WO2020048072A1 - 电机及风力发电机组 - Google Patents

电机及风力发电机组 Download PDF

Info

Publication number
WO2020048072A1
WO2020048072A1 PCT/CN2019/070440 CN2019070440W WO2020048072A1 WO 2020048072 A1 WO2020048072 A1 WO 2020048072A1 CN 2019070440 W CN2019070440 W CN 2019070440W WO 2020048072 A1 WO2020048072 A1 WO 2020048072A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
sleeve
airflow
axial
stator
Prior art date
Application number
PCT/CN2019/070440
Other languages
English (en)
French (fr)
Inventor
李锦辉
刘军卫
许文华
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to AU2019226142A priority Critical patent/AU2019226142B2/en
Priority to US16/609,717 priority patent/US11289957B2/en
Priority to ES19759485T priority patent/ES2968897T3/es
Priority to EP19759485.6A priority patent/EP3641109B1/en
Publication of WO2020048072A1 publication Critical patent/WO2020048072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
    • H02K9/16Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the cooling medium circulates through ducts or tubes within the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the field of cooling technology, and in particular to a motor and a wind turbine.
  • cooling has been widely used in the field of wind turbine cooling because of its advantages of high reliability, easy maintenance and no pollution.
  • the cooling medium in the cooling circuit depends on power-driven equipment to maintain the circulating flow in the cooling circuit, it can be divided into passive cooling (non-powered driving equipment) and active cooling (powered driving equipment).
  • the passive cooling in the air cooling method can simplify the structure of the wind turbine, but its cooling capacity in a limited space is insufficient. Active cooling gradually occupies the mainstream due to its superior cooling capacity and greater design freedom.
  • the power, volume, weight and cost of active cooling equipment have all increased, and at the same time, it has become more difficult to deploy, install and maintain, and has lower reliability. Therefore, in addition to cost advantages, high-power-density wind turbines often mean greater losses and more self-consumption of active cooling equipment, making it difficult to take into account the overall power generation efficiency.
  • the purpose of the embodiments of the present application is to provide a motor and a wind turbine, which can improve the cooling effect of the motor and improve the power generation efficiency of the entire machine.
  • a motor includes an active cooling circuit and a passive cooling circuit that are isolated from each other.
  • the active cooling circuit is in communication with an enclosed space and the passive cooling circuit is in communication with the external environment.
  • the active cooling circuit includes the interconnected The chambers at the two axial ends of the motor, the air gap between the rotor and the stator of the motor, and the radial channels distributed along the axial interval of the stator.
  • the active cooling circuit is provided with cooling equipment that communicates with the enclosed space.
  • the stator bracket is fixed on the fixed shaft;
  • the passive cooling circuit includes a first axial channel penetrating through the stator in the axial direction, a second axial channel penetrating through the stator bracket and the outer surface of the motor; a heat exchanger is further provided inside the motor.
  • the heater communicates with the radial channel and the second axial channel, respectively.
  • a wind power generator set includes any one of the motors described above.
  • the motor has an upwind side and a leeward side in the axial direction.
  • a hub is located on the upwind side of the motor and is coaxially disposed with the motor.
  • the hub drives the motor to rotate by the rotation of the impeller installed on its outer peripheral side; and the nacelle is located on the leeward side of the motor.
  • the motors and wind turbines provided in the embodiments of the present application provide structurally isolated active cooling circuits and passive cooling circuits. Compared to motors with only passive cooling circuits, the existence of active cooling circuits makes up for the limited The problem of insufficient cooling capacity in the layout space. Compared with a motor with only an active cooling circuit, a part of the heat loss of the motor is taken away by the passive cooling circuit, which relieves the burden of the active cooling circuit, reduces the power and self-consumption of cooling equipment in the active cooling circuit, and thus reduces The volume and weight of the cooling equipment are increased, and the power generation efficiency of the whole machine is improved.
  • FIG. 1 is a partial cross-sectional view of a motor according to an embodiment of the present application
  • FIG. 2 is a partial structural diagram of a stator of the motor shown in FIG. 1;
  • FIG. 3 is a partial structural schematic diagram of an iron core component in the stator shown in FIG. 2;
  • FIG. 4 is a schematic structural diagram of a heat exchanger in the motor shown in FIG. 1;
  • FIG. 5 is a partial cross-sectional view of a stator bracket in the motor shown in FIG. 1;
  • FIG. 6 is a schematic diagram of air flow organization of a chamber of the active cooling circuit shown in FIG. 1;
  • FIG. 7 is a schematic diagram of air flow organization of a radial channel of the active cooling circuit shown in FIG. 1;
  • FIG. 8 is a schematic diagram of air flow organization of an active cooling circuit of the motor shown in FIG. 1;
  • FIG. 9 is a schematic structural diagram of a rotor of the motor shown in FIG. 1;
  • FIG. 10 is a partial sectional view of a rotor of the motor shown in FIG. 1;
  • FIG. 11 is a schematic diagram of the air flow organization of the passive cooling circuit of the motor shown in FIG. 1;
  • FIG. 12 is a schematic diagram of the working principle of the flow guide device and the acceleration device of the rotor shown in FIG. 8; FIG.
  • FIG. 13 is a partial cross-sectional view of a wind turbine according to an embodiment of the present application.
  • an embodiment of the present application provides a motor 100.
  • the motor 100 includes an active cooling circuit A and a passive cooling circuit B that are isolated from each other.
  • the active cooling circuit A is in communication with the enclosed space S, and the passive cooling circuit B is in communication with the external environment.
  • the active cooling circuit A includes the chambers 11 a and 11 b located at two axial ends of the motor 100, the air gap 12 between the rotor 10 and the stator 20 of the motor, and the diameters distributed along the axial X interval of the stator 20.
  • a cooling device 14 communicating with the closed space S is provided in the active cooling circuit A, as shown by a solid line arrow in FIG.
  • the stator 20 is fixed to a fixed shaft 27c by a stator bracket 27.
  • the passive cooling circuit B includes a first axial channel 15 penetrating the stator 20 in the axial direction X, a second axial channel 19 penetrating the stator bracket 27, and the outer surface of the motor, as shown by the dotted arrows in Fig. 1.
  • a heat exchanger 50 is further provided inside the motor 100, and the heat exchanger 50 communicates with the radial channel 13 and the second axial channel 19, respectively.
  • the motor 100 in the embodiment of the present application may have an inner stator structure, that is, the rotor 10 is disposed along the outer periphery of the stator 20; the motor 100 may also be an outer stator structure, that is, the stator 20 is disposed along the outer periphery of the rotor 10.
  • the stator 20 is fixed to a fixed shaft 27c through a stator support 27, the rotor 10 is fixed to a rotating shaft 18a through a rotor support 18, and the rotating shaft 18a and the fixed shaft 27c are supported by bearings and realize relative rotation.
  • the stator bracket 27 and the rotor 10 form a dynamic seal connection, and further form the chambers 11 a and 11 b at both axial ends of the motor 100.
  • the driving method of the motor 100 may be a direct drive, a semi-direct drive, or a double-fed unit, and the details are not described again.
  • the active cooling circuit A is isolated from the external environment, which can prevent impurities in the external environment from being actively introduced into the motor 100.
  • the cooling medium is air circulating in the closed space S.
  • the cooling medium is circulated through the cooling device 14 in the circuit.
  • the loss heat absorbed in the active cooling circuit A flows out from the radial channel 13 and is transferred to the first through the heat exchanger 50. Inside the two axial channels 19, heat exchange is finally performed with the external environment.
  • This cooling circuit is active for cooling the electric machine 100.
  • the passive cooling circuit B communicates with the external environment.
  • the air in the external environment is introduced into the cooling circuit, which is passive for motor cooling.
  • the cooling medium in the active cooling circuit A and the passive cooling circuit B that are structurally isolated from each other simultaneously cools the motor 100, and the heat transfer between the two cooling circuits is achieved through the heat exchanger 50.
  • the motor 100 provided in the embodiment of the present application is provided with an active cooling circuit A and a passive cooling circuit B that are structurally isolated from each other.
  • the existence of the active cooling circuit makes up for the limited layout.
  • the problem of insufficient cooling capacity in the space; compared to a motor with only an active cooling circuit, part of the heat loss of the motor is taken away by the passive cooling circuit, which relieves the burden of the active cooling circuit and reduces the cooling equipment 14 in the active cooling circuit A Power and self-consumption power, thereby reducing the volume and weight of the cooling device 14, and improving the power generation efficiency of the whole machine.
  • the active cooling circuit A is isolated from the external environment, impurities in the external environment can be prevented from being actively introduced into the motor 100, thereby improving the reliability of the motor 100.
  • the stator 20 of the motor 100 includes a plurality of iron core assemblies 21 arranged at intervals in the axial direction X.
  • Each iron core assembly 21 is laminated by a plurality of iron core laminations in the axial direction X. Therefore, the radial channel 13 is formed between each two adjacent core assemblies 21.
  • the first axial passage 15 includes a stator axial passage 15 a penetrating the plurality of core assemblies 21 in the axial direction X.
  • Each of the core components 21 includes a yoke portion 22 and a tooth portion 23 integrally formed with the yoke portion 22.
  • the teeth portion 23 is provided with a plurality of tooth grooves 23 a at intervals in the circumferential direction Z of the core component 21.
  • the yoke portion 22 is provided with A through-hole 22a corresponding to the cogging 23a, a sleeve 24 communicating with the through-hole 22a is provided between the adjacent core components 21, and the through-hole 22a and the sleeve 24 form a stator axial channel 15a.
  • each tooth groove 23a of the plurality of iron core assemblies 21 correspond to each other and extend in the axial direction X.
  • Each tooth groove 23a is provided with a spacer 25, and the space surrounded by the spacer 25 and the tooth groove 23a is provided.
  • the yoke portion 22 is also provided with at least one mounting groove 22 c for fixing the stator 20 on the stator bracket 27.
  • the cogging 23a is provided corresponding to the through hole 22a, which is beneficial to reduce the resistance of air flow in the radial channel 13, make the heat transfer path between the winding 26 and the through hole 22a relatively short, and improve the heat transfer efficiency of the winding 26.
  • the number of the through-holes 22a is at least one.
  • the at least one through-hole 22a is disposed at intervals in the circumferential direction Z of the core assembly 21, and the at least one through-hole 22a is any one of a square hole, a round hole, and a polygonal hole.
  • the number of the sleeves 24 is also at least one, and the sleeves 24 are provided in one-to-one correspondence with the through holes 22a.
  • the sleeve 24 makes the through-holes 22a of the yoke portions 22 of the plurality of core assemblies 21 constitute a communicating stator axial channel 15a, and also plays a role of supporting and limiting the plurality of core assemblies 21, as shown in FIG. 2 .
  • the tube sleeve 24 may be any one of a square tube, a circular tube, and a polygonal tube.
  • ribs 22b are provided in at least one of the through holes 22a. This arrangement is beneficial to increase the heat dissipation area of the stator axial channel 15a, thereby achieving the purpose of enhancing the cooling effect, as shown in FIG. 3.
  • the axial section of the through hole 22 a constituting the stator axial passage 15 a shown in FIG. 3 is completely constructed in the yoke portion 22 of the core assembly 21.
  • each core assembly 21 includes an attachment portion (not shown in the figure) provided along the radial direction Y and close to the yoke portion 22, and the through hole 22a may also be provided at the attachment portion. At this time, the axial cross-section of the through hole 22a can be completely constructed outside the yoke portion 22 of the core assembly 21 through the attachment portion.
  • the through hole 22a includes two parts distributed along the radial direction Y, one of which is located at the yoke portion 22 and the other is located at the attachment portion.
  • the axial cross-section of the through hole 22 a may be partly constructed in the yoke portion 22 of the core assembly 21, and the other part may be constructed outside the yoke portion 22 of the core assembly 21 through an attachment portion.
  • the through hole 22a on the yoke portion 22 is located radially inward of the tooth groove 23a
  • the through hole 22a on the yoke portion 22 is located radially outward of the tooth groove 23a.
  • the stator 20 shown in FIG. 2 adopts a distributed forming double-layer winding structure, but the winding structure form applicable to this application may also be, but is not limited to, other winding structures such as concentrated winding, scattered winding, and single-layer winding. form.
  • the following uses the motor as the inner stator structure as an example to describe the structure of the motor's active cooling circuit A and passive cooling circuit B and the cooling process of the motor.
  • the heat exchanger 50 includes a plurality of plates 51 disposed at intervals.
  • the plurality of plates 51 form a first channel 51 a and a second channel 51 b separated from each other in multiple layers, and the first channel 51 a and the second channel 51b is staggered, the heat exchanger 50 communicates with the radial channel 13 through the first channel 51a, and the heat exchanger 50 communicates with the second axial channel 19 through the second channel 51b.
  • the heat exchanger 50 is preferably a plate heat exchanger, which is formed by stacking a series of metal sheets with a certain corrugated shape.
  • the airflow in the first channel 51a and the second channel 51b flows in the radial direction Y and the axial direction X, respectively. As shown by the arrows in FIG. 4, heat is exchanged through the metal pieces between the plates 51.
  • the stator bracket 27 includes a first end plate 27 a and a second end plate 27 b which are oppositely disposed along the axial direction X, and a first spacer disposed between the first end plate 27 a and the second end plate 27 b and coaxially disposed.
  • the plate 28a and the second partition plate 28b are oppositely disposed along the axial direction X, and a first spacer disposed between the first end plate 27 a and the second end plate 27 b and coaxially disposed.
  • the first end plate 27a is spaced in the radial direction Y from the first bushing 1 and the third bushing 3, and the second end plate 27b is spaced from the second end board in the radial direction Y.
  • the second sleeve 2 and the fourth sleeve 4 of 27b, and the third sleeve 3 is located between the first end plate 27a and the first partition plate 28a, and the fourth sleeve 4 is located between the second partition plate 28b and the second end Between plates 27b.
  • the first axial channel 15 further includes a first sleeve 1 and a second sleeve 2 which communicate with the stator axial channel 15 a.
  • the second axial channel 19 further includes a third sleeve 3 which communicates with the heat exchanger 50.
  • fourth casing 4 fourth casing 4.
  • the axial cross-sectional dimensions and shapes of the inner wall of the first sleeve 1, the second sleeve 2, the sleeve 24 and the through hole 22a are the same; the inner walls of the third sleeve 3, the fourth sleeve 4, and the heat exchanger
  • the axial cross-section size and shape of 50 are the same.
  • the passive cooling circuit B is isolated from the active cooling circuit A by the first casing 1, the casing 24, the second casing 2, the third casing 3, the heat exchanger 50, and the fourth casing 4.
  • first partition plate 28a and the second partition plate 28b are both sealedly connected to the yoke portion 22 and fixed to the fixed shaft 27c, and the first end plate 27a and the first partition plate 28a are sealedly connected along the radial Y inside of the motor 100.
  • a radial filter 16 is provided between the second end plate 27b and the second partition plate 28b.
  • the first partition 28a is provided with an air inlet 1a
  • the second partition 28b is provided with an air inlet 1b and an air outlet 1c
  • the first partition 28a and the second partition 28b are divided into a first partition by a third partition 29.
  • a cavity 29a and a second cavity 29b, the air inlets 1a, 1b are in communication with the first cavity 29a
  • the air outlet 1c is in communication with the second cavity 29b
  • the heat exchanger 50 is arranged in the second cavity 29b
  • cooling equipment 14 is disposed outside the air outlet 1c
  • an axial filter 17 is provided on the air inlet 1c of the second partition plate 28b.
  • FIG. 6 can be used to describe the air flow in the two chambers at the same time.
  • the airflow entering the chamber 11a first passes around the third sleeve 3 through the gap between the third sleeves 3, and then passes around the first sleeve 1 through the gap between the first sleeves 1
  • the air flow in the chamber 11a cools the end of the winding 26 as it flows through the end of the winding 26, as shown by the solid arrow in FIG.
  • the air flow in the radial channel 13 is shunted from the air gap 12.
  • Each of the divided air flows first passes through the gaps 23 a of the radial channel 13 formed by the gap between the slots in the winding 26. After entering the yoke portion 22 of the radial channel 13, the airflow finally exits the radial channel 13 through the gap between the sleeves 24 located in the radial channel 13.
  • the heat exchangers 50 are arranged at intervals along the circumferential direction of the second cavity 29b, and a cover plate 52 is provided between the adjacent heat exchangers 50.
  • the cover plate 52 divides the second cavity 29b into two sub-directions in the radial direction Y. Space, the two subspaces communicate with each other through the heat exchanger 50.
  • the airflow flowing out of the radial passage 13 is converged by the cover plate 52 through the first passage 51a and the second passage 51b of the heat exchanger 50, and exchanges heat with the outside air in the second axial passage 19 in the passive cooling circuit B , Thereby reducing the temperature of the fluid in the active cooling circuit A.
  • the air flow cools both the ends of the winding 26 and the core assembly 21 in the radial passage 13 as shown by the solid arrows in FIG. 7.
  • FIG. 8 a schematic diagram of air flow organization of the active cooling circuit A of the motor 100 is shown.
  • the air in the enclosed space S is driven by the cooling device 14 into two branches R1 and R2 and enters into the chambers 11 a and 11 b at both ends of the motor 100 in the axial direction.
  • One of the branches R1 enters the first cavity 29a through the axial filter 17 and then flows around the third sleeve 3 and the first sleeve 1 into the chamber 11a at one end; the other branch R2 passes through the radial filter 16 Enter the other end of the chamber 11b and flow around the fourth sleeve 4 and the second sleeve 2, and the two branches R1, R2 in the chamber 11a, 11b flow through the winding 26 and the rotor in sequence along the active cooling circuit A
  • the bypass sleeve 24 flows through the heat exchanger 50 and enters the second cavity 29b, and is cooled by the cooling air entering the second axial channel 19, and then discharged to the enclosed space through the cooling device 14. S, as shown by the solid arrow in FIG. 8.
  • the cooling device 14 makes the internal space of the motor 100 assume a negative pressure state, and the airflow discharged from the internal space of the motor 100 by the cooling device 14 enters the enclosed space S, and the negative of the internal space of the motor 100
  • the pressure state causes the air flow discharged into the enclosed space S by the cooling device 14 to be introduced into the internal space of the motor 100 through the radial filter 16 and the axial filter 17 again.
  • the airflow flows into the first channel 51a of the heat exchanger 50 after absorbing a part of the heat loss of the stator and a part of the heat loss of the rotor, and the absorbed heat loss is transferred to the passive cooling circuit B by the heat exchanger 50.
  • the external air flowing in the second channel 51b further cools the airflow in the active cooling circuit A so as to re-enter the internal cavity of the motor 100 to cool the stator 20 and the rotor 10.
  • Active cooling circuit A takes away all the stator losses, except for some of the stator losses taken by passive cooling circuit B. At the same time, active cooling circuit A also takes away some of the rotor losses from passive cooling circuit B. The remaining rotor loses heat.
  • the rotor 10 is fixed on the rotating shaft 18 a through a rotor bracket 18.
  • the rotor 10 includes a rotor yoke 10 a and a permanent magnet 10 b mounted on the rotor yoke 10 a.
  • the rotor yoke 10a is provided with a plurality of support ribs 18b at intervals in the circumferential direction Y.
  • An annular gap is formed between the plurality of support ribs 18b, so that the air flowing from the outside world flows from the side of the first end plate 27a to the second through the annular gap. End plate 27b side.
  • the support ribs 18b are used to connect the rotor bracket 18 and the rotor yoke 10a, so that the rotor bracket 18 and the rotor yoke 10a can rotate at the same time with the rotating shaft 18a.
  • the passive cooling circuit B has a windward side and a leeward side in the axial direction X.
  • the side where the first end plate 27a is located is the windward side, and the side where the second end plate 27b is located is the leeward side.
  • the rotor yoke 10 a is provided along the axial direction X with a guide device 30 located on the same side as the first end plate 27 a. External air flows through the guide device 30 to guide and divide the current.
  • the deflector 30 is an annular thin-walled structure, and its structure conforms to the aerodynamic streamline. Specifically, the flow guiding device 30 is a thin-walled rotating body with a hollow inside to reduce weight.
  • the cross section of the deflector 30 in its radial direction Y includes an outer bus bar 30a and an inner bus bar 30b intersecting each other. The weft circle radius of the outer bus bar 30a gradually decreases along the axial direction X away from the rotor yoke 10a.
  • the weft circle radius gradually increases in the direction in which the axial direction X is away from the rotor yoke 10a.
  • At least one of the outer bus bar 30a and the inner bus bar 30b may be an arc-shaped curve or a straight line.
  • the outer diameter of the side of the outer bus bar 30 a near the rotor yoke 10 a is equal to the outer diameter of the motor 100, so that the outside air flows smoothly through the outer surface of the motor 100.
  • the outer bus bar 30a and the inner bus bar 30b may be arranged symmetrically or asymmetrically, depending on the actual situation of the external air flow.
  • the rotor yoke 10a is further provided with an acceleration device 40 on the same side as the second end plate 27b in the axial direction X.
  • the acceleration device 40 is a thin-walled rotating body with a hollow inside to reduce weight.
  • the cross section of the acceleration device 40 in the radial direction Y includes an outer bus bar 40a and an inner bus bar 40b intersecting each other.
  • the weft circle radii of the outer bus bar 40a and the inner bus bar 40b gradually increase in the direction away from the rotor yoke 10a in the axial direction X.
  • At least one of the outer bus bar 40a and the inner bus bar 40b may be an arc-shaped curve or a straight line.
  • the outer diameter of the outer bus bar 40 a on the side of the rotor yoke 10 a is equal to the outer diameter of the motor 100, so that outside air flows smoothly through the outer surface of the motor 100.
  • the first end plate 27a is further provided with a shunt plate 5 located between the first sleeve 1 and the third sleeve 3, and the shunt plate 5 is provided as a hollow thin-walled rotating body inside, To reduce weight.
  • the diameter of the weft circle is a fixed value, which facilitates the air flow to be diverted when passing through the diverter plate 5 and to pass through the inner and outer surfaces of the diverter plate 5, as shown in FIG. 5.
  • the second end plate 27b is further provided with a deflector 6 located between the second sleeve 2 and the fourth sleeve 4, and the deflector 6 is provided as a hollow thin-walled turning inside.
  • the weft circle radius of the generatrix gradually increases in the direction away from the rotor yoke side in the axial direction, so that the airflow flows smoothly through the inner and outer surfaces of the deflector 6, as shown in FIG. 5.
  • the cooling process of the motor 100 by the passive cooling circuit B will be described below with the motor 100 having both the deflector 30, the shunt plate 5, the acceleration device 40, and the deflector 6 as an example.
  • the fourth airflow C4 enters the first axial channel 15 through the annular gap, flows through the stator 20 and enters the first annular space L1 formed between the acceleration device 40 and the deflector 6.
  • the fifth airflow C5 enters the second axial passage 19 through the annular gap, flows into the second annular space L2 formed by the enclosed space S and the deflector 6 after passing through the heat exchanger 50.
  • the second air flow C2 merges with the external air flow C 'on the outer surface of the motor 100 to form a third air flow C3, and is attached to the outer surface of the rotor yoke 10a along the axial direction X and then flows around the acceleration device 40.
  • the fifth air flow C5 and the fourth air flow C4 generate a first pressure difference ⁇ P1-3 on the inner and outer sides of the deflector 6, and the fourth air flow C4 and the third air flow C3 generate a second pressure difference on the inner and outer sides of the acceleration device 40.
  • ⁇ P13-2 to drive the first airflow C1 and the second airflow C2 to continue to flow, as shown by the dashed arrows in FIG. 11.
  • the air flowing upstream of the windward side of the motor 100 can be divided into two parts schematically. : The incoming air inside the chord line K of the air guiding device 30 and the incoming air outside the chord line K.
  • the static pressure of the incoming air upstream on the windward side is atmospheric pressure P0.
  • the airflow is divided into a first airflow C1 and a second airflow C2.
  • the first airflow C1 flows inside the chord line K
  • the second airflow C2 flows outside the chord line K.
  • the divided first airflow C1 flows through the deflector 30, it is again divided by the shunt plate 5 on the stator bracket 27 to form a fourth airflow C4 and a fifth airflow C5, and enters the first axial channel 15 and the second Axial channel 19 inside.
  • the second airflow C2 split by the deflector 30 merges with the incoming air C 'outside the chord line K to form a third airflow C3, and flows along the axial direction X of the outer surface of the rotor yoke 10a.
  • the role of the diversion device 30 in the process of diverting the incoming air C is as follows: the arc structure inside the chord line K of the diversion device 30 can capture more external incoming air C, so that the external incoming air C C more shunts to the inside of the chord line K, so that the stator 20, which has more concentrated heat loss, gets greater cooling air volume; the arc structure outside the chord line K can make the outside air C shunt to the outside of the chord line K
  • the second airflow C2 relieves the flow separation phenomenon caused by the abrupt flow cross-section, so that the third airflow C3 formed by the confluence of the second airflow C2 and the external airflow C 'outside the chord line K is better attached to the rotor yoke 10a.
  • the outer surface flows, so that the rotor 10 has a better cooling effect.
  • the role of the diverter plate 5 is to distribute the flow of the first air flow C1 diverted by the deflector 30.
  • the installation angle of the diverter plate 5 can be adjusted according to actual needs. When the end of the diverter plate 5 farther away from the first end plate 27a is inclined inward, the first air flow C1 diverged by the flow guiding device 30 is more captured to form a fourth air flow C4, and when the diverter plate 5 is far from the first end One end of the plate 27a is inclined to the outside, and the first airflow C1 divided by the flow guiding device 30 is captured more to form a fifth airflow C5.
  • the working principle of the acceleration device 40 and the deflector 6 is as follows: the fourth air flow C4 flowing out of the first axial channel 15 is installed on the rotor yoke The inside of the leeward acceleration device 40 of 10a and the annular space L1 formed by the air guide plate 6 mounted on the stator bracket 27 continue to flow downstream. The fifth airflow C5 flowing out of the second axial passage 19 continues to flow downstream in the annular space L2 formed by the deflector 6 and the closed space S. The third air flow C3 flowing through the outer surface of the rotor yoke 10 a continues to flow downstream outside the acceleration device 40.
  • the static pressure gradually changes to P1 due to the gradual change in the flow cross-section.
  • the static pressure gradually changes to P3 due to the gradual change in the flow cross-section.
  • the flow cross-section gradually decreases, and its static pressure gradually decreases to P2. Because the acceleration device 40 has a gradually expanding structure toward the downstream side of the leeward side, the static pressure P2 of the third airflow C3 when flowing out of the downstream end of the leeward side of the acceleration device 40 is smaller than the fourth airflow C4 and the fifth airflow C5 in the acceleration device 40 and the closed space.
  • a second pressure difference ⁇ P13-2 P13-P2 is formed between the airflow flowing inside and outside the acceleration device 40 from the inside of the acceleration device 40 to the outside.
  • the second pressure difference ⁇ P13-2 enhances the driving force in the entire flow process of the fourth air flow C4 and the fifth air flow C5, so that more of the incoming air C in the external flow diverges inside the chord line K of the deflection device 30, thereby further
  • the branch cooling capacity for cooling the airflow in the stator 20 and the active cooling circuit A in the passive cooling circuit B is strengthened.
  • the deflector 6 plays the same role as the deflector 5 in the flow of the fourth air flow C4 and the fifth air flow C5.
  • the shape of the deflector 6 and the length extending downstream to the leeward side can be designed according to specific requirements.
  • the first pressure difference ⁇ P1-3 increases the driving force of the fifth airflow C5, so that the first airflow C1 is more diverted to In the second axial channel 19.
  • the first pressure difference ⁇ P1-3 increases the driving force of the fourth airflow C4, so that the first airflow C1 is more diverted to the first axial channel 15 in.
  • the deflector device 30, the diverter plate 5 and the acceleration device 40 and the deflector plate 6 at the inlet of the passive cooling circuit B further improve the cooling capacity of the passive cooling circuit B in the main and passive cooling circuits.
  • the motor 100 provided in the embodiment of the present application may have only the deflection device 30, only the acceleration device 40, or both the deflection device 30 and the acceleration device 40.
  • the motor 100 provided in the embodiment of the present application may have only the shunt plate 5 or only the deflector plate 6 or both the shunt plate 5 and the deflector plate 6, and the deflection device 30 and the acceleration device 40 may communicate with The diverter plate 5 and the deflector plate 6 form various combinations, which are not described repeatedly.
  • the fourth airflow C4 of the passive cooling circuit B which is divided by the first airflow C1, cools the stator 20 while flowing through the first axial channel 15, and takes away a part of the stator generated during the operation of the motor 100. Loss of heat.
  • the fifth airflow C5 divided by the first airflow C1 flows through the second axial channel 19 to cool the air in the active cooling circuit A that absorbs the remaining heat loss of the stator 20 and a part of the heat loss of the rotor 10. The rest of the heat loss due to the stator and a part of the rotor is generated during the operation of the motor 100. That is, the first airflow C1 in the passive cooling circuit B takes away all the stator losses and a part of the rotor losses.
  • the second air flow C2 cooled the rotor 10 while flowing through the outer surface of the rotor yoke 10a, and took away another part of the heat loss due to the rotor generated during the operation of the motor 100, and finally took away all the power during the operation of the generator 100 Loss of heat.
  • the airflow in the two cooling circuits passes through the first casing 1, the casing 24, the second casing 2, the third casing 3, the heat exchanger 50, and the first casing.
  • the four casings 4 are isolated from each other, and the first casing 1, the casing 24, the second casing 2, the third casing 3, and the fourth casing 4 are common components of the two cooling circuits except for the heat source component. It is thermally conductive to the air flow in the two cooling circuits.
  • the first sleeve 1 and the third sleeve 3 have an inner wall and an outer wall which are heat-conductively arranged. Because the airflow outside the first casing 1 and the third casing 3 is cooled by the external ambient air through the heat exchanger 50, the temperature is still higher than that introduced directly into the first casing 1 and the third casing 3 by the external environment. The temperature of the airflow makes the inside airflow of the first and third casings 1 and 3 absorb part of the heat of the outside airflow, although this heat transfer process will give the inside airflow of the first and third casings 3 and 3 to the next.
  • the cooling process of the stator 20 brings adverse effects, but the outer airflow of the first casing 1 and the third casing 3 transmits part of the heat to the inner airflow, thereby enhancing the outer airflow in the subsequent cooling process of the stator 20 and the rotor 10 Cooling effect. Therefore, the two offset each other to a certain extent, and this arrangement can reduce the manufacturing cost of the first sleeve 1 and the third sleeve 3.
  • the sleeve 24, the second sleeve 2 and the fourth sleeve 4 have an inner wall and an outer wall which are thermally isolated.
  • the airflow in the second casing 2 and the fourth casing 4 respectively absorbs part of the stator heat loss and the hot air in the active cooling circuit A and is about to be discharged to the external environment, and the second casing 2 and the fourth casing 4
  • the outer side of the sleeve 4 is cold air cooled by the heat exchanger 50. If the second sleeve 4 and the fourth sleeve 4 are heat-conductive for the inner and outer airflow at this time, the second sleeve 2 and the fourth sleeve 4
  • the outer airflow of the tube 4 will absorb a part of the heat of the inner airflow and bring it into the subsequent cooling process of the rotor 10 and the stator 20.
  • the outer airflow is hot air that absorbs part of the stator loss heat and the stator loss heat, because the airflow in the sleeve 24 in the radial channel 13 of the stator 20 is gradually absorbed. After part of the stator loses heat, the air is converted from cold to hot air. If the sleeve 24 is thermally conductive to the inside and outside airflow at this time, the airflow in the upstream sleeve 24 will absorb the heat from the outside air of the sleeve 24, so that Its inner airflow then adversely affects the cooling of the downstream stator 20 portion.
  • the inner airflow of the downstream casing 24 may absorb part of the heat of the outer airflow, or it may transfer part of its own heat to the outer airflow.
  • the adverse effect is the same as that of the part of the outer airflow heat absorbed by the inner airflow of the upstream casing 24.
  • the inner airflow of the downstream casing 24 transfers part of its heat to the outer airflow, it will increase the heat exchange burden of the heat exchanger 50, so that the airflow in the active cooling circuit A cannot be sufficiently cooled, and then enters the motor 100 again.
  • the internal cavity adversely affects the cooling of the stator 20 and the rotor 10.
  • the sleeve 24, the second sleeve 2 and the fourth sleeve 4 are set to be thermally isolated, so that the cooling capacity of the main and passive cooling circuits can be maximized.
  • an embodiment of the present application further provides a wind power generator set, which includes: any one of the motor 100, the hub 200, and the nacelle 300 described above.
  • the motor 100 includes a windward side 110 and a leeward side 120 in the axial direction.
  • the hub 200 is located on the windward side 110 of the motor 100 and is coaxially arranged with the motor 100.
  • the maximum outer diameter of the hub 200 is smaller than the minimum inner diameter of the second axial channel 19 of the motor 100, so that outside air can enter the first axial channel. 15 and 19 in the second axial passage.
  • the hub 200 drives the motor 100 by rotation of an impeller mounted on the outer peripheral side thereof.
  • the nacelle 300 is located on the leeward side 120 of the motor 100.
  • the outer contour of the nacelle 300 is radially spaced from the second axial channel 19 of the motor 100 by a predetermined distance to facilitate the first axial channel 15 and the second axial channel 19
  • the hot air which absorbs heat, is discharged to the outside environment.
  • a closed space S communicating with the active cooling circuit A may be formed between the nacelle 300 and the motor 100.
  • the closed space S may be formed in the motor 100.
  • the wind heat transport potential can be fully tapped during power generation.
  • two active and passive cooling circuits are isolated from each other in the structure, thereby reducing the power and self-consumption of the cooling device 14, improving the power generation efficiency of the entire machine, and reducing the cooling device 14.
  • the volume and weight save space in the engine room 300, realize the highly integrated structure of the cooling system and the motor, and reduce the cost of the cooling system.
  • the motor according to the exemplary embodiment described above may be applied to various devices that need to be provided with a motor, such as, but not limited to, a wind turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种电机及风力发电机组,包括相互隔离的主动冷却回路和被动冷却回路;主动冷却回路设置有冷却设备,与封闭空间连通,包括位于电机轴向两端的腔室、定转子间的气隙和径向通道;被动冷却回路与外界环境连通,包括贯穿定子的第一轴向通道、贯穿定子支架的第二轴向通道和电机外表面;换热器分别与径向通道、第二轴向通道相连通。

Description

电机及风力发电机组
相关申请的交叉引用
本申请要求享有于2018年9月6日提交的名称为“电机及风力发电机组”的中国专利申请201811039192.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及冷却技术领域,特别是涉及一种电机及风力发电机组。
背景技术
随着风电市场和国家政策的不断调整,风力发电机组逐渐向着高功率密度的方向发展。风力发电机组所采用的众多冷却方式中,空冷方式由于其具有高可靠、易维护和无污染的优势,在风力发电机冷却领域得到了广泛的应用。根据冷却回路中冷却介质是否依靠动力驱动设备来维持在冷却回路中的循环流动,又可分为被动冷却(无动力驱动设备)和主动冷却(有动力驱动设备)。
空冷方式中的被动冷却可以简化风力发电机组的结构,但其在有限空间内的冷却能力不足。主动冷却由于其具有优越的冷却能力和较大的设计自由度逐渐占据主流地位。随着风力发电机组单机容量的不断提升,主动冷却设备的功率、体积、重量和成本均上涨,同时在布局、安装和维护方面更加困难,可靠性更低。因此,高功率密度的风力发电机组除了具有成本优势外,往往意味着更大的损耗以及更多的主动冷却设备自耗电,从而很难兼顾整机的发电效率。
发明内容
本申请实施例的目的是提供一种电机及风力发电机组,其可以提高电 机的冷却效果,提升整机的发电效率。
根据本申请实施例提出的一种电机,其包括包括相互隔离的主动冷却回路和被动冷却回路,主动冷却回路与封闭空间连通,被动冷却回路与外界环境连通;其中,主动冷却回路包括相互连通的位于电机的轴向两端的腔室、电机的转子与定子之间的气隙,以及沿定子的轴向间隔分布的径向通道,主动冷却回路中设置有与封闭空间连通的冷却设备,定子通过定子支架固定于固定轴上;被动冷却回路包括在轴向上贯穿定子的第一轴向通道、贯穿定子支架的第二轴向通道和电机的外表面;电机内部进一步设置有换热器,换热器分别与径向通道、第二轴向通道相互连通。
根据本申请实施例提出的一种风力发电机组,其包括如前所述的任一种的电机,电机沿轴向具有迎风侧与背风侧;轮毂,位于电机的迎风侧且与电机同轴设置,轮毂通过安装于其外周侧的叶轮的转动带动电机转动;以及机舱,位于电机的背风侧。
本申请实施例提供的电机及风力发电机组,通过设置结构上相互隔离的主动冷却回路和被动冷却回路,相对于仅具有被动冷却回路的电机来说,由于主动冷却回路的存在,弥补了在有限布局空间内冷却能力不足的问题。相对于仅具有主动冷却回路的电机来说,电机的一部分损耗热量由被动冷却回路带走,缓解了主动冷却回路的负担,降低了主动冷却回路中冷却设备的功率和自耗电,进而减小了冷却设备的体积和重量,提高了整机的发电效率。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请,其中:
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是本申请实施例提供的一种电机的局部剖视图;
图2是图1所示的电机的定子的局部结构示意图;
图3是图2所示的定子中铁芯组件的局部结构示意图;
图4是图1所示的电机中的换热器的结构示意图;
图5是图1所示的电机中的定子支架的局部剖视图;
图6是图1所示的主动冷却回路的腔室的气流组织示意图;
图7是图1所示的主动冷却回路的径向通道的气流组织示意图;
图8是图1所示的电机的主动冷却回路的气流组织示意图;
图9是图1所示的电机的转子的结构示意图;
图10是图1所示的电机的转子的局部剖视图;
图11是图1所示的电机的被动冷却回路的气流组织示意图;
图12是图8所示的转子的导流装置和加速装置的工作原理示意图;
图13是本申请实施例提供的一种风力发电机组的局部剖视图;
其中:
S-封闭空间;A-主动冷却回路;B-被动冷却回路;X-轴向;Y-径向;Z-周向;R1,R2-支路;C1-第一气流;C2-第二气流;C3-第三气流;C4-第四气流;C5-第五气流;C6-第六气流;L1-第一环形空间;L2-第二环形空间;C-外界来流空气;C’-电机外表面的外界气流;K-弦线;P1,P2,P3-压强;△P1-3-第一压差;△P13-2-第二压差;
10-转子;10a-转子磁轭;10b-永磁体;11a,11b-腔室;12-气隙;13-径向通道;14-冷却设备;15-第一轴向通道;15a-定子轴向通道;16-径向过滤件;17-轴向过滤件;18-转子支架;18a-转动轴;18b-支撑筋;19-第二轴向通道;
20-定子;21-铁芯组件;22-轭部;22a-通孔;22b-筋条;22c-安装槽;23-齿部;23a-齿槽;24-套管;25-支撑件;26-绕组;27-定子支架;27a-第一端板;27b-第二端板;27c-固定轴;1-第一套管;2-第二套管;3-第三套管;4-第四套管;分流板-5;导流板-6;第一隔板-28a;第二隔板-28b;1a-进风口;1b-进风口;1c-出风口;29-第三隔板;29a-第一腔体;29b-第二腔体;
30-导流装置;30a-导流装置30的外母线;30b-导流装置30的内母线;40-加速装置;40a-加速装置40的外母线;40b-加速装置40的内母线;50- 换热器;51-板件;52-盖板;51a-第一通道;51b-第二通道;100-电机;110-迎风侧;120-背风侧;200-轮毂;300-机舱。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。本申请决不限于下面所提出的任何具体配置和算法,而是在不脱离本申请的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本申请造成不必要的模糊。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
参阅图1,本申请实施例提供了一种电机100,电机100包括相互隔离的主动冷却回路A和被动冷却回路B,主动冷却回路A与封闭空间S连通,被动冷却回路B与外界环境连通。
其中,主动冷却回路A包括相互连通的位于电机100的轴向两端的腔室11a,11b、电机的转子10与定子20之间的气隙12,以及沿定子20的轴向X间隔分布的径向通道13,主动冷却回路A中设置有与封闭空间S连通的冷却设备14,如图1中的实线箭头所示。定子20通过定子支架27固定于固定轴27c上。
被动冷却回路B包括在轴向X上贯穿定子20的第一轴向通道15、贯穿定子支架27的的第二轴向通道19和电机的外表面,如图1中的虚线箭 头所示。
电机100内部进一步设置有换热器50,换热器50分别与径向通道13、第二轴向通道19相互连通。
本申请实施例中的电机100可以是内定子结构,即转子10沿定子20的外周设置;电机100也可以是外定子结构,即定子20沿转子10的外周设置。定子20通过定子支架27固定于固定轴27c上,转子10通过转子支架18固定于转动轴18a,转动轴18a和固定轴27c通过轴承支撑,并实现相对转动。定子支架27与转子10间形成动密封连接,进而形成电机100的轴向两端的腔室11a、11b。电机100的驱动方式可以为直驱,也可以为半直驱、双馈机组等,不再赘述。
本申请实施例通过对电机100本体结构的构造,构建了两条结构上相互隔离的主动冷却回路A和被动冷却回路B。其中,主动冷却回路A与外界环境隔离,可以防止外界环境中的杂质被主动引入到电机100的内部。冷却介质为封闭空间S内循环流动的空气,冷却介质通过回路中的冷却设备14实现循环流动,主动冷却回路A中吸收的损耗热量从径向通道13流出后,通过换热器50传递到第二轴向通道19内,最终与外界环境进行换热。这条冷却回路对于电机100的冷却来说属于主动的。被动冷却回路B与外界环境连通,通过对电机100的转子10的巧妙构造以及外界环境中空气的自然流动,使得外界环境中的空气被引入到该冷却回路中,对于电机冷却来说属于被动的。结构上相互隔离的主动冷却回路A和被动冷却回路B中的冷却介质同时对电机100进行冷却,并且通过换热器50实现了两条冷却回路间的热传递。
本申请实施例提供的电机100,通过设置结构上相互隔离的主动冷却回路A和被动冷却回路B,相对于仅具有被动冷却回路的电机来说,由于主动冷却回路的存在,弥补了在有限布局空间内冷却能力不足的问题;相对于仅具有主动冷却回路的电机来说,电机的一部分损耗热量由被动冷却回路带走,缓解了主动冷却回路的负担,降低了主动冷却回路A中冷却设备14的功率和自耗电,进而减小了冷却设备14的体积和重量,提高了整机的发电效率。另外,由于主动冷却回路A与外界环境隔离,可以防止外 界环境中的杂质被主动引入到电机100的内部,提高了电机100的可靠性。
下面结合附图进一步详细描述电机100的具体结构。
请一并参阅图2和图3,电机100的定子20包括沿轴向X间隔布置的多个铁芯组件21,每个铁芯组件21由多个铁芯叠片沿轴向X叠压而成,径向通道13形成于每相邻的两个铁芯组件21之间。
第一轴向通道15包括沿轴向X贯穿多个铁芯组件21的定子轴向通道15a。每个铁芯组件21包括轭部22和与轭部22一体成型的齿部23,齿部23在铁芯组件21的周向Z上间隔设置有多个齿槽23a,轭部22上设置有与齿槽23a对应的通孔22a,相邻的铁芯组件21之间设置有与通孔22a相互连通的套管24,通孔22a与套管24形成定子轴向通道15a。
进一步地,多个铁芯组件21的多个齿槽23a一一对应且沿轴向X延伸,每个齿槽23a内设置有垫条25,垫条25与齿槽23a围成的空间内设置有绕组26。轭部22还开设有至少一个安装槽22c,用于将定子20固定于定子支架27上。齿槽23a与通孔22a对应设置,有利于降低径向通道13中空气流动的阻力,使绕组26与通孔22a之间的传热路径相对较短,提高绕组26的传热效率。
通孔22a的数量为至少一个,至少一个通孔22a在铁芯组件21的周向Z上间隔设置,至少一个通孔22a为方形孔、圆孔和多边形孔中任一者。
同时,套管24的数量也为至少一个,其与通孔22a一一对应设置。套管24使得多个铁芯组件21的轭部22的通孔22a构成一条连通的定子轴向通道15a,同时还对多个铁芯组件21起到支撑限位的作用,如图2所示。管套24可以为方形管,圆形管和多边形管中的任一者。
作为一种可选的实施方式,至少一个通孔22a内设置有筋条22b,如此设置有利于增加定子轴向通道15a的散热面积,进而达到增强冷却效果的目的,如图3所示。
另外,图3所示的构成定子轴向通道15a的通孔22a的轴向截面是完全构建于铁芯组件21的轭部22中。
作为一种可选的实施方式,每个铁芯组件21包括沿径向Y且靠近轭部22设置的附接部(图中未示出),通孔22a也可以设置于附接部。此时 通孔22a的轴向截面可以完全通过附接部构建于铁芯组件21的轭部22外。
作为一种可选的实施方式,通孔22a包括沿径向Y分布的两部分,其中一部分位于轭部22,另一部分位于附接部。此时通孔22a的轴向截面可以是一部分构建于铁芯组件21的轭部22中,另一部分通过附接部构建于铁芯组件21的轭部22外。
需要说明的是,对于内定子结构,轭部22上的通孔22a位于齿槽23a的径向内侧,对于外定子结构,轭部22上的通孔22a位于齿槽23a的径向外侧。另外,图2中所示的定子20采用的是分布式成型双层绕组结构,但本申请所适用的绕组结构形式也可以是但不限于集中绕组、散绕绕组和单层绕组等其他绕组结构形式。
下面以电机为内定子结构为例,描述该电机的主动冷却回路A和被动冷却回路B的结构及电机的冷却过程。
参阅图4,换热器50包括间隔设置的多个板件51,多个板件51之间形成多层相互隔离的第一通道51a和第二通道51b,且第一通道51a和第二通道51b交错排布,换热器50通过第一通道51a与径向通道13相互连通,换热器50通过第二通道51b与第二轴向通道19相互连通。
换热器50优选为板式换热器,其由一系列具有一定波纹形状的金属片叠装而成,第一通道51a和第二通道51b内的气流分别沿径向Y和轴向X流动,如图4中箭头所示,并通过板件51之间的金属片进行热量交换。
参阅图5,定子支架27包括沿轴向X相对设置的第一端板27a和第二端板27b,以及位于第一端板27a和第二端板27b之间且同轴设置的第一隔板28a和第二隔板28b。
第一端板27a在径向Y上间隔设置有贯穿第一端板27a的第一套管1和第三套管3,第二端板27b在径向Y上间隔设置有贯穿第二端板27b的第二套管2和第四套管4,且第三套管3位于第一端板27a与第一隔板28a之间,第四套管4位于第二隔板28b与第二端板27b之间。
第一轴向通道15还包括与定子轴向通道15a相互连通的第一套管1和第二套管2,第二轴向通道19进一步包括与换热器50相互连通的第三套管3和第四套管4。
优选地,第一套管1、第二套管2、套管24的内壁与通孔22a的轴向截面尺寸及形状相同;第三套管3、第四套管4的内壁与换热器50的轴向截面尺寸及形状相同。被动冷却回路B通过第一套管1、套管24、第二套管2、第三套管3、换热器50及第四套管4与主动冷却回路A相互隔离。
进一步地,第一隔板28a和第二隔板28b均与轭部22密封连接并固定于固定轴27c,第一端板27a与第一隔板28a沿电机100的径向Y内侧密封连接,第二端板27b与第二隔板28b之间设置有径向过滤件16。
第一隔板28a上开设有进风口1a,第二隔板28b上开设有进风口1b和出风口1c,第一隔板28a与第二隔板28b之间通过第三隔板29分为第一腔体29a和第二腔体29b,进风口1a,1b与第一腔体29a连通,出风口1c与第二腔体29b连通,换热器50设置于第二腔体29b内,冷却设备14设置于出风口1c外侧,第二隔板28b的进风口1c上设置有轴向过滤件17。
参阅图6,由于电机100的端部腔室11a和11b内的气流流动情况较为相近,故采用图6可同时用来描述两个腔室内的气流流动。以腔室11a为例,进入腔室11a的气流首先通过第三套管3间的空隙绕流经过第三套管3,再通过第一套管1间的空隙绕流经过第一套管1,后经过绕组26的端部间的空隙绕流经过端部绕组26的端部,最终腔室11a内的气流由气隙12的端部入口流入气隙12内。腔室11a内的气流在流经绕组26的端部时对绕组26的端部进行了冷却,如图6中的实线箭头所示。
参阅图7,径向通道13内的气流由气隙12中分流而来,分流后的各气流首先流经绕组26的槽内部分间的空隙所形成的径向通道13的齿槽23a,后进入径向通道13的轭部22,最终气流通过位于径向通道13中的套管24间的空隙流出径向通道13。
另外,换热器50沿第二腔体29b的周向间隔设置,相邻的换热器50之间设置有盖板52,盖板52将第二腔体29b沿径向Y分为两个子空间,两个子空间之间通过换热器50相互连通。
流出径向通道13内的气流由盖板52汇流通过换热器50的第一通道51a、第二通道51b,并与被动冷却回路B中的第二轴向通道19内的外界空气进行换热,从而降低了主动冷却回路A中的流体温度。气流在径向通 道13内流经绕组26的端部和铁芯组件21时对两者均进行了冷却,如图7中的实线箭头所示。
参阅图8,示出了电机100的主动冷却回路A的气流组织示意图。封闭空间S内的空气在冷却设备14的驱动下分两条支路R1,R2分别进入电机100的轴向两端的腔室11a,11b内。
其中一条支路R1通过轴向过滤件17进入第一腔体29a后绕流第三套管3和第一套管1进入一端的腔室11a中;另一条支路R2通过径向过滤件16进入另一端的腔室11b中并绕流第四套管4和第二套管2,进入腔室11a,11b内的两条支路R1、R2沿主动冷却回路A依次流经绕组26、转子10和铁芯组件21后、绕流套管24后流经换热器50进入第二腔体29b,并被进入第二轴向通道19内的冷却空气冷却后经冷却设备14排出至封闭空间S,如图8中的实线箭头所示。
气流在主动冷却回路A内的循环流动过程中,冷却设备14使得电机100的内部空间呈负压状态,由冷却设备14排出电机100内部空间的气流进入封闭空间S,而电机100内部空间的负压状态又使得被冷却设备14排入封闭空间S内的气流再次穿过径向过滤件16和轴向过滤件17被引入至电机100的内部空间。气流在吸收了一部分定子损耗热量和一部分转子损耗热量后流至换热器50的第一通道51a内,借助换热器50将吸收的损耗热量传递给被动冷却回路B中在换热器50的第二通道51b内流动的外界空气,进而使得主动冷却回路A内的气流得到冷却,以便再次进入电机100内部腔室对定子20和转子10进行冷却。
由此,主动冷却回路A中气流由进入腔室11a、11b到流出径向通道13的流动过程中,分别对绕组26的端部、绕组26的槽内部分、铁芯组件21和转子10进行了冷却。主动冷却回路A带走了除被动冷却回路B所带走的部分定子损耗热量外的其余定子损耗热量,同时主动冷却回路A还带走了除被动冷却回路B所带走的部分转子损耗热量外的其余转子损耗热量。
请一并参阅图5、图9和图10,转子10通过转子支架18固定于转动轴18a上,转子10包括转子磁轭10a和安装于转子磁轭10a上的永磁体10b,转子支架18与转子磁轭10a之间沿周向Y间隔设置有多个支撑筋 18b,多个支撑筋18b间形成有环形间隙,以使外界来流空气经环形间隙从第一端板27a一侧流向第二端板27b一侧。支撑筋18b用于连接转子支架18和转子磁轭10a,以使转子支架18和转子磁轭10a能够同时随着转动轴18a转动。
被动冷却回路B沿轴向X具有迎风侧和背风侧,第一端板27a所在的一侧即为迎风侧,第二端板27b所在的一侧即为背风侧。
转子磁轭10a沿轴向X设置有与第一端板27a位于同侧的导流装置30,外界来流空气通过导流装置30进行导流和分流。导流装置30为环形薄壁结构体,其构造符合空气动力学的流线型。具体来说,导流装置30为内部中空的薄壁回转体,以减轻重量。导流装置30沿自身径向Y的截面包括相交的外母线30a和内母线30b,外母线30a的纬圆半径沿轴向X远离转子磁轭10a一侧的方向逐渐变小,内母线30b的纬圆半径沿轴向X远离转子磁轭10a一侧的方向逐渐变大。外母线30a和内母线30b中的至少一者可以为弧形曲线,也可以为直线。优选的,外母线30a靠近转子磁轭10a一侧的外径尺寸等于电机100的外径尺寸,便于外界空气来流平顺地流经电机100的外表面。外母线30a和内母线30b可以对称设置,也可以非对称设置,根据外界空气来流的实际情况而定。
进一步地,转子磁轭10a沿轴向X还设置有与第二端板27b位于同侧的加速装置40。加速装置40为内部中空的薄壁回转体,以减轻重量。加速装置40沿自身径向Y的截面包括相交的外母线40a和内母线40b,外母线40a和内母线40b的纬圆半径沿轴向X远离转子磁轭10a一侧的方向均逐渐变大。外母线40a和内母线40b中的至少一者可以为弧形曲线,也可以为直线。优选的,外母线40a靠近转子磁轭10a一侧的外径尺寸等于电机100的外径尺寸,便于外界空气来流平顺地流经电机100的外表面。
作为一种可选的实施方式,第一端板27a上进一步设置有位于第一套管1与第三套管3之间的分流板5,分流板5设置为内部中空的薄壁回转体,以减轻重量。优选的,该纬圆直径为固定值,便于气流经过分流板5时分流,并从分流板5的内、外表面经过,如图5所示。
作为一种可选的实施方式,第二端板27b上进一步设置有位于第二套 管2与第四套管4之间的导流板6,导流板6设置为内部中空的薄壁回转体,以减轻重量,其母线的纬圆半径沿轴向远离转子磁轭一侧的方向均逐渐变大,便于气流平顺地流经导流板6的内、外表面,如图5所示。
下面以电机100同时具有导流装置30、分流板5和加速装置40、导流板6为例,说明被动冷却回路B对电机100的冷却过程。
请一并参阅图11和图12,外界来流空气C经过导流装置30时被分流为第一气流C1和第二气流C2,第一气流C1经过分流板5时再次被分流为第四气流C4和第五气流C5。
其中,第四气流C4经由环形间隙进入第一轴向通道15,流经定子20后进入加速装置40与导流板6之间形成的第一环形空间L1。第五气流C5经由环形间隙进入第二轴向通道19,流经换热器50后进入封闭空间S与导流板6形成的第二环形空间L2。
第二气流C2与电机100的外表面的外界气流C’汇合后形成第三气流C3,并沿轴向X附着在转子磁轭10a的外表面后绕流加速装置40。
第五气流C5和第四气流C4在导流板6的内、外侧产生第一压差△P1-3,第四气流C4和第三气流C3在加速装置40的内、外侧产生第二压差△P13-2,以分别驱动第一气流C1和第二气流C2继续流动,如图11中的虚线箭头所示。
如图12所示,被动冷却回路B对电机100的冷却过程中,导流装置30和分流板5的工作原理如下所述:电机100的迎风侧上游来流空气可示意性的分为两部分:位于导流装置30的弦线K内侧的来流空气及位于弦线K外侧的来流空气。迎风侧上游来流空气的静压为大气压P0。当迎风侧上游来流空气C流动至导流装置30的弦线K内侧时,来流空气的流动方向发生偏移,形成气流。气流继续向下游流动至导流装置30附近时被分流为第一气流C1和第二气流C2,第一气流C1向弦线K的内侧流动,第二气流C2向弦线K的外侧流动。分流后的第一气流C1流经导流装置30后又由定子支架27上的分流板5再次分流,形成第四气流C4和第五气流C5,并分别进入第一轴向通道15和第二轴向通道19内。而由导流装置30分流后的第二气流C2则与弦线K外侧的来流空气C’汇合,形成第三气 流C3,并沿着转子磁轭10a外表面的轴向X流动。
导流装置30在对外界来流空气C分流过程中所起到的作用如下:导流装置30的弦线K内侧的弧形结构能够捕捉更多的外界来流空气C,使得外界来流空气C更多的向弦线K的内侧分流,进而使损耗热量更为集中的定子20得到更大的冷却风量;弦线K外侧的弧形结构能够使得外界来流空气C向弦线K外侧分流的第二气流C2缓解其因流通截面突变而引起的流动分离现象,使得第二气流C2和弦线K的外侧的外界气流C’汇合形成的第三气流C3更好地附着在转子磁轭10a的外表面流动,从而使转子10得到更好的冷却效果。
分流板5所起到作用则是对由导流装置30所分流的第一气流C1进行流量分配,分流板5的安装角度可以根据实际需求进行调节。当分流板5远离第一端板27a的一端向内侧倾斜时,由导流装置30分流而来的第一气流C1被更多的捕获形成第四气流C4,而当分流板5远离第一端板27a的一端向外侧倾斜,由导流装置30分流而来的第一气流C1被更多的捕获形成第五气流C5。
进一步地,被动冷却回路B对电机100的冷却过程中,加速装置40和导流板6的工作原理如下所述:从第一轴向通道15内流出的第四气流C4在安装于转子磁轭10a的背风侧的加速装置40内侧和安装于定子支架27上的导流板6所形成的环形空间L1内继续向下游流动。从第二轴向通道19内流出的第五气流C5在导流板6和封闭空间S所形成的环形空间L2内继续向下游流动。而流经转子磁轭10a外表面的第三气流C3在加速装置40外侧继续向下游流动。
第四气流C4在环形空间L1内的流动过程中,由于流通截面逐渐变化,其静压逐渐变化至P1。第五气流C5在环形空间L2内的流动过程中,由于流通截面逐渐变化,其静压逐渐变化至P3。第三气流C3在加速装置40外侧的流动过程中,流通截面逐渐减小,其静压逐渐降低至P2。由于加速装置40向背风侧下游呈渐扩结构,使得第三气流C3在流出加速装置40背风侧下游端部时的静压P2小于第四气流C4和第五气流C5在加速装置40和封闭空间S所形成空间L1、L2出口处的平均静压P13。因此在加速 装置40内、外侧流动的气流间形成了一个由加速装置40内侧指向外侧的第二压差△P13-2=P13-P2。该第二压差△P13-2增强了第四气流C4和第五气流C5整个流动过程中的驱动力,使得外界来流空气C中更多向导流装置30的弦线K内侧分流,从而进一步加强被动冷却回路B中用于冷却定子20和主动冷却回路A内气流的支路冷却能力。
导流板6在第四气流C4和第五气流C5流动过程中所起到的作用与分流板5相同,导流板6的形状以及向背风侧下游延展的长度可以根据具体需求进行设计,以使第四气流C4在环形空间L1出口处与第五气流C5在环形空间L2出口处具有一定的第一压差△P1-3=P1-P3。当该第一压差△P1-3由导流板6内侧指向外侧时,第一压差△P1-3增加了第五气流C5的驱动力,从而使得第一气流C1被更多的分流至第二轴向通道19中。当该压差由导流板6外侧指向内侧时,第一压差△P1-3增加了第四气流C4的驱动力,从而使得第一气流C1被更多的分流至第一轴向通道15中。
由于加速装置40的作用,第四气流C4和第五气流C5汇合后一部分继续向下游流动形成第六气流C6,另一部分向加速装置40外侧偏转,并与加速装置40外侧的第三气流C3汇合形成第七气流C7。第六气流C6和第七气流C7在继续向背风侧下游远处流动的过程中,气流会随着静压的自动调节而逐渐恢复平衡状态,最终背风侧下游远处的气流静压恢复至大气压P0。
被动冷却回路B进口处构造的导流装置30、分流板5和出口处构造的加速装置40、导流板6,进一步提高了主、被动冷却回路中被动冷却回路B的冷却能力。
可以理解的是,本申请实施例提供的电机100可以只具有导流装置30,也可以只具有加速装置40,也可以同时具有导流装置30和加速装置40。另外,本申请实施例提供的电机100可以只具有分流板5,也可以只具有导流板6,也可以同时具有分流板5和导流板6,并且导流装置30、加速装置40可以与分流板5、导流板6形成多种组合形式,不再赘述。
由此,被动冷却回路B的由第一气流C1分流出的第四气流C4在流经第一轴向通道15时对定子20进行了冷却,带走了一部分由于电机100运 转过程中产生的定子损耗热量。由第一气流C1分流出的第五气流C5在流经第二轴向通道19时对主动冷却回路A中吸收了定子20的其余损耗热量和转子10的一部分损耗热量的空气进行了冷却,带走了其余部分由于电机100运转过程中产生的定子损耗热量和一部分转子损耗热量。即被动冷却回路B中的第一气流C1带走了全部定子损耗热量和一部分转子损耗热量。
第二气流C2在流经转子磁轭10a外表面时对转子10进行了冷却,带走了另一部分由于电机100运转过程中产生的转子损耗热量,最终带走了发电机100运转过程中的所有损耗热量。
如前所述,在对电机100冷却的过程中,两条冷却回路内的气流通过第一套管1、套管24、第二套管2、第三套管3、换热器50及第四套管4相互隔离,而第一套管1、套管24、第二套管2、第三套管3、第四套管4作为两条冷却回路除热源部件外的共有组成部分,其对两条冷却回路中的气流是可导热的。
优选地,第一套管1和第三套管3具有可导热设置的内壁和外壁。由于第一套管1和第三套管3外侧的气流经换热器50由外界环境空气冷却过后,其温度仍然高于由外界环境直接引入至第一套管1和第三套管3内侧的气流温度,使得第一套管1和第三套管3内侧气流会吸收部分外侧气流的热量,虽然该热量传递过程会给第一套管1和第三套管3内侧气流在接下来对定子20的冷却过程带来不利影响,但第一套管1和第三套管3外侧气流由于将部分热量传递给了内侧气流,从而增强了外侧气流在后续对定子20和转子10冷却过程中的冷却效果。故两者在一定程度上相互抵消,而如此设置可以降低第一套管1和第三套管3的制造成本。
进一步优选地,套管24、第二套管2和第四套管4具有热隔离设置的内壁和外壁。
第二套管2和第四套管4内的气流分别吸收了部分定子损耗热量和主动冷却回路A内气流热量的且即将排出至外界环境中的热空气,而第二套管2和第四套管4外侧为经过换热器50冷却过的冷空气,若此时第二套管2和第四套管4对于其内外侧气流是可导热的,则第二套管2和第四套管4 的外侧气流将吸收一部分内侧气流的热量,并带入到后续对转子10和定子20的冷却过程中去。
对于径向通道13中的套管24来说,其外侧气流是吸收了部分定子损耗热量和定子损耗热量的热空气,由于定子20的径向通道13中的套管24内的气流是逐渐吸收了部分定子损耗热量后由冷转热的空气,若此时套管24对于其内外侧气流是可导热的,则上游套管24内的气流会吸收部分套管24外侧气流的热量,从而使其内侧气流在接下来对下游定子20部分的冷却带来不利影响。同时下游套管24内侧气流可能会吸收部分外侧气流的热量,也可能将自身部分热量传递给外侧气流。当下游套管24内侧气流吸收部分外侧气流热量时,产生的不利影响同上游套管24的内侧气流吸收的部分外侧气流热量的情况相同。而当下游套管24的内侧气流将自身部分热量传递给外侧气流时,会增加换热器50的换热负担,使得主动冷却回路A内的气流无法得到充分的冷却,进而再次进入电机100的内部腔室时,对定子20和转子10的冷却带来不利影响。
故将套管24、第二套管2和第四套管4设置为热隔离的,可以实现主、被动冷却回路的冷却能力最大化。
需要说明的是,虽然以上为了方便描述,以电机为内定子结构作为示例进行了描述,但应理解的是,根据本申请的示例性实施例,上述主动冷却回路A和被动冷却回路B的工作原理同样适用于外定子结构的电机。
参阅图13,本申请实施例还提供了一种风力发电机组,其包括:如前所述的任一种电机100、轮毂200和机舱300。
电机100沿轴向具有迎风侧110与背风侧120。轮毂200位于电机100的迎风侧110且与电机100同轴设置,轮毂200的最大外径尺寸小于电机100的第二轴向通道19的最小内径尺寸,便于外界来流空气进入第一轴向通道15和第二轴向通道19中。轮毂200通过安装于其外周侧的叶轮的转动带动电机100转动。
机舱300位于电机100的背风侧120,可选的,机舱300的外轮廓在径向上与电机100的第二轴向通道19相隔预定间距,便于第一轴向通道15和第二轴向通道19中吸收热量的热空气排出外界环境中。机舱300与 电机100之间可以形成与主动冷却回路A连通的封闭空间S,另外,封闭空间S也可以形成于电机100内。
本申请实施例提供的风力发电机组,在发电过程中,除了捕捉风的动能以转化为电能外,还可以充分挖掘风的热量输运潜能。通过对电机100本体结构的构造,构建两条结构上相互隔离的主、被动冷却回路,从而降低了冷却设备14的功率和自耗电,提升了整机的发电效率,减小了冷却设备14的体积和重量,节省了机舱300的空间,实现了冷却系统与电机的结构高度集成化,降低了冷却系统的成本。
此外,根据以上所述的示例性实施例的电机可被应用到各种需要设置电机的设备中,例如但不限于风力发电机组。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;不定冠词“一个”不排除多个;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (17)

  1. 一种电机(100),其特征在于,所述电机(100)包括相互隔离的主动冷却回路(A)和被动冷却回路(B),所述主动冷却回路(A)与封闭空间(S)连通,所述被动冷却回路(B)与外界环境连通;
    其中,所述主动冷却回路(A)包括相互连通的位于所述电机(100)的轴向两端的腔室(11a,11b)、所述电机的转子(10)与定子(20)之间的气隙(12),以及沿所述定子(20)的轴向(X)间隔分布的径向通道(13),所述主动冷却回路(A)中设置有与所述封闭空间(S)连通的冷却设备(14),所述定子(20)通过定子支架(27)固定于固定轴(27c)上;
    所述被动冷却回路(B)包括在所述轴向(X)上贯穿所述定子(20)的第一轴向通道(15)、贯穿所述定子支架(27)的第二轴向通道(19)和所述电机(100)的外表面;
    所述电机(100)内部进一步设置有换热器(50),所述换热器(50)分别与所述径向通道(13)、所述第二轴向通道(19)相互连通。
  2. 根据权利要求1所述的电机(100),其特征在于,所述定子(20)包括沿轴向(X)间隔布置的多个铁芯组件(21),所述径向通道(13)形成于每相邻的两个所述铁芯组件(21)之间;
    所述第一轴向通道(15)包括沿所述轴向(X)贯穿所述多个铁芯组件(21)的定子轴向通道(15a),每个所述铁芯组件(21)包括轭部(22)和与所述轭部(22)一体成型的齿部(23),所述齿部(23)在所述铁芯组件(21)的周向(Z)上间隔设置有多个齿槽(23a),所述轭部(22)上设置有与所述齿槽(23a)对应的通孔(22a),相邻的所述铁芯组件(21)之间设置有与所述通孔(22a)相互连通的套管(24),所述通孔(22a)与所述套管(24)形成所述定子轴向通道(15a)。
  3. 根据权利要求2所述的电机(100),其特征在于,所述换热器(50)包括间隔设置的多个板件(51),所述多个板件(51)之间形成多层相互隔离的第一通道(51a)和第二通道(51b),且所述第一通道(51a) 和所述第二通道(51b)交错排布,所述换热器(50)通过所述第一通道(51a)与所述径向通道(13)相互连通,所述换热器(50)通过所述第二通道(51b)与所述第二轴向通道(19)相互连通。
  4. 根据权利要求2所述的电机(100),其特征在于,所述定子支架(27)包括沿所述轴向(X)相对设置的第一端板(27a)和第二端板(27b),以及位于所述第一端板(27a)和所述第二端板(27b)之间且同轴设置的第一隔板(28a)和第二隔板(28b);
    所述第一端板(27a)在所述径向(Y)上间隔设置有贯穿所述第一端板(27a)的第一套管(1)和第三套管(3),所述第二端板(27b)在所述径向(Y)上间隔设置有贯穿所述第二端板(27b)的第二套管(2)和第四套管(4),且所述第三套管(3)位于所述第一端板(27a)与所述第一隔板(28a)之间,所述第四套管(4)位于所述第二隔板(28b)与所述第二端板(27b)之间。
  5. 根据权利要求4所述的电机(100),其特征在于,所述第一轴向通道(15)进一步包括与所述定子轴向通道(15a)相互连通的所述第一套管(1)和所述第二套管(2),所述第二轴向通道(19)进一步包括与所述换热器(50)相互连通的所述第三套管(3)和所述第四套管(4);
    所述被动冷却回路(B)通过所述第一套管(1)、所述套管(24)、所述第二套管(2)、所述第三套管(3)、所述换热器(50)及所述第四套管(4)与所述主动冷却回路(A)相互隔离。
  6. 根据权利要求4所述的电机(100),其特征在于,所述第一隔板(28a)和所述第二隔板(28b)均与所述轭部(22)密封连接并固定于所述固定轴(27c),所述第一端板(27a)与所述第一隔板(28a)沿所述电机(100)的径向(Y)内侧密封连接,所述第二端板(27b)与所述第二隔板(28b)之间设置有径向过滤件(16);
    所述第一隔板(28a)上开设有进风口(1a),所述第二隔板(28b)上开设有进风口(1b)和出风口(1c),所述第一隔板(28a)与所述第二隔板(28b)之间通过第三隔板(29)分为第一腔体(29a)和第二腔体(29b),所述进风口(1a,1b)与所述第一腔体(29a)连通,所述出风 口(1c)与所述第二腔体(29b)连通,所述换热器(50)设置于所述第二腔体(29b)内,所述冷却设备(14)设置于所述出风口(1c)外侧,所述第二隔板(28b)的所述进风口(1c)上设置有轴向过滤件(17)。
  7. 根据权利要求6所述的电机(100),其特征在于,所述封闭空间(S)内的空气在所述冷却设备(14)的驱动下分两条支路(R1,R2)分别进入所述电机(100)的轴向两端的所述腔室(11a,11b)内;
    其中,一条所述支路(R1)通过所述轴向过滤件(17)进入所述第一腔体(29a)后绕流所述第三套管(3)和所述第一套管(1)进入一端的所述腔室(11a)中;
    另一条所述支路(R2)通过所述径向过滤件(16)进入另一端的所述腔室(11b)中并绕流所述第四套管(4)和所述第二套管(2),进入所述腔室(11a,11b)内的所述两条支路(R1,R2)沿所述主动冷却回路(A)依次流经所述绕组(26)、所述转子(10)和所述铁芯组件(21)后、绕流所述套管(24)后流经所述换热器(50)进入所述第二腔体(29b),并被进入所述第二轴向通道(19)内的冷却空气冷却后经所述冷却设备(14)排出至所述封闭空间(S)。
  8. 根据权利要求6所述的电机(100),其特征在于,所述换热器(50)沿所述第二腔体(29b)的周向间隔设置,相邻的所述换热器(50)之间设置有盖板(52),所述盖板(52)将所述第二腔体(29b)沿所述径向(Y)分为两个子空间,所述两个子空间之间通过所述换热器(50)相互连通。
  9. 根据权利要求4所述的电机(100),其特征在于,所述第一端板(27a)上进一步设置有位于所述第一套管(1)与所述第三套管(3)之间的分流板(5),所述分流板(5)设置为内部中空的薄壁回转体;和/或,
    所述第二端板(27b)上进一步设置有位于所述第二套管(2)与所述第四套管(4)之间的导流板(6),所述导流板(6)设置为内部中空的薄壁回转体,其母线的纬圆半径沿所述轴向(X)远离所述转子磁轭(10a)一侧的方向逐渐变大。
  10. 根据权利要求9所述的电机(100),其特征在于,所述转子 (10)通过转子支架(18)固定于转动轴(18a)上,所述转子(10)包括转子磁轭(10a)和安装于所述转子磁轭(10a)上的永磁体(10b),所述转子支架(18)与所述转子磁轭(10a)之间沿所述周向(Y)间隔设置有多个支撑筋(18b),所述多个支撑筋(18b)间形成环形间隙,以使所述外界来流空气经所述环形间隙从所述第一端板(27a)一侧流向所述第二端板(27b)一侧。
  11. 根据权利要求10所述的电机(100),其特征在于,所述转子磁轭(10a)沿所述轴向(X)设置有与所述第一端板(27a)位于同侧的导流装置(30),所述导流装置(30)为内部中空的薄壁回转体,其沿自身径向(Y)的截面包括相交的外母线(30a)和内母线(30b),所述外母线(30a)的纬圆半径沿所述轴向(X)远离所述转子磁轭(10a)一侧的方向逐渐变小,所述内母线(30b)的纬圆半径沿所述轴向(X)远离所述转子磁轭(10a)一侧的方向逐渐变大。
  12. 根据权利要求11所述的电机(100),其特征在于,所述转子磁轭(10a)沿所述轴向(X)进一步设置有与所述第二端板(27b)位于同侧的加速装置(40),所述加速装置(40)为内部中空的薄壁回转体,其沿自身径向(Y)的截面包括相交的外母线(40a)和内母线(40b),所述外母线(40a)和所述内母线(40b)的纬圆半径沿所述轴向(X)远离所述转子磁轭(10a)一侧的方向均逐渐变大。
  13. 根据权利要求12所述的电机(100),其特征在于,外界来流空气(C)经过所述导流装置(30)时被分流为第一气流(C1)和第二气流(C2),所述第一气流(C1)经过所述分流板(5)时再次被分流为第四气流(C4)和第五气流(C5);
    其中,所述第四气流(C4)经由所述环形间隙进入所述第一轴向通道(15),流经所述定子(20)后进入所述加速装置(40)与所述导流板(6)之间形成的第一环形空间(L1);
    所述第五气流(C5)经由所述环形间隙进入所述第二轴向通道(19),流经所述换热器(50)后进入所述封闭空间(S)与所述导流板(6)形成的第二环形空间(L2);
    所述第二气流(C2)与所述电机(100)的所述外表面的外界气流(C’)汇合后形成第三气流(C3),并沿所述轴向(X)附着在所述转子磁轭(10a)的外表面后绕流所述加速装置(40);
    所述第五气流(C5)和所述第四气流(C4)在所述导流板(6)的内、外侧产生第一压差(△P1-3),所述第四气流(C4)和所述第三气流(C3)在所述加速装置(40)的内、外侧产生第二压差(△P13-2),以分别驱动所述第一气流(C1)和所述第二气流(C2)继续流动。
  14. 根据权利要求2所述的电机(100),其特征在于,所述通孔(22a)设置于所述轭部(22)上;
    或者,每个所述铁芯组件(21)包括沿所述径向(Y)且靠近所述轭部(22)设置的附接部,所述通孔(22a)设置于所述附接部;
    或者,所述通孔(22a)包括沿所述径向(Y)分布的两部分,其中一部分位于所述轭部(22),另一部分位于所述附接部。
  15. 根据权利要求2或14任一项所述的电机(100),其特征在于,所述通孔(22a)的数量为至少一个,所述至少一个通孔(22a)在所述铁芯组件(21)的周向(Z)上间隔设置,至少一个所述通孔(22a)为方形孔、圆孔和多边形孔中任一者;或者,至少一个所述通孔(22a)内设置有筋条(22b)。
  16. 根据权利要求4所述的电机(100),其特征在于,所述第一套管(1)具有可导热设置的内壁和外壁,所述第三套管(3)具有可导热设置的内壁和外壁,所述第二套管(2)具有热隔离设置的内壁和外壁,所述第四套管(4)具有热隔离设置的内壁和外壁,所述套管(24)具有热隔离设置的内壁和外壁。
  17. 一种风力发电机组,其特征在于,所述风力发电机组包括:
    如权利要求1-16任一项所述的电机(100),所述电机(100)沿轴向具有迎风侧(110)与背风侧(120);
    轮毂(200),位于所述电机(100)的所述迎风侧(110)且与所述电机(100)同轴设置,所述轮毂(200)通过安装于其外周侧的叶轮的转动带动所述电机(100)转动;以及
    机舱(300),位于所述电机(100)的所述背风侧(120)。
PCT/CN2019/070440 2018-09-06 2019-01-04 电机及风力发电机组 WO2020048072A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2019226142A AU2019226142B2 (en) 2018-09-06 2019-01-04 Generator and wind turbine
US16/609,717 US11289957B2 (en) 2018-09-06 2019-01-04 Generator and wind turbine
ES19759485T ES2968897T3 (es) 2018-09-06 2019-01-04 Generador y turbina eólica
EP19759485.6A EP3641109B1 (en) 2018-09-06 2019-01-04 Generator and wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811039192.1 2018-09-06
CN201811039192.1A CN109474113B (zh) 2018-09-06 2018-09-06 电机及风力发电机组

Publications (1)

Publication Number Publication Date
WO2020048072A1 true WO2020048072A1 (zh) 2020-03-12

Family

ID=65663036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070440 WO2020048072A1 (zh) 2018-09-06 2019-01-04 电机及风力发电机组

Country Status (6)

Country Link
US (1) US11289957B2 (zh)
EP (1) EP3641109B1 (zh)
CN (1) CN109474113B (zh)
AU (1) AU2019226142B2 (zh)
ES (1) ES2968897T3 (zh)
WO (1) WO2020048072A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034633B (zh) * 2019-04-15 2021-04-02 中车永济电机有限公司 发电机转子永磁体磁极冷却风路结构
CN111864991B (zh) * 2019-04-30 2024-02-23 金风科技股份有限公司 冷却系统、电机及风力发电机组
CN111864992A (zh) * 2019-04-30 2020-10-30 新疆金风科技股份有限公司 冷却装置、电机及风力发电机组
CN111864993B (zh) * 2019-04-30 2022-10-28 新疆金风科技股份有限公司 冷却系统、电机及风力发电机组
EP4007131A4 (en) * 2019-08-30 2022-10-12 Dongfang Electric Machinery Co., Ltd. METHOD AND DEVICE FOR REDUCING THE PERIPHERAL TEMPERATURE DIFFERENCE BETWEEN THE COIL AND THE IRON CORE OF A MOTOR
CN110460180B (zh) * 2019-08-30 2020-11-03 东方电气集团东方电机有限公司 一种用于改善定子轴向温度分布均匀性的方法
CN110504771B (zh) * 2019-08-30 2021-04-02 东方电气集团东方电机有限公司 一种用于改善定子轴向温度分布均匀性的装置
WO2021037193A1 (zh) * 2019-08-30 2021-03-04 东方电气集团东方电机有限公司 一种用于改善定子轴向温度分布均匀性的方法及装置
CN110429746B (zh) * 2019-08-30 2020-11-20 东方电气集团东方电机有限公司 一种具有降低大直径电机线圈和铁心周向温差的装置
CN113726042B (zh) * 2020-05-25 2023-09-08 乌鲁木齐金风天翼风电有限公司 冷却装置、发电机以及风力发电机组
CN114665662A (zh) * 2020-12-23 2022-06-24 新疆金风科技股份有限公司 发电机以及风力发电机组
CN113556005B (zh) * 2021-07-07 2022-12-30 杭州电子科技大学 一种改善定子散热的电机结构
CN114552817A (zh) * 2022-02-25 2022-05-27 哈电风能有限公司 一种发电机冷却结构及发电装置
DK181556B1 (en) 2022-10-27 2024-05-14 Flsmidth Maag Gear Sp Z O O A cooling arrangement for cooling of an electrical synchronous machine comprising a two-layer single coil winding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237727A1 (en) * 2009-03-23 2010-09-23 Abb Oy Arrangement and method for cooling an electrical machine
JP2012196101A (ja) * 2011-03-18 2012-10-11 Meidensha Corp アウターロータ形回転電機
CN107612172A (zh) * 2017-08-21 2018-01-19 北京金风科创风电设备有限公司 电机绕组、电机及风力发电机组

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154191B2 (en) 2004-06-30 2006-12-26 General Electric Company Electrical machine with double-sided rotor
US7154193B2 (en) * 2004-09-27 2006-12-26 General Electric Company Electrical machine with double-sided stator
DE102008050848A1 (de) * 2008-10-08 2010-04-15 Wobben, Aloys Ringgenerator
CN101793236B (zh) * 2010-04-16 2012-09-05 湘电风能有限公司 一种直驱风力发电机导风装置
CN102377286A (zh) * 2011-09-29 2012-03-14 江苏金风风电设备制造有限公司 电机及其冷却系统
CN103363834B (zh) * 2012-03-31 2018-05-01 浙江三花汽车零部件有限公司 板式换热器及其流体分配器、板式换热器的控制方法
CN107070020A (zh) * 2016-08-29 2017-08-18 哈尔滨理工大学 多槽钢多分布的定子通风结构
CN106655564B (zh) * 2016-12-23 2019-05-10 北京金风科创风电设备有限公司 定子铁心单元、定子、电机及风力发电机组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237727A1 (en) * 2009-03-23 2010-09-23 Abb Oy Arrangement and method for cooling an electrical machine
JP2012196101A (ja) * 2011-03-18 2012-10-11 Meidensha Corp アウターロータ形回転電機
CN107612172A (zh) * 2017-08-21 2018-01-19 北京金风科创风电设备有限公司 电机绕组、电机及风力发电机组

Also Published As

Publication number Publication date
CN109474113A (zh) 2019-03-15
US11289957B2 (en) 2022-03-29
US20210336495A1 (en) 2021-10-28
CN109474113B (zh) 2020-06-23
EP3641109A1 (en) 2020-04-22
ES2968897T3 (es) 2024-05-14
EP3641109B1 (en) 2023-10-18
EP3641109C0 (en) 2023-10-18
AU2019226142B2 (en) 2020-07-23
EP3641109A4 (en) 2020-05-13
AU2019226142A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2020048072A1 (zh) 电机及风力发电机组
WO2020048073A1 (zh) 电机及风力发电机组
US9287747B2 (en) Wind power generator with internal cooling circuit
EP2182618B1 (en) Arrangement for cooling of an electrical machine
CN106451866B (zh) 电机转子支架以及电机
JP5080603B2 (ja) 電気機械を冷却するための装置及び方法
WO2020220836A1 (zh) 冷却装置、电机及风力发电机组
JP2010226947A6 (ja) 電気機械を冷却するための装置及び方法
US11073136B2 (en) Cooling arrangement
US11552511B2 (en) Stator assembly, electrical motor, wind power generator set and method for cooling stator assembly
WO2020220834A1 (zh) 冷却系统、电机及风力发电机组
WO2020052467A1 (zh) 定子组件、具有该定子组件的电机及风力发电机组
WO2020220835A1 (zh) 冷却系统、电机及风力发电机组
CN217935326U (zh) 一种高散热性能的贯流泵用潜水电机
US20220399767A1 (en) Generator, wind turbine and method for cooling a direct drive generator of a wind turbine
CN115523108A (zh) 散热装置及风力发电机组
CN113931937A (zh) 轴承冷却系统、轴承冷却方法和风力发电机组

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019759485

Country of ref document: EP

Effective date: 20190906

ENP Entry into the national phase

Ref document number: 2019226142

Country of ref document: AU

Date of ref document: 20190104

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE