沿圆筒形内腔 1 12 的中心轴线设置在涡流回流装置 140 的外側。 在此情况下, 涡流回流 装置 140的中心处应设置一通孔 141 ,以供原动机 128的输出轴或风扇 主轴 127从中穿过从而连接到中心毂套 125。 在此, 本领域技术人员还 应认识到, 从原动机 128到中心毂套 125 的传动以及进一步到进气及 搅动叶片 121 的传动还可有其他形式, 例如一种更复杂的情况是, 原 动机 128的输出轴与风扇主轴 127 间还可具有变速机构 (例如齿轮变 速机构或皮带轮变速结构等等) 。
原动机 128 转速以及中间传动机构的变速比 (如果存在中间传动 机构的话) 的选择将决定进气及搅动叶片 121 转动的角速度, 而进气 及搅动叶片 121 的转动半径决定了当进气及搅动叶片处于特定角速度 时的叶片线速度, 这是本领域技术人员熟知的并且容易根据具体应用 的要求具体选择和设计原动机的转速、 中间传动机构的变速比以及进 气及搅动叶片 121 的转动半径。 在本发明的一些实施例中, 特别地, 这些选择和设计应该使得进气及搅动风扇装置的搅动部分或搅动叶片 的外缘的线速度在 1/8马赫以上(实际上, 该速度基本上等于所形成的 第一涡流的气盘外缘的线速度, 受限空间内的涡流气盘外缘的线速度 通常也被简称为涡流的线速度), 例如具体地可为 1/7马赫、 1/6马赫、 1/5马赫、 1/4马赫、 1/3马赫、 1/2马赫、 1/2、 2/3马赫、 3/4马赫、 4/5 马赫、 5/6马赫、 6〃马赫、 7/8马赫、 甚至接近 9/10马赫(本领域的技 术人员已公知的所谓 "音障临界值" ) , 以及上述给出的任何两个数 值点之间的任一具体数值或任意区间。 再例如, 定性地而非精确地, 可以认为在本发明的装置中, 当第一涡流的线速度接近 9/10马赫 (音 障临界值) 时, 得到的冷气流相对于进气气流温度约可降低 60。C , 而 冷热气体分离的效果与第一涡流的线速度的平方大致成正比, 随着第 一涡流线速度的降低, 冷热气体分离的效果还会受到其它诸多因素的 影响。 因此例如当第一涡流的线速度为 1/3马赫时, 可以预期得到相对 于进气气流温度降低了大约 6 °C - 7°C的冷气流。 在此需要强调的是, 以上数值以及定性关系并不是本领域中已知的, 而是本申请的发明人 深刻认识兰克-赫尔胥效应后发现以及创造性地设计出的。 故此, 在本 发明的各个优选实施例中并不使用高压的压缩气体作为气体源, 也不 强调喷入气体的压力, 而是强调涡流转动的离心力, 并继而以涡流转 动的线速度和可降低的冷气流温度作为一个设计基准, 设计出全新结 构的涡旋式冷热气体分离装置。 根据本发明的涡旋式冷热气体分离装 置, 圆筒形内腔 1 12的直径可以高达例如 100 mm、 200 mm、 300 mm、 400 mm , 500 mm , 1 m、 2 m甚至更大, 而且有利于满足大风量、 低风 速、 大口径的应用需求。
在本发明的第一实施例中, 进气及搅动风扇装置 120 还可包括进 出气分隔罩 160。 进出气分隔罩 160具有导流通道 161, 其一端被设置 成邻近或邻接冷气流排出口 150,以接收从冷气流排出口 150中排出的 冷气流, 将其导送到远离圆筒形内腔 1 12 之外的一定距离处, 即将冷 气流最终排出到涡旋式冷热气体分离装置 100 之外进行处置或利用, 避免排出的冷气流被重新吸入涡旋式冷热气体分离装置 100。 因此, 从 冷气流排出功能方面考虑, 也可将进出气分隔罩 160 的导流通道 161 视为冷气流排出口 150 的一部分。 此外, 本领域技术人员也均可认识 到, 这种进出气分隔罩的末端开口可被设置成喇八口形或其他任何合 适的形状或具有转接接头, 以利于冷气流的扩散或收集利用; 而且也 可在该进出气分隔罩的导流通道筒壁外部设置一些肋条、 肋板和 /或环 形圈等构件,使进出气分隔罩 160还同时用作进气及搅动风扇装置 120 的进气及搅动叶片 121的防护罩和 /或进气导流罩和 /或冷气流排出导流 罩等功能。 这些附加构件的设置是本领域技术人员都能容易地理解和 实施的, 对此本文不再赘述。
特别地, 在本发明的各个优选实施例中, 涡流回流装置 140 优选 被设置成具有内凹抛物面形状的气流聚焦反射面 142(例如可参见图 8、 图 12、 图 20 ) , 或内凹椭圆球面形状的气流聚焦反射面 142 (例如可 参见图 7 ) , 或内凹圆球面形状的气流聚焦反射面 142 (例如可参见图 3、 图 6 ) , 而且热气流排出口 130设置在涡流回流装置 140中所述反 射面 142的径向外側, 从而使得经过热气流排出口 130的第一涡流的 未被排出的剩余气体沿气流聚焦反射面 142 行进时, 气旋半径逐渐收 缩, 旋转速度逐渐加快, 加强了离心力, 并被第一涡流的气旋内芯负 压吸引, 从而形成穿过第一涡流的气旋内芯朝圆筒形内腔 1 12 的第一 端 1 13 回流的第二涡流。 根据本文的公开内容, 本领域技术人员也应 认识到, 本发明中的涡流回流装置 140 也可采用具有其他能够通过涡 流的反射将涡流汇集到涡旋式冷热气体分离装置 100的圆筒形内腔 1 12 的芯部 (即圆筒形内腔 1 12 的中心轴线周围第一涡流的气旋内芯内的 部分) 的内凹曲面形状的气流聚焦反射面。 第一涡流的气旋内芯的直 径例如一般不超过圆筒形内腔 1 12的内直径的 3/4、 或 2/3、 或 1/2、 或 1/3、 或 1/4等等。
优选地, 在本发明的各个优选实施例中, 这里例如参见图 3 所示 的笫一实施例, 其中, 涡流回流装置 140在圓筒形内腔 1 12的第二端 1 14处被可拆卸地安装于涡旋式冷热气体分离装置的机体 1 10。 热气流 排出口 130优选由涡流回流装置 140的朝向圆筒形内腔 1 12的那个侧 面上的一圈环形凹槽 143构成。 所述环形凹槽 143 的径向外壁上具有 至少一个通向外部的开口 144。环形凹槽 143内设置有控制热气流排出 量的内阀门环 132。 内阀门环 132的外周具有朝圆筒形内腔 1 12的方向 渐缩的截锥形表面, 该截锥形表面与机体 1 10的端面边缘 1 15上伸入 环形凹槽 143 内的相应截锥形表面共同限定了热气流排出口 130的开 度, 从而使得能够通过调节所述内阀门环在所述环形凹槽内所处的轴 向位置来调节热气流排气量。 例如, 如图 4所示, 内阀门环 132的环 体上优选可以延伸出各个在圆周方向上均勾分布的杆柱, 这些杆柱可 延伸穿过反射回流装置 140 的壳体罩上的通孔, 从而便于以各种方式 调节内阀门环 132的轴向位置。 调节这种内阀门环 132轴向位置的具 体技术本身是本领域人员熟知且容易实现的 (例如螺紋方式, 紧配合 方式等等) , 这里不再赘述。
优选地, 在本发明的各个优选实施例中, 在涡旋式冷热气体分离 装置的机体 110外设置有用于散热或冷却的装置 170(例如可以水冷却 夹层水箱) , 以冷却机体壁, 从而通过机体壁的热传导来冷却沿机体 110的圆筒形内壁表面 111旋转的热气流; 或者替代性地, 在涡旋式冷 热气体分离装置的机体 110外设置有用于隔热的装置 170 (例如可以是 抽真空的真空夹层壁) , 以减少机体壁向周围环境的热散失, 从而减 少沿机体 110的圆筒形内壁表面 111 旋转的热气流向周围环境的热散 失; 或者替代性地, 在涡旋式冷热气体分离装置的机体 110 外设置有 具有隔热冷却复用功能的装置 170(例如可以是既适于抽真空又适于注 入冷却水或其他冷却介质的夹层壁, 用户可根据需要来选择其具体功 能) , 其能够被可操作设置成用来冷却机体壁, 从而通过机体壁的热 传导来冷却沿机体 110的圆筒形内壁表面 111旋转的热气流, 或用来 减少机体壁向周围环境的热散失从而减少沿机体 110 的圆筒形内壁表 面 111旋转的热气流向周围环境的热散失。
图 8- 11 示出了根据本发明第二实施例的涡旋式冷热气体分离装 置 200的各种示意性视图。
如图 8- 11 所示, 根据本发明第二实施例的涡旋式冷热气体分离 装置 200同样包括机体 110、 进气及搅动风扇装置 120、 热气流排出口 130、 涡流回流装置 140以及冷气流排出口 150。
与图 2-7中所示的第一实施例的一个主要不同在于, 在根据本发 明笫二实施例的涡旋式冷热气体分离装置 200 中, 进气及搅动风扇装 置 120包括分离的进气扇 210和搅动扇 220。进气扇 210包括多个进气 叶片 211, 其被设置成适于将外部气体吸入圆筒形内腔 112中。 搅动扇 220包括多个搅动叶片 221。 其被设置成适于将吸入圆筒形内腔 112中 的气体搅动成第一涡流。 与第一实施例中讨论的原理相同, 在设计进 气叶片 211和搅动叶片 221 的具体形状时, 进气叶片 211 的气体吸入 和排出的流量不必太大, 但是要让搅动叶片 221 具有强力搅动成涡效 果, 因此进气叶片 211 优选设计得较短, 而搅动叶片 221 优选设计得 较长。 进气叶片 211 和搅动叶片 221 可以采用相同或者不同的材料制 成, 例如都采用同种高强度耐热防锈轻合金材料制成 (例如都采用高 强度铝合金或钛钢之一制成) , 或者采用不同的高强度耐热防锈轻合 金材料制成(例如进气叶片 21 1采用高强度铝合金制成, 搅动叶片 221 采用钛钢制成) ; 或者, 进气叶片 21 1 采用普通强度的材料制成, 而 搅动叶片 221 采用高强度耐热防锈轻合金材料制成。 进气扇 210和搅 动扇 220优选分别由分离的进气扇传动轮 212和搅动扇传动轮 222驱 动。 现参见图 8和图 9 , 其中可以看出进气扇传动轮 212和搅动扇传动 轮 222分别通过各自的传动皮带或链条 213和 223连接到各自的设置 在涡旋式冷热气体分离装置 200的机体 1 10之外的原动机 214和 224。 这种设置使得进气扇 210和搅动扇 220能够被独立地控制, 在应用上 具有更大的灵活性。 在图 9 中还示出了涡旋式冷热气体分离装置 200 可具有的底座 270,涡旋式冷热气体分离装置 200的用于散热或冷却的 装置 170或机体 1 10以及原动机 214和 224等均固定在该底座 270上。
更具体地, 在本发明的第二实施例中, 进气扇传动轮 212 和搅动 上。 中心管座 230通过辐板支架 ^ 231 固定于涡旋式冷热气体分离装置 200的机体 1 10上。中心管座 230的环形内壁表面限定出的中心通道构 成了位于圆筒形内腔 1 12的第一端 1 13 的径向中心处的冷气流排出口 150。
与图 2 - 7中所示的第一实施例的另一个主要不同在于, 在根据本 发明第二实施例的涡旋式冷热气体分离装置 200中,涡流回流装置 140 在圆筒形内腔 1 12 的第二端 1 14处是固接于涡旋式冷热气体分离装置 200的机体 1 10的; 或者, 涡流回流装置 140是涡旋式冷热气体分离装 置 200的机体 1 10在圆筒形内腔 1 12的第二端 1 14处继续延伸出的一 个整体式部分。 在这种方案中, 热气流排出口 130 优选由涡流回流装 置 140上的邻近机体 1 10在圆筒形内腔 1 12的第二端 1 14处的边缘的 至少一个开口构成。 所述至少一个开口优选为在圆周方向上均勾分布 的多个开口, 例如 3个以上, 或 4个以上, 或 5个以上, 或 6个以上, 或 7个以上, 或 8个以上, 或 9个以上, 或 10个以上, 在图 8 - 1 1所 示的示例中为 8个。
为适应热气流排出口 130 的这种新的形式, 在根据本发明第二实 施例的涡旋式冷热气体分离装置 200 中相应采用了另一种形式的调节 热气流排气量的调节装置, 其包括用于调节热气流排气量的阀片装置
240。 所述阀片装置 240可包括手轮 241、 杆体 242、 螺孔座 244、 阀爪 构件 245。
杆体 242在靠近其一端的区段上制有螺紋, 形成螺杆段 243。 螺杆 段 243 的一部分可操作地旋入固定于涡流回流装置 140外側的螺孔座 244中。 杆体 242的另一端固定到手轮 241上, 优选是固定到手轮 241 的凸出的连接部中。
阀爪构件 245的一端连接到手轮 241或杆体 242 ,连接方式优选应 使得阀爪构件 245可随手轮 241 和杆体 242—起轴向运动, 但不随手 轮 241和杆体 242转动。 具体地, 例如, 可在杆体 242的靠近螺杆段 243的部位处形成一个直径增大的台阶段,杆体 242在台阶段的相反于 螺杆段的一側为光杆段, 光杆段的末端被固定在手轮 241 的凸出的连 接部中的固定孔中; 而阀爪构件 245 通过其端板上的中心通孔间隙配 合地套在杆体 242 的台阶段与手轮 241 的凸出的连接部之间的光杆段 上 (显然, 端板中心通孔的直径优选大于光杆段的直径, 但小于台阶段 的直径和手轮 241的凸出的连接部的直径), 并且保证杆体 242的台阶 段与手轮 241 的凸出的连接部之间的间距基本等于或略大于阀爪构件 245的端板厚度, 这样就可使得阀爪构件 245可随手轮 241和杆体 242 一起轴向运动, 但基本上不随手轮 241 和杆体 242转动 (这里暂时忽 略了摩擦力的影响) 。
阀爪构件 245 的另一端延伸出至少一个阀爪, 其数量优选与构成 热气流排出口 130的开口数量相同, 每个阀爪 245 的末端设置有相应 的阀片 246。
由于阀片 246 与涡流回流装置上的开口的间距限定了热气流排出 口 130的开度, 因而可以通过转动该阀片装置的手轮 241 来调节螺杆 段 243旋入螺孔座 244 中的深度, 以调节阀片 246所处的轴向位置, 从而实现调节热气流排出口 130 开度的目的 (即实现了调节热气流排 气量的目的) 。
此外, 阀片装置 240还可包括一个带有若干通孔的后盖法兰 247, 其位于手轮 241和阀爪 245之间。 后盖法兰 247直接或间接地固定到 机体 1 10, 优选是直接固定到用于散热或冷却的装置 170的延伸部上, 继而间接地固定到机体 1 10。为了避免排出的热气流不恰当地加热涡流 回流装置 140, 优选还可以设置一个热气流排出隔离罩 248。 筒状的热 气流排出隔离罩 248设置在涡流回流装置 140的外侧。 特别地, 在热 气流排出隔离罩 248的尾端开有和阀爪滑动配合的缺口槽 249 , 以限制 阀爪构件 245可能出现的转动 (例如摩擦力可能导致阀爪构件 245有 小的转动趋势) , 保持阀爪和热气流排出口 130 的覆盖位置有相对一 致的角度(为便于理解, 可同时参考图 25 , 其中明显地示出了缺口槽 249 ) 。 本领域技术人员均可认识到用于调节热气流排气量的装置还可 以有很多种其他形式, 在此不再——列举。
在根据本发明第二实施例的涡旋式冷热气体分离装置 200 中还可 为进气扇 210设置一个独立的防护罩 260 , 因而, 如图 8所示, 涡旋式 冷热气体分离装置 200的进出气分隔罩 160上未设置肋条、 肋板和 /或 环形圏等构件。 这些结构都是本领域技术人员熟知或容易理解和实现 的, 在此不再赘述。
图 12-14 示出了根据本发明笫三实施例的涡旋式冷热气体分离装 置 300的各种示意性视图。
如图 12 - 14所示, 根据本发明第三实施例的涡旋式冷热气体分离 装置 300 包括机体 1 10、 设置在所述机体外的风机 310 (图 12 中未示 出, 可参见图 13或图 15 ) 、 设置在机体 1 10上的进气口 320、 热气流 排出口 130、涡流回流装置 140以及具有冷气流排出通道的冷气流排出 中心管座 330。 本发明中所用的风机 310优选是高速风机, 其稳定输出 气流的速度能够达到 1/8马赫以上, 例如具体地可为 1〃马赫、 1/6马 赫、 1/5马赫、 1/4马赫、 1/3马赫、 1/2马赫、 1/2、 2/3马赫、 3/4马赫、 4/5马赫、 5/6马赫、 6/7马赫、 7/8马赫、 甚至接近 9/10马赫 (音障临 界值) , 以及上述给出的任何两个数值点之间的任一具体数值或任意 区间。
类似于第一和第二实施例, 涡旋式冷热气体分离装置 300 的机体 1 10也具有圆筒形内壁表面 1 1 1 , 其限定了圆筒形内腔 1 12。 圆筒形内 腔 1 12沿其轴线方向具有第一端 1 13 以及与所述第一端相对的第二端 1 14。 而且如图 12 中可以清楚地看出的, 本发明第三实施例中的热气 流排出口 130和涡流回流装置 140与本发明第二实施例中的基本相同。 另外, 如本领域技术人员均可认识到的, 本发明第三实施例中的热气 流排出口 130和涡流回流装置 140也可采用与本发明第一实施例中相 同的形式。 为清楚简明起见, 在此将不赘述这些相同或类似的部件或 部分, 它们都是根据前文的描述容易理解的。
本发明第三实施例的涡旋式冷热气体分离装置 300 与本发明第一 和第二实施例 100和 200的主要区别在于进气方式和第一涡流的形成 方式不同。
具体地, 在涡旋式冷热气体分离装置 300 中, 机体 1 10上邻近圆 筒形内腔 1 12的第一端 1 13处设置有进气口 320。 风机 310的导风管 31 1连接到进气口 320。 进气口 320被设置成将风机 310输出的气流基 本上沿圆筒形内腔 1 12的圆周的切线方向喷入圆筒形内腔 1 12 中, 以 便形成沿圆筒形的内壁表面 1 1 1旋转且朝圆筒形内腔 1 12的第二端 1 14 行进的第一涡流。
此外,涡旋式冷热气体分离装置 300包括冷气流排出中心管座 330, 其具有冷气流排出通道 331。冷气流排出中心管座 330设置在圆筒形内 腔 1 12的第一端 1 13处, 并且沿圆筒形内腔 1 12的中心轴线轴向延伸 到圆筒形内腔中。 冷气流排出通道 331 接收第二涡流使其与第一涡流 隔离 , 并将第二涡流的气体排出到涡旋式冷热气体分离装置 300外。
优选地, 涡旋式冷热气体分离装置 300 还包括具有中央通孔的管 座固定法兰 332。 所述冷气流排出中心管座 330穿过管座固定法兰 332 的中央通孔并通过管座固定法兰 332 固定到涡旋式冷热气体分离装置 300的机体 1 10上。
特别地, 涡旋式冷热气体分离装置 300优选还包括旋风轴套 340, 其设置在圆筒形内腔 1 12 中冷气流排出中心管座 330的周围, 而且具 有朝圓筒形内腔 1 12的第二端 1 14的方向渐缩的截锥形部分 341,以对 第一涡流的旋转进行导引, 减少第一涡流的紊流损失。 旋风轴套 340 的截锥形部分 341的最大直径处延伸有一段圆筒形部分 342。所述圆筒 形部分 342与所述截锥形部分 341 的交界圆周在圆筒形内腔 1 12的轴 线方向上相对于圆筒形内腔 1 12第一端 1 13 的距离优选大于或等于进 气口 320的周界相对于圆筒形内腔 1 12第一端 1 13的最大距离。 在本 发明的一个优选实施例中, 进气口 320可靠近管座固定法兰 332的内 侧表面设置。 而且所述交界圓周的半径优选可被设置成使得所述进气 口的最低点的延长线与所述交界圆周基本上相切。 旋风轴套 340 的圆 筒形部分 342的末端优选套接固定在管座固定法兰 332的朝圆筒形内 腔 1 12 中凸出的环形台阶 333上。 环形台阶 333的中央环孔构成了管 座固定法兰 332的中央通孔的一部分, 冷气流排出中心管座 330从中 穿过。
更优选地, 可以在旋风轴套 340与冷气流排出中心管座 330之间 的空间中设置隔热材料 (例如多孔隔热材料或纤维类隔热材料等) , 以对冷气流排出中心管座 330的中央通孔中的第二涡流与旋风轴套 340 径向外側的第一涡流进行热隔离。
图 15是根据本发明第三实施例的一个变型的涡旋式冷热气体分离 装置 300'的示意性局部剖视图,其中涡旋式冷热气体分离装置 300'增设 了一个轴向式整流装置 350,其固定在冷气流排出中心管座 330的延伸 入圆筒形内腔 1 12的末端部分上, 以对经过轴向式整流装置 350的第 一涡流进行整流, 从而减少第一涡流的紊流损失, 并且使得整流后的 笫一涡流相比于整流前的第一涡流在圆周方向上各点处的旋涡气体流 量更加均匀。
图 16 - 19示出了涡旋式冷热气体分离装置 300'所用的轴向式整流 装置 350的各种较详细的示意性视图。
如图 16 - 19所示, 轴向式整流装置 350为盘旋碟状构件, 其具有 中央环状件 351 ,其外圆周表面上固定有垂直于该外圆周表面径向向外 延伸出的沿圆周方向均匀分布的多个扇形导流片 352。所述多个扇形导 流片 352 被设置成使得相邻的两个扇形导流片之间形成允许气流通过 的大致楔形的间隙。 第一涡流经过这些楔形间隙喷出后即形成了经过 整流的第一涡流。
优选地, 每个扇形导流片 352 的尺寸和形状皆相同。 每个扇形导 流片 352的扇形角优选在 40° - 80。 之间, 例如皆为 60° 。 相邻两个 扇形导流片 352 在轴向投影上的重叠部分的面积优选为每个扇形导流 片面积的 1/3 ~ 2/3, 例如可为 1/2。 各个楔形间隙的尖部的楔形角以及 最窄处的间距被设置成有利于减少第一涡流的紊流损失, 并且使得整 流后的第一涡流相比于整流前的笫一涡流在圆周方向上各点处的旋涡 气体流量更加均匀, 具体设计可参照图 19中的平面展开图的形式根据 现有技术中流体力学的有关知识进行, 这是本领域技术人员根据本申 请的内容以及相应的流体力学知识容易进行的, 在此不予赘述。
每个扇形导流片 352可为简单的平板式形状。 扇形导流片 352也 可优选为具有流线形曲线截面的导流片, 至于具体曲线形状的设计是 本领域技术人员根据本申请的内容以及相应的流体力学知识容易进行 的, 在此不予赘述。
图 20 示出了根据本发明第四实施例的涡旋式冷热气体分离装置 400的示意性剖视图。
如图 20所示, 根据本发明第四实施例的涡旋式冷热气体分离装置 400 总体上类似于根据本发明第三实施例的涡旋式冷热气体分离装置 300或 300' ,它们之间的主要区别在于进气方式和第一涡流的形成方式 不同。
具体地,涡旋式冷热气体分离装置 400设置有端部进气整流罩 410, 进气口 320设置在端部进气整流罩 410上而不是机体 1 10上。 端部进 气整流罩 410在圆筒形内腔 1 12的第一端 1 13处固定到机体 1 10。风机 310的导风管 31 1连接到进气口 320 , 以将风机输出的气流喷入到端部 进气整流罩 410 中。 端部进气整流罩 410被设置成将风机输出的气流 形成初始转动气流并将其整流成沿圆筒形内壁表面 1 1 1 旋转且朝圆筒 形内腔 1 12的第二端 1 14行进的第一涡流。 在涡旋式冷热气体分离装 置 400中不必设置旋风轴套 340和轴向式整流装置 350即可获得良好 的整流效果。 此外, 如果需要的话, 也可在涡旋式冷热气体分离装置 400的冷气流排出中心管座 330的必要部分上采取隔热措施(例如套上 一个直径稍大的套管, 该套管与中心管座的外圆周壁之间填充隔热材 料), 或者将涡旋式冷热气体分离装置 400的冷气流排出中心管座 330 本身设计成具有一定的隔热能力 (例如将其管壁设计成双层中空管壁, 管壁夹层可抽真空或填充隔热材料) 。
优选地, 端部进气整流罩 410具有环形壳壁 41 1 , 其内限定的空腔 412的直径大于涡旋式冷热气体分离装置 400的机体 1 10的圆筒形内腔 1 12的直径。空腔 412具有与圆筒形内腔 1 12相同的中心轴线且与圆筒 形内腔 1 12直接连通。 进气口 320设置在环形壳壁 41 1 上, 而且该进 气口 320被设置成将风机输出的气流基本上沿端部进气整流罩 410的 空腔 412的圆周切线方向喷入该空腔中, 形成初始转动气流。 特别地, 所述端部进气整流罩 410具有径向整流装置 420 ,其设置在端部进气整 流罩的空腔 412 中且与该空腔具有相同的中心轴线, 所述径向整流装 置被设置成接收初始转动气流并将其整流成第一涡流。 优选地, 端部进气整流罩 410 还包括具有中央通孔的管座固定法 兰 413。冷气流排出中心管座 330穿过管座固定法兰 413的中央通孔并 通过管座固定法兰 413 固定到端部进气整流罩的环形壳壁 41 1 的外侧 端。 优选地, 径向整流装置 420 固定在管座固定法兰 413 的内侧表面 上。
优选地,端部进气整流罩 410还包括端部进气整流罩固定法兰 414。 端部进气整流罩 410的环形壳壁 41 1 的内侧端固定到端部进气整流罩 固定法兰 414的外缘部,端部进气整流罩固定法兰 414的环形台阶 415 在圆筒形内腔 1 12的第一端 1 13处固定到机体 1 10的外圆周壁上。
现转到图 21,其中示出了图 20涡旋式冷热气体分离装置 400的径 向式整流装置 420的示意性透视图。
如图 21 所示, 径向整流装置 420 具有优选为圆环形平板的基板 421。 在基板 421的一个側表面上固定有垂直于该表面且沿圆周方向均 匀分布的多个曲线形导流片 422。 基板 421也可具有其他合适的形状, 只要其表面上可固定所述曲线形导流片, 而且中心部具有可供冷气流 排出中心管座 330穿过的中心孔即可。
曲线形导流片 422 被设置成将所述初始转动气流整流成旋转直径 缩小的第一涡流, 并且使得该第一涡流相比于所述初始转动气流不但 流速更快, 而且紊流损失更小, 在圆周方向上各点处的旋涡气体流量 更加均勾。 相邻的两个曲线形导流片 422 之间形成允许气流通过的渐 缩的大致楔形的间隙。 楔形间隙的尖部最窄处形成气流出口, 其优选 被设置成能够基本上沿所述圆筒形内腔的圆周的切线方向喷出经整流 的气体, 形成第一涡流。 对此可参见图 22 , 其中示意性地表示了这种 径向整流装置 420的整流过程。 优选地, 每个曲线形导流片 422被设 置成在垂直于基板 421 的轴向方向上具有彼此相同的轴向宽度, 该轴 向宽度基本上等于端部进气整流罩 410的空腔 412的轴向长度。 各个 曲线形导流片 422的轴向宽度上的等分平面优选可与进气口 320的中 心轴线处于同一平面上。 各个曲线形导流片 422 优选被设置成使得进 气口 320 的最低点的延长线与所有曲线形导流片的各外缘的外包络圆 周线基本上相切。 替代性地, 这一延长线也可略高于或略低于曲线形 导流片的所述外包络圆周线。 所有曲线形导流片的各内缘的内包络圆 周线优选与圆筒形内腔 1 12 同中心, 而且进一步优选地, 该内包络圆 周线具有与圆筒形内腔 1 12基本上相同的直径或略小一些的直径。 特别地, 在本发明中, 径向整流装置 420的每个曲线形导流片 422 的沿导流方向的截面形状由内表面曲线、 外表面曲线以及端部连接过 渡线围合而成。 如本领域技术人员均可认识到和理解的, 由于曲线形 导流片整体上呈薄片形状, 在其内表面曲线和外表面曲线末端处的端 部连接过渡线非常短, 对曲线形导流片 422 的导流作用影响甚微, 无 讨论必要。 故, 下面将主要讨论曲线形导流片 422 的内表面曲线和外 表面曲线的形状。
参见图 23 , 径向整流装置 420的内表面曲线优选被设置成包括一 段椭圆曲线区段、 一段维托辛斯基曲线区段以及位于楔形间隙的气流 出口处的一段直线区段。 所述椭圆曲线区段和所述维托辛斯基曲线区 段之间优选平滑过渡。 如图 23所示, 每个曲线形导流片 422的内表面 曲线在径向外側首先开始于所述椭圆曲线区段, 然后平滑过渡到所述 维托辛斯基曲线区段, 然后平滑过渡到所述内表面曲线的直线区段。 如本领域技术人员能够理解的, 所述椭圓曲线区段可以直接与所述维 托辛斯基曲线区段相接且形成平滑过渡; 不过所述椭圆曲线区段也可 以经由一段过渡曲线区段与所述维托辛斯基曲线区段相接, 以形成所 述椭圆曲线区段与所述维托辛斯基曲线区段之间的平滑过渡。 优选地, 所述内表面曲线的维托辛斯基曲线区段与直线区段之间直接平滑过渡 地相连。
优选地, 所述外表面曲线被设置成包括一段圆弧曲线区段和接近 楔形间隙的气流出口处的一段直线区段。 所述外表面曲线的圆弧曲线 区段直线区段之间优选直接平滑过渡地相连。
优选地, 各个曲线形导流片 422 的内表面曲线的椭圆曲线区段的 延长线与所有曲线形导流片的各外缘的外包络圆周线基本上相切, 而 且各个曲线形导流片 422 的外表面曲线的圆弧曲线区段也可与该外包 络圆周线基本上相切, 以保证空腔 412 中的气流在气流入口处沿所述 内表面曲线和所述外表面曲线的切线方向流入楔形间隙构成的导流 区。 (本领域技术人员将会认识到, 由于各个曲线形导流片的外缘处 较薄, 因此所述内表面曲线的椭圆曲线区段和所述外表面曲线的圆弧 曲线区段与所述外包络圆周线的相切点是非常接近的, 甚至可认为相 同, 因而实际上, 所述内表面曲线和所述外表面曲线在气流入口处的 切线方向基本上是相同的。 )
优选地, 各个曲线形导流片 422 的内表面曲线的直线区段与所有 曲线形导流片的各内缘的内包络圆周线基本上相切, 而且各个曲线形 导流片 422 的外表面曲线的直线区段的延长线也可与该内包络圆周线 基本上相切, 以保证从楔形间隙中的气流能够基本上沿所述内包络圆 周线的切线方向喷出形成第一涡流。
在本发明的一些实施例中,径向式整流装置 420的圆环形基板 421 的外圆周可被设置成与曲线形导流片的所述外包络圆周线重合, 而圆 环形基板 421 的内圆周可被设置成与曲线形导流片的所述内包络圆周 线重合。
上述特别设计的曲线形导流片非常有利于在本发明的装置中有效 地减少紊流损失, 增强圆周方向上各点处旋涡气体流量的均匀性。
替代性地, 如图 24所示, 本发明第四实施例的涡旋式冷热气体分 离装置 400还可采用另一种径向式整流装置 420',其曲线形导流片 422, 的截面形状较为简单, 内表面曲线和外表面曲线均由椭圆曲线区段构 成。 这种替代性径向式整流装置 420'的优点在于结构简单, 易于制造, 并且也可在一定程度上有效地减少紊流损失, 增强圆周方向上各点处 旋涡气体流量的均匀性。
此外, 如图 20所示, 径向整流装置 420优选通过其基板 421 固定 在管座固定法兰 413 的内侧表面上的环形凹陷部 416 中。 环形凹陷部 416的凹陷深度优选基本上等于基板 421的厚度。
为更直观地理解图 20涡旋式冷热气体分离装置 400的构造, 还可 参见图 25, 其中示出了涡旋式冷热气体分离装置 400的示意性分解透 视图。 组装好的涡旋式冷热气体分离装置 400的可参见图 26。
图 27是根据本发明第四实施例的一个变型的涡旋式冷热气体分离 装置 400'的示意性剖视图。在涡旋式冷热气体分离装置 400'中, 采用了 一种替代性的用于调节热气流排气量的调节装置 440 ,其同样包括手轮 241、 杆体 242以及螺孔座 244。 一个滑杆固定法兰 441通过其中心通 孔间隙配合地套在杆体 242的台阶段与手轮 241 的凸出的连接部之间 的光杆段上 (显然, 该中心通孔的直径同样优选大于光杆段的直径, 但 小于台阶段的直径和手轮 241的凸出的连接部的直径), 并且保证杆体 滑杆固定法兰 441的厚度。 滑杆固定法兰 441上固定有多根滑杆 442。 滑杆 442延伸穿过滑座 443 上的相应通孔, 滑杆末端相对于机体 1 10 被固定。 内凹圆球面形状的气流聚焦反射面 142 固定到滑座 443 的径 向内侧。 在气流聚焦反射面 142的外侧特别地设置了隔热层 445, 以避 免该处的气流温度受外界影响 (主要是为了对此处逐渐形成和集聚的 第二涡流进行保冷隔热) 。 隔热层 445 可以由任何适当的隔热材料构 成, 例如由多孔隔热材料或纤维类隔热材料构成。 在隔热层 445 的外 側设置有隔热材固定罩 444。 隔热材固定罩 444固定在滑座 443上, 而 所述螺孔座 244固定在隔热材固定罩 444 , 这样就可通过转动手轮 241 来使杆体 242的螺杆段 243在螺孔座 244中转动并出现轴向运动, 从 而使得滑座 443在滑杆 442上轴向滑动,以调节环状热气流排出口 130 的开度(如图 27所示, 该例中的热气流排出口 130由机体 1 10与滑座 443之间的间隙限定), 从而调节热气流的排出量。 调节热气流的排出 量例如可调节排出的冷气流的温度和流量。
进一步地, 在冷气流排出中心管座 330上设置有旋风轴套 340, , 该旋风轴套 340'类似于本发明第三实施例中旋风轴套 340 ,但不存在圆 筒形部分 342。 在旋风轴套 340, 与冷气流排出中心管座 330之间的空 间中同样优选设置有隔热材料 (例如多孔隔热材料或纤维类隔热材料 等) , 以对冷气流排出中心管座 330 的中央通孔中的第二涡流与旋风 轴套 340'径向外側的第一涡流进行热隔离。
图 28和图 29还示出了类似于图 27的另外两种涡旋式冷热气体分 离装置 400"和 400"'。 与图 27的涡旋式冷热气体分离装置 400'不同, 图 28和图 29中的涡旋式冷热气体分离装置 400"和 400 "'分别采用了内凹 椭圆球面形状和内凹抛物面形状的气流聚焦反射面 142。 图 30示出了 图 27 - 29的涡旋式冷热气体分离装置的示意性部分分解透视图。这里, 本领域技术人员均可理解, 由于气流聚焦反射面在图 30中不可见, 故 图 30 实际上可作为图 27 - 29 中三种类似涡旋式冷热气体分离装置的 共同的示意性部分分解透视图。
特别地, 本领域技术人员应该认识到, 本发明所公开的各种具有 内凹曲面形状气流聚焦反射面的涡流回流装置不仅可以应用于上文公 开的各个实施例或其变型中, 而且也可用于采用其他任何现在已知或 将来已知的进气和涡流形成装置的涡旋式冷热气体分离装置中, 只要 这些进气装置或涡流形成装置能够将外部气体输入所述机体内的圆筒 形空腔内形成第一涡流皆可。 这样的进气和涡流形成装置除了包括本 发明各个实施例及其变型中公开的相应装置外, 而且还可以包括但不 限于现有技术中利用气体压缩机或其他压缩空气源来作为进气气源形 成第一涡流的各种装置。
虽然本文示出和描述了多个示例性的优选实施例, 但本领域技术 人员均可意识到, 在不脱离本发明精神和范围的情况下, 可以根据本 申请公开的内容直接确定或推导出符合这些实施例的许多其他变型或 修改。 因此, 应认为本发明的范围覆盖了所有这些其他变型或修改。

Claims

权 利 要 求
1. 一种涡旋式冷热气体分离装置, 其特征在于包括:
具有圆筒形内壁表面的机体, 所述圓筒形内壁表面限定了圆筒形 内腔, 所述圆筒形内腔沿其轴线方向具有第一端以及与所述第一端相 对的第二端;
进气及搅动风扇装置, 其在所述圆筒形内腔的第一端处附接到所 述机体, 所述进气及搅动风扇装置被设置成将外部气体吸入所述圆筒 形内腔中并搅动形成沿所述圆筒形内壁表面旋转且朝所述圆筒形内腔 的第二端行进的第一涡流;
热气流排出口, 其被设置成位于或邻近所述圆筒形内腔的第二端 的边缘处, 从而使得行进到所述热气流排出口的第一涡流的一部分气 体经所述热气流排出口排出到所述圆筒形内腔之外;
涡流回流装置, 其被设置成位于所述圆筒形内腔的第二端处, 以 将笫一涡流的未被排出所述热气流排出口的剩余气体回流成穿过第一 涡流的气旋内芯朝所述圆筒形内腔的第一端行进的第二涡流;
冷气流排出口, 其被设置成位于所述圆筒形内腔的第一端的径向 中心处或者被设置成邻近并围绕所述径向中心, 从所述热气流排出口 中排出的气体的温度高于从所述冷气流排出口中排出的气体的温度。
2. 如权利要求 1 所迷的涡旋式冷热气体分离装置, 其特征在于, 所述进气及搅动风扇装置包括多个进气及搅动叶片, 每个所述进气及 搅动叶片本身包括被制成一体的进气部分和搅动部分, 所述进气部分 被设置成适于将外部气体吸入所述圆筒形内腔中, 从而由所述搅动部 分将吸入所述圆筒形内腔中气体搅动形成笫一涡流。
3. 如权利要求 2所述的涡旋式冷热气体分离装置, 其特征在于, 所述进气及搅动风扇装置包括:
环形件;
位于所述环形件径向内侧的中心毂套; 以及
连接所述环形件和所述中心毂套的多个肋板; 其中
所述环形件和所述中心毂套具有与所述圆筒形内腔相同的中心轴 线,
所述中心毂套与所述环形件的环形内壁之间的空间构成了邻近并 围绕所述圆筒形内腔的第一端的径向中心的所述冷气流排出口, 且 所述多个进气及搅动叶片均设置在所 ¾环形件的外圆周壁上。
4. 如权利要求 3所述的涡旋式冷热气体分离装置, 其特征在于, 每个所述肋板被设置成排气叶片的形式, 以在所述冷气流排出口处形 成负压, 从而便于笫二涡流中的气体从所述冷气流排出口中排出。
5. 如权利要求 3所述的涡旋式冷热气体分离装置, 其特征在于, 所述进气及搅动风扇装置还包括:
设置在所述圆筒形内腔之外的原动机; 和
风扇主轴, 所述风扇主轴的一端连接于所述中心毂套, 另一端连 接于所述原动机的输出轴, 从而使得所述原动机通过所述风扇主轴驱 动所述中心毂套转动, 并带动所述肋板、 所述环形件以及所述进气及 搅动叶片转动。
6. 如权利要求 5所述的涡旋式冷热气体分离装置, 其特征在于, 所述原动机沿所述圆筒形内腔的中心轴线设置在所述涡流回流装置的 外側, 所述涡流回流装置的中心处具有通孔, 以供所迷原动机的输出 轴或所述风扇主轴从中穿过。
7. 如权利要求 1 所述的涡旋式冷热气体分离装置, 其特征在于, 所述进气及搅动风扇装置包括分离的进气扇和搅动扇, 其中
所述进气扇包括多个进气叶片, 所述进气叶片被设置成适于将外 部气体吸入所述圆筒形内腔中,
所述搅动扇包括多个搅动叶片, 所述搅动叶片被设置成适于搅动 吸入所述圆筒形内腔中的气体以形成第一涡流。
8. 如权利要求 7所述的涡旋式冷热气体分离装置, 其特征在于, 所述进气及搅动风扇装置包括分离的进气扇传动轮和搅动扇传动轮, 其中
所述进气扇传动轮连接到所述进气扇, 以驱动所迷进气扇的进气 叶片转动,
所述搅动扇传动轮连接到所述搅动扇, 以驱动所述搅动扇的搅动 叶片转动, 而且
所述进气扇传动轮和所述搅动扇传动轮分别通过各自的传动皮带 或链条连接到各自的设置在所述涡旋式冷热气体分离装置的机体之外 的原动机。
9. 如权利要求 8所述的涡旋式冷热气体分离装置, 其特征在于, 所述进气扇传动轮和所述搅动扇传动轮分别通过各自的滚动轴承 设置在中心管座上;
所述中心管座通过辐板支架固定于所迷涡旋式冷热气体分离装置 的机体; 而且
所述中心管座的环形内壁表面限定出的中心通道构成了位于所述 圆筒形内腔的第一端的径向中心处的所述冷气流排出口。
10. 如前述权利要求 1 - 9中任一项所述的涡旋式冷热气体分离装 置, 其特征在于, 所述进气及搅动风扇装置还包括进出气分隔罩, 所 述进出气分隔罩具有导流通道, 所述导流通道的一端设置成邻近或邻 接所述冷气流排出口, 以接收从所述冷气流排出口中排出的冷气流, 将其导离所述涡旋式冷热气体分离装置。
1 1. 如前述权利要求 1 - 10 中任一项所述的涡旋式冷热气体分离 装置, 其特征在于,
所述涡流回流装置被设置成具有内凹曲面形状的气流聚焦反射 面, 而且所述热气流排出口设置在所述涡流回流装置中所述气流聚焦 反射面的径向外侧, 从而使得经过所述热气流排出口的第一涡流的未 被排出的剩余气体沿所述气流聚焦反射面行进时, 气旋半径逐渐收缩, 旋转速度逐渐加快, 加强了离心力, 并被第一涡流的气旋内芯负压吸 引, 从而形成穿过第一涡流的气旋内芯朝所述圆筒形内腔的第一端回 流的第二涡流。
12. 如权利要求 1 1所述的涡旋式冷热气体分离装置,其特征在于, 所述气流聚焦反射面为内凹抛物面形状的气流聚焦反射面, 或内 凹椭圓球面形状的气流聚焦反射面, 或内凹圓球面形状的气流聚焦反 射面。
13. 一种涡旋式冷热气体分离装置, 其特征在于包括:
具有圆筒形内壁表面的机体, 所述圆筒形内壁表面限定了圆筒形 内腔, 所述圆筒形内腔沿其轴线方向具有第一端以及与所述笫一端相 对的第二端;
设置在所述机体外的风机;
进气口, 其设置在所述机体上且邻近所述圆筒形内腔的第一端, 所述风机的导风管连接到所述进气口, 而且所述进气口被设置成将所 述风机输出的气流基本上沿所述圆筒形内腔的圆周的切线方向喷入所 述圆筒形内腔中, 形成沿所述圆筒形的内壁表面旋转且朝所述圆筒形 内腔的第二端行进的笫一涡流;
热气流排出口, 其被设置成位于或邻近所述圆筒形内腔的第二端 的边缘处, 从而使得行进到所述热气流排出口的第一涡流的一部分气 体经所述热气流排出口排出到所述圆筒形内腔外;
涡流回流装置, 其被设置成位于所述圆筒形内腔的笫二端处, 以 将第一涡流的未被排出所述热气流排出口的剩余气体回流成穿过第一 涡流的气旋内芯朝所述圆筒形内腔的第一端行进的第二涡流;
具有冷气流排出通道的冷气流排出中心管座, 其设置在所述圆筒 形内腔的第一端处并沿所述圆筒形内腔的中心轴线轴向延伸到所述圆 筒形内腔中, 所述冷气流排出通道接收第二涡流使其与第一涡流隔离, 并将第二涡流的气体排出到所述涡旋式冷热气体分离装置外, 从所述 热气流排出口中排出的气体的温度高于从所述冷气流排出通道中排出 的气体的温度。
14. 根据权利要求 13所述的涡旋式冷热气体分离装置, 其特征在 于还包括具有中央通孔的管座固定法兰, 所述冷气流排出中心管座穿 涡旋式冷热气体分离装置的机体 。 '
15. 根据权利要求 14所述的涡旋式冷热气体分离装置, 其特征在 于还包括旋风轴套, 所述旋风轴套设置在所述圆筒形内腔中所述冷气 流排出中心管座的周围, 而且具有朝所述圆筒形内腔的第二端的方向 渐缩的截锥形部分, 以对第一涡流的旋转进行导引, 减少笫一涡流的 紊流损失。
16. 根据权利要求 15所述的涡旋式冷热气体分离装置, 其特征在 于所述旋风轴套的截锥形部分的最大直径处延伸有一段圆筒形部分, 所述圆筒形部分与所述截锥形部分的交界圆周在所述圆筒形内腔的轴 线方向上相对于所述圆筒形内腔的第一端的距离大于或等于所述进气 口的周界相对于所述圆筒形内腔的笫一端的最大距离, 所述交界圆周 的半径被设置成使得所述进气口的最低点的延长线与所述交界圆周基 本上相切。
17. 根据权利要求 15所述的涡旋式冷热气体分离装置, 其特征在 于, 所述旋风轴套与所述冷气流排出中心管座之间设置有隔热材料, 以对所述冷气流排出中心管座的中央通孔中的第二涡流与所述旋风轴 套径向外侧的第一涡流进行热隔离。
18. 根据权利要求 13 - 17中任一项所述的涡旋式冷热气体分离装 置, 其特征在于还包括轴向式整流装置, 其固定在所述冷气流排出中 心管座的延伸入所述圆筒形内腔的末端部分上, 以对经过所述轴向式 整流装置的第一涡流进行整流, 从而减少第一涡流的紊流损失, 并且 使得整流后的第一涡流相比于整流前的笫一涡流在圆周方向上各点处 的旋涡气体流量更加均匀。
19. 根据权利要求 18所述的涡旋式冷热气体分离装置, 其特征在 于, 所述轴向式整流装置被构造成盘旋碟状构件, 所述盘旋碟状构件 具有中央环状件, 所述中央环状件的外圆周表面上固定有垂直于该外 圆周表面径向向外延伸出的沿圆周方向均匀分布的多个扇形导流片, 其中所述多个扇形导流片被设置成使得相邻的两个所述扇形导流片之 间形成允许气流通过的楔形间隙。
20. 根据前述权利要求 13 - 19中任一项所述的涡旋式冷热气体分 离装置, 其特征在于, 所述风机是高速风机, 其稳定输出气流的速度 在 1/8马赫- 9/10马赫的范围内。
21. 如前述权利要求 13 - 20中任一项所述的涡旋式冷热气体分离 装置, 其特征在于,
所述涡流回流装置被设置成具有内凹曲面形状的气流聚焦反射 面, 而且所述热气流排出口设置在所述涡流回流装置中所述气流聚焦 反射面的径向外側, 从而使得经过所述热气流排出口的第一涡流的未 被排出的剩余气体沿所述气流聚焦反射面行进时, 气旋半径逐渐收缩, 旋转速度逐渐加快, 加强了离心力, 并被第一涡流的气旋内芯负压吸 引, 从而形成穿过第一涡流的气旋内芯朝所述圆筒形内腔的第一端回 流的第二涡流。
22. 如权利要求 21所述的涡旋式冷热气体分离装置,其特征在于, 所述气流聚焦反射面为内凹抛物面形状的气流聚焦反射面, 或内 凹椭圆球面形状的气流聚焦反射面, 或内凹圆球面形状的气流聚焦反 射面。
23. 一种涡旋式冷热气体分离装置, 其特征在于包括: 具有圆筒形内壁表面的机体, 所述圆筒形内壁表面限定了圆筒形 内腔, 所述圆筒形内腔沿其轴线方向具有第一端以及与所述第一端相 对的第二端;
设置在所述机体外的风机;
具有进气口的端部进气整流罩, 其在所述圆筒形内腔的第一端处 固定到所述机体, 所述风机的导风管连接到所述进气口以将所迷风机 输出的气流喷入到所述端部进气整流罩中, 所述端部进气整流罩被设 置成将所述风机输出的气流形成初始转动气流并将其整流成沿所述圆 筒形内壁表面旋转且朝所述圆筒形内腔的第二端行进的第一涡流; 热气流排出口, 其被设置成位于或邻近所述圆筒形内腔的第二端 的边缘处, 从而使得行进到所述热气流排出口的第一涡流的一部分气 体经所述热气流排出口排出到所述圆筒形内腔外;
涡流回流装置, 其被设置成位于所述圆筒形内腔的第二端处, 以 将第一涡流的未被排出所述热气流排出口的剩余气体回流成穿过第一 涡流的气旋内芯朝所述圆筒形内腔的第一端行进的第二涡流;
具有冷气流排出通道的冷气流排出中心管座, 其设置在所述圆筒 形内腔的第一端处并沿所述圆筒形内腔的中心轴线轴向向内延伸到所 述圆筒形内腔中、 轴向向外延伸到所述端部进气整流罩外, 所述冷气 流排出通道接收第二涡流使其与第一涡流隔离, 并将第二涡流的气体 排出到所述涡旋式冷热气体分离装置外, 从所述热气流排出口中排出 的气体的温度高于从所述冷气流排出通道中排出的气体的温度。
24. 根据权利要求 23所述的涡旋式冷热气体分离装置, 其特征在 于所述端部进气整流罩包括:
环形壳壁, 其内限定有相比于所述涡旋式冷热气体分离装置的机 体的圆筒形内腔直径更大的空腔, 所述空腔具有与所迷圆筒形内腔相 同的中心轴线且与所述圓筒形内腔直接连通, 所述进气口设置在所述 环形壳壁上, 而且所述进气口被设置成将所述风机输出的气流基本上 沿所述端部进气整流罩的空腔的圆周的切线方向喷入所述端部进气整 流罩的空腔中, 形成初始转动气流; 以及
径向整流装置, 其设置在所述端部进气整流罩的空腔中且与所述 端部进气整流罩的空腔具有相同的中心轴线, 所述径向整流装置被设 置成接收初始转动气流并将其整流成第一涡流。
25. 根据权利要求 24所述的涡旋式冷热气体分离装置, 其特征在 于, 所述端部进气整流罩还包括具有中央通孔的管座固定法兰, 所述 冷气流排出中心管座穿过所述管座固定法兰的中央通孔并通过所述管 座固定法兰固定到所述端部进气整流罩的环形壳壁的外側端, 而且所 述径向整流装置固定在所述管座固定法兰的内侧表面上。
26. 根据权利要求 25所述的涡旋式冷热气体分离装置, 其特征在 于, 所述端部进气整流罩还包括端部进气整流罩固定法兰, 所述端部 进气整流罩的环形壳壁的内側端固定到所述端部进气整流罩固定法兰 的外缘部, 所述端部进气整流罩固定法兰的环形台阶在所述圆筒形内 腔的第一端处固定到所述机体的外圆周壁上。
27. 根据权利要求 24所述的涡旋式冷热气体分离装置, 其特征在 于所述径向整流装置具有基板, 在所述基板的一个侧表面上固定有垂 直于所述側表面且沿圆周方向均匀分布的多个曲线形导流片, 所述曲 线形导流片被设置成将所述初始转动气流整流成旋转直径缩小的第一 涡流, 并且使得第一涡流相比于所述初始转动气流不但流速更快, 而 且紊流损失更小, 在圆周方向上各点处的旋涡气体流量更加均匀。
28. 根据权利要求 27所述的涡旋式冷热气体分离装置, 其特征在 于所述径向整流装置的每个曲线形导流片的沿导流方向的截面形状由 内表面曲线、 外表面曲线以及端部连接过渡线围合而成, 其中所述内 表面曲线由一段椭圆曲线区段、 一段维托辛斯基曲线区段以及位于气 流出口处的一段直线区段平滑连接而成, 所述外表面曲线由一段圆弧 曲线区段和接近气流出口处的一段直线区段平滑连接而成。
29. 根据权利要求 27所述的涡旋式冷热气体分离装置, 其特征在 于所述风机是高速风机,其稳定输出气流的速度在 1/8马赫- 9/10马赫 的范围内。
30. 如前述权利要求 23 - 29中任一项所述的涡旋式冷热气体分离 装置, 其特征在于,
所述涡流回流装置被设置成具有内凹曲面形状的气流聚焦反射 面, 而且所述热气流排出口设置在所述涡流回流装置中所述气流聚焦 反射面的径向外侧, 从而使得经过所述热气流排出口的第一涡流的未 被排出的剩余气体沿所述气流聚焦反射面行进时, 气旋半径逐渐收缩, 旋转速度逐渐加快, 加强了离心力, 并被第一涡流的气旋内芯负压吸 引, 从而形成穿过第一涡流的气旋内芯朝所述圆筒形内腔的笫一端回 流的第二涡流。
31. 如权利要求 30所述的涡旋式冷热气体分离装置,其特征在于, 所述气流聚焦反射面为内凹抛物面形状的气流聚焦反射面, 或内 凹椭圆球面形状的气流聚焦反射面, 或内凹圓球面形状的气流聚焦反 射面。
32. 一种涡旋式冷热气体分离装置, 其包括机体、 热气流排出口、 涡流回流装置和冷气流排出口, 其特征在于:
所述涡流回流装置被设置成具有内凹曲面形状的气流聚焦反射 面, 而且所述热气流排出口设置在所述涡流回流装置中所述气流聚焦 反射面的径向外侧, 从而使得经过所述热气流排出口的第一涡流的未 被排出的剩余气体沿所述气流聚焦反射面行进时, 气旋半径逐渐收缩, 旋转速度逐渐加快, 加强了离心力, 并被第一涡流的气旋内芯负压吸 引, 从而形成穿过第一涡流的气旋内芯朝所述圓筒形内腔的第一端回 流的第二涡流。
33. 如权利要求 32所述的涡旋式冷热气体分离装置,其特征在于, 所述气流聚焦反射面为内回抛物面形状的气流聚焦反射面, 或内 凹椭圆球面形状的气流聚焦反射面, 或内凹圆球面形状的气流聚焦反 射面。
34. 如前述权利要求 32 - 33 中任一项所述的涡旋式冷热气体分离 装置, 其特征在于还包括将外部气体输入所述机体内的圆筒形空腔内 形成第一涡流的进气装置。
PCT/CN2012/000014 2011-01-26 2012-01-05 涡旋式冷热气体分离装置 WO2012100636A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/981,444 US9017440B2 (en) 2011-01-26 2012-01-05 Vortex device for separating cold gas and hot gas
JP2013550743A JP5855681B2 (ja) 2011-01-26 2012-01-05 渦巻式冷熱ガス分離装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110028383.XA CN102614749B (zh) 2011-01-26 2011-01-26 涡旋式冷热气体分离装置
CN201110028383.X 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012100636A1 true WO2012100636A1 (zh) 2012-08-02

Family

ID=46555167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000014 WO2012100636A1 (zh) 2011-01-26 2012-01-05 涡旋式冷热气体分离装置

Country Status (4)

Country Link
US (1) US9017440B2 (zh)
JP (1) JP5855681B2 (zh)
CN (1) CN102614749B (zh)
WO (1) WO2012100636A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101590537B1 (ko) * 2014-07-29 2016-02-01 주식회사 블루인더스 단열 기능을 가지는 볼텍스 튜브
CN109550318A (zh) * 2018-12-03 2019-04-02 中国石油大学(北京) 一种气液分离器及其分离方法
CN118124120A (zh) * 2024-04-24 2024-06-04 浙江佑威新材料股份有限公司 吹膜物料加热输送装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE537139C2 (sv) * 2012-10-09 2015-02-17 Nano Control Ab Anordning för avskiljning av partiklar från ett gasflöde
CN103851818A (zh) * 2014-02-24 2014-06-11 浙江海洋学院 新型涡流制冷管装置
CN104587790B (zh) * 2014-12-18 2016-08-24 广西大学 一种基于微/纳尺度热流逸效应和宏观涡流冷热效应的气体分离系统
KR20160121866A (ko) * 2015-04-13 2016-10-21 삼성전자주식회사 볼텍스 튜브 및 이를 갖춘 공기조화시스템 및 그 제어방법
CN107690524B (zh) 2015-04-30 2020-05-19 协创国际有限公司 使燃烧装置中的燃烧最优化的方法及执行该方法的装置
CN204761936U (zh) * 2015-06-17 2015-11-11 中兴通讯股份有限公司 散热结构和通讯设备
DE102016009956A1 (de) * 2016-08-19 2018-02-22 Sata Gmbh & Co. Kg Temperier-Vorrichtung und Montageverfahren einer Temperier-Vorrichtung zum Erwärmen und/oder Abkühlen von Gasen oder Gasgemischen, insbesondere für den Einsatz im Bereich Atemschutz
FR3071418B1 (fr) * 2017-09-26 2019-09-13 Safran Helicopter Engines Piece pour degazeur centrifuge de turbomachine et procede de fabrication de ladite piece
CN108554016B (zh) * 2018-03-07 2023-09-26 佛山市云米电器科技有限公司 一种自带风叶的油烟分离装置
CN108662800A (zh) * 2018-07-18 2018-10-16 顺德职业技术学院 一种微型冷暖气流发生装置
CN109131821B (zh) * 2018-08-16 2020-07-24 北京空天技术研究所 一种可滑动连接结构
CN110630454B (zh) * 2018-08-31 2021-03-12 北京金风科创风电设备有限公司 电机及其轴系的换热装置、风力发电机组
KR102146305B1 (ko) * 2018-12-18 2020-08-20 주식회사 포스코 절삭기용 보어 텍스 냉각기
CN110081014B (zh) * 2019-04-26 2021-04-06 哈尔滨工程大学 一种叶片起旋的离心式涡流管
US11378309B2 (en) * 2019-10-08 2022-07-05 B/E Aerospace, Inc. Multi-stage vortex tube assembly for low pressure and low flow applications
JP6864056B1 (ja) 2019-10-23 2021-04-21 株式会社ソディック 積層造形装置
WO2022045440A1 (ko) * 2020-08-24 2022-03-03 테슬론 주식회사 둘 이상의 제너레이터를 포함하는 보텍스튜브
CN112755641A (zh) * 2020-12-22 2021-05-07 盐城恒泽水环境治理有限公司 现场实验用高效率的水质净化装置
CN113710070B (zh) * 2021-09-04 2022-02-22 宁波纬度通信设备有限公司 一种具有冷却循环系统的智能网络机柜
CN114294853A (zh) * 2021-12-28 2022-04-08 陈军辉 一体式简单制冷制热管
CN114984729A (zh) * 2022-06-17 2022-09-02 蔡登� 一种涡旋式冷热气体分离装置
DE102022133098A1 (de) 2022-12-13 2024-06-13 Daniel Ehrhardt Abscheidevorrichtung und Verfahren
CN116585865B (zh) * 2023-06-09 2024-04-09 山东泰北环保设备股份有限公司 干法脱硝设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1014076A (en) * 1973-01-02 1977-07-19 Richard T. Anderson Vortex tube
US4240261A (en) * 1979-08-09 1980-12-23 Vortec Corporation Temperature-adjustable vortex tube assembly
CN1626990A (zh) * 2003-12-12 2005-06-15 梁吉旺 涡流管
CN200975801Y (zh) * 2006-10-10 2007-11-14 重庆大学 可调温涡旋管冷风发生器
CN201969471U (zh) * 2011-01-26 2011-09-14 姚镇 涡旋式冷热气体分离装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049891A (en) * 1960-10-21 1962-08-21 Shell Oil Co Cooling by flowing gas at supersonic velocity
JPS5352675Y2 (zh) * 1974-04-19 1978-12-16
US4356565A (en) * 1979-11-26 1982-10-26 Hughes Aircraft Company Laser beam tube with helical gas flow for reducing thermal blooming in the laser beam
US4397154A (en) * 1982-02-16 1983-08-09 Bowers Jr Kenneth R Vortex gas cooler
US4594084A (en) * 1985-07-15 1986-06-10 Astrl Corporation Air conditioning system
KR20000031127A (ko) * 1998-11-03 2000-06-05 박정극 공기를 이용한 냉각장치
US6494935B2 (en) * 2000-12-14 2002-12-17 Vortex Aircon, Inc. Vortex generator
CN2502211Y (zh) * 2001-10-29 2002-07-24 裕祥精机工业股份有限公司 热交换器
CN2713399Y (zh) * 2004-05-23 2005-07-27 豆兴峰 涡流制冷器
US7565808B2 (en) * 2005-01-13 2009-07-28 Greencentaire, Llc Refrigerator
KR100646156B1 (ko) * 2005-11-01 2006-11-14 조소곤 압연설비에 사용되는 쿨링베드 냉각장치
US7685819B2 (en) * 2006-03-27 2010-03-30 Aqwest Llc Turbocharged internal combustion engine system
SE532276C2 (sv) * 2008-04-10 2009-12-01 Silvent Ab Vortexrör

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1014076A (en) * 1973-01-02 1977-07-19 Richard T. Anderson Vortex tube
US4240261A (en) * 1979-08-09 1980-12-23 Vortec Corporation Temperature-adjustable vortex tube assembly
CN1626990A (zh) * 2003-12-12 2005-06-15 梁吉旺 涡流管
CN200975801Y (zh) * 2006-10-10 2007-11-14 重庆大学 可调温涡旋管冷风发生器
CN201969471U (zh) * 2011-01-26 2011-09-14 姚镇 涡旋式冷热气体分离装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101590537B1 (ko) * 2014-07-29 2016-02-01 주식회사 블루인더스 단열 기능을 가지는 볼텍스 튜브
CN109550318A (zh) * 2018-12-03 2019-04-02 中国石油大学(北京) 一种气液分离器及其分离方法
CN109550318B (zh) * 2018-12-03 2023-11-17 中国石油大学(北京) 一种气液分离器及其分离方法
CN118124120A (zh) * 2024-04-24 2024-06-04 浙江佑威新材料股份有限公司 吹膜物料加热输送装置

Also Published As

Publication number Publication date
JP5855681B2 (ja) 2016-02-09
US9017440B2 (en) 2015-04-28
US20140020348A1 (en) 2014-01-23
CN102614749B (zh) 2014-10-22
CN102614749A (zh) 2012-08-01
JP2014505227A (ja) 2014-02-27

Similar Documents

Publication Publication Date Title
WO2012100636A1 (zh) 涡旋式冷热气体分离装置
WO2021223393A1 (zh) 立式空调室内机
CN201969471U (zh) 涡旋式冷热气体分离装置
RU2119102C1 (ru) Колесо насоса и центробежный шламовый насос
US20070154304A1 (en) Fluid transfer controllers having a rotor assembly with multiple sets of rotor blades arranged in proximity and about the same hub component and further having barrier components configured to form passages for routing fluid through the multiple sets of rotor blades
TWI776154B (zh) 液冷式散熱裝置及車輛
WO2021218109A1 (zh) 立式空调室内机
JPS5936119B2 (ja) 遠心コンプレツサ用デイフユ−ザ
CA1058085A (en) Cooled turbine vane
US11437888B2 (en) Medium conveying and heat exchange device and vortex flow separator for iron core in electromagnetic device
WO2020063074A1 (zh) 风力发电机组、电机、电机气隙的气流输送装置
TW201441489A (zh) 流體泵浦低紊流動葉輪
WO2020043159A1 (zh) 电机及其轴系的换热装置、风力发电机组
CN110635583A (zh) 电磁装置的铁心及其叠片
TW202429805A (zh) 一種降噪效果好的無刷電機
CN105972662A (zh) 旋转导流装置及应用其的吸油烟机
CN207920915U (zh) 蜗壳、风机及燃气热水器
CN109826796B (zh) 一种诱导螺旋气流旋流器
CN110635626B (zh) 电气设备及其换热介质输运装置,及风力发电机组
CN208254004U (zh) 一种液氮循环冷却涡流管高效制冷系统
CN103306736A (zh) 一种动力涡轮及其动力机
CN110219829A (zh) 一种离心蜗壳出口结构
TWM535168U (zh) 強化進氣輔助裝置
RU2716341C1 (ru) Способ повышения аэротермодинамической эффективности аппарата воздушного охлаждения и устройство для его реализации
CN208153067U (zh) 盘式透平的喷嘴结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13981444

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12739356

Country of ref document: EP

Kind code of ref document: A1