WO2012099443A2 - 올레핀 블록 공중합체 - Google Patents

올레핀 블록 공중합체 Download PDF

Info

Publication number
WO2012099443A2
WO2012099443A2 PCT/KR2012/000564 KR2012000564W WO2012099443A2 WO 2012099443 A2 WO2012099443 A2 WO 2012099443A2 KR 2012000564 W KR2012000564 W KR 2012000564W WO 2012099443 A2 WO2012099443 A2 WO 2012099443A2
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
olefin
molecular weight
weight
group
Prior art date
Application number
PCT/KR2012/000564
Other languages
English (en)
French (fr)
Other versions
WO2012099443A3 (ko
Inventor
노경섭
김원희
이난영
전상진
안상은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201280014246.3A priority Critical patent/CN103502290B/zh
Priority to EP12736905.6A priority patent/EP2666799B1/en
Priority to US13/980,870 priority patent/US9062146B2/en
Publication of WO2012099443A2 publication Critical patent/WO2012099443A2/ko
Publication of WO2012099443A3 publication Critical patent/WO2012099443A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/10Short chain branches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F301/00Macromolecular compounds not provided for in groups C08F10/00 - C08F299/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to olefin block copolymers.
  • the block copolymer refers to a copolymer having a plurality of repeating unit blocks or segments having different properties, and often has excellent properties compared to conventional random copolymers or blends.
  • the block copolymer may include a soft elastic block called a soft segment and a hard crystalline block called a hard segment, and thus may exhibit excellent properties such as elasticity and heat resistance. have. More specifically, such a block copolymer may exhibit relatively excellent heat resistance because the block copolymer may exhibit elasticity above the glass transition temperature of the soft segment, and may exhibit thermoplastic behavior by reaching a temperature higher than the melting temperature.
  • triblock copolymers of styrene and butadiene (SBS) or hydrogenated forms thereof (SEBS) are known to be useful in various fields due to their excellent heat resistance and elasticity.
  • olefin elastomer which is a kind of copolymer of ethylene or propylene and an alpha olefin is examined. More specifically, attempts have been made to apply such olefinic elastomers in various fields, for example, in various applications to replace rubber based materials. In addition, in order to further improve the heat resistance and the like of the olefin elastomer, attempts to apply a block copolymer in the form of a random copolymer, for example, a block copolymer rather than an olefinic elastomer in the form of an ethylene _ ⁇ -olefin random copolymer Has been made.
  • the present invention provides an olefin block copolymer exhibiting excellent elasticity, heat resistance and processability. ⁇
  • An embodiment of the present invention is an olefin block copolymer including an ethylene-based or propylene-based repeating unit and a plurality of blocks or segments including ci- olefinic repeating units in different weight fractions, wherein each polymer included in the block copolymer
  • the first derivative of the number of short chain branching (SCB) Y per 1000 carbon atoms of the chains with respect to the molecular weight X of the polymer chains is from negative to positive of about -1.5 X 10 or more, the median of the molecular weight X In the above region, the first derivative provides an olefin block copolymer having a value of about ⁇ 1.0 ⁇ 10 ′′ 4 to 1.0 ⁇ K ⁇ 4 .
  • the first derivative may be larger in the region below the median of molecular weight X than in the region above the median. Further, in the region below the median of molecular weight X, the first derivative may decrease as molecular weight X increases, and in the region where molecular weight X is less than the lower 40%, the first derivative may be about 2.0 X 10 "4 to 0.1. Can be.
  • block copolymer of the embodiment has a carbon number of the polymer chains.
  • Short chain branching (SCB) Y per 1000 may be about 70 or less. And, in the region above the median of molecular weight X, the number Y of short chain branching (SCB) per 1000 carbon atoms of the polymer chain is about
  • the block copolymer of an embodiment includes a hard segment including a first weight fraction of an ⁇ -olefin-based repeating unit, and a second higher than the first weight fraction. It may include a soft segment comprising a weight fraction of the ⁇ -olefin-based repeat unit.
  • the weight fraction of the ⁇ -olefinic repeat unit included in the entire block copolymer may have a value between the first weight fraction and the second weight fraction.
  • the content of the hard segment in the block copolymer r may satisfy the relationship of the following formula (1)
  • Such block copolymers may comprise from about 50 to 90% by weight of ethylene- or propylene-based repeat units and the remaining amount of ⁇ -olefin-based repeat units, layering the relationship of formula 1 in the total content range of the repeat units.
  • the block copolymer of one embodiment may include about 10 to 90% by weight of the hard segment, and the balance of the soft segment.
  • the hard segment H may be one or more of the characteristics of the crystallinity, density and melting point higher than the soft segment.
  • the block copolymer of the embodiment may have a density of about 0.85 g / cm 3 to 0.92 g / cm 3 , and a TMA (Thermal Mechanical Analysis) value of about 70 to 140 ° C.
  • the block copolymer may have a melt index of about 0.5 to 5 g / 10 min at 190 ° C. and a 2.16 kg load, and a Shore hardness of about 50 to 100.
  • the block copolymer of one embodiment has a permanent recovery after 300% elongation.
  • the block copolymer may have a weight average molecular weight of about 50,000 to 200,000, and a molecular weight distribution of about 2.0 to 4.5.
  • the ⁇ -olefin-based repeating unit is 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1- It can be a repeating unit derived from at least one ⁇ -lephine selected from the group consisting of undecene, 1-dodecene, 1-tetradecene, 1-nuxadecene, and 1-aitocene.
  • the olefin block copolymer and the preparation method thereof according to the embodiment of the present invention will be described in detail. However, this is one of the invention It is presented by way of example, by which the scope of the invention is not limited, it is apparent to those skilled in the art that various modifications to the embodiments are possible within the scope of the invention.
  • (olefin) block copolymer is a polymer in which ethylene or propylene and an ⁇ -olefin are copolymerized, and have repeating units derived from physical or chemical properties, for example, ethylene or propylene and ⁇ -olefin, respectively.
  • One or more of its properties such as its content (weight fraction), crystallinity, density, or melting point.
  • it may refer to a copolymer including a plurality of repeating unit blocks or segments that can be distinguished from each other in the polymer.
  • Such a plurality of blocks or segments may include, for example, ethylene-based or propylene-based repeating units and ⁇ -olefin-based repeating units, and may include each of these repeating units in different amounts (weight fractions).
  • the plurality of blocks or segments are hard segments that are hard crystalline blocks including a first weight fraction of an ⁇ -olefin-based repeat unit, and a second weight fraction of an ⁇ -olefin based on a second weight fraction higher than the first weight fraction. It may include a soft segment that is a soft elastic block including a repeating unit.
  • the first weight fraction may have a lower value than the weight fraction of the ⁇ -olefinic repeat unit calculated for the entire block copolymer
  • the second weight fraction may be calculated for the entire block copolymer. It may have a high value compared to the weight fraction of the repeating unit.
  • the plurality of blocks or segments may also be distinguished from one another by one or more of other properties such as crystallinity, density, glass transition temperature or melting point.
  • the hard segment as the hard crystalline block described above may have a higher value than one or more of the properties of crystallinity, density, and melting point as compared with the soft segment as the soft elastic block.
  • polymer chain (s)” included in the "(olefin) block copolymer” may refer to a plurality of polymer chains formed when the block copolymer is polymerized and prepared.
  • ethylene or
  • block copolymer is prepared by polymerizing propylene with ⁇ -olefin, polymer chains having various molecular weights are formed, including ethylene-based or propylene-based repeating units and ⁇ -le-lepine-based repeating units.
  • Block copolymers Various molecular weights of these polymer chains and their content can be confirmed by analyzing the block copolymer by gel permeation chromatography (GPC) to derive a molecular weight distribution curve of the block copolymer.
  • GPC gel permeation chromatography
  • Such polymer chains may be defined as "polymer chain (s)” included in the "(olefin) block copolymer”.
  • the median of the molecular weight of the "polymer chain (s)" is the polymerization and preparation of the block copolymer, when the polymer chains contained therein in order of molecular weight size, the molecular weight size order of the polymer chain is 5W It may refer to the molecular weight of the polymer chain.
  • the molecular weight of the "polymer chain (s)" to be “lower than (or above, below or above)” means that the polymer chains having the smallest molecular weight when the polymer chains are listed in order of molecular weight Less than or equal to the molecular weight of the polymer chain whose molecular weight sequence is A »(for example, a polymer chain having the fourth smallest molecular weight if there are 10 polymer chains, assuming ⁇ is 40%). Less than or greater than).
  • SCB short chain branching
  • ethylene-based or propylene-based repeat An olefin block copolymer comprising a unit and a plurality of blocks or segments including an ⁇ -olefin-based repeating unit in different increments, wherein the chain chains have a short chain branching per 1000 carbon atoms of each polymer chain included in the block copolymer; SCB)
  • the first derivative of the number Y of the polymer chains with respect to the molecular weight X of the polymer chains (dY / dX; is equal to or less) is a negative to positive value of about ⁇ 1.5 ⁇ 10 ⁇ 4 or more, and is equal to or greater than the median of the molecular weight X In the region, the first derivative is about ⁇ 1.0 ⁇ 10 ⁇ 4 to 1.0 ⁇ 10 ⁇ 4 , black is about ⁇ 9.0 ⁇ 1 ( ⁇ 5 to 9.0 ⁇ 10 ′′ 5 , black is about ⁇ 8.0 ⁇ 10 ′′ 5 to 8.0 X X
  • the olepin block copolymer has a short chain branching (SCB) number Y per 1000 carbon chains of each polymer chain included in
  • the first derivative is a negative to positive number of about -1.5 X 10 "4 or greater, or about 0 to a positive number, or about -1.5 X 10 " 4 to 1, in particular an area above the median of said molecular weight, or In the region having the lower molecular weight of about 55% or more, or the region of lower about 60% or more and 100% or less, or the region of lower about 70% or more and 95% or less, the first derivative value is about -1.0 X 10 "4 to 1.0 X 10 — 4 , or about —9.0 X 10 “5 to 9.0 X 10— 5 , or about -8.0 X 10— 5 to 8.0 X 10— 5 , black is about -6.5 X 10— 5 to 7.0 X 10— 5 , or It was confirmed that the property of about -
  • the first derivative has a value of about -1.5.
  • Characteristics in X 10- 4 or more negative to positive is, many of the larger the polymer chain comprising a block copolymer or a molecular weight generally including the same number of branched chain (if any decrease in the limited area that is reduced by very small) It can be said that the content range of the ⁇ -olefin repeat unit is approximately directly proportional or constant to the molecular weight of the polymer chain.
  • the median of the molecular weight In the above region, the first derivative has a very small value of about -1.0 X 10 "4 to 1.0 X 10_ 4 , in the case of the polymer chains having a relatively high molecular weight among the polymer chains included in the block copolymer.
  • each of the polymer chains includes a certain level of ⁇ -olefin-based repeat units. This may reflect that the polymer chains having a large molecular weight include blocks or segments of ⁇ -olefin-based repeat units.
  • block copolymers As the properties of such block copolymers are prepared using a specific catalyst system described below, it seems that the block copolymer has a blocked form including a plurality of blocks or segments having different physical or chemical properties. That is, in one embodiment of the block copolymer prepared using a specific catalyst system described below, ethylene or propylene may be polymerized and combined with each other to form blocks or segments, and ⁇ -olefins may be the same ⁇ -olefins. Polymerization and bonding together may lead to other blocks or segments.
  • the block copolymer of one embodiment may exhibit a higher degree of blocking, especially in a region of relatively large molecular weight, so that each polymer chain includes a certain number of branched chains and an ⁇ -olefin-based repeat unit.
  • the above characteristics can be exhibited.
  • the block copolymer may include a plurality of blocks or segments having different weight fractions of ethylene-based or propylene-based repeating units and ⁇ -olefin-based repeating units, for example, ⁇ -olefin-based repeats having a first weight fraction.
  • the hard segment may include a hard segment that is a hard crystalline block including a unit and a soft segment that is a soft elastic block including an ⁇ -olefin-based repeat unit having a second ⁇ -part fraction higher than the first weight fraction.
  • the weight fraction of the ⁇ -olefin-based repeating unit included in the entire block copolymer may have a value between the first weight fraction and the second weight fraction.
  • the first weight fraction may be a lower weight fraction than the weight fraction of the ⁇ -olefin-based repeat unit calculated for the entire block copolymer, and the second weight fraction is ⁇ - calculated for the entire block copolymer. Compared to the weight fraction of olefin-based repeat units It can be a high weight fraction.
  • the olefin block copolymer of one embodiment has a blocked form identified from the branched chain distribution characteristics described above, and in particular, includes a hard segment that is a hard crystalline block having a higher weight fraction of ethylene or propylene repeating units.
  • block copolymers may have higher levels of Thermal Mechanical Analysis (TMA) values at equivalent density levels compared to previously known olefinic elastomers and the like.
  • TMA Thermal Mechanical Analysis
  • the block copolymer of one embodiment for example, may have a high melting point (Tm) of about 100 to 140 ° C, or about 110 to 130 ° C, or about 120 to 130 ° C.
  • the block copolymer of one embodiment can exhibit excellent physical properties such as elasticity as an elastomer even at a higher temperature, it can exhibit more improved heat resistance.
  • the block copolymer of one embodiment exhibits a high degree of blocking in a region of relatively large molecular weight which has a greater influence on its properties (in other words, those having a relatively higher molecular weight among the polymer chains show a higher degree of blocking). ), More improved heat resistance can be exhibited, and due to the presence of a soft segment containing an ⁇ -olefin repeat unit at a higher weight fraction, it can exhibit better elasticity.
  • the olepin block co-polymer of one embodiment can exhibit improved heat resistance along with the excellent elasticity according to the copolymerization of ⁇ - olepin, it is possible to provide an olepin-based elastomer having excellent elasticity and heat resistance. Therefore, these olefin block copolymers overcome the limitations on the field of application of olefin elastomers previously known as materials to replace rubber materials, and enable the commercialization of olefin resins that can be used for more various applications.
  • the plurality of blocks or segments included in the block copolymer of the above-described embodiment may be distinguished from each other by ' at least one property value among other properties such as crystallinity, density or melting point.
  • a hard segment which is a hard crystalline block containing an ethylene or propylene repeating unit at a higher weight fraction
  • one or more of the properties of crystallinity, density and melting point may exhibit higher values. This may be due to the higher crystallinity of the hard segment and the like.
  • the characteristic values of each of these blocks or segments can be determined and / or differentiated by obtaining (co) polymers for each block or segment and measuring the characteristic values for them.
  • the block copolymer of the embodiment may exhibit a characteristic in which the first derivative is larger than in the region above the median in the region where the molecular weight of the polymer chains contained therein is smaller than the median.
  • the first derivative may decrease as the molecular weight increases.
  • the block copolymer of one embodiment exhibits the largest first derivative value at the point corresponding to the minimum value of the molecular weight of the polymer chain, and the first derivative value decreases as the polymer chains contained therein have a higher molecular weight. It can represent the characteristic.
  • the molecular weight of the child is less than about 40%, or lower than about 35% or more OT, or lower than about 30% 0% or more regions
  • the first derivative value is about 2.0 X 10- 4 to 0.1, Or about 3.0 ⁇ 10 ′′ 4 to 0.08, and black about 5.0 ⁇ 10 “4 to 0.06.
  • the block copolymer has a higher molecular weight in the region of relatively low molecular weight, whereas in the region of relatively high molecular weight, each of the polymer chains exhibits a blocked property including a certain level of branched chain.
  • the larger the number, the larger the number of branched chains, and the increase is relatively small as the molecular weight increases.
  • the first derivative value may be about 0.1 at most and may have a much larger value than the region having a median value or more.
  • each polymer chain includes an ⁇ -olefin-based repeating unit in a content range proportional to the molecular weight. That is, polymer chains having relatively low molecular weight It may reflect similar characteristics. As such, as the block copolymer of one embodiment includes low molecular weight polymer chains exhibiting properties similar to those of the random copolymer, the molecular weight distribution of the block copolymer may be greater.
  • the block copolymer of one embodiment may exhibit better melt processability and product formability than previously known block copolymers. Accordingly, the block copolymer of one embodiment enables the provision of olefinic elastomers that exhibit improved processability with excellent elasticity and heat resistance.
  • the block copolymer of one embodiment the number of short chain branching (SCB) per 1000 carbon chains of the polymer chains included in the total of about 70 or less, or more than about 0 and 65 or less, black about 3 It can be more than 61.
  • the number of short chain branching (SCB) per 1000 carbon atoms of the polymer chains is about 20 to 70, or about 25 to 50, or about 35 to 60 Or about 45 to 65, or about 40 to 60, and the deviation between the maximum value and the minimum value of ⁇ in the region is about 20 or less, or about 19 or less, black about 5 to 18, Or about 7 to 17.
  • the number of branched chains included in each polymer chain may be relatively constant regardless of the molecular weight of the polymer chains.
  • the block copolymer in the region where the molecular chains of the polymer chains are relatively large, as the block copolymer includes a certain level of branched chains, the block copolymer has a higher degree of blocking in the region where the molecular chains of the polymer chains are relatively large. Can be represented. As such, it exhibits a high degree of blocking in the high molecular weight region which has a great influence on the properties of the block copolymer (in other words, as those having a higher molecular weight among the high molecular weight chains included in the block copolymer exhibit a high degree of blocking). , The block copolymer of one embodiment may exhibit more excellent heat resistance and elasticity.
  • the content r (weight 3 ⁇ 4 ») of the hard segment in the block copolymer and the content X '(weight%) of the ethylene or propylene repeating unit have a relationship of the following Formula 1 Can show the stratification characteristics have:
  • This property may mean that even if the same amount of ethylene or propylene is copolymerized, the hard segment content in the block copolymer is higher. This is because ethylene or propylene polymerizes and bonds homogeneous monomers to form a hard segment, and ⁇ -olefins polymerizes and combines homogeneous ⁇ -olefins to form a soft segment, which is blocked compared to previously known olefin elastomers. It can be understood that the degree is high. As such, as the block copolymer of one embodiment exhibits a higher degree of blocking, such a block copolymer may exhibit improved heat resistance and the like.
  • Equation 1 the content of the hard segment Y '(weight 3 ⁇ 4), and the content of the ethylene or propylene repeating unit X' (weight can be measured by the following method, respectively, by linear regression of the result, We can derive the characteristics that stand for Equation 1.
  • the content (wt%) of the hard segment may be calculated using a commercially available Time Domain ⁇ R (TD ⁇ R) device. More specifically, the TD NMR apparatus can be used to measure the free induction decay (FID) of the sample of the block copolymer, which can be represented as a function of time and intensity. An example of such measurement results as a function is shown in FIG. 3.
  • FID free induction decay
  • FIG. 3 An example of such measurement results as a function is shown in FIG. 3.
  • Equation 2 four constant values of A, B, T2 fast and T2 slow are changed to obtain a function expression closest to the graph of the FID function. Through this, the A, B, T2 fast and T2 slow value of the sample can be determined.
  • the spin-spin relaxation time (T2) relaxation calculated therefrom appears quickly, and in the case of the soft segments, the spin-spin relaxation time (T2) relaxation 0 calculated slowly therefrom is slow 1. Accordingly, the smaller T2 value among the A, B, T2 fast and T2 slow values determined above may be determined as the T2 value of the hard segment, that is, the T2 fast value, and the larger T2 value may be determined by the T2 value of the soft segment, that is, T2 slow value. Can be determined by value. Through this, it is possible to calculate the content (weight%) of the hard segment with the constants of A and B. [Equation 2]
  • Hard segment (ol%) A / (A + B) x 100
  • Intensity and Time are values calculated from the FID analysis result
  • T2 fast is T2 (spin-spin relaxation ; time) for the hard segment
  • T2 slow is a spin-spin relaxation time (T2) relaxation value for the soft segment.
  • a and B is a relative ratio of a hard segment "and a soft segment as a constant that is determined by the fitting and has a value proportional to the content of each segment.
  • the content (% by weight) of the ethylene or propylene repeating units included in the block copolymer may be determined in consideration of the content of ethylene or propylene in the monomers used, or may be calculated by analyzing the block copolymer by 1 H-NMR. .
  • the block copolymer of one embodiment includes about 50 to 90% by weight, or about 50 to 85% by weight, or about 55 to 80% by weight of ethylene-based or propylene-based repeating units, the balance remaining except For example, it may include about 10 to 50% by weight, or about 15 to 50% by weight, or about 20 to 45% by weight of ⁇ -olefinic repeat units.
  • the block copolymer may exhibit excellent elasticity to exhibit physical properties as an elastomer, and each block or segment may be appropriately defined and blocked to exhibit more excellent heat resistance.
  • the block copolymer of the embodiment may always satisfy the relationship of Formula 1 in the entire content range of each of these repeating units. As a result, the block copolymer may exhibit more excellent degree of blockability and thus heat resistance, etc. in the whole range of substantially exhibiting the characteristics of the elastomer.
  • the block copolymer of one embodiment may include about 10 to 90 weight 3 ⁇ 4>, or about 14 to 85 weight percent, or about 25 to 80 weight 3 ⁇ 4 hard segment, the remaining weight fraction, for example, 10 To 90% by weight, or about 15 to 86% by weight, or about 20 to 75% by weight of the soft segment.
  • the hard segment refers to a hard crystalline segment containing a higher content of ethylene-based or propylene-based repeating units, among a plurality of blocks or segments of the block co-polymer, and excellent heat resistance of the block copolymer.
  • the remaining amount of soft segment means a soft elastic segment containing a higher content of an ⁇ -olefin-based repeat unit, and may contribute to the elasticity of the block copolymer.
  • the block copolymer of one embodiment includes hard segments and soft segments in the above-described content range, it is possible to exhibit excellent heat resistance, but also to exhibit appropriate elasticity as an elastomer.
  • the block copolymer of one embodiment may have a TMA value of about 70 to 140 ° C, or about 80 to 13 CTC, or about 90 to 120 ° C, and has a density of about 0.85 g / cm 3 to 0.92 g / cm 3 , black may be about 0.86 g / cm 3 to 0.90 g / cm 3 , or about 0.86 g / cm 3 to 0.89 g / cm 3 . It's relatively high like this Even in the non-density range, as having a higher TMA value, the block copolymer of one embodiment may exhibit excellent better heat resistance.
  • the density can be measured using a Merler balance or the like according to a conventional method.
  • the TMA value may be measured using a conventional TMA measuring apparatus, for example, TMA Q400 manufactured by TA.
  • the olefin block copolymer has a melt index of about 0.5 to 5 g / 10 min, or about 0.5 to 4.5 g / 10 min, or about 0.7 to 4.0 g / 10 min, or about 0.7 to 190 ° C., at 2.16 kg load. 3.7g / 10min, and the Shore hardness can be about 50-100, or about 60-90, or about 60-85.
  • the block copolymer exhibits such a melt index range and a hardness range, it may exhibit excellent mechanical properties and processability applicable to various applications in place of rubber-based materials.
  • the olefin block copolymer may exhibit a permanent recovery of about 110% or less, black about 10 to 105%, or about 50 to 105%, or about 90 to 103%.
  • the permanent recovery rate may be calculated according to the following Equation 3 from the results of the tensile test on the molded article of the block copolymer:
  • Equation 3 denotes the initial length of the molded article of the block copolymer
  • L represents the length of the molded article after stretching and recovering the molded article 300% or more, for example 300%.
  • the permanent recovery rate defines the extent to which the original shape or length is restored when deformed by restoring external force.
  • the permanent recovery after 300% elongation of less than about 110% may reflect that the block copolymer of one embodiment exhibits excellent elasticity.
  • the block copolymer of one embodiment may exhibit excellent elasticity even at high temperature, it may be very preferably applied to more various uses including a field requiring heat resistance.
  • the above-described block copolymer has a weight average molecular weight of about 50,000 to 200,000, or about 60,000 to 180,000, or about 70,000 to 150,000, with a molecular weight distribution of about 2.0 or greater, for example, about 2.0 to 4.5, or about 2.0 to 4.0, or about 2.0 to 3.5, or about 2.3 To 3.0.
  • the block copolymer may exhibit suitable properties as an olefin elastomer, for example, excellent mechanical properties and processability.
  • the block copolymer may be a block copolymer including an ethylene-based or propylene-based repeating unit, for example, an ethylene-based repeating unit and an ⁇ -olefinic repeating unit.
  • the ⁇ -olefin-based repeat unit is 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene
  • repeating units derived from ⁇ -olefins such as 1-tetradecene, 1-nuxadecene or 1-atocene.
  • the olefin block copolymer of one embodiment described above may exhibit excellent elasticity due to the inclusion of the ⁇ -olefin-based repeating unit, and may exhibit excellent heat resistance due to high degree of blocking. Accordingly, the block copolymers of one embodiment overcome the limitations on the field of application of olefinic elastomers and can be applied to a wider range of fields where heat resistance is required.
  • the urepin block copolymer of the above-described embodiment may exhibit excellent elasticity due to the inclusion of the ⁇ -olefin-based repeating unit, and may exhibit excellent heat resistance due to high degree of blocking. Therefore, the block copolymer of one embodiment overcomes the limitations related to the field of application of the olefin resin, and can be applied to more various fields where heat resistance is required.
  • the block copolymers of this embodiment can be applied to virtually any application to which elastomers have previously been applied. Furthermore, the block copolymers of one embodiment may be applied to a wider range of applications where previous olefinic elastomers have not been substantially applied due to low heat resistance and where rubber based materials and the like have been applied.
  • block copolymers of one embodiment may be used for automotive parts or interior materials, such as bumper or trim parts; Packaging materials, various electrical insulating materials; Various daily necessities such as shoe soles, toothbrush handles flooring or device handles; Various adhesives such as pressure-sensitive adhesives or hot melt adhesives; hose ; Or it can be used for forming a wide variety of products, such as piping, it can be applied to many other fields and uses, of course.
  • block polymer of one embodiment may be used alone, or may be used in combination with other polymers, resins or various additives, and may be used in any form such as a film, a molded article or a fiber.
  • the above-described olefin block copolymer can be prepared using a specific catalyst system.
  • the method for producing an ellepin block copolymer includes a transition metal compound in which a Group 4 transition metal is coordinated with a compound represented by Formula 1 as a ligand, and a catalyst composition for olefin polymerization comprising a compound represented by Formula 2 under, and it may include the step of copolymerizing monomers comprising ethylene or propyl, and alkylene, ⁇ - olefin:
  • R 1 is hydrogen, deuterium, halogen group, nitrile group, acetylene group, amine group, amide group, ester group, ketone group, alkyl group having 1 to 20 carbon atoms, carbon number 6-20 cycloalkyl groups, C2-C20 alkenyl groups, C6-C20 aryl groups, silyl groups, C7-C20 alkylaryl groups, C7-C20 arylalkyl groups, and C4-C20 heterocycles A cycloalkyl group having 4 to 10 carbon atoms substituted with one or more groups selected from the group consisting of groups; Hydrogen, deuterium, halogen group, nitrile group, acetylene group, amine group, amide group, ester group, ketone group, C1-C20 alkyl group, C6-C20 cycloalkyl group, C2-C20 alkenyl group, C6 Oxygen as a hetero
  • a heteroaryl group having 5 to 10 carbon atoms (N) or sulfur (S), and when R 1 is substituted with two or more groups, groups adjacent to each other may form an aliphatic or aromatic condensed ring; ⁇
  • R 2 is the same as or different from each other, and each independently hydrogen, deuterium, a halogen group, a nitrile group, an acetylene group, an amine group, an amide group, an ester group, a ketone group, an alkyl group having 1 to 20 carbon atoms, and an alke having 2 to 20 carbon atoms And a aryl group having 6 to 20 carbon atoms, a heterocyclic group having 4 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms, and two or more R 2 are connected to each other. It may form an aliphatic ring or an aromatic ring.
  • R 1 ' and R 2' are each independently hydrogen, an alkyl group of 1 to 20 carbon atoms, an aryl group of 6 to 20 carbon atoms, a silyl group, an alkenyl group of 2 to 20 carbon atoms, alkyl of 7 to 20 carbon atoms Aryl group, an arylalkyl group having 7 to 20 carbon atoms, or a metalloid radical of a Group 14 metal substituted with hydrocarbyl, wherein R 1 ' and R 2' are 3 ⁇ 4 killidines including an alkyl group having 1 to 20 carbon atoms or an aryl group May be connected to each other by radicals to form a ring;
  • R 3 ' is each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, or an amido group; Two or more R 3 ′ may be linked to each other to form an aliphatic ring or an aromatic ring; '
  • CY 1 is substituted or unsubstituted aliphatic ring or aromatic ring
  • M is a Group 4 transition metal
  • Q 1 and Q 2 are each independently halogen, alkyl group having 1 to 20 carbon atoms, aryl amido group having 6 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms Or an arylalkyl group having 7 to 20 carbon atoms or an alkylidene group having 1 to 20 carbon atoms.
  • the alkyl group comprises a straight or branched chain alkyl group
  • the alkenyl group comprises a straight or branched alkenyl group
  • the silyl group includes trimethylsilyl, triethylsilyl, tripropylsilyl, tributylsilyl, trinuclear silyl, triisopropylsilyl, triisobutylsilyl, triethoxysilyl, triphenylsilyl, tris (trimethylsilyl) silyl, and the like.
  • the aryl group may include heteroaryl groups as well as aryl groups having 6 to 20 carbon atoms.
  • aryl group examples include phenyl, naphthyl, anthracenyl, pyridyl, dimethylanilinyl, or anisolyl
  • alkylaryl group means an aryl group substituted by the alkyl group.
  • the arylalkyl group means an alkyl group substituted with an aryl group
  • the halogen group means a fluorine group, a chlorine group, a bromine group or an iodine group
  • the alkyl amino group means an amino group substituted by the alkyl group, and refers to a dimethylamino group, a diethylamino group, or the like. Includes;
  • the aryl amino group means an amino group substituted by the aryl group, and may include a diphenylamino group. However, it is not limited only to these examples.
  • the transition metal compound containing the compound of Formula 1 as a ligand in the catalyst composition mainly polymerizes and bonds the ethylene or propylene among monomers to form a hard segment, and The compound may mainly polymerize and bind the ⁇ -olefins to form a soft segment.
  • the hard segment contains a lower content of ⁇ -olefin-based repeat units due to the interaction of these two catalysts, and a higher content.
  • the included soft segments alternately polymerize and form, more blocked olefin block copolymers can be prepared compared to previously known copolymers.
  • such an olefin block copolymer can satisfy the above-described relationship between the molecular weight distribution of the polymer chain and the number of branched chains, and thus exhibit excellent processability compared to the previous block copolymer with excellent elasticity and heat resistance. Accordingly, such block copolymers can be suitably used as olefinic elastomers in more various fields. .
  • the block copolymer having excellent heat resistance can be manufactured with high productivity through a relatively easy manufacturing process using the catalyst composition, it can greatly contribute to the commercialization of the olefin elastomer having excellent heat resistance.
  • the compound represented by Formula 1 may be a compound represented by Formula 1-1 or Formula 1-2:
  • n is an integer of 1 to 7
  • n ' is an integer of 1 to 5
  • p is 7 j 2 + in 0 p 'is an integer of 0 to 5 + n'
  • R 3 is the same as or different from each other, and each independently deuterium, a halogen group, a nitrile group, an acetylene group, an amine group, an amide group, an ester group, Ketone group, alkyl group having 1 to 20 carbon atoms, cycloalkyl group having 6 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, silyl group, alkylaryl group having 7 to 20 carbon atoms, 7 to 20 carbon atoms An arylalkyl group or a heterocyclic group having 4 to 20 carbon atoms; Two or more R 3 may be linked to each other to form an aliphatic ring
  • R 3 may be an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and two or more R 3 are connected to each other To form an aliphatic ring or an aromatic ring.
  • Formula 1-1, and Formula 1-2 in Formula 1, Formula 1-1, and Formula 1-2, m may be 2 or 3, and in Formula 1-1 or Formula 1-2, n may be 2 or 3. Can be. And, in the formula 1-1 or formula 1-2, n 'may be from 1 to 3.
  • R 1 and R 2 are as defined in Chemical Formula 1.
  • Compound 9 may be obtained by synthesizing Intermediate 8 using a selective lithium replacement method using Compound 7 as a starting material, and then injecting DMF (N, N—Dimethyl formamide). Thereafter, compound 9 is reacted with RLNHz by reflux or stirring to obtain a compound represented by Formula 1.
  • R 1 is an aryl group in I ⁇ -Nifc
  • the result can be obtained by refluxing overnight after adding 4A MS, where R 1 is In the case of an alkyl group or an alkylaryl group, the result can be obtained by stirring overnight at room temperature.
  • Such a compound of Formula 1 may be a ligand compound capable of forming a bidentate chelate (NN chelate) with a metal or a tridentate chelate (NNN, NN0, or NNC) depending on the type of R 1 .
  • N chelate a bidentate chelate
  • NNN a metal or a tridentate chelate
  • a transition metal compound in which a Group 4 transition metal is coordinated with a compound of Formula 1 as a ligand is used as a catalyst.
  • the transition metal include Ti, Zr, or Hf. Can be.
  • the transition metal compound may be represented by one of the following structural formulas, but:
  • M is a Group 4 transition metal
  • R is the same or different from each other, and each independently hydrogen, deuterium, halogen, nitrile, acetylene, amine, amide, ester, ketone, carbon number 1 Selected from the group consisting of an alkyl group of -20, an alkenyl group of 2 to 20 carbon atoms, an aryl group of 6 to 20 carbon atoms, a heterocyclic group of 4 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, and an aryloxy group of 6 to 20 carbon atoms Can be.
  • the structure of the transition metal compound may have a molar ratio of 2: 1 or 1: 1 between the ligand and the transition metal. Due to this structural feature, the transition metal compound may have a relatively high content of the transition metal.
  • the transition metal compound may be prepared by the following method. First, a certain amount of ligand represented by Formula 1 and 1.05 equivalent of a metal precursor are mixed, and then an appropriate amount of a solvent of toluene is injected at about -75 ° C to -80 ° C, and the mixture is stirred for 6 hours to 2 days while gradually raising to room temperature. . After removing the solvent or knowing the amount of the injected solvent it is possible to obtain the desired transition metal compound in the solution phase.
  • the compound represented by the formula (2) together with the transition metal compound derived from the formula (1) may be used as a catalyst.
  • Such a compound of Formula 2 may be obtained, for example, according to a method known from Korean Patent Publication No. 0820542.
  • the compound represented by Formula 2 may be a compound represented by Formula 2-1 in view of the control of the electronic and three-dimensional environment around the metal in Formula 1 above:
  • R 4 and R 5 are each independently hydrogen, carbon number
  • Each R 6 independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a carbon group having 2 to 20 carbon atoms.
  • Two or more R 6 may be linked to each other to form an aliphatic ring or an aromatic ring;
  • Q 3 and Q 4 are each independently halogen, an alkyl group having 1 to 20 carbon atoms or an aryl amido group having 6 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms;
  • M is a Group 4 transition ' metal.
  • the compound represented by Formula 2 or Formula 2-1 is an amido group and an amino or alkoxy group is connected by a phenylene bridge structurally narrow Cp-ME angle, C ⁇ -MQ 2 or Q 3 that the monomer approaches The -MQ 4 angle is kept wide to allow access of large monomers.
  • the compound of Formula 2 may mainly contribute to the formation of soft segments by polymerizing and bonding ⁇ -olefins rather than ethylene or propylene.
  • the transition metal compound derived from the ligand of Formula 1 may form a hard segment. Can contribute to
  • the catalyst composition may further include one or more cocatalyst compounds selected from the group consisting of compounds represented by the following Chemical Formulas 3 to 5 in addition to the two main catalysts (transition metal compounds):
  • J is aluminum or boron
  • R 4 ′ is each independently a halogen or a hydrocarbyl radical having 1 to 20 carbon atoms unsubstituted or substituted with halogen;
  • L is a neutral or cationic Lewis acid
  • H is hydrogen
  • Z is a Group 13 element
  • A is independently C6-C20 aryl or C1-C20 alkyl, in which at least one hydrogen atom is substituted with halogen, C1-C20 hydrocarbyl, C1-C20 alkoxy group or phenoxy group;
  • R 5' is a halogen or a hydrocarbyl having 1 to 20 carbon atoms unsubstituted or substituted with halogen; a is an integer of 2 or more.
  • the compound represented by Formula 3 is not particularly limited as long as it is an alkyl metal compound;
  • Trinuclear aluminum trioctyl aluminum, ethyl dimethyl aluminum methyl diethyl aluminum, triphenyl aluminum, tri-P-allyl aluminum dimethyl aluminum mesoxide, dimethyl aluminum ethoxide, trimethyl boron triethyl boron, triisobutyl boron, tripropyl It may be the boron, or boron, such as tributylamine.
  • the compound represented by the formula (4) is triethyl ammonium tetra (phenyl) boron 'tributyl ammonium tetra (phenyl) boron, trimethyl ammonium tetra (phenyl) boron, tripropyl ammonium tetra (phenyl) boron, trimethyl Ammonium Tetra (P-lryl) boron, Trimethylammonium Tetra ( ⁇ , ⁇ -dimethylphenyl) boron, Tributylammonium Tetra ( ⁇ -trifluoromethylphenyl) boron, Trimethylammonium Tetra ( ⁇ -trifluoromethylphenyl )
  • Trimethylammonium tetra ( ⁇ -trifluoromethylphenyl) aluminum Trimethylammonium tetra ( ⁇ -trifluoromethylphenyl) aluminum
  • Trityltetra (pentafluorophenyl) borone Trityltetra (pentafluorophenyl) borone
  • the compound represented by Chemical Formula 5 is not particularly limited as long as it is alkylaluminoxane;
  • it may be methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, or butyl aluminoxane.
  • the addition amount of the above-mentioned cocatalyst compound is derived from Formula 1 It may be included in a molar ratio of about 1: 1 to 1:20 with respect to the transition metal compound and the compound represented by Formula 2 (hereinafter, "main catalyst compound"), for example, about 1: 1 to 1:18, Or in a molar ratio of about 1: 1 to 1:15.
  • the content of the coarse vein compound may be included in a molar ratio of 1: 1 subphase relative to the main catalyst compound.
  • the cocatalyst compound may be included in a molar ratio of 1:20 or less with respect to the main catalyst compound.
  • the catalyst composition described above may further include a polymerization aid.
  • the polymerization aid is composed of an aluminum compound containing a C1-C12 hydrocarbyl substituent, a zinc compound containing a C1-C12 hydrocarbyl substituent, and a gallium compound containing a C1-C12 hydrocarbyl substituent. At least one compound selected from the group; For example, it may be triethylaluminum or diethylzinc.
  • the polymerization aid improves the degree of blocking and crystallinity of the molecular structure, and increases the content of the ⁇ -olefin-based repeating unit to serve to prepare a block copolymer having a low melting point and a high melting point.
  • the addition amount of the polymerization aid may be included in a molar ratio of about 1:10 to 1: 1000 with respect to the main catalyst compound, for example, about 1:10 to 1: 500, or about 1:20 to 1: 200 May be included in the molar ratio.
  • the content of the polymerization aid may be a molar ratio of 1:10 or more with respect to the main catalyst compound, and proper physical property control and main catalyst compound of the prepared block copolymer In consideration of the excellent activity of the polymerization aid, It may be included in a molar ratio of 1: 1000 or less.
  • the olefin block copolymer in the presence of the catalyst composition described above, can be produced by a method comprising the step of copolymerizing a monomer comprising ethylene or propylene, and the ⁇ -olefin.
  • the ⁇ - olepin monomer 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1- Dodecene, 1-tetradecene, 1-nuxadecene, 1-aitocene and the like.
  • the copolymerization step may proceed at a temperature of about 140 ° C or more, or about 140 to 180 ° C, or about 140 to 160 ° C, about 50 bar or more, black is about 50 to 120 bar, or about It can proceed under pressure of 70 to 100 bar.
  • Previously known metallocene-based or post-metallocene-based catalysts have been known to dramatically decrease activity at high temperatures.
  • the main catalyst compounds included in the catalyst composition described above can maintain excellent catalytic activity even under high pressure of about 140 ° C. or higher and about 50 bar or higher. Therefore, the copolymerization process is carried out under such high temperature and high pressure conditions, so that a block copolymer having a large molecular weight and excellent physical properties can be obtained with higher efficiency.
  • the copolymerization may be performed by a solution process using the catalyst composition described above, or may be performed by a slurry process or a gas phase process using the catalyst composition together with an inorganic carrier such as silica.
  • an inorganic carrier such as silica
  • the scavenger may be added at 0.4-5 times the total moisture content in the reaction vessel.
  • a scavenger serves to remove impurities such as moisture or air, which may be included in the reaction product, and may be introduced before copolymerization of the reaction product occurs.
  • the scavenger and the reaction mixture may be mixed with the scavenger and the reaction product in a separate reaction vessel other than the polymerization reactor, and the scavenger for a sufficient time in the supply line to supply the reaction product to the polymerization reactor. And reaction can be mixed.
  • Scavenger Preferred examples include, but are not limited to, trialkylaluminum such as TiBA1 (triisobutylaluminum) or T0A (trioctylaluminum).
  • the copolymerization step may be carried out by the introduction of the above-described catalyst composition, monomer, polymerization aid and scavenger in the reaction.
  • the catalyst composition is 5 to 5 carbon atoms suitable for the olefin polymerization process
  • aliphatic hydrocarbon solvents such as pentane, nucleic acids, heptanes, nonanes, decanes, or isomers thereof; Aromatic hydrocarbon solvents such as toluene or benzene; Black can be injected by dissolving or diluting in dichloromethane or a hydrocarbon solvent substituted with a chlorine atom such as chlorobenzene.
  • the molar ratio of ethylene or propylene to solvent needs to be a ratio suitable to dissolve the reactants and the resulting block copolymer.
  • the molar ratio of (ethylene or propylene / solvent) may be about 1 / 10,000 to 10, or about 1/100 to 5, or about 1/20 to 1.
  • the solvent may be introduced into the reactor at a temperature of about ⁇ 40 to 150 ° C. using a heater or a motive motor, and the polymerization reaction may be initiated together with the monomer and the catalyst composition.
  • the high capacity pump raises the pressure to about 50 bar or more to supply the feeds (solvent, monomer, catalyst composition, etc.), so that the feeds without additional pumping between the reaction vessel, pressure drop device and separator Can pass through a mixture of
  • Suitable times for the block copolymer to remain in the reaction chamber can be from about 1 minute to 10 hours, or from about 3 minutes to 1 hour, or from about 5 minutes to 30 minutes. As a result, productivity The degradation, the loss of the catalyst, and the like can be suppressed, and the size of the reaction vessel can be optimized.
  • the solvent separation process may be further performed by changing the solution temperature and pressure in order to remove the solvent present with the block copolymer exiting the reaction.
  • the block copolymer solution transferred from the reaction vessel maintains a molten state through a heater, vaporizes the unbanung raw material solvent in the separator, and the resulting block copolymer may be granulated with an extruder or the like.
  • an olefin block copolymer exhibiting excellent heat resistance, elasticity, improved workability, and the like can be provided.
  • such olefin block copolymers can be prepared via simple process steps.
  • the olefin block copolymer can greatly contribute to the commercialization of the olepin-based elastomer having excellent heat resistance and various physical properties, and the olefin block copolymer can be suitably used in various fields replacing the rubber-based material.
  • FIG. 1 is a view showing the molecular weight distribution curve of the olefin block copolymer prepared in the example and the number distribution of short chain branching (SCB) per 1000 carbon atoms.
  • FIG. 2 shows the relationship between the content Y '(weight%) of the hard segment contained in the olefin block copolymers of Examples 11 to 15 in Test Example 2 and the content X' (weight 3 ⁇ 4>) of the ethylene or propylene repeating unit. Is a linear regression graph shown in comparison with the copolymers of Comparative Examples 3 to 9.
  • FIG. 3 is a view showing an example of a free induction decay derived in order to measure the hard segment content (weight 3 ⁇ 4>) in the olefin block copolymer in Test Example 2.
  • a 1.5 L continuous stirred reactor preheated to 100-150 ° C. was fed a nucleic acid (3.20 kg / h) solvent and monomers 1-octene and ethylene at a pressure of 89 bar.
  • a predetermined reaction catalyst and a dimethylanilinium tetrakis (pentafluorophenyl) borate cocatalyst as shown in Table 1 below, were supplied from the catalyst storage tank to the reaction vessel, and a scavenger (TIBAL) and diethyl zinc were added to the reaction mixture. Proceeding, the scavenger was mixed with the reactants to remove impurities contained in the reaction product before the reaction product was supplied to the reaction machine and fed to the reactor.
  • Examples of the catalyst A compound used in Examples and Comparative Examples include (E) —N-((l, 2,3,4-tetrahydroquinolin-8-yl) methylene , ) -2-methyl obtained in Preparation Example 2. Cyclonucleic acid amine zirconium benzyl ((E) -N-((l, 2,3,4-tetrahydroquinolin-8-yl) methylene) -2-met hy 1 eye 1 ohex anam i ne zirc liumbenzyl) was used .
  • 1,2,3,4-tetrahydro-8- (2,3,4-trimethyl-5) obtained according to the example of Korean Patent Publication No. 0820542 -Methylenecyclopenta—1,3-dienyl) quinoline dimethyltitanium (l, 2,3,4-tetrahydro-8- (2,3,4-trimethyl-5-methyl enecyc lopenta-1, 3-di eny 1 qui lnol ine dimethyl t itanium) 3 ⁇ 4- was used.
  • Example 143 18 6 0.63 0.9 120 3.5 3.5
  • Example 140 18 6 0.73 0.7 120 3.5 3.5. ⁇ 5 5
  • Example 142 18 6 0.58 0.6 120 3.5 3.5 One 6 0
  • Example 142 18 6 0.63 0.6 120 3.5 3.5 1.5 10 0
  • melt index Melt index, MI
  • ASTM D-1238 Consdition E, 190 ° C., 2.16 kg load
  • Samples of the copolymers of Examples and Comparative Examples were prepared in the form of a sheet having a thickness of 3 mm 3 and a radius of 2 cm using a 180 ° C. Press Mold and measured on a Mettler balance at 10 ° C./min.
  • the temperature was increased to 200 ° C., it was kept at that temperature for 5 minutes, then lowered to 30 ° C., and the silver was further increased to make the top of the DSC (Differential Scanning Calorimeter, TA) curve at the melting point.
  • the rate of temperature rise and fall is 10 ° C / min, the melting point was used in the results measured in the section where the second temperature rises.
  • Zwick's universal material tester was used to measure the recovery rate after 300% elongation of specimens made according to ASTM D638.
  • Example 1 48 -5.61 X 10 "5 to 41-48 Example 2 55 6.54 X 10 38 to 55 Example 3 52 35 to 52 Example 4 61 44 to 61 Example 5 42 25-42 Example 6 43 26 43 Example 7 42 25-42 Example 8 57 40-57 Example 9 55 38-55 Example 10 46 29-46
  • the block copolymers of Examples 1 to 10 have a first derivative of about ⁇ 5.61 ⁇ 10 1 ⁇ 5 to 6. 4 ⁇ 10 ⁇ 5 as -1.0 X in a region where the molecular weight of the polymer chains is at least the median. is maintained is confirmed in the range of 10- 4 to 1.0 X 10- 4.
  • the block copolymer exhibited a higher degree of blockage because there was almost no change in the number of branched chains due to molecular weight change and a certain level of branched chain was included in the region where the molecular weight of the polymer chain was relatively large.
  • the first derivative is considerably large as about 2.0 X 10 "4 to 0.1. Including a number of branched chains proportional to the molecular weight, it may reflect the similar characteristics as the random copolymer.
  • the copolymer of Comparative Example 1 is a copolymer in a form in which there is almost no branched chain, and thus almost no ⁇ -olefin-based repeat units are present, and has a completely different form and properties from the block copolymer of the example. It was identified as a copolymer.
  • the copolymer of Comparative Example 2 was found that the first derivative is quite comprehensive in the region where the molecular weight of the polymer chain is greater than or equal to the median value. In particular, the first derivative reaches a maximum value of 0.02, which is very high. It was confirmed to appear large. From this, the copolymer of Comparative Example 2 exhibited a very low blocking degree due to a very large change in the number of branched chains due to molecular weight change even in a region where the molecular chain of the polymer chain was relatively large, and did not exhibit the branched chain distribution characteristic of the example. It was found, however, to be substantially free of the form of a block copolymer.
  • Example 1 0.928 0.6 128 140 500 2.4--Comparative Example 2 0.870 3.6 58 89000 2.5 60 55
  • Example 1 0.877 0.5 122 122 800 2.5 114 99
  • Example 2 0.873 0.7 123 118 500 2.4 111 101
  • Example 3 0.876 0.7 124 114 300 2.5 114 101
  • Example 4 0.869 1.8 123 103 200 2.5 98 101
  • Example 5 0.881 0.5 123 130 400 2.6 117 102
  • Example 6 0.880 0.6 124 121 400 2.5 116 101
  • Example 7 0.881 0.4 124 123 200 2.5 119 101
  • Example 8 0.871 1.0 124 109 400 2.5 104 101
  • Example 9 0.872 2.9 124 911 700 2.8 111 102
  • Example 10 0.877 3.6 123 81 500 2.9 113 103
  • a block copolymer of Example 12 was prepared in the same manner as in Example 11 except that the catalyst input amount was set to 4 ⁇ ) 1 of the catalyst A compound and 2 ⁇ ) 1 of the catalyst ⁇ compound.
  • Catalytic amount of a catalyst compound ⁇ 3 ⁇ ⁇ ⁇ ) 1 and a catalyst compound ⁇ ⁇ ⁇ 3) is carried out by the same method as in Example 11 except that the 1 to prepare a block copolymer of Example 13 notarized.
  • a block copolymer of Example 15 was prepared in the same manner as in Example: except that the catalyst loading was 1 ⁇ ⁇ of catalyst A compound and 5 ymol of catalyst ⁇ compound.
  • the catalyst B 6.0 ⁇ was injected into the reaction vessel using high-pressure argon to carry out the copolymerization reaction for 10 minutes, and the remaining ethylene gas was removed, and the polymer solution was added to the excess of ethane to induce precipitation. After washing the obtained polymer with ethanol and acetone 2-3, respectively, and dried at 80 ° C. vacuum oven for 12 hours or more. This produced an ethylene- ⁇ -olefin copolymer of Comparative Example 3.
  • a copolymer of Comparative Example 4 was prepared in the same manner as in Comparative Example 3, except that the catalyst input amount was set at 5 ⁇ > 1 of the catalyst A compound.
  • the copolymer of Comparative Example 5 was prepared in the same manner as in Example 3.
  • a copolymer of Comparative Example 6 was prepared in the same manner as in Comparative Example 3, except that the catalyst input amount was changed to Catalyst A Compound 3 ⁇ ) 1.
  • a copolymer of Comparative Example 7 was prepared in the same manner as in Comparative Example 6 except that the amount of 1-octene was 0.6 ⁇ m.
  • a copolymer of Comparative Example 8 was prepared in the same manner as in Comparative Example 6 except that the amount of 1-octene was set at 0.5 ⁇ .
  • a copolymer of Comparative Example 9 was prepared in the same manner as in Comparative Example 6 except that the amount of 1-octene was 0.4 ⁇ m. ⁇ Test Example 2>
  • the content of the hard segment of the Example and the comparative example was computed using the commercially available Time Domain NMR (TD NMR; brand name Minspec by Bruker Optics).
  • TD NMR Time Domain NMR
  • FID Free Induction Decay
  • the FID is represented as a function of time and intensity.
  • the function equation closest to the graph of the FID function was derived, through which A, B, T2 fast and T2 The slow value was determined.
  • the spin-spin relaxation time (T2) relaxation calculated therefrom appears to be fast, and in the case of the soft segments, the spin-spin relaxation time (T2) calculated therefrom is known to be slow. Therefore, the smaller T2 value among the A, B, T2 fast and T2 slow values determined above is determined as the T2 value of the hard segment, that is, the T2 fast value, and the larger T2 value is the T2 value of the soft segment, that is, the T2 slow value. Determined. This yielded the content of the hard segment (weight «with the constants A and B: '
  • Hard segment (mol%) A / (A + B) x 100
  • Intensity and Time are the values calculated from the FID analysis result
  • T2 iast is the spin-spin relaxation time (T2) relaxation for the hard segment
  • T2 slow is a spin_spin relaxation time (T2) relaxation value for the soft segment.
  • a and B by fitting The constant determined is a relative proportion of the hard and soft segments, respectively, and has a value proportional to the content of each segment.
  • the content of the hard segment in the copolymer, r (weight 3 ⁇ 4>) and the content of ethylene or propylene monomers ⁇ '(weight 3 ⁇ 4>), respectively, is then calculated and the content of ethylene or propylene monomers x' (weight Hard Segment Content According to Y '(Weight) and Linear Regression of These Data
  • Example 9 Referring to Table 4 above, it was confirmed that the block copolymers of Example 11 to 15 exhibited significantly higher melting points and TMA values than Comparative Examples 3 to 9, indicating excellent heat resistance. In addition, it was confirmed that the block copolymer of the above example exhibits excellent mechanical properties and processability according to high molecular weight and molecular weight distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 우수한 탄성, 내열성 및 가공성을 나타내는 올레핀 블록 공중합체에 관한 것이다. 상기 올레핀 블록 공중합체는 에틸렌계 또는 프로필렌계 반복 단위와, α-올레핀계 반복 단위를 서로 다른 중량 분율로 포함한 복수의 블록 또는 세그먼트를 포함하는 것으로서, 블록 공중합체에 포함된 각 고분자 쇄들의 탄소수 1000개당 분지쇄(short chain branching; SCB) 개수 Y를 고분자 쇄들의 분자량 X에 대해 1차 미분한 값이 -1.5 X 10-4 이상의 음수 내지 양수로 되고, 상기 분자량 X의 중앙값(median) 이상의 영역에서는 상기 1차 미분 값이 -1.0 X 10-4 내지 1.0 X 10-4로 되는 것이다.

Description

【명세서】
【발명의 명칭】
올레핀 블록 공중합체
【기술분야】
본 발명은 올레핀 블록 공중합체에 관한 것이다.
【배경기술】
블록 공중합체는 서로 다른 특성을 갖는 복수의 반복단위 블록 또는 세그먼트를 갖는 공중합체를 지칭하는 것으로서, 통상의 랜덤 공중합체나 블렌드에 비해 우수한 특성을 갖는 경우가 많다. 예를 들어, 블록 공중합체는 소프트세그먼트로 지칭되는 연질의 탄성 블록과, 하드세그먼트로 지칭되는 경질의 결정성 블록을 함께 포함할 수 있으며, 이로 인해, 우수한 탄성과 내열성 등의 물성을 함께 나타낼 수 있다. 보다 구체적으로, 이러한 블록 공중합체는 소프트세그먼트의 유리 전이 온도 이상에서는 상기 블록 공중합체가 탄성을 나타낼 수 있으며, 용융 온도보다 높은 온도에 이르러서 열가소성 거동을 나타내기 때문에 비교적 우수한 내열성을 나타낼 수 있다.
상술한 블록 공중합체의 구체적인 일 예로서, 스티렌과 부타디엔의 삼블록 공중합체 (SBS)나 이의 수소화된 형태 (SEBS) 등은 내열성과 탄성 등이 뛰어나 다양한 분야에 유용성을 갖는 것으로 알려져 있다.
한편, 최근 들어 에틸렌 또는 프로필렌과, α-올레핀의 공중합체의 일종인 올레핀계 엘라스토머의 사용이 검토되고 있다. 보다 구체적으로, 이러한 을레핀계 엘라스토머를 다양한 분야, 예를 들어, 고무계 재료를 대체하기 위한 다양한 용도에 적용하려는 시도가 검토되고 있다. 또한, 올레핀계 엘라스토머의 내열성 등을 보다 향상시키기 위해, 이전에 사용되던 랜덤 공중합체, 예를 들어, 에틸렌 _α-올레핀 랜덤 공중합체 형태의 을레핀계 엘라스토머가 아닌 블록 공중합체 형태의 엘라스토머를 적용하려는 시도가 이루어진 바 있다.
그러나, 이러한 시도에도 불구하고, 내열성이 향상된 올레핀계 엘라스토머를 상용화하고자 하는 연구는 한계에 부딪히고 있다. 또한, 아전에 알려진 블록 공중합체 형태의 올레핀계 엘라스토머 역시 융융 가공시 가공성이 떨어지는 등 한계에 부딪히고 있다. 따라서, 보다 향상된 내열성 및 가공성 등을 갖는 올레핀계 엘라스토머가 계속적으로 요구되고 있는 실정이다.
【발명의 내용】
【해결하려는 과제】
본 발명은 우수한 탄성, 내열성 및 가공성을 나타내는 올레핀 블록 공중합체를 제공하는 것이다. ·
【과제의 해결 수단】
발명의 일 구현예는 에틸렌계 또는 프로필렌계 반복 단위와, ci- 을레핀계 반복 단위를 서로 다른 중량 분율로 포함한 복수의 블록 또는 세그먼트를 포함하는 올레핀 블록 공중합체로서, 블록 공중합체에 포함된 각 고분자 쇄들의 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수 Y를 고분자 쇄들의 분자량 X에 대해 1차 미분한 값이 약 -1.5 X 10 이상의 음수 내지 양수로 되고, 상기 분자량 X의 중앙값 (median) 이상의 영역에서는 상기 1차 미분 값이 약 -1.0 X 10"4 내지 1.0 X ΚΓ4로 되는 올레핀 블록 공중합체를 제공한다.
이러한 일 구현예의 블록 공중합체는, 분자량 X의 중앙값 미만의 영역에서는 상기 1차 미분 값이 상기 중앙값 이상의 영역에서보다 크게 되는 것일 수 있다. 또한, 분자량 X의 중앙값 미만의 영역에서는 분자량 X가 증가할수록 상기 1차 미분 값이 감소할 수 있고, 분자량 X가 하위 40% 미만인 영역에서는 상기 1차 미분 값이 약 2.0 X 10"4 내지 0.1로 될 수 있다.
또한, 상기 일 구현예의 블록 공중합체는 상기 고분자 쇄들의 탄소수
1000개당 분지쇄 (short chain branching; SCB) 개수 Y가 약 70개 이하인 것일 수 있다. 그리고, 분자량 X의 중앙값 이상의 영역에서는, 상기 고분자 쇄들의 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수 Y가 약
20 내지 70개인 것일 수 있고, 상기 영역 내의 Υ의 최대값과 최소값의 편차가 약 20개 이하로 될 수 있다.
또, 일 구현예의 블록 공중합체는 제 1 중량 분율의 α—올레핀계 반복 단위를 포함하는 하드세그먼트와, 제 1 중량 분율 보다 높은 제 2 중량 분율의 α-올레핀계 반복 단위를 포함하는 소프트세그먼트를 포함할 수 있다. 또한, 전체 블록 공중합체에 포함된 α-을레핀계 반복 단위의 중량 분율은 제 1 중량 분율과, 제 2중량 분율의 사이 값을 가질 수 있다. 그리고, 일 구현예의 블록 공중합체는, 블록 공중합체 중의 하드세그먼트의 함량 r (중량 «과, 에틸렌 또는 프로필렌계 반복 단위의 함량 x' (중량 %)가 하기 식 1의 관계를 충족하는 것일 수 있다. 이러한 블록 공중합체는 약 50 내지 90 중량 %의 에틸렌계 또는 프로필렌계 반복 단위와, 잔량의 α-올레핀계 반복 단위를 포함할 수 있고, 상기 반복 단위의 전체 함량 범위에서 식 1의 관계를 층족할 수 있다:
[식 1]
Ψ > 2.8495X' - 145.01
또한, 일 구현예의 블록 공중합체는 하드세그먼트의 약 10 내지 90 중량 %와, 소프트세그먼트의 잔량을 포함할 수 있다. 이때, 하드세그먼 H는 결정화도, 밀도 및 융점의 특성 값 중 하나 이상이 소프트세그먼트보다 높은 것일 수 있다.
그리고, 상기 일 구현예의 블록 공중합체는 밀도가 약 0.85g/cm3 ~ 0.92g/cm3일 수 있고, TMA (Thermal Mechanical Analysis) 값이 약 70 내지 140°C일 수 있다. 또, 상기 블록 공중합체는 190°C, 2.16kg 하중 하의 용융 지수가 약 0.5내지 5g/10min이고, 쇼어 경도가 약 50내지 100일 수 있다. 또한, 일 구현예의 블록 공중합체는 300%신장 후의 영구 회복율이 약
110% 이하인 것일 수 있고, 약 100 내지 140 °C의 융점을 가질 수 있다. 그리고, 상기 블록 공증합체는 중량 평균 분자량이 약 50,000 내지 200,000이고, 분자량 분포가 약 2.0 내지 4.5인 것일 수 있다.
상술한 올레핀 블록 공중합체에서, 상기 α-올레핀계 반복 단위는 1- 부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 및 1-아이토센으로 이루어진 군에서 선택된 1종 이상의 α-을레핀에서 유래한 반복 단위로 될 수 있다. 이하, 발명의 구현예에 따른 올레핀 블록 공중합체 및 이의 제조 방법에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다 .
본 명세서 전체에서 특별한 언급이 없는 한 몇 가지 용어는 다음과 같이 정의될 수 있다.
본 명세서 전체에서 "(올레핀) 블록 공중합체" 는 에틸렌 또는 프로필렌과, α-올레핀이 공중합된 고분자로서, 물리적 또는 화학적 특성, 예를 들어, 에틸렌 또는 프로필렌과, α-올레핀에서 각각 유래한 반복 단위들의 함량 (중량 분율), 결정화도, 밀도, 또는 융점 등의 특성 중 하나 이상의 특성 값이. 서로 상이하여, 고분자 내에서 서로 구분될 수 있는 복수의 반복 단위 블록 또는 세그먼트를 포함하는 공중합체를 지칭할 수 있다.
이러한 복수의 블록 또는 세그먼트는, 예를 들어, 에틸렌계 또는 프로필렌계 반복 단위와, α-올레핀계 반복 단위를 포함하되, 이들 각 반복 단위를 서로 다른 함량 (중량 분율)으로 포함할 수 있다. 일 예로서, 상기 복수의 블록 또는 세그먼트는 제 1 중량 분율의 α-올레핀계 반복 단위를 포함하는 경질 결정성 블록인 하드세그먼트와, 상기 제 1 중량 분율보다 높은 제 2 중량 분율의 α-올레핀계 반복 단위를 포함하는 연질 탄성 블록인 소프트세그먼트를 포함할 수 있다. 이때, 제 1 중량 분율은 블록 공중합체 전체에 대해 산출된 α-을레핀계 반복 단위의 중량 분율에 비해 낮은 값을 가질 수 있고, 제 2 중량 분율은 블록 공중합체 전체에 대해 산출된 α-을레핀계 반복 단위의 중량 분율에 비해 높은 값을 가질 수 있다. 또한, 상기 복수의 블록 또는 세그먼트는 결정화도, 밀도, 유리 전이 온도 또는 융점 등의 다른 특성들 중 하나 이상에 의해서도 서로 구분될 수 있다. 예를 들어, 상술한 경질 결정성 블록인 하드세그먼트는 연질 탄성 블록인 소프트세그먼트와 비교하여, 결정화도, 밀도 및 융점의 특성 중 하나 또는 둘 이상의 특성 값이 보다 높은 값을 나타낼 수 .있다.
또한, 상기 "(올레핀) 블록 공중합체" 에 포함된 "고분자 쇄 (들) " 라 함은, 상기 블록 공중합체를 중합 및 제조하였을 때, 형성되는 다수의 고분자 사슬들을 지칭할 수 있다. 예를 들어, 에틸렌 또는 프로필렌과, α-을레핀을 중합하여 상기 블록 공중합체를 제조하면, 에틸렌계 또는 프로필렌계 반복 단위와, α-을레핀계 반복 단위를 포함하면서 다양한 분자량을 갖는 고분자 사슬들이 형성되며 이들 고분자 사슬들이 상기 블록 공중합체를 이루게 된다. 이러한 고분자 사슬들의 다양한 분자량과 그 함유 정도는 상기 블록 공중합체를 겔 투과 크로마토그래피 (GPC)로 분석해 블록 공중합체의 분자량 분포 곡선을 도출함으로서 확인될 수 있다. 이러한 고분자 사슬들을 상기 "(올레핀) 블록 공중합체" 에 포함된 "고분자 쇄 (들) " 로 정의할 수 있다.
그리고, 상기 "고분자 쇄 (들) " 의 분자량의 중앙값이라 함은 블록 공중합체를 중합 및 제조하고, 이에 포함된 고분자 쇄들을 분자량 크기 순서로 나열하였을 때, 상기 고분자 쇄들 중 분자량 크기 순서가 5W로 '되는 고분자 쇄의 분자량을 지칭할 수 있다. 또한, 상기 "고분자 쇄 (들) " 의 분자량이 "하위 이하 (혹은 이상, 미만 또는 초과)" 로 된다고 함은, 상기 고분자 쇄들을 분자량 크기 순서로 나열하였을 때, 가장 작은 분자량을 갖는 고분자 쇄부터 시작하여 분자량 크기 순서가 A»로 되는 고분자 쇄 (예를 들어, 。가 40%라고 가정하면, 고분자 쇄 10개가 있는 경우, 4 번째로 작은 분자량을 갖는 고분자 쇄)의 분자량보다 이하 (혹은 이상, 미만 또는 초과)로 됨을 지칭할 수 있다. 그리고, 상기 "고분자 쇄 (들) " 의 분자량이 "상위 이하 (혹은 이상, 미만 또는 초과)" 로 된다고 함은, 가장 큰 분자량을 갖는 고분자 쇄부터 시작하여 분자량 크기 순서가 40%로 되는 고분자 쇄의 분자량보다 이하 (혹은 이상, 미만 또는 초과)로 됨을 지칭할 수 있다.
또한, 상기 "(올레핀) 블록 공중합체" 에서, "분지쇄 (short chain branching; SCB)" 라고 함은 상술한 고분자 쇄들 각각에서, 가장 긴 주쇄에 가지와 같은 형태로 분지 결합된 쇄 (chain)를 지칭할 수 있다. 이러한 분지 쇄의 개수는 상기 블록 공중합체를 FT-IR 분석함으로서 산출될 수 있으며, 상기 블록 공중합체나 고분자 쇄들에 포함된 α-을레핀 단량체의 함량에 비례할 수 있다. 한편, 발명의 일 구현예에 따르면, 에틸렌계 또는 프로필렌계 반복 단위와, α-올레핀계 반복 단위를 서로 다른 증량 분율로 포함한 복수의 블록 또는 세그먼트를 포함하는 올레핀 블록 공중합체루서, 블록 공중합체에 포함된 각 고분자 쇄들의 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수 Y를 고분자 쇄들의 분자량 X에 대해 1차 미분한 값 (dY/dX; 이하 같다.)이 약 -1.5 X 10— 4 이상의 음수 내지 양수로 되고, 상기 분자량 X의 중앙값 (median) 이상의 영역에서는 상기 1차 미분 값이 약 -1.0 X 10— 4 내지 1.0 X 10— 4, 흑은 약 -9.0 X 1(Γ5 내지 9.0 X 10"5, 흑은 약 -8.0 X 10"5 내지 8.0 X ΚΓ5, 혹은 약 -6.5 X 1(Γ5 내지 7.0 X 10— 5, 혹은 약 -6.0 X 10"5 내지 6.8 X 10"5으로 되는 올레핀 블록 공중합체가 제공된다: 이러한 일 구현예의 올레핀 블록 공중합체는 에틸렌 또는 프로필렌과, α-을레핀이 공중합되어 이들로부터 유래한 반복 단위를 포함하는 것으로서, α_올레핀에서 유래한 α-올레핀계 반복 단위로 인해 우수한 탄성을 나타낼 수 있다.
또한, 후술하는 특정 촉매 시스템을 이용하여 제조됨에 따라, 상기 을레핀 블록 공중합체는 이에 포함된 각 고분자 쇄들의 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수 Y를 고분자 쇄들의 분자량 X에 대해 1차 미분한 값이 약 -1.5 X 10"4 이상의 음수 내지 양수, 혹은 약 0 내지 양수, 혹은 약 —1.5 X 10"4 내지 1로 되며, 특히, 상기 분자량의 중앙값 (median) 이상의 영역, 혹은 상기 분자량이 하위 약 55% 이상인 영역, 혹은 하위 약 60% 이상 100% 이하인 영역, 혹은 하위 약 70% 이상 95% 이하인 영역에서, 상기 1차 미분 값이 약 -1.0 X 10"4 내지 1.0 X 10— 4, 혹은 약 —9.0 X 10"5 내지 9.0 X 10— 5, 혹은 약 -8.0 X 10— 5 내지 8.0 X 10— 5, 흑은 약 -6.5 X 10— 5 내지 7.0 X 10— 5, 혹은 약 -6.0 X 10— 5 내지 6.8 X 10— 5으로 되는 특성을 층족할 수 있음이 확인되었다.
이러한 블록 공중합체의 특성에서, 상기 1차 미분 값이 값이 약 -1.5
X 10— 4 이상의 음수 내지 양수로 되는 특성은, 블록 공중합체에 포함된 고분자 쇄들의 분자량이 커질수록 대체로 많거나 같은 수의 분지쇄를 포함하여 (국한된 영역에서 감소하더라도 그 감소 정도가 매우 작음), α- 올레핀계 반복 단위의 함량 범위가 고분자 쇄의 분자량에 대략 정비례하거나 일정하게 됨을 영할 수 있다. 또한, 상기 분자량의 중앙값 이상의 영역에서 상기 1차 미분 값이 약 -1.0 X 10"4 내지 1.0 X 10_4의 매우 작은 값을 가지는 것은, 블록 공중합체에 포함된 고분자 쇄들 중 상대적으로 큰 분자량올 갖는 고분자 쇄들의 경우, 분자량이 증가하더라도 이에 포함된 분지쇄의 개수 및 이로부터 확인되는 α-올레핀계 반복 단위의 함량 범위가 거의 증가하지 않으며, 각 고분자 쇄들이 일정 수준의 α- 올레핀계 반복 단위를 포함함을 나타낼 수 있다. 이는 큰 분자량을 갖는 고분자 쇄들이 α-올레핀계 반복 단위끼리 모인 블록 또는 세그먼트를 포함함을 반영할 수 있다.
이러한 블록 공중합체의 특성은 후술하는 특정한 촉매 시스템을 이용해 제조됨에 따라, 상기 블록 공중합체가 물리적 또는 화학적 특성이 서로 다른 복수의 블록 또는 세그먼트를 포함하여 블록화된 형태를 갖기 때문으로 보인다. 즉, 후술하는 특정 촉매 시스템을 이용해 제조된 일 구현예의 블록 공중합체는, 에틸렌 또는 프로필렌이 동종의 단량체끼리 중합 및 결합되어 블록 또는 세그먼트를 이를 수 있으며, 또한 α-을레핀이 동종의 α-올레핀끼리 중합 및 결합되어 다른 블록 또는 세그먼트를 이를 수 있다. 이로 인해, 일 구현예의 블록 공중합체는 특히 상대적으로 큰 분자량의 영역에서 보다 높은 블록화도를 나타낼 수 있고, 그 결과 각 고분자 쇄들이 일정 수준의 분지쇄의 개수 및 α-올레핀계 반복 단위를 포함하여 상술한 특성을 나타낼 수 있다.
보다 구체적으로, 이러한 블록 공중합체는 에틸렌계 또는 프로필렌계 반복 단위와, α-올레핀계 반복 단위의 중량 분율이 서로 상이한 복수의 블록 또는 세그먼트, 예를 들어, 제 1 중량 분율의 α-올레핀계 반복 단위를 포함하는 경질 결정성 블록인 하드세그먼트와, 상기 제 1 중량 분율보다 높은 제 2 ^량 분율의 α-올레핀계 반복 단위를 포함하는 연질 탄성 블록인 소프트세그먼트를 포함할 수 있다. 이때, 전체 블록 공중합체에 포함된 α-올레핀계 반복 단위의 중량 분율이 제 1 중량 분율과, 제 2 중량 분율의 사이 값을 갖게 될 수 있다. 다시 말해서, 제 1 중량 분율은 블록 공중합체 전체에 대해 산출된 α-올레핀계 반복 단위의 중량 분율에 비해 낮은 중량 분율로 될 수 있고, 제 2 중량 분율은 블록 공중합체 전체에 대해 산출된 α-올레핀계ᅳ 반복 단위의 중량 분율에 비해 높은 중량 분율로 될 수 있다.
이와 같이, 일 구현예의 올레핀 블록 공중합체가 상술한 분지쇄 분포 특성으로부터 확인되는 블록화된 형태를 가지며, 특히, 에틸렌계 또는 프로필렌계 반복 단위의 중량 분율이 보다 높은 경질 결정성 블록인 하드세그먼트를 포함함에 따라, 이러한 블록 공중합체는 이전에 알려진 올레핀계 엘라스토머 등에 비해 동등 밀도 수준에서 보다 높은 수준의 TMA (Thermal Mechanical Analysis) 값을 가질 수 있다. 또, 일 구현예의 블록 공중합체는, 예를 들어, 약 100 내지 140°C, 혹은 약 110 내지 130 °C, 혹은 약 120 내지 130°C의 높은 융점 (Tm)을 가질 수 있다. 그 결과, 일 구현예의 블록 공중합체는 보다 높은 온도에서도 엘라스토머로서의 탄성 등 우수한 물성을 나타낼 수 있게 되어, 보다 향상된 내열성을 나타낼 수 있다. 특히, 일 구현예의 블록 공중합체는 이의 특성에 보다 큰 영향을 미치는 상대적으로 큰 분자량의 영역에서 높은 블록화도를 나타냄에 따라 (다시 말해서, 고분자 쇄들 중 상대적으로 큰 분자량을 갖는 것들이 높은 블록화도를 나타냄에 따라), 더욱 향상된 내열성을 나타낼 수 있으며, α- 올레핀계 반복 단위를 보다 높은 중량 분율로 포함하는 소프트세그먼트의 존재로 인해, 보다우수한 탄성을 나타낼 수 있다.
따라서, 일 구현예의 을레핀 블록 공증합체는 α-을레핀의 공중합에 따른 우수한 탄성과 함께 보다 향상된 내열성을 나타낼 수 있으므로, 우수한 탄성 및 내열성을 갖는 을레핀계 엘라스토머의 제공을 가능케 한다. 그러므로, 이러한 올레핀 블록 공중합체는 고무계 소재를 대체하는 재료로서 이전에 알려진 올레핀계 엘라스토머의 적용 분야에 관한 한계를 극복하고, 보다 다양한 용도로 사용 가능한 을레핀계 엘라스토머의 상용화를 가능케 한다.
한편, 상술한 일 구현예의 블록 공중합체에 포함된 복수의 블록 또는 세그먼트, 예를 들어 하드세그먼트 및 소프트세그먼트는 결정화도, 밀도 또는 융점 등의 다른 특성들 중 하나 이상의 특성 값에 '의해서도 서로 구분될 수 있다. 예를 들어, 에틸렌계 또는 프로필렌계 반복 단위를 보다 높은 중량 분율로 포함하는 경질 결정성 블록인 하드세그먼트는 상대적으로 α-올레핀계 반복 단위를 높은 중량 분율로 포함하는 연질 탄성 블록인 소프트세그먼트와 비교하여, 결정화도, 밀도 및 융점의 특성 중 하나 이상의 특성 값이 보다 높은 값을 나타낼 수 있다. 이는 상기 하드세그먼트의 보다 높은 결정성 등에 기인할 수 있다. 이러한 각 블록 또는 세그먼트의 특성 값은 각각의 블록 또는 세그먼트에 대웅하는 (공)중합체를 얻고, 이에 대한 특성 값을 측정하는 등의 방법으로 결정 및 /또는 구분될 수 있다.
또한, 상기 일 구현예의 블록 공중합체는, 이에 포함된 고분자 쇄들의 분자량이 중앙값 보다 작은 영역에서, 상기 1차 미분 값이 상기 중앙값 이상의 영역에서보다 크게 되는 특성을 나타낼 수 있다. 또한, 상기 고분자 쇄들의 분자량이 중앙값 보다 작은 영역에서는, 분자량이 증가할수록 상기 1차 미분 값이 감소하는 특성을 나타낼 수 있다. 예를 들어, 일 구현예의 블록 공중합체는 상기 고분자 쇄의 분자량의 최소값에 해당하는 지점에서 가장 큰 1차 미분 값을 나타내고, 이에 포함된 고분자 쇄들이 보다 큰 분자량을 가질수록 1차 미분 값이 감소하는 특성을 나타낼 수 있다. 일 구체예에서, 상기 분자량이 하위 약 40% 미만, 혹은 하위 약 35% 미만 OT 이상, 혹은 하위 약 30% 미만 0% 이상인 영역에서는, 상기 1차 미분 값이 약 2.0 X 10— 4 내지 0.1, 혹은 약 3.0 X 10"4 내지 0.08, 흑은 약 5.0 X 10"4 내지 0.06으로 될 수 있다.
일 구현예의 블록 공중합체는, 상대적으로 큰 분자량의 영역에서 각 고분자 쇄들이 대체로 일정 수준의 분지쇄를 포함하여 블록화된 특성을 나타내는 것과는 달리 , 상대적으로 낮은 분자량의 영역에서는 고분자 쇄들이 보다 큰 분자량을 가질수록 분지쇄의 개수가 보다 큰 폭으로 증가하게 되며, 단지 그 증가 폭은 분자량이 증가할수록 상대적으로 작아지게 된다. 특히 상기 고분자 쇄의 분자량이 하위 40% 미만인 영역에서는, 상기 1차 미분 값이 최대 약 0.1로 되어 중앙값 이상인 영역에 비해 매우 큰 값을 가질 수 있다. '
이와 같이, 고분자 쇄의 분자량이 작은 영역에서, 분지쇄의 개수가 분자량에 비례하여 큰 폭으로 증가하는 것은, 각 고분자 쇄가 분자량에 비례하는 함량 범위로 α-올레핀계 반복 단위를 포함함을 나타낼 수 있고, 이는 상대적으로 낮은 분자량을 갖는 고분자 쇄들이 랜덤 공중합체와 유사한 특성을 나타냄을 반영할 수 있다. 이와 같이, 일 구현예의 블록 공중합체가 랜덤 공중합체와 유사한 특성을 나타내는 저분자량의 고분자 쇄들을 포함함에 따라, 상기 블록 공중합체의 분자량 분포는 보다 커질 수 있다. 또한, 이러한 블록 공중합체의 용융 가공시 용융 점도가 크게 낮아질 수 있으므로, 일 구현예의 블록 공중합체는 이전에 알려진 블록 공중합체보다 우수한 용융 가공성 및 제품 성형성을 나타낼 수 있다. 따라서, 일 구현예의 블록 공중합체는 우수한 탄성 및 내열성과 함께 보다 향상된 가공성을 나타내는 을레핀계 엘라스토머의 제공을 가능케 한다
또한, 일 구현예의 블록 공중합체는, 이에 포함된 고분자 쇄들의 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수가 전체적으로 약 70개 이하, 혹은 약 0개 초과 65개 이하, 흑은 약 3개 초과 61개 이하로 될 수 있다. 또한, 상기 고분자 쇄들의 분자량의 중앙값 이상의 영역에서는, 상기 고분자 쇄들의 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수가 약 20 내지 70개, 혹은 약 25 내지 50개, 혹은 약 35 내지 60개, 혹은 약 45 내지 65개, 혹은 약 40 내지 60개로 될 수 있고, 상기 영역 내의 γ의 최대값과 최소값의 편차가 약 20개 이하, 혹은 약 약 19개 이하, 흑은 약 5 내지 18개, 혹은 약 7 내지 17개로 될 수 있다. 이와 같이 상기 분자량의 중앙값 이상의 영역에서는, 고분자 쇄들의 분자량에 관계없이 각 고분자 쇄에 포함된 분지쇄의 개수가 비교적 일정하게 유지될 수 있다.
이와 같이, 상기 고분자 쇄들의 분자량이 상대적으로 큰 영역에서, 상기 블록 공중합체가 일정 수준의 분지쇄를 포함함에 따라, 이러한 블록 공중합체는 고분자 쇄의 분자량이 상대적으로 큰 영역에서 보다 높은 블록화도를 나타낼 수 있다. 이와 같이 , 블록 공중합체의 특성에 큰 영향을 미치는 고분자량 영역에서 높은 블록화도를 나타냄에 따라 (다시 말해서, 블록 공중합체에 포함된 고분자 쇄들 중 큰 분자량을 갖는 것들이 높은 블록화도를 나타냄에 따라), 일 구현예의 블록 공중합체는 더욱 우수한 내열성 및 탄성 등을 나타낼 수 있다.
한편, 상술한 일 구현예의 블록 공중합체는, 이러한 블록 공중합체 중의 하드세그먼트의 함량 r (중량 ¾»)과, 에틸렌 또는 프로필렌계 반복 단위의 함량 X' (중량 %)가 하기 식 1의 관계를 층족하는 특성을 나타낼 수 있다:
[식 1]
Υ' > 2.8495X' - 145.01
보다 구체적으로, 상기 블록 공중합체는 하드세그먼트의 함량 Y' (중량 %)과, 에틸렌 또는 프로필렌계 반복 단위의 함량 X' (중량 «가 하기 식 la의 관계를 층족할 수 있으며, 이러한 블록 공중합체의 일 구체예는 Y=2.4143X-113.23 (R2 = 9878)의 관계를 층족할 수 있음이 확인되었다 (이하의 실시예 참조):
[식 la]
2.8495X' - 81.45 > Y' > 2.8495X' - 145.01
이러한 특성은 동일한 함량의 에틸렌 또는 프로필렌이 공중합되더라도, 상기 블록 공중합체 중의 하드세그먼트 함량이 보다 높게 됨을 의미할 수 있다. 이는 에틸렌 또는 프로필렌은 동종의 단량체끼리 중합 및 결합되어 하드세그먼트를 이루고, αᅳ을레핀은 동종의 α- 올레핀끼리 중합 및 결합되어 소프트세그먼트를 이룸에 따라, 이전에 알려진 올레핀계 엘라스토머 등에 비해 블록화된 정도가 높게 됨을 나하낼 수 있다. 이와 같이, 일 구현예의 블록 공중합체가 보다 높은 블록화도를 나타냄에 따라, 이러한 블록 공중합체는 보다 향상된 내열성 등을 나타낼 수 있다.
이러한 식 1의 관계에서, 하드세그먼트의 함량 Y' (중량 ¾)과, 에틸렌 또는 프로필렌계 반복 단위의 함량 X' (중량 은 각각 이하의 방법으로 측정될 수 있으며, 이의 결과를 선형 회귀하여, 상기 식 1에 대웅하는 특성을 도출할 수 있다.
먼저, 하드세그먼트의 함량 (중량 %)은 상용화된 Time Domain 匪 R(TD 匪 R) 장치를 이용하여 산출할 수 있다. 보다 구체적으로, 이러한 TD NMR 장치를 사용하여 블록 공중합체의 시료에 대한 Free Induction Decay(FID)를 측정할 수 있는데, 이러한 FID는 시간과 Intensity의 함수로 나타날 수 있다. 이러한 측정 결과를 함수로 나타낸 일례는 도 3에 도시되어 있다. 그리고, 하기 식 2에서 A, B, T2fast 및 T2slow의 4개의 상수 값을 변화시켜가며 위 FID 함수의 그래프와 가장 가까운 함수식을 도출할 수 있으며, 이를 통해 상기 시료의 A, B, T2fast 및 T2slow 값을 결정할 수 있다. 참고로, 하드세그먼트의 경우 이로부터 산출되는 T2(spin-spin relaxation time) relaxation이 빠르게 나타나고, 소프트세그먼트의 경우 이로부터 산출되는 T2(spin-spin relaxation time) relaxation0] 느리거 1 나타난다. 따라서, 위에서 결정된 A, B, T2fast 및 T2slow 값 중에서 작은 T2 값을 하드세그먼트의 T2값, 즉, T2fast 값으로 결정할 수 있고, 보다 큰 T2 값을 소프트세그먼트의 T2값, 즉, T2slow 값으로 결정할 수 있다. 이를 통해, A 및 B의 상수와 함께 하드세그먼트의 함량 (중량 %)을 산출할 수 있다. [식 2]
Intensity = A x EXP (-Time/ T2fast) + B x EXP (-Time/ T2slow)
Fitting을 통해 A, B, T2fast , T2slow값 결정
Hard segment ( ol%) = A/(A+B) x 100 상기 식 2에서, Intensity와 Time은 FID 분석 결과로부터 산출되는 값이며, T2fast 는 하드세그먼트에 대한 T2(spin-spin relaxation ; time) relaxation 값이고, T2slow 는 소프트세그먼트에 대한 T2(spin-spin relaxation time) relaxation 값이다. 또, A 및 B는 fitting에 의해 결정되는 상수로서 각각 하드세그먼트" 및 소프트세그먼트의 상대적 비율로서 각 세그먼트의 함량에 비례하는 값을 갖는다.
또한, 블록 공중합체에 포함된 에틸렌 또는 프로필렌계 반복 단위의 함량 (중량 %)은 사용된 단량체 중 에틸렌 또는 프로필렌의 함량을 고려하여 결정하거나, 블록 공중합체를 1H-NMR로 분석함으로서 산출할 수 있다.
다양한 함량의 에틸렌 또는 프로필렌을 단량체로서 사용하여 동일 중합 조건 하에서 몇 가지 블록 공중합체를 얻은 후, 이들 블록 공중합체에 대해 상술한 방법으로 각각 측정된 하드세그먼트의 함량 r (중량«과, 에틸렌 또는 프로필렌계 반복 단위의 함량 χ' (중량 %)의 관계를 도시할 수 있다. 이렇게 도시된 일 례는 도 2에 도시되어 있다. 이렇게 도시된 x' 및 γ' 의 관계를 선형 회귀하여, 상기 식 1에 대웅하는 관계식을 도출할 수 있으며, 공중합체가 식 1을 층족하는지 여부를 결정할 수 있다. 보다 구체적인 일 례에서, 일 구현예의 블록 공중합체는 약 50 내지 90 증량 %, 혹은 약 50 내지 85 중량 %, 혹은 약 55 내지 80 중량 %의 에틸렌계 또는 프로필렌계 반복 단위와, 이를 제외한 잔량, 예를 들어, 약 10 내지 50 중량 %, 혹은 약 15 내지 50 중량 %, 혹은 약 20 내지 45 중량 %의 α-을레핀계 반복 단위를 포함할 수 있다. 이러한 함량 범위로 α-올레핀계 반복 단위를 포함함에 따라, 블록 공중합체가 우수한 탄성을 나타내어 엘라스토머로서의 물성을 나타낼 수 있고, 각 블록 또는 세그먼트가 적절히 정의 및 블록화되어 보다 우수한 내열성 등을 나타낼 수 있다.
또한, 상기 일 구현예의 블록 공중합체는 이러한 각 반복 단위의 전체 함량 범위에서 항상 상기 식 1의 관계를 층족할 수 있다. 그 결과, 상기 블록 공중합체가 실질적으로 엘라스토머로서의 특성을 나타내는 전체 범위에서 보다 우수한 블록화도 및 이에 따른 내열성 등을 나타낼 수 있다. 그리고, 일 구현예의 블록 공중합체는 약 10 내지 90 중량 ¾>, 혹은 약 14 내지 85 중량 %, 혹은 약 25 내지 80 중량 ¾의 하드세그먼트를 포함할 수 있고, 나머지 중량 분율, 예를 들어, 10 내지 90 중량 %, 혹은 약 15 내지 86 중량 %, 혹은 약 20 내지 75 증량 %의 소프트세그먼트를 포함할 수 있다.
이미 상술한 바와 같이, 하드세그먼트는 블록 공증합체를 이루는 복수의 블록 또는 세그먼트 중에서도, 에틸렌계 또는 프로필렌계 반복 단위를 보다 높은 함량으로 포함하는 경질 결정성 세그먼트를 의미하는 것으로서, 블록 공중합체의 우수한 내열성에 기여할 수 있다. 또, 잔량의 소프트세그먼트는 α-올레핀계 반복 단위를 보다 높은 함량으로 포함하는 연질 탄성 세그먼트를 의미하는 것으로서, 블록 공중합체의 탄성에 기여할 수 있다. 일 구현예의 블록 공중합체가 상술한 함량 범위로 하드세그먼트 및 소프트세그먼트를 포함함에 따라, 우수한 내열성을 나타낼 수 있으면서도, 엘라스토머로서의 적절한 탄성을 나타낼 수 있게 된다.
또한, 일 구현예의 블록 공중합체는 약 70 내지 140 °C, 혹은 약 80 내지 13CTC, 혹은 약 90 내지 120°C의 TMA 값을 가질 수 있고, 밀도가 약 0.85g/cm3 내지 0.92g/cm3, 흑은 약 0.86g/cm3 내지 0.90g/cm3, 혹은 약 0.86g/cm3 내지 0.89g/cm3로 될 수 있다. 이와 같이 상대적으로 그리 높지 않은 밀도 범위에서도, 보다 높은 TMA 값을 가짐에 따라, 일 구현예의 블록 공중합체는 우수한 더욱 우수한 내열성을 나타낼 수 있다. 이때, 밀도는 통 상적인 방법에 따라 메를러 저울 등을 이용해 측정될 수 있다. 또, 상기 TMA값은 통상적인 TMA 측정 장치 , 예를 들어, TA사에서 제조한 TMA Q400 등 을 이용해 측정될 수 있다.
그리고, 일 구현예의 올레핀 블록 공중합체는 190°C, 2.16kg 하중 하의 용융 지수가 약 0.5 내지 5g/10min, 혹은 약 0.5 내지 4.5g/10min, 혹은 약 0.7 내지 4.0g/10min, 혹은 약 0.7 내지 3.7g/10min로 될 수 있고, 쇼어 경도가 약 50 내지 100, 혹은 약 60 내지 90, 혹은 약 60 내지 85로 될 수 있다. 상기 블록 공중합체가 이러한 용융 지수 범위 및 경도 범위를 나타냄에 따라, 고무계 소재를 대체하여 다양한 용도로 적용 가능한 우수한 기계적 물성 및 가공성을 나타낼 수 있다.
그리고, 상기 올레핀 블록 공중합체는 약 110% 이하, 흑은 약 10 내지 105%, 혹은 약 50 내지 105%, 혹은 약 90 내지 103%의 영구 회복율을 나타낼 수 있다. 이때, 영구 회복율은 상기 블록 공중합체의 성형체에 대해 인장 시험을 진행한 결과로부터, 하기 식 3에 따라 산출될 수 있다:
[식 3]
영구회복률 (%) = {(L - Lo)/ L0> x 100
상기 식 3에서, 는 블록 공중합체의 성형체의 초기 길이를 나타내고, L은 상기 성형체를 300% 이상, 예를 들에 300% 신장시켰다가 회복시킨 후의 성형체의 길이를 나타낸다.
상기 영구회복율은 외력올 가하여 변형시켰다가 회복시켰을 때에 원래 형상 또는 길이를 회복하는 정도를 정의한다. 300% 신장 후의 영구회복율이 약 110% 이하로 됨은 일 구현예의 블록 공중합체가 우수한 탄성을 나타냄을 반영할 수 있다. 특히, 이미 상술한 바와 같이, 일 구현예의 블록 공중합체는 고온 하에서도 우수한 탄성을 나타낼 수 있으므로, 내열성이 요구되는 분야를 포함하는 보다 다양한 용도로 매우 바람직하게 적용될 수 있다.
또한, 상술한 블록 공중합체는 중량 평균 분자량이 약 50,000 내지 200,000, 혹은 약 60,000 내지 180,000, 혹은 약 70,000 내지 150 ,000일 수 있으며, 분자량 분포가 약 2.0 이상, 예를 들어, 약 2.0 내지 4.5, 혹은 약 2.0 내지 4.0, 혹은 약 2.0 내지 3.5, 혹은 약 2.3 내지 3.0으로 될 수 있다. 상기 블록 공중합체가 이러한 분자량, 분자량 분포 및 밀도 범위를 가짐에 따라, 올레핀계 엘라스토머로서의 적절한 특성, 예를 들어, 우수한 기계적 물성 및 가공성 등을 나타낼 수 있다.
그리고, 상기 블록 공중합체는 에틸렌계 또는 프로필렌계 반복 단위, 예를 들어, 에틸렌계 반복 단위와, α-을레핀계 반복 단위를 포함하는 블록 공중합체로 될 수 있다. 이때, α-올레핀계 반복 단위는 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1—핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1- 테트라데센, 1-핵사데센 또는 1-아이토센 등의 α-올레핀에서 유래한 반복 단위로 될 수 있다.
상술한 일 구현예의 올레핀 블록 공중합체는 α-올레핀계 반복 단위의 포함에 따른 우수한 탄성을 나타내면서, 높은 블록화도 등에 기인한 우수한 내열성을 나타낼 수 있다. 따라서, 일 구현예의 블록 공중합체는 올레핀계 엘라스토머의 -적용 분야에 관한 한계를 극복하고, 내열성이 요구되는 보다 다양한 분야에 적용될 수 있다.
상술한 일 구현예의 을레핀 블록 공중합체는 α-올레핀계 반복 단위의 포함에 따른 우수한 탄성을 나타내면서, 높은 블록화도 등에 기인한 우수한 내열성을 나타낼 수 있다. 따라서, 일 구현예의 블록 공중합체는 을레핀계 엘라스토머의 적용 분야에 관한 한계를 극복하고, 내열성이 요구되는 보다 다양한 분야에 적용될 수 있다.
이러한 일 구현예의 블록 공중합체는 이전부터 엘라스토머가 적용되던 실질적으로 모든 용도에 적용될 수 있다. 더 나아가, 일 구현예의 블록 공중합체는 이전의 올레핀계 엘라스토머가 낮은 내열성으로 인해 실질적으로 적용하지 못하고 고무계 재료 등이 적용되었던 보다 넓은 용도에 적용될 수도 있다. 예를 들어, 일 구현예의 블록 공중합체는 범퍼 또는 트림 부품과 같은 자동차용 부품 또는 내장재; 패키징 재료, 각종 전기적 절연재료; 신발 밑창, 칫솔 손잡이 바닥재 또는 장치 손잡이 등의 각종 생활용품 ; 감압성 접착제 또는 고온 용융 접착제 등의 각종 접착제 ; 호스 ; 또는 배관 등의 매우 다양한 제품을 형성하기 위한 용도로 사용될 수 있으며, 기타 여러 가지 분야 및 용도에 적용될 수 있음은 물론이다.
또한, 일 구현예의 블록 중합체는 단독으로 사용될 수도 있지만, 다른 중합체, 수지 또는 각종 첨가제와 블랜딩되어 사용될 수도 있으며, 필름, 성형품 또는 섬유 등 임의의 형태로 사용될 수 있다.
한편, 상술한 올레핀 블록 공중합체는 특정한 촉매 시스템을 이용하여 제조될 수 있다. 이러한 을레핀 블록 공중합체의 제조 방법은 하기 화학식 1로 표시되는 화합물을 리간드로 하여 4족 전이금속이 배위결합된 전이금속화합물과, 화학식 2로 표시되는 화합물을 포함하는 올레핀 중합용 촉매 조성물의 존재 하에서, 에틸렌 또는 프로필'렌과, α- 올레핀을 포함하는 단량체를 공중합하는 단계를 포함할 수 있다:
[화학식 1]
Figure imgf000018_0001
상기 화학식 1에서, m은 1 내지 7의 정수이고, R1은 수소, 중수소, 할로겐기, 니트릴기, 아세틸렌기, 아민기, 아미드기, 에스테르기, 케톤기, 탄소수 1~20의 알킬기, 탄소수 6~20의 시클로알킬기, 탄소수 2~20의 알케닐기, 탄소수 6~20의 아릴기, 실릴기, 탄소수 7~20의 알킬아릴기, 탄소수 7~20의 아릴알킬기 및 탄소수 4-20의 헤테로고리기로 이루어진 군에서 선택된 하나 이상의 기로 치환된 탄소수 4~10의 시클로알킬기 ; 수소, 중수소, 할로겐기, 니트릴기, 아세틸렌기, 아민기, 아미드기, 에스테르기, 케톤기, 탄소수 1~20의 알킬기, 탄소수 6~20의 시클로알킬기, 탄소수 2~20의 알케닐기, 탄소수 6~20의 아릴기, 실릴기, 탄소수 7~20의 알킬아릴기, 탄소수 7~20의 아릴알킬기 및 탄소수 4~20의 헤테로고리기로 이루어진 군에서 선택된 하나 이상의 기로 치환되고 이종원자로 산소 (0), 질소 (N) 또는 황 (S)을 갖는 탄소수 3~9의 헤테로고리기; 수소, 중수소, 할로겐기, 니트릴기, 아세틸렌기, 아민기, 아미드기, 에스테르기, 케톤기, 탄소수 1~20의 알킬기, 탄소수 6~20의 시클로알킬기, 탄소수 2~20의 알케닐기, 탄소수 6~20의 아릴기, 실릴기, 탄소수 7~20의 알킬아릴기, 탄소수 7~20의 아릴알킬기 및 탄소수 4~20의 헤테로고리기로 이루어진 군에서 선택된 하나 이상의 기로 치환된 탄소수 6~10의 아릴기; 또는 수소, 중수소, 할로겐기, 니트릴기, 아세틸렌기, 아민기, 아미드기, 에스테르기, 케톤기, 탄소수 1~20의 알킬기, 탄소수 6~20의 시클로알킬기, 탄소수 2~20의 알케닐기, 탄소수 6~20의 아릴기, 실릴기, 탄소수 7~20의 알킬아릴기, 탄소수 7~20의 아릴알킬기 및 탄소수 4~20의 헤테로고리기로 이루어진 군에서 선택된 하나 이상의 기로 치환되고 이종원자로 산소 (0), 질소. (N) 또는 황 (S)을 갖는 탄소수 5~10의 헤테로아릴기이고, 상기 R1이 2개 이상의 기로 치환될 경우, 서로 인접하는 기는 지방족 또는 방향족의 축합고리를 형성할 수 있으며; ᅳ
R2 는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 니트릴기, 아세틸렌기, 아민기, 아미드기, 에스테르기, 케톤기, 탄소수 1~20의 알킬기, 탄소수 2~20의 알케닐기, 탄소수 6~20의 아릴기, 탄소수 4~20의 헤테로고리기, 탄소수 1~20의 알콕시기 및 탄소수 6~20의 아릴옥시기로 이루어진 군에서 선택되며, 2개 이상의 R2는 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있다.
[화학식 2]
Figure imgf000019_0001
상기 화학식 2에서, R1' 및 R2' 는 각각 독립적으로 수소, 탄소수 1~20의 알킬기, 탄소수 6~20의 아릴기, 실릴기, 탄소수 2~20의 알케닐기, 탄소수 7~20의 알킬아릴기, 탄소수 7~20의 아릴알킬기, 또는 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이며, 상기 R1' 및 R2' 는 탄소수 1~20의 알킬기 또는 아릴기를 포함하는 ¾킬리딘 라디칼에 의해 서로 연결되어 고리를 형성할 수 있으며;
R3' 는 각각 독립적으로 수소, 할로겐, 탄소수 1~20의 알킬기, 탄소수 6~20의 아릴기, 탄소수 1~20의 알콕시기, 탄소수 6~20의 아릴옥시기 또는 아미도기이며 ; 2개 이상의 R3' 는 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있고; '
CY1은 치환 또는 치환되지 않은 지방족 고리 또는 방향족 고리이며;
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 할로겐, 탄소수 1~20의 알킬기, 탄소수 6~20의 아릴아미도기, 탄소수 2~20의 알케닐기, 탄소수 6~20의 아릴기, 탄소수 7~20의 알킬아릴기 또는 탄소수 7~20의 아릴알킬기, 또는 탄소수 1~20의 알킬리덴기이다. - 상기 제조 방법에서, 화학식 1 및 2의 치환기 중, 상기 알킬기는 직쇄 또는 분지쇄의 알킬기를 포함하고; 상기 알케닐기는 직쇄 또는 분지쇄의 알케닐기를 포함하고; 상기 실릴기는 트리메틸실릴, 트리에틸실릴, 트리프로필실릴, 트리부틸실릴, 트리핵실실릴, 트리이소프로필실릴, 트리이소부틸실릴, 트리에톡시실릴, 트리페닐실릴, 또는 트리스 (트리메틸실릴)실릴 등을 포함하고; 상기 아릴기는 탄소수 6 내지 20인 아릴기 뿐 아니라 헤테로아릴기를 포괄할 수 있다. 이러한 아릴기의 구체적인 예로는, 페닐, 나프틸, 안트라세닐, 피리딜, 디메틸아닐리닐, 또는 아니솔릴 등이 있으며, 상기 알킬아릴기는 상기 알킬기에 의하여 치환된 아릴기를 의미한다.
또한, 화학식 1 및 2의 치환기 중, 아릴알킬기는 아릴기에 의하여 치환된 알킬기를 의미하고; 상기 할로겐기는 플루오린기, 염소기, 브롬기 또는 요오드기를 의미하며 ; 상기 알킬 아미노기는 상기 알킬기에 의하여 치환된 아미노기를 의미하고, 디메틸아미노기, 또는 디에틸아미노기 등을 포함하며 ; 상기 아릴 아미노기는 상기 아릴기에 의하여 치환된 아미노기를 의미하고, 디페닐아미노기 등을 포함할 수 있다. 다만, 이들 예로만 한정되는 것은 아니다.
상기 블록 공중합체의 제조 방법에서, 촉매 조성물에 포함되는 상기 화학식 1의 화합물을 리간드로 하는 전이금속화합물은 단량체 중에서도 상기 에틸렌 또는 프로필렌을 주로 중합 및 결합시켜 하드세그먼트를 형성하게 하고, 상기 화학식 2의 화합물은 상기 α-을레핀을 주로 중합 및 결합시켜 소프트세그먼트를 형성하게 할 수 있다. 따라서, 촉매 조성물을 사용하면, 이들 2종의 촉매의 상호 작용으로 α—올레핀계 반복 단위가 보다 낮은 함량으로 포함된 하드세그먼트와, 높은 함량으로 . 포함된 소프트세그먼트가 교대로 중합 및 형성되면서 이전에 알려진 공중합체에 비해 보다 블록화된 올레핀 블톡 공중합체가 제조될 수 있다. 특히, 이러한 올레핀 블록 공중합체는 상술한 고분자 쇄의 분자량 분포 및 분지쇄 개수의 관계 등을 층족할 수 있어 우수한 탄성 및 내열성과 함께 이전의 블록 공중합체에 비해서도 더욱 향상된 가공성을 나타낼 수 있다. 따라서, 이러한 블록 공중합체는 보다 다양한 분야에서 올레핀계 엘라스토머로서 적절히 사용될 수 있다. .
더 나아가, 상기 촉매 조성물을 사용하여 비교적 쉬운 제조 과정을 통해 내열성이 우수한 블록 공중합체를 생산성 높게 제조할 수 있으므로, 내열성이 우수한 올레핀계 엘라스토머의 상용화에 크게 기여할 수 있게 된다.
한편, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 또는 화학식 1-2로 표시되는 화합물일 수 있다:
[화학식 1-1]
Figure imgf000022_0001
Figure imgf000022_0002
상기 화학식 l-l 또는 화학식 1-2에서, m 및 R2는 상기 화학식 1에서 정의한 바와 같고, n은 1 내지 7의 정수이고, n'은 1 내지 5의 정수이고, p는 0 내7 j 2+n의 정수이고, p'은 0 내지 5+n'의 정수이고, R3는 서로 같거나 상이하며, 각각 독립적으로 중수소, 할로겐기, 니트릴기, 아세틸렌기, 아민기, 아미드기, 에스테르기, 케톤기, 탄소수 1~20의 알킬기, 탄소수 6~20의 시클로알킬기, 탄소수 2~20의 알케닐기, 탄소수 6~20의 아릴기, 실릴기, 탄소수 7~20의 알킬아릴기, 탄소수 7~20의 아릴알킬기 또는 탄소수 4~20의 헤테로고리기이며; 2개 이상의 R3는 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있다. 보다 구체적인 예로서, 상기 R3는 탄소수 1~20의 알킬기, 탄소수 6~20의 시클로알킬기, 탄소수 2~20의 알케닐기 또는 탄소수 6~20의 아릴기로 될 수 있고, 2 이상의 R3가 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있다.
다른 구체예에서, 상기 화학식 1, 화학식 1-1 및 화학식 1-2에서, m은 2 또는 3로 될 수 있고, 또한, 상기 화학식 1-1 또는 화학식 1-2에서, n은 2 또는 3로 될 수 있다. 그리고, 상기 화학식 1-1 또는 화학식 1-2에서, n'은 1 내지 3으로 될 수 있다.
상기 화학식 1로 표시되는 화합물의 구체적인 예는 하기 화
3으로 표시되는 화합물 군에서 선택되는 1종 이상으로 될 수 있다.
[화학식 1-3]
Figure imgf000023_0001
그리고, 상기 화학식 1로 표시되는 화합물의 일반적인 제조방법은 다음과 같이 될 수 있다.
Figure imgf000023_0002
Sl¾싀 1 상기 화학식 1로 표시되는 화합물의 제조방법에 있어서, R1 및 R2는 상기 화학식 1에서 정의한 바와 같다. 상기 제조방법에서, 상기 화합물 7을 출발물질로 하여 선택적 리륨치환 방법을 사용하여 중간물질 8을 합성한 후 DMF(N,N— Dimethyl formamide)를 주입하여 화합물 9를 얻을 수 있다. 그 후에, 상기 화합물 9를 RLNHz와 환류 또는 교반에 의해 반웅시키면 화학식 1로 표시되는 화합물을 얻을 수 있다. 특히, 상기 I^-Nifc에서 R1이 아릴기인 경우는 4A MS를 넣어준 후 밤새 환류시켜 결과물을 얻을 수 있고, R1이 알킬기 또는 알킬아릴기인 경우는 실온에서 밤새 교반함으로써 결과물을 얻을 수 있다.
이와 같은 상기 화학식 1의 화합물은, R1의 종류에 따라 금속과 두 자리 킬레이트 (NN 킬레이트)를 형성할 수 있는 리간드 화합물 또는 세자리 이상의 킬레이트 (NNN, NN0, 혹은 NNC)를 형성할 수 있는 리간드 화합물일 수 있다.
상술한 올레핀 블록 공중합체의 제조방법에는 상기 화학식 1의 화합물을 리간드로 하여 4족 전이금속이 배위 결합된 전이금속화합물이 촉매로써 이용되는데, 상기 전이금속으로는 Ti, Zr, 또는 Hf 등을 들 수 있다.
상기 전이금속화합물은 하기 구조식 중 하나로 표시될 수 있으나, 이에 한 :
Figure imgf000024_0001
상기 구조식에서, M은 4족 전이금속이며, R은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 니트릴기, 아세틸렌기, 아민기, 아미드기, 에스테르기, 케톤기, 탄소수 1~20의 알킬기, 탄소수 2~20의 알케닐기, 탄소수 6~20의 아릴기, 탄소수 4~20의 헤테로고리기, 탄소수 1~20의 알콕시기 및 탄소수 6~20의 아릴옥시기로 이루어진 군에서 선택될 수 있다. 상기 구조식을 통해 알 수 있는 바와 같이, 상기 전이금속 화합물의 구조는 리간드와 전이금속 간의 몰 비율이 2:1 혹은 1:1로 될 수 있다. 이러한 구조적 특징으로 인해, 상기 전이금속 화합물은 전이금속의 함량이 비교적 높게 될 수 있다.
또, 일 실시예에 따르면, 상기 전이금속화합물은 다음과 같은 방법으로 제조될 수 있다. 먼저 화학식 1로 표시되는 리간드 일정량과 1.05 당량의 금속 전구체를 섞어준 후 약 -75 °C 내지 -80 °C에서 적당량의 를루엔 용매를 주입하고 서서히 실온으로 올리면서 6 시간 내지 2 일 동안 저어준다. 이후에 용매를 제거하거나 주입한 용매의 양을 아는 경우 용액 상으로 원하는 전이금속화합물을 얻을 수 있다.
한편, 상술한 올레핀 블록 공중합체의 제조방법에는 상기 화학식 1에서 유래한 전이금속화합물과 함께, 상기 화학식 2로 표시되는 화합물이 촉매로써 이용될 수 있다. 이러한 화학식 2의 화합물은, 예를 들에 한국 등록 특허 공보 제 0820542 호에 공지된 방법에 따라 얻을 수 있다.
이러한 화학식 2로 표시되는 화합물은, 상기 화학식 1에서 금속 주위의 전자적, 입체적 환경의 제어를 감안하여, 하기 화학식 2-1로 표시되는 화합물로 될 수 있다:
[ 2-1]
Figure imgf000025_0001
상기 화학식 2-1에서, R4 및 R5는 각각 독립적으로 수소, 탄소수
1~20의 알킬기, 탄소수 6~20의 아릴기, 또는 실릴기이며; R6은 각각 독립적으로 탄소수 1~20의 알킬기, 탄소수 6~20의 아릴기, 탄소수 2~20의 알케닐기, 탄소수 7~20의 알킬아릴기, 탄소수 7~20의 아릴알킬기, 탄소수 1~20의 알콕시기, 탄소수 6~20의 아릴옥시기, 또는 아미도기이며; 2개 이상의 R6는 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있고; Q3 및 Q4는 각각 독립적으로 할로겐, 탄소수 1~20의 알킬기 또는 탄소수 6~20의 아릴 아미도기, 탄소수 2~20의 알케닐기 또는 탄소수 6~20의 아릴기이고; M은 4족 전이'금속이다.
상기 화학식 2 또는 화학식 2-1로 표시되는 화합물은 아미도 그룹과 아미노 또는 알콕시 그룹이 페닐렌 브릿지에 의해 연결되어 구조적으로 Cp- M-E 각도는 좁고, 단량체가 접근하는 C^-M-Q2 또는 Q3-M-Q4 각도는 넓게 유지하여 큰 단량체의 접근이 용이한 특징을 가진다. 이로 인해, 상기 화학식 2 등의 화합물은 에틸렌 또는 프로필렌 보다는 α-올레핀을 주로 중합 및 결합시켜 소프트세그먼트의 형성에 기여할 수 있고, 이와 반대로, 화학식 1의 리간드에서 유래한 전이금속화합물은 하드세그먼트의 형성에 기여할 수 있다.
또한, 상기 화학식 2 등의 화합물은 실리콘 브릿지에 의해 연결된
CGC 구조와는 달리, 예를 들어, 페닐렌 브릿지, 및 질소 등이 금속 자리와 함께 안정하고 단단한 6각형의 링 구조를 이를 수 있다. 따라서, 이러한 화합물을 메틸알루미녹산 또는 B(C6F5)3와 같은 조촉매와 반웅시켜 활성화한 다음에 올레핀 중합에 적용시, 높은 중합 온도에서도 고활성, 고분자량 및 고공중합성 등의 특징을 갖는 올레핀 블록 공중합체를 생성시킬 수 있다. 한편, 상기 촉매 조성물은 2종의 주촉매 (전이금속화합물) 외에 하기 화학식 3 내지 5로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 조촉매 화합물을 더 포함할 수 있다:
[화학식 3]
J(R4' )3
상기 화학식 3에서, J는 알루미늄 또는 보론이고, R4' 는 각각 독립적으로 할로겐, 또는 할로겐으로 치환 또는 비치환된 탄소수 1~20의 하이드로카르빌 라디칼이고;
[화학식 4]
[L-H] + [ZA4]" 또는 [L] + [ZA4]— 상기 화학식 4에서, L은 중성 또는 양이온성 루이스 산이고; H는 수소이며; Z는 13족 원소이고; A는 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1~20의 하이드로카르빌, 탄소수 1~20의 알콕시기 또는 페녹시기로 치환된 탄소수 6~20의 아릴 또 탄소수 1~20의 알킬이고;
[화학식 5]
-[AKR5' )-0]a- 상기 화학식 5에서, R5' 는 할로겐, 또는 할로겐으로 치환 또 비치환된 탄소수 1~20의 하이드로카빌이고; a는 2 이상의 정수이다.
여기서, 상기 화학식 3으로 표시되는 화합물은 알킬 금속 화합물이면 특별히 한정되지 않으나; 예를 들어, 트리메틸알루미늄, 트리에틸알루미늄 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리 -S-부틸알루미늄 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P-를릴알루미늄 디메틸알루미늄메특시드, 디메틸알루미늄에톡시드, 트리메틸보론 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 또는 트리부틸보론 등으로 될 수 있다'.
또한, 상기 화학식 4로 표시되는 화합물은 트리에틸암모니움테트라 (페닐)보론 ' 트리부틸암모니움테트라 (페닐)보론, 트리메틸암모니움테트라 (페닐)보론, 트리프로필암모니움테트라 (페닐)보론, 트리메틸암모니움테트라 (P-를릴)보론, 트리메틸암모니움테트라 (ο,ρ- 디메틸페닐)보론, 트리부틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론,
트리부틸암모니움테트라 (펜타플루오로페닐)보론, Ν,Ν- 디에틸아닐리니움테트라 (페닐)보론, Ν,Ν- 디에틸아닐리니움테트라 (펜타플루오로페닐)보론,
디에틸암모니움테트라 (펜타플루오로페닐)보론,
트리메틸포스포늄테트라 (페닐)보론, 트리에틸암모니움테트라(페닐 )알루미늄 , 트리부틸암모니움테트라 (페닐)알루미늄, 트리메틸암모니움테트라 (페닐 )알루미늄,
트리프로필암모니움테트라 (페닐)알루미늄, 트리메틸암모니움테트라 (P- 를릴)알루미늄, 트리프로필암모니움테트라 (P-를릴)알루미늄, 트리에틸암모니움테트라 (ο,ρ-디메틸페닐)알루미늄,
트리부틸암모니움테트라 (Ρ-트리플루오로메틸페닐)알루미늄,
트리메틸암모니움테트라 (Ρ-트리플루오로메틸페닐)알루미늄,
트리부틸암모니움테트라 (펜타플루오로페닐)알루미늄, Ν,Ν- 디에틸아닐리니움테트라 (페닐)알루미늄, Ν,Ν- 디에틸아닐리니움테트라 (페닐)알루미늄, Ν,Ν- 디에틸아닐리니움테트라 (펜타플루오로페닐)알루미늄,
디에틸암모니움테트라 (펜타플루오로페닐 )알루미늄 ,
트리페닐포스포늄테트라 (페닐 )알루미늄,
트리메틸포스포늄테트라 (페닐)알루미늄,
트리에틸암모니움테트라 (페닐)알루미늄,
트리부틸암모니움테트라 (페닐)알루미늄, 트리프로필암모니움테트라 (Ρ- 를릴)보론, 트리에틸암모니움테트라 (0 ,ρ-디메틸페닐)보론, 트리메틸암모니움테트라 (ο,ρ-디메틸페닐)보론, 트리부틸암모니움테트라 (Ρ- 트리플루오로메틸페닐)보론, 트리메틸암모니움테트라 (Ρ- 트리플루오로메틸페닐)보론,
트리부틸암모니움테트라 (펜타플루오로페닐)보론, Ν,Ν- 디에틸아닐리니움테트라 (페닐)보론, 트리페닐포스포늄테트라 (페닐)보론, 트리페닐카보니움테트라 (Ρ-트리플루오로메틸페닐)보론,
트리페닐카보니움테트라 (펜타플루오로페닐)보론,
트리틸테트라 (펜타플루오로페닐)보론,
디메틸아닐리늄테트라키스 (펜타플루오로페닐)보레이트 또는 트리틸테트라키스 (펜타플루오로페닐)보레이트 등으로 될 수 있다
또한, 상기 화학식 5로 표시되는 화합물은 알킬알루미녹산이라면 특별히 한정되지 않으나; 예를 들어, 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 또는 부틸알루미녹산 등일 수 있다.
그리고, 상술한 조촉매 화합물의 첨가량은 상기 화학식 1에서 유래한 전이금속화합물 및 상기 화학식 2로 표시되는 화합물 (이하, "주촉매 화합물" )에 대하여 약 1:1 내지 1:20의 몰 비로 포함될 수 있고, 예를 들어 , 약 1:1 내지 1:18, 혹은 약 1:1 내지 1:15의 몰비로 포함될 수 있다. 상기 조촉매 화합물에 의한 효과를 일정 수준 이상 발현시키기 위하여, 상기 조촉맥 화합물의 함량은 상기 주촉매 화합물에 대하여 몰비 1:1 아상으로 포함될 수 있다. 또한, 제조되는 블록 공중합체의 적절한 물성 조절 및 주촉매 화합물의 효과적인 활성화를 위해, 조촉매 화합물은 주촉매 화합물에 대하여 몰비 1:20 이하로 포함될 수 있다.
또, 상술한 촉매 조성물은 중합보조제를 더욱 포함할 수도 있다. 여기서, 상기 중합보조제는 탄소수 1~12의 하이드로카빌 치환체를 함유하는 알루미늄 화합물, 탄소수 1~12의 하이드로카빌 치환체를 함유하는 아연 화합물, 및 탄소수 1~12의 하이드로카빌 치환체를 함유하는 갈륨 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있으며; 예를 들어, 트리에틸알루미늄 또는 디에틸아연일 수 있다.
상기 중합보조제는 분자구조의 블록화도 및 결정성을 향상시키고, α-올레핀계 반복 단위의 함량을 증가시켜 밀도가 낮으면서도 높은 융점을 가지는 블록 공중합체를 제조할 수 있도록 하는 역할을 한다. 이는 상기 중합 보조제가 화학식 1에서 유래한 전이금속화합물 및 화학식 2로 표시되는 화합물의 교번적 작용을 가능케 하여, 올레핀 블록 공중합체를 이루는 복수의 세그먼트, 예를 들어, 하드세그먼트 및 소프트세그먼트의 교번적 형성을 보조할 수 있기 때문이다. 즉, 이러한 중합 보조제의 작용으로 블록화도가 더욱 높고 이로 인해 융점 및 내열성이 보다 높은 올레핀 블록 공중합체가 제조될 수 있다.
상기 중합보조제의 첨가량은 상기 주촉매 화합물에 대하여 약 1:10 내지 1:1000의 몰비로 포함될 수 있고, 예를 들어, 약 1:10 내지 1:500, 혹은 약 1:20 내지 1:200의 몰비로 포함될 수 있다.
즉, 상기 중합보조제에 의한 일정 수준 이상의 효과를 발현시키기 위하여, 중합보조제의 함량은 주촉매 화합물에 대하여 몰비 1:10 이상으로 될 수 있고, 제조되는 블록 공중합체의 적잘한 물성 조절 및 주촉매 화합물의 우수한 활성을 고려하여, 중합보조제는 주촉매 화합물에 대하여 몰비 1:1000 이하로 포함될 수 있다.
한편, 상술한 제조 방법에서는, 상술한 촉매 조성물의 존재 하에서, 에틸렌 또는 프로필렌과, α-올레핀을 포함하는 단량체를 공중합시키는 단계를 포함하는 방법으로 올레핀 블록 공중합체를 제조할 수 있다. 이때, 사용 가능한 α-을레핀 단량체로는 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센 또는 1-아이토센 등을 들 수 있다.
또, 상기 공중합 단계는, 약 140°C 이상, 혹은 약 140 내지 180°C, 혹은 약 140 내지 160°C의 온도에서 진행할 수 있으며, 약 50 bar 이상, 흑은 약 50 내지 120 bar, 혹은 약 70 내지 lOObar의 압력 하에 진행할 수 있다. 이전에 알려진 메탈로센계 또는 포스트 메탈로센계 촉매 등의 경우 높은 온도에서는 활성이 급격하게 감소하는 것으로 알려진 바 있다. 그러나, 상술한 촉매 조성물에 포함되는 주촉매 화합물들은 약 140°C 이상 및 약 50 bar 이상의 높은 압력 하에서도 우수한 촉매 활성을 유지할 수 있다. 따라서, 이러한 고온 및 고압 조건 하에 공중합 공정을 진행하여, 큰 분자량 및 우수한 물성을 갖는 블록 공중합체를 보다 높은 효율로 얻을 수 있다.
그리고, 상기 공중합 단계는 상술한 촉매 조성물을 이용하여 용액 공정으로 수행할 수 있으며, 또는 상기 촉매 조성물을 실리카 등의 무기 담체와 함께 사용하여 슬러리 공정 또는 기상 공정으로 수행할 수도 있다. 이하에서 연속식 용액 중합공정 방법을 중심으로 공중합 단계의 보다 구체적인 진행 조건 및 방법을 설명한다.
상기 공중합 단계에서는, 스캐빈져 (scavenger)를 반웅기 내에 수분 총함량 대비 0.4 - 5 배로 투입할 수 있다. 이러한 스캐빈져는 반웅물 내에 포함될 수 있는 수분 또는 공기 등과 같은 불순물을 제거하는 역할을 하며, 반웅물의 공중합이 일어나기 전에 투입될 수 있다. 상기 스캐빈져 및 반웅물의 흔합물은 중합 반옹기 이외의 별도 반웅기 내에서 스캐빈져 및 반웅물이 흔합될 수 있고, 중합 반응기로 반웅물이 공급되는 공급 라인 내에서 충분한 시간 동안 스캐빈져와 반웅물이 흔합될 수 있다. 스캐빈져의 바람직한 예로는 TiBA1(트리이소부틸알루미늄) 또는 T0A (트리옥틸알루미늄) 등의 트리알킬알루미늄을 들 수 있으나, 이에 제한되지 않는다.
또, 공중합 단계는 반웅기 내에서 전술한 촉매 조성물, 단량체, 중합보조제 및 스캐빈져의 도입에 의하여 진행될 수 있다.
이때, 촉매 조성물은 올레핀 중합 공정에 적합한 탄소수 5 내지
12 의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 또는 이들의 이성질체; 를루엔, 또는 벤젠과 같은 방향족 탄화수소 용매; 흑은 디클로메탄, 또는 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해시키거나 희석하여 주입할 수 있다.
그리고, 공중합 단계를 진행하는 일 실시예에서, 에틸렌 또는 프로필렌 대 용매의 몰 비율은 반응물과, 생성된 블록 공중합체를 용해하기에 적합한 비율이 될 필요가 있다. 예를 들어, (에틸렌 또는 프로필렌 /용매)의 몰 비율은 약 1/10,000 ~ 10, 혹은 약 1/100 ~ 5, 혹은 약 1/20 ~ 1 로 될 수 있다. 이러한 몰 비율을 적절히 설정함으로서, 공중합 단계를 효과적으로 진행할 수 있으면서도, 용매의 양이 적정화하여 용매의 정제 재순환에 따른 설비증가나, 에너지 비용 증가 등을 억제할 수 있다.
상기 용매는 히터 또는 넁동기를 사용하여 약 -40 - 150 °C의 온도로 반웅기에 투입될 수 있으며, 단량체 및 촉매 조성물과 함께 중합반웅이 개시될 수 있다.
또한, 고용량 펌프가 압력을 약 50 bar 이상으로 상승시켜 공급물들 (용매, 단량체, 촉매 조성물 등)을 공급함으로써, 상기 반웅기 배열, 압력 강하 장치 및 분리기 사이에 추가적인 펌핑 (pumping) 없이 상기 공급물들의 흔합물을 통과시킬 수 있다.
그리고, 반웅기 내에서 생성되는 블록 공증합체는 용매 속에서 약
20 질량 % 미만의 농도로 유지될 수 있고, 짧은 체류시간이 지난 후 용매 제거를 위해 1 차 용매 분리 공정으로 이송될 수 있다. 블록 공중합체가 반웅기 내에 체류하는 적절한 시간은 약 1 분 내지 10 시간, 혹은 약 3 분 내지 1 시간, 혹은 약 5 분 내지 30 분으로 될 수 있다. 이에 따라, 생산성 저하나 촉매의 손실 등을 억제할 수 있고, 반웅기의 크기가 적정화될 수 있다.
한편, 상술한 공중합 단계를 진행한 후에는, 반웅기를 빠져 나온 블록 공중합체와 함께 존재하고 있는 용매의 제거를 위하여 용액 온도와 압력을 변화시켜서 용매 분리 공정을 더 수행할 수 있다. 이때, 반웅기로부터 이송된 블록 공중합체 용액은 히터를 통하여 용융 상태를 유지하며, 분리기에서 미반웅 원료 용매를 기화시키고, 생성된 블톡 공중합체는 압출기 등으로 입자화될 수 있다.
【발명의 효과】
상술한 바와 같이 본 발명에 따르면, 우수한 내열성 및 탄성과 보다 향상된 가공성 등을 나타내는 올레핀 블록 공중합체가 제공될 수 있다. 특히, 이러한 올레핀 블록 공중합체는 간단한 공정 단계를 통해 제조될 수 있^ ·
따라서, 상기 올레핀 블록 공중합체는 내열성 및 제반 물성이 우수한 을레핀계 엘라스토머의 상용화에 크게 기여할 수 있고, 이러한 을레핀계 엘라스토머를 고무계 재료를 대체하는 다양한 분야에 적절히 사용할 수 있다.
【도면의 간단한 설명】
도 1은 실시예에서 제조된 올레핀 블록 공중합체의 분자량 분포 곡선 및 탄소수 1000 개 당 분지쇄 (short chain branching; SCB)의 개수 분포를 함께 도시한 도면이다. - 도 2는 시험예 2에서 실시예 11 내지 15의 올레핀 블록 공중합체 중에 포함된 하드세그먼트의 함량 Y' (중량 %)과, 에틸렌 또는 프로필렌계 반복 단위의 함량 X' (중량 ¾>)의 관계를 비교예 3 내지 9의 공중합체와 비교하여 나타낸 선형 회귀 그래프이다.
도 3은 시험예 2에서 올레핀 블록 공중합체 중의 하드세그먼트 함량 (중량 ¾>)을 측정하기 위해 도출한 Free Induction Decay의 일례를 나타내는 도면이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 이해를 돕기 위하여 몇 가지 실시예를 제시하나, 하기 실시예는 발명올 예시하는 것일 뿐 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 이하의 실시예에서, 유기 시약 및 용매는 알드리치 사와 머크 사에서 구입하여 표준 방법으로 정제하여 사용하였다. 합성의 모든 단계에서 공기와 수분의 접촉을 차단하여 실험의 재현성을 높였다. 화합물의 구조를 입증하기 위해 400 MHz 핵자기 공명기 (NMR) 및 X-ray 분광기를 이용하여 각각 스펙트럼과 도식을 얻었을 수 있었다.
또한, 이하의 실시예에서 "밤새 "는 대략 12 내지 16시간을 의미하며 "실온''은 20 내지 25 °C의 온도를 일컫는다. 모든 전이금속화합물의 합성 및 실험의 준비는 건조상자 기술을 사용하거나 건조상태 유지 유리기구를 사용하여 건조 질소 분위기에서 수행되었다. 사용된 모든 용매는 HPLC 등급이며 사용 전에 건조되었다. 제조예 1: (E)-N-((l,2,3,4-테트라하이드로퀴놀린 -8-일) 메틸렌) -
2-메틸시클로헥산아민 [(E)-N-((l,2,3,4-tetrahydroquinolin-8-yl) methylene) -2-me t hy 1 eye 1 ohexanam i ne ]의 제조
테트라하이드로퀴놀리노 알데히드 1.06 g을 17 mL 메탄을에 녹인 후 2-메틸시클로핵실 아민 1.3 mL를 천천히 가했다. 밤새 실온에서 교반한 후 감압 하에서 용매를 제거하고 다시 핵산으로 녹여서 진한 용액을 만들어 냉동실에 보관하였다. 이 용액에는 두 가지 입체이성질체 생성물이 약 1.5 대 1의 비율로 섞여 있다. 약 이¾간 방치한 후 흰색의 결정성 고체가 형성되는 것을 확인했다. 나머지 모액으로 같은 작업을 반복하여 얻어진 고체들을 모두 모은 후 차가운 메탄올과 핵산으로 씻어주고 건조시켜서 순수한 입체이성질체 생성물을 수득하였다 (수득율 50%).
1H NM (500 MHz, d-toluene): 0.83 (d, J = 7 Hz, 3H, CH3), 0.95- 1.01 Cm, 1H, CH), 1.20-1.29 (m, 2H, CH2), 1.52-1.71 (m, 8H, CH2), 2.09- 2.10 (m, d-tol), 2.38-2.43 (m, 1H, CH), 2.51-2.53 (m, 2H, CH2), 3.12- 3.13 (m, 2H, C¾), 6.55 (t, / = 7.5 Hz, 1H, 페닐), 6.83 (d, J = 7.5 Hz, 1H, 페닐), 6.97-7.01 (m, 1H, 페닐, d-tol), 7.10 (s, d-tol), 8.16 (s, 1H, CH), 9.27 (b, 1H, NH) . 제조예 2: 지르코늄 촉매 I의 제조 '
제조예 1에서 제조된 리간드 화합물 145 mg과 지르코늄 벤질 231 mg을 글로브 박스 안에서 샘플링하여 Schlenk 플라스크에 담았다. 그 후 Schlenk 플라스크를 꺼내어 -78 °C로 온도를 낮추었다. 온도를 유지한 상태로 12 mL 를루엔을 천천히 가한 후 점진적으로 온도를 상온으로 올리면서 6 시간 동안 교반시켜서 진한 주황색 를루엔 용액을 얻은 후 용매를 제거하여 순수한 생성물을 얻었다.
1H NMR (500 MHz, d-toluene): 1.09-1.13 (m, 1H, CH3), 1.50-1.61
(in, 1H, CH2), 1.65-1.75 Cm, 4H, CH2), 2.31 (d, J = 10.5 Hz, 1H, CH2Ph) , 2.49-2.61 (m, 6H, CH2 and CH2Ph) , 2.67 (d, J = 10.5 Hz, 1H, CH2Ph) , 3.18-3.24 (m, 1H, CH2), 3.56-3.62 (m, 1H, CH2), 4.30-4.34 (m, 1H, CH) , 6.55-7.23 (m, 15H, 페닐), 7.97 (s, 1H, 이민 CH), 8.13 (d, J = 7 Hz, 1H 페닐). 제조예 3: 지르코늄 촉매 II의 제조
제조예 1에서 제조된 리간드 화합물 90 mg과 지르코늄 벤질 169 mg을 글로브 박스 안에서 샘플링하여 Schlenk 플라스크에 담았다. 그 후 Schlenk 플라스크를 꺼내어 -78 °C로 온도를 낮추었다. 온도를 유지한 상태로 10 mL 를루엔을 천천히 가한 후 점진적으로 온도를 상온으로 올리면서 이틀 동안 교반시켜서 진한 주황색 를루엔 용액으로 생성물 용액을 얻었다.
1H NMR (500 MHz, d-toluene): 0.41 (d, J = 7 Hz, 3H, CH3), 0.83- 1.03 (m, 4H, CH2), 1.18—1.31 (m, 2H, CH2), 1.40-1.62 (m, 5H, CH2), 1.83-1.88 (m, 1H, CH) , 2.05-2.12 (m, d-tol, CH2), 2.47-2.55 (m, 8H, CH2), 3.21-3.25 (m, 1H, CH) , 3.38-3.41 (m, 1H, CH), 3.79-3.83 (m, 1H, CH), 6.58 (t, J = 7.5 Hz, 1H, 페닐), 6.82-7.12 (m, 페닐, d_tol), 8.07 (s, 1H, CH). 비교예 1, 2 및 실시예 1 내지 10 <에틸렌 /1-옥텐 블록 공중합체의 제조〉
온도가 100 ~ 150°C로 예열된 1.5L 연속 교반식 반웅기에 핵산 (3.20kg/h) 용매와 단량체인 1-옥텐 및 에틸렌을 89bar의 압력으로 공급하였다. 촉매 저장탱크로부터 하기 표 1에 표시된 소정의 촉매와, 디메틸아닐리늄테트라키스 (펜타플루오로페닐)보레이트 조촉매를 반웅기로 공급하고, 스캐빈저 (TIBAL), 디에틸아연을 투입하여 공중합 반웅을 진행하였다, 상기 스캐빈저는 반웅물이 반웅기로 공급되기 이전에 반웅물에 포함된 불순물을 제거하기 위하여 반응물과 흔합되어 반응기로 공급하였다. 실시예의 중합은 140 ~ 15CTC의 비교적 높은 온도에서 실시하였으며, 공중합 반웅에 의하여 형성된 고분자 용액은 용매 분리기로 보내어져 용매의 대부분을 제거하였다. 넁각수와 절단기를 통과시켜 입자화된 고분자를 얻었다. 비교예 1 및 2와, 실시예 1 내지 10에 따른 에틸렌과 1- 옥텐 공중합체의 중합 조건을 하기 표 1에 나타내었다. [촉매 A]
하기 실시예 및 비교예에서 사용하는 촉매 A 화합물로는 제조예 2에서 얻어진 (E)— N-((l,2,3,4-테트라하이드로퀴놀린 -8-일)메틸렌 ,)-2- 메틸사이클로핵산아민 지르코늄벤질 ((E)-N-((l,2,3,4-tetrahydroquinolin- 8-yl )methylene) -2- me t hy 1 eye 1 ohex anam i ne zirc이 liumbenzyl )을 사용하였다.
[촉매 B]
하기 실시예 및 비교예에서 사용하는 촉매 B 화합물로는, 한국 등록 특허 공보 제 0820542 호의 실시예에 따라 얻어진 1,2,3,4-테트라하이드로- 8-(2,3,4-트리메틸- 5-메틸렌사이클로펜타—1,3-디에닐) 퀴놀린 디메틸티타늄 (l,2,3,4-tetrahydro-8-(2,3,4-trimethyl-5- methyl enecyc lopenta-1, 3-d i eny 1 )qui lnol ine dimethyl t itanium)¾- 사용하였다.
[표 1]
Figure imgf000035_0001
도 umol/ pmol/ 렌 요 매 저 아연 소 hr hr kg/h 텐 umol/ ml/hr ml/hr L/h r kg/ hr (KM) (lOmM) r hr
비교예 135 18 — 0.63 0.6 90 3.5 一 ―
1 0
비교예 168 — 18 0.63 0.6 90 3.5 ― ―
2 0
실시예 145 18 6 0.63 0.6 120 3.5 3.5 一
1. 0
실시예 141 18 6 0.63 0.7 120 3.5 3.5 一 2 5
실시예 143 18 6 0.63 0.6 120 3.5 3.5 ― 3 7
실시예 143 18 6 0.63 0.9 120 3.5 3.5 一 4 0
실시예 140 18 6 0.73 0.7 120 3.5 3.5 . ― 5 5
실시예 142 18 6 0.58 0.6 120 3.5 3.5 一 6 0
실시예 149 18 6 0.68 0.6 120 3,5 3.5 ―
7 0
실시예 144 18 6 0.68 0.9 120 3.5 3.5 一 8 0
실시예 145 18 6 0.63 0.7 120 3.5 3.5 1.0 9 5
실시예 142 18 6 0.63 0.6 120 3.5 3.5 1.5 10 0
<시험예 1> 상기 실시예 1 내지 10, 비교예 1 및 2에서 제조된 공중합체의 물성을 다음의 방법으로 평가하고, 표 2 및 3에 표시하였다.
1) 고분자 쇄들의 분자량 분포 및 분지쇄 개수 분석
각 공중합체를 겔 투과 크로마토그래피 (GPC: Gel Permeation
Chromatography)로 분석하여 상기 공중합체를 이루는 고분자 쇄들의 분자량 분포 곡선을 도출하였다. 또한, 각 공중합체를 FT-IR로 분석하여 상기 고분자 쇄들의 분자량 (X축)에 따른 탄소수 1000 개 당 분지쇄의 개수 값 (오른쪽 Y축)의 분포 곡선을 도출하였다. 실시예 1에 대해 도출된 결과는 도 1에 도시하였으며, 나머지 공중합체에 대해서도 마찬가지 결과를 도출하였다. '
이러한 도출 결과로부터, 각 공중합체에 대해, 1) 탄소수 1000개당 분지쇄 개수의 최대값, 고분자 쇄의 분자량의 중앙값을 중심으로, 2) 그 이상의 영역에서의 1차 미분값 (dY/dX)의 범위와 3) 탄소수 1000개당 분지쇄 개수 범위를 산출하여 하기 표 2에 나타내었다. 또한, 4) 분자량이 하위 40% 미만인 영역에서의 1차 미분값 (dY/dX)의 범위를 각각 산출하여 그 범위를 확인하였다.
2) 용융지수 (Ml)
실시예 및 비교예의 공중합체의 용융지수 (Melt index, MI)는 ASTM D- 1238(조건 E, 190 °C, 2.16kg하중)로 측정하였다.
3) 밀도 (density)
실시예 및 비교예의 공중합체의 샘플을 180°C 프레스 몰드 (Press Mold)를 이용해 두께 3隱, 반지름 2cm의 시트 형태로 제작하고 10°C/min으로 메를러 (Mettler) 저울에서 측정하였다.
4) 융점 (Tm)
온도를 200°C까지 증가시킨 후, 5분 동안 그 온도에서 유지하고, 그 다음 30°C까지 내리고, 다시 은도를 증가시켜 DSC(Differential Scanning Calorimeter, TA사 제조) 곡선의 꼭대기를 융점으로 하였다. 이 때, 온도의 상승과 내림의 속도는 10°C/min 이고, 융점은 두 번째 온도가 상승하는 구간에서 측정한 결과를 사용하였다. 5) 중량 평균 분자량 및 분자량 분포 (Polydispersity index: PDI) 겔 투과 크로마토그래피 (GPC: Gel Permeation Chromatography)를 이용하여 수평균분자량 (Mn), 중량평균분자량 (Mw)을 측정한 후, 중량평균분자량을 수평균분자량으로 나누어 분자량 분포를 산출하였다.
6) 열적 기계적 분석 (Thermal Mechanical Analysis: TMA)
TA사에서 제조한 TMA Q400을 이용하여, 0.5N의 힘으로 샘플. 침투 실험을 하였으며, 승온 속도는 25°C로부터 5°C/min으로 상승시켰다. 프로브 침투 거리를 온도 함수로 측정하여, 프로브가 샘플의 1mm 침투되었을 때 실험치로 하였다.
7) 영구 회복률 (Permanent Set)
Zwick사의 만능재료시험기를 이용하여, ASTM D638에 따라 제작한 시편을 300%신장한 후 회복률을 측정하였다.
[표 2]
중앙값 이상
분지쇄 중앙값 이상 영역의
최대값 영역의 dY/dX 범위 분지쇄 개수
범위
측정 한계 一 一
비교예 1
미만
64 -9.53 X 10"5 내지 30 ~ 64
비교예 2
0.023
실시예 1 48 -5.61 X 10"5 내지 41 - 48 실시예 2 55 6.54 X 10 38 ~ 55 실시예 3 52 35 ~ 52 실시예 4 61 44 ~ 61 실시예 5 42 25 - 42 실시예 6 43 26 ~ 43 실시예 7 42 25 ~ 42 실시예 8 57 40 ~ 57 실시예 9 55 38 ~ 55 실시예 10 46 29 ~ 46
* 비교예 1의 경우, 분지쇄의 개수 자체가 측정 한계 미만으로서, dY/dX 값 및 분지쇄 개수 범위를 측정할 수 없음. 상기 표 2를 참고하면, 실시예 1 내지 10의 블록 공중합체는 고분자 쇄들의 분자량이 중앙값 이상인 영역에서는 1차 미분값이 약 -5.61 X 10一 5 내지 6. 4 X 10— 5으로서 -1.0 X 10— 4 내지 1.0 X 10— 4의 범위 내로 유지됨이 확인된다. 이로부터 상기 블록 공중합체는 고분자 쇄의 분자량이 상대적으로 큰 영역에서는, 분자량 변화에 따른 분지쇄 개수의 변화가 거의 없고 일정한 수준의 분지쇄가 포함되어 보다 높은 블록화도를 나타냄이 확인되었다.
반대로, 고분자 쇄의 분자량이 작은 영역, 특히, 분자량 하위 40% 미만인 영역에서는, 1차 미분값이 약 2.0 X 10"4 내지 0.1로서 상당히 크게 나타남이 확인되었다. 이는 작은 분자량을 갖는 고분자 쇄들의 경우, 분자량에 비례하는 개수의 분지쇄를 포함하여, 랜덤 공중합체와 유사한 특성을 나타냄을 반영할 수 있다.
이에 비해, 비교예 1의 공중합체는 분지쇄 자체가 거의 없고, 이에 따라 α-올레핀계 반복 단위가 거의 존재하지 않는 형태의 공중합체로서, 실시예의 블록 공중합체와는 전혀 다른 형태 및 특성을 갖는 공중합체로 확인되었다.
또한, 비교예 2의 공중합체는 고분자 쇄의 분자량이 중앙값 이상인 영역에서, 상기 1차 미분값이 상당히 포괄적으로 나타남이 확인되었으며, 특히, 상기 1차 미분값이 최대 0.02에 이르러 실시예에 비해 매우 크게 나타남이 확인되었다. 이로부터, 비교예 2의 공중합체는 고분자 쇄의 분자량이 상대적으로 큰 영역에서도, 분자량 변화에 따른 분지쇄 개수의 변화가 매우 커서 매우 낮은 블록화도를 나타내며, 실시예의 분지쇄 분포 특성을 나타내지 못할 뿐 아니라, 실질적으로 블록 공중합체의 형태를 갖지 못하는 것으로 확인되었다.
[표 3] a t MI 융점 분자량 분자량분포 TMA 영구회복률 g/cm3 °C Mw PDI °C % 비교예 1 0.928 0.6 128 140500 2.4 - - 비교예 2 0.870 3.6 58 89000 2.5 60 55 실시예 1 0.877 0.5 122 122800 2.5 114 99 실시예 2 0.873 0.7 123 118500 2.4 111 101 실시예 3 0.876 0.7 124 114300 2.5 114 101 실시예 4 0.869 1.8 123 103200 2.5 98 101 실시예 5 0.881 0.5 123 130400 2.6 117 102 실시예 6 0.880 0.6 124 121400 2.5 116 101 실시예 7 0.881 0.4 124 123200 2.5 119 101 실시예 8 0.871 1.0 124 109400 2.5 104 101 실시예 9 0.872 2.9 124 911700 2.8 111 102 실시예 10 0.877 3.6 123 81500 2.9 113 103
* 비교예 1의 경우 시편이 탄성을 나타내지 않아 300% 신장 0 불가능하였고, 이로 인해 영구 회복률 측정 불가. 상기 표 3을 참고하면, 실시예 1 내지 10의 블록 공중합체는 우수한 내열성, 가공성 및 탄성을 나타내는데 비해, 비교예 1의 공중합체는 탄성 자체를 실질적으로 나타내지 않아 엘라스토머로서의 특성을 나타낼 수 없음이 확인되었다. 또한, 비교예 2의 공중합체는 에틸렌 -1-옥텐 랜덤 공중합체로 볼 수 있는 것으로서, 실시예의 블록 공중합체에 비해 매우 열악한 내열성 (낮은 융점 및 TMA)을 나타냄이 확인되었다. 실시예 11
2 L 오토클레이브 반웅기에 핵산 1.0 L 용매와 1-옥텐 0.7M 농도를 가한 후, 반웅기 온도를 120°C로 예열하였다. 25 mL 촉매 저장탱크에 트리이소부틸알루미늄 화합물 125 μη )1로 처리된 촉매 Α(실시예 1 내지 9에서 사용된 것과 동일) 1.0 μηιοΐ 및 촉매 Β(실시예 1 내지 9에서 사용된 것과 동일) 5.0 μηιοΐ과 트리틸 테트라키스 (펜타플로로페닐)보레이트 조촉매 30 μη )1를 차례로 첨가하여 채웠다. 이 때, 촉매 탱크 속으로 에틸렌 압력 30 bar를 가하고 고압의 아르곤을 사용하여 촉매 A 1 μπωΐ 과 촉매 Β 화합물 5 μηιοΐ 및 중합보조제 디에틸아연 600μη)1을 반웅기에 주입하여 공중합 반웅을 10 분간 진행한 후, 남은 에틸렌 가스를 빼내고 고분자 용액을 과량의 에탄을에 가하여 침전을 유도하였다. 얻어진 고분자를 에탄올 및 아세톤으로 각각 2 내지 3회 세척한 후, 80 °C 진공 오븐에서 12 시간 이상 건조한다. 이를 통해 실시예 11의 블록 공중합체를 제조하였다.
'실시예 12
촉매 투입량을 촉매 A 화합물 4 μιτ )1과 촉매 Β 화합물 2 μηκ)1로 한 것을 제외하고는 실시예 11과 동일한 방법으로 실시하여 ^시예 12의 블록 공중합체를 제조하였다.
실시예 13
촉매 투입량을 촉매 Α 화합물 3 μηκ)1과 촉매 Β 화합물 3 μη)1로 한 것을 제외하고는 실시예 11과 동일한 방법으로 실시하여 실시예 13의 블록 공증합체를 제조하였다.
실시예 14
촉매 투입량을 촉매 Α 화합물 2 μηι이과 촉매 Β 화합물 4 μη )1로 한 것을 제외하고는 실시예 11과 동일한 방법으로 실시하여 실시예 14의 블록 공중합체를 제조하였다.
실시예 15
촉매 투입량을 촉매 Α 화합물 1 μιι ΐ과 촉매 Β 화합물 5 ymol 로 한 것을 제외하고는 실시예 : 과 동일한 방법으로 실시하여 실시예 15의 블록 공중합체를 제조하였다.
비교예 3
2 L 오토클레이브 반웅기에 핵산 1.0 L 용매와 1-옥텐 0.7M 농도를 가한 후, 반응기 온도를 120 °C로 예열하였다. 25 mL 촉매 저장탱크에 트리이소부틸알루미늄 화합물 125 μιιωΐ로 처리된 촉매 Β 6.0 μιηοΐ, 트리틸 테트라키스 (펜타플로로페닐)보레이트 조촉매 30 μηκ)1을 차례로 첨가하여 채웠다. 이 때, 촉매 탱크 속으로 에틸렌 압력 30 bar를 가하고 고압의 아르곤을 사용하여 촉매 B 6.0 μπι 를 반웅기에 주입하여 공중합 반웅을 10 분간 진행한 후, 남은 에틸렌 가스를 빼내고 고분자 용액을 과량의 에탄을에 가하여 침전을 유도하였다. 얻어진 고분자를 에탄올 및 아세톤으로 각각 2 내지 3희 세척한 후, 80 °C 진공 오븐에서 12 시간 이상 건조한다. 이를 통해 비교예 3의 에틸렌 -α-올레핀 공중합체를 제조하였다.
비교예 4
촉매 투입량을 촉매 Α 화합물 5 μη >1로 한 것을 제외하고는 비교예 3과 동일한 방법으로 실시하여 비교예 4의 공중합체를 제조하였다.
비교예 5.
촉매 투입량을 촉매 Α 화합물 4 μιτ )1로 한 것을 제외하고는 비교예
3과 동일한 방법으로 실시하여 비교예 5의 공중합체를 제조하였다.
비교예 6
촉매 투입량을 촉매 Α 화합물 3 μπ)1로 한 것을 제외하고는 비교예 3과 동일한 방법으로 실시하여 비교예 6의 공중합체를 제조하였다.
비교예 7
1-옥텐의 투입량을 0.6Μ로 한 것을 제외하고는 비교예 6과 동일한 방법으로 실시하여 비교예 7의 공중합체를 제조하였다.
비교예 8
1-옥텐의 투입량을 0.5Μ로 한 것을 제외하고는 비교예 6과 동일한 방법으로 실시하여 비교예 8의 공중합체를 제조하였다.
비교예 9
1-옥텐의 투입량을 0.4Μ로 한 것을 제외하고는 비교예 6과 동일한 방법으로 실시하여 비교예 9의 공중합체를 제조하였다. <시험예 2>
상기 실시예 11 내지 15, 비교예 3 내지 9 에서 제조된 공중합체의 물성을 다음의 방법으로 평가하고, 도 2 및 표 4 등에 도시하였다.
1) 에틸렌계 반복 단위 함량 분석 실시예 및 비교예의 공중합체의 에틸렌 반복 단위의 함량을 1H-NMR을 이용해 분석하였다.
2) 하드세그먼트의 함량 분석
실시예 및 비교예의 하드세그먼트의 함량은 상용화된 Time Domain NMR(TD NMR; Bruker Optics 사제 상품명 Minspec)을 사용하여 산출하였다. 먼저, 이러한 TD 丽 R 장치를 사용하여 실시예 및 비교예의 시료에 대한 Free Induction Decay(FID)를 측정하였으며, 그 측정 결과는, 예를 들어, 도 3 에 도시된 바와 같았다. 도 3 에 도시된 바와 같이 , FID 는 시간과 Intensity 의 함수로 나타난다. 그리고, 하기 식 2 에서 A, B, T2fast 및 1,의 4 개의 상수 값을 변화시켜가며 FID 함수의 그래프와 가장 가까운 함수식을 도출하였으며, 이를 통해 각 시료의 A, B, T2fast 및 T2slow 값을 결정하였다.
하드세그먼트의 경우 이로부터 산출되는 T2(spin-spin relaxation time) relaxation이 빠르게 나타나고, 소프트세그먼트의 경우 이로부터 산출되는 T2( spin-spin relaxation time) relaxation이 느리게 나타나는 것으로 알려져 있다. 따라서, 위에서 결정된 A, B, T2fast 및 T2slow 값 중에서 작은 T2 값을 하드세그먼트의 T2값, 즉, T2fast 값으로 결정하였고, 보다 큰 T2 값을 소프트세그먼트의 T2값, 즉, T2slow 값으로 결정하였다. 이를 통해, A 및 B의 상수와 함께 하드세그먼트의 함량 (중량 «을 산출하였다: '
[식 2]
Intensity = A x EXP(-Time/ T2fast) + B x EXP (-Time/ T2slow)
Fitting을 통해 A, B, T2fast , T2slow값 결정
Hard segment (mol%) = A/(A+B) x 100 상기 식 2에서, Intensity와 Time은 FID 분석 결과로부터 산출되는 값이며, T2iast 는 하드세그먼트에 대한 T2(spin-spin relaxation time) relaxation 값이고, T2slow 는 소프트세그먼트에 대한 T2(spin_spin relaxation time) relaxation 값이다. 또, A 및 B는 fitting에 의해 결정되는 상수로서 각각 하드세그먼트 및 소프트세그먼트의 상대적 비율로서 각 세그먼트의 함량에 비례하는 값을 갖는다 .
3) 하드세그먼트의 함량 r (중량 «과, 에틸렌계 반복 단위의 함량 x' (중량 %)의 관계식 도출
· 상술한 방법으로, 공중합체 중의 하드세그먼트의 함량 r (중량 ¾»)과, 에틸렌 또는 프로필렌 단량체의 함량 χ' (중량 ¾>)를 각각 산출한 후, 에틸렌 또는 프로필렌 단량체의 함량 x' (중량 %)에 따른 하드세그먼트의 함량 Y' (중량 를 구하고, 이들 데이터를 선형 회귀 함으로서, 이들의 관계식을
1차 함수의 형태로 얻었다. 이러한 1차 함수는 실시예 11 내지 15 및 비교예 3 내지 9에 대해 각각 Y=2.4143X-113.23 (R2 = 9878) 및 Υ=2.3567Χ- 140.32 (R2 = 0.9795)의 식으로 도출되었으며, 이러한 도출 결과를 도 2에 도시하였다.
이를 통해, 상기 실시예의 블록 공중합체는 일정 함량의 에틸렌계 반복 단위를 포함하는 영역에서, Υ > 2.8495Χ - 145.01 (R2 = 0.9971)의 식 1의 관계를 충족함이 확인되었으며, 이에 비해, 비교예의 공중합체는 상기 식 1의 관계를 층족하지 못함이 확인되었다. 또, 실시예의 공중합체는 에틸렌계 반복 단위의 함량이 동일하더라도, 하드세그먼트의 함량이 현저히 높아 하드세그먼트 및 소프트세그먼트가 블록화된 정도가 매우 높음이 확인되었다. 한편, 상기 실시예 11 내지 15와, 비교예 3 내지 9의 공중합체에 대해서도, 밀도, 융점, Mw, 분자량 분포 및 TMA 등을 측정하여, 하기 표 4에 함께 나타내었다.
[표 4]
Figure imgf000044_0001
)
실시 52.1 14.8 0.860 123.2 71595 2.4 105 예 11
실시 64.7 39.3 0.868 124.7 82375 2.5 112 예 12
실시 70.7 55.3 0.875 125.3 88779 2.6 120 예 13
실시 75.2 70.4 0.881 126.7 92324 2.6 121 예 14
실시 77.5 75.4 0.887 127. 1 11752 2.6 125 예 15 4
비교 62.3 9.2 0.863 60. 1 75894 2.3 50 예 3
비교 67.6 14.8 0.869 62.3 77264 2.5 52 예 4
비교 70.8 26.9 0.873 65. 1 80458 2.6 53 예 5
비교 75.6 37.4 0.875 67.3 84549 2.7 56 예 6
비교 77.3 44.2 0.882 70.4 88789 2.7 60 예 7
비교 79.0 44.2 0.889 72. 1 89354 2.7 63 예 8
비교 82.3 54.5 0.895 75.7 98357 2.8 71 예 9 상기 표 4를 참고하면 , 실시 예 11 내자 15의 블록 공중합체는 비교예 3 내지 9에 비해 융점 및 TMA 값이 현저히 높아 우수한 내열성을 나타냄이 확인되 었다 . 또한, 상기 실시 예의 블록 공중합체는 높은 분자량 및 분자량 분포에 따른 우수한 기 계적 물성 및 가공성을 나타냄이 확인되 었다 .

Claims

【특허청구범위】
【청구항 11
에틸렌계 또는 프로필렌계 반복 단위와, α-올레핀계 반복 단위를 서로 다른 중량 분율로 포함한 복수의 블록 또는 세그먼트를 포함하는 을레핀 블록 공중합체로서,
블록 공중합체에 포함된 각 고분자 쇄들의 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수 Y를 고분자 쇄들의 분자량 X에 대해 1차 미분한 값이 -1.5 X 10"4 이상의 음수 내지 양수로 되고, 상기 분자량 X의 중앙값 (median) 이상의 영역에서는 상기 1차 미분 값이 -1.0 X 10— 4 내지 1.0 X 10— 4로 되는 을레핀 블록 공중합체.
[청구항 2】
제 1 항에 있어서, 분자량 X의 중앙값 미만의 영역에서는 상기 1차 미분 값이 상기 중앙값 이상의 영역에서보다 크게 되는 을레핀 블록 공중합체 .
【청구항 3】
제 2 항에 있어서, 분자량 X의 중앙값 미만의 영역에서는 분자량 X가 증가할수록 상기 1차 미분 값이 감소하는 올레핀 블록 공중합체.
【청구항 4】
제 2 항에 있어서, 분자량 X가 하위 40% 미만인 영역에서는 상기 1차 미분 값이 2.0 X 10—4 내지 0.1로 되는 올레핀 블록 공중합체.
【청구항 5】
제 1 항에 있어서, . 상기 고분자 쇄들의 탄소수 1000개당 분지쇄 (short chain branching; SCB) 개수 Y가 70개 이하인 올레핀 블록 공중합체ᅳ
【청구항 6】 제 1 항에 있어서, 분자량 X의 중앙값 이상의 영 역에서는, 상기 고분자 쇄들의 탄소수 1000개당 분지 쇄 (short chain branching; SCB) 개수 Y가 20 내지 70개이며, 상기 영 역 내의 Υ의 최 대값과 최소값의 편차가 20개 이하인 올레핀 블록 공중합체 .
【청구항 7】
제 1 항에 있어서, 제 1 중량 분율의 α -올레핀계 반복 단위를 포함하는 하드세그먼트와, 제 1 중량 분율 보다 높은 제 2 중량 분율의 α - 올레핀계 반복 단위를 포함하는 소프트세그먼트를 포함하는 올레핀 블록 공중합체 .
【청구항 8】
제 7 항에 있어서, 전체 블록 공중합체에 포함된 α -을레핀계 반복 단위의 중량 분율은 제 1 증량 분율과, 제 2 중량 분율의 사이 값올 갖는 올레핀 블록 공중합체 . -
【청구항 9】
제 7 항에 있어서, 상기 블록 공중합체 중의 하드세그먼트의 함량 Y' (중량 ¾)과, 에틸렌 또는 프로필렌계 반복 단위의 함량 X' (중량 %)가 하기 식 1의 관계를 층족하는 올레핀 블록 공중합체 :
[식 1]
Υ' > 2.8495X' - 145.01
【청구항 10]
제 9 항에 있어서 , 50 내지 90 중량 %의 에 틸렌계 또는 프로필렌계 반복 단위와, 잔량의 α -올레핀계 반복 단위를 포함하고, 상기 반복 단위의 전체 함량 범위에서 상기 식 1의 관계를 충족하는 올레핀 블록 공중합체 .
【청구항 11】
제 7 항에 있어서, 하드세그먼트의 10 내지 90 중량 %와, 소프트세그먼트의 잔량을 포함하는 올레핀 블록 공중합체.
【청구항 12]
제 7 항에 있어서, 하드세그먼트는 결정화도, 밀도 및 융점의 특성 값 중 하나 이상이 소프트세그먼트보다 높은 을레핀 블록 공중합체.
【청구항 13】
제 1 항에 있어서, 밀도가 0.85g/cm3 ~ 0.92g/cm3인 올레핀 블록 공중합체:
【청구항 14]
제 1 항에 있어서, TMA (Thermal Mechanical Analysis) 값이 70 내지 140°C인 을레 ¾ 블록 공중합체 .
【청구항 15】
제 1 항에 있어서, 190 °C, 2.16kg 하중 하의 용융 지수가 0.5 내지 5g/10min이고, 쇼어 경도가 50 내지 100인 올레핀 블록 공중합체.
【청구항 16]
제 1 항에 있어서, 300% 신장 후의 영구 회복율이 110% 이하인 올레핀 블록 공중합체 .
【청구항 17】
제 1 항에 있어서, 100 내지 14C C의 융점을 갖는 올레핀 블록 공중합체 .
【청구항 18】
제 1 항에 있어서, 중량 평균 분자량이 50,000 내지 200,000이고, 분자량 분포가 2.0 내지 4.5인 올레핀 블록 공중합체. 【청구항 19]
제 1 항에 있어서, 상기 α-올레핀계 반복 단위는 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1- 테트라데센, 1-핵사데센, 및 1-아이토센으로 이루어진 군에서 선택된 1종 이상의 α-올레핀에서 유래한 반복 단위인 올레핀 블록 공증합체.
PCT/KR2012/000564 2011-01-20 2012-01-20 올레핀 블록 공중합체 WO2012099443A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280014246.3A CN103502290B (zh) 2011-01-20 2012-01-20 烯烃嵌段共聚物
EP12736905.6A EP2666799B1 (en) 2011-01-20 2012-01-20 Olefin block copolymer
US13/980,870 US9062146B2 (en) 2011-01-20 2012-01-20 Olefin block copolymer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2011-0006050 2011-01-20
KR20110006050 2011-01-20
KR10-2011-0006438 2011-01-21
KR10-2011-0006437 2011-01-21
KR20110006438 2011-01-21
KR20110006437 2011-01-21

Publications (2)

Publication Number Publication Date
WO2012099443A2 true WO2012099443A2 (ko) 2012-07-26
WO2012099443A3 WO2012099443A3 (ko) 2012-12-06

Family

ID=46516273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000564 WO2012099443A2 (ko) 2011-01-20 2012-01-20 올레핀 블록 공중합체

Country Status (5)

Country Link
US (1) US9062146B2 (ko)
EP (1) EP2666799B1 (ko)
KR (1) KR101170492B1 (ko)
CN (1) CN103502290B (ko)
WO (1) WO2012099443A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037441B1 (en) 2013-09-30 2023-11-22 LG Chem, Ltd. Polyolefin

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675509B1 (ko) * 2013-11-19 2016-11-11 주식회사 엘지화학 우수한 물성을 갖는 폴리올레핀
KR101914326B1 (ko) * 2014-08-28 2018-11-02 한화케미칼 주식회사 신규한 4족 전이금속 화합물 및 이의 용도
KR101970498B1 (ko) * 2015-09-23 2019-04-22 (주)엘지하우시스 섬유 강화 복합재 및 이의 제조방법
JP7262883B2 (ja) 2019-05-17 2023-04-24 エルジー・ケム・リミテッド ポリオレフィン-ポリスチレン系多重ブロック共重合体及びこの製造方法
KR20200132634A (ko) * 2019-05-17 2020-11-25 주식회사 엘지화학 폴리올레핀-폴리스티렌계 다중블록 공중합체 및 이의 제조방법
KR102275019B1 (ko) * 2019-06-27 2021-07-08 디엘케미칼 주식회사 적은 단쇄분지를 갖는 알파올레핀 올리고머 및 이의 제조방법
CN112724343A (zh) * 2021-01-19 2021-04-30 天津大学 一种聚烯烃嵌段共聚物及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820542B1 (ko) 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582716B2 (en) 2004-03-17 2009-09-01 Dow Global Technologies Inc. Compositions of ethylene/α-olefin multi-block interpolymer for blown films with high hot tack
WO2006101930A2 (en) * 2005-03-17 2006-09-28 Dow Global Technologies Inc. Compositions of ethylene/alpha-olefin multi-block interpolymer suitable for films
US7910658B2 (en) * 2005-03-17 2011-03-22 Dow Global Technologies Llc Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates
AU2006227617B2 (en) * 2005-03-17 2011-12-22 Dow Global Technologies Llc Ethylene/alpha-olefins block interpolymers
CA2644907A1 (en) * 2006-03-15 2007-09-20 Dow Global Technologies Inc. Propylene/alpha-olefins block interpolymers
WO2009097560A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. ETHYLENE/α-OLEFIN BLOCK INTERPOLYMERS
EP2238186B1 (en) * 2008-01-30 2018-11-28 Dow Global Technologies LLC Ethylene/alpha-olefin block interpolymers
WO2009111185A2 (en) * 2008-02-29 2009-09-11 Dow Global Technologies Inc. FIBERS AND FABRICS MADE FROM ETHYLENE/α-OLEFIN INTERPOLYMERS
KR101213732B1 (ko) 2008-10-02 2012-12-18 주식회사 엘지화학 에틸렌-알파올레핀 공중합체 및 이의 제조방법
WO2010039628A2 (en) * 2008-10-03 2010-04-08 Dow Global Technologies Inc. POLYMER BLENDS WITH ETHYLENE/α-OLEFIN INTERPOLYMERS
KR101189194B1 (ko) * 2009-03-18 2012-10-09 주식회사 엘지화학 새로운 전이금속 화합물
KR101049260B1 (ko) * 2009-07-23 2011-07-13 주식회사 엘지화학 새로운 포스트 메탈로센형 전이금속 화합물

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820542B1 (ko) 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2666799A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037441B1 (en) 2013-09-30 2023-11-22 LG Chem, Ltd. Polyolefin

Also Published As

Publication number Publication date
KR101170492B1 (ko) 2012-08-01
WO2012099443A3 (ko) 2012-12-06
US9062146B2 (en) 2015-06-23
EP2666799B1 (en) 2018-01-10
CN103502290B (zh) 2016-08-17
CN103502290A (zh) 2014-01-08
KR20120084695A (ko) 2012-07-30
EP2666799A4 (en) 2015-09-09
EP2666799A2 (en) 2013-11-27
US20130296517A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
KR101262308B1 (ko) 올레핀 블록 공중합체 및 이의 제조 방법
KR101170492B1 (ko) 올레핀 블록 공중합체
KR101175338B1 (ko) 올레핀 블록 공중합체
CN109415459B (zh) 基于烯烃的共聚物及其制备方法
EP2668216B1 (en) Olefin block copolymers and production methods thereof
TWI833021B (zh) 聚烯烴-聚苯乙烯多嵌段共聚物及其製造方法
CN109563323B (zh) 基于聚丙烯的树脂组合物
JP6890413B2 (ja) 4−メチル−1−ペンテン重合体およびその製造方法、並びに成形体
KR101170491B1 (ko) 올레핀 블록 공중합체 및 시트상 성형체
KR20140012488A (ko) 가교 구조를 갖는 올레핀 블록 공중합체 및 이의 제조 방법
KR20160077642A (ko) 에틸렌-알파올레핀-스티렌 공중합체 및 이의 제조방법
KR20130135168A (ko) 내열성, 탄성 및 점착 강도가 우수한 올레핀 블록 공중합체 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736905

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012736905

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13980870

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE