WO2020052467A1 - 定子组件、具有该定子组件的电机及风力发电机组 - Google Patents

定子组件、具有该定子组件的电机及风力发电机组 Download PDF

Info

Publication number
WO2020052467A1
WO2020052467A1 PCT/CN2019/104142 CN2019104142W WO2020052467A1 WO 2020052467 A1 WO2020052467 A1 WO 2020052467A1 CN 2019104142 W CN2019104142 W CN 2019104142W WO 2020052467 A1 WO2020052467 A1 WO 2020052467A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
airflow
nozzle
cold
stator core
Prior art date
Application number
PCT/CN2019/104142
Other languages
English (en)
French (fr)
Inventor
马盛骏
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to US17/042,863 priority Critical patent/US11384741B2/en
Priority to EP19859897.1A priority patent/EP3767790B1/en
Priority to AU2019339973A priority patent/AU2019339973B2/en
Priority to ES19859897T priority patent/ES2968367T3/es
Publication of WO2020052467A1 publication Critical patent/WO2020052467A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/122Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/209Heat transfer, e.g. cooling using vortex tubes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine

Definitions

  • the present disclosure relates to the technical field of electric machines, and more particularly, to a stator assembly having a cooling and ventilation structure, a motor having the stator assembly, and a wind turbine.
  • a cooling medium is usually passed into an air gap between a stator and a rotor to cool a heat source component of a motor.
  • forced convection heat transfer is usually performed on the heat generated by the windings, and high-power, large-scale (impeller diameter) fluid machinery (for example, fans) is used to force the cooling medium into the stator and Air gaps between rotors or radial air ducts of stator core windings.
  • this cooling method of passing cold air flow into the air gap cannot completely prevent the expansion and deformation of the stator.
  • the severe impact of the cooling medium fluid transmission and the wind-induced noise of the air flow on natural environment organisms is also an ecological regulation. Not allowed.
  • the present disclosure aims to provide a stator assembly having an airflow conveying device capable of directly spraying cooling on a radial side surface of a stator core opposite to an air gap side, and the stator having the same.
  • Component motors and wind turbines are included in the stator assembly.
  • a stator assembly including a stator iron core and a stator bracket supporting the stator iron core, the stator assembly further includes an airflow conveying device configured to A first cold air current is delivered to a radial side surface of the stator core opposite to the air gap side in a radial direction of the stator core.
  • a motor including the stator assembly as described above.
  • a wind turbine including a stator assembly as described above.
  • the other side of the stator opposite to the air gap can be cooled during the operation of the motor, so that both radial sides of the stator are cooled at the same time, reducing the expansion and deformation of the stator core, and preventing The air gap is narrowed, and at the same time, the stator is prevented from baking at high temperature, protecting the poles and extending the service life of the motor.
  • FIG. 1 is a cross-sectional view showing a part of a stator assembly according to a first embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing a nozzle and a vortex tube according to a first embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view illustrating a vortex tube according to the present disclosure
  • FIG. 4 is a schematic diagram illustrating an internal flow field of a vortex tube according to the present disclosure
  • FIG. 5 is a schematic diagram illustrating a flow guide provided on a surrounding plate of a stator bracket according to a first embodiment of the present disclosure
  • FIG. 6 is a partial cross-sectional view illustrating a stator assembly according to the present disclosure
  • FIG. 7 is a perspective view and a variable cross-sectional view illustrating a nozzle according to a first embodiment of the present disclosure
  • FIG. 8 is a perspective view showing a nozzle according to a first embodiment of the present disclosure.
  • FIGS. 9 and 10 are schematic diagrams showing an air flow flowing through the outer periphery of a plurality of nozzles according to the first embodiment of the present disclosure
  • FIG. 11 is a sectional view showing a part of a stator assembly according to a second embodiment of the present disclosure.
  • FIGS. 12 and 13 are schematic views showing a nozzle and a return passage according to a second embodiment of the present disclosure
  • FIG. 14 is a schematic diagram illustrating a cold air supply unit according to the present disclosure.
  • the stator core 100 of the motor is formed by laminating and laminating ferromagnetic conductor sheets with a large resistivity and a small hysteresis loop area after stamping and insulation treatment.
  • a plurality of fan-shaped silicon steel sheets are usually spliced along the circumferential direction and stacked in the axial direction.
  • the column (supporting post) 210 of the stator bracket 200 is connected with the pigeon tail on the silicon steel sheet through fasteners.
  • the slots 110 are combined to fix the silicon steel sheet to the support bracket 220 of the stator bracket in the circumferential direction, and the two ends in the axial direction are clamped by a tooth pressing plate, thereby forming a stator assembly including the stator core 100 and the stator bracket 200.
  • the inventors of the present disclosure have discovered through research that although the way of passing cold airflow into the air gap between the stator and the rotor of the motor can effectively cool the magnetic poles and windings on both sides of the air gap, for the stator core, the cold The airflow directly contacts the radial end surface on the air gap side, and the radial end surface far from the air gap side is difficult to be cooled, which makes the temperature distribution of the stator core along the radial direction uneven, radially outward and radial. There is a large difference in the heat distribution in the inner part. The part of the stator core away from the air gap side is prone to expansion and deformation, which causes the air gap between the stator and the rotor to narrow.
  • the embodiments of the present disclosure propose a technical solution for reforming the traditional cooling method and traditional cooling structure of an electromagnetic device (such as a motor core heat source), and a radial side surface of the stator core opposite to the air gap.
  • the cooling is performed so that the radial sides of the stator core are cooled at the same time, and the difference in heat distribution between the radial sides of the stator core is reduced.
  • the stator bracket is also cooled to reduce the difference between the degree of cooling of the stator bracket and the core winding away from the air gap side, and to reduce the difference in heat distribution between the core winding and the stator bracket, thereby avoiding the core winding and the stator.
  • the thermal expansion difference of the bracket causes the air gap between the stator and the rotor to change.
  • an stator of a motor is taken as an example to illustrate a stator assembly according to an embodiment of the present disclosure.
  • FIG. 1 schematically illustrates a part of a stator assembly of a motor, the stator assembly including a stator core 100 and a stator bracket 200 supporting the stator core 100. Since the embodiments of the present disclosure are intended to describe in detail the cooling of the radially inner surface of the stator core opposite to the air gap side (the air gap between the stator and the rotor), only the stator components of the motor are shown in the figure. Structure without showing other parts of the machine (eg, rotor, core winding, etc.).
  • the stator iron core 100 may be formed by stacking multiple iron core laminations (for example, silicon steel sheets).
  • the stator iron core 100 is provided with cogging, and the windings are disposed in the cogging and face the rotor.
  • the stator bracket 200 may be disposed on a radially inner side of the stator core 100 and fasten the stator core 100 thereto.
  • the stator assembly includes an airflow conveying device for generating cold airflow and conveying the cold airflow to a radial side surface of the stator core opposite to the air gap (in the outer rotor, inner stator type)
  • the radial side surface may also be referred to as the radially inner surface, root, back, etc. of the stator core to directly cool the radially inner surface of the stator core.
  • the airflow conveying device may include a plurality of nozzles 300 provided on the stator bracket 200.
  • the nozzles 320 of the nozzles 300 face the radial side surface of the stator core 100 opposite to the air gap side. For injecting a cold air flow toward the radial side surface.
  • the stator bracket 200 may include an outer cylindrical enclosing plate 220, an inner tube plate 240 located radially inward of the enclosing plate 220, and a plurality of diameters connecting the enclosing plate 220 and the inner tube plate 240. ⁇ rib plate 250.
  • a cavity 260 may be formed between the surrounding plate 220 and the inner tube plate 240.
  • a plurality of axially extending columns 210 may be fixedly connected to the rib 250, and the stator core 100 may be fastened to the surrounding plate 220 and the columns 210.
  • the surrounding plate 220 may be made of a steel plate with a certain thickness to maintain the shape of the stator core 100 after the stator core 100 is fastened to the stator bracket 200, for example, to keep the stator core 100 in a ring shape.
  • annular gap is formed between the radial side surface of the stator core 100 and the surrounding plate 220. Since the low thermal conductivity of the air will affect the heat transfer of the stator core 100 to the stator bracket 200, the existence of such a gap will hinder the heat dissipation of the stator core 100 to a certain extent. Therefore, targeted cooling of the gap would be beneficial.
  • the nozzle 300 may be arranged along the substantially radial direction of the stator bracket 200 with the nozzle 320 of the nozzle 300 facing the radially inner surface of the stator core 100, and the nozzle 300 may be arranged radially.
  • the cold air current may be delivered to the radial side surface of the stator core 100 opposite to the air gap side substantially in the radial direction of the stator core 100.
  • the "radial direction” mentioned herein may be generally radial, and is not limited to being completely perpendicular to the axial direction or completely along the radial direction of the stator bracket 200, and may have an angular deviation within a certain range with respect to the radial direction. shift.
  • the nozzle 300 may be a zoom nozzle, a tapered nozzle, or another tube having a constant inner diameter.
  • the nozzle 300 in the present disclosure may be a zoom nozzle.
  • the nozzle 300 will be described by taking the zoom nozzle as an example with reference to the drawings.
  • the nozzle 300 has an air inlet 310, an air outlet 320, and a throat 330 located between the air inlet 310 and the air outlet 320.
  • the air inlet 310 may be connected to a cold air supply source (hereinafter referred to as Detailed Description).
  • a plurality of first through holes may be provided in the surrounding plate 220, and the nozzle 320 of the nozzle 300 may pass through the surrounding plate 220 and be locked in the first through hole.
  • the fluid from the cold air supply source can enter the internal scaling flow channel of the nozzle 300 through the air inlet 310 of the nozzle 300 to reach the nozzle 320, and is sprayed from the nozzle 320 to the radially inner surface of the stator core 100 and the stator core 100 And the surrounding plate 220, thereby directly cooling the radially inner surface of the stator core 100 and effectively solving the problem that the heat dissipation of the stator core is negatively affected by the existence of the gap.
  • the cross-sectional area of the nozzle 300 may gradually decrease from the airflow inlet 310 to the throat 330 and gradually increase from the throat 330 to the nozzle 320.
  • the throat 330 is the narrowest part of the internal flow channel of the nozzle 300.
  • the cold air from the cold air supply source enters the scaled flow channel of the nozzle 300 through the air input port 310, and the air is accelerated and accelerated at the throat 330.
  • the airflow is sprayed into the radially inner surface of the stator core 100 and the gap between the stator core 100 and the surrounding plate 220 through the nozzle 320 to cool the stator core 100.
  • the nozzle 300 in the present disclosure may preferably be a zoom nozzle, but the nozzle 300 may also have other shapes.
  • the nozzle 300 may be a tapered nozzle and have an airflow inlet and a nozzle.
  • the cross-sectional area of the shrink nozzle can gradually decrease from the air inlet to the nozzle.
  • the airflow may be accelerated at the nozzle with a smaller diameter, and the accelerated airflow may be injected to the radial side surface of the stator core 100.
  • the zoom nozzle and the tapered nozzle are only preferred examples of the nozzle 300 of the present disclosure, and the shape of the nozzle 300 is not limited to this.
  • the nozzle 300 may be another tube having a constant inner diameter.
  • the cold airflow source to which the nozzle 300 is connected may be ambient air, air in the cabin, or gas from a heat exchanger of a wind turbine.
  • the present disclosure proposes to use the vortex tube 400 as a cold air flow supply source of the nozzle tube 300.
  • the airflow inlet 310 of the nozzle 300 may be connected to the cold end of the vortex tube 400 to receive cold airflow from the vortex tube 400.
  • the structure of the vortex tube 400 as a cold air flow supply source of the nozzle tube 300 will be described in detail below with reference to FIGS. 3 to 4.
  • the vortex tube 400 may be a tangential input inner spiral (eg Archimedes spiral) vortex tube.
  • the vortex tube 400 includes a variable-section flow channel (also referred to as a nozzle flow channel) 430, a vortex chamber 410, a cold-end orifice plate 450, a cold-end tube section 440, a hot-end tube section 420, and a hot-end valve (restrictor) 460.
  • the vortex chamber 410 divides the tangential vortex tube 400 into two parts, a cold end pipe section 440 and a hot end pipe section 420.
  • the cold-end orifice plate 450 is disposed between the vortex chamber 410 and the cold-end pipe section 440, and a valve (throttle 460) is installed at the outlet of the hot-end pipe section 420.
  • the nozzle flow passages 430 are arranged tangentially along the radial periphery of the vortex chamber 410.
  • the high-pressure gas enters the nozzle flow channel 430 from the intake pipe, and after expanding and accelerating through the internal flow channel of the nozzle flow channel 430, it enters the vortex chamber 410 along the radial tangent direction of the straight pipe section at a high speed and forms in the vortex chamber 410.
  • the return airflow at the center exits from the cold-end orifice plate 450 through the outlet of the cold-end pipe section 440, the temperature is greatly reduced (the temperature can reach -50 to -10 ° C), a cold airflow is formed, and it is in a tangential input inner spiral
  • the helical airflow in the radial outer layer of the vortex tube flows out from the hot end through a valve (throttling piece), the temperature rises, forms a hot airflow, generates the separation effect of the same airflow temperature, and obtains two cold and hot airflows.
  • the air temperature varies greatly.
  • the cold airflow generated by the vortex tube can be used for the internal heat generation (winding and its magnetically conductive component structure) of the motor to generate an internal cooling source; the hot airflow can be used for drying at the junction of the winding root and the iron core Drying effect inside the air gap when the wind turbine stops generating electricity.
  • the air inlet 310 of the nozzle 300 may be connected to the cold-end pipe section (cold section) 440 of the vortex tube 400, and the vortex tube 400 is used as the cold air supply source of the nozzle 300, and the traditional For large fluid machinery (eg, compressors, pumps, heat exchangers, etc.) that generates and delivers cooling fluid, reducing the use of rotating elements (eg, compressors, pumps) in wind turbines can greatly reduce the possibility of failure.
  • the airflow entering the vortex tube 400 may be high-pressure airflow, tower air, natural ambient air, and the like.
  • the cold airflow can take away the heat in the stator iron core 100 or the annular gap and simultaneously cool The airflow itself is heated.
  • the heated airflow needs to be removed from the annular gap in time and can be used for recycling.
  • the heated airflow can be applied to other parts of the wind turbine that need to be heated. Therefore, a structure capable of diverting the airflow from the annular gap may be provided on the surrounding board 220. As described above, a cavity 260 may be formed between the surrounding plate 220 and the inner tube plate 240.
  • the surrounding plate 220 may be provided with a second through hole 230 communicating with the annular gap and the cavity 260, so that the cold airflow sprayed into the annular gap through the nozzle 300 enters the cavity 260 through the second through hole 230.
  • a flow guide 231 as shown in FIG. 5 may be inserted into the second through hole 230 to form a flow guide channel.
  • the deflector 231 may be a zoomed tube or a tapered tube.
  • the deflector 231 may also be an arc-shaped plate embedded in the second through hole 230, as long as the airflow can be accelerated into the cavity 260 in the form of a zoom channel or a tapered channel.
  • the axial direction of the stator assembly may be A drainage device is arranged at the end, and the air current heated by the stator core 100 is drawn out in the axial direction.
  • a second cold airflow may be introduced into the cavity 260 in the axial direction, so that the airflow returned to the cavity 260 is carried out of the stator bracket 200 together.
  • a second cold airflow may be introduced into the cavity 260 of the stator bracket 200, and the second cold airflow flows along the axial direction of the stator bracket 200 and passes through the cavity 260 of the stator bracket 200 so that The hot air flowing back from the gap between the stator core 100 and the surrounding plate 220 to the cavity 260 through the flow guide 231 provided in the second through hole 230 flows out of the cavity 260 together.
  • the airflow conveying device may include a cold airflow combiner box 50 and a hot airflow combiner box 60 provided at an axial end portion of the stator assembly.
  • the cold air flow combiner box 50 located at one axial end of the stator assembly can receive the airflow from the cold source and transfer the cold air flow into the cavity 260 in the stator bracket 200.
  • the hot air flow combiner box 60 at the other axial end can collect the air The airflow flowing out of the cavity 260, the airflow collected in the hot air flow combiner box 60 can be introduced into the nacelle heat exchanger of the wind turbine, or applied to any other part of the wind turbine.
  • the second cold airflow is passed into the cavity 260 of the stator bracket 200 to take away the airflow entering the cavity 260 from the annular gap, it is disposed on the stator bracket 200 and along the cavity 260.
  • the radially extending nozzle 300 will become a blocking member in the flow path of the axial airflow, thereby increasing the flow resistance of the axial airflow to a certain extent.
  • the present disclosure designs the nozzle 300 to have a raindrop-like aerodynamic shape.
  • the cross section of the nozzle 300 may be raindrop-shaped, and may include a first arc surface facing the axial end of the stator core 100 and the stator core.
  • the nozzle 300 may have a cross-section that varies in size along the length of the nozzle 300.
  • the right side of FIG. 7 shows a schematic view of a cross section at four different positions along the length direction.
  • the first largest section may correspond to the section at the nozzle 320 of the nozzle 300
  • the second smallest section may correspond to the throat of the nozzle 300.
  • the section at 330, the third section may correspond to the section at a position between the throat 330 of the nozzle 300 and the airflow inlet 310
  • the fourth section may correspond to the section at the air inlet 310 of the nozzle 300 Cross section.
  • Each section includes a first circular arc surface, a second circular arc surface, and a straight side surface tangent to the first circular arc surface and the second circular arc surface.
  • the first largest cross section from top to bottom has a first semicircle with a radius r11 and a second semicircle with a radius r21, r11> r21, and two tangent lines connect the first semicircle and the second semicircle, respectively.
  • the second smallest cross section has a first semicircle with a radius r12 and a second semicircle with a radius r22
  • the third cross section has a first semicircle with a radius r13 and a second semicircle with a radius r23
  • the fourth cross section has a radius
  • the first semicircle is r14 and the second semicircle is r24.
  • a circular arc surface with a large radius is arranged as a facing surface, and a circular arc surface with a small radius is arranged as a leeward surface.
  • the plurality of nozzles 300 may be arranged in a row or a fork row along the axial direction of the stator core 100, and a circular arc surface with a large radius is arranged as a facing surface.
  • the arc surface with a small radius is arranged as a leeward surface.
  • arrows indicate the axial airflow in the cavity 260 of the stator bracket 200. When the axial airflow passes through the outer contour of the nozzle 300, it first contacts the semicircular arc surface with a large radius of the nozzle 300.
  • the axial airflow flows against a semi-circular arc surface with a large radius of the nozzle 300, and is temporarily separated from the outer surface of the nozzle 300 at a tangent line downstream of the semi-circular arc surface, and a shedding vortex is generated at the tangent line, and then attaches again Onto the flat side surface, and flow along the flat side surface, and then detach from the outer surface of the nozzle 300 along a semi-circular arc surface with a small radius, and the re-adhesion of the boundary layer airflow can greatly reduce the flow resistance of the axial airflow .
  • the outer contour of the nozzle 300 in the axial direction is raindrop-shaped. Therefore, in order to connect the airflow input 310 of the nozzle 300 to the cold section 440 of the vortex tube (or other cold source),
  • the segment 440 may also have a raindrop shape in the axial direction, which may also cause the axial airflow to have less resistance when passing through the cold segment 440.
  • the cold section 440 may be completely connected to the airflow inlet 310 of the nozzle 300.
  • the nozzle 300 and the cold section 440 may be disposed together in the cavity 260 of the stator bracket 200.
  • the raindrop-shaped aerodynamic shape of the nozzle 300 and the cold section 440 may reduce the axial airflow passing through the nozzle 300 and the cold section. Flow resistance at 440.
  • the cold section 440 may not have a raindrop-like aerodynamic shape.
  • the nozzle 300 may be disposed only in the cavity 260 of the stator bracket 200 or partially in the cavity 260, so that the cold section 440 The shape will not affect the flow resistance of the axial airflow.
  • the cold section 440 may have any radial cross-sectional shape, and the cold section 440 may be connected to the nozzle 300 at a local position of the airflow input end 310 of the nozzle 300, for example, as shown in FIG. 8, two separate cold sections 440 are cylindrical pipes that can be connected to the nozzle 300 at the axial ends of the airflow input 310, respectively. The airflow from the cold section 440 can flow into the nozzle 300 at both ends and converge in the nozzle 300. Further, it passes through the scaled flow passage of the nozzle 300 to reach the nozzle 320 and is injected to the stator core 100.
  • the tapered nozzle (the inner diameter is tapered in the radial direction) described above may also have a raindrop-shaped aerodynamic shape.
  • the airflow conveying device includes the nozzle 300 provided on the stator bracket 200 for sending cold airflow to the radially inner surface of the stator core 100 to cool the stator iron from the radially inner surface with the cold airflow.
  • a plurality of nozzles 300 may be provided on the stator bracket 200, and the nozzles 300 may be used to accelerate the airflow and spray the high-speed airflow directly to the radially inner surface, thereby enabling efficient cooling.
  • the spray pipe 300 may not be provided, and the airflow conveying device may convey the cold airflow that has been pressurized into the cavity 260 and enter the ring shape through one or more first through holes provided in the enclosure 200. The gap, thereby cooling the stator core 100. The cold air flowing into the annular gap can be drawn away from the axial end of the annular gap after absorbing heat.
  • stator bracket 200 has the surrounding plate 220 and the annular gap between the stator core 100 and the surrounding plate 220 is described above.
  • stator bracket does not include the surrounding plate will be described below.
  • the stator bracket 600 includes a plurality of posts 610 extending in the axial direction, an inner tube plate 640 extending in the axial direction, and a plurality of connecting the post 610 and the inner tube plate 640.
  • the rib 650, a plurality of columns 610 are evenly arranged in the circumferential direction, and the stator core 500 is fixed to the stator bracket 600 by being fastened to the plurality of columns 610.
  • the radial side surface of the stator core 500 (the radial inner surface
  • a cavity 660 is formed between the inner tube plate 640 and the nozzle 320 of the nozzle 300 is located in the cavity 660 and faces the radial side surface.
  • the radially inner surface of the stator core 500 may be provided with a plurality of heat dissipation ribs 530 for enhancing heat dissipation.
  • the cold airflow from the cold source passes through the zoomed or tapered runner in the nozzle 300 and is sprayed to the radially inner surface of the stator core 500 through the nozzle 320, the cold airflow It is heated while cooling, and the heated air flow returns to the cavity 660 of the stator bracket 600.
  • the airflow conveying device of the stator assembly may include a return passage 800 for exhausting the gas in the cavity 660.
  • a return channel 800 may be provided on the stator support 600, the return channel 800 may surround the outside of the nozzle 300, and the inlet of the return channel 800 is provided in the cavity 660, and the outlet of the return channel 800 is located outside the cavity 660, thereby being usable To discharge the airflow in the cavity 660.
  • the nozzle 300 may further include a cold airflow introduction pipe connected to the airflow input port 310, and the return passage 800 may surround the outside of the cold airflow introduction pipe, or the return passage 800 may surround the connection to the airflow input port 310 (based on It is necessary to provide a cold air flow introduction pipe) outside the cold section 440 of the vortex tube 400.
  • the return channel 800 may have a shape following the surrounding pipe section.
  • the return passage 800 may also be provided elsewhere in the stator bracket 600 as long as the airflow can flow out of the cavity 260.
  • the cross section of the nozzle 300 may be any one of a circle, an oval, a raindrop, and a polygon. As shown in FIG. 12, the cross section of the nozzle 300 may be circular or oval. Of course, in this embodiment, the nozzle 300 may also have a raindrop-shaped aerodynamic shape and a raindrop deformation cross-section (as shown in FIG. 13) as described in the first embodiment described above.
  • the return channel 800 may be disposed outside the cold section 440 connected to the nozzle 300 and has a shape that follows the shape of the cold section 440.
  • the cold section 440 may be cylindrical, elliptical, Raindrop-shaped aerodynamic shape, etc.
  • the return channel 800 can also be applied to the first embodiment, that is, in the first embodiment, the return channel 800 can also be provided on the stator bracket 200,
  • the airflow heated by the stator core 100 between the stator core 100 and the surrounding plate 220 is passed through the second through hole 230 into the cavity 260 and flows out through the return passage 800.
  • the axial airflow ie, the second cold airflow
  • the cross section of the nozzle 300 in the first embodiment may be any one of a circle, an oval, a raindrop, and a polygon.
  • FIG. 14 illustrates a cold air supply unit according to an embodiment of the present disclosure.
  • the airflow conveying device as described above may include a cold airflow supply unit, and the cold airflow supply unit may include the vortex tube 400 that generates a cold airflow as described above.
  • the cold air supply unit further includes a filter 910, a compressor 920 connected to the filter 910, and a compressed air collection tank 930 connected to the compressor 920.
  • Ambient air, air in the cabin or tower or other heat exchanger gas can become compressed air through filter 910 and compressor 920 and enter compressed air collection tank 930.
  • the compressed air in compressed air collection tank 930 passes through multiple Each branch pipe 940 enters into a plurality of vortex tubes 400.
  • the vortex tubes 400 form cold air and hot air.
  • the cold air is connected to the nozzle 300 through the cold section 440.
  • the hot air is collected in the hot air collection box 950 for other needs. Parts used.
  • the heat dissipation capacity of the stator core can be further increased by enhancing the radiation heat absorption capacity of the stator bracket.
  • the surface of the surrounding plate 220 of the stator bracket 200 facing the stator core 100 may be treated as a chrome black surface, or the outer surface of the rib 650 of the stator bracket 600 may be treated as a chrome black surface to increase the stator bracket 200
  • the black ratio of the outer surface of the outer surface enhances the radiant heat absorption capacity of the stator bracket 200, thereby promoting the heat dissipation of the stator core.
  • the nozzles of the first and second embodiments described above may be integrally formed in the stator bracket.
  • the nozzles may be formed on the stator bracket during assembly of the various components of the generator ,
  • the nozzle formed integrally in the stator bracket can be directly connected to the pipe section installed to the cold air supply source.
  • the cold air supply unit (including the vortex tube) may also be integrally formed in the stator bracket, so that the stator assembly is integrated with a cooling and ventilation structure for cooling the stator core.
  • the cold air supply unit can also be installed in the nacelle.
  • the cold air supply unit of the present disclosure has a simpler structure and less flow resistance loss during air flow transmission. Cold air can be directly supplied to the heat-generating components that need to be cooled, which improves the heat exchange rate of the internal heat-generating components.
  • the above-mentioned cooling structure can also be applied to the outer stator structure.
  • both sides of the back of the stator core are cooled, which can effectively prevent the expansion and deformation of the stator core and prevent the high-temperature baking magnetic poles of the stator core. This protects the magnetic poles and the insulating material in the motor.
  • a cylindrical structure and a rotating structure of the electromagnetic device are cooled simultaneously at both ends in the radial direction.
  • This method is consistent with the heat transfer symmetrical heat exchange and obtains the effect of high rate heat exchange. It is more in line with the engineering thermal stress by virtue of the temperature symmetry (heating or cooling) of the structural member, which avoids the asymmetric expansion and deformation of the structural member.
  • the present disclosure proposes to use a vortex tube to generate a cold source.
  • the vortex tube is a non-rotating element. Reducing the use of non-rotating elements in a wind turbine can greatly reduce the possibility of failure.
  • the vortex tube can also be miniaturized, so that it can be miniaturized. Conveniently set in any suitable location of the wind turbine, so that cooling of the wind turbine is facilitated.
  • the present disclosure can directly cool the stator bracket to reduce the thermal expansion of the stator bracket, thereby reducing the potential problem of squeezing the stator due to the thermal expansion of the stator bracket and reducing the air gap between the stator and the rotor.
  • stator bracket also plays the role of a cold source that strengthens the absorption of heat energy, and cools the radial root (bottom or end and its space) of the structure of the motor heat source (winding and its magnetically conductive components), so that the motor heat source (winding and its magnetic permeability) Components) Cooling and cooling to obtain a new channel of radially enhanced heat dissipation, based on energy conservation and indirect reduction of the motor's heat source (winding and its magnetically conductive components) structure.
  • the air-gap side radial outer surface spans the air-gap space to the motor rotor magnetic poles (permanent magnetic poles). )
  • the intensity of the radiated heat and its heat dissipation share This is to protect the motor insulation, protect the permanent magnet poles of the motor and suppress its temperature rise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本公开涉及定子组件、具有该定子组件的电机及风力发电机组。所述定子组件包括定子铁芯和支撑所述定子铁芯的定子支架,定子组件还包括气流输送装置,所述气流输送装置被构造为沿定子铁芯的径向方向向定子铁芯的与气隙侧相对的径向侧表面输送第一冷气流。根据本公开的实施例,能够在电机运行的过程中对定子的与气隙相对的另一侧进行冷却,使得定子的径向两侧同时受到冷却,减小定子铁芯的膨胀变形,防止气隙变窄,同时防止定子高温烘烤磁极,保护磁极,延长电机的使用寿命。

Description

定子组件、具有该定子组件的电机及风力发电机组 技术领域
本公开涉及电机技术领域,更具体地,涉及一种具有冷却通风结构的定子组件、具有该定子组件的电机以及风力发电机组。
背景技术
现有技术中,通常将冷却介质通入定子和转子之间的气隙中来对电机的热源部件进行冷却。对于风力发电机这种大型旋转电机,通常对绕组产热源实施强制对流换热,并依靠大功率、大尺度(叶轮直径)流体机械(例如,通风机)强制性地将冷却介质通入定子和转子之间的气隙或定子铁芯绕组的径向通风道中。一方面,这种将冷气流通入气隙中的冷却方式并不能完全防止定子的膨胀变形,另一方面,进行冷却介质的流体传输与空气流的风致噪声对自然环境生物的严重影响也是生态法规所不允许的。
此外,现有技术中在对风力发电机组进行冷却时,在机舱内设置间壁式换热器,借助外循环自然环境空气流来冷却内循环腔体内的产热表面,引风机将换热器冷却降温后的流体引出并360度扩散在机舱尾部空间内。但是,这种冷却方式中流体传输过程中沿程和局部阻力损失较大,制约了电机内部产热环节的换热速率,使得电机内部关键组织—绝缘结构仍然存在温升较高、永磁磁极性能稳定保障受到威胁的风险。
发明内容
为解决现有技术中存在的上述问题,本公开旨在提供一种具有能够对定子铁芯的与气隙侧相对的径向侧表面进行直接喷射冷却的气流输送装置的定子组件、具有该定子组件的电机以及风力发电机组。
根据本公开的一方面,提供一种定子组件,所述定子组件包括定子铁芯和支撑所述定子铁芯的定子支架,所述定子组件还包括气流输送装置,所述气流输送装置被构造为沿所述定子铁芯的径向方向向所述定子铁芯的与气隙侧相对的径向侧表面输送第一冷气流。
根据本公开的另一方面,提供了一种电机,所述电机包括如上所述的定子组件。
根据本公开的又一方面,提了一种风力发电机组,所述风力发电机组包括如上所述的定子组件。
通过采用本公开的实施例,能够在电机运行的过程中对定子的与气隙相对的另一侧进行冷却,使得定子的径向两侧同时受到冷却,减小定子铁芯的膨胀变形,防止气隙变窄,同时防止定子高温烘烤磁极,保护磁极,延长电机的使用寿命。
附图说明
图1是示出根据本公开的第一实施例的定子组件的一部分的截面图;
图2是示出根据本公开的第一实施例的喷管和涡流管的示意图;
图3是示出根据本公开的涡流管的剖视示意图;
图4是示出根据本公开的涡流管的内部流场的示意图;
图5是示出根据本公开的第一实施例的设置在定子支架的围板上的导流件的示意图;
图6是示出根据本公开的定子组件的局部剖视图;
图7是示出根据本公开的第一实施例的喷管的透视图和变截面示意图;
图8是示出根据本公开的第一实施例的喷管的透视图;
图9和图10是示出根据本公开的第一实施例的气流流过多个喷管的外周的示意图;
图11是示出根据本公开的第二实施例的定子组件的一部分的剖视图;
图12和图13是示出根据本公开的第二实施例的喷管和回流通道的示意图;
图14是示出根据本公开的冷气流供应单元的示意图;
附图标号说明:
100-定子铁芯;110-鸽尾槽;200-定子支架;210-立柱;220-围板;230-第二通孔;231-导流件;240-内筒板;250-筋板;260-空腔;300-喷管;310-气流输入口;320-喷口;330-喉部;400-涡流管;410-涡流室;420-热端管段;430-变截面流道;440-冷端管段;450-冷端孔板;460-热端阀;500-定子铁芯; 530-散热肋片;600-定子支架;610-立柱;640-内筒板;650-筋板;660-空腔;800-回流通道;910-过滤器;920-压气机;930-压缩空气集气箱;940-分流支管;950-热气流收集箱;50-冷气流汇流箱;60-热气流汇流箱。
具体实施方式
为了使本领域技术人员能够更好地理解本公开的技术构思,下面将结合附图对本公开的具体实施例进行详细描述,在附图中,相同的标号始终表示相同的部件。
如图1所示,为了减小涡流损耗和其它损耗,电机的定子铁芯100采用电阻率较大、磁滞回线面积较小的铁磁导体薄片经过冲制和绝缘处理后叠压而成。现有技术中在制造定子铁芯时,通常将多个扇形硅钢片沿圆周方向拼接并沿轴向方向叠置,定子支架200的立柱(支撑柱)210通过紧固件与硅钢片上的鸽尾槽110结合,将硅钢片沿圆周方向固定到定子支架的支撑围板220上,轴向两端通过齿压板夹紧,从而形成包括定子铁芯100和定子支架200的定子组件。
本公开的发明人通过研究发现,在电机定子和转子之间的气隙内通入冷气流的方式虽然可以有效地冷却气隙两侧的磁极和绕组,但是,对于定子铁芯而言,冷气流直接接触气隙侧的径向端部表面,而远离气隙侧的径向端部表面难以得到冷却,使得定子铁芯的沿着径向方向的温度分布不均匀,径向外侧和径向内侧部分的热分布差异较大。定子铁芯的远离气隙侧的部分容易发生膨胀变形,导致定子和转子之间的气隙变窄。
为了解决上述问题,本公开的实施例提出了对电磁装置(如电机铁芯热源)的传统冷却方式和传统冷却结构进行革新的技术方案,对定子铁芯的与气隙相对的径向侧表面进行冷却,使得定子铁芯的径向两侧同时降温,减小定子铁芯的径向两侧的热分布差异。此外,还对定子支架进行冷却,减小远离气隙侧的定子支架与铁芯绕组的冷却程度之间的差异,减小铁芯绕组与定子支架的热分布差异,从而避免铁芯绕组和定子支架存在热膨胀差异导致定子和转子之间的气隙的变化。
为了便于描述,在下面的实施例以及附图中,以电机的内定子为例来示出根据本公开的实施例的定子组件。
图1示意性地示出了电机的定子组件的一部分,定子组件包括定子铁芯 100和支撑定子铁芯100的定子支架200。由于本公开的实施例旨在详细描述对定子铁芯的与气隙侧(定子与转子之间的气隙)相对的径向内侧表面进行冷却,因此图中仅示出了电机的定子组件的结构,而未示出电机的其它部分(例如,转子、铁芯绕组等)。定子铁芯100可由多个铁芯叠片(例如,硅钢片)堆叠形成,定子铁芯100上设置有齿槽,绕组设置在齿槽中,与转子相面对。定子支架200可设置在定子铁芯100的径向内侧并将定子铁芯100紧固到其上。
根据本公开的实施例的定子组件包括气流输送装置,该气流输送装置用于产生冷气流并将冷气流输送到定子铁芯的与气隙相对的径向侧表面(在外转子、内定子型的发电机结构的示例中,该径向侧表面也可称为定子铁芯的径向内侧表面、根部、背部等),以对定子铁芯的径向内侧表面进行直接冷却。
如图1至图2所示,气流输送装置可包括设置在定子支架200上的多个喷管300,喷管300的喷口320面向定子铁芯100的与气隙侧相对的径向侧表面,用于朝向该径向侧表面喷射冷气流。
根据本公开的第一实施例,定子支架200可包括外侧圆筒状的围板220、位于围板220的径向内侧的内筒板240以及连接围板220和内筒板240的多个径向筋板250。围板220和内筒板240之间可形成有空腔260。多个轴向延伸的立柱210可与筋板250固定连接,定子铁芯100可被紧固到围板220和立柱210上。围板220可由一定厚度的钢板制成,以在定子铁芯100紧固到定子支架200上之后保持定子铁芯100的形状,例如,使定子铁芯100保持环形。
如图1所示,在将定子铁芯100紧固到定子支架200上之后,在定子铁芯100的径向侧表面和围板220之间会形成环状间隙。由于空气的低热导率将影响定子铁芯100的热转移到定子支架200,这样的间隙的存在一定程度上会阻碍定子铁芯100的散热。因此,对该间隙处进行针对性的冷却将会是有益的。
参照图1至图2,喷管300可沿着定子支架200的大体上径向布置,并使喷管300的喷口320朝向定子铁芯100的径向内侧表面,通过径向布置喷管300,可大体上沿定子铁芯100的径向方向向定子铁芯100的与气隙侧相对的径向侧表面输送冷气流。在此提及的“径向方向”可以是大体上沿径向的,并不限于完全垂直于轴向或完全沿着定子支架200的半径方向,可相对于半 径方向有一定范围内的角度偏移。
喷管300可以是缩放喷管、渐缩喷管或其它具有恒定内径的管。
优选地,本公开中的喷管300可以是缩放喷管,在下文中,将结合附图以缩放喷管为例来描述喷管300。如图1至图2所示,喷管300具有气流输入口310、喷口320以及位于气流输入口310与喷口320之间的喉部330,气流输入口310可连接到冷气流供应源(下文将详细描述)。在围板220上可开设有多个第一通孔,喷管300的喷口320可穿过围板220而卡设在第一通孔中。
来自冷气流供应源的流体可经由喷管300的气流输入口310进入喷管300的内部缩放流道到达喷口320,并从喷口320喷射到定子铁芯100的径向内侧表面以及定子铁芯100和围板220之间的间隙中,从而对定子铁芯100的径向内侧表面进行直接冷却并有效地解决因间隙的存在而导致定子铁芯散热受负面影响的问题。
如图2所示,喷管300的截面面积可从气流输入口310到喉部330逐渐变小,并从喉部330到喷口320逐渐变大。喉部330处为喷管300的内部流道的最窄处,来自冷气流供应源的冷气流经由气流输入口310进入喷管300的缩放流道,并在喉部330处使气流加速,加速的气流经由喷口320喷射到定子铁芯100的径向内侧表面以及定子铁芯100和围板220之间的间隙中,从而对定子铁芯100进行冷却。
如上所述,本公开中的喷管300优选地可以是缩放喷管,但喷管300还可具有其它形状,例如,喷管300可以是渐缩喷管,并具有气流输入口和喷口,渐缩喷管的截面面积可从气流输入口到喷口逐渐变小。气流在直径较小的喷口处可以被加速,加速的气流可喷射到定子铁芯100的径向侧表面。缩放喷管和渐缩喷管仅是本公开的喷管300的优选示例,喷管300的形状并不限于此,例如,喷管300还可以是其它具有恒定内径的管。
喷管300所连接的冷气流源可以是环境空气、机舱内空气或来自风力发电机组的换热器的气体等。
本公开提出采用涡流管400作为喷管300的冷气流供应源。如图2所示,喷管300的气流输入口310可连接到涡流管400的冷端,以从涡流管400接收冷气流。
下面将参照图3至图4详细描述作为喷管300的冷气流供应源的涡流管 400的结构。
涡流管400可以为切向输入内螺旋(例如阿基米德螺线)涡流管。涡流管400包括变截面流道(也可被称为喷管流道)430、涡流室410、冷端孔板450、冷端管段440、热端管段420和热端阀(节流件)460。涡流室410将切向涡流管400分成冷端管段440和热端管段420两部分。冷端孔板450设置在涡流室410和冷端管段440之间,热端管段420出口处装设阀门(节流件460)。喷管流道430沿着涡流室410的径向外围切向布置。工作时高压气体由进气管进入喷管流道430,经过喷管流道430内部流道膨胀加速后以很高的速度沿着直管段径向切线方向进入涡流室410,在涡流室410内形成高速螺旋涡流,由于热端管段420出口处装设阀门(节流件460)与冷端孔板450之间存在压力差,会在切向输入内螺旋涡流管内部中心区域形成回流气流,分离成总温不相等的两部分气流。其中,处于中心部位的回流气流从冷端孔板450经过冷端管段440的出口流出,温度大幅度降低(温度可抵达-50~-10℃),形成冷气流,而处于切向输入内螺旋涡流管内径向外层的螺旋气流从热端经过阀门(节流件)流出,温度升高,形成热气流,产生同一股气流温度的分离效应,获得冷、热两股气流,并且该两股气流的温度高低悬殊。
在本公开中,涡流管产生的冷气流可用于电机内部产热环节(绕组及其导磁部件结构),产生内冷源;热气流可用于绕组端部的根部与铁芯交界处的干燥或风力发电机停止发电时的气隙内部的干燥作用。
如图2所示,喷管300的气流输入口310可连接到涡流管400的冷端管段(简称冷段)440,采用涡流管400作为喷管300的冷气流供应源,可省去传统的产生和输送冷却流体的大型流体机械(例如,压缩机、泵、换热器等),风力发电机组中减少旋转元件的使用(例如,压缩机、泵)可大大降低故障发生的可能性。进入涡流管400的气流可以是高压气流、塔筒空气、自然环境空气等。
当冷气流从喷管300中喷射到定子铁芯100或定子铁芯100和围板220之间的环状间隙之后,冷气流可带走定子铁芯100或环状间隙中的热,同时冷气流本身被加热,加热后的气流需要被及时地从环状间隙中转移出去并且可用于回收再利用,例如,加热后的气流可被应用到风力发电机组的其它需要加热的部分。因此,可在围板220上设置能够将气流从环状间隙中转移出去的结构。如上所述,围板220和内筒板240之间可形成空腔260。围板220 上可开设有连通环状间隙和空腔260的第二通孔230,使得通过喷管300喷射到环状间隙中的冷气流通过第二通孔230进入空腔260中。为了更好地引导气流从环状间隙中进入空腔260中,如图1所示,可在第二通孔230中插入如图5所示的导流件231,形成导流通道。
导流件231可以为缩放形管或渐缩形管。导流件231还可以是嵌入在第二通孔230中的弧形板,只要能够以缩放通道或渐缩通道的形式引导气流加速进入空腔260中即可。
在使喷射到环状间隙中的冷气流(还可被称为第一冷气流)通过第二通孔230或导流件231回流到空腔260中的情况下,可以在定子组件的轴向端部设置引流装置,将由定子铁芯100加热的气流沿轴向方向引流出去。
此外,还可在空腔260中沿轴向通入第二冷气流,从而将回流到空腔260的气流一起携带出定子支架200。例如,如图6所示,可向定子支架200的空腔260中通入第二冷气流,第二冷气流沿定子支架200的轴向流动,穿过定子支架200的空腔260,从而与从定子铁芯100和围板220之间的间隙通过设置在第二通孔230中的导流件231回流到空腔260中的热气流一起流出空腔260。
如图6所示,气流输送装置可包括设置在定子组件的轴向端部的冷气流汇流箱50以及热气流汇流箱60。位于定子组件的轴向一端的冷气流汇流箱50可接收来自冷源的气流并将冷气流输送到定子支架200内的空腔260中,轴向另一端的热气流汇流箱60可收集从空腔260流出的气流,在热气流汇流箱60中收集的气流可被引入到风力发电机组的机舱换热器,或应用到风力发电机组的任何其它部位。
在此,当向定子支架200的空腔260中通入第二冷气流以将从环状间隙中进入空腔260中的气流带走时,设置在定子支架200上并在空腔260中沿径向延伸的喷管300将会成为轴向气流的流动路径中的阻挡件,从而在一定程度上会增大轴向气流的流动阻力。在这种情况下,为了最大程度地降低轴向气流的流动阻力,本公开将喷管300设计为具有雨滴状气动外形。
如图7所示,以喷管300为缩放喷管为例,喷管300的横截面可呈雨滴形,可包括朝向定子铁芯100的轴向一端的第一圆弧面、朝向定子铁芯100的轴向另一端的第二圆弧面以及与第一圆弧面和第二圆弧面相切的平直侧面。
如图7所示,沿着喷管300的长度方向,喷管300可具有尺寸变化的横 截面。图7的右侧示出了沿着长度方向四个不同位置的截面的示意图。如图7中右侧的截面图所示,从上到下第一个最大的截面可对应于喷管300的喷口320处的截面,第二个最小的截面可对应于喷管300的喉部330处的截面,第三个截面可对应于喷管300的喉部330与气流输入口310之间的某个位置处的截面,第四个截面可对应于喷管300的气流输入口310处的截面。每个截面包括第一圆弧面、第二圆弧面以及与第一圆弧面和第二圆弧面相切的平直侧面。
如图7所示,从上到下第一个最大的截面具有半径为r11的第一半圆和半径为r21的第二半圆,r11>r21,两条切线分别连接第一半圆和第二半圆。第二个最小的截面具有半径为r12的第一半圆和半径为r22的第二半圆,第三个截面具有半径为r13的第一半圆和半径为r23的第二半圆,第四个截面具有半径为r14的第一半圆和半径为r24的第二半圆。在设置喷管300时,相对于轴向气流的流向,将半径大的圆弧面布置为迎流面,将半径小的圆弧面布置为背风面。
如图9至图10更清楚地示出的,多个喷管300可沿着定子铁芯100的轴向顺排布置或叉排布置,并将半径大的圆弧面布置为迎流面,将半径小的圆弧面布置为背风面。在图9至图10中,箭头表示定子支架200的空腔260中的轴向气流,轴向气流在经过喷管300的外侧轮廓时,首先接触喷管300的半径大的半圆弧面,轴向气流贴着喷管300的半径大的半圆弧面流动,并在该半圆弧面下游的切线处与喷管300的外表面暂时脱离,并在切线处产生脱落漩涡,随即又附着到平直侧表面上,并沿着平直侧表面流动,然后沿着半径小的半圆弧面脱离喷管300的外表面,边界层气流的再附着可大大减小轴向气流的流动阻力。
如图9至图10所示,喷管300在轴向上的外轮廓呈雨滴状,因此为了使喷管300的气流输入端310与涡流管(或其它冷源)的冷段440连接,冷段440在轴向上也可具有雨滴状,这也可使轴向气流在掠过冷段440时也具有较小的阻力。如图7所示,冷段440可与喷管300的气流输入口310完全连通地连接。返回参照图1,喷管300和冷段440可一起设置在定子支架200的空腔260中,喷管300和冷段440的雨滴状气动外形可减小轴向气流经过喷管300和冷段440时的流动阻力。
此外,冷段440也可不具有雨滴状气动外形,在设置喷管300时,可仅 使喷管300设置在定子支架200的空腔260中或部分地设置在空腔260中,从而冷段440的外形将不影响轴向气流的流动阻力。此外,冷段440可具有任意的径向截面形状,冷段440可在喷管300的气流输入端310的局部位置连接到喷管300,例如,如图8所示,两个单独的冷段440分别为圆筒形的管道,可分别在气流输入端310的轴向两端连接到喷管300,来自冷段440的气流可在两端处流入喷管300中,在喷管300内汇流并进一步经过喷管300的缩放流道到达喷口320而喷射到定子铁芯100。
虽然上文以缩放喷管为例描述了具有雨滴状气动外形的喷管300,但上文所描述的渐缩喷管(在径向方向上内径渐缩)也可具有雨滴状气动外形。
上文描述了在气流输送装置包括设置在定子支架200上的喷管300,用于将冷气流送达定子铁芯100的径向内侧表面,以利用冷气流从该径向内侧表面冷却定子铁芯100的示例,定子支架200上可设置多个喷管300,喷管300可用于使气流加速并使高速气流直接喷射到径向内侧表面,从而可以进行高效地冷却。
但本公开并不限于此。例如,也可不设置喷管300,气流输送装置可将经过加压后的冷气流输送到空腔260中,并通过开设在围板200上的一个或更多个第一通孔进入到环状间隙中,从而冷却定子铁芯100。通入到环状间隙中的冷气流在吸收热量后可以从环状间隙的轴向端部抽走。
以上描述了定子支架200具有围板220并且定子铁芯100与围板220之间存在环状间隙的实施例,以下将描述定子支架不包括围板的实施例。
如图11所示,根据本公开的第二实施例的定子支架600包括沿轴向延伸的多个立柱610、沿轴向延伸的内筒板640以及连接立柱610和内筒板640的多个筋板650,多个立柱610沿圆周方向均匀布置,定子铁芯500通过紧固到多个立柱610上而安装到定子支架600上,定子铁芯500的径向侧表面(以径向内侧表面为例)和内筒板640之间形成有空腔660,喷管300的喷口320位于空腔660中并面对该径向侧表面。
定子铁芯500的径向内侧表面可设置有用于增强散热的多个散热肋片530。在本实施例中,当来自冷源的冷气流通过喷管300中的缩放或渐缩流道并经由喷口320喷射到定子铁芯500的径向内侧表面时,冷气流在对定子铁芯500进行冷却的同时被加热,加热后的气流回到定子支架600的空腔660中。
因此,定子组件的气流输送装置中可包括回流通道800,用于排出空腔660中的气体。例如,可在定子支架600上设置回流通道800,回流通道800可围绕喷管300外侧,并且回流通道800的入口设置在空腔660中,回流通道800的出口位于空腔660外部,由此可用于将空腔660中的气流排出。
在此应理解,喷管300还可以包括与气流输入口310相连接的冷气流引入管,回流通道800可围绕冷气流引入管的外侧,或者回流通道800可围绕连接气流输入口310(可根据需要设置冷气流引入管)的涡流管400的冷段440的外侧设置。回流通道800可具有与所围绕的管段随形的形状。回流通道800还可设置在定子支架600的其它地方,只要能够使气流从空腔260中流出即可。
在本实施例中,喷管300的截面可为圆形、椭圆形、雨滴形、多边形中的任一种。如图12所示,喷管300的截面可以呈圆形或椭圆形。当然,在本实施例中,喷管300也可如上文描述的第一实施例中所述的具有雨滴形气动外形和雨滴形变截面(如图13所示)。
如图12和图13所示,回流通道800可设置在连接喷管300的冷段440的外侧并具有与冷段440的外形随形的形状,冷段440可为圆柱形、椭圆柱形、雨滴状气动外形等。
虽然在第二实施例中描述了回流通道800,但回流通道800还可应用于第一实施例中,也就是说,在第一实施例中,也可在定子支架200上设置回流通道800,并使从定子铁芯100和围板220之间的被定子铁芯100加热后的气流通过第二通孔230进入空腔260中的气流通过回流通道800流出。在设置回流通道800的情况下,还可省略轴向通入定子支架200的空腔260中的轴向气流(即,第二冷气流)。此时,在第一实施例中的喷管300的截面也可以为圆形、椭圆形、雨滴形、多边形中的任一种。
图14示出了根据本公开的实施例的冷气流供应单元。如上所述的气流输送装置可包括冷气流供应单元,冷气流供应单元可包括如上所述的产生冷气流的涡流管400。如图14所示,冷气流供应单元还包括过滤器910、连接过滤器910的压气机920、连接压气机920的压缩空气集气箱930。环境空气、机舱或塔筒内空气或其它换热器中的气体可经由过滤器910和压气机920成为压缩空气并进入压缩空气集气箱930,压缩空气集气箱930中的压缩空气通过多个分流支管940进入到多个涡流管400,涡流管400形成冷气流和热 气流,冷气流通过冷段440连接到喷管300,热气流被汇集到热气流收集箱950,以供其它需要的部件使用。
上文主要描述了对定子铁芯的径向内侧表面进行直接地对流换热来冷却定子铁芯,此外还可通过增强定子支架的辐射吸热能力来进一步增加定子铁芯的散热能力。例如,可将定子支架200的围板220的面对定子铁芯100的表面处理为铬黑表面,或者可将定子支架600的筋板650的外表面处理为铬黑表面,以增加定子支架200的外表面的黑率,从而增强定子支架200的辐射吸热能力,进而促进定子铁芯的散热。
以上描述的第一实施例和第二实施例的喷管可一体地形成在定子支架中,例如,可在制造定子支架过程中,在定子支架上形成喷管,在发电机的各个部件组装期间,可将一体地形成在定子支架中的喷管直接到安装到冷气流供应源的管段。
冷气流供应单元(包括涡流管)也可一体地形成在定子支架中,从而使定子组件集成用于对定子铁芯进行冷却的冷却通风结构。
当然,冷气流供应单元也可设置在机舱内,与现有技术中设置间壁式换热器的结构相比,本公开的冷气流供应单元结构更加简单,气流传输过程中流动阻力损失小。冷气流能够直接供应到需要降温的产热部件上,提高了内部产热部件的换热速率。
在上面的描述中,虽然以内定子结构为例描述了本公开的实施例,但是,上述冷却结构也可以应用于外定子结构。通过对定子铁芯的与气隙相对的一侧通入冷气流,使得定子铁芯的腹背两侧均得到冷却,能够有效防止定子铁芯的膨胀变形,防止定子铁芯的高温烘烤磁极,从而保护磁极以及电机中的绝缘材料。
根据本公开的实施例,采用了对圆柱结构、回转结构的电磁装置沿着径向的两端同时进行冷却的方式,这种方式符合传热学对称换热并获得高速率换热的效果,更符合工程热应力借助结构件温度对称(受热或冷却),避免了结构件不对称膨胀变形。此外,本公开提出应用涡流管产生冷源,涡流管是非旋转元件,风力发电机组中减小非旋转元件的使用可大大降低发生故障的可能性,此外,涡流管还可被小型化,从而可以方便地设置在风力发电机组的任何适合的位置中,从而使风力发电机组的冷却变得方便。
此外,本公开可对定子支架进行直接冷却,降低定子支架的热膨胀,从 而降低因定子支架的热膨胀而挤压定子从而使定子和转子之间的气隙减小的潜在问题。
此外,将定子支架同时发挥强化吸收热能的冷源作用,冷却电机热源(绕组及其导磁部件)结构径向的根部(底部或端部及其空间),使得电机热源(绕组及其导磁部件)冷却散热获得径向强化散热的新渠道,基于能量守恒、间接降低电机热源(绕组及其导磁部件)结构的气隙侧径向外表面跨越气隙空间向电机转子磁极(永磁磁极)释放辐射热的强度及其散热份额大小。借此来保护电机绝缘、保护电机的永磁磁极并抑制其温升。
根据本公开的实施例,通过借助传热学对流换热的场协同原理(包括射流冲击传热技术)、辐射换热的强化传热技术(表面涂层)、工程热力学角度的“切向输入内螺旋涡流管”(涡流管)、革新电机铁芯径向端部表面结构、与冷流体热汇传热的结构。
上面对本公开的具体实施方式进行了详细描述,虽然已示出和描述了一些实施例,但本领域技术人员应该理解,在不脱离由权利要求限定其范围的本公开的原理和精神的情况下,可以对这些实施例进行组合、修改和完善(例如,可以对本公开的不同技术特征进行组合以得到新的技术方案)。这些组合、修改和完善也应在本公开的保护范围内。

Claims (20)

  1. 一种定子组件,所述定子组件包括定子铁芯(100,500)和支撑所述定子铁芯(100,500)的定子支架(200,600),其特征在于,所述定子组件还包括气流输送装置,所述气流输送装置被构造为沿所述定子铁芯(100,500)的径向方向向所述定子铁芯(100,500)的与气隙侧相对的径向侧表面输送第一冷气流。
  2. 如权利要求1所述的定子组件,其特征在于,所述气流输送装置包括多个喷管(300),多个所述喷管(300)设置在所述定子支架(200,600)上,并且所述喷管(300)的喷口(320)朝向所述定子铁芯(100,500)的所述径向侧表面。
  3. 如权利要求2所述的定子组件,其特征在于,所述喷管(300)为缩放喷管渐缩喷管,所述喷管(300)的截面为圆形、椭圆形、雨滴形、多边形中的任一种。
  4. 如权利要求1所述的定子组件,其特征在于,所述定子支架(200)包括围板(220),所述定子铁芯(100)安装在所述围板(220)上,所述定子铁芯(100)的所述径向侧表面与所述围板(220)之间形成有环状间隙,所述围板(220)上开设有一个或多个第一通孔,所述气流输送装置被构造为使第一冷气流经由所述一个或多个第一通孔进入到所述环状间隙中。
  5. 如权利要求2或3所述的定子组件,其特征在于,所述定子支架(200)包括围板(220),所述定子铁芯(100)安装在所述围板(220)上,所述定子铁芯(100)的所述径向侧表面与所述围板(220)之间形成有环状间隙,所述围板上开设有多个第一通孔,所述喷管(300)插入在所述第一通孔中,朝向所述径向侧表面喷射第一冷气流。
  6. 如权利要求5所述的定子组件,其特征在于,所述定子铁芯(100)安装在所述围板(220)的径向外侧,所述围板(220)的径向内侧形成有轴向延伸的一个或至少两个空腔(260),所述至少两个空腔(260)沿着所述定子支架(200)的圆周方向布置,所述围板(220)上开设有连通所述环状间隙和所述空腔(260)的第二通孔(230),使得通过所述喷管(300)喷射到所述环状间隙中的第一冷气流通过所述第二通孔(230)进入到所述空腔(260)中。
  7. 如权利要求6所述的定子组件,其特征在于,所述第二通孔(230)中安装有用于引导气流的导流件(231),所述导流件(231)为插入所述第二通孔(230)中的缩放形管、渐缩形管或弧形引导板。
  8. 如权利要求6所述的定子组件,其特征在于,所述喷管(300)的横截面呈雨滴形,包括朝向所述定子铁芯(100)的轴向一端的第一圆弧面、朝向所述定子铁芯(100)的轴向另一端的第二圆弧面以及与所述第一圆弧面和所述第二圆弧面相切的平直侧面,
    多个所述喷管(300)沿着所述定子铁芯(100)的轴向顺排布置或叉排布置,并将所述第一圆弧面布置为迎流面,所述第二圆弧面布置为背风面,所述第一圆弧面的半径大于所述第二圆弧面的半径。
  9. 如权利要求6所述的定子组件,其特征在于,所述气流输送装置还包括设置在所述定子组件的轴向第一端的冷气流汇流箱(50),所述气流输送装置还被构造为将所述冷气流汇流箱(50)供应的第二冷气流输送到所述空腔(260)中,所述气流输送装置还包括设置在所述定子组件的轴向第二端的热气流汇流箱(60),所述第二冷气流沿着所述定子铁芯(100)的轴向流动并进入所述热气流回流箱(60)。
  10. 如权利要求6所述的定子组件,其特征在于,所述气流输送装置还包括设置在所述定子支架(200)上的回流通道(800),所述回流通道的入口设置在所述空腔(260)中,所述回流通道(800)的出口位于所述空腔(260)外部,用于使所述空腔(260)中的气流经由所述回流通道(800)从所述定子组件中排出。
  11. 如权利要求10所述的定子组件,其特征在于,所述喷管(300)包括与所述喷管(300)的气流输入口相连接的冷气流引入管,所述回流通道(800)为筒状,所述回流通道(800)围绕在所述喷管(300)的外侧或所述冷气流引入管的外侧并固定在所述定子支架(200)上。
  12. 如权利要求2或3所述的定子组件,其特征在于,所述定子支架(600)包括沿轴向延伸的多个立柱(610)、沿轴向延伸的内筒板(640)以及连接所述立柱(610)和所述内筒板(640)的多个筋板(650),多个所述立柱(610)沿圆周方向均匀布置,所述定子铁芯(500)通过紧固到多个所述立柱(610)上而安装到所述定子支架(600)上,所述定子铁芯(500)的所述径向侧表面和所述内筒板(640)之间形成有空腔(660),所述喷管(300)的喷口位 于所述空腔(660)中并面对定子铁芯(500)的所述径向侧表面。
  13. 如权利要求12所述的定子组件,其特征在于,所述定子铁芯(500)的所述径向侧表面为径向内侧表面,所述气流输送装置还包括回流通道(800),用于排出所述空腔(660)中的气体,所述回流通道(800)围绕在所述喷管(300)外侧,并且所述回流通道(800)的入口设置在所述空腔(660)中,所述回流通道(800)的出口位于所述空腔(660)外部。
  14. 如权利要求12所述的定子组件,其特征在于,所述径向侧表面上形成有多个散热肋片(530),所述筋板(650)的外表面被处理为铬黑表面。
  15. 如权利要求2或3所述的定子组件,其特征在于,所述气流输送装置还包括冷气流供应单元,所述冷气流供应单元包括涡流管(400),所述涡流管(400)设置在所述定子支架(200)上,所述喷管(300)的气流输入口与所述涡流管(400)的冷端连通。
  16. 如权利要求15所述的定子组件,其特征在于,所述气流输送装置还包括压气机(920)和多个分流支管(940),所述压气机(920)用于提供压缩空气,并通过多个分流支管(940)将压缩空气提供给所述涡流管(400)的涡流室(410)。
  17. 一种电机,其特征在于,所述电机包括如权利要求1-16中任一项所述的定子组件。
  18. 一种风力发电机组,其特征在于,所述风力发电机包括如权利要求1-14中任一项所述的定子组件。
  19. 如权利要求18所述的风力发电机组,其特征在于,所述风力发电机组还包括冷气流供应单元,所述冷气流供应单元包括涡流管(400),所述涡流管(400)的冷端与所述气流输送装置连通,用于向所述气流输送装置供应冷气流。
  20. 如权利要求19所述的风力发电机组,其特征在于,所述气流输送装置还包括压气机(920)和多个分流支管(940),所述压气机(920)用于提供压缩空气,并通过多个分流支管(940)将压缩空气提供给所述涡流管(400)的涡流室(410)。
PCT/CN2019/104142 2018-09-14 2019-09-03 定子组件、具有该定子组件的电机及风力发电机组 WO2020052467A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/042,863 US11384741B2 (en) 2018-09-14 2019-09-03 Stator assembly, electric machine and wind turbine having the stator assembly
EP19859897.1A EP3767790B1 (en) 2018-09-14 2019-09-03 Stator assembly, motor having same and wind power generator set
AU2019339973A AU2019339973B2 (en) 2018-09-14 2019-09-03 Stator assembly, motor having same and wind power generator set
ES19859897T ES2968367T3 (es) 2018-09-14 2019-09-03 Conjunto de estátor, motor que tiene el mismo y conjunto de generador de energía eólica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811076191.4 2018-09-14
CN201811076191.4A CN110635589B (zh) 2018-09-14 2018-09-14 定子组件以及具有该定子组件的电机

Publications (1)

Publication Number Publication Date
WO2020052467A1 true WO2020052467A1 (zh) 2020-03-19

Family

ID=68968280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104142 WO2020052467A1 (zh) 2018-09-14 2019-09-03 定子组件、具有该定子组件的电机及风力发电机组

Country Status (6)

Country Link
US (1) US11384741B2 (zh)
EP (1) EP3767790B1 (zh)
CN (1) CN110635589B (zh)
AU (1) AU2019339973B2 (zh)
ES (1) ES2968367T3 (zh)
WO (1) WO2020052467A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210025371A1 (en) * 2018-08-31 2021-01-28 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Wind power generator set, electromagnetic device, and heat exchange or drying device for iron core

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635587B (zh) * 2018-09-14 2020-12-29 北京金风科创风电设备有限公司 定子组件以及具有该定子组件的电机
CN117858464B (zh) * 2024-01-12 2024-06-28 物链芯工程技术研究院(北京)股份有限公司 一种基于区块链的数据处理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354766A (ja) * 2001-05-28 2002-12-06 Aichi Emerson Electric Co Ltd 永久磁石電動機
CN201466941U (zh) * 2009-07-07 2010-05-12 南阳防爆集团股份有限公司 大容量燃气轮发电机
CN105515230A (zh) * 2015-12-31 2016-04-20 北京金风科创风电设备有限公司 发电机的定子
CN106451915A (zh) * 2016-08-26 2017-02-22 中国船舶重工集团公司第七〇二研究所 一种外转子永磁电机定子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703729B2 (en) 2001-08-15 2004-03-09 General Electric Company Reverse flow stator ventilation system for superconducting synchronous machine
JP2003324897A (ja) * 2002-05-09 2003-11-14 Murata Mach Ltd 駆動モータ冷却装置
CN102577044B (zh) * 2009-10-21 2015-04-29 西门子公司 发电机
JP6098136B2 (ja) * 2012-11-26 2017-03-22 三菱自動車工業株式会社 回転電機
CN203645474U (zh) * 2013-11-13 2014-06-11 华南理工大学 冷却油直接喷淋式电机冷却装置
CN104600886B (zh) * 2015-01-27 2017-01-25 新疆金风科技股份有限公司 永磁直驱风力发电机、系统及其定子
CN204334142U (zh) * 2015-01-27 2015-05-13 新疆金风科技股份有限公司 永磁直驱风力发电机、系统及其定子
EP3226383A1 (en) 2016-03-30 2017-10-04 Siemens Aktiengesellschaft Stator assembly for an electric generator with accommodation space
CN206670107U (zh) * 2017-03-29 2017-11-24 中国民航大学 一种基于涡流效应的冷暖空调室外系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354766A (ja) * 2001-05-28 2002-12-06 Aichi Emerson Electric Co Ltd 永久磁石電動機
CN201466941U (zh) * 2009-07-07 2010-05-12 南阳防爆集团股份有限公司 大容量燃气轮发电机
CN105515230A (zh) * 2015-12-31 2016-04-20 北京金风科创风电设备有限公司 发电机的定子
CN106451915A (zh) * 2016-08-26 2017-02-22 中国船舶重工集团公司第七〇二研究所 一种外转子永磁电机定子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210025371A1 (en) * 2018-08-31 2021-01-28 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Wind power generator set, electromagnetic device, and heat exchange or drying device for iron core
US11971015B2 (en) * 2018-08-31 2024-04-30 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Wind power generator set, electromagnetic device, and heat exchange or drying device for iron core

Also Published As

Publication number Publication date
AU2019339973A1 (en) 2020-10-29
AU2019339973B2 (en) 2022-02-03
ES2968367T3 (es) 2024-05-09
EP3767790A1 (en) 2021-01-20
EP3767790B1 (en) 2023-10-18
CN110635589A (zh) 2019-12-31
US20210017965A1 (en) 2021-01-21
CN110635589B (zh) 2020-12-04
EP3767790C0 (en) 2023-10-18
US11384741B2 (en) 2022-07-12
EP3767790A4 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
US7825552B2 (en) Cooling arrangement for a variable reluctance electric machine
WO2020052467A1 (zh) 定子组件、具有该定子组件的电机及风力发电机组
AU2019340746B2 (en) Stator assembly, electrical motor, wind power generator set and method for cooling stator assembly
WO2020048072A1 (zh) 电机及风力发电机组
US11971015B2 (en) Wind power generator set, electromagnetic device, and heat exchange or drying device for iron core
US20150188391A1 (en) Apparatus for cooling an electromagnetic machine
US11437888B2 (en) Medium conveying and heat exchange device and vortex flow separator for iron core in electromagnetic device
RU2695320C1 (ru) Комбинированная система охлаждения закрытой индукторной машины
US9991759B2 (en) Multi-directional air cooling of a motor using radially mounted fan and axial/circumferential cooling fins
CN110635583B (zh) 电磁装置的铁心及其叠片
JP2001298906A (ja) 回転電機
CN110635625B (zh) 风力发电机组、电磁装置及其铁心的换热装置
EP4387055A1 (en) Electric generator for a wind turbine and wind turbine
EP2493059A1 (en) A generator, in particular for a wind turbine
TWI622252B (zh) 具有散熱功能之馬達轉軸系統
JP3289722B2 (ja) 回転電機
JP2022164008A (ja) 回転機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019859897

Country of ref document: EP

Effective date: 20201012

ENP Entry into the national phase

Ref document number: 2019339973

Country of ref document: AU

Date of ref document: 20190903

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE