WO2021223392A1 - 立式空调室内机 - Google Patents

立式空调室内机 Download PDF

Info

Publication number
WO2021223392A1
WO2021223392A1 PCT/CN2020/127832 CN2020127832W WO2021223392A1 WO 2021223392 A1 WO2021223392 A1 WO 2021223392A1 CN 2020127832 W CN2020127832 W CN 2020127832W WO 2021223392 A1 WO2021223392 A1 WO 2021223392A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
arc
air outlet
segment
line segment
Prior art date
Application number
PCT/CN2020/127832
Other languages
English (en)
French (fr)
Inventor
李英舒
王晓刚
张蕾
王永涛
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021223392A1 publication Critical patent/WO2021223392A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/081Air-flow control members, e.g. louvres, grilles, flaps or guide plates for guiding air around a curve

Definitions

  • the invention relates to the technical field of air conditioning, in particular to a vertical air conditioner indoor unit.
  • the vertical air conditioner indoor unit Compared with the wall-mounted air conditioner indoor unit, the vertical air conditioner indoor unit has a larger horsepower and stronger cooling and heating capacity, and is usually placed in a larger indoor space such as a living room.
  • the vertical air conditioner indoor unit covers a larger area, it needs to have a stronger long-distance air supply capacity and a strong air output capacity.
  • existing products usually increase the speed of the fan to increase the wind speed and volume.
  • the increase of the fan speed will cause a series of problems such as the increase of the power of the air conditioner and the increase of noise, which will affect the user experience.
  • the purpose of the present invention is to provide a vertical air conditioner indoor unit that overcomes the above-mentioned problems or at least partially solves the above-mentioned problems, so as to achieve better long-distance air supply and strong air supply effects.
  • the further object of the present invention is to make the vertical air conditioner indoor unit have the effect of raising the wind.
  • the present invention provides a vertical air conditioner indoor unit, including:
  • the air duct is arranged in the housing and has an air inlet and a first air outlet facing the first air outlet, which is used to guide the airflow in the housing to the first air outlet; wherein the air duct is adjacent to the top edge of the first air outlet and The inner wall of the lateral side edges is a plane extending from back to front.
  • the inner wall of the air duct adjacent to the bottom edge of the first air outlet includes a bottom arc surface gradually inclined from back to front to the horizontal central axis of the first air outlet and the bottom The arc faces the bottom plane extending forward, and the position of the air inlet is lower than the first air outlet; and
  • the air guide is configured to define an annular air outlet gap with the inner wall of the air duct adjacent to the first air outlet, and is used to guide the air flow to the annular air outlet and make the air flow out of the first air outlet under the guidance of the air guide and the inner wall of the air duct.
  • the tuyere gradually converges towards the center of the airflow.
  • the outer surface of the deflector is formed by the deflector wire rotating one circle around the horizontal axis, and the deflector wire includes a first line segment that is smoothly connected in sequence, a concave second arc section, and a convex third section.
  • Arc segment, convex fourth arc segment, fifth line segment, convex sixth arc segment and seventh line segment, the first line segment, fifth line segment, and seventh line segment are straight or convex arcs
  • the second, third, and fourth arc segments are gradually away from the horizontal axis from back to front, and the end point of the seventh line segment is on the same horizontal axis as the start point of the first line segment.
  • the first line segment is a convex arc-shaped segment, and the radius is 0.4-0.6 times the radius of the third arc-shaped segment;
  • the radius of the second arc-shaped segment is 2.2-2.7 times the radius of the third arc-shaped segment
  • the radius of the fourth arc-shaped segment is 0.4-0.8 times the radius of the third arc-shaped segment
  • the fifth line segment is a straight line segment
  • the radius of the sixth arc-shaped segment is 0.2-0.4 times the radius of the third arc-shaped segment
  • the seventh line segment is a convex arc segment, and the radius is 1.8-3.0 times the radius of the third arc segment.
  • the fifth line segment is a straight line segment;
  • the flow guide is configured as: an annular surface defined by the front of the fourth arc segment, the fifth line segment, and the rear of the sixth arc segment, the bottom arc surface and the bottom plane
  • An annular air outlet gap is defined therebetween, and at least a part of the front end surface of the air guide exceeds the first air outlet.
  • the arc radius of the bottom arc surface is 0.9-1.1 times the vertical distance between the fifth line segment and the bottom plane;
  • the horizontal distance between the intersection of the tangents at both ends of the fourth arc-shaped segment and the intersection of the tangents at both ends of the sixth arc-shaped segment is 1.5-2 times the vertical distance between the fifth line segment and the bottom plane.
  • the width at the widest point of the air guide is 0.6-0.8 times the vertical distance between the plane near the top edge of the first air outlet and the bottom plane of the air duct.
  • the vertical air conditioner indoor unit further includes: a plurality of guide vanes, which are arranged at intervals on the inner wall of the air duct adjacent to the first air outlet, and each guide vane is arranged in the front-to-rear direction to counter the airflow flowing into the annular air outlet gap.
  • the first air outlet is combed in the radial direction.
  • the air duct is further configured such that: a ring is formed at the front end of the first air outlet, and the ring is gradually inclined away from the horizontal central axis of the first air outlet from back to front from the first air outlet to the first air outlet .
  • the vertical air conditioner indoor unit further includes:
  • the heat exchanger is arranged in the shell.
  • the fan is arranged in the shell, and is used to encourage indoor air to enter the shell and exchange heat with the heat exchanger, and then blow it out from the first air outlet through the air duct.
  • the first air supply opening is a circular opening opened on the upper front side of the housing, and the first air outlet is a circular opening opened on the upper front side of the air duct;
  • the middle and/or lower lateral side or both sides of the housing are also provided with elongated second air outlets, and the middle and/or lower lateral side or both sides of the air duct are also provided with second air outlets corresponding to the second air outlets. Long strip of second air outlet.
  • the air guide is configured to define an annular air outlet gap with the inner wall of the air duct adjacent to the first air outlet.
  • the inner wall of the air duct near the top edge of the first air outlet and the lateral edges on both sides is a plane extending from back to front
  • the inner wall of the air duct near the bottom edge of the first air outlet includes a level that gradually faces the first air outlet from back to front.
  • the bottom arc surface with the inclined central axis and the bottom plane extending forward from the bottom arc surface make the high-speed air flow gradually converge toward the center of the air flow during the outward flow under the guidance of the special-shaped inner wall of the air duct and the deflector.
  • the convergence effect makes the wind stronger and the air supply distance is longer, which meets the demand for long-distance air supply and strong air supply of the vertical air conditioner indoor unit.
  • the position of the air inlet is lower than the first air outlet so that the airflow flows from the bottom to the upper airflow guide.
  • the high-speed airflow rushes from the bottom to the first air outlet and has a certain upward momentum after being deflected, so the overall outlet
  • the wind will rise, achieving the effect of not blowing people directly.
  • the rising and flowing cold air can fully avoid the human body, and then fall down after reaching the highest point, realizing a "shower-like" cooling experience and improving user comfort.
  • the deflector not only defines the annular air outlet gap with the inner wall of the air duct, so as to increase the wind speed, but also can guide the airflow to the annular air outlet gap, or force the airflow toward The annular air outlet gap flows to force the airflow to accept the polymerization guidance of the inner wall of the air duct to form the final aggregate air outlet effect.
  • the invention realizes a very good aggregated air supply effect only by improving the shape of the air duct and adding a deflector, the structure is very simple, the cost is low, the mass production promotion is easy to realize, and the concept is very clever.
  • the present invention also specially designs the shape of the flow guide, so that the flow guide consists of a first line segment that is smoothly connected in sequence, a concave second arc section, and a convex third arc section.
  • Convex fourth arc section, fifth line segment, convex sixth arc section and seventh line segment are formed by rotating one round of the horizontal central axis, so that the flow resistance during the air flow is smaller and the energy The loss and noise are smaller, and the convergence effect is more obvious, which improves the aggregate air supply effect of the air outlet.
  • Fig. 1 is a schematic structural diagram of a vertical air conditioner indoor unit according to an embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view of the air duct and the air guide of the vertical air conditioner indoor unit shown in Fig. 1.
  • Fig. 3 is another schematic cross-sectional view of the air duct and the air guide of the vertical air conditioner indoor unit shown in Fig. 1.
  • Fig. 4 is a schematic cross-sectional view of the air guide of the vertical air conditioner indoor unit shown in Fig. 1.
  • Fig. 5 is a schematic structural diagram of a vertical air conditioner indoor unit according to another embodiment of the present invention.
  • Fig. 6 is a schematic cross-sectional view of the vertical air conditioner indoor unit shown in Fig. 5.
  • Fig. 7 is an exploded exploded schematic diagram of the indoor unit of the vertical air conditioner shown in Fig. 5.
  • the embodiment of the present invention provides a vertical air conditioner indoor unit, which is an indoor part of a split air conditioner, used to adjust indoor air, such as cooling/heating, dehumidification, introducing fresh air, and so on.
  • the vertical air conditioner indoor unit may be an indoor unit of an air conditioner that performs cooling/heating by a vapor compression refrigeration cycle system.
  • Fig. 1 is a schematic structural diagram of a vertical air conditioner indoor unit according to an embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view of the air duct 20 and the air guide 30 of the vertical air-conditioning indoor unit shown in Fig. 1.
  • Fig. 3 is another schematic cross-sectional view of the air duct 20 and the air guide 30 of the vertical air conditioner indoor unit shown in Fig. 1.
  • Fig. 4 is a schematic cross-sectional view of the air guide 30 of the vertical air conditioner indoor unit shown in Fig. 1.
  • Fig. 5 is a schematic structural diagram of a vertical air conditioner indoor unit according to another embodiment of the present invention.
  • Fig. 6 is a schematic cross-sectional view of the vertical air conditioner indoor unit shown in Fig. 5.
  • Fig. 7 is an exploded exploded schematic diagram of the indoor unit of the vertical air conditioner shown in Fig. 5.
  • the vertical air conditioner indoor unit of the embodiment of the present invention may generally include a housing 10, an air duct 20 and a flow guide 30.
  • the housing 10 has a first air outlet 11 on the front side.
  • the first air blowing port 11 is used to blow the air flow in the housing 10 into the room to adjust the indoor air.
  • the aforementioned airflow may be cold air produced in the cooling mode of the vertical air conditioner indoor unit, hot air produced in the heating mode, or fresh air introduced in the fresh air mode.
  • the number of the first air outlet 11 may be one or more.
  • the housing 10 can also be provided with an air inlet 13 for introducing indoor air.
  • the casing 10 can be formed by combining a front casing 101 and a rear casing 102.
  • the air duct 20 is arranged in the housing 10, and has an air inlet 23 and a first air outlet 21 facing the first air outlet 11, which is used to guide the airflow in the housing 10 to the first air outlet 11; 20.
  • the inner wall 252 near the top edge of the first air outlet 21 and the lateral side edges is a plane extending from back to front.
  • the bottom arc-shaped surface 2511 of the horizontal central axis of the air port 21 is inclined and the bottom plane 2512 extending forward from the bottom arc-shaped surface 2511, and the position of the air inlet 23 is lower than the first air outlet 21.
  • the flow cross section of the air duct 20 first gradually decreases and then maintains the minimum flow cross section until the first air outlet 21.
  • the air guide 30 is configured to define an annular air outlet gap 25 between the air duct 20 and the inner wall of the first air outlet 21, which is used to guide the air flow to the air outlet gap 25 and make the air flow on the inner wall of the air guide 30 and the air duct 20 Under the guidance, it flows out of the first air supply port 11 and gradually converges toward the center of the airflow ( Figures 2 and 3 use arrows to indicate the direction of the airflow).
  • the air guide 30 is configured to define an annular air outlet gap 25 between the air duct 20 and the inner wall of the air duct 20 adjacent to the first air outlet 21, so that it enters from the air inlet 23
  • the air flow heat exchange air flow, fresh air air flow, etc.
  • the air guide 30 will be blown toward the inner wall of the air duct 20 under the guidance of the air guide 30 and finally flow into the annular air outlet gap 25. Since the air outlet section of the annular air outlet gap 25 is smaller, the air outlet speed thereof is higher.
  • the inner wall 252 of the air duct 20 adjacent to the top edge and lateral edges of the first air outlet 21 is a plane extending from back to front, and the inner wall 251 of the air duct 20 adjacent to the bottom edge of the first air outlet 21 includes gradually facing from back to front.
  • the bottom arc-shaped surface 2511 of the horizontal central axis of the first air outlet 21 is inclined and the bottom plane 2512 extending forward from the bottom arc-shaped surface 2511 makes the high-speed air flow guided by the special-shaped inner wall of the air duct 20 and the deflector 30.
  • the air guide 30 not only defines the annular air outlet gap 25 with the inner wall of the air duct 20 to achieve the effect of increasing the wind speed, but also can precisely guide the airflow to the annular air outlet gap 25.
  • the airflow is forced to flow toward the annular air outlet gap 25, so as to force the airflow to accept the polymerization guidance of the special-shaped inner wall of the air duct to form the final aggregated air outlet effect.
  • the present invention achieves a very good aggregated air supply effect only by improving the shape of the air duct 20 and adding a deflector 30.
  • the structure is very simple, and the cost is low, it is easy to realize mass production and popularization, and the concept is very clever.
  • the outer surface of the guide member 30 is formed by the guide wire rotating one circle around the horizontal axis.
  • the guide wire includes a first line segment (segment ab) that is smoothly connected in sequence and a concave second arc segment ( bc section), convex third arc section (cd section), convex fourth arc section (de section), fifth line segment (ef section), convex sixth arc section (fg section)
  • the seventh line segment (gh segment), the first line segment (ab segment), the fifth line segment (ef segment), the seventh line segment (gh segment) are straight or convex arc segments
  • the second arc segment (section bc), the third arc section (section cd), and the fourth arc section (section de) gradually move away from the horizontal axis from back to front.
  • the end point of the seventh line segment (gh section) and the first line segment ( The starting point of paragraph ab) is on the same horizontal axis.
  • the embodiment of the present invention also specially designs the shape of the air guide 30, so that the air guide 30 consists of a first line segment (ab segment) that is smoothly connected in sequence, and a concave second arc segment (bc segment).
  • the diversion line of the line segment (gh segment) is formed by rotating around the horizontal central axis once, so that the flow resistance during the air flow is smaller, the energy loss and the noise are smaller, and the convergence effect is more obvious, which improves the aggregate air supply effect of the air outlet .
  • the air guide 30 of the embodiment of the present invention may be a solid structure or a hollow structure.
  • the embodiment of the present invention optimizes the shape and size relationship of each line segment to enhance the above effect.
  • the first line segment (ab segment) is a convex arc segment, and the radius is 0.4-0.6 times the radius of the third arc segment (cd segment), for example 0.4 Times, 0.5 times, 0.6 times;
  • the radius of the second arc section (bc section) is 2.2-2.7 times the radius of the third arc section (cd section), such as 2.2 times, 2.5 times, 2.7 times;
  • the radius of the shape section (de section) is 0.4-0.8 times the radius of the third arc section (cd section), such as 0.4 times, 0.6 times, and 0.8 times;
  • the fifth line section (ef section) is a straight line section;
  • the radius of the shape section (fg section) is 0.2-0.4 times the radius of the third arc section (cd section), such as 0.2 times, 0.3 times, 0.4 times;
  • the outer surface of the air guide 30 includes a rear end surface 37, a first annular air guiding surface 31, a second annular air guiding surface 32, a third annular air guiding surface 35, an annular outer peripheral surface 33, and an annular transition surface 36.
  • the front end surface 34 wherein the rear end surface 37 is defined by the first line segment (ab section), the first annular air guiding surface 31 is defined by the second arc-shaped section (bc section), and the second annular air guiding surface 32 is defined by the first Three arc sections (cd section) are defined, the third annular air guiding surface 35 is defined by the fourth arc section (de section), the annular outer peripheral surface 33 is defined by the fifth line section (ef section), and the annular transition surface 36 It is defined by the sixth arc section (fg section), and the front end surface 34 is defined by the seventh line section (gh section).
  • the radius is at least 5 times, for example, 5 times the radius of the third arc segment (cd segment).
  • the airflow flows to the deflector 30, it first flows through the first line segment (segment ab). Since the first line segment (segment ab) is a convex arc section, the airflow is easily guided by the deflector 30. After that, it flows through the second arc-shaped section (section bc). Because the second arc-shaped section (section bc) has a concave design, the airflow velocity is accelerated, and it quickly rushes toward the air duct 20 away from the central axis of the first air outlet 21 The inner wall.
  • the third arc section (cd section) and the fourth arc section (de section) are both convexly designed to be closer to the inner wall of the air duct 20, so that the airflow receives less resistance when flowing into the annular air outlet gap 25 .
  • the fifth line segment (ef segment) is a straight line segment, which can further sort out the wind flow line of the airflow entering the annular wind gap 25, guide the wind direction, reduce the wind resistance, increase the wind intensity, and achieve the effect of jet high-speed air delivery.
  • the seventh line segment (gh section) is a convex arc-shaped section designed to be the front end surface 34 of the air guide 30. Designing it into a convex shape can make the air guide 30 itself have a certain effect of converging the air flow forward. .
  • the sixth arc section (fg section) is used as the transition section between the fifth line section (ef section) and the seventh line section (gh section), which is a convex shape so that the air flow smoothly transitions from the fifth line section (ef section) to the seventh line section (ef section).
  • Line segment (gh segment) is a convex shape so that the air flow smoothly transitions from the fifth line section (ef section) to the seventh line section (ef section).
  • the fifth line segment (ef segment) is a straight line segment; the flow guide 30 is configured as the front part of the fourth arc-shaped segment (de segment), the fifth line segment (ef segment),
  • the annular surface defined at the rear of the sixth arc-shaped section (fg section) defines an annular air outlet gap 25 between the bottom arc-shaped surface 2511 and the bottom flat surface 2512, and at least a part of the front end surface 34 of the air guide 30 exceeds the first Air outlet 11.
  • annular air outlet gap 25 mainly by the linear structure of the fifth line segment (ef segment) and the bottom arc surface 2511 and the bottom plane 2512, a significant airflow guiding effect can be ensured; the front end surface 34 of the air guide 30 At least a part of which exceeds the first air supply port 11, can continue to converge the air flow out of the first air supply port 11 forward, so as to further enhance the effect of jetting out the air.
  • the embodiment of the present invention optimizes the size relationship between the air guide 30 and the air duct 20 to enhance the above effect.
  • the arc radius R of the bottom arc surface 2511 is 0.9-1.1 times the vertical distance d1 between the fifth line segment (ef segment) and the bottom plane 2512, such as 0.9 times, 1.0 times, 1.1 times, the bottom Too small a rounded corner of the curved surface 2511 will result in excessive wind loss, while a too large rounded corner will cause the wind to be too upward, affecting the overall wind distance.
  • the horizontal distance L4 between the intersection point of the tangent lines at both ends of the fourth arc segment (de segment) and the intersection point of the tangent lines at both ends of the sixth arc segment (fg segment) is the distance between the fifth line segment (ef segment) and the bottom plane 2512
  • the vertical distance d1 is 1.5-2 times, such as 1.5 times, 1.8 times, 2.0 times, and a sufficiently long approximate straight section can guide the wind to be straighter and further increase the wind distance.
  • the width D1 at the widest point of the air guide 30 is 0.6-0.8 times the vertical distance L3 between the plane of the air duct 20 near the top edge of the first air outlet 21 and the bottom plane 2512, such as 0.6 times, 0.7 times, 0.8 times, this size mainly affects the air volume, the smaller the multiple, the greater the air volume, the larger the multiple, the smaller the air volume.
  • the longest length L1 of the air guide 30 can also be limited.
  • the longest length L1 of the air guide 30 is the intersection point of the tangents of the two ends of the fourth arc segment (de segment) and
  • the horizontal distance L4 of the intersection of the tangents at both ends of the sixth arc-shaped section (fg section) is 2.9-3.1 times, for example, 2.9 times, 3.0 times, 3.1 times, so that the entire air guide 30 and the approximately straight section are guided together The wind came out straight ahead.
  • the longest length L1 of the air guide 30 can be defined as 0.6-0.8 times the length L2 from the rear wall to the front wall corresponding to the first air outlet 21 of the air duct 20, such as 0.6 times, 0.7 times, 0.8 times, in order to balance the wind passing through the air duct 20, and ensure the uniform wind from the top and bottom of the first air supply port 11.
  • the vertical air conditioner indoor unit further includes: a plurality of guide vanes 70, which are arranged at intervals on the inner wall of the air duct 20 near the first air outlet 21, and each guide vane 70 is arranged along the inner wall of the first air outlet 21.
  • the front and rear directions are arranged to comb the air flow flowing into the annular air outlet gap 25 in the radial direction of the first air outlet 21.
  • the air duct 20 is further configured such that a ring 24 is formed at the front end of the first air outlet 21, and the ring 24 is gradually away from the horizontal center of the first air outlet 21 from back to front.
  • the axis is inclined to the first air outlet 11.
  • the vertical air conditioner indoor unit may further include a heat exchanger 40 and a fan 50.
  • the heat exchanger 40 is arranged in the housing 10.
  • the fan 50 is arranged in the housing 10 to encourage indoor air to enter the housing 10 and exchange heat with the heat exchanger 40, and then blow it out from the first air outlet 11 through the air duct 20.
  • the air duct 20 may include a front shell 201, a rear shell 202 and a water receiving tray 203.
  • the rear and lower sides of the front shell 201 are open, and the first air outlet 21 is opened on the front shell 201.
  • the front and lower sides of the rear shell 202 are open, and the rear shell 202 is buckled on the rear side of the front shell 201 to form a structure with an open lower side.
  • the drain pan 203 is buckled on the lower sides of the front shell 201 and the rear shell 202 to close the open openings on the lower sides thereof.
  • the air inlet 23 of the air duct 20 is opened on the water receiving tray 203.
  • the air duct 20 is decomposed into three parts, a front shell 201, a rear shell 202, and a water receiving tray 203, so that each part can be independently processed and manufactured to better meet performance requirements.
  • the heat exchanger 40 can be arranged inside the air duct 20 and installed on the water receiving tray 203.
  • the heat exchanger 40 can be of a two-stage structure.
  • the two heat exchange sections are in the shape of a flat plate and the top ends of the two heat exchange sections are connected. On both sides.
  • the inverted "V"-shaped structure of the heat exchanger 40 can make it have a sufficiently large heat exchange area, and make it more fully contact with the airflow flowing upward from the air inlet 23, and the heat exchange efficiency is higher.
  • the water tray 203 is used to carry the heat exchanger 40 on the one hand, and on the other hand to receive the condensed water dripping from the surface of the heat exchanger 40 during air conditioning and cooling.
  • the air duct 20 can be located in the upper middle of the housing 10, and one or more air inlets 13 are opened at the lower part of the housing 10, for example, the air inlet 13 is opened on the rear side of the housing 10 as shown in FIG.
  • the fan 50 can be installed under the air duct 20 and facing the air inlet 23 so that the airflow entering the lower space of the housing 10 from the air inlet 13 is blown into the air duct 20.
  • the fan 50 may be a double-suction centrifugal fan as shown in FIG. 6, or may also be a fan of other forms. It can be understood that when the fan 50 is a double-suction centrifugal fan, a volute 51 and a motor 52 are matched.
  • the air duct 20 has two second air outlets 22.
  • the housing 10 has two second air outlets 12 to match the two second air outlets 22 respectively.
  • Two second air outlets 12 are respectively opened on both lateral sides of the housing 10.
  • the first air outlet 11 can be a circular opening opened on the upper front side of the housing 10
  • the first air outlet 21 can be a circular opening opened on the upper front side of the air duct 20, so that two second air outlets
  • the air outlet 12 is located in the middle or lower part of the housing 10, so that the air sent from each air outlet is staggered in the up and down direction and the left and right directions, forming an effect of enveloping the air supply, making the air flow more dispersed, and improving the performance of the vertical air conditioner indoor unit. Cooling/heating speed and airflow comfort.
  • each second air supply opening 12 is made in a long strip shape arranged along the vertical direction in the longitudinal direction, so as to facilitate the air supply obliquely downward, realize heating downward blowing, accelerate heating speed, and improve heating comfort.
  • An air guide mechanism can be installed at each second air supply opening 12, for example, as shown in Figure 7, each second air supply opening 12 is equipped with an air guide plate 60 with an axis extending in the vertical direction, so as to rotatably guide the air supply direction. .

Abstract

一种立式空调室内机包括:壳体(10);风道(20),设置在壳体(10)内,具有进气口(23)和朝向第一送风口(11)的第一出气口(21),用于将壳体(10)内的气流引导至第一送风口(11)处;其中风道(20)临近第一出气口(21)顶部边缘和横向两侧边缘的内壁(252)是从后向前延伸的平面,风道(20)临近第一出气口(21)底部边缘的内壁(251)包括从后向前逐渐朝第一出气口(21)的水平中心轴线倾斜的底部弧形面(2511)和自底部弧形面向前延伸的底部平面(2512),且进气口(23)的位置低于第一出气口(21);和导流件(30),配置成与风道(20)临近第一出气口(21)的内壁之间限定出环形出风间隙。该立式空调室内机风力更加强劲,送风距离更远。

Description

立式空调室内机 技术领域
本发明涉及空气调节技术领域,特别涉及一种立式空调室内机。
背景技术
相比于壁挂式空调室内机,立式空调室内机的匹数更大,制冷制热能力更强,通常放置客厅等面积较大的室内空间中。
由于立式空调室内机的覆盖面积更大,需要其具有更强的远距离送风能力和强劲出风能力。现有产品为实现远距离送风,通常采用提高风机转速,以提高风速和风量的方式。但风机转速的提高会导致空调功率增加、噪声增大等一系列问题,影响用户体验。
发明内容
本发明的目的是要提供一种克服上述问题或者至少部分地解决上述问题的立式空调室内机,以实现更好的远距离送风和强劲送风效果。
本发明的进一步的目的是要使立式空调室内机具有上扬出风效果。
特别地,本发明提供了一种立式空调室内机,包括:
壳体,其前侧具有第一送风口;
风道,设置在壳体内,具有进气口和朝向第一送风口的第一出气口,用于将壳体内的气流引导至第一送风口处;其中风道临近第一出气口顶部边缘和横向两侧边缘的内壁是从后向前延伸的平面,风道临近第一出气口底部边缘的内壁包括从后向前逐渐朝第一出气口的水平中心轴线倾斜的底部弧形面和自底部弧形面向前延伸的底部平面,且进气口的位置低于第一出气口;和
导流件,配置成与风道临近第一出气口的内壁之间限定出环形出风间隙,用于将气流导向环形出风间隙并使气流在导流件和风道内壁引导下流出第一送风口并逐渐向气流中心方向聚合。
可选地,导流件的外表面是由导流线绕水平轴旋转一周形成,导流线包括依次光滑相接的第一线段、内凹的第二弧形段、外凸的第三弧形段、外凸的第四弧形段、第五线段、外凸的第六弧形段和第七线段,第一线段、第五线段、第七线段为直线段或外凸的弧形段,并且第二弧形段、第三弧形段、 第四弧形段在从后向前方向逐渐远离水平轴,第七线段的终点与第一线段的起点处于同一水平轴上。
可选地,第一线段为外凸的弧形段,半径是第三弧形段的半径的0.4-0.6倍;
第二弧形段的半径是第三弧形段的半径的2.2-2.7倍;
第四弧形段的半径是第三弧形段的半径的0.4-0.8倍;
第五线段为直线段;
第六弧形段的半径是第三弧形段的半径的0.2-0.4倍;
第七线段为外凸的弧形段,半径是第三弧形段的半径的1.8-3.0倍。
可选地,第五线段为直线段;导流件配置成:第四弧形段的前部、第五线段、第六弧形段的后部限定的环形面与底部弧形面和底部平面之间限定出环形出风间隙,导流件的前端面的至少一部分超出第一送风口。
可选地,底部弧形面的弧线半径是第五线段与底部平面之间的竖直距离的0.9-1.1倍;
第四弧形段的两端切线的相交点与第六弧形段的两端切线的相交点的水平距离是第五线段与底部平面之间的竖直距离的1.5-2倍。
可选地,导流件的最宽处的宽度是风道的临近第一出气口顶部边缘的平面与底部平面之间的竖直距离的0.6-0.8倍。
可选地,立式空调室内机还包括:多个导叶,间隔设置于风道临近第一出气口的内壁处,每个导叶沿前后方向设置,以对流入环形出风间隙的气流在第一出气口的径向方向上进行梳理。
可选地,风道还配置成:在第一出气口的前端形成有环圈,环圈自第一出气口从后向前逐渐远离第一出气口的水平中心轴线倾斜至第一送风口处。
可选地,立式空调室内机还包括:
换热器,设置于壳体内;和
风机,设置于壳体内,用于促使室内空气进入壳体与换热器进行换热,然后经风道从第一送风口吹出。
可选地,第一送风口是开设于壳体的上部前侧的圆形口,第一出气口是开设于风道的上部前侧的圆形口;
壳体的中部和/或下部的横向一侧或两侧还开设有长条形的第二送风口,风道的中部和/或下部的横向一侧或两侧对应第二送风口还开设有长条形的 第二出气口。
本发明的立式空调室内机中,导流件配置成与风道临近第一出气口的内壁之间限定出环形出风间隙,如此一来,从进气口进入风道的气流(换热气流、新风气流等)流向第一出气口的过程中,将在导流件引导下将吹向风道内壁,最终流至环形出风间隙内。由于环形出风间隙的出风截面更小,使得其出风速度更高。风道临近第一出气口顶部边缘和横向两侧边缘的内壁是从后向前延伸的平面,而风道临近第一出气口底部边缘的内壁包括从后向前逐渐朝第一出气口的水平中心轴线倾斜的底部弧形面和自底部弧形面向前延伸的底部平面,使得高速气流在风道异形内壁和导流件的引导下,在向外流动过程中逐渐向气流中心方向聚合,形成汇聚效应,使得风力更加强劲,送风距离更远,满足了立式空调室内机对远距离送风和强劲送风的需求。同时配套将进气口的位置低于第一出气口以使气流从下至上流向导流件,高速气流从下部冲到第一出气口处经过导流后仍具有一定的向上势头,因此整体出风会上扬,达到不直吹人的效果。在制冷模式时,上扬流动的冷风可充分避开人体,达到最高点后再向下散落,实现一种“淋浴式”制冷体验,提高用户使用舒适性。
本发明的立式空调室内机中,导流件不仅与风道内壁限定出了环形出风间隙,达到提升风速的作用,同时也恰好能将气流导向环形出风间隙,或者说是强迫气流朝环形出风间隙流动,以迫使气流接受风道内壁的聚合引导,形成最终的聚合出风效果。本发明仅通过改进风道形状和增设一导流件就实现了非常好的聚合送风效果,其结构非常简单,而且成本较低,易于实现量产推广,构思非常巧妙。
进一步地,本发明还对导流件的形状进行了特别设计,使得导流件由包括依次光滑相接的第一线段、内凹的第二弧形段、外凸的第三弧形段、外凸的第四弧形段、第五线段、外凸的第六弧形段和第七线段的导流线绕水平中心轴线旋转一周形成,使得气流流动过程中的流动阻力更小,能量损耗和噪声更小,同时汇聚效应更明显,提升了出气口的聚合送风效果。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的立式空调室内机的结构示意图。
图2是图1所示立式空调室内机的风道和导流件的一个剖视示意图。
图3是图1所示立式空调室内机的风道和导流件的另一个剖视示意图。
图4是图1所示立式空调室内机的导流件的剖视示意图。
图5是根据本发明另一个实施例的立式空调室内机的结构示意图。
图6是图5所示立式空调室内机的剖视示意图。
图7是图5所示立式空调室内机的爆炸分解示意图。
具体实施方式
本发明实施例提供了一种立式空调室内机,为分体式空调器的室内部分,用于调节室内空气,例如制冷/制热、除湿、引入新风等等。例如,立式空调室内机可为通过蒸气压缩制冷循环系统进行制冷/制热的空调器的室内机。
图1是根据本发明一个实施例的立式空调室内机的结构示意图。图2是图1所示立式空调室内机的风道20和导流件30的一个剖视示意图。图3是图1所示立式空调室内机的风道20和导流件30的另一个剖视示意图。图4是图1所示立式空调室内机的导流件30的剖视示意图。图5是根据本发明另一个实施例的立式空调室内机的结构示意图。图6是图5所示立式空调室内机的剖视示意图。图7是图5所示立式空调室内机的爆炸分解示意图。
如图1至图4所示,本发明实施例的立式空调室内机一般性地可包括壳体10、风道20和导流件30。壳体10前侧具有第一送风口11。第一送风口11用于将壳体10内的气流吹向室内,以调节室内空气。前述的气流可为立式空调室内机在制冷模式下制取的冷风,在制热模式下制取的热风,或者在新风模式下引入的新风等。第一送风口11的数量可为一个,也可为多个。壳体10上还可开设有进风口13,以用于引入室内空气。壳体10可由前机壳101和后机壳102组合而成。风道20设置在壳体10内,具有进气口23和朝向第一送风口11的第一出气口21,用于将壳体10内的气流引导至第一送风口11处;其中风道20临近第一出气口21顶部边缘和横向两侧边缘的内壁 252是从后向前延伸的平面,风道20临近第一出气口21底部边缘的内壁251包括从后向前逐渐朝第一出气口21的水平中心轴线倾斜的底部弧形面2511和自底部弧形面2511向前延伸的底部平面2512,且进气口23的位置低于第一出气口21。换言之,在临近第一出气口21处,沿着气流方向,风道20的过流截面先逐渐变小之后保持最小过流截面直至第一出气口21。导流件30配置成与风道20临近第一出气口21的内壁之间限定出环形出风间隙25,用于将气流导向环形出风间隙25并使气流在导流件30和风道20内壁引导下流出第一送风口11并逐渐向气流中心方向聚合(图2和图3用箭头示意了气流走向)。
本发明实施例的立式空调室内机中,导流件30配置成与风道20临近第一出气口21的内壁之间限定出环形出风间隙25,如此一来,从进气口23进入风道20的气流(换热气流、新风气流等)流向第一出气口21的过程中,将在导流件30引导下将吹向风道20内壁,最终流至环形出风间隙25内。由于环形出风间隙25的出风截面更小,使得其出风速度更高。风道20临近第一出气口21顶部边缘和横向两侧边缘的内壁252是从后向前延伸的平面,而风道20临近第一出气口21底部边缘的内壁251包括从后向前逐渐朝第一出气口21的水平中心轴线倾斜的底部弧形面2511和自底部弧形面2511向前延伸的底部平面2512,使得高速气流在风道20异形内壁和导流件30的引导下,在向外流动过程中逐渐向气流中心方向聚合,形成汇聚效应,使得风力更加强劲,送风距离更远,满足了立式空调室内机对远距离送风和强劲送风的需求。同时配套将进气口23的位置低于第一出气口21以使气流从下至上流向导流件30,高速气流从下部冲到第一出气口21处经过导流后仍具有一定的向上势头,因此整体出风会上扬,达到不直吹人的效果。
本发明实施例的立式空调室内机中,导流件30不仅与风道20内壁限定出了环形出风间隙25,达到提升风速的作用,同时也恰好能将气流导向环形出风间隙25,或者说是强迫气流朝环形出风间隙25流动,以迫使气流接受风道异形内壁的聚合引导,形成最终的聚合出风效果。本发明仅通过改进风道20形状和增设一导流件30就实现了非常好的聚合送风效果,其结构非常简单,而且成本较低,易于实现量产推广,构思非常巧妙。
参考图4,导流件30的外表面是由导流线绕水平轴旋转一周形成,导流线包括依次光滑相接的第一线段(ab段)、内凹的第二弧形段(bc段)、 外凸的第三弧形段(cd段)、外凸的第四弧形段(de段)、第五线段(ef段)、外凸的第六弧形段(fg段)和第七线段(gh段),第一线段(ab段)、第五线段(ef段)、第七线段(gh段)为直线段或外凸的弧形段,并且第二弧形段(bc段)、第三弧形段(cd段)、第四弧形段(de段)在从后向前方向逐渐远离水平轴,第七线段(gh段)的终点与第一线段(ab段)的起点处于同一水平轴上。本发明实施例还对导流件30的形状进行了特别设计,使得导流件30由包括依次光滑相接的第一线段(ab段)、内凹的第二弧形段(bc段)、外凸的第三弧形段(cd段)、外凸的第四弧形段(de段)、第五线段(ef段)、外凸的第六弧形段(fg段)和第七线段(gh段)的导流线绕水平中心轴线旋转一周形成,使得气流流动过程中的流动阻力更小,能量损耗和噪声更小,同时汇聚效应更明显,提升了出气口的聚合送风效果。此外,本发明实施例的导流件30可以是实心结构也可以是空心结构。
进一步地,本发明实施例通过对各线段的形状和大小关系进行优化,以强化上述效果。参考图2至图4,本发明实施例中,第一线段(ab段)为外凸的弧形段,半径是第三弧形段(cd段)的半径的0.4-0.6倍,例如0.4倍、0.5倍、0.6倍;第二弧形段(bc段)的半径是第三弧形段(cd段)的半径的2.2-2.7倍,例如2.2倍、2.5倍、2.7倍;第四弧形段(de段)的半径是第三弧形段(cd段)的半径的0.4-0.8倍,例如0.4倍、0.6倍、0.8倍;第五线段(ef段)为直线段;第六弧形段(fg段)的半径是第三弧形段(cd段)的半径的0.2-0.4倍,例如0.2倍、0.3倍、0.4倍;第七线段(gh段)为外凸的弧形段,半径是第三弧形段(cd段)的半径的1.8-3.0倍,例如1.8倍、2.5倍、3.0倍。从另一个角度,导流件30的外表面包括后端面37、第一环形导风面31、第二环形导风面32、第三环形导风面35、环形外周面33、环形过渡面36和前端面34,其中后端面37由第一线段(ab段)限定出,第一环形导风面31由第二弧形段(bc段)限定出,第二环形导风面32由第三弧形段(cd段)限定出,第三环形导风面35由第四弧形段(de段)限定出,环形外周面33由第五线段(ef段)限定出,环形过渡面36由第六弧形段(fg段)限定出,前端面34由第七线段(gh段)限定出。这里,当第五线段(ef段)为外凸的弧形段时,半径是第三弧形段(cd段)的半径的至少5倍,例如5倍。气流流动至导流件30时,先流经第一线段(ab段),由于第一线段(ab段)为外凸的弧形段,使得气流容易受导流件30引导。之后流经第 二弧形段(bc段),由于第二弧形段(bc段)为内凹设计,使气流流速加快,以远离第一出气口21的中心轴线地快速冲向风道20的内壁。第三弧形段(cd段)和第四弧形段(de段)均为外凸设计,以与风道20内壁更加接近,使得气流在流入环形出风间隙25过程中受到的阻力更小。第五线段(ef段)为直线段,可以对进入环形出风间隙25的气流进一步梳理出风流线,引导出风方向,减少出风阻力,提升出风强度,达到射流高速送风效果。第七线段(gh段)为外凸的弧形段的设计是作为导流件30的前端面34将其设计成外凸形状可以使导流件30本身具有一定的将气流向前汇聚的效果。第六弧形段(fg段)作为第五线段(ef段)和第七线段(gh段)的过渡区段,为外凸形状,以便气流从第五线段(ef段)光滑过渡至第七线段(gh段)。
如图2所示,在一些实施例中,第五线段(ef段)为直线段;导流件30配置成第四弧形段(de段)的前部、第五线段(ef段)、第六弧形段(fg段)的后部限定的环形面与底部弧形面2511和底部平面2512之间限定出环形出风间隙25,导流件30的前端面34的至少一部分超出第一送风口11。通过将环形出风间隙25主要由第五线段(ef段)的直线结构与底部弧形面2511和底部平面2512之间限定出,可保证明显的气流引导效果;导流件30的前端面34的至少一部分超出第一送风口11,可以对流出第一送风口11的气流继续向前汇聚,以进一步提升射流出风效果。
进一步地,本发明实施例通过对导流件30和风道20的尺寸关系进行优化,以强化上述效果。参考图2,底部弧形面2511的弧线半径R是第五线段(ef段)与底部平面2512之间的竖直距离d1的0.9-1.1倍,例如0.9倍、1.0倍、1.1倍,底部弧形面2511的圆角太小会导致出风损失过大,而圆角太大会使出风过于上偏,影响整体的出风距离。第四弧形段(de段)的两端切线的相交点与第六弧形段(fg段)的两端切线的相交点的水平距离L4是第五线段(ef段)与底部平面2512之间的竖直距离d1的1.5-2倍,例如1.5倍、1.8倍、2.0倍,足够长的近似直段可以引导出风更加平直进一步提升出风距离。导流件30的最宽处的宽度D1是风道20的临近第一出气口21顶部边缘的平面与底部平面2512之间的竖直距离L3的0.6-0.8倍,例如0.6倍、0.7倍、0.8倍,该尺寸主要会影响风量,倍数越小风量越大,倍数越大风量越小。继续参考图2,还可以对导流件30的最长处的长度L1进行限定,例如导流件30的最长处的长度L1是第四弧形段(de段)的两端切线的相交 点与第六弧形段(fg段)的两端切线的相交点的水平距离L4的2.9-3.1倍,例如2.9倍、3.0倍、3.1倍,使得导流件30整体与该近似直段共同引导向前平直出风。此外,可以将导流件30的最长处的长度L1限定为是风道20的第一出气口21正对应的后壁至前壁的长度L2的0.6-0.8倍,例如0.6倍、0.7倍、0.8倍,以便平衡风道20过风,保证第一送风口11的上下出风均匀。
现参考图5和图6,在一些实施例中,立式空调室内机还包括:多个导叶70,间隔设置于风道20临近第一出气口21的内壁处,每个导叶70沿前后方向设置,以对流入环形出风间隙25的气流在第一出气口21的径向方向上进行梳理。在第一出气口21出风时,两侧的出风没有受到有效引导,可能会导致上扬势头过大,整体出风较为散乱,通过设置导叶70后,气流会被再次被梳理,使出风集中度更高,风向上扬更合理。
在一些实施例中,风道20还配置成:在第一出气口21的前端形成有环圈24,环圈24自第一出气口21从后向前逐渐远离第一出气口21的水平中心轴线倾斜至第一送风口11处。通过设置环圈24可以使风道20与壳体10的配合更紧密,使经过环形出风间隙25的气流能更顺畅的流经第一出气口21和第一送风口11。
立式空调室内机还可包括换热器40和风机50。换热器40设置于壳体10内。风机50设置于壳体10内,用于促使室内空气进入壳体10与换热器40进行换热,然后经风道20从第一送风口11吹出。如图5至图7所示,风道20可包括前壳201、后壳202和接水盘203。前壳201的后侧和下侧敞开,第一出气口21开设于前壳201上。后壳202的前侧和下侧敞开,后壳202罩扣在前壳201后侧,共同构成下侧敞开的结构。接水盘203罩扣在前壳201和后壳202的下侧,以封闭其下侧的敞开口。风道20的进气口23开设于接水盘203上。将风道20分解为前壳201、后壳202和接水盘203三部分,方便对各部分独立加工制作,以更好地满足性能需求。如图5所示,可将换热器40设置在风道20内部,且安装于接水盘203上。换热器40可为两段式结构,两个换热段均为平板状且两者顶端相接,两个换热段的底端置于接水盘203上且分别位于进气口23的两侧。换热器40的这种倒“v”形结构可使其具有足够大的换热面积,且使其与进气口23向上流动的气流的接触更加充分,换热效率更高。接水盘203一方面用于承载换热器40,另一方面用于承接空调制冷时由换热器40表面滴落的冷凝水。可使风道20处于壳体10 的中上部,壳体10的下部开设有一个或多个进风口13,例如图7所示将进风口13开设于壳体10的后侧。可使风机50安装于风道20下方,且面对进气口23,以便将从进风口13进入壳体10下部空间的气流吹向风道20内部。风机50可如图6所示的双吸离心风机,或者也可为其他形式的风机。可以理解,当风机50为双吸离心风机时,配套设置有蜗壳51和电机52。
除此之外,还可使壳体10上设置其他送风口,以与第一送风口11配合使用,实现多种送风模式。例如图5至图7所示,风道20上具有两个第二出气口22。壳体10具有两个第二送风口12,以分别与两个第二出气口22匹配。两个第二送风口12分别开设于壳体10的横向两侧。例如,可使第一送风口11是开设于壳体10的上部前侧的圆形口,第一出气口21是开设于风道20的上部前侧的圆形口,使两个第二送风口12位于壳体10的中部或下部,以使各送风口送出的风在上下方向和左右方向错开,形成一种环抱送风的效果,使送风气流更加分散,提升立式空调室内机的制冷/制热速度和气流的舒适度。还可使每个第二送风口12为长度方向沿竖直方向设置的长条形,以利于其向斜下方送风,实现制热下吹,加快制热速度,提升制热舒适性。每个第二送风口12处可安装有导风机构,例如图7所示,每个第二送风口12处安装一个轴线沿竖直方向延伸的导风板60,以便转动地引导送风方向。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种立式空调室内机,包括:
    壳体,其前侧具有第一送风口;
    风道,设置在所述壳体内,具有进气口和朝向所述第一送风口的第一出气口,用于将所述壳体内的气流引导至所述第一送风口处;其中所述风道临近所述第一出气口顶部边缘和横向两侧边缘的内壁是从后向前延伸的平面,所述风道临近所述第一出气口底部边缘的内壁包括从后向前逐渐朝所述第一出气口的水平中心轴线倾斜的底部弧形面和自所述底部弧形面向前延伸的底部平面,且所述进气口的位置低于所述第一出气口;和
    导流件,配置成与所述风道临近所述第一出气口的内壁之间限定出环形出风间隙,用于将气流导向所述环形出风间隙并使气流在所述导流件和所述风道内壁引导下流出所述第一送风口并逐渐向气流中心方向聚合。
  2. 根据权利要求1所述的立式空调室内机,其中
    所述导流件的外表面是由导流线绕水平轴旋转一周形成,所述导流线包括依次光滑相接的第一线段、内凹的第二弧形段、外凸的第三弧形段、外凸的第四弧形段、第五线段、外凸的第六弧形段和第七线段,所述第一线段、所述第五线段、所述第七线段为直线段或外凸的弧形段,并且所述第二弧形段、所述第三弧形段、所述第四弧形段在从后向前方向逐渐远离水平轴,所述第七线段的终点与所述第一线段的起点处于同一水平轴上。
  3. 根据权利要求2所述的立式空调室内机,其中
    所述第一线段为外凸的弧形段,半径是所述第三弧形段的半径的0.4-0.6倍;
    所述第二弧形段的半径是所述第三弧形段的半径的2.2-2.7倍;
    所述第四弧形段的半径是所述第三弧形段的半径的0.4-0.8倍;
    所述第五线段为直线段;
    所述第六弧形段的半径是所述第三弧形段的半径的0.2-0.4倍;
    所述第七线段为外凸的弧形段,半径是所述第三弧形段的半径的1.8-3.0倍。
  4. 根据权利要求2所述的立式空调室内机,其中
    所述第五线段为直线段;
    所述导流件配置成:所述第四弧形段的前部、所述第五线段、所述第六 弧形段的后部限定的环形面与所述底部弧形面和所述底部平面之间限定出所述环形出风间隙,且所述导流件的前端面的至少一部分超出第一送风口。
  5. 根据权利要求4所述的立式空调室内机,其中
    所述底部弧形面的弧线半径是所述第五线段与所述底部平面之间的竖直距离的0.9-1.1倍;
    所述第四弧形段的两端切线的相交点与所述第六弧形段的两端切线的相交点的水平距离是所述第五线段与所述底部平面之间的竖直距离的1.5-2倍。
  6. 根据权利要求1所述的立式空调室内机,其中
    所述导流件的最宽处的宽度是所述风道的临近所述第一出气口顶部边缘的平面与所述底部平面之间的竖直距离的0.6-0.8倍。
  7. 根据权利要求1所述的立式空调室内机,其中,还包括:
    多个导叶,间隔设置于所述风道临近所述第一出气口的内壁处,每个所述导叶沿前后方向设置,以对流入所述环形出风间隙的气流在所述第一出气口的径向方向上进行梳理。
  8. 根据权利要求1所述的立式空调室内机,其中,
    所述风道还配置成:在所述第一出气口的前端形成有环圈,所述环圈自所述第一出气口从后向前逐渐远离所述第一出气口的水平中心轴线倾斜至所述第一送风口处。
  9. 根据权利要求1所述的立式空调室内机,其中,还包括:
    换热器,设置于所述壳体内;和
    风机,设置于所述壳体内,用于促使室内空气进入所述壳体与所述换热器进行换热,然后经所述风道从所述第一送风口吹出。
  10. 根据权利要求1所述的立式空调室内机,其中,
    所述第一送风口是开设于所述壳体的上部前侧的圆形口,所述第一出气口是开设于所述风道的上部前侧的圆形口;
    所述壳体的中部和/或下部的横向一侧或两侧还开设有长条形的第二送风口,所述风道的中部和/或下部的横向一侧或两侧对应所述第二送风口还开设有长条形的第二出气口。
PCT/CN2020/127832 2020-07-16 2020-11-10 立式空调室内机 WO2021223392A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010688278.8 2020-07-16
CN202010688278.8A CN111912026B (zh) 2020-07-16 2020-07-16 立式空调室内机

Publications (1)

Publication Number Publication Date
WO2021223392A1 true WO2021223392A1 (zh) 2021-11-11

Family

ID=73281579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127832 WO2021223392A1 (zh) 2020-07-16 2020-11-10 立式空调室内机

Country Status (2)

Country Link
CN (1) CN111912026B (zh)
WO (1) WO2021223392A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117249578A (zh) * 2023-11-20 2023-12-19 珠海格力电器股份有限公司 一种聚散风的出风装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114508788A (zh) * 2020-11-17 2022-05-17 青岛海尔空调器有限总公司 立式空调室内机
CN114508789A (zh) * 2020-11-17 2022-05-17 青岛海尔空调器有限总公司 立式空调室内机
CN114543168B (zh) * 2020-11-26 2023-05-16 青岛海尔空调器有限总公司 立式空调室内机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271056B1 (ko) * 2012-06-28 2013-06-07 삼성전자주식회사 공기조화기의 실내기
CN103196215A (zh) * 2012-01-05 2013-07-10 木村工机株式会社 空气吹出装置
CN206073355U (zh) * 2016-08-30 2017-04-05 珠海格力电器股份有限公司 环形出风设备
CN107143922A (zh) * 2017-06-13 2017-09-08 珠海格力电器股份有限公司 空调面板和空调柜机
CN207299218U (zh) * 2017-08-18 2018-05-01 广东美的制冷设备有限公司 立式空调器
WO2018106032A1 (ko) * 2016-12-07 2018-06-14 코웨이 주식회사 풍향조절 가능한 공기청정기
CN111912027A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203478539U (zh) * 2013-06-03 2014-03-12 海尔集团公司 立式空调送风装置
CN103292385B (zh) * 2013-06-09 2015-07-15 广东美的制冷设备有限公司 落地式空调室内机
CN103604163B (zh) * 2013-07-16 2015-06-10 海尔集团公司 立式空调
CN203848408U (zh) * 2014-04-29 2014-09-24 李庆福 新型斜面出风立式空调
CN104697144B (zh) * 2015-03-12 2017-12-22 广东美的制冷设备有限公司 导风机构和空调器室内机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196215A (zh) * 2012-01-05 2013-07-10 木村工机株式会社 空气吹出装置
KR101271056B1 (ko) * 2012-06-28 2013-06-07 삼성전자주식회사 공기조화기의 실내기
CN206073355U (zh) * 2016-08-30 2017-04-05 珠海格力电器股份有限公司 环形出风设备
WO2018106032A1 (ko) * 2016-12-07 2018-06-14 코웨이 주식회사 풍향조절 가능한 공기청정기
CN107143922A (zh) * 2017-06-13 2017-09-08 珠海格力电器股份有限公司 空调面板和空调柜机
CN207299218U (zh) * 2017-08-18 2018-05-01 广东美的制冷设备有限公司 立式空调器
CN111912027A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117249578A (zh) * 2023-11-20 2023-12-19 珠海格力电器股份有限公司 一种聚散风的出风装置
CN117249578B (zh) * 2023-11-20 2024-01-30 珠海格力电器股份有限公司 一种聚散风的出风装置

Also Published As

Publication number Publication date
CN111912026A (zh) 2020-11-10
CN111912026B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2021218109A1 (zh) 立式空调室内机
WO2021223392A1 (zh) 立式空调室内机
WO2021223393A1 (zh) 立式空调室内机
CN111912015B (zh) 立式空调室内机
CN111912027B (zh) 立式空调室内机
CN111912018B (zh) 立式空调室内机
WO2022012055A1 (zh) 立式空调室内机
WO2021223486A1 (zh) 壁挂式空调室内机
WO2021223391A1 (zh) 立式空调室内机
CN111912025A (zh) 立式空调室内机
CN111912021B (zh) 立式空调室内机
CN216143843U (zh) 壁挂式空调室内机
CN111912013B (zh) 立式空调室内机
CN203641106U (zh) 束流扩压柜机蜗壳及空调柜机
CN213019961U (zh) 立式空调室内机
CN111912020A (zh) 立式空调室内机
WO2022111212A1 (zh) 立式空调室内机
CN111912007A (zh) 立式空调室内机
WO2022111213A1 (zh) 立式空调室内机
CN111912024B (zh) 立式空调室内机
CN114508788A (zh) 立式空调室内机
CN111912014B (zh) 立式空调室内机
CN111912023B (zh) 立式空调室内机
CN216744632U (zh) 壁挂式空调室内机
CN111912011B (zh) 立式空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934698

Country of ref document: EP

Kind code of ref document: A1