CN109474113A - 电机及风力发电机组 - Google Patents

电机及风力发电机组 Download PDF

Info

Publication number
CN109474113A
CN109474113A CN201811039192.1A CN201811039192A CN109474113A CN 109474113 A CN109474113 A CN 109474113A CN 201811039192 A CN201811039192 A CN 201811039192A CN 109474113 A CN109474113 A CN 109474113A
Authority
CN
China
Prior art keywords
motor
air
flow
cooling circuit
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811039192.1A
Other languages
English (en)
Other versions
CN109474113B (zh
Inventor
李锦辉
刘军卫
许文华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinfeng Technology Co ltd
Original Assignee
Xinjiang Goldwind Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Goldwind Science and Technology Co Ltd filed Critical Xinjiang Goldwind Science and Technology Co Ltd
Priority to CN201811039192.1A priority Critical patent/CN109474113B/zh
Priority to US16/609,717 priority patent/US11289957B2/en
Priority to ES19759485T priority patent/ES2968897T3/es
Priority to EP19759485.6A priority patent/EP3641109B1/en
Priority to AU2019226142A priority patent/AU2019226142B2/en
Priority to PCT/CN2019/070440 priority patent/WO2020048072A1/zh
Publication of CN109474113A publication Critical patent/CN109474113A/zh
Application granted granted Critical
Publication of CN109474113B publication Critical patent/CN109474113B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
    • H02K9/16Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the cooling medium circulates through ducts or tubes within the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本发明涉及一种电机及风力发电机组。电机包括相互隔离的主动冷却回路和被动冷却回路,主动冷却回路与封闭空间连通,被动冷却回路与外界环境连通;其中,主动冷却回路包括相互连通的位于电机的轴向两端的腔室、电机的转子与定子之间的气隙,以及沿电机的轴向间隔分布的径向通道,主动冷却回路中设置有与封闭空间连通的冷却设备,定子通过定子支架固定于固定轴上;被动冷却回路包括在轴向上贯穿定子的第一轴向通道、贯穿定子支架的的第二轴向通道和电机的外表面;电机内部进一步设置有换热器,换热器分别与径向通道、第二轴向通道相互连通。本发明集合了被动冷却回路和主动冷却回路的优点,降低了冷却设备的功率和自耗电,提高了整机的发电效率。

Description

电机及风力发电机组
技术领域
本发明涉及冷却技术领域,特别是涉及一种电机及风力发电机组。
背景技术
随着风电市场和国家政策的不断调整,风力发电机组逐渐向着高功率密度的方向发展。风力发电机组所采用的众多冷却方式中,空冷方式由于其具有高可靠、易维护和无污染的优势,在风力发电机冷却领域得到了广泛的应用。根据冷却回路中冷却介质是否依靠动力驱动设备来维持在冷却回路中的循环流动,又可分为被动冷却(无动力驱动设备)和主动冷却(有动力驱动设备)。
空冷方式中的被动冷却可以简化风力发电机组的结构,但其在有限空间内的冷却能力不足。主动冷却由于其具有优越的冷却能力和较大的设计自由度逐渐占据主流地位。随着风力发电机组单机容量的不断提升,主动冷却设备的功率、体积、重量和成本均上涨,同时在布局、安装和维护方面更加困难,可靠性更低。因此,高功率密度的风力发电机组除了具有成本优势外,往往意味着更大的损耗以及更多的主动冷却设备自耗电,从而很难兼顾整机的发电效率。
发明内容
本发明的一个目的是提供一种电机及风力发电机组,其可以提高电机的冷却效果,提升整机的发电效率。
一方面,本发明实施例提出了一种电机,该电机包括相互隔离的主动冷却回路和被动冷却回路,主动冷却回路与封闭空间连通,被动冷却回路与外界环境连通;其中,主动冷却回路包括相互连通的位于电机的轴向两端的腔室、电机的转子与定子之间的气隙,以及沿定子的轴向间隔分布的径向通道,主动冷却回路中设置有与封闭空间连通的冷却设备,定子通过定子支架固定于固定轴上;被动冷却回路包括在轴向上贯穿定子的第一轴向通道、贯穿定子支架的第二轴向通道和电机的外表面;电机内部进一步设置有换热器,换热器分别与径向通道、第二轴向通道相互连通。
根据本发明实施例的一个方面,定子包括沿轴向间隔布置的多个铁芯组件,径向通道形成于每相邻的两个铁芯组件之间;第一轴向通道包括沿轴向贯穿多个铁芯组件的定子轴向通道,每个铁芯组件包括轭部和与轭部一体成型的齿部,齿部在铁芯组件的周向上间隔设置有多个齿槽,轭部上设置有与齿槽对应的通孔,相邻的铁芯组件之间设置有与通孔相互连通的套管,通孔与套管形成定子轴向通道。
根据本发明实施例的一个方面,换热器包括间隔设置的多个板件,多个板件之间形成多层相互隔离的第一通道和第二通道,且第一通道和第二通道交错排布,换热器通过第一通道与径向通道相互连通,换热器通过第二通道与第二轴向通道相互连通。
根据本发明实施例的一个方面,定子支架包括沿轴向相对设置的第一端板和第二端板以及位于第一端板和第二端板之间且同轴设置的第一隔板和第二隔板;第一端板在径向上间隔设置有贯穿第一端板的第一套管和第三套管,第二端板在径向上间隔设置有贯穿第二端板的第二套管和第四套管,且第三套管位于第一端板与第一隔板之间,第四套管位于第二隔板与第二端板之间。
根据本发明实施例的一个方面,第一轴向通道进一步包括与定子轴向通道相互连通的第一套管和第二套管,第二轴向通道进一步包括与换热器相互连通的第三套管和第四套管,被动冷却回路通过第一套管、套管、第二套管、第三套管、换热器及第四套管与主动冷却回路相互隔离。
根据本发明实施例的一个方面,第一隔板和第二隔板均与轭部密封连接并固定于固定轴,第一端板与第一隔板沿电机的径向内侧密封连接,第二端板与第二隔板之间设置有径向过滤件;第一隔板上开设有进风口,第二隔板上开设有进风口和出风口,第一隔板与第二隔板之间通过第三隔板分为第一腔体和第二腔体,进风口与第一腔体连通,出风口与第二腔体连通,换热器设置于第二腔体内,冷却设备设置于出风口外侧,第二隔板的进风口上设置有轴向过滤件。
根据本发明实施例的一个方面,封闭空间内的空气在冷却设备的驱动下分两条支路分别进入电机的轴向两端的腔室内,其中一条支路通过轴向过滤件进入第一腔体后绕流第三套管和第一套管进入一端的腔室中,另一条支路通过径向过滤件进入另一端的腔室中并绕流第四套管和第二套管,进入腔室内的两条支路沿主动冷却回路依次流经绕组、转子和铁芯组件后、绕流套管后流经换热器进入第二腔体,并被进入第二轴向通道内的冷却空气冷却后经冷却设备排出至封闭空间。
根据本发明实施例的一个方面,换热器沿第二腔体的周向间隔设置,相邻的换热器之间设置有盖板,盖板将第二腔体沿径向分为两个子空间,两个子空间之间通过换热器相互连通。
根据本发明实施例的一个方面,第一端板上进一步设置有位于第一套管与第三套管之间的分流板,分流板设置为内部中空的薄壁回转体;和/或,第二端板上进一步设置有位于第二套管与第四套管之间的导流板,导流板设置为内部中空的薄壁回转体,其母线的纬圆半径沿轴向远离转子磁轭一侧的方向逐渐变大。
根据本发明实施例的一个方面,转子通过转子支架固定于转动轴上,转子包括转子磁轭和安装于转子磁轭上的永磁体,转子支架与转子磁轭之间沿周向间隔设置有多个支撑筋,多个支撑筋间形成环形间隙,以使外界来流空气经环形间隙从第一端板一侧流向第二端板一侧。
根据本发明实施例的一个方面,转子磁轭沿轴向设置有与第一端板位于同侧的导流装置,导流装置为内部中空的薄壁回转体,其沿自身径向的截面包括相交的外母线和内母线,外母线的纬圆半径沿轴向远离转子磁轭一侧的方向逐渐变小,内母线的纬圆半径沿轴向远离转子磁轭一侧的方向逐渐变大。
根据本发明实施例的一个方面,转子磁轭沿轴向进一步设置有与第二端板位于同侧的加速装置,加速装置为内部中空的薄壁回转体,其沿自身径向的截面包括相交的外母线和内母线,外母线和内母线的纬圆半径沿轴向远离转子磁轭一侧的方向均逐渐变大。
根据本发明实施例的一个方面,外界来流空气经过导流装置时被分流为第一气流和第二气流,第一气流经过分流板时再次被分流为第四气流和第五气流;其中,第四气流经由环形间隙进入第一轴向通道,流经定子后进入加速装置与导流板之间形成的第一环形空间;第五气流经由环形间隙进入第二轴向通道,流经换热器后进入封闭空间与导流板形成的第二环形空间;第二气流与电机的外表面的外界气流汇合后形成第三气流,并沿轴向附着在转子磁轭的外表面后绕流加速装置;第五气流和第四气流在导流板的内、外侧产生第一压差,第四气流和第三气流在加速装置的内、外侧产生第二压差,以分别驱动第一气流和第二气流继续流动。
根据本发明实施例的一个方面,通孔设置于轭部;或者,每个铁芯组件包括径向且靠近轭部设置的附接部,通孔设置于附接部;或者,通孔包括沿径向分布的两部分,其中一部分位于轭部,另一部分位于附接部。
根据本发明实施例的一个方面,通孔的数量为至少一个,至少一个通孔在铁芯组件的周向上间隔设置,至少一个通孔为方形孔、圆孔和多边形孔中任一者;或者,至少一个通孔内设置有筋条。
根据本发明实施例的一个方面,第一套管具有可导热设置的内壁和外壁,第三套管具有可导热设置的内壁和外壁,第二套管具有热隔离设置的内壁和外壁,第四套管具有热隔离设置的内壁和外壁,套管具有热隔离设置的内壁和外壁。
另一方面,本发明实施例还提供了一种风力发电机组,该风力发电机组包括:如前所述的任一种电机,电机沿轴向具有迎风侧与背风侧;轮毂,位于电机的迎风侧且与电机同轴设置,轮毂通过安装于其外周侧的叶轮的转动带动电机转动;以及机舱,位于电机的背风侧。
本发明实施例提供的电机及风力发电机组,通过设置结构上相互隔离的主动冷却回路和被动冷却回路,相对于仅具有被动冷却回路的电机来说,由于主动冷却回路的存在,弥补了在有限布局空间内冷却能力不足的问题。相对于仅具有主动冷却回路的电机来说,电机的一部分损耗热量由被动冷却回路带走,缓解了主动冷却回路的负担,降低了主动冷却回路中冷却设备的功率和自耗电,进而减小了冷却设备的体积和重量,提高了整机的发电效率。
附图说明
下面将参考附图来描述本发明示例性实施例的特征、优点和技术效果。
图1是本发明实施例提供的一种电机的局部剖视图;
图2是图1所示的电机的定子的局部结构示意图;
图3是图2所示的定子中铁芯组件的局部结构示意图;
图4是图1所示的电机中的换热器的结构示意图;
图5是图1所示的电机中的定子支架的局部剖视图;
图6是图1所示的主动冷却回路的腔室的气流组织示意图;
图7是图1所示的主动冷却回路的径向通道的气流组织示意图;
图8是图1所示的电机的主动冷却回路的气流组织示意图;
图9是图1所示的电机的转子的结构示意图;
图10是图1所示的电机的转子的局部剖视图;
图11是图1所示的电机的被动冷却回路的气流组织示意图;
图12是图8所示的转子的导流装置和加速装置的工作原理示意图;
图13是本发明实施例提供的一种风力发电机组的局部剖视图。
其中:
封闭空间-S;主动冷却回路-A;被动冷却回路-B;轴向-X;径向-Y;周向-Z;支路-R1,R2;第一气流-C1;第二气流-C2;第三气流-C3;第四气流-C4;第五气流-C5;第六气流-C6;第一环形空间-L1;第二环形空间-L2;外界来流空气-C;电机外表面的外界气流-C’;弦线-K;压强-P1,P2,P3;第一压差-△P1-3;第二压差-△P13-2;
转子-10;转子磁轭-10a;永磁体-10b;腔室-11a,11b;气隙-12;径向通道-13;冷却设备-14;第一轴向通道15;定子轴向通道-15a;径向过滤件-16;轴向过滤件-17;转子支架-18;转动轴-18a;支撑筋-18b;第二轴向通道19;
定子-20;铁芯组件-21;轭部-22;通孔-22a;筋条-22b;安装槽-22c;齿部-23;齿槽-23a;套管-24;支撑件-25;绕组-26;定子支架-27;第一端板-27a;第二端板-27b;固定轴-27c;第一套管-1;第二套管-2;第三套管-3;第四套管-4;分流板5;导流板6;第一隔板-28a;第二隔板-28b;进风口-1a;进风口-1b;出风口-1c;第三隔板-29;第一腔体-29a;第二腔体-29b;
导流装置-30;导流装置30的外母线-30a;导流装置30的内母线-30b;加速装置-40;加速装置40的外母线-40a;加速装置40的内母线-40b;换热器-50;板件-51;盖板-52;第一通道-51a;第二通道-51b;电机-100;迎风侧-110;背风侧-120;轮毂-200;机舱-300。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将详细描述本发明的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本发明的全面理解。但是,对于本领域技术人员来说很明显的是,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明的更好的理解。在附图和下面的描述中,至少区域的公知结构和技术没有被示出,以便避免对本发明造成不必要的模糊;并且,为了清晰,可能夸大了区域结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
下述描述中出现的方位词均为图中示出的方向,并不是对本发明的电机及风力发电机组的具体结构进行限定。在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸式连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本发明中的具体含义。
为了更好地理解本发明,下面结合图1至图13对本发明实施例的电机及风力发电机组进行详细描述。
参阅图1,本发明实施例提供了一种电机100,电机100包括相互隔离的主动冷却回路A和被动冷却回路B,主动冷却回路A与封闭空间S连通,被动冷却回路B与外界环境连通。
其中,主动冷却回路A包括相互连通的位于电机100的轴向两端的腔室11a,11b、电机的转子10与定子20之间的气隙12,以及沿定子20的轴向X间隔分布的径向通道13,主动冷却回路A中设置有与封闭空间S连通的冷却设备14,如图1中的实线箭头所示。定子20通过定子支架27固定于固定轴27c上。
被动冷却回路B包括在轴向X上贯穿定子20的第一轴向通道15、贯穿定子支架27的的第二轴向通道19和电机的外表面,如图1中的虚线箭头所示。
电机100内部进一步设置有换热器50,换热器50分别与径向通道13、第二轴向通道19相互连通。
本发明实施例中的电机100可以是内定子结构,即转子10沿定子20的外周设置;电机100也可以是外定子结构,即定子20沿转子10的外周设置。定子20通过定子支架27固定于固定轴27c上,转子10通过转子支架18固定于转动轴18a,转动轴18a和固定轴27c通过轴承支撑,并实现相对转动。定子支架27与转子10间形成动密封连接,进而形成电机100的轴向两端的腔室11a、11b。电机100的驱动方式可以为直驱,也可以为半直驱、双馈机组等,不再赘述。
本发明实施例通过对电机100本体结构的构造,构建了两条结构上相互隔离的主动冷却回路A和被动冷却回路B。其中,主动冷却回路A与外界环境隔离,可以防止外界环境中的杂质被主动引入到电机100的内部。冷却介质为封闭空间S内循环流动的空气,冷却介质通过回路中的冷却设备14实现循环流动,主动冷却回路A中吸收的损耗热量从径向通道13流出后,通过换热器50传递到第二轴向通道19内,最终与外界环境进行换热。这条冷却回路对于电机100的冷却来说属于主动的。被动冷却回路B与外界环境连通,通过对电机100的转子10的巧妙构造以及外界环境中空气的自然流动,使得外界环境中的空气被引入到该冷却回路中,对于电机冷却来说属于被动的。结构上相互隔离的主动冷却回路A和被动冷却回路B中的冷却介质同时对电机100进行冷却,并且通过换热器50实现了两条冷却回路间的热传递。
本发明实施例提供的电机100,通过设置结构上相互隔离的主动冷却回路A和被动冷却回路B,相对于仅具有被动冷却回路的电机来说,由于主动冷却回路的存在,弥补了在有限布局空间内冷却能力不足的问题;相对于仅具有主动冷却回路的电机来说,电机的一部分损耗热量由被动冷却回路带走,缓解了主动冷却回路的负担,降低了主动冷却回路A中冷却设备14的功率和自耗电,进而减小了冷却设备14的体积和重量,提高了整机的发电效率。另外,由于主动冷却回路A与外界环境隔离,可以防止外界环境中的杂质被主动引入到电机100的内部,提高了电机100的可靠性。
下面结合附图进一步详细描述电机100的具体结构。
请一并参阅图2和图3,电机100的定子20包括沿轴向X间隔布置的多个铁芯组件21,每个铁芯组件21由多个铁芯叠片沿轴向X叠压而成,径向通道13形成于每相邻的两个铁芯组件21之间。
第一轴向通道15包括沿轴向X贯穿多个铁芯组件21的定子轴向通道15a。每个铁芯组件21包括轭部22和与轭部22一体成型的齿部23,齿部23在铁芯组件21的周向Z上间隔设置有多个齿槽23a,轭部22上设置有与齿槽23a对应的通孔22a,相邻的铁芯组件21之间设置有与通孔22a相互连通的套管24,通孔22a与套管24形成定子轴向通道15a。
进一步地,多个铁芯组件21的多个齿槽23a一一对应且沿轴向X延伸,每个齿槽23a内设置有垫条25,垫条25与齿槽23a围成的空间内设置有绕组26。轭部22还开设有至少一个安装槽22c,用于将定子20固定于定子支架27上。齿槽23a与通孔22a对应设置,有利于降低径向通道13中空气流动的阻力,使绕组26与通孔22a之间的传热路径相对较短,提高绕组26的传热效率。
通孔22a的数量为至少一个,至少一个通孔22a在铁芯组件21的周向Z上间隔设置,至少一个通孔22a为方形孔、圆孔和多边形孔中任一者。
同时,套管24的数量也为至少一个,其与通孔22a一一对应设置。套管24使得多个铁芯组件21的轭部22的通孔22a构成一条连通的定子轴向通道15a,同时还对多个铁芯组件21起到支撑限位的作用,如图2所示。管套24可以为方形管,圆形管和多边形管中的任一者。
作为一种可选的实施方式,至少一个通孔22a内设置有筋条22b,如此设置有利于增加定子轴向通道15a的散热面积,进而达到增强冷却效果的目的,如图3所示。
另外,图3所示的构成定子轴向通道15a的通孔22a的轴向截面是完全构建于铁芯组件21的轭部22中。
作为一种可选的实施方式,每个铁芯组件21包括沿径向Y且靠近轭部22设置的附接部(图中未示出),通孔22a也可以设置于附接部。此时通孔22a的轴向截面可以完全通过附接部构建于铁芯组件21的轭部22外。
作为一种可选的实施方式,通孔22a包括沿径向Y分布的两部分,其中一部分位于轭部22,另一部分位于附接部。此时通孔22a的轴向截面可以是一部分构建于铁芯组件21的轭部22中,另一部分通过附接部构建于铁芯组件21的轭部22外。
需要说明的是,对于内定子结构,轭部22上的通孔22a位于齿槽23a的径向内侧,对于外定子结构,轭部22上的通孔22a位于齿槽23a的径向外侧。另外,图2中所示的定子20采用的是分布式成型双层绕组结构,但本发明所适用的绕组结构形式也可以是但不限于集中绕组、散绕绕组和单层绕组等其他绕组结构形式。
下面以电机为内定子结构为例,描述该电机的主动冷却回路A和被动冷却回路B的结构及电机的冷却过程。
参阅图4,换热器50包括间隔设置的多个板件51,多个板件51之间形成多层相互隔离的第一通道51a和第二通道51b,且第一通道51a和第二通道51b交错排布,换热器50通过第一通道51a与径向通道13相互连通,换热器50通过第二通道51b与第二轴向通道19相互连通。
换热器50优选为板式换热器,其由一系列具有一定波纹形状的金属片叠装而成,第一通道51a和第二通道51b内的气流分别沿径向Y和轴向X流动,如图4中箭头所示,并通过板件51之间的金属片进行热量交换。
参阅图5,定子支架27包括沿轴向X相对设置的第一端板27a和第二端板27b,以及位于第一端板27a和第二端板27b之间且同轴设置的第一隔板28a和第二隔板28b。
第一端板27a在径向Y上间隔设置有贯穿第一端板27a的第一套管1和第三套管3,第二端板27b在径向Y上间隔设置有贯穿第二端板27b的第二套管2和第四套管4,且第三套管3位于第一端板27a与第一隔板28a之间,第四套管4位于第二隔板28b与第二端板27b之间。
第一轴向通道15还包括与定子轴向通道15a相互连通的第一套管1和第二套管2,第二轴向通道19进一步包括与换热器50相互连通的第三套管3和第四套管4。
优选地,第一套管1、第二套管2、套管24的内壁与通孔22a的轴向截面尺寸及形状相同;第三套管3、第四套管4的内壁与换热器50的轴向截面尺寸及形状相同。被动冷却回路B通过第一套管1、套管24、第二套管2、第三套管3、换热器50及第四套管4与主动冷却回路A相互隔离。
进一步地,第一隔板28a和第二隔板28b均与轭部22密封连接并固定于固定轴27c,第一端板27a与第一隔板28a沿电机100的径向Y内侧密封连接,第二端板27b与第二隔板28b之间设置有径向过滤件16。
第一隔板28a上开设有进风口1a,第二隔板28b上开设有进风口1b和出风口1c,第一隔板28a与第二隔板28b之间通过第三隔板29分为第一腔体29a和第二腔体29b,进风口1a,1b与第一腔体29a连通,出风口1c与第二腔体29b连通,换热器50设置于第二腔体29b内,冷却设备14设置于出风口1c外侧,第二隔板28b的进风口1c上设置有轴向过滤件17。
参阅图6,由于电机100的端部腔室11a和11b内的气流流动情况较为相近,故采用图6可同时用来描述两个腔室内的气流流动。以腔室11a为例,进入腔室11a的气流首先通过第三套管3间的空隙绕流经过第三套管3,再通过第一套管1间的空隙绕流经过第一套管1,后经过绕组26的端部间的空隙绕流经过端部绕组26的端部,最终腔室11a内的气流由气隙12的端部入口流入气隙12内。腔室11a内的气流在流经绕组26的端部时对绕组26的端部进行了冷却,如图6中的实线箭头所示。
参阅图7,径向通道13内的气流由气隙12中分流而来,分流后的各气流首先流经绕组26的槽内部分间的空隙所形成的径向通道13的齿槽23a,后进入径向通道13的轭部22,最终气流通过位于径向通道13中的套管24间的空隙流出径向通道13。
另外,换热器50沿第二腔体29b的周向间隔设置,相邻的换热器50之间设置有盖板52,盖板52将第二腔体29b沿径向Y分为两个子空间,两个子空间之间通过换热器50相互连通。
流出径向通道13内的气流由盖板52汇流通过换热器50的第一通道51a、第二通道51b,并与被动冷却回路B中的第二轴向通道19内的外界空气进行换热,从而降低了主动冷却回路A中的流体温度。气流在径向通道13内流经绕组26的端部和铁芯组件21时对两者均进行了冷却,如图7中的实线箭头所示。
参阅图8,示出了电机100的主动冷却回路A的气流组织示意图。封闭空间S内的空气在冷却设备14的驱动下分两条支路R1,R2分别进入电机100的轴向两端的腔室11a,11b内。
其中一条支路R1通过轴向过滤件17进入第一腔体29a后绕流第三套管3和第一套管1进入一端的腔室11a中;另一条支路R2通过径向过滤件16进入另一端的腔室11b中并绕流第四套管4和第二套管2,进入腔室11a,11b内的两条支路R1、R2沿主动冷却回路A依次流经绕组26、转子10和铁芯组件21后、绕流套管24后流经换热器50进入第二腔体29b,并被进入第二轴向通道19内的冷却空气冷却后经冷却设备14排出至封闭空间S,如图8中的实线箭头所示。
气流在主动冷却回路A内的循环流动过程中,冷却设备14使得电机100的内部空间呈负压状态,由冷却设备14排出电机100内部空间的气流进入封闭空间S,而电机100内部空间的负压状态又使得被冷却设备14排入封闭空间S内的气流再次穿过径向过滤件16和轴向过滤件17被引入至电机100的内部空间。气流在吸收了一部分定子损耗热量和一部分转子损耗热量后流至换热器50的第一通道51a内,借助换热器50将吸收的损耗热量传递给被动冷却回路B中在换热器50的第二通道51b内流动的外界空气,进而使得主动冷却回路A内的气流得到冷却,以便再次进入电机100内部腔室对定子20和转子10进行冷却。
由此,主动冷却回路A中气流由进入腔室11a、11b到流出径向通道13的流动过程中,分别对绕组26的端部、绕组26的槽内部分、铁芯组件21和转子10进行了冷却。主动冷却回路A带走了除被动冷却回路B所带走的部分定子损耗热量外的其余定子损耗热量,同时主动冷却回路A还带走了除被动冷却回路B所带走的部分转子损耗热量外的其余转子损耗热量。
请一并参阅图5、图9和图10,转子10通过转子支架18固定于转动轴18a上,转子10包括转子磁轭10a和安装于转子磁轭10a上的永磁体10b,转子支架18与转子磁轭10a之间沿周向Y间隔设置有多个支撑筋18b,多个支撑筋18b间形成有环形间隙,以使外界来流空气经环形间隙从第一端板27a一侧流向第二端板27b一侧。支撑筋18b用于连接转子支架18和转子磁轭10a,以使转子支架18和转子磁轭10a能够同时随着转动轴18a转动。
被动冷却回路B沿轴向X具有迎风侧和背风侧,第一端板27a所在的一侧即为迎风侧,第二端板27b所在的一侧即为背风侧。
转子磁轭10a沿轴向X设置有与第一端板27a位于同侧的导流装置30,外界来流空气通过导流装置30进行导流和分流。导流装置30为环形薄壁结构体,其构造符合空气动力学的流线型。具体来说,导流装置30为内部中空的薄壁回转体,以减轻重量。导流装置30沿自身径向Y的截面包括相交的外母线30a和内母线30b,外母线30a的纬圆半径沿轴向X远离转子磁轭10a一侧的方向逐渐变小,内母线30b的纬圆半径沿轴向X远离转子磁轭10a一侧的方向逐渐变大。外母线30a和内母线30b中的至少一者可以为弧形曲线,也可以为直线。优选的,外母线30a靠近转子磁轭10a一侧的外径尺寸等于电机100的外径尺寸,便于外界空气来流平顺地流经电机100的外表面。外母线30a和内母线30b可以对称设置,也可以非对称设置,根据外界空气来流的实际情况而定。
进一步地,转子磁轭10a沿轴向X还设置有与第二端板27b位于同侧的加速装置40。加速装置40为内部中空的薄壁回转体,以减轻重量。加速装置40沿自身径向Y的截面包括相交的外母线40a和内母线40b,外母线40a和内母线40b的纬圆半径沿轴向X远离转子磁轭10a一侧的方向均逐渐变大。外母线40a和内母线40b中的至少一者可以为弧形曲线,也可以为直线。优选的,外母线40a靠近转子磁轭10a一侧的外径尺寸等于电机100的外径尺寸,便于外界空气来流平顺地流经电机100的外表面。
作为一种可选的实施方式,第一端板27a上进一步设置有位于第一套管1与第三套管3之间的分流板5,分流板5设置为内部中空的薄壁回转体,以减轻重量。优选的,该纬圆直径为固定值,便于气流经过分流板5时分流,并从分流板5的内、外表面经过,如图5所示。
作为一种可选的实施方式,第二端板27b上进一步设置有位于第二套管2与第四套管4之间的导流板6,导流板6设置为内部中空的薄壁回转体,以减轻重量,其母线的纬圆半径沿轴向远离转子磁轭一侧的方向均逐渐变大,便于气流平顺地流经导流板6的内、外表面,如图5所示。
下面以电机100同时具有导流装置30、分流板5和加速装置40、导流板6为例,说明被动冷却回路B对电机100的冷却过程。
请一并参阅图11和图12,外界来流空气C经过导流装置30时被分流为第一气流C1和第二气流C2,第一气流C1经过分流板5时再次被分流为第四气流C4和第五气流C5。
其中,第四气流C4经由环形间隙进入第一轴向通道15,流经定子20后进入加速装置40与导流板6之间形成的第一环形空间L1。第五气流C5经由环形间隙进入第二轴向通道19,流经换热器50后进入封闭空间S与导流板6形成的第二环形空间L2。
第二气流C2与电机100的外表面的外界气流C’汇合后形成第三气流C3,并沿轴向X附着在转子磁轭10a的外表面后绕流加速装置40。
第五气流C5和第四气流C4在导流板6的内、外侧产生第一压差△P1-3,第四气流C4和第三气流C3在加速装置40的内、外侧产生第二压差△P13-2,以分别驱动第一气流C1和第二气流C2继续流动,如图11中的虚线箭头所示。
如图12所示,被动冷却回路B对电机100的冷却过程中,导流装置30和分流板5的工作原理如下所述:电机100的迎风侧上游来流空气可示意性的分为两部分:位于导流装置30的弦线K内侧的来流空气及位于弦线K外侧的来流空气。迎风侧上游来流空气的静压为大气压P0。当迎风侧上游来流空气C流动至导流装置30的弦线K内侧时,来流空气的流动方向发生偏移,形成气流。气流继续向下游流动至导流装置30附近时被分流为第一气流C1和第二气流C2,第一气流C1向弦线K的内侧流动,第二气流C2向弦线K的外侧流动。分流后的第一气流C1流经导流装置30后又由定子支架27上的分流板5再次分流,形成第四气流C4和第五气流C5,并分别进入第一轴向通道15和第二轴向通道19内。而由导流装置30分流后的第二气流C2则与弦线K外侧的来流空气C’汇合,形成第三气流C3,并沿着转子磁轭10a外表面的轴向X流动。
导流装置30在对外界来流空气C分流过程中所起到的作用如下:导流装置30的弦线K内侧的弧形结构能够捕捉更多的外界来流空气C,使得外界来流空气C更多的向弦线K的内侧分流,进而使损耗热量更为集中的定子20得到更大的冷却风量;弦线K外侧的弧形结构能够使得外界来流空气C向弦线K外侧分流的第二气流C2缓解其因流通截面突变而引起的流动分离现象,使得第二气流C2和弦线K的外侧的外界气流C’汇合形成的第三气流C3更好地附着在转子磁轭10a的外表面流动,从而使转子10得到更好的冷却效果。
分流板5所起到作用则是对由导流装置30所分流的第一气流C1进行流量分配,分流板5的安装角度可以根据实际需求进行调节。当分流板5远离第一端板27a的一端向内侧倾斜时,由导流装置30分流而来的第一气流C1被更多的捕获形成第四气流C4,而当分流板5远离第一端板27a的一端向外侧倾斜,由导流装置30分流而来的第一气流C1被更多的捕获形成第五气流C5。
进一步地,被动冷却回路B对电机100的冷却过程中,加速装置40和导流板6的工作原理如下所述:从第一轴向通道15内流出的第四气流C4在安装于转子磁轭10a的背风侧的加速装置40内侧和安装于定子支架27上的导流板6所形成的环形空间L1内继续向下游流动。从第二轴向通道19内流出的第五气流C5在导流板6和封闭空间S所形成的环形空间L2内继续向下游流动。而流经转子磁轭10a外表面的第三气流C3在加速装置40外侧继续向下游流动。
第四气流C4在环形空间L1内的流动过程中,由于流通截面逐渐变化,其静压逐渐变化至P1。第五气流C5在环形空间L2内的流动过程中,由于流通截面逐渐变化,其静压逐渐变化至P3。第三气流C3在加速装置40外侧的流动过程中,流通截面逐渐减小,其静压逐渐降低至P2。由于加速装置40向背风侧下游呈渐扩结构,使得第三气流C3在流出加速装置40背风侧下游端部时的静压P2小于第四气流C4和第五气流C5在加速装置40和封闭空间S所形成空间L1、L2出口处的平均静压P13。因此在加速装置40内、外侧流动的气流间形成了一个由加速装置40内侧指向外侧的第二压差△P13-2=P13-P2。该第二压差△P13-2增强了第四气流C4和第五气流C5整个流动过程中的驱动力,使得外界来流空气C中更多向导流装置30的弦线K内侧分流,从而进一步加强被动冷却回路B中用于冷却定子20和主动冷却回路A内气流的支路冷却能力。
导流板6在第四气流C4和第五气流C5流动过程中所起到的作用与分流板5相同,导流板6的形状以及向背风侧下游延展的长度可以根据具体需求进行设计,以使第四气流C4在环形空间L1出口处与第五气流C5在环形空间L2出口处具有一定的第一压差△P1-3=P1-P3。当该第一压差△P1-3由导流板6内侧指向外侧时,第一压差△P1-3增加了第五气流C5的驱动力,从而使得第一气流C1被更多的分流至第二轴向通道19中。当该压差由导流板6外侧指向内侧时,第一压差△P1-3增加了第四气流C4的驱动力,从而使得第一气流C1被更多的分流至第一轴向通道15中。
由于加速装置40的作用,第四气流C4和第五气流C5汇合后一部分继续向下游流动形成第六气流C6,另一部分向加速装置40外侧偏转,并与加速装置40外侧的第三气流C3汇合形成第七气流C7。第六气流C6和第七气流C7在继续向背风侧下游远处流动的过程中,气流会随着静压的自动调节而逐渐恢复平衡状态,最终背风侧下游远处的气流静压恢复至大气压P0。
被动冷却回路B进口处构造的导流装置30、分流板5和出口处构造的加速装置40、导流板6,进一步提高了主、被动冷却回路中被动冷却回路B的冷却能力。
可以理解的是,本发明实施例提供的电机100可以只具有导流装置30,也可以只具有加速装置40,也可以同时具有导流装置30和加速装置40。另外,本发明实施例提供的电机100可以只具有分流板5,也可以只具有导流板6,也可以同时具有分流板5和导流板6,并且导流装置30、加速装置40可以与分流板5、导流板6形成多种组合形式,不再赘述。
由此,被动冷却回路B的由第一气流C1分流出的第四气流C4在流经第一轴向通道15时对定子20进行了冷却,带走了一部分由于电机100运转过程中产生的定子损耗热量。由第一气流C1分流出的第五气流C5在流经第二轴向通道19时对主动冷却回路A中吸收了定子20的其余损耗热量和转子10的一部分损耗热量的空气进行了冷却,带走了其余部分由于电机100运转过程中产生的定子损耗热量和一部分转子损耗热量。即被动冷却回路B中的第一气流C1带走了全部定子损耗热量和一部分转子损耗热量。
第二气流C2在流经转子磁轭10a外表面时对转子10进行了冷却,带走了另一部分由于电机100运转过程中产生的转子损耗热量,最终带走了发电机100运转过程中的所有损耗热量。
如前所述,在对电机100冷却的过程中,两条冷却回路内的气流通过第一套管1、套管24、第二套管2、第三套管3、换热器50及第四套管4相互隔离,而第一套管1、套管24、第二套管2、第三套管3、第四套管4作为两条冷却回路除热源部件外的共有组成部分,其对两条冷却回路中的气流是可导热的。
优选地,第一套管1和第三套管3具有可导热设置的内壁和外壁。由于第一套管1和第三套管3外侧的气流经换热器50由外界环境空气冷却过后,其温度仍然高于由外界环境直接引入至第一套管1和第三套管3内侧的气流温度,使得第一套管1和第三套管3内侧气流会吸收部分外侧气流的热量,虽然该热量传递过程会给第一套管1和第三套管3内侧气流在接下来对定子20的冷却过程带来不利影响,但第一套管1和第三套管3外侧气流由于将部分热量传递给了内侧气流,从而增强了外侧气流在后续对定子20和转子10冷却过程中的冷却效果。故两者在一定程度上相互抵消,而如此设置可以降低第一套管1和第三套管3的制造成本。
进一步优选地,套管24、第二套管2和第四套管4具有热隔离设置的内壁和外壁。
第二套管2和第四套管4内的气流分别吸收了部分定子损耗热量和主动冷却回路A内气流热量的且即将排出至外界环境中的热空气,而第二套管2和第四套管4外侧为经过换热器50冷却过的冷空气,若此时第二套管2和第四套管4对于其内外侧气流是可导热的,则第二套管2和第四套管4的外侧气流将吸收一部分内侧气流的热量,并带入到后续对转子10和定子20的冷却过程中去。
对于径向通道13中的套管24来说,其外侧气流是吸收了部分定子损耗热量和定子损耗热量的热空气,由于定子20的径向通道13中的套管24内的气流是逐渐吸收了部分定子损耗热量后由冷转热的空气,若此时套管24对于其内外侧气流是可导热的,则上游套管24内的气流会吸收部分套管24外侧气流的热量,从而使其内侧气流在接下来对下游定子20部分的冷却带来不利影响。同时下游套管24内侧气流可能会吸收部分外侧气流的热量,也可能将自身部分热量传递给外侧气流。当下游套管24内侧气流吸收部分外侧气流热量时,产生的不利影响同上游套管24的内侧气流吸收的部分外侧气流热量的情况相同。而当下游套管24的内侧气流将自身部分热量传递给外侧气流时,会增加换热器50的换热负担,使得主动冷却回路A内的气流无法得到充分的冷却,进而再次进入电机100的内部腔室时,对定子20和转子10的冷却带来不利影响。
故将套管24、第二套管2和第四套管4设置为热隔离的,可以实现主、被动冷却回路的冷却能力最大化。
需要说明的是,虽然以上为了方便描述,以电机为内定子结构作为示例进行了描述,但应理解的是,根据本发明的示例性实施例,上述主动冷却回路A和被动冷却回路B的工作原理同样适用于外定子结构的电机。
参阅图13,本发明实施例还提供了一种风力发电机组,其包括:如前所述的任一种电机100、轮毂200和机舱300。
电机100沿轴向具有迎风侧110与背风侧120。轮毂200位于电机100的迎风侧110且与电机100同轴设置,轮毂200的最大外径尺寸小于电机100的第二轴向通道19的最小内径尺寸,便于外界来流空气进入第一轴向通道15和第二轴向通道19中。轮毂200通过安装于其外周侧的叶轮的转动带动电机100转动。
机舱300位于电机100的背风侧120,可选的,机舱300的外轮廓在径向上与电机100的第二轴向通道19相隔预定间距,便于第一轴向通道15和第二轴向通道19中吸收热量的热空气排出外界环境中。机舱300与电机100之间可以形成与主动冷却回路A连通的封闭空间S,另外,封闭空间S也可以形成于电机100内。
本发明实施例提供的风力发电机组,在发电过程中,除了捕捉风的动能以转化为电能外,还可以充分挖掘风的热量输运潜能。通过对电机100本体结构的构造,构建两条结构上相互隔离的主、被动冷却回路,从而降低了冷却设备14的功率和自耗电,提升了整机的发电效率,减小了冷却设备14的体积和重量,节省了机舱300的空间,实现了冷却系统与电机的结构高度集成化,降低了冷却系统的成本。
此外,根据以上所述的示例性实施例的电机可被应用到各种需要设置电机的设备中,例如但不限于风力发电机组。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

1.一种电机(100),其特征在于,所述电机(100)包括相互隔离的主动冷却回路(A)和被动冷却回路(B),所述主动冷却回路(A)与封闭空间(S)连通,所述被动冷却回路(B)与外界环境连通;
其中,所述主动冷却回路(A)包括相互连通的位于所述电机(100)的轴向两端的腔室(11a,11b)、所述电机的转子(10)与定子(20)之间的气隙(12),以及沿所述定子(20)的轴向(X)间隔分布的径向通道(13),所述主动冷却回路(A)中设置有与所述封闭空间(S)连通的冷却设备(14),所述定子(20)通过定子支架(27)固定于固定轴(27c)上;
所述被动冷却回路(B)包括在所述轴向(X)上贯穿所述定子(20)的第一轴向通道(15)、贯穿所述定子支架(27)的第二轴向通道(19)和所述电机(100)的外表面;
所述电机(100)内部进一步设置有换热器(50),所述换热器(50)分别与所述径向通道(13)、所述第二轴向通道(19)相互连通。
2.根据权利要求1所述的电机(100),其特征在于,所述定子(20)包括沿轴向(X)间隔布置的多个铁芯组件(21),所述径向通道(13)形成于每相邻的两个所述铁芯组件(21)之间;
所述第一轴向通道(15)包括沿所述轴向(X)贯穿所述多个铁芯组件(21)的定子轴向通道(15a),每个所述铁芯组件(21)包括轭部(22)和与所述轭部(22)一体成型的齿部(23),所述齿部(23)在所述铁芯组件(21)的周向(Z)上间隔设置有多个齿槽(23a),所述轭部(22)上设置有与所述齿槽(23a)对应的通孔(22a),相邻的所述铁芯组件(21)之间设置有与所述通孔(22a)相互连通的套管(24),所述通孔(22a)与所述套管(24)形成所述定子轴向通道(15a)。
3.根据权利要求2所述的电机(100),其特征在于,所述换热器(50)包括间隔设置的多个板件(51),所述多个板件(51)之间形成多层相互隔离的第一通道(51a)和第二通道(51b),且所述第一通道(51a)和所述第二通道(51b)交错排布,所述换热器(50)通过所述第一通道(51a)与所述径向通道(13)相互连通,所述换热器(50)通过所述第二通道(51b)与所述第二轴向通道(19)相互连通。
4.根据权利要求2所述的电机(100),其特征在于,所述定子支架(27)包括沿所述轴向(X)相对设置的第一端板(27a)和第二端板(27b),以及位于所述第一端板(27a)和所述第二端板(27b)之间且同轴设置的第一隔板(28a)和第二隔板(28b);
所述第一端板(27a)在所述径向(Y)上间隔设置有贯穿所述第一端板(27a)的第一套管(1)和第三套管(3),所述第二端板(27b)在所述径向(Y)上间隔设置有贯穿所述第二端板(27b)的第二套管(2)和第四套管(4),且所述第三套管(3)位于所述第一端板(27a)与所述第一隔板(28a)之间,所述第四套管(4)位于所述第二隔板(28b)与所述第二端板(27b)之间。
5.根据权利要求4所述的电机(100),其特征在于,所述第一轴向通道(15)进一步包括与所述定子轴向通道(15a)相互连通的所述第一套管(1)和所述第二套管(2),所述第二轴向通道(19)进一步包括与所述换热器(50)相互连通的所述第三套管(3)和所述第四套管(4);
所述被动冷却回路(B)通过所述第一套管(1)、所述套管(24)、所述第二套管(2)、所述第三套管(3)、所述换热器(50)及所述第四套管(4)与所述主动冷却回路(A)相互隔离。
6.根据权利要求4所述的电机(100),其特征在于,所述第一隔板(28a)和所述第二隔板(28b)均与所述轭部(22)密封连接并固定于所述固定轴(27c),所述第一端板(27a)与所述第一隔板(28a)沿所述电机(100)的径向(Y)内侧密封连接,所述第二端板(27b)与所述第二隔板(28b)之间设置有径向过滤件(16);
所述第一隔板(28a)上开设有进风口(1a),所述第二隔板(28b)上开设有进风口(1b)和出风口(1c),所述第一隔板(28a)与所述第二隔板(28b)之间通过第三隔板(29)分为第一腔体(29a)和第二腔体(29b),所述进风口(1a,1b)与所述第一腔体(29a)连通,所述出风口(1c)与所述第二腔体(29b)连通,所述换热器(50)设置于所述第二腔体(29b)内,所述冷却设备(14)设置于所述出风口(1c)外侧,所述第二隔板(28b)的所述进风口(1c)上设置有轴向过滤件(17)。
7.根据权利要求6所述的电机(100),其特征在于,所述封闭空间(S)内的空气在所述冷却设备(14)的驱动下分两条支路(R1,R2)分别进入所述电机(100)的轴向两端的所述腔室(11a,11b)内;
其中,一条所述支路(R1)通过所述轴向过滤件(17)进入所述第一腔体(29a)后绕流所述第三套管(3)和所述第一套管(1)进入一端的所述腔室(11a)中;
另一条所述支路(R2)通过所述径向过滤件(16)进入另一端的所述腔室(11b)中并绕流所述第四套管(4)和所述第二套管(2),进入所述腔室(11a,11b)内的所述两条支路(R1,R2)沿所述主动冷却回路(A)依次流经所述绕组(26)、所述转子(10)和所述铁芯组件(21)后、绕流所述套管(24)后流经所述换热器(50)进入所述第二腔体(29b),并被进入所述第二轴向通道(19)内的冷却空气冷却后经所述冷却设备(14)排出至所述封闭空间(S)。
8.根据权利要求6所述的电机(100),其特征在于,所述换热器(50)沿所述第二腔体(29b)的周向间隔设置,相邻的所述换热器(50)之间设置有盖板(52),所述盖板(52)将所述第二腔体(29b)沿所述径向(Y)分为两个子空间,所述两个子空间之间通过所述换热器(50)相互连通。
9.根据权利要求4所述的电机(100),其特征在于,所述第一端板(27a)上进一步设置有位于所述第一套管(1)与所述第三套管(3)之间的分流板(5),所述分流板(5)设置为内部中空的薄壁回转体;和/或,
所述第二端板(27b)上进一步设置有位于所述第二套管(2)与所述第四套管(4)之间的导流板(6),所述导流板(6)设置为内部中空的薄壁回转体,其母线的纬圆半径沿所述轴向(X)远离所述转子磁轭(10a)一侧的方向逐渐变大。
10.根据权利要求9所述的电机(100),其特征在于,所述转子(10)通过转子支架(18)固定于转动轴(18a)上,所述转子(10)包括转子磁轭(10a)和安装于所述转子磁轭(10a)上的永磁体(10b),所述转子支架(18)与所述转子磁轭(10a)之间沿所述周向(Y)间隔设置有多个支撑筋(18b),所述多个支撑筋(18b)间形成环形间隙,以使所述外界来流空气经所述环形间隙从所述第一端板(27a)一侧流向所述第二端板(27b)一侧。
11.根据权利要求10所述的电机(100),其特征在于,所述转子磁轭(10a)沿所述轴向(X)设置有与所述第一端板(27a)位于同侧的导流装置(30),所述导流装置(30)为内部中空的薄壁回转体,其沿自身径向(Y)的截面包括相交的外母线(30a)和内母线(30b),所述外母线(30a)的纬圆半径沿所述轴向(X)远离所述转子磁轭(10a)一侧的方向逐渐变小,所述内母线(30b)的纬圆半径沿所述轴向(X)远离所述转子磁轭(10a)一侧的方向逐渐变大。
12.根据权利要求11所述的电机(100),其特征在于,所述转子磁轭(10a)沿所述轴向(X)进一步设置有与所述第二端板(27b)位于同侧的加速装置(40),所述加速装置(40)为内部中空的薄壁回转体,其沿自身径向(Y)的截面包括相交的外母线(40a)和内母线(40b),所述外母线(40a)和所述内母线(40b)的纬圆半径沿所述轴向(X)远离所述转子磁轭(10a)一侧的方向均逐渐变大。
13.根据权利要求12所述的电机(100),其特征在于,外界来流空气(C)经过所述导流装置(30)时被分流为第一气流(C1)和第二气流(C2),所述第一气流(C1)经过所述分流板(5)时再次被分流为第四气流(C4)和第五气流(C5);
其中,所述第四气流(C4)经由所述环形间隙进入所述第一轴向通道(15),流经所述定子(20)后进入所述加速装置(40)与所述导流板(6)之间形成的第一环形空间(L1);
所述第五气流(C5)经由所述环形间隙进入所述第二轴向通道(19),流经所述换热器(50)后进入所述封闭空间(S)与所述导流板(6)形成的第二环形空间(L2);
所述第二气流(C2)与所述电机(100)的所述外表面的外界气流(C’)汇合后形成第三气流(C3),并沿所述轴向(X)附着在所述转子磁轭(10a)的外表面后绕流所述加速装置(40);
所述第五气流(C5)和所述第四气流(C4)在所述导流板(6)的内、外侧产生第一压差(△P1-3),所述第四气流(C4)和所述第三气流(C3)在所述加速装置(40)的内、外侧产生第二压差(△P13-2),以分别驱动所述第一气流(C1)和所述第二气流(C2)继续流动。
14.根据权利要求2所述的电机(100),其特征在于,所述通孔(22a)设置于所述轭部(22)上;
或者,每个所述铁芯组件(21)包括沿所述径向(Y)且靠近所述轭部(22)设置的附接部,所述通孔(22a)设置于所述附接部;
或者,所述通孔(22a)包括沿所述径向(Y)分布的两部分,其中一部分位于所述轭部(22),另一部分位于所述附接部。
15.根据权利要求2或14任一项所述的电机(100),其特征在于,所述通孔(22a)的数量为至少一个,所述至少一个通孔(22a)在所述铁芯组件(21)的周向(Z)上间隔设置,至少一个所述通孔(22a)为方形孔、圆孔和多边形孔中任一者;或者,至少一个所述通孔(22a)内设置有筋条(22b)。
16.根据权利要求4所述的电机(100),其特征在于,所述第一套管(1)具有可导热设置的内壁和外壁,所述第三套管(3)具有可导热设置的内壁和外壁,所述第二套管(2)具有热隔离设置的内壁和外壁,所述第四套管(4)具有热隔离设置的内壁和外壁,所述套管(24)具有热隔离设置的内壁和外壁。
17.一种风力发电机组,其特征在于,所述风力发电机组包括:
如权利要求1-16任一项所述的电机(100),所述电机(100)沿轴向具有迎风侧(110)与背风侧(120);
轮毂(200),位于所述电机(100)的所述迎风侧(110)且与所述电机(100)同轴设置,所述轮毂(200)通过安装于其外周侧的叶轮的转动带动所述电机(100)转动;以及
机舱(300),位于所述电机(100)的所述背风侧(120)。
CN201811039192.1A 2018-09-06 2018-09-06 电机及风力发电机组 Active CN109474113B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201811039192.1A CN109474113B (zh) 2018-09-06 2018-09-06 电机及风力发电机组
US16/609,717 US11289957B2 (en) 2018-09-06 2019-01-04 Generator and wind turbine
ES19759485T ES2968897T3 (es) 2018-09-06 2019-01-04 Generador y turbina eólica
EP19759485.6A EP3641109B1 (en) 2018-09-06 2019-01-04 Generator and wind turbine
AU2019226142A AU2019226142B2 (en) 2018-09-06 2019-01-04 Generator and wind turbine
PCT/CN2019/070440 WO2020048072A1 (zh) 2018-09-06 2019-01-04 电机及风力发电机组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811039192.1A CN109474113B (zh) 2018-09-06 2018-09-06 电机及风力发电机组

Publications (2)

Publication Number Publication Date
CN109474113A true CN109474113A (zh) 2019-03-15
CN109474113B CN109474113B (zh) 2020-06-23

Family

ID=65663036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811039192.1A Active CN109474113B (zh) 2018-09-06 2018-09-06 电机及风力发电机组

Country Status (6)

Country Link
US (1) US11289957B2 (zh)
EP (1) EP3641109B1 (zh)
CN (1) CN109474113B (zh)
AU (1) AU2019226142B2 (zh)
ES (1) ES2968897T3 (zh)
WO (1) WO2020048072A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034633A (zh) * 2019-04-15 2019-07-19 中车永济电机有限公司 发电机转子永磁体磁极冷却风路结构
CN110460180A (zh) * 2019-08-30 2019-11-15 东方电气集团东方电机有限公司 一种用于改善定子轴向温度分布均匀性的方法
CN110504771A (zh) * 2019-08-30 2019-11-26 东方电气集团东方电机有限公司 一种用于改善定子轴向温度分布均匀性的装置
CN111864991A (zh) * 2019-04-30 2020-10-30 新疆金风科技股份有限公司 冷却系统、电机及风力发电机组
CN111864992A (zh) * 2019-04-30 2020-10-30 新疆金风科技股份有限公司 冷却装置、电机及风力发电机组
WO2021037193A1 (zh) * 2019-08-30 2021-03-04 东方电气集团东方电机有限公司 一种用于改善定子轴向温度分布均匀性的方法及装置
CN113556005A (zh) * 2021-07-07 2021-10-26 杭州电子科技大学 一种改善定子散热的电机结构
CN113726042A (zh) * 2020-05-25 2021-11-30 乌鲁木齐金风天翼风电有限公司 冷却装置、发电机以及风力发电机组
CN114552817A (zh) * 2022-02-25 2022-05-27 哈电风能有限公司 一种发电机冷却结构及发电装置
EP3958445A4 (en) * 2019-04-30 2022-06-22 Xinjiang Goldwind Science & Technology Co., Ltd. WIND TURBINE COOLING SYSTEM, MOTOR AND GENERATOR ASSEMBLY
CN114665662A (zh) * 2020-12-23 2022-06-24 新疆金风科技股份有限公司 发电机以及风力发电机组
EP4007132A4 (en) * 2019-08-30 2022-10-12 Dongfang Electric Machinery Co., Ltd. DEVICE FOR REDUCING THE PERIPHERAL TEMPERATURE DIFFERENCE BETWEEN THE COIL AND THE CORE OF A LARGE DIAMETER MOTOR
EP4007131A4 (en) * 2019-08-30 2022-10-12 Dongfang Electric Machinery Co., Ltd. METHOD AND DEVICE FOR REDUCING THE PERIPHERAL TEMPERATURE DIFFERENCE BETWEEN THE COIL AND THE IRON CORE OF A MOTOR
WO2024089656A1 (en) 2022-10-27 2024-05-02 Flsmidth Maag Gear Sp. Z O.O. A cooling arrangement for cooling of an electrical synchronous machine comprising a two-layer single coil winding

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793236A (zh) * 2010-04-16 2010-08-04 湘电风能有限公司 一种直驱风力发电机导风装置
US20100237727A1 (en) * 2009-03-23 2010-09-23 Abb Oy Arrangement and method for cooling an electrical machine
CN102246395A (zh) * 2008-10-08 2011-11-16 艾劳埃斯·乌本 环形发电机
CN102377286A (zh) * 2011-09-29 2012-03-14 江苏金风风电设备制造有限公司 电机及其冷却系统
CN103363834A (zh) * 2012-03-31 2013-10-23 杭州三花研究院有限公司 板式换热器及其流体分配器、板式换热器的控制方法
CN106655564A (zh) * 2016-12-23 2017-05-10 北京金风科创风电设备有限公司 定子铁心单元、定子、电机及风力发电机组

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154191B2 (en) 2004-06-30 2006-12-26 General Electric Company Electrical machine with double-sided rotor
US7154193B2 (en) 2004-09-27 2006-12-26 General Electric Company Electrical machine with double-sided stator
JP5834433B2 (ja) 2011-03-18 2015-12-24 株式会社明電舎 アウターロータ形回転電機
CN107070020A (zh) * 2016-08-29 2017-08-18 哈尔滨理工大学 多槽钢多分布的定子通风结构
CN107612172B (zh) 2017-08-21 2020-11-10 北京金风科创风电设备有限公司 电机绕组、电机及风力发电机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246395A (zh) * 2008-10-08 2011-11-16 艾劳埃斯·乌本 环形发电机
US20100237727A1 (en) * 2009-03-23 2010-09-23 Abb Oy Arrangement and method for cooling an electrical machine
CN101793236A (zh) * 2010-04-16 2010-08-04 湘电风能有限公司 一种直驱风力发电机导风装置
CN102377286A (zh) * 2011-09-29 2012-03-14 江苏金风风电设备制造有限公司 电机及其冷却系统
CN103363834A (zh) * 2012-03-31 2013-10-23 杭州三花研究院有限公司 板式换热器及其流体分配器、板式换热器的控制方法
CN106655564A (zh) * 2016-12-23 2017-05-10 北京金风科创风电设备有限公司 定子铁心单元、定子、电机及风力发电机组

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034633A (zh) * 2019-04-15 2019-07-19 中车永济电机有限公司 发电机转子永磁体磁极冷却风路结构
EP3955434A4 (en) * 2019-04-30 2022-06-15 Xinjiang Goldwind Science & Technology Co., Ltd. COOLING DEVICE, ENGINE AND WIND TURBINE GENERATOR SET
US11984790B2 (en) 2019-04-30 2024-05-14 Xinjiang Goldwind Science & Technology Co., Ltd. Cooling system, electric motor and wind-power electric generator set
CN111864991B (zh) * 2019-04-30 2024-02-23 金风科技股份有限公司 冷却系统、电机及风力发电机组
CN111864991A (zh) * 2019-04-30 2020-10-30 新疆金风科技股份有限公司 冷却系统、电机及风力发电机组
CN111864992A (zh) * 2019-04-30 2020-10-30 新疆金风科技股份有限公司 冷却装置、电机及风力发电机组
WO2020220836A1 (zh) * 2019-04-30 2020-11-05 新疆金风科技股份有限公司 冷却装置、电机及风力发电机组
WO2020220834A1 (zh) * 2019-04-30 2020-11-05 新疆金风科技股份有限公司 冷却系统、电机及风力发电机组
AU2020266635B2 (en) * 2019-04-30 2023-07-27 Goldwind Science & Technology Co., Ltd. Cooling system, motor and wind turbine generator set
EP3958445A4 (en) * 2019-04-30 2022-06-22 Xinjiang Goldwind Science & Technology Co., Ltd. WIND TURBINE COOLING SYSTEM, MOTOR AND GENERATOR ASSEMBLY
EP4007131A4 (en) * 2019-08-30 2022-10-12 Dongfang Electric Machinery Co., Ltd. METHOD AND DEVICE FOR REDUCING THE PERIPHERAL TEMPERATURE DIFFERENCE BETWEEN THE COIL AND THE IRON CORE OF A MOTOR
EP4007132A4 (en) * 2019-08-30 2022-10-12 Dongfang Electric Machinery Co., Ltd. DEVICE FOR REDUCING THE PERIPHERAL TEMPERATURE DIFFERENCE BETWEEN THE COIL AND THE CORE OF A LARGE DIAMETER MOTOR
WO2021037193A1 (zh) * 2019-08-30 2021-03-04 东方电气集团东方电机有限公司 一种用于改善定子轴向温度分布均匀性的方法及装置
CN110504771A (zh) * 2019-08-30 2019-11-26 东方电气集团东方电机有限公司 一种用于改善定子轴向温度分布均匀性的装置
CN110460180A (zh) * 2019-08-30 2019-11-15 东方电气集团东方电机有限公司 一种用于改善定子轴向温度分布均匀性的方法
CN113726042A (zh) * 2020-05-25 2021-11-30 乌鲁木齐金风天翼风电有限公司 冷却装置、发电机以及风力发电机组
CN113726042B (zh) * 2020-05-25 2023-09-08 乌鲁木齐金风天翼风电有限公司 冷却装置、发电机以及风力发电机组
CN114665662A (zh) * 2020-12-23 2022-06-24 新疆金风科技股份有限公司 发电机以及风力发电机组
CN113556005A (zh) * 2021-07-07 2021-10-26 杭州电子科技大学 一种改善定子散热的电机结构
CN114552817A (zh) * 2022-02-25 2022-05-27 哈电风能有限公司 一种发电机冷却结构及发电装置
WO2024089656A1 (en) 2022-10-27 2024-05-02 Flsmidth Maag Gear Sp. Z O.O. A cooling arrangement for cooling of an electrical synchronous machine comprising a two-layer single coil winding

Also Published As

Publication number Publication date
EP3641109B1 (en) 2023-10-18
CN109474113B (zh) 2020-06-23
US20210336495A1 (en) 2021-10-28
AU2019226142A1 (en) 2020-03-26
EP3641109A4 (en) 2020-05-13
WO2020048072A1 (zh) 2020-03-12
ES2968897T3 (es) 2024-05-14
US11289957B2 (en) 2022-03-29
AU2019226142B2 (en) 2020-07-23
EP3641109C0 (en) 2023-10-18
EP3641109A1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
CN109474113A (zh) 电机及风力发电机组
CN109412339A (zh) 电机及风力发电机组
CN205207057U (zh) 风力发电机组冷却系统及风力发电机组
CN106640554B (zh) 风力发电机组散热系统、散热方法及风力发电机组
CN102996359A (zh) 自然能源蓄能发电方法及其发电系统
CN103490558B (zh) 直驱风力发电机冷却系统
CN104379926A (zh) 一种风力涡轮机的冷却系统
CN102758733B (zh) 一种具备风道装置的太阳能烟囱发电设备
CN102996357B (zh) 综合能源风道井发电站
CN209310574U (zh) 一种直驱永磁风力发电机空空冷却器
CN103277254A (zh) 管流直驱式发电装置
CN202690324U (zh) 一种用于烟囱类抽风设备的气道装置
CN202250640U (zh) 综合能源风道井发电站的消音器及综合能源风道井发电站
US20130202421A1 (en) Passive Liquid Cooling System for Inverters Utilized for Wind Turbine Applications
CN207638497U (zh) 一种高功率密度大型电机强迫通风冷却结构
CN207638500U (zh) 一种阻尼效应的抽风降温电机装置
CN107994732A (zh) 一种高功率密度大型电机强迫通风冷却结构
CN203522438U (zh) 直驱风力发电机冷却系统
CN202250634U (zh) 自然能源蓄能发电系统
CN105438192B (zh) 一种机车用换热模块
CN109378935A (zh) 一种灯泡贯流式水轮发电机的外置式通风冷却系统
CN216157831U (zh) 一种风电机组冷却结构
CN116207644B (zh) 一种电力配电柜
KR101015308B1 (ko) 풍열원화 장치를 이용한 냉·난방 시스템과 냉·난방 방법
CN102996364B (zh) 综合能源风道井发电站风塔结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: No.107 Shanghai Road, Urumqi Economic and Technological Development Zone, Urumqi City, Xinjiang Uygur Autonomous Region

Patentee after: Jinfeng Technology Co.,Ltd.

Address before: No.107 Shanghai Road, Urumqi Economic and Technological Development Zone, Urumqi City, Xinjiang Uygur Autonomous Region

Patentee before: XINJIANG GOLDWIND SCIENCE & TECHNOLOGY Co.,Ltd.