WO2021218109A1 - 立式空调室内机 - Google Patents

立式空调室内机 Download PDF

Info

Publication number
WO2021218109A1
WO2021218109A1 PCT/CN2020/127855 CN2020127855W WO2021218109A1 WO 2021218109 A1 WO2021218109 A1 WO 2021218109A1 CN 2020127855 W CN2020127855 W CN 2020127855W WO 2021218109 A1 WO2021218109 A1 WO 2021218109A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
arc
air outlet
section
indoor unit
Prior art date
Application number
PCT/CN2020/127855
Other languages
English (en)
French (fr)
Inventor
李英舒
陈会敏
吴丽琴
王永涛
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021218109A1 publication Critical patent/WO2021218109A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/081Air-flow control members, e.g. louvres, grilles, flaps or guide plates for guiding air around a curve

Definitions

  • the invention relates to the technical field of air conditioning, in particular to a vertical air conditioner indoor unit.
  • the vertical air conditioner indoor unit Compared with the wall-mounted air conditioner indoor unit, the vertical air conditioner indoor unit has a larger horsepower and stronger cooling and heating capacity, and is usually placed in a larger indoor space such as a living room.
  • the vertical air conditioner indoor unit covers a larger area, it needs to have a stronger long-distance air supply capacity and a strong air output capacity.
  • existing products usually increase the speed of the fan to increase the wind speed and volume.
  • the increase of the fan speed will cause a series of problems such as the increase of the power of the air conditioner and the increase of noise, which will affect the user experience.
  • the purpose of the present invention is to provide a vertical air conditioner indoor unit that overcomes the above-mentioned problems or at least partially solves the above-mentioned problems, so as to achieve better long-distance air supply and strong air supply effects.
  • the further object of the present invention is to make the vertical air conditioner indoor unit have the effect of raising the wind.
  • the present invention provides a vertical air conditioner indoor unit, including:
  • Shell which has an air supply opening
  • the air duct is arranged in the shell and has an air inlet and an air outlet facing the air outlet, which is used to guide the airflow in the shell to the air outlet. Small tapering;
  • the air guide is arranged in the air duct and defines an annular air outlet gap with its tapered part, which is used to guide the airflow to the annular air outlet gap so that the airflow gradually converges toward the center of the airflow under the guidance of the inner wall of the air duct and flows out of the air outlet in turn And the air outlet;
  • the deflector is formed by one rotation of the deflector wire around the horizontal central axis.
  • the deflector includes a convex first arc section, a concave second arc section, and a convex third arc that are smoothly connected in sequence. Section, the convex fourth arc section and the convex fifth arc section, and the first arc section, the second arc section, and the third arc section gradually move away from the horizontal central axis from the back to the front, The end point of the fifth arc-shaped segment and the start point of the first arc-shaped segment are on the horizontal central axis.
  • the radius of the first arc-shaped segment is smaller than the radius of the third arc-shaped segment
  • the radius of the second arc-shaped segment is greater than the radius of the third arc-shaped segment
  • the radius of the fourth arc-shaped segment is less than or equal to the radius of the first arc-shaped segment
  • the radius of the fifth arc-shaped segment is greater than the radius of the third arc-shaped segment.
  • the ratio of the radius of the first arc-shaped segment to the third arc-shaped segment is between 0.4 and 0.6;
  • the ratio of the radius of the second arc section to the third arc section is between 2.2 and 2.7;
  • the ratio of the radius of the fourth arc section to the third arc section is between 0.2 and 0.4;
  • the ratio of the radius of the fifth arc section to the third arc section is between 1.8 and 3.0.
  • the width at the widest point of the air guide is greater than or equal to the width of the air outlet.
  • the streamline shape of the inner wall of the tapered part of the air duct is the same as the line shape of the guide line of the opposite part of the air guide.
  • the position of the air inlet is lower than the air outlet, so that the airflow flows from the bottom to the upper flow guide, so that the airflow in the bottom section of the annular air outlet gap drives the airflow in the remaining sections to flow upward and forward together.
  • the vertical air conditioner indoor unit further includes:
  • the heat exchanger is arranged in the shell.
  • the fan is arranged in the shell and is used to promote indoor air to enter the shell and exchange heat with the heat exchanger, and then blow it out from the air outlet through the air duct.
  • the vertical air conditioner indoor unit further includes: a driving mechanism, arranged in the air duct, for supporting the air guide and driving the air guide to move back and forth, so as to adjust the air outlet area of the annular air outlet gap.
  • a driving mechanism arranged in the air duct, for supporting the air guide and driving the air guide to move back and forth, so as to adjust the air outlet area of the annular air outlet gap.
  • the vertical air conditioner indoor unit further includes: a plurality of guide vanes arranged in the air duct for combing the airflow flowing into the annular air outlet gap.
  • a plurality of guide vanes are arranged such that they are evenly spaced along a direction perpendicular to the plane where the air outlet is located, and are arranged radially on the inner side of the tapered portion of the air duct, so as to oppose the airflow flowing into the annular air outlet gap at the air outlet Carding in the radial direction.
  • the inner wall of the air duct near the air outlet is tapered, so that the flow cross section becomes gradually smaller along the airflow direction.
  • the air guide inside the air duct and the tapered part of the inner wall of the air duct define an annular air outlet gap. In this way, when the airflow (heat exchange airflow, fresh air airflow, etc.) entering the air duct from the air inlet flows to the air outlet, it will be blown to the inner wall of the air duct under the guidance of the air guide, and finally flow into the annular air outlet gap. . Since the air outlet section of the annular air outlet gap is smaller, the air outlet speed is higher.
  • the high-speed airflow gradually converges toward the center of the airflow during the outward flow process, forming a convergence effect, making the wind stronger and the air supply distance longer, which satisfies the distance of the vertical air conditioner indoor unit.
  • Distance supply air and strong supply air demand are provided.
  • the deflector not only defines the annular air outlet gap with the inner wall of the air duct, so as to increase the wind speed, but also can guide the airflow to the annular air outlet gap, or force the airflow toward The annular air outlet gap flows to force the air flow to accept the polymerization guidance of the tapered inner wall to form the final polymerization air outlet effect.
  • the invention realizes a very good aggregated air supply effect only by improving the shape of the air duct and adding a deflector, the structure is very simple, the cost is low, the mass production promotion is easy to realize, and the concept is very clever.
  • the present invention also specially designs the shape of the deflector, so that the deflector consists of a first arc segment that is smoothly connected in sequence, a second arc segment that is concave, and a third arc that is convex.
  • the guide line of the fourth arc section, the convex fourth arc section and the convex fifth arc section are formed by rotating around the horizontal central axis once, so that the flow resistance during the air flow is smaller, the energy loss and the noise are smaller, and at the same time
  • the convergence effect is more obvious, which improves the aggregate air supply effect of the air outlet.
  • the present invention specially designs the shape of the air duct so that the streamline shape of the inner wall of the tapered part of the air duct is the same as the line shape of the diversion line of the opposite part of the deflector, which can further reduce the wind resistance and increase the
  • the airflow flows from the bottom to the upper guide member, so that the airflow in the bottom section of the annular air outlet gap drives the airflow in the remaining sections to flow upward and forward together.
  • the rising and flowing cold air can fully avoid the human body, and then fall down after reaching the highest point, realizing a "shower-like" cooling experience and improving user comfort.
  • the upward blowing of the airflow is also conducive to increasing the air supply distance.
  • Fig. 1 is a schematic structural diagram of a vertical air conditioner indoor unit according to an embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view of the air duct and the air guide of the vertical air conditioner indoor unit shown in Fig. 1.
  • Fig. 3 is another schematic cross-sectional view of the air duct and the air guide of the vertical air conditioner indoor unit shown in Fig. 1.
  • Fig. 4 is a schematic cross-sectional view of the air guide of the vertical air conditioner indoor unit shown in Fig. 1.
  • Fig. 5 is a schematic structural diagram of a vertical air conditioner indoor unit according to another embodiment of the present invention.
  • Fig. 6 is a schematic cross-sectional view of the air duct and the air guide of the vertical air conditioner indoor unit shown in Fig. 5.
  • Fig. 7 is an exploded exploded schematic diagram of the vertical air conditioner indoor unit shown in Fig. 1.
  • the embodiment of the present invention provides a vertical air conditioner indoor unit, which is an indoor part of a split air conditioner, used to adjust indoor air, such as cooling/heating, dehumidification, introducing fresh air, and so on.
  • the vertical air conditioner indoor unit may be an indoor unit of an air conditioner that performs cooling/heating by a vapor compression refrigeration cycle system.
  • Fig. 1 is a schematic structural diagram of a vertical air conditioner indoor unit according to an embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view of the air duct 20 and the air guide 30 of the vertical air-conditioning indoor unit shown in Fig. 1.
  • Fig. 3 is another schematic cross-sectional view of the air duct 20 and the air guide 30 of the vertical air conditioner indoor unit shown in Fig. 1.
  • Fig. 4 is a schematic cross-sectional view of the air guide 30 of the vertical air conditioner indoor unit shown in Fig. 1.
  • Fig. 5 is a schematic structural diagram of a vertical air conditioner indoor unit according to another embodiment of the present invention.
  • 6 is a schematic cross-sectional view of the air duct 20 and the air guide 30 of the vertical air-conditioning indoor unit shown in FIG. 5.
  • Fig. 7 is an exploded exploded schematic diagram of the vertical air conditioner indoor unit shown in Fig. 1.
  • the vertical air conditioner indoor unit of the embodiment of the present invention may generally include a housing 10, an air duct 20 and a flow guide 30.
  • the housing 10 has an air blowing port 11.
  • the air blowing port 11 is used to blow the air flow in the housing 10 into the room to adjust the indoor air.
  • the aforementioned airflow may be cold air produced in the cooling mode of the vertical air conditioner indoor unit, hot air produced in the heating mode, or fresh air introduced in the fresh air mode.
  • the number of air supply openings 11 may be one or more.
  • the housing 10 can also be provided with an air inlet 12 for introducing indoor air.
  • the casing 10 may be defined by a front casing 101 and a rear casing 102.
  • the air duct 20 is arranged in the housing 10 and has an air inlet 22 and an air outlet 21 facing the air outlet 11 for guiding the airflow in the housing 10 to the air outlet 11, and the air duct 20 is adjacent to the air outlet 21.
  • the inner wall is in a tapered shape where the cross-section of the flow becomes smaller and smaller along the direction of the air flow. In other words, near the air outlet 21, along the airflow direction, the flow cross section of the air duct 20 gradually becomes smaller.
  • the air guide 30 is arranged in the air duct 20 and its tapered portion 150 defines an annular air outlet gap 15 for guiding the airflow to the annular air outlet gap 15 so that the airflow is gradually directed toward the center of the airflow under the guidance of the inner wall of the air duct 20 It aggregates and flows out of the air outlet 21 and the air outlet 11 in sequence ( Figures 2 and 3 use arrows to indicate the direction of the airflow).
  • the guide member 30 is formed by the guide wire rotating one circle around the horizontal central axis, the guide wire includes a first arc section (a-b section) that is convex and a second arc that is inwardly connected smoothly.
  • the air supply port 11 is circular
  • the air outlet 21 is circular
  • the longitudinal section of the inner wall of the air duct 20 adjacent to the air outlet 21 is also circular
  • the annular air outlet gap 15 is also circular. Annular air outlet gap 15.
  • the inner wall of the air duct 20 near the air outlet 21 is tapered, so that the flow cross section gradually becomes smaller along the airflow direction.
  • the air guide 30 inside the air duct 20 and the tapered portion 150 of the inner wall of the air duct 20 define an annular air outlet gap 15. In this way, when the air flow (heat exchange air flow, fresh air flow, etc.) entering the air duct 20 from the air inlet 12 flows to the air outlet 21, it will be blown to the inner wall of the air duct 20 under the guidance of the air guide 30, and finally flow to Within the annular air outlet gap 15. Since the air outlet section of the annular air outlet gap 15 is smaller, the air outlet speed thereof is higher.
  • the high-speed airflow gradually converges toward the center of the airflow during the outward flow process, forming a convergence effect, making the wind stronger and the air supply distance longer, which satisfies the need for vertical air conditioning indoor units.
  • the air guide 30 not only defines the annular air outlet gap 15 with the inner wall of the air duct 20 to achieve the effect of increasing the wind speed, but also can precisely guide the airflow to the annular air outlet gap 15.
  • the airflow is forced to flow toward the annular air outlet gap 15, so as to force the airflow to accept the polymerization guidance of the tapered inner wall to form the final aggregated air outlet effect.
  • the present invention achieves a very good aggregated air supply effect only by improving the shape of the air duct 20 and adding a deflector 30.
  • the structure is very simple, the cost is low, mass production and promotion are easy to realize, and the concept is very clever.
  • the airflow when the airflow flows to the deflector 30, it first flows through the first arc section (section ab), because the first arc section (section ab) is a convex design , So that the airflow is easily guided by the deflector 30. After that, it flows through the second arc-shaped section (section bc). Because the second arc-shaped section (section bc) has a concave design, the air flow speed is accelerated, and it quickly rushes to the inner wall of the air duct 20 away from the central axis of the air outlet 21 .
  • the third arc section (cd section) is a convex design, which is closer to the tapered inner wall of the air duct 20, so that the air flow is guided by the tapered inner wall of the air duct 20 to approach the central axis of the air outlet 21 During the turning process, the resistance of the third arc section (cd section) is smaller.
  • the fifth arc-shaped section (ef section) is designed to be convex as the outer end surface of the air guide 30. Designing it into an outer convex shape can make the air guide 30 itself have a certain effect of converging the air flow forward.
  • the fourth arc section (de section) is used as the transition section of the third arc section (cd section) and the fifth arc section (ef section).
  • the shape of the flow guide 30 is specially designed, so that the flow guide 30 has a symmetrical conical shape as a whole, and is composed of a first arc-shaped section (a-b section) that is successively smoothly connected and convex.
  • the concave second arc section (bc section), the convex third arc section (cd section), the convex fourth arc section (de section) and the convex fifth arc section (ef section) is formed by rotating around the horizontal central axis once, so that the flow resistance during the air flow is smaller, the energy loss and the noise are smaller, and the convergence effect is more obvious, and the aggregate air supply effect of the air outlet 21 is improved.
  • the embodiment of the present invention optimizes the size relationship of each arc segment to enhance the above effect.
  • the radius of the first arc segment (segment ab) is smaller than the radius of the third arc segment (segment cd).
  • the first arc segment (segment ab) and the third arc segment (cd) The ratio of the radii of the section) is between 0.4 and 0.6, for example, the ratio of the radii is 0.4, 0.5, 0.6.
  • the radius of the second arc-shaped section (bc section) is greater than the radius of the third arc-shaped section (cd section), preferably the ratio of the radius of the second arc-shaped section (bc section) to the third arc-shaped section (cd section) Between 2.2 and 2.7, for example, the ratio of radii is 2.2, 2.5, 2.7.
  • the radius of the fourth arc-shaped segment (de segment) is less than or equal to the radius of the first arc-shaped segment (ab segment), preferably the radius of the fourth arc-shaped segment (de segment) and the third arc-shaped segment (cd segment)
  • the ratio is between 0.2 and 0.4, for example, the ratio of the radii is 0.2, 0.3, 0.4.
  • the radius of the fifth arc section (ef section) is greater than the radius of the third arc section (cd section), preferably the ratio of the radius of the fifth arc section (ef section) to the third arc section (cd section) Between 1.8 and 3.0, for example, the ratio of radii is 1.8, 2.5, 3.0.
  • the width D1 of the widest part of the air guide 30 may be greater than or equal to the width D2 of the air outlet 21.
  • D 1 be greater than or equal to ensure convergence effect significant air flow D2, while a high aesthetic appearance throughout the vertical air conditioning indoor unit.
  • the streamline shape of the inner wall of the tapered portion 150 of the air duct 20 is the same as the line shape of the diversion line of the opposite portion of the flow guide 30.
  • the streamline of the bottom section of the tapered portion 150 mainly includes a mn section and an np section, where the line type of the mn section is in front of the fourth arc section (de section) of the air guide 30
  • the line type of the section is the same, and the line type of the np section is the same as the line type of the rear section of the fifth arc-shaped section (ef section) of the air guide 30.
  • the air inlet 22 is located lower than the air outlet 21, so that the airflow flows from the bottom to the top of the guide member 30, so that the airflow in the bottom section of the annular air outlet gap 15 drives the airflow in the remaining sections to rise forward and upward. flow.
  • the bottom section of the annular air outlet gap 15 is upstream of the air flow compared to other sections, so that the air flow will flow more smoothly into the bottom region of the annular air outlet gap 15 first. part.
  • the bottom section of the annular wind gap 15 has larger air volume and stronger wind than the other sections.
  • the strong airflow at the bottom has an advantage in the impact and polymerization process with the upper and lateral sides of the annular air outlet gap 15, and more effectively drives the airflow to flow upward and forward together to achieve a better upward air supply effect.
  • the shape of the air duct 20 is specially designed so that the streamline shape of the inner wall of the tapered portion 150 of the air duct 20 is the same as the line shape of the diversion line of the opposite part of the deflector 30, which can further reduce the wind resistance.
  • the airflow flows from the bottom to the upper part of the guide member 30, so that the airflow at the bottom section of the annular air outlet gap 15 drives the airflow of the remaining sections together Flow upward and forward.
  • the rising and flowing cold air can fully avoid the human body, and then fall down after reaching the highest point, realizing a "shower-like" cooling experience and improving user comfort.
  • the upward blowing of the airflow is also conducive to increasing the air supply distance.
  • the air inlet 12 may be opened on the left and right side walls and/or the rear wall of the lower part of the housing 10.
  • the vertical air conditioner indoor unit may further include a heat exchanger 50 and a fan 60.
  • the heat exchanger 50 is arranged in the housing 10.
  • the fan 60 is also arranged in the housing 10 to encourage indoor air to enter the housing 10 and exchange heat with the heat exchanger 50, and then blow out from the air outlet 11 through the air duct 20. It can be understood that the heat exchanger 50 and the fan 60 can be selected and set as required, and only an exemplary description is provided here.
  • the air duct 20 may include a front case 201, a rear case 202 and a water receiving tray 203.
  • the rear and lower sides of the front shell 201 are open, and the air outlet 21 is opened on the front shell 201.
  • the front and lower sides of the rear shell 202 are open, and the rear shell 202 is buckled on the rear side of the front shell 201 to form a structure with an open lower side.
  • the drain pan 203 is buckled on the lower sides of the front shell 201 and the rear shell 202 to close the open openings on the lower sides thereof.
  • the air inlet 22 of the air duct 20 is opened on the water receiving tray 203.
  • the air duct 20 is decomposed into three parts, a front shell 201, a rear shell 202, and a water receiving tray 203, so that each part can be independently processed and manufactured to better meet performance requirements. As shown in FIG.
  • the heat exchanger 50 can be arranged inside the air duct 20 and installed on the water receiving tray 203.
  • the heat exchanger 50 can be of a two-stage structure. The two heat exchange sections are flat and the top ends of the two are connected. On both sides.
  • the inverted "V"-shaped structure of the heat exchanger 50 can make it have a sufficiently large heat exchange area, and make it more fully contact with the airflow flowing upward from the air inlet 22, and the heat exchange efficiency is higher.
  • the water tray 203 is used to carry the heat exchanger 50 on the one hand, and on the other hand to receive the condensed water dripping from the surface of the heat exchanger 50 during air conditioning and cooling.
  • the air duct 20 can be located in the upper middle of the housing 10, and one or more air inlets 12 are opened at the lower part of the housing 10, for example, the air inlet 12 is opened on the rear side of the housing 10 as shown in FIG.
  • the fan 60 can be installed below the air duct 20 and facing the air inlet 22 so that the airflow entering the lower space of the housing 10 from the air inlet 12 is blown into the air duct 20.
  • the fan 60 may be a double-suction centrifugal fan as shown in Fig. 7, or may also be another type of fan. It can be understood that when the fan 60 is a double-suction centrifugal fan, a volute 61 and a motor 62 are matched.
  • the vertical air conditioner indoor unit further includes a driving mechanism (not shown in the figure).
  • the driving mechanism is installed in the air duct 20 to support the air guide 30 and drive the air guide 30 to move forward and backward to open and close the air outlet 21 or adjust the air outlet area of the annular air outlet gap 15, so that the annular air outlet gap 15
  • the air output, wind speed and air supply distance are adjustable, which enriches the air supply adjustment modes.
  • the driving mechanism can be an electric telescopic rod. For example, in FIG.
  • the distance d1 between the widest part of the air guide 30 and the inner wall of the non-tapered portion of the air duct 20 is marked, and the section of the air guide 30 that has the same line shape as the tapered part 150 of the air duct 20
  • the vertical air conditioner indoor unit further includes: a plurality of guide vanes 40 arranged in the air duct 20 for combing the airflow flowing into the annular air outlet gap 15.
  • a plurality of guide vanes 40 arranged in the air duct 20 for combing the airflow flowing into the annular air outlet gap 15.
  • a plurality of guide vanes 40 are evenly spaced along the direction perpendicular to the plane where the air outlet 21 is located and radially arranged on the inner surface of the tapered portion 150 of the air duct 20 to oppose the flow into the annular air outlet gap 15 The air flow is combed in the radial direction of the air outlet 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Abstract

一种立式空调室内机,包括:壳体(10);风道(20),风道(20)临近出气口(22)处的内壁为过流截面沿气流方向逐渐变小的渐缩状;和导流件(30),设置在风道(20)内且与其渐缩部分(150)限定出一环形出风间隙(15),用于将气流导向环形出风间隙(15)以使气流在风道(20)内壁引导下逐渐向气流中心方向聚合并依次流出出气口(22)和送风口(11);其中导流件(30)是由导流线绕水平中心轴线旋转一周形成,导流线包括依次光滑相接的外凸的第一弧形段(ab段)、内凹的第二弧形段(bc段)、外凸的第三弧形段(cd段)、外凸的第四弧形段(de段)和外凸的第五弧形段(ef段);该立式空调室内机风力更加强劲,送风距离更远。

Description

立式空调室内机 技术领域
本发明涉及空气调节技术领域,特别涉及一种立式空调室内机。
背景技术
相比于壁挂式空调室内机,立式空调室内机的匹数更大,制冷制热能力更强,通常放置客厅等面积较大的室内空间中。
由于立式空调室内机的覆盖面积更大,需要其具有更强的远距离送风能力和强劲出风能力。现有产品为实现远距离送风,通常采用提高风机转速,以提高风速和风量的方式。但风机转速的提高会导致空调功率增加、噪声增大等一系列问题,影响用户体验。
发明内容
本发明的目的是要提供一种克服上述问题或者至少部分地解决上述问题的立式空调室内机,以实现更好的远距离送风和强劲送风效果。
本发明的进一步的目的是要使立式空调室内机具有上扬出风效果。
特别地,本发明提供了一种立式空调室内机,包括:
壳体,其具有送风口;
风道,设置在壳体内,具有进气口和朝向送风口的出气口,用于将壳体内的气流引导至送风口处,风道临近出气口处的内壁为过流截面沿气流方向逐渐变小的渐缩状;和
导流件,设置在风道内且与其渐缩部分限定出一环形出风间隙,用于将气流导向环形出风间隙以使气流在风道内壁引导下逐渐向气流中心方向聚合并依次流出出气口和送风口;其中
导流件是由导流线绕水平中心轴线旋转一周形成,导流线包括依次光滑相接的外凸的第一弧形段、内凹的第二弧形段、外凸的第三弧形段、外凸的第四弧形段和外凸的第五弧形段,并且第一弧形段、第二弧形段、第三弧形段在从后向前方向逐渐远离水平中心轴线,第五弧形段的终点与第一弧形段的起点同处于水平中心轴线上。
可选地,第一弧形段的半径小于第三弧形段的半径;
第二弧形段的半径大于第三弧形段的半径;
第四弧形段的半径小于等于第一弧形段的半径;
第五弧形段的半径大于第三弧形段的半径。
可选地,第一弧形段与第三弧形段的半径之比在0.4至0.6之间;
第二弧形段与第三弧形段的半径之比在2.2至2.7之间;
第四弧形段与第三弧形段的半径之比在0.2至0.4之间;
第五弧形段与第三弧形段的半径之比在1.8至3.0之间。
可选地,导流件的最宽处的宽度大于等于出气口的宽度。
可选地,风道的渐缩部分的内壁的流线形状与导流件相对部分的导流线的线型相同。
可选地,进气口的位置低于出气口,以使气流从下至上流向导流件,以便环形出风间隙底部区段的气流带动其余区段的气流共同朝前上方上扬流动。
可选地,立式空调室内机还包括:
换热器,设置于壳体内;和
风机,设置于壳体内,用于促使室内空气进入壳体与换热器进行换热,然后经风道从送风口吹出。
可选地,立式空调室内机还包括:驱动机构,设置于风道内,用于支撑导流件并驱动导流件前后移动,以调节环形出风间隙的出风面积。
可选地,立式空调室内机还包括:多个导叶,设置于风道内,用于对流入环形出风间隙的气流进行梳理。
可选地,多个导叶配置成:沿垂直于出气口所在平面的方向均匀间隔且呈辐射状设置于风道的渐缩部分的内侧面,以对流入环形出风间隙的气流在出气口的径向方向上进行梳理。
本发明的立式空调室内机中,风道临近其出气口处的内壁为渐缩状,使过流截面沿气流方向逐渐变小。并且,风道内部的导流件与风道内壁的渐缩部分限定出了一个环形出风间隙。如此一来,从进风口进入风道的气流(换热气流、新风气流等)流向出气口的过程中,将在导流件引导下将吹向风道内壁,最终流至环形出风间隙内。由于环形出风间隙的出风截面更小,使得其出风速度更高。高速气流在风道渐缩状内壁的引导下,在向外流动过程中逐渐向气流中心方向聚合,形成汇聚效应,使得风力更加强劲,送风距离更远,满足了立式空调室内机对远距离送风和强劲送风的需求。
本发明的立式空调室内机中,导流件不仅与风道内壁限定出了环形出风间隙,达到提升风速的作用,同时也恰好能将气流导向环形出风间隙,或者说是强迫气流朝环形出风间隙流动,以迫使气流接受渐缩状内壁的聚合引导,形成最终的聚合出风效果。本发明仅通过改进风道形状和增设一导流件就实现了非常好的聚合送风效果,其结构非常简单,而且成本较低,易于实现量产推广,构思非常巧妙。
本发明还对导流件的形状进行了特别设计,使得导流件由包括依次光滑相接的外凸的第一弧形段、内凹的第二弧形段、外凸的第三弧形段、外凸的第四弧形段和外凸的第五弧形段的导流线绕水平中心轴线旋转一周形成,使得气流流动过程中的流动阻力更小,能量损耗和噪声更小,同时汇聚效应更明显,提升了出气口的聚合送风效果。
进一步地,本发明对风道形状进行特别设计,使风道的渐缩部分的内壁的流线形状与导流件相对部分的导流线的线型相同,能进一步减少出风阻力,提升出风强度,同时通过将进气口的位置低于出气口,使气流从下至上流向导流件,以便环形出风间隙底部区段的气流带动其余区段的气流共同朝前上方上扬流动。在制冷模式时,上扬流动的冷风可充分避开人体,达到最高点后再向下散落,实现一种“淋浴式”制冷体验,提高用户使用舒适性。并且,气流上扬吹出也有利于提升其送风距离。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的立式空调室内机的结构示意图。
图2是图1所示立式空调室内机的风道和导流件的一个剖视示意图。
图3是图1所示立式空调室内机的风道和导流件的另一个剖视示意图。
图4是图1所示立式空调室内机的导流件的剖视示意图。
图5是根据本发明另一个实施例的立式空调室内机的结构示意图。
图6是图5所示立式空调室内机的风道和导流件的一个剖视示意图。
图7是图1所示立式空调室内机的爆炸分解示意图。
具体实施方式
本发明实施例提供了一种立式空调室内机,为分体式空调器的室内部分,用于调节室内空气,例如制冷/制热、除湿、引入新风等等。例如,立式空调室内机可为通过蒸气压缩制冷循环系统进行制冷/制热的空调器的室内机。
图1是根据本发明一个实施例的立式空调室内机的结构示意图。图2是图1所示立式空调室内机的风道20和导流件30的一个剖视示意图。图3是图1所示立式空调室内机的风道20和导流件30的另一个剖视示意图。图4是图1所示立式空调室内机的导流件30的剖视示意图。图5是根据本发明另一个实施例的立式空调室内机的结构示意图。图6是图5所示立式空调室内机的风道20和导流件30的一个剖视示意图。图7是图1所示立式空调室内机的爆炸分解示意图。
如图1至图4所示,本发明实施例的立式空调室内机一般性地可包括壳体10、风道20和导流件30。壳体10上具有送风口11。送风口11用于将壳体10内的气流吹向室内,以调节室内空气。前述的气流可为立式空调室内机在制冷模式下制取的冷风,在制热模式下制取的热风,或者在新风模式下引入的新风等。送风口11的数量可为一个,也可为多个。壳体10上还可开设有进风口12,以用于引入室内空气。壳体10可由前机壳101和后机壳102限定出。
风道20设置在壳体10内,具有进气口22和朝向送风口11的出气口21,用于将壳体10内的气流引导至送风口11处,风道20临近出气口21处的内壁为过流截面沿气流方向逐渐变小的渐缩状。换言之,在临近出气口21处,沿着气流方向,风道20的过流截面逐渐变小。
导流件30设置在风道20内且与其渐缩部分150限定出一环形出风间隙15,用于将气流导向环形出风间隙15以使气流在风道20内壁引导下逐渐向气流中心方向聚合并依次流出出气口21和送风口11(图2和图3用箭头示意了气流走向)。参考图4,导流件30是由导流线绕水平中心轴线旋转一周形成,导流线包括依次光滑相接的外凸的第一弧形段(ab段)、内凹的第二弧形段(bc段)、外凸的第三弧形段(cd段)、外凸的第四弧形段(de段) 和外凸的第五弧形段(ef段),并且第一弧形段(ab段)、第二弧形段(bc段)、第三弧形段(cd段)在从后向前方向逐渐远离水平中心轴线,第五弧形段(ef段)的终点与第一弧形段(ab段)的起点同处于水平中心轴线上。在图1所示的实施例中,送风口11为圆形,出气口21为圆形,风道20的临近出气口21处的内壁纵截面也为圆形,环形出风间隙15也为圆环形出风间隙15。
本发明实施例的立式空调室内机中,风道20临近其出气口21处的内壁为渐缩状,使过流截面沿气流方向逐渐变小。并且,风道20内部的导流件30与风道20内壁的渐缩部分150限定出了一个环形出风间隙15。如此一来,从进风口12进入风道20的气流(换热气流、新风气流等)流向出气口21的过程中,将在导流件30引导下将吹向风道20内壁,最终流至环形出风间隙15内。由于环形出风间隙15的出风截面更小,使得其出风速度更高。高速气流在风道20渐缩状内壁的引导下,在向外流动过程中逐渐向气流中心方向聚合,形成汇聚效应,使得风力更加强劲,送风距离更远,满足了立式空调室内机对远距离送风和强劲送风的需求。
本发明实施例的立式空调室内机中,导流件30不仅与风道20内壁限定出了环形出风间隙15,达到提升风速的作用,同时也恰好能将气流导向环形出风间隙15,或者说是强迫气流朝环形出风间隙15流动,以迫使气流接受渐缩状内壁的聚合引导,形成最终的聚合出风效果。本发明仅通过改进风道20形状和增设一导流件30就实现了非常好的聚合送风效果,其结构非常简单,而且成本较低,易于实现量产推广,构思非常巧妙。
继续参考图2和图4,本发明实施例中,气流流动至导流件30时,先流经第一弧形段(ab段),由于第一弧形段(ab段)为外凸设计,使得气流容易受导流件30引导。之后流经第二弧形段(bc段),由于第二弧形段(bc段)为内凹设计,使气流流速加快,以远离出气口21的中心轴线地快速冲向风道20的内壁。第三弧形段(cd段)为外凸设计,以与风道20渐缩状内壁的走向更加接近,使得气流在被风道20的渐缩状内壁引导转而朝接近出气口21中心轴线转向过程中,受到第三弧形段(cd段)的阻力更小。第五弧形段(ef段)为外凸设计是作为导流件30的外端面将其设计成外凸形状可以使导流件30本身具有一定的将气流向前汇聚的效果。第四弧形段(de段)作为第三弧形段(cd段)和第五弧形段(ef段)的过渡区段,为外凸形 状,以便气流从第三弧形段(cd段)光滑过渡至第五弧形段(ef段)。本发明实施例通过对导流件30的形状进行了特别设计,使得导流件30整体为对称的类圆锥形,由包括依次光滑相接的外凸的第一弧形段(ab段)、内凹的第二弧形段(bc段)、外凸的第三弧形段(cd段)、外凸的第四弧形段(de段)和外凸的第五弧形段(ef段)的导流线绕水平中心轴线旋转一周形成,使得气流流动过程中的流动阻力更小,能量损耗和噪声更小,同时汇聚效应更明显,提升了出气口21的聚合送风效果。
进一步地,本发明实施例通过对各弧形段的大小关系进行优化,以强化上述效果。在一些实施例中,第一弧形段(ab段)的半径小于第三弧形段(cd段)的半径,优选可使第一弧形段(ab段)与第三弧形段(cd段)的半径之比在0.4至0.6之间,例如半径之比为0.4、0.5、0.6。第二弧形段(bc段)的半径大于第三弧形段(cd段)的半径,优选可使第二弧形段(bc段)与第三弧形段(cd段)的半径之比在2.2至2.7之间,例如半径之比为2.2、2.5、2.7。第四弧形段(de段)的半径小于等于第一弧形段(ab段)的半径,优选可使第四弧形段(de段)与第三弧形段(cd段)的半径之比在0.2至0.4之间,例如半径之比为0.2、0.3、0.4。第五弧形段(ef段)的半径大于第三弧形段(cd段)的半径,优选可使第五弧形段(ef段)与第三弧形段(cd段)的半径之比在1.8至3.0之间,例如半径之比为1.8、2.5、3.0。
如图2所示,还可使导流件30的最宽处的宽度D1大于等于出气口21的宽度D2。发明人通过理论分析并经试验证实,D 1大于等于D2时可保证明显的气流汇聚效果,同时整个立式空调室内机的外形美观度高。
继续参考图2和图4,在一些实施例中,风道20的渐缩部分150的内壁的流线形状与导流件30相对部分的导流线的线型相同。图2中,以渐缩部分150的底部区段的流线为例,主要包括mn段和np段,其中mn段的线型与导流件30的第四弧形段(de段)的前部区段的线型相同,np段的线型与导流件30的第五弧形段(ef段)的后部区段的线型相同。参考图2,进气口22的位置低于出气口21,以使气流从下至上流向导流件30,以便环形出风间隙15底部区段的气流带动其余区段的气流共同朝前上方上扬流动。通过将进气口22的位置低于出气口21,这样一来,环形出风间隙15底部区段相比其他区段处于气流上游,使气流会更加顺畅地先流入环形出风间隙15底部区段。基于以上两点设计,环形出风间隙15底部区段相比其余区段的风 量更大,风力更强。底部强力气流在与环形出风间隙15上部和横向两侧气流的冲击、聚合过程中占据优势,更加有力地带动气流整体共同朝前上方上扬流动,实现更好的上扬送风效果。本发明实施例对风道20形状进行特别设计,使风道20的渐缩部分150的内壁的流线形状与导流件30相对部分的导流线的线型相同,能进一步减少出风阻力,提升出风强度,同时通过将进气口22的位置低于出气口21,使气流从下至上流向导流件30,以便环形出风间隙15底部区段的气流带动其余区段的气流共同朝前上方上扬流动。在制冷模式时,上扬流动的冷风可充分避开人体,达到最高点后再向下散落,实现一种“淋浴式”制冷体验,提高用户使用舒适性。并且,气流上扬吹出也有利于提升其送风距离。
在一些实施例中,可使进风口12开设于壳体10的下部的左右侧壁和/或后壁。立式空调室内机还可包括换热器50和风机60。换热器50设置于壳体10内。风机60也设置于壳体10内,用于促使室内空气进入壳体10与换热器50进行换热,然后经风道20从送风口11吹出。可以理解,换热器50和风机60可以依照需要进行选择和设置,在此仅进行示例性说明。如图7中所示,风道20可包括前壳201、后壳202和接水盘203。前壳201的后侧和下侧敞开,出气口21开设于前壳201上。后壳202的前侧和下侧敞开,后壳202罩扣在前壳201后侧,共同构成下侧敞开的结构。接水盘203罩扣在前壳201和后壳202的下侧,以封闭其下侧的敞开口。风道20的进气口22开设于接水盘203上。将风道20分解为前壳201、后壳202和接水盘203三部分,方便对各部分独立加工制作,以更好地满足性能需求。如图7所示,可将换热器50设置在风道20内部,且安装于接水盘203上。换热器50可为两段式结构,两个换热段均为平板状且两者顶端相接,两个换热段的底端置于接水盘203上且分别位于进气口22的两侧。换热器50的这种倒“v”形结构可使其具有足够大的换热面积,且使其与进气口22向上流动的气流的接触更加充分,换热效率更高。接水盘203一方面用于承载换热器50,另一方面用于承接空调制冷时由换热器50表面滴落的冷凝水。可使风道20处于壳体10的中上部,壳体10的下部开设有一个或多个进风口12,例如图7所示将进风口12开设于壳体10的后侧。可使风机60安装于风道20下方,且面对进气口22,以便将从进风口12进入壳体10下部空间的气流吹向风道20内部。风机60可如图7所示的双吸离心风机,或者也可为其他形式的风 机。可以理解,当风机60为双吸离心风机时,配套设置有蜗壳61和电机62。
在一些实施例中,立式空调室内机还包括驱动机构(图中未示出)。驱动机构安装于风道20,用于支撑导流件30并驱动导流件30前后平移,以开闭出气口21或调节环形出风间隙15的出风面积,从而使环形出风间隙15的出风量、风速和送风距离可调,丰富了送风调节模式。驱动机构可为电动伸缩杆。例如图2中标示出导流件30的最宽处与风道20的非渐缩部分的内壁的距离d1,以及导流件30的与风道20的渐缩部分150线型相同的区段与风道20的渐缩部分150的内壁的距离d2,其中d2和d1的大小之比可以为0.125-2;当移动导流件30使d1>d2时,出风集束更明显,送风距离更远;当移动导流件30使d1<d2时,出风较为扩散,送风风量大。
现参考图5和图6,在一些实施例中,立式空调室内机还包括:多个导叶40,设置于风道20内,用于对流入环形出风间隙15的气流进行梳理。在出气口21出风时,两侧的出风没有受到有效引导,可能会导致上扬势头过大,整体出风较为散乱,通过设置导叶40后,气流会被再次被梳理,使出风集中度更高,风向上扬更合理。为了进一步增强梳理效果,多个导叶40沿垂直于出气口21所在平面的方向均匀间隔且呈辐射状设置于风道20的渐缩部分150的内侧面,以对流入环形出风间隙15的气流在出气口21的径向方向上进行梳理。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种立式空调室内机,包括:
    壳体,其具有送风口;
    风道,设置在所述壳体内,具有进气口和朝向所述送风口的出气口,用于将所述壳体内的气流引导至所述送风口处,所述风道临近所述出气口处的内壁为过流截面沿气流方向逐渐变小的渐缩状;和
    导流件,设置在所述风道内且与其渐缩部分限定出一环形出风间隙,用于将气流导向所述环形出风间隙以使气流在所述风道内壁引导下逐渐向气流中心方向聚合并依次流出所述出气口和所述送风口;其中
    所述导流件是由导流线绕水平中心轴线旋转一周形成,所述导流线包括依次光滑相接的外凸的第一弧形段、内凹的第二弧形段、外凸的第三弧形段、外凸的第四弧形段和外凸的第五弧形段,并且所述第一弧形段、所述第二弧形段、所述第三弧形段在从后向前方向逐渐远离所述水平中心轴线,所述第五弧形段的终点与所述第一弧形段的起点同处于所述水平中心轴线上。
  2. 根据权利要求1所述的立式空调室内机,其中
    所述第一弧形段的半径小于所述第三弧形段的半径;
    所述第二弧形段的半径大于所述第三弧形段的半径;
    所述第四弧形段的半径小于等于所述第一弧形段的半径;
    所述第五弧形段的半径大于所述第三弧形段的半径。
  3. 根据权利要求2所述的立式空调室内机,其中
    所述第一弧形段与所述第三弧形段的半径之比在0.4至0.6之间;
    所述第二弧形段与所述第三弧形段的半径之比在2.2至2.7之间;
    所述第四弧形段与所述第三弧形段的半径之比在0.2至0.4之间;
    所述第五弧形段与所述第三弧形段的半径之比在1.8至3.0之间。
  4. 根据权利要求1所述的立式空调室内机,其中
    所述导流件的最宽处的宽度大于等于所述出气口的宽度。
  5. 根据权利要求1所述的立式空调室内机,其中
    所述风道的渐缩部分的内壁的流线形状与所述导流件相对部分的所述导流线的线型相同。
  6. 根据权利要求1所述的立式空调室内机,其中
    所述进气口的位置低于所述出气口,以使气流从下至上流向所述导流件,以便所述环形出风间隙底部区段的气流带动其余区段的气流共同朝前上方上扬流动。
  7. 根据权利要求1所述的立式空调室内机,其中,还包括:
    换热器,设置于所述壳体内;和
    风机,设置于所述壳体内,用于促使室内空气进入所述壳体与所述换热器进行换热,然后经所述风道从所述送风口吹出。
  8. 根据权利要求1所述的立式空调室内机,其中,还包括:
    驱动机构,设置于所述风道内,用于支撑所述导流件并驱动所述导流件前后移动,以调节所述环形出风间隙的出风面积。
  9. 根据权利要求1所述的立式空调室内机,其中,还包括:
    多个导叶,设置于所述风道内,用于对流入所述环形出风间隙的气流进行梳理。
  10. 根据权利要求9所述的立式空调室内机,其中,
    所述多个导叶配置成:沿垂直于所述出气口所在平面的方向均匀间隔且呈辐射状设置于所述风道的渐缩部分的内侧面,以对流入所述环形出风间隙的气流在所述出气口的径向方向上进行梳理。
PCT/CN2020/127855 2020-07-16 2020-11-10 立式空调室内机 WO2021218109A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010687007.0 2020-07-16
CN202010687007.0A CN111912012B (zh) 2020-07-16 2020-07-16 立式空调室内机

Publications (1)

Publication Number Publication Date
WO2021218109A1 true WO2021218109A1 (zh) 2021-11-04

Family

ID=73280405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127855 WO2021218109A1 (zh) 2020-07-16 2020-11-10 立式空调室内机

Country Status (2)

Country Link
CN (1) CN111912012B (zh)
WO (1) WO2021218109A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115301956A (zh) * 2022-08-01 2022-11-08 深圳市华阳新材料科技有限公司 一种基于人字形导流板的3d打印分风器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912017B (zh) * 2020-07-16 2021-11-23 青岛海尔空调器有限总公司 立式空调室内机
CN114508789A (zh) * 2020-11-17 2022-05-17 青岛海尔空调器有限总公司 立式空调室内机
CN114508788B (zh) * 2020-11-17 2024-05-24 青岛海尔空调器有限总公司 立式空调室内机
CN114543168B (zh) * 2020-11-26 2023-05-16 青岛海尔空调器有限总公司 立式空调室内机
CN114543167B (zh) * 2020-11-26 2023-05-16 青岛海尔空调器有限总公司 立式空调室内机
CN216131990U (zh) * 2021-07-28 2022-03-25 青岛海尔空调器有限总公司 壁挂式空调室内机
CN114484597A (zh) * 2022-03-30 2022-05-13 江苏中博物联网科技有限公司 一种空调送风装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030000418A (ko) * 2001-06-25 2003-01-06 주식회사 엘지이아이 공기 조화기의 필터장착구조
CN101737917A (zh) * 2009-12-17 2010-06-16 四川长虹空调有限公司 柜式空调器室内机的送风结构
CN103591674A (zh) * 2013-07-16 2014-02-19 海尔集团公司 空调送风装置及立式空调
KR20150088152A (ko) * 2014-01-23 2015-07-31 주식회사 대유위니아 다방향 토출형 공기조화기
CN110762819A (zh) * 2019-12-30 2020-02-07 宁波奥克斯电气股份有限公司 一种出风口结构及空调室内机
CN210373769U (zh) * 2019-07-29 2020-04-21 广东美的制冷设备有限公司 涡环发生装置、空调室内机和空调器
CN210399151U (zh) * 2019-06-18 2020-04-24 青岛海尔空调器有限总公司 柜式空调器室内机
CN111912017A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机
CN111912015A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机
CN111912018A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE348547B (zh) * 1970-12-17 1972-09-04 Svenska Flaektfabriken Ab
CH584872A5 (zh) * 1974-10-22 1977-02-15 Luwa Ag
JP4480833B2 (ja) * 2000-01-21 2010-06-16 空研工業株式会社 吹出口装置
JP2002267246A (ja) * 2001-03-08 2002-09-18 Nippon Plast Co Ltd 風向調整装置
JP3872009B2 (ja) * 2002-12-20 2007-01-24 株式会社大林組 吹出口装置
CN2695849Y (zh) * 2004-04-23 2005-04-27 伊吉电器(浙江)有限公司 环形喷口送风式空调机组
JP2006010103A (ja) * 2004-06-22 2006-01-12 Ryonetsu Kogyo Kk ノズル空調吹出し装置
JP4792347B2 (ja) * 2006-07-31 2011-10-12 大成建設株式会社 吹出口の風向制御機構およびダクトレス換気システム
JP6048339B2 (ja) * 2013-08-01 2016-12-21 株式会社デンソー エジェクタ
JP6690256B2 (ja) * 2016-01-26 2020-04-28 株式会社富士通ゼネラル 天井埋込型空気調和機
CN206626677U (zh) * 2017-03-17 2017-11-10 广东美的制冷设备有限公司 换热器组件、空调室内机和空调器
DE102017120417A1 (de) * 2017-09-05 2019-03-07 Weber GmbH & Co. KG Kunststofftechnik + Formenbau Luftausströmer mit einstellbarer Luftaustrittsrichtung, insbesondere Flach- oder Fugenausströmer
CN208416988U (zh) * 2018-05-09 2019-01-22 青岛海尔空调器有限总公司 送风组件及具有该送风组件的柜式空调室内机
CN108534232B (zh) * 2018-05-09 2023-04-18 青岛海尔空调器有限总公司 送风组件及具有该送风组件的柜式空调室内机
CN210399178U (zh) * 2019-01-31 2020-04-24 青岛海尔空调器有限总公司 柜式空调室内机
CN209689057U (zh) * 2019-02-25 2019-11-26 广东美的制冷设备有限公司 空调室内机的风道部件及空调室内机
CN210373750U (zh) * 2019-07-29 2020-04-21 广东美的制冷设备有限公司 落地式空调室内机和空调器
CN210688635U (zh) * 2019-09-11 2020-06-05 广东美的制冷设备有限公司 风道组件及具有其的空调器
CN210832262U (zh) * 2019-10-30 2020-06-23 广东美的制冷设备有限公司 落地式空调室内机及空调器
CN210832221U (zh) * 2019-10-31 2020-06-23 广东美的制冷设备有限公司 空调室内机和空调器
CN111237873B (zh) * 2020-03-19 2024-06-25 广东美的制冷设备有限公司 涡环发生装置、空调室内机和空调器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030000418A (ko) * 2001-06-25 2003-01-06 주식회사 엘지이아이 공기 조화기의 필터장착구조
CN101737917A (zh) * 2009-12-17 2010-06-16 四川长虹空调有限公司 柜式空调器室内机的送风结构
CN103591674A (zh) * 2013-07-16 2014-02-19 海尔集团公司 空调送风装置及立式空调
KR20150088152A (ko) * 2014-01-23 2015-07-31 주식회사 대유위니아 다방향 토출형 공기조화기
CN210399151U (zh) * 2019-06-18 2020-04-24 青岛海尔空调器有限总公司 柜式空调器室内机
CN210373769U (zh) * 2019-07-29 2020-04-21 广东美的制冷设备有限公司 涡环发生装置、空调室内机和空调器
CN110762819A (zh) * 2019-12-30 2020-02-07 宁波奥克斯电气股份有限公司 一种出风口结构及空调室内机
CN111912017A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机
CN111912015A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机
CN111912018A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115301956A (zh) * 2022-08-01 2022-11-08 深圳市华阳新材料科技有限公司 一种基于人字形导流板的3d打印分风器

Also Published As

Publication number Publication date
CN111912012B (zh) 2021-11-23
CN111912012A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2021218109A1 (zh) 立式空调室内机
WO2021223393A1 (zh) 立式空调室内机
CN111912015B (zh) 立式空调室内机
WO2021223392A1 (zh) 立式空调室内机
CN111912018B (zh) 立式空调室内机
WO2021223486A1 (zh) 壁挂式空调室内机
WO2021223391A1 (zh) 立式空调室内机
WO2022012055A1 (zh) 立式空调室内机
CN111912010B (zh) 立式空调室内机
CN105352036B (zh) 空调室内机
CN111912025A (zh) 立式空调室内机
CN111912021B (zh) 立式空调室内机
WO2020147313A1 (zh) 吊顶式空调室内机
CN111912013B (zh) 立式空调室内机
CN216143843U (zh) 壁挂式空调室内机
CN114508788B (zh) 立式空调室内机
WO2022111212A1 (zh) 立式空调室内机
CN213019961U (zh) 立式空调室内机
CN213019962U (zh) 立式空调室内机
CN111912020A (zh) 立式空调室内机
WO2022111213A1 (zh) 立式空调室内机
CN111912023B (zh) 立式空调室内机
CN111912024B (zh) 立式空调室内机
CN216744632U (zh) 壁挂式空调室内机
CN210014447U (zh) 吊顶式空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933786

Country of ref document: EP

Kind code of ref document: A1