CN110635583A - 电磁装置的铁心及其叠片 - Google Patents

电磁装置的铁心及其叠片 Download PDF

Info

Publication number
CN110635583A
CN110635583A CN201811011788.0A CN201811011788A CN110635583A CN 110635583 A CN110635583 A CN 110635583A CN 201811011788 A CN201811011788 A CN 201811011788A CN 110635583 A CN110635583 A CN 110635583A
Authority
CN
China
Prior art keywords
radial
core
cooling
flow
electromagnetic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811011788.0A
Other languages
English (en)
Other versions
CN110635583B (zh
Inventor
马盛骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Original Assignee
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Goldwind Science and Creation Windpower Equipment Co Ltd filed Critical Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority to CN201811011788.0A priority Critical patent/CN110635583B/zh
Publication of CN110635583A publication Critical patent/CN110635583A/zh
Application granted granted Critical
Publication of CN110635583B publication Critical patent/CN110635583B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/08Salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本发明公开一种电磁装置的铁心及其叠片,铁心包括层叠设置的多个叠片,叠片包括根部和沿根部外周分布的多个齿部,相邻齿部之间用于容纳绕组,至少部分叠片的至少部分齿部,设有自齿部的径向外端面向内径向贯通的径向通槽,径向通槽具有两侧的槽侧壁,多个叠片的径向通槽叠置形成冷却散热通道。本方案中冷却散热通道是由径向通槽叠加形成,而径向通槽具有槽侧壁,形成的冷却散热通道相应地具有两侧的侧壁。当绕组容纳于槽后,绕组的侧面与齿部之间沿轴向始终存在约束,从而改善绝缘保护层在此处经受热胀冷缩后容易出现裂缝甚至断裂、遭受风霜雨雪、盐雾的侵蚀的破坏现象,有利于维持绕组的工作性能,还可以减少漏磁通。

Description

电磁装置的铁心及其叠片
技术领域
本发明涉及电机技术领域,具体涉及一种电磁装置的铁心及其叠片。
背景技术
铁心是电机磁路的重要组成部分,定子铁心、转子铁心以及定子和转子之间的气隙组成电机的磁路。在交流电机中,定子铁心中的磁通为交变磁通,因而会产生铁心损耗,称铁损。铁损包括两部分:磁滞损耗和涡流损耗。磁滞损耗是由于铁心在交变磁化时磁分子取向不断发生变化而引起的能量损耗。涡流损耗是由于铁心在交变磁化时产生涡流并由涡流产生的电阻损耗。
磁滞损耗和涡流损耗均是电机热源的一部分,另一部分热源由电机绕组流过电流时产生。从传热学角度而言,以上所述的热源构成电机工作时的热源。
请参考图1-2,图1为空气间壁式换热器对发电机内部实施冷却的整机布局示意图;图2为图1中间壁式换热器的结构分解原理图。
如图1所示,发电机500’的右侧连接叶轮600’,左侧设有机舱100’,机舱100’内设置间壁式换热器300’,具体设置在机舱100’的尾部。间壁式换热器300’的左侧设有内循环引风机202’,内循环引风机202’由内循环驱动电机201’驱动,还设有内循环气流引出输送管400’,发电机500’产热后的热气流,经内循环引风机202’作用,将沿内循环气流引出输送管400’进入间壁式换热器300’的换热器芯体中。
间壁式换热器300’还设有外循环引风机102’,外循环引风机102’由外循环驱动电机101’驱动,外循环引风机102’将自然环境空气流引入至间壁式换热器300’的换热芯体中(芯体薄板的两侧分别接触流动的内循环气流和外循环气流),则换热后的外循环气流流出机舱100’。图1中示出连接外部的外循环风排出口103’。内循环气流冷却降温后排出间壁式换热器 300’,并经过通风机叶轮做功、增压,由出口以360度扩散在机舱100’的尾部空间内。
图2中,在引入内循环气流时,间壁式换热器300’和内循环气流引出输送管400’之间还设有内循环汇流腔体203’,上下均设有内循环气流汇流入口203a’。外循环引风机102’与间壁式换热器300’之间设有外循环引风机入口连接段104’,内循环引风机202’与间壁式换热器300’之间设有内循环引风机入口连接段204’。
图1中,发电机500’的壳体处设有冷却气流入口孔板。扩散在机舱内被冷却降温的内循环流体,可经该冷却气流入口孔板进入发电机500’内,作为冷却气流再次使用。
请继续参考图3-5,图3为电机绕组及其铁磁部件组装后的示意图;图4为图3中绕组020置于开口槽010b内的局部示意图;图5为沿径向贯通铁心的冷却通风沟040在电机铁心形成的示意图,视角是以竖直轴放置时从径向外围观察冷却通风沟040;图6为发电机径向的冷却通风沟040 和上述间壁式换热器300’配合的冷却气流径向向心穿越铁心的流动路径示意图。
电机铁心包括由铁磁材料制造的多个叠片010,叠片010围绕电机轴线圆周布置、沿着电机轴向叠置,并依靠结构支架030等圆周定位,最终形成圆柱状铁心。各叠片010沿电机周向设有多个径向向外延伸的齿部 010a,各个齿部010a之间形成开口槽010b,叠片010叠加后,多个开口槽010b沿轴向叠加则形成轴向延伸的槽010b’,绕组020可容纳于槽010b’中。
大、中型水轮发电机大都采用径向通风系统。具体是在定子铁心段设计有一定数量的冷却通风沟040。形成冷却通风沟040的通风槽片由扇形冲片(多个扇形冲片围合可形成环形的上述的叠片010)、通风槽钢(图中未示出)、衬口环(图中未示出)形成。
扇形冲片材料一般为0.35~0.5mm厚的酸洗钢板。酸洗钢板表面要求平整、光滑、不得有氧化皮或其他污迹。扇形冲片需要与通风槽钢点焊,扇形冲片径向内端设有鸽尾槽,衬口环位于扇形冲片的鸽尾槽处。
如图5所示,叠片010叠置后,焊接有通风槽钢的位置,由于叠片被通风槽钢撑开,会出现沿定子铁心径向延伸的通槽,即通风槽钢的位置形成径向的可用于冷却的冷却通风沟040。上述提到扩散在机舱100’尾部的降温冷却后的气流,经冷却气流入口孔板后,在引风风机抽吸作用下进入发电机500’内部,如图6所示,进入发电机500’内部的冷却气流沿着电机定子径向穿越定子绕组的端部之间的间隙,再沿着电机轴向进入电机转子与定子之间的回转间隙,即:电机的气隙。
冷却气流经过铁心的该径向贯通的冷却通风沟040进入铁心内部,穿越铁心内部冷却通风沟040时气流与铁心表面进行对流传热,将绕组及其铁心工作时的热源所产热量带走,以抑制绕组及其铁心工作时的温升,热气流引出冷却通风沟040后流向汇流通道070,继而进入热风引出汇流器 050,在内循环引风机202’的作用下,沿内循环气流引出输送管400’进入间壁式换热器300’的换热器芯体中。
内循环气流流向由翅片构成的片间缝隙并沿着该缝隙流动,重新接受换热器芯体内换热翅片另一侧的外循环冷却气流的冷却换热过程,并经汇流器060,且依靠引风机吸入引风机叶轮并接受叶轮做功、升压、沿着叶轮径向排出至机舱100’的尾部空间,然后再扩散。由于内循环引风机202’的作用,给联结机舱的发电机的冷却气流入口孔板的机舱侧造就了负压,内循环引风机202’出口是正压,在正压与负压之间形成的压力差驱动作用下,机舱100’内大空间气流在与机舱内壁对流换热(随季节不同会出现向机舱内壁放热或被机舱内壁加热的不同情形)、同时与机舱100’内机器设备换热、与机舱内电气设备换热,最后经冷却气流入口孔板重新进入发电机500’内,重复上述过程。
即机舱100’内部形成内循环气流的闭式送风通道,如图6中的外围的箭头所示,形成闭式送风通道。
上述通过槽钢撑开以形成通风沟的方式虽然能够建立冷却回路,但是会产生下述技术问题。
请继续参考图5,并结合图7理解,图7为图5中槽010b’内置有绕组 020后的局部示意图。
当槽010b’内装入绕组020后,会进行浸渍工艺,绕组020和槽010b’之间的间隙会浸渍进入液态绝缘漆,对其烘干、固化后凝固形成电气绝缘及保护层。在图6中,电气绝缘及保护层对应于冷却通风沟040的位置O,相当于暴露于冷却通风沟040,相较于其他位置,该位置O的电气绝缘及保护层并无固体边界对其进行约束和防护,此处的绝缘保护层在工作过程中经过多次热胀冷缩后、遭受风霜雨雪、盐雾的侵蚀的破坏很有可能出现裂缝甚至开裂,自然环境中的上述物质进入,从而影响绕组020的工作性能。
另外,在大、中型水轮发电机中,特别是内冷发电机,电磁负荷值越来越高,端部漏磁通和电枢电流在绕组边中产生的漏磁通,而冷却通风沟 040的设置,使得上下的叠片010分离,如图6所示,此时冷却通风沟040 的位置存在相当大的漏磁通,降低了发电机的性能。
发明内容
本发明提供一种电磁装置的铁心,包括层叠设置的多个叠片,所述叠片包括根部和沿所述根部外周分布的多个齿部,相邻所述齿部之间用于容纳绕组,至少部分所述叠片的至少部分齿部,设有自所述齿部的径向外端面向内径向贯通的径向通槽,所述径向通槽具有两侧的槽侧壁,多个所述叠片的所述径向通槽叠置形成冷却散热通道。
可选地,所述径向通槽,还沿所述叠片的厚度方向贯通所述叠片,至少部分所述径向通槽还具有连接所述径向通槽两侧的槽侧壁的连接部。
可选地,所述连接部位于所述叠片的根部,且位于所述径向通槽的顶部或底部。
可选地,至少部分所述叠片的至少部分齿部设有两个或两个以上的所述径向通槽,以在所述铁心的同一列齿部的同一轴向高度位置,叠置形成两个或两个以上的所述冷却散热通道。
可选地,一列所述齿部,形成多个沿轴向高度方向分布的所述冷却散热通道。
可选地,所述铁心设有多个所述冷却散热通道,且多个所述冷却散热通道沿周向、轴向均错开。
可选地,上、下相邻所述径向通槽的宽度尺寸不同,以使叠置形成的所述冷却散热通道的横截面呈圆形或椭圆形。
可选地,所述径向通槽的侧槽壁的截面呈弧形。
可选地,所述径向通槽的槽侧壁具有多个凸起。
可选地,所述径向通槽的一侧槽侧壁的凸起与另一侧槽侧壁的凸起,在径向错开。
可选地,所述径向通槽的两侧槽侧壁呈波浪形或锯齿形,波浪形的波峰或所述锯齿形的尖齿形成所述凸起;或,
所述径向通槽的两侧槽侧壁,包括多个弧形凹部,两个弧形凹部之间为平直部,所述平直部为所述凸起;
或,所述径向通槽的两侧槽侧壁,包括多个矩形凹部,两个矩形凹部之间为矩形凸部,所述矩形凸部为所述凸起;
或,所述径向通槽的两侧槽侧壁,包括多个弧形凸部,两个弧形凸部之间为平直部,所述弧形凸部为所述凸起。
可选地,所述冷却散热通道内设有导流部。
可选地,所述导流部包括多个沿径向分布的导流凸台,所述导流凸台自所述槽侧壁向所述冷却散热通道的径向中心线延伸或越过所述径向中心线;径向上相邻的所述导流凸台,在轴向高度方向错开。
可选地,所述导流部包括位于所述冷却散热通道内的螺旋弹簧或螺旋片,还包括芯轴,所述芯轴插入所述螺旋弹簧或所述螺旋片中,且所述芯轴的两端分别固定所述螺旋弹簧或所述螺旋片的两端。
可选地,所述导流部包括多个沿径向排列于所述冷却散热通道内且呈水滴状的导流块,所述导流块的头部朝向迎流方向。
可选地,还包括涡流分离器,所述涡流分离器包括喷管和涡流分离管,所述涡流分离管包括涡流室和分别位于所述涡流室两端的冷端管段和热端管段;所述喷管连通于所述涡流室,压缩气流经所述喷管形成螺旋气流且沿所述涡流室的切向流入;
所述冷端管段截面积小于所述涡流室截面积,所述热端管段截面积等于或大于所述涡流室截面积;
所述热端管段内设有具有阀口的阀门,所述阀门具有锥面,所述螺旋气流进入所述涡流分离管后,所述螺旋气流的外部气流向所述阀口流动并逐渐升温为热气流后沿所述阀口流出;所述螺旋气流的中部气流经所述阀门的锥面后反向回流而降温为冷气流,并从所述冷端管段流出,所述冷气流为作为输送至所述冷却散热通道的冷却气流。
可选地,所述涡流室的一端设有通孔,所述冷端管段的管体连通于所述通孔;所述涡流室与所述热端管段一体等径设置。
可选地,所述阀门包括锥状的节流件,所述节流件的锥端朝向所述冷端管段,所述节流件位于所述热端管段的中部,所述节流件与所述热端管段的内壁之间形成的环形间隙为所述阀口;且,所述冷端管段的轴线与所述节流件的轴线重合。
可选地,所述冷端管段插入所述冷却散热通道,或所述冷却散热通道延伸出所述铁心的外周而形成所述冷端管段。
本发明还提供一种电磁装置的铁心的叠片,包括齿部和根部,其特征在于,所述叠片的至少部分所述齿部,设有自所述齿部的径向外端面向内径向贯通的径向通槽,所述径向通槽具有两侧的槽侧壁。
可选地,所述径向通槽,还沿所述叠片的厚度方向贯通所述叠片,至少部分所述径向通槽还具有连接所述径向通槽两侧的槽侧壁的连接部。
可选地,所述连接部位于所述叠片的根部,位于所述径向通槽的顶部或底部。
可选地,至少部分所述齿部设有两个或两个以上的所述径向通槽。
本发明还提供一种电磁装置,包括铁心,其特征在于,所述铁心为上述任一项所述的电磁装置的铁心;所述电磁装置为电机、变压器或电抗器。
本实施例提供的电磁装置的铁心及其叠片,以通过对至少部分叠片的改造,使其具有径向通槽,不再是完整的齿部,从而通过堆叠即可形成所需的冷却散热通道。如此,该铁心结构不再需要焊接通风槽钢、衬口环等背景技术中所述的步骤,只是在叠加铁心时,保证相应数量叠片的径向通槽位置对应,叠加后能够形成冷却散热通道即可,形成的过程实际上更为便利。
更为重要的是:撤去支撑用通风槽钢,大幅度降低了通道内流体介质传输换热过程的局部阻力损失,利于提高流速,强化通道壁面的对流换热。
尤为重要的是,由于本实施例方案中冷却散热通道是由径向通槽叠加形成的空间,而径向通槽具有槽侧壁,形成的冷却散热通道相应地具有圆周方向两侧的侧壁,在叠加形成铁心后,则多个槽侧壁叠加形成冷却散热通道的侧壁。当绕组容纳于置放绕组的槽后,绕组的侧面与齿部之间沿轴向始终存在约束,可改善绕组的绝缘保护层在工作过程中经过多次热胀冷缩、遭受风霜雨雪、盐雾的侵蚀而造成的破坏,减少或避免出现裂缝,保障绕组的工作性能。
附图说明
图1为空气间壁式换热器对发电机内部实施冷却的整机布局示意图;
图2为图1中的间壁式换热器的结构分解原理图;
图3为电机绕组及其铁磁部件组装后的示意图;
图4为图3中绕组置于开口槽内的局部示意图;
图5为沿径向贯通的冷却通风沟在电机铁心上形成的示意图;
图6为发电机径向的冷却通风沟和上述间壁式换热器配合的冷却气流流动路径示意图;
图7为图5中槽内置有绕组后的局部示意图;
图8为本发明所提供电机铁心的单个叠片的示意图,仅示出一部分,呈扇形;
图9为图8中叠片的单个齿部的示意图;
图10为图9的俯视图;
图11为本发明所提供电机铁心第一实施例的原理示意图,仅示出叠片的齿部部分;
图12为图11中I部位单个冷却散热通道处的局部放大图;
图13为图12中以虚线的方式显示叠片通槽叠置形成冷却散热通道的原理图;
图14为叠片单个齿部的示意图;
图15为绕组置于槽内的视图;
图16为本发明所提供电机铁心第二实施例的原理示意图,仅示出叠片的齿部部分;
图17为图16中单个齿部位置处的示意图;
图18为本发明所提供电机铁心第三实施例的原理示意图,仅示出叠片 10的齿部101部分;
图19为叠片齿部的第一种变形结构示意图;
图20为叠片齿部的第二种变形结构示意图;
图21为叠片齿部的第三种变形结构示意图;
图22为叠片齿部的第四种变形结构示意图;
图23为叠片齿部的第五种变形结构示意图;
图24为本发明所提供电机铁心第四实施例的原理示意图,仅示出叠片的齿部部分;
图25为图24中II部位的局部放大示意图;
图26为图25的H-H向剖视图;
图27为在冷却散热通道中设置螺旋弹簧的示意图;
图28为在冷却散热通道中设置螺旋片的示意图;
图29为在冷却散热通道中设置水滴状绕流块的示意图;
图30为图29中绕流块的示意图;
图31为冷却散热通道中冷却气流经过导流块时的流体分析示意图;
图32为图29中导流块头部前驻点至尾部后驻点的努谢尔数(Nu)的变化示意图;
图33为图29中导流块头部前驻点至尾部后驻点的雷诺数(Re)和顺流阻力系数(Cf)的变化示意图;
图34为在冷却散热通道中反向设置水滴状绕流块的示意图;
图35为涡流分离器的基本结构及气流的总温分离工作原理图;
图36为图中喷管流道的通流截面图;
图37为图35中铁心的涡流分离器部件内的内部流场、热能传递示意图;
图38为自由涡流和强制涡流的对比示意图;
图39为图35中涡流分离器内部总温分离工作过程基于热力学温-熵 (T-S)图上的示意。
图1-7中,附图标记说明如下:
100’机舱、101’外循环驱动电机、102’外循环引风机、103’外循环风排出口、104’外循环引风机入口连接段、201’内循环驱动电机、202’内循环引风机、203’内循环汇流腔体、204’外循环引风机入口连接段;
300’间壁式换热器;400’内循环气流引出输送管;500’发电机;
600’叶轮;
010叠片、010a齿部、010b开口槽、010b’槽;
030结构支架、040冷却通风沟、050热风引出汇流器、060汇流器、 070汇流通道;
图8-39中,附图标记说明如下:
10叠片、101齿部、101a鸠尾、101b径向通槽、101c导流凸台、102 根部、102a连接部、103开口槽、104螺旋弹簧、105芯轴、106螺旋片;
10a导流块、10a1头部、10a2尾部;
20冷却散热通道、30槽、50绕组;
a矩形小凸起、b尖齿、c弧形凹部、d平直部、e弧形凸部、f平直部、 g矩形凹部、h矩形凸起。
40涡流分离器、401涡流分离管、401a涡流室、401a1端板、401b热端管段、401c冷端管段、401d冷端、401e热端、402喷管、403节流件。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
本发明提供一种电磁装置的铁心及其叠片,电磁装置在下述实施例中主要以电机的铁心为例进行说明。
如图8所示,图8为本发明所提供电机铁心的单个叠片10的示意图,仅示出一部分,呈扇形;图9为图8中叠片10的单个齿部101的示意图;图10为图9的俯视图。
本实施例中,电机铁心包括层叠设置的多个叠片10,叠片10包括根部102,叠片10呈环形,包括环形的根部102,叠片10还包括沿环形的根部102的外周分布的多个齿部101。叠片10可以为整体式的环形,或者由多个单张扇形片拼接形成环形。叠片10相邻的齿部101之间形成开口槽 103,多个叠片10叠置后,多个开口槽103相应叠置形成沿轴向延伸的通槽,作为槽30,用于容纳绕组50(图8中未示出,示于图15)。
齿部101的外端部形成鸠尾,即沿着径向从外向内大约呈倒梯形状,与齿部101主体部分形成一切口,一般也称为燕尾,则槽30在该位置处出现台阶,便于在该位置处沿轴向插入槽楔(图中未示出),槽楔不会径向脱离,从而防止绕组50径向脱离,槽楔充当堵头的基本、原始功能。
特别值得注意的是,本实施例中铁心的至少部分叠片10的至少部分齿部101,设有自齿部101的径向外端面,向内径向贯通的径向通槽101b,如图8、9所示,由于径向通槽101b的设置,叠片10的齿部101形成分叉结构,区别于传统的叠片结构。需要说明的是,文中所述的径向均为铁心的径向,也是电机的径向,轴向为铁心的轴向、电机的轴向。
请继续参考图11,图11为本发明所提供电机铁心第一实施例的原理示意图,仅示出叠片10的齿部101部分(沿着定子径向外围正视冷却散热通道20的视角),多个齿部101上下叠置,图11的上下高度的方向,即铁心轴向,多个叠片10齿部101对应地沿轴向叠加后,形成多个齿部101,图11中示出六个齿部101,相邻的齿部101之间为叠片10形成的开口槽 103叠置后形成的放置绕组50的凹槽30,用于容纳绕组50。
并请一并查看图12,图12为图11中I部位单个冷却散热通道20处的局部放大图,反映每层叠片10尺寸在冷却散热通道20处的边界的变化;图13为图12中以虚线的方式显示径向通槽101b叠置形成冷却散热通道 20的原理图。
由于部分叠片10设有径向通槽101b,则该部分叠片10在依序叠加后,相应位置的多个径向通槽101b也沿轴向叠加,从而形成一通道,图12中显示自上向下的第N、N+1、N+2、N+3、N+4、N+5层叠片10,以表达依次叠加含义,如图13所示,每一层叠片10的径向通槽101b均成为通道的一部分(通道的截面轮廓是依靠单张扇形片围成、或整张环形叠片10在通道处断开特定弧度形成,不同层的叠片10在通道沿着铁心的轴向断开特定弧度以形成圆形、椭圆形的通流截面),径向通槽101b径向贯通(垂直图12、13的纸面方向),叠加形成的该通道显然也是径向贯通铁心,所以该通道可作为冷却气流进入铁心的冷却散热通道20。需要说明的是,文中所述的径向通槽101b是指该通槽贯通叠片10的径向两端,并不限定径向通槽101b本身必须是与径向完全平行,径向通槽101b的槽中线和径向可以平行,也可以偏离一定角度。
可见,本实施例方案以通过对至少部分叠片10的改造,如图8所示,使其具有径向通槽101b,不再是完整的齿部101(构建径向通风道的这些叠片沿着铁心的圆周方向被断开、并断开特定的弧度,每层叠片断开的弧度不等,这样才能围成特定的通流截面,圆或椭圆),从而通过堆叠即可形成所需的冷却散热通道20。如此,该铁心结构不再需要焊接通风槽钢、衬口环等背景技术中所述的步骤,只是在叠加铁心时,保证相应数量叠片10的径向通槽101b位置对应,叠加后能够形成冷却散热通道20即可,形成的过程实际上更为便利。
更为重要的是:撤去支撑用通风槽钢,大幅度降低了通道内流体介质传输换热过程的局部阻力损失,利于提高流速,强化通道壁面的对流换热。对于气流在通道内的强制对流传热,表面传热准则方程式: Nuf=0.023Ref 0.8Prf 0.4,“Nu”为包含对流传热速率(h)的对流换热的努谢尔特数,“Re”为流体流态的雷诺数(正比流速)、“Pr”为流体的普朗特数。通常采用的支撑阻力件(通风槽钢)会导致通道流量降低,最终使热源产热表面的换热速率降低。热源产热表面的换热速率表示为φ=hA(tw-tf),tw流道内铁心表面绝缘物质的温度,tf-冷却流体温度,A-流道内表面能够与冷却气流接触的表面面积,h为对流传热速率。
尤为重要的是,由于本实施例方案中冷却散热通道20是由径向通槽 101b叠加形成的空间,而径向通槽101b具有槽侧壁,形成的冷却散热通道20相应地具有圆周方向两侧的侧壁,如图14所述,图14为叠片10单个齿部101的示意图,虚线框出的A部位即径向通槽101b的槽侧壁(构成叠片10的两侧壁面),在叠加形成铁心后,则多个A部位的槽侧壁叠加形成冷却散热通道20的侧壁。则当绕组50容纳于槽30后,绕组50的侧面与齿部101之间沿轴向始终存在约束。
如图11、图15理解,图15为绕组50置于槽30内的视图。在冷却散热通道20的位置,冷却散热通道20的侧壁成为该位置处绕组50的绝缘保护层的约束,阻止绕组50表面的绝缘漆脱落,改善绝缘保护层在此处经受热胀冷缩后容易出现裂缝甚至断裂、遭受风霜雨雪、盐雾的侵蚀的破坏现象,有利于维持绕组50的工作性能。
而且,由于冷却散热通道20存在侧壁,该侧壁实际上是由齿部101 除径向通槽101b以外的实体部分叠加形成,相邻叠片10之间不会出现断层,还具有相互连接的部位,相较于背景技术中通过通风槽钢近乎隔断上下叠片以形成冷却通风沟的方式,显然本实施例方案还具有减少漏磁通的功能。
以上所述的铁心至少部分叠片10设有径向通槽101b,以在局部位置形成冷却散热通道20,图11中,铁心的每列齿部101均由上至下设有多个冷却散热通道20,每列齿部101的最上方冷却散热通道20位于同一轴向高度,然后由上至下依序位于同一轴向高度,相当于设置多层冷却散热通道20。这样,对应于多层冷却散热通道20以外位置的部分叠片10则不需要再设置径向通槽101b。
当然,也可以将铁心的所有的叠片10都设置径向通槽101b,冷却散热通道20设置相对密集。铁心的所有叠片10都设置径向通槽101b,但叠片10只有部分齿部101设置径向通槽101b,则形成的冷却散热通道20在周向、轴向上可以错开。即,由上至下依序位于不同的轴向高度、交错设置多层冷却散热通道20。
无论叠片10是否均设置径向通槽101b,均不限定单个叠片10上设置径向通槽101b的齿部101数量。叠片10的至少部分齿部101设有上述径向通槽101b即可,所有齿部101均设置径向通槽101b时,可以在每列齿部101上形成冷却散热通道20。当然,即便叠片10不是每个齿部101都形成径向通槽101b,也可以在每一列齿部101上形成冷却散热通道20,如上所述的冷却散热通道20在周向、轴向错开。
可以理解,在特定轴向高度区段内的叠片10,其各齿部101均设置相应形状的径向通槽101b,以形成所需的冷却散热通道20,冷却散热通道 20分布较为均匀,且在装配上更易于实施,不需要额外去调整叠片10排列的周向位置。
请继续参考图8、10,叠片10的径向通槽101b还沿叠片10的厚度方向贯通叠片10,这里的厚度方向在装配后即铁心的轴向。且至少部分径向通槽101b还具有连接径向通槽101b两侧槽侧壁的连接部102a。从冷却散热通道20的构建来说,径向通槽101b沿厚度方向可以全部贯通,不设置连接部102a,以实现冷却散热通道20截面的最大化设计。这里设置连接部102a的目的,是便于装配,因为径向通槽101b沿厚度方向全部贯通,则叠片10相当于在径向通槽101b的位置断开,也可以设置连接部102a,则可以保证叠片10在圆周上的完整性,更易于叠片10的叠放压紧的工艺控制。
如前所述,叠片10一般也不是完整的圆形,而是由几组扇形片拼接形成,如果径向通槽101b沿厚度方向全部贯通,且叠片10的各齿部101均设有径向通槽101b,则叠片10会分成若干片,叠放压紧不具备优势,设置连接部102a为更为优选的方案。这里,连接部102a厚度尺寸上根据实际需要设计,在满足叠片10或者扇形片(拼接形成叠片10)一体式的前提下,应尽可能地小,以避免增加冷却气流流动的阻力。
上述的连接部102a可以位于叠片10的根部102,如图9所示,可使铁心叠片10构成的齿部101处形成一定截面积的通道,当冷却气流沿着铁心径向从外向内(或称为向心)流动时,便于冷却气流的进入。而连接部 102a可位于径向通槽101b的顶部或底部,便于加工,当然,连接部102a 位于齿部101位置也是可行的方案。
对于位于冷却散热通道20顶部或底部的叠片10,径向通槽101b可以具有完整的顶部或完整的底部,以作为冷却散热通道20的顶部和底部,此时的径向通槽101b相应地沿厚度方向只贯通顶部或底部。当然,顶部、底部的叠片10的径向通槽101b也可以沿厚度方向全部贯通(或者仅预留连接部102a),冷却散热通道20的顶部和底部由未设置径向通槽101b的完整的齿部101的顶面或底面形成。
请继续参考图16、17,图16为本发明所提供电机铁心第二实施例的原理示意图,仅示出叠片10的齿部101部分;图17为图16中单个齿部 101位置处的示意图。与图11实施例相同,只是每列齿部101形成两列冷却散热通道20。
铁心至少部分叠片10的至少部分齿部101设有两个或多于两个的径向通槽101b,如图17所示,叠片10的一个齿部101设有两个径向通槽101b (此时的齿部101类似于三叉戟的形状),这样在与该齿部101位置的相同轴向高度位置,上下叠置多个同样单个齿部101设有两个径向通槽101b 的叠片10,则可以叠置形成两个或多于两个的冷却散热通道20。这样,同一列齿部101可以构建更多数量的冷却散热通道20,使得冷却气流更为均匀地进入,增加与铁心的接触面积,提升散热性能。同一列齿部101的冷却散热通道20列数可根据齿部101规格尺寸、通风冷却需求等参数合理设定,此处不作限定,一般1列或2列冷却散热通道20即可满足要求。
多个叠置的齿部101,即一列齿部101,可设有多个沿铁心轴向高度方向分布的冷却散热通道20,如图11、16所示,一列齿部101的一列冷却散热通道20的数量为4,总数为8。这样可提高在轴向上冷却散热通道20 分布的均匀性,增加换热面积,提升散热性能。此时,设置径向通槽101b 的叠片10数量增加。当然,本实施例方案也不对单列齿部101的冷却散热通道20数量作任何限制。
如上所述,作为进一步的技术方案,上、下相邻径向通槽101b的宽度尺寸可以设计为不同,以使叠置形成的冷却散热通道20的横截面呈椭圆形。如图13所示,第N+2和N+3层的径向通槽101b宽度最大,从而形成上下两端相对较窄的椭圆形。
通过合理设计径向通槽101b的宽度尺寸变化和形成冷却散热通道20 的径向通槽101b的数量,还可以形成如图16、18所示的圆形,图18为本发明所提供电机铁心第三实施例的原理示意图,仅示出叠片10的齿部101 部分,图18与图11基本相同,只是冷却散热通道20截面分别为椭圆形和圆形。
径向通槽101b的侧壁的截面具有一定弧度时,形成的冷却散热通道 20的截面为相对标准的圆形或椭圆形;径向通槽101b的侧壁为平面时,形成的冷却散热通道20的截面近似为圆形或椭圆形(冷却散热通道20的侧壁具有多个上下叠片10堆叠时形成的台阶)。
可以理解,冷却散热通道20的截面形状并不限制,还可以是矩形、方形等,为矩形、方形时,不同层的叠片10的径向通槽101b的尺寸可以相同,便于加工和装配。但显然,上述形成圆形或椭圆形的方案,可以减小冷却气流的流动阻力,降低输运气流的沿程阻力损失,便于冷却气流流入和流出,减少能量损失。
对于铁心冷却散热通道20内表面的对流换热问题,在通流截面上,冷却气流运动必然存在着一个流体速度场,或称“流场”,它是一个矢量场。此外冷却气流的温度场是不均匀的,还存在一个冷却气流的温度场,由于我们关心的是“热量输运速率”,因此在论述中用温度梯度场(或称热流场) 代替温度场更方便。铁心的冷却散热通道20通流截面的通道壁面的法向对流换热能量方程基于二维直角坐标系内 (x-y,x表示通道冷却气流的流动方向,y表示壁面的法向,)处理得:
边界层的能量守恒方程:
Figure RE-GDA0001828748770000161
(忽略x方向的导热)。
对于冷却气流与铁心的冷却散热通道10内表面无相变的对流传热,凡是能减薄边界层,增加冷却气流的扰动,促使冷却气流中各部分混合以及增加通道壁面上的速度梯度的措施都能强化传热。从强化热气流单相对流传热的技术机理分析,将冷却气流边界层型的对流换热能量方程对通道壁面空气热边界层的厚度作积分得:“qw”是固体通道壁面上冷却气流与通道壁面之间所交换的热量,即对流换热量;“δt,x”是热边界层厚度。由上式可以看到,当密度ρ、定压质量比热容Cp、导热系数(热导率)λ给定时,流场和温度梯度场(或热流场) 的特性就决定了边界上的热流qw(x),就确定了边界上的对流换热系数h。所以,对流换热域中存在着两个矢量场:
速度场
Figure RE-GDA0001828748770000172
温度梯度场▽T(x,y,z)(▽,那普拉算子,求梯度);
或三个标量场;
速度绝对值
Figure RE-GDA0001828748770000173
温度梯度绝对值|▽T|(x,y,z);
夹角余弦场cosβ(x,y,z),β是速度矢量和温度梯度矢量的夹角。
根据矢量的运算规则,有
Figure RE-GDA0001828748770000174
在一定的速度及温度梯度下,减小两者之间的夹角β是强化传热的有效措施。无论是边界层型的流动还是有回流的流动,在一定的速度及温度梯度下要强化对流换热,实质上就是要减小速度与温度梯度之间的夹角,这一思想称为“场协同原理”。场协同原理揭示出了强化对流换热的实质,减薄边界层以及增加空冷却气流中的扰动其实质就是要减小速度与温度梯度间的夹角。速度场和温度梯度场的协同体现在三个方面:速度矢量与温度梯度矢量的夹角余弦值尽可能的大,即两矢量的夹角应尽可能小,或尽可能大;流体速度剖面和温度剖面应尽可能均匀;尽可能使三个标量场中的大值与大值搭配,也就是说尽可能使三个标量场中的大值尽可能同时出现在某个场中某些区域。可遵照这些原则去进行铁心的冷却散热通道20内表面由叠片10非直线边界构建内部流道非平面或填充物结构、扰流件结构的设计。
进一步,请继续参考19,图19为叠片10齿部101的第一种变形结构示意图。
径向通槽101b的槽侧壁可具有多个凸起,设置多个凸起时,叠加形成的冷却散热通道20的侧壁会形成多个凸起,多个凸起起到扰流作用,有利于切断通道内壁面气流边界层的生长或增厚,避免边界层生长过厚导致热阻增加而影响与内壁的对流传热的散热冷却效果,遵守单相对流传热的场协同原则,降低协同角度。图19中,凸起部分具体为矩形小凸起a。
凸起部分可以对应于齿部101部分,即仅设置于齿部101,且径向通槽101b的一侧槽侧壁的凸起与另一侧槽侧壁的凸起,在径向错开,如图 19中A部位所示。这样,可以进一步增加扰流效果。最好是,对应于同一冷却散热通道20的多个径向通槽101b,凸起在径向均错开,这样叠加后形成的冷却散热通道20,凸起在高度方向、径向均错开,扰流效果更佳,遵守上述的场协同理论。
请继续参考图20,图20为叠片10齿部101的第二种变形结构示意图。如图20所示,径向通槽101b的两侧槽侧壁呈锯齿形,此时锯齿形的各尖齿b即为设于径向通槽101b侧壁的凸起,起到与上述矩形小凸起a相似的技术效果。此外,如图20中B部位所示,两侧锯齿形槽侧壁的尖齿b正对,即凸起在径向上并不错开,两个尖齿b之间形成缩放通道,就冷却气流进入B部位时,通道先渐缩再渐扩,可减速进入再提高冷却气流压力,便于顺利通过并提高散热效果。这里为了更好地构造缩放通道,尖齿b并不是等腰三角形,而是朝向冷却气流入口的一条边较短,另外一条边相对更长。
进一步理解,冷却散热通道20的流道内壁面中冷却流体沿着流动方向,会流经交替出现的由收缩段和扩张段组成的锯齿形流道壁面,这个锯齿形流道壁面是由铁心叠片10的固体侧面边界构建,也就是叠片10的形状。气流在扩张段中产生的回流旋涡在被气流带入收缩段时,涡流扰动并带起了边界层流速、减薄了边界层、降低边界层传热阻力,在这个过程中降低了流体速度场与避免温度梯度场之间的协同角度β,从而强化了传热。
另外,两侧槽侧壁呈波浪形也是可以的,此时的波峰即为凸起,与锯齿形类似,只是轮廓更为流线形,减小冷却气流经过时的阻力。
这里,仅齿部101对应的径向通槽101b的侧壁呈锯齿形,或者整个径向通槽101b的侧壁均呈锯齿形皆可。下述其他变形实施例同理,各种类型的凸起均可以仅设于齿部101位置,或者整个径向通槽101b侧壁均设置,以上都可以依靠叠片10制造过程冲片模具获得特殊固体边界用来限制气流边界层的生长,降低表面传热热阻,不赘述。
再请看图21,图21为叠片10齿部101的第三种变形结构示意图。
如图21所示,径向通槽101b的两侧槽侧壁具有多个弧形凹部c,两个弧形凹部c之间为平直部d,平直部d的内壁为平面,此时,两个弧形凹部c之间的平直部d,即为设于径向通槽101b侧壁的凸起,起到与上述矩形小凸起a、尖齿b相似的技术效果。此外,两侧弧形凹部c、平直部d 正对,即凸起在径向上并不错开,弧形凹部c的设置,相对于平直的径向通槽101b,可起到一定的扩容作用,如图21显示的C部位为一个扩容单元。
进一步理解,根据场协同机制,叠片10在内部流道壁面构建的突扩环节切断了切断流道内壁气流边界层生长,周期性阻止了壁面边界层厚度的增加,降低内壁表面边界层热阻。渐缩、渐扩段使得流道内壁气流不仅在纵向产生涡流还会产生径向二次流,强化了对流传热速率。
再请看图22,图22为叠片10齿部101的第四种变形结构示意图。
如图22所示,径向通槽101b的两侧槽侧壁具有多个弧形凸部e,两个弧形凸部e之间为平直部f,平直部f的内壁为平面,此时,弧形凸部e 即为设于径向通槽101b侧壁的凸起,起到与上述矩形小凸起a、尖齿b、平直部d相似的技术效果。此外,两侧弧形凸部e、平直部f正对,即凸起在径向上并不错开,弧形凸部e的设置,相对于平直的径向通槽101b,可起到缩放通道的作用,如图22显示的D部位为一个缩放单元。
再请看图23,图23为叠片10齿部101的第五种变形结构示意图。
如图23所示,径向通槽101b的两侧槽侧壁具有矩形凸起h,两个矩形凸起h之间为矩形凹部g,此时,矩形凸起h即为设于径向通槽101b侧壁的凸起,起到与上述矩形小凸起a、尖齿b、平直部d、弧形凸部e相似的技术效果。此外,两侧矩形凸起h、矩形凹部g正对,即凸起在径向上并不错开,矩形凸起h的设置,相对于平直的径向通槽101b,可起到缩放通道的作用,如图23显示的E部位为一个缩放单元。该实施例中的矩形凸起h和矩形凹部g比例相当,相对紧凑,能够形成缩放单元,区别于图 19的实施例,其矩形小凸起a松散地分布于槽侧壁,矩形小凸起a的尺寸相较于其他位置较小。
具体地,根据场协同机制,叠片10结构切断流道内壁气流边界层生长,周期性阻止了壁面边界层厚度的增加,降低内壁表面边界层热阻。渐缩渐扩段使得流道内壁气流不仅在纵向产生涡流还会产生径向二次流,强化了对流传热速率。
上述实施例中,图19-23都是由叠片10自身造就,在径向通槽101b 的两侧槽侧壁形成多种不同形状的凸起等,形成的固体边界也是铁心及其绝缘漆的边界。
另外,针对上述各实施例,铁心的冷却散热通道20内可设有导流部,具体请参考图24-26,图24为本发明所提供电机铁心第四实施例的原理示意图,仅示出叠片10的齿部101部分;图25为图24中II部位的局部放大示意图;图26为图25的H-H向剖视图。
该实施例中,导流部包括多个沿径向分布的导流凸台101c,导流凸台 101c向冷却散热通道20的径向中心线延伸或越过径向中心线,如图25所示,导流凸台101c突出于对应的径向通槽101b的槽侧壁,或一侧的槽侧壁本身相对上下伸出,形成导流凸台101c(阻力可能偏大,优选突出于槽侧壁)。冷却散热通道20中,径向上相邻的导流凸台101c,在高度方向错开。
电导体输运交流电存在趋附效应(或称为集肤效应),电导体通流截面的中心轴线电流密度最小,与导体输运交流电相反,对于流体而言,由于流体与固体壁面存在粘性摩擦作用(被牛顿摩擦切应力定律表达),导致流体通流截面上靠近固体边界的流体速度最小,直至壁面为零,而传递到通流截面中心的粘滞作用力降至最小,相应地中心轴线上流速最大,具有向通道中部汇聚的特性(即中部阻力最小),这样,利于流体的输运,但是却没有达到真正目的,即冷却流体对通道壁面进行对流传热,进行高效率地冷却壁面,故不利于设置铁心冷却散热通道20散热性能的充分发挥。本方案设置的径向上相邻的导流凸台101c在高度方向错开,如图25所示,则冷却气流在导流凸台101c的作用下,向上、向下地循环往前流动,可以打破上述流体向中部汇聚特性的影响,增加导流的导热、对流换热效果,提升通道的散热性能。
进一步理解,气流在冷却散热通道20内流动时,导流凸台101c的设置会形成纵向涡流和二次流。如图26所示,纵向上同一侧相邻的两个导流凸台101c之间空间较小,导流凸台101c下方空间较大,气流在流动过程中不断经过较窄空间、较大空间,会形成涡流,即纵向涡流。如图25所示,导流凸台101c向中部延伸,对于流体会形成横向压力,会形成流体流学上所述的二次流(专业术语)。纵向涡流和二次流的联合作用使得冷却散热通道20内部壁面不易结垢、不易堵塞。同样,遵循对流传热的场协同原则,设置导流凸台101c时,流动阻力增加不多,但可使边界层厚度不易增长,强化对流传热效果。如图25所示,导流凸台101c向中部延伸的长度可以不同,强化上述的导热、对流换热效果。
还可以参考图27,图27为在冷却散热通道20中设置螺旋弹簧104的示意图。
该实施例中,导流部包括位于冷却散热通道20内的螺旋弹簧104。导流部还包括芯轴105,芯轴105插入螺旋弹簧104中,且芯轴105的两端分别固定螺旋弹簧104的两端,芯轴105起到封堵流道中心区域截面、将流体驱赶到通道内壁进行对流传热的作用,利于减薄边界层厚、降低边界层热阻,遵循场协同指导对流传热原则。安装时,可使螺旋弹簧104外径缩小后放入冷却散热通道20中,进入后,螺旋弹簧104回复力使其支撑在冷却散热通道 20中,得以定位。当冷却气流进入冷却散热通道20后,在螺旋弹簧104的作用下,可以螺旋地形式向前推进,螺旋流冲刷通道内壁,减薄边界层厚度,进一步增加通流截面的中部区域流体的冷却气流与齿部101接触的几率,提升换热性能。这样,可避免通流截面中部流体温度较低,靠近通道壁面的流体温度tf较高,最终影响热源产热表面的换热速率降低。依据牛顿冷却定律:φ=hA(tw-tf),tw-流道内铁心表面绝缘物质的温度,tf-冷却流体温度,A-通道内壁面能够与冷却气流接触的表面面积。
进一步描述螺旋弹簧的作用104,铁心的冷却散热通道20内插入可弹性变形的螺旋弹簧104后,使得螺旋弹簧104能够与内壁紧密接触,螺旋弹簧104借助导热的热传递方式将通道内壁的热能转移到弹簧部件上,螺旋弹簧104本身结构属于螺旋状结构,促使通道内壁附近的边界层流体周期性受到弹簧扰动被迫做螺旋运动,还使得通道内壁螺旋弹簧104附近的流体产生一个切向速度分量,其流动速度增大、尤其是靠近通道壁面处,由于通道壁面处剪切应力的增大和由二次流导致,边界层内的流体运动起来直接降低了边界层流体的传热热阻,没有螺旋弹簧104之前,边界层内流体热量传递近乎导热,导热速率遵循导热的傅里叶定律,螺旋运动后属于对流换热,遵守牛顿冷却定律,通道内壁向通流截面中心的主流区域传递热流的速率大幅提高。而同时,这种结构对冷却流体产生的流动阻力又相对较小。
另外,请参考图28,图28为在冷却散热通道20中设置螺旋片106的示意图。
此实施例中的导流部包括冷却散热通道20内的螺旋片106,导流部同样包括芯轴105,芯轴105插入螺旋片106中,且芯轴105的两端分别固定螺旋片106的两端,与上述实施例中的芯轴作用相同,图28中的芯轴105也起到封堵流道中心区域截面、将流体驱赶到通道内壁进行对流传热的作用,利于减薄边界层厚、降低边界层热阻的作用。该实施例的原理和设置螺旋弹簧104的原理部分相同,螺旋片106也可以采用同样的方式装入冷却散热通道20中,不再赘述。显然,螺旋片106的导流效果优于螺旋弹簧104,而螺旋弹簧104的流阻小于螺旋片106。
对螺旋片106可作进一步说明。在铁心的冷却散热通道20内插入的螺旋片106,可由宽度一定的薄金属片(例如不锈钢金属片)在预先车制出一定深度和一定节距的螺旋槽的新轴上绕成,螺旋片106与冷却散热通道 20的内壁可有微小的间隙(如:0.5mm)。螺旋片106强化通道内壁面与冷却气流的对流传热机理:基于螺旋结构插入物使冷却流体在通道内产生旋转,同时使得冷却流体周期性地在螺旋片106周围受到扰动,将流道内壁流体与流道中部主流区域流体周期性混合,能够保持较高的对流换热速率。
相对于上述螺旋弹簧104的方案,螺旋片106的方案使得通流截面上前行的流体整体存在周期性换位;而且,在螺旋片106和冷却散热通道20 的内壁设有微小间隙时,螺旋片106增加了通流区域的主流区域的输运阻力后,迫使部分流体从螺旋片106与通道壁面之间的缝隙前行,带动边界层共同强行流动,相应地传输阻力会增大,但换热速率更快。
芯轴105和螺旋弹簧104、螺旋片106,均可以采用不锈钢制成,具备一定的刚度、性能稳定。
还可以参考图29、30,图29为在冷却散热通道20中设置水滴状绕流块10a的示意图;图30为图29中导流块10a的示意图。
该实施例中,导流部具体包括多个沿径向排列于冷却散热通道20内且呈水滴状截面(沿冷却流体流动方向的截面)的导流块10a,导流块10a 整体为等截面柱状,导流块10a的头部10a1朝向迎流方向。显然,这里设置水滴状截面的导流块10a,其目的也是降低或消除流体向中部汇聚的特性,其头部10a1可以将冷却气流向两侧分流,增加冷却气流与两侧齿部 101的径向通槽101b侧壁接触的几率,降低其流动前后壁面边界层厚,提高换热效率。水滴状的形态设计,也是在分流的前提下,尽量减小阻力。
水滴状(或滴状)场协同强化传热部件,即头部10a1较大,尾部10a2 较小,头部10a1的迎流面基本呈弧形,然后向后,两侧呈直线或接近直线,或高曲率半径弧线段,并且两侧逐渐内收,形成较窄的尾部10a2,尾部10a2 的宽度明显小于头部10a1,导流块10a可以具有较长的径向长度,即呈细长的水滴状,进一步降低其自身在通道内的节流阻力作用。图29中,导流块10a的头部10a1和尾部10a2均为弧形,具体都是半圆弧,以减少冷却气流流动的阻力。
请继续参考图31-33,图31为冷却散热通道20中冷却气流经过导流块10a时的流体分析示意图。冷却气流经导流块10a头部的前驻点,然后逐渐向导流块10a两侧流动,经过头部之后流动向两侧腰部的位置,经过一段距离到达图31中所示A区域时,边界层即开始出现分离。这里,滴状横截面的头部的直径大于尾部的直径,所以自导流块10a头部向尾部的方向,两侧的腰部呈逐渐内收的趋势,此时,基于该内收趋势,从A区域继续往后时,在B区域位置,气流的湍流剪切层会裹吸分离区的气流,则剪切层气流会再次附着在腰部,继续往下游在C区域还会经历分离后再附着,气流在经过腰部至尾部的过程中,可能会进行多次的分离和再附着,并在半圆弧的尾部处形成较窄的尾流。图31中A、B、C区域为一侧腰部的区域,气流经过时具有上述的分离、再附着的过程,气流经另一侧腰部也具有同样的过程,D区域和B、C区域类似,气流分离后再附着。此阶段中,边界层分离后再附着,这样使得滴状外表面始终有气流附着,产生压力,而从头部之后,逐渐收窄至尾部,故产生的压力存在逆风向的分力,与头部受到的压力相抵,降低前驻点和后驻点位置的压差,从而降低绕流阻力。
图32为图29中导流块10a头部前驻点至尾部后驻点的努谢尔数(Nu) 的变化示意图,努谢尔数反应表面换热系数的大小,S是从水滴状或滴状场协同强化传热部件的迎流面的前驻点开始作为横坐标原点,顺时针或逆时针沿着所述部件(导流块10a)外表面顺流而下至后驻点的总长度,其中,从前驻点至中途任意表面位置时对应的横坐标记为符号X,可见,导流块10a头部和尾部的表面换热系数大,中部的表面换热系数相对小;图 33为图29中导流块10a头部前驻点至尾部后驻点的雷诺数(Re)和顺流阻力系数(Cf)的变化示意图,顺流阻力系数只有0.1左右,其中,α表示水滴状导流块10a的长轴轴线需要与冷却散热通道20的轴线一致,保证夹角为零度。
不同流速的气流绕流水滴状截面的导流块10a后,形成的局部压降约为绕流圆形横截面部件压降的0.33-0.50倍;表面传热系数比绕流圆形横截面结构件高出20-30%,表明换热性能也优于圆形气动外形的结构件。因此,该结构形式的导流块10a具有降低冷却气流的流动阻力和对流道强化换热有双重效果。
水滴状导流块10a设在冷却散热通道20中,会与冷却散热通道20接触,例如与冷却散热通道20底部的叠片10接触,支撑在冷却散热通道20 中时,还会与顶部接触,则接触位置的叠片10的热量会传递至导流块10a,导流块10a换热系数较高时,有利于气流迅速带走导流块10a的热量,也就有利于接触位置的叠片10的散热。可以理解,当水滴状的导流块10a支撑于冷却散热通道20中时,也就自然成为其顶部、底部叠片10热能传递与冷却流体的中间热沉(heatsink)。
另外,重要的是:如图33,对通道内输运冷却介质造成的输运阻力非常小,同时迫使冷却介质在流经水滴状或滴状场协同强化传热部件时,存在缩放截面(工程热力学典型换能部件)的加速流道(见图29或34),缩放截面的加速流道利于流体与通道壁面场协同强化换热,局部场协同度提高,换热速率提高,而且如图所示,沿流向分布多个导流块10a使得该效果周期性发生,存在1+1大于1的效果。即沿流体流动方向,分布多个导流块10a时,有轴向主流流动的同时又有旋转流动,实现流体自身冷热掺混,即与铁心壁面接触过的流体被迫离开壁面后,又有新流体填补铁心壁面,发挥流动流体全部与铁心壁面接触的几率,充分发挥流体总体热容总量的作用,实现场协同对流换热。
以上的导流块10a截面是水滴状,整体为柱状,可以理解,导流块也可以是水滴状的球形,但经验证,导流块10为等截面柱状,截面为水滴状,流阻更小,为更优的方案。
上述的导流块10a不仅限于设置在冷却散热通道20内,也可以如背景技术所述,充当类似于槽钢的支撑件使用,即设置在上、下相邻的叠片之间,将相邻的叠片撑开以形成冷却通风沟,在冷却通风沟内设置的该水滴状的导流块10a可以起到如上所述的降低冷却气流的流动阻力和对流道强化换热有双重效果。
导流块10a设于冷却散热通道20内,可以支撑通道内上、下的叠片 10,既减阻又借助支撑导热。连接上、下叠片10,可降低上、下叠片10 之间的温差,降低叠片10温差造成的热应力,降低电机铁心整体的热变形,支持旋转电机等环状气隙的实现。
再请看图34,图34为在冷却散热通道20中反向设置水滴状导流块10a 的示意图,反向是相对图28而言。
图28中,冷却气流从叠片10的齿部101的径向外端面向内流入,即从铁心外部进入,则导流块10a的头部10a1朝向齿部101的径向外端;图 30中,冷却气流从叠片10根部102向外流入叠片10内部,即从铁心内部进入,则导流块10a的头部10a1朝向叠片10的根部102。本发明所有实施例中,无论冷却气流自铁心径向从外向内(或描述为向心、向铁心轴线) 流动,还是自内沿着铁心径向向外流动,只要将导流块10a的头部10a1 朝向迎流方向即可。
上述实施例主要针对叠片10如何形成的冷却散热通道20进行描述,下面还进一步描述,冷却散热通道20中冷却气流的来源,冷却气流可以如背景技术所述,由内循环气流经间壁式换热器换热获得,也可由下述的涡流分离器40生成。
具体请参考图35、36所示,图35为涡流分离器的基本结构及气流的总温分离工作原理图;图36为图35中喷管402流道的通流截面图。
图35中,作为铁心自身冷源的涡流分离器40包括喷管402和涡流分离管401,喷管402连通于涡流分离管401的侧壁,涡流分离管401的内腔与喷管402正对的部分形成涡流室401a,涡流室401a的一端(图35中的左端)为冷端管段401c,另一端(图35中的右端)为热端管段401b,冷端管段401c的出口为输出冷气流的冷端401d,热端管段401b的出口为输出热气流的热端401e,涡流室401a的一端端板设有一个通孔,这里定义为冷端孔板,冷端管段401c与该通孔连通,如图35所示,冷端管段401c 是截面积小于涡流室401a的相对较细的细管段。而涡流室401a和热端管段401b是等径管段,二者可一体或分体设置,一体设置更为简单。
电磁装置的铁心自身携带冷源的涡流分离器40的喷管402是将压缩气体的压力能转化为高速气流携带动能的能量转化部件,喷管402可包括进口段、主体段、出口段,出口段设有喷嘴,以喷出气流。气流经喷管402 后可形成螺旋气流,如图36所示,喷管402内部设有旋流板,即喷管402 的出口段为蜗壳,气流进入喷管402后可形成螺旋气流输出,喷管402要求切向连通涡流室401a,即随喷嘴喷出的螺旋气流沿涡流分离管401的切向旋入涡流分离管401内。蜗壳可将气流均匀地分配到喷管402出口段的喷嘴处,且尽可能地减少能量损失,并保证蜗壳内圆上的气流流动是轴对称流动。
由于冷端管段401c截面积较小,则对于进入涡流室401a内的螺旋气流而言,冷端401d孔板处的阻力较大,切向旋入涡流分离管401内的气流向反向的热端管段401b流动。这里,热端管段401b的截面积可以等于或大于涡流室401a的截面积,以保证螺旋气流会向热端管段401b的方向流动。
在热端管段401b内还设有具有锥面的阀门,具体如图35所示的锥状的节流件403,节流件403的锥端的朝向与螺旋气流流动方向相反,图35 中螺旋气流从喷管402进入涡流分离管401后,自左向右螺线流动,流动至节流件403时,螺旋气流的外部气流可从阀门流出,即沿节流件403和涡流分离管401之间的环形间隙流出并升温为热气流,如图35所示,热气流从热端管段401b的热端401e流出。
而螺旋气流的中部气流会碰到节流件403,在与节流件403的锥面碰撞、引导后,会反向回旋流动,形成回流气流,在流动过程中,会逐渐降温,冷却气流的温度可大幅度降低,温度可降低至-50~40摄氏度。这里所述的外部气流和中部气流是相对于螺旋气流的中心线而言,靠近中心线附近的螺旋气流为中部气流,远离中心线靠近螺旋气流径向最外侧的气流,为外部气流。为保证螺旋气流向热端管段401b流动以及回流的行程,以形成热气流和冷气流,节流件403可设于热端管段401b的末端。
以上要求螺旋气流经阀门后可以形成反向流动的螺旋气流,所以设置锥状的节流件403,从回旋的螺旋气流的形成而言,阀门只要具有一定范围内的锥面即可,比如,是圆台状(即没有锥尖,而是锥形的一段),或者是沿轴向剖开的半锥等。但可以理解,为了较好地形成雍塞效应,并能够较好地引导成回流的螺旋气流,优选的方案是将阀门设置呈图35所示的完整的锥形。另外,锥形的节流件403的轴线与冷端管段401c的轴线重合,这样在回流的螺旋气流旋向冷端管段401c,有利于气流的旋进,可减少能量损失。
可见,电磁装置铁心204自身携带冷源的涡流分离器40,可产生将同一股气流进行温度分离的分离效应,获得冷、热两股气流,且是两种温度水平高低十分悬殊的气流。该涡流分离器40是基于龙卷风的现象启发研发而成。
龙卷风是自然界中在特定大气条件下产生的强旋风现象,海洋中在特定条件下也会产生自水面向海底垂直传播的大洋旋涡。典型龙卷风的气流结构显示龙卷风中心是一个漏斗型或喇叭形的尖锥体。这个锥体是龙卷风的旋聚区,该锥体的旋向与外围充满尘土的上升的热气流的旋向相同,但中心锥体内气流的轴向流动方向与外围上升气流相反,呈现下降气流。在自然环境中实际跟踪测量一个龙卷风中心锥体冷气流的下降流速可达到 17米/秒。当中心锥体的锥尖一旦触及发散时,龙卷风就会迅速强化,而且锥尖随之消失,变为截锥体。当外围热气流边旋转边上升,到达上层冷云层底面或同温层时,会立即呈现喇叭口型水平旋射发散并改变旋转方向反向旋转抛出。空气绕龙卷的轴快速旋转,受龙卷中心气压极度减小的吸引,在近地面几十米厚的薄层空气内,气流从四面八方被吸入涡旋的底部,并随即变为绕轴心高速向上旋转的涡流,所以龙卷中的风总是气旋性,其中心的气压比周围气压低百分之十,一般可低至400hPa,最低可达200hPa。龙卷风具有很大的吸吮作用,可把海水或湖水吸离海面或湖面,形成水柱,然后同云相接,俗称“龙取水”。
龙卷风的能量来源:一是龙卷风外围气流的热能,另一是涡心低压区的真空能。龙卷风外围气流的高温气体与龙卷风相互作用,使得热能转化为旋转动能,机理通过Crocco定理解释。Crocco定理是基于能量守恒的热力学第一定律在流体旋涡场中得出的。该定理定量表达了旋涡场中热力学焓的梯度、熵的梯度与涡流旋转强度的关系。大气中的温差及上下对流是龙卷风旋涡形成的前提条件,而使龙卷风旋涡得以增强的能量则来自周围的热能。龙卷风外围的上升热气流与旋涡中心的下降冷气流形成的热力学焓的梯度成为大气热能转化为漩涡流动动能的关键因素。在龙卷风依靠热能达到一定强度之后,进一步的强化则需要依靠涡心低压区的真空能。龙卷风中心的下锥体与外围气流同旋向。该锥体内的气流边旋转下降同时向中心聚集。当其向心加速度超过一定的临界值之后,径向聚集过程并在科氏力的作用下通过粘性扩散对径向外围气流产生加速旋转的作用。
即龙卷风存在总温分离现象,本实施例中提供的涡流分离器40就是比拟龙卷风,而设置喷管402将进入的压缩气流形成螺旋气流,可看作为小尺度的龙卷风的螺旋状流动,这样可以在涡流分离管401内模拟出龙卷风的总温分离,继而形成所需的热气流和冷气流。
以上是从自然界追寻本方案的机理,下面继续对涡流分离器40温度分离效应的原理进行说明。
请参考图37-38,图37为图35中铁心204的涡流分离器40部件内的内部流场、热能传递示意图;图38为自由涡流和强制涡流的对比示意图。
根据能量守恒法则,从涡流分离管401中流出的冷气流、热气流的能量总和应等于进入涡流分离器40的喷管402内的压缩气体的能量(前提是涡流分离器40绝热良好)。因此,在涡流分离器40中必然存在能量再分配的过程,使一部分能量从冷却气流转移到热气流中。
首先,向喷管402提供压缩气体,后称为高压气体,可设置压气机,由压气机提供压缩气体,为避免提供的冷却气流影响铁心204的内部环境,可以在压气机的入口处设置空气过滤器。
压缩气体的气流在涡流分离器40的喷管402中膨胀加速,在进入涡流分离管401的涡流室401a时速度可以接近音速,如果采用缩放型的喷管 402,则速度会超过音速。由于气流在喷管402中迅速膨胀通过,可近似认为是一绝热过程,气流在喷管402出口喷嘴处的流速非常大,其相应的热力学温度将大大低于喷管402入口处的温度,即经过一次可控降温。
当气流切向进入涡流分离管401的涡流室401a后,会沿涡流室401a 的内壁继续作螺线运动,形成高速的旋转气流,气流刚出喷管402时,存在V=const或ωr=const,其中,V是气流切向速度,ω为角速度,此类旋转又称为自由涡流,如图38所示,图38示出自由涡流和强制涡流的切向速度、角速度的区别。此时气流在涡流室中的运动轨迹可以看作是沿着阿基米德螺线运动。下面分析冷却气流和热气流的形成过程。
热气流的形成:由于刚出喷管402的气流的流动是自由涡流,角速度沿着半径方向存在梯度,引起了气流径向层间的摩擦,使螺旋气流的外部气流的角速度逐渐升高,而螺旋气流的中部气流的角速度逐渐降低,但因流动很快,历经路程短,螺旋气流还没有达到完全的强制涡流,而是向其中心部分发展,螺旋气流的外部气流会在热端管段401b中沿着螺线运动,既具有旋转运动,又具有轴向运动,运动过程中外部气流与热端管段401b 的内壁摩擦,外部气流的速度越来越低,温度逐渐升高,最终从节流件403 和热端管段401b之间的环形空隙流出。通过调节节流件403和热端管段 401b之间的间隙,可以调节冷、热气流的比例。
冷气流的形成:气流刚出喷管402属于自由涡流,在离心力的作用下,同时受到冷端管段401c的冷端401d孔板的阻隔,会贴近热端管段401b 的内壁向节流件403处流动。在流动过程中,由于轴向速度的逐步耗散,此旋流运动至轴向某个位置时其轴向速度已经接近于零,可以定义为滞止点。此时,由于中部气流在滞止点处的聚集,压力不断上升,滞止点处的压力会高于冷端管段401c的出口处的冷端401d压力,便会在热端管段 401b的中心区域产生反向的轴向运动,即从滞止点处开始出现回流气流,逐渐降温形成冷气流,即二次降温。在滞止点处,外部气流的总温比中部气流的总温高。此逆向流动在向冷端管段401c运动过程中,不断有外层的部分螺旋气流转向汇入,因而逐步壮大,在达到冷端401d孔板时其逆向流量达到最大。
如图37所示,在涡流分离管401的同一流道截面上,外部气流的最外层气流静压最大,而中部气流位于中心轴线上的最中心气流静压最小,在接近喷管402的喷嘴处的截面上,该截面的最大静压和最小静压的比值为最大,比值可达到1.5-2,静温则在涡流分离管401的壁面处最高,而在中心轴线上最低。
在任一流道截面上,任一点气流的切向速度都占主导地位。在喷管402 的喷嘴附近,气流的径向速度和轴向速度都达到最大值,且沿着各自的方向逐渐减弱。
如前所述,气流离开喷嘴后沿着切向进入涡流分离管401内,分为两个区域,外部气流沿涡流分离管401内壁切向旋转趋于热端管段401b的热端401e出口,即外层区域的外部气流形成自由涡流。中部气流自设置节流件403的位置回流,受周围自由涡流的驱动,然后经过摩擦,气流如同刚体一样转动的内层区域(中部气流)会转变成或接近强制涡流。
外部和中部两个区域的分界,即外部气流和回流的中部气流视冷流率的大小而定,从图37可看出冷、热气流的边界。在整个涡流分离管401 的长度上,边界的界面一般位于距离中心轴线0.65-0.75R的范围内,即中部气流在径向上的流动范围,R为涡流分离管401的半径。从喷管402的喷嘴到节流件403之间的外部气流的轴向流动在半径0.65-1R之间的范围进行,即外部气流在径向上的流动范围。在内部区域,中部气流朝着相反的方向流动,流动正好从节流件403处开始。
中部气流的中心气流温度在节流件403处最高,反向流动逐渐降温,而到达冷端401d孔板处时最低。最大温差即出现在中心轴线方向,最高温度在节流件403对应的中心轴线处,最低温度在冷端401d孔板对应的中线轴线处。对于内层的中部气流而言,即冷气流,其静温在中心轴线处最低,在与外层气流的分界的界面处达到最高。
在涡流分离管401的流道的任一截面上,总温在接近涡流分离管401 的内壁面处最高,在中心轴线上最低。在喷嘴处的流道截面,涡流分离管 401的壁温和中心轴线温度之差达到最大值。
对于涡流分离器40的总温分离效应,可参考图39,图39为图35中涡流分离器40内部总温分离工作过程基于热力学温-熵(T-S)图上的示意。从图39可看出,涡流分离器40的确将进入喷管402的压缩气流进行了温度分离。
图39中,点4为气体压缩前的状态,即进入压气机70前的状态。点 4-5为气流的等熵压缩过程。点5-1为压缩气体的等压冷却过程。点1表示压缩气体进入涡流分离器40的喷管402前的状态,在理想条件下绝热膨胀到p2压力,随之温度降低到Ts,即点2a状态。点2为涡流管流出的冷气流状态,其温度为Tc。点3为分离出的热气流状态,其温度为Th。点1-2 和点1-3为冷、热气流的分离过程。3-3′为热气流经过节流件403的节流过程,节流前后比焓值不变。
由于整个工作过程中,气流在喷管402中不可能作等熵膨胀。涡流室401a内外层气体之间的动能交换存在一定的损失,且涡流室401a内存在的向中心热传递过程,使气流在点1-2过程偏离绝热膨胀过程,造成涡流分离管401分离出来的冷气流温度Tc总高于绝热膨胀条件下的冷气流温度 Ts
再请看上述实施例中涡流分离器40的冷却效应和加热效应。
涡流分离管401在工作过程中使温度T1的气体分离为温度为Tc的冷气流和温度为Th的热气流。因此,ΔTc=T1-Tc称作涡流分离管401的冷却效应,ΔTh=Th-T1被称作涡流管的加热效应。将ΔTs=T1-Ts定义为等熵膨胀效应,以标志涡流分离管401的理论冷却效应。因此,涡流分离管401 制冷的有效性用冷却效率ηc表示,即:
Figure RE-GDA0001828748770000331
其中,p1-涡流分离器40进口气流压力,p2-气流在喷管402中膨胀进入涡流室401后的压力;k-气体(如空气)的绝热指数。
另外,涡流分离器40在工作过程,存在流量及热量的平衡,如下:
若以qm1、qmc、qmh分别表示进入涡流分离管401的高速气流、冷端 401d的冷气流和热端401e的热气流的流量,则qm1=qmc+qmh
若以h1、hc和hh(KJ/Kg)分别表示它们的比焓,忽略气体流出时的动能,则qm1h1=qmchc+qmhhh
冷气流量比
Figure RE-GDA0001828748770000341
气体焓值与温度对应关系h=CpT
得到:T1=μcTc+(1-μc)Th T
Figure RE-GDA0001828748770000342
还可以得到涡流分离管401的制冷量,如下:
涡流分离管401制冷量Q0(kW)为
Q0=qmccp(T1-Tc)=μcqm1cpΔTc
则每一千克冷气流的制冷量为
Figure RE-GDA0001828748770000343
若对于每一千克高压气体而言,其单位制冷量q′0可表示为:
Figure RE-GDA0001828748770000344
再请看涡流分离管401的制热量Qh(kW):
Qh=qmhcp(Th-T1)=(1-μc)qm1cpΔTh
每一千克热气流的制热量为
Figure RE-GDA0001828748770000351
若对于每一千克高压气体而言,其单位制热量可表示为:
Figure RE-GDA0001828748770000352
上述的涡流分离管401的冷却冷却效应ΔTc=T1-Tc和单位制冷量 q0,与以下因素有关,即冷气流分量μc、喷管402的进口工作压力p1、气流中的水汽含量。
冷气流分量μc,当冷气流分量值变化时,ΔTc和qo均有相应变化,而且在μc=0~1的范围内有最大值存在。当μc=0.3~0.35时,ΔTc有最大值;而当μc=0.6~0.7时,qo达到最大值。同时,加热效应也随着μc变化而改变,当μc增大时ΔTh不断增大,且无极限存在。
喷管402的进口工作压力p1,当p1增大时,ΔTc和qo均增大。但增大时ΔTc的最大值向μc减小的方向移动,qo的最大值则向μc增大的方向移动。
气体潮湿时,冷气流中水汽要凝结放热,故制冷温度上升,冷却效率降低;热气流温升减少,加热效应降低。
以上详细介绍了涡流分离器40的原理,可分离出热气流和冷气流,冷气流可输入铁心的冷却散热通道20。该结构简单、节能,对于铁心冷却而言,易于形成所需的冷却气流,满足铁心冷却需求。
涡流分离器40的冷端管段401c可以通过连接管连通冷却散热通道 20,或者,冷端管段401c直接插入冷却散热通道20固定,比如,可以采用冷套的方式插入冷却散热通道20内。还可以是涡流分离器40的冷端管段401c与冷却散热通道20一体成型,即叠片10叠置形成冷却散热通道 20时,叠片10在对应位置可以作延伸设计,叠置形成的冷却散热通道20延伸出铁心的外周,即冷却散热通道20凸出铁心,该延伸凸出的部分作为冷端管段401c。
以上实施例中主要以电机的铁心作为主要构件进行描述,可以理解,其他的电磁装置中的铁心也可以采用上述各实施例的方案,比如电磁铁、变压器、电抗器、电机等,都包括由叠片10叠置形成的铁心结构,都可以利用铁心的叠片进行叠置形成冷却散热通道,不再一一赘述。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (24)

1.电磁装置的铁心,包括层叠设置的多个叠片(10),所述叠片(10)包括根部(102)和沿所述根部(102)外周分布的多个齿部(101),相邻所述齿部(101)之间用于容纳绕组(40),其特征在于,至少部分所述叠片(10)的至少部分齿部(101),设有自所述齿部(101)的径向外端面向内径向贯通的径向通槽(101b),所述径向通槽(101b)具有两侧的槽侧壁,多个所述叠片(10)的所述径向通槽(101b)叠置形成冷却散热通道(20)。
2.如权利要求1所述的电磁装置的铁心,其特征在于,所述径向通槽(101b),还沿所述叠片(10)的厚度方向贯通所述叠片(10),至少部分所述径向通槽(101b)还具有连接所述径向通槽(101b)两侧的槽侧壁的连接部(102a)。
3.如权利要求2所述的电磁装置的铁心,其特征在于,所述连接部(102a)位于所述叠片(10)的根部(102),且位于所述径向通槽(101b)的顶部或底部。
4.如权利要求1所述的电磁装置的铁心,其特征在于,至少部分所述叠片(10)的至少部分齿部(101)设有两个或两个以上的所述径向通槽(101b),以在所述铁心的同一列齿部(101)的同一轴向高度位置,叠置形成两个或两个以上的所述冷却散热通道(20)。
5.如权利要求4所述的电磁装置的铁心,其特征在于,一列所述齿部(101),形成多个沿轴向高度方向分布的所述冷却散热通道(20)。
6.如权利要求1所述的电磁装置的铁心,其特征在于,所述铁心设有多个所述冷却散热通道(20),且多个所述冷却散热通道(20)沿周向、轴向均错开。
7.如权利要求1所述的电磁装置的铁心,其特征在于,上、下相邻所述径向通槽(101b)的宽度尺寸不同,以使叠置形成的所述冷却散热通道(20)的横截面呈圆形或椭圆形。
8.如权利要求7所述的电磁装置的铁心,其特征在于,所述径向通槽(101b)的侧槽壁的截面呈弧形。
9.如权利要求1-8任一项所述的电磁装置的铁心,其特征在于,所述径向通槽(101b)的槽侧壁具有多个凸起。
10.如权利要求9所述的电磁装置的铁心,其特征在于,所述径向通槽(101b)的一侧槽侧壁的凸起与另一侧槽侧壁的凸起,在径向错开。
11.如权利要求9所述的电磁装置的铁心,其特征在于,所述径向通槽(101b)的两侧槽侧壁呈波浪形或锯齿形,波浪形的波峰或所述锯齿形的尖齿(b)形成所述凸起;或,
所述径向通槽(101b)的两侧槽侧壁,包括多个弧形凹部(c),两个弧形凹部(c)之间为平直部(d),所述平直部(d)为所述凸起;
或,所述径向通槽(101b)的两侧槽侧壁,包括多个矩形凹部(g),两个矩形凹部之间为矩形凸部(h),所述矩形凸部(h)为所述凸起;
或,所述径向通槽(101b)的两侧槽侧壁,包括多个弧形凸部(e),两个弧形凸部(e)之间为平直部(f),所述弧形凸部(e)为所述凸起。
12.如权利要求1-8任一项所述的电磁装置的铁心,其特征在于,所述冷却散热通道(20)内设有导流部。
13.如权利要求12所述的电磁装置的铁心,其特征在于,所述导流部包括多个沿径向分布的导流凸台(101c),所述导流凸台(101c)自所述槽侧壁向所述冷却散热通道(20)的径向中心线延伸或越过所述径向中心线;径向上相邻的所述导流凸台(101c),在轴向高度方向错开。
14.如权利要求12所述的电磁装置的铁心,其特征在于,所述导流部包括位于所述冷却散热通道(20)内的螺旋弹簧(104)或螺旋片(106),还包括芯轴(105),所述芯轴(105)插入所述螺旋弹簧(104)或所述螺旋片(106)中,且所述芯轴(105)的两端分别固定所述螺旋弹簧(104)或所述螺旋片(106)的两端。
15.如权利要求12所述的电磁装置的铁心,其特征在于,所述导流部包括多个沿径向排列于所述冷却散热通道(20)内且截面呈水滴状的导流块(10a),所述导流块(10a)的头部朝向迎流方向。
16.如权利要求1-8任一项所述的电磁装置的铁心,其特征在于,还包括涡流分离器(40),所述涡流分离器(40)包括喷管(402)和涡流分离管(401),所述涡流分离管(401)包括涡流室(401a)和分别位于所述涡流室(401a)两端的冷端管段(401c)和热端管段(401b);所述喷管(402)连通于所述涡流室(401a),压缩气流经所述喷管(402)形成螺旋气流且沿所述涡流室(401a)的切向流入;
所述冷端管段(401c)截面积小于所述涡流室(401a)截面积,所述热端管段(401b)截面积等于或大于所述涡流室(401a)截面积;
所述热端管段(401b)内设有具有阀口的阀门,所述阀门具有锥面,所述螺旋气流进入所述涡流分离管(401)后,所述螺旋气流的外部气流向所述阀口流动并逐渐升温为热气流后沿所述阀口流出;所述螺旋气流的中部气流经所述阀门的锥面后反向回流而降温为冷气流,并从所述冷端管段(401c)流出,所述冷气流为作为输送至所述冷却散热通道(20)的冷却气流。
17.如权利要求16所述的电磁装置的铁心,其特征在于,所述涡流室(401a)的一端设有通孔,所述冷端管段(401c)的管体连通于所述通孔;所述涡流室(401a)与所述热端管段(401b)一体等径设置。
18.如权利要求16所述的电磁装置的铁心,其特征在于,所述阀门包括锥状的节流件(403),所述节流件(403)的锥端朝向所述冷端管段(401c),所述节流件(403)位于所述热端管段(401b)的中部,所述节流件(403)与所述热端管段(401b)的内壁之间形成的环形间隙为所述阀口;且,所述冷端管段(401c)的轴线与所述节流件(403)的轴线重合。
19.如权利要求16所述的电磁装置的铁心,其特征在于,所述冷端管段(401c)插入所述冷却散热通道(20),或所述冷却散热通道(20)延伸出所述铁心的外周而形成所述冷端管段(401c)。
20.电磁装置的铁心的叠片(10),包括齿部(101)和根部(102),其特征在于,所述叠片(10)的至少部分所述齿部(101),设有自所述齿部(101)的径向外端面向内径向贯通的径向通槽(101b),所述径向通槽(101b)具有两侧的槽侧壁。
21.如权利要求20所述的电磁装置的铁心的叠片(10),其特征在于,所述径向通槽(101b),还沿所述叠片(10)的厚度方向贯通所述叠片(10),至少部分所述径向通槽(101b)还具有连接所述径向通槽(101b)两侧的槽侧壁的连接部(102a)。
22.如权利要求21所述的电磁装置的铁心的叠片(10),其特征在于,所述连接部(102a)位于所述叠片(10)的根部(102),位于所述径向通槽(101b)的顶部或底部。
23.如权利要求20-22任一项所述的电磁装置的铁心的叠片(10),其特征在于,至少部分所述齿部(101)设有两个或两个以上的所述径向通槽(101b)。
24.电磁装置,包括铁心,其特征在于,所述铁心为权利要求1-19任一项所述的电磁装置的铁心;所述电磁装置为电机、变压器或电抗器。
CN201811011788.0A 2018-08-31 2018-08-31 电磁装置的铁心及其叠片 Active CN110635583B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811011788.0A CN110635583B (zh) 2018-08-31 2018-08-31 电磁装置的铁心及其叠片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811011788.0A CN110635583B (zh) 2018-08-31 2018-08-31 电磁装置的铁心及其叠片

Publications (2)

Publication Number Publication Date
CN110635583A true CN110635583A (zh) 2019-12-31
CN110635583B CN110635583B (zh) 2020-10-27

Family

ID=68968182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811011788.0A Active CN110635583B (zh) 2018-08-31 2018-08-31 电磁装置的铁心及其叠片

Country Status (1)

Country Link
CN (1) CN110635583B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111723447A (zh) * 2020-06-30 2020-09-29 扬州大学 一种动静腔流动微沟槽减阻设计方法
CN115182870A (zh) * 2022-07-18 2022-10-14 西南石油大学 一种用于往复式压缩缸的流线型气道结构
CN116455106A (zh) * 2023-04-23 2023-07-18 华北电力大学(保定) 一种永磁同步发电机及发电机定子径向通风道设置方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230361638A1 (en) * 2022-05-09 2023-11-09 Hamilton Sundstrand Corporation Aircraft electric motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285046A (ja) * 1996-04-08 1997-10-31 Toshiba Corp 回転電機及びその固定子
JP2011055645A (ja) * 2009-09-02 2011-03-17 Mitsubishi Electric Corp 回転電機
CN103746481A (zh) * 2014-01-20 2014-04-23 东方电气集团东方电机有限公司 一种定子铁心通风沟结构
CN204559258U (zh) * 2015-04-29 2015-08-12 哈尔滨理工大学 用于提高定子端部铁心冷却效果的汽轮发电机
CN105762955A (zh) * 2016-05-11 2016-07-13 哈尔滨理工大学 一种利于散热的环绕绕组凹槽式水轮发电机定子
CN205791824U (zh) * 2016-05-24 2016-12-07 东方电气集团东方电机有限公司 前置导风的定子通风槽片
CN106953436A (zh) * 2015-09-30 2017-07-14 西门子公司 发电机、优选为风力涡轮机的发电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285046A (ja) * 1996-04-08 1997-10-31 Toshiba Corp 回転電機及びその固定子
JP2011055645A (ja) * 2009-09-02 2011-03-17 Mitsubishi Electric Corp 回転電機
CN103746481A (zh) * 2014-01-20 2014-04-23 东方电气集团东方电机有限公司 一种定子铁心通风沟结构
CN204559258U (zh) * 2015-04-29 2015-08-12 哈尔滨理工大学 用于提高定子端部铁心冷却效果的汽轮发电机
CN106953436A (zh) * 2015-09-30 2017-07-14 西门子公司 发电机、优选为风力涡轮机的发电机
CN105762955A (zh) * 2016-05-11 2016-07-13 哈尔滨理工大学 一种利于散热的环绕绕组凹槽式水轮发电机定子
CN205791824U (zh) * 2016-05-24 2016-12-07 东方电气集团东方电机有限公司 前置导风的定子通风槽片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑东平等: "100~200 MW空冷汽轮发电机的通风与温升计算 ", 《发电设备》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111723447A (zh) * 2020-06-30 2020-09-29 扬州大学 一种动静腔流动微沟槽减阻设计方法
CN111723447B (zh) * 2020-06-30 2023-11-14 扬州大学 一种动静腔流动微沟槽减阻设计方法
CN115182870A (zh) * 2022-07-18 2022-10-14 西南石油大学 一种用于往复式压缩缸的流线型气道结构
CN115182870B (zh) * 2022-07-18 2024-01-16 西南石油大学 一种用于往复式压缩缸的流线型气道结构
CN116455106A (zh) * 2023-04-23 2023-07-18 华北电力大学(保定) 一种永磁同步发电机及发电机定子径向通风道设置方法
CN116455106B (zh) * 2023-04-23 2023-09-26 华北电力大学(保定) 一种永磁同步发电机的发电机定子径向通风道设置方法

Also Published As

Publication number Publication date
CN110635583B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN110635583B (zh) 电磁装置的铁心及其叠片
US11971015B2 (en) Wind power generator set, electromagnetic device, and heat exchange or drying device for iron core
JP6607566B2 (ja) 空気冷却式のエンジン表面冷却器
US11437888B2 (en) Medium conveying and heat exchange device and vortex flow separator for iron core in electromagnetic device
US4714407A (en) Aerofoil section members for turbine engines
JP2005147130A (ja) メッシュ及び渦流式冷却を備えた高温ガス通路構成部品
EP3483395B1 (en) Inter-turbine ducts with flow control mechanisms
US20230101634A1 (en) Stator assembly, electrical motor, wind power generator set and method for cooling stator assembly
WO2020043159A1 (zh) 电机及其轴系的换热装置、风力发电机组
CN112523810B (zh) 一种应用于涡轮叶片尾缘半劈缝的三角柱型导流结构
CN110635626B (zh) 电气设备及其换热介质输运装置,及风力发电机组
CN110635625B (zh) 风力发电机组、电磁装置及其铁心的换热装置
WO2020052467A1 (zh) 定子组件、具有该定子组件的电机及风力发电机组
CN105849368B (zh) 带有具有降低的压降的分离条的内部冷却系统的涡轮翼面
Yilmaz et al. Energy correlation of heat transfer and enhancement efficiency in decaying swirl flow
US20140238642A1 (en) Heat exchange device and method
JP2003049607A (ja) 流体導通管
EP2775095A1 (en) Radial turbine
KR20240037001A (ko) 가스터빈 블레이드의 내부 냉각유로 구조

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant