WO2012099242A1 - 給水装置 - Google Patents

給水装置 Download PDF

Info

Publication number
WO2012099242A1
WO2012099242A1 PCT/JP2012/051196 JP2012051196W WO2012099242A1 WO 2012099242 A1 WO2012099242 A1 WO 2012099242A1 JP 2012051196 W JP2012051196 W JP 2012051196W WO 2012099242 A1 WO2012099242 A1 WO 2012099242A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
curve
control
flow rate
lift
Prior art date
Application number
PCT/JP2012/051196
Other languages
English (en)
French (fr)
Inventor
小松 崇秀
亮太郎 唐木
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Priority to US13/980,259 priority Critical patent/US20140044560A1/en
Priority to JP2012553784A priority patent/JP5914365B2/ja
Priority to CN201280005545.0A priority patent/CN103314217B/zh
Priority to KR1020137021450A priority patent/KR101760547B1/ko
Priority to EP12736816.5A priority patent/EP2667033B1/en
Publication of WO2012099242A1 publication Critical patent/WO2012099242A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3013Outlet pressure

Definitions

  • the present invention relates to a water supply device that supplies water such as tap water to an apartment house or a building using a pump.
  • FIG. 1 shows a typical example of such a water supply apparatus.
  • the water supply apparatus includes two pumps 1 each having a motor M for supplying water under pressure, and motors for driving the pumps 1.
  • An inverter (frequency converter) 2 that supplies power to M is provided.
  • the water supply device includes a pressure tank 3 and a discharge-side pressure sensor 4 on the discharge side of the pump 1, and a flow switch (flow rate detection means) 6 and a check valve 7 for each pump 1.
  • a suction side pipe 8 of the pump 1 is connected to a water main pipe 9, and a suction side pressure sensor 10 and a backflow prevention device 11 are provided in the suction side pipe 8.
  • a bypass pipe 12 for supplying water only with the pressure of the water main pipe 9 is provided between the suction side pipe 8 and the discharge side pipe 13 of the pump 1.
  • a check valve 14 is provided in the middle of the bypass pipe 12.
  • the control unit 15 that controls the pump 1 performs rotation speed control and number control of the pump 1 according to the situation based on signals from these sensors.
  • the suction side pipe of the pump is not a direct connection type water supply device connected to the water main, but a water receiving tank type water supply device
  • the pump suction side piping is connected to the water receiving tank and provided in the water receiving tank.
  • a water level detector is connected to the controller.
  • a backflow prevention device, a suction side pressure sensor, and a bypass pipe are not provided.
  • FIG. 2 shows a required lift curve A indicating the relationship between the flow rate used and the lift (head) required for the flow rate in the water supply device, and a standard control lift curve B set based on the required lift curve A.
  • the pump QH curve pump speeds N 1 , N 2 and N 3 .
  • the horizontal axis indicates the flow rate Q
  • the vertical axis indicates the head (head) H.
  • the required head curve A is, for example, the sum of the head of the building (height of the top floor) H 1 , the pressure required for water equipment (pressure loss of the water equipment) H 2 , and the pipe loss H 3 depending on the flow rate (H 1 + H 2 + H 3 ).
  • H 1 + H 2 + H 3 the pressure required for water equipment
  • H 3 the pipe loss H 3 depending on the flow rate
  • This required head curve A is merely the relationship between the ideal head and the flow rate used, and in actual design, for example, standard control with a margin of about a dozen percent with respect to the required head curve A. It has been widely practiced to set a lift head curve B and control the rotational speed of the pump based on the standard control lift curve B.
  • This standard control lift curve B shows a lift (minimum required pressure) PB 1 that gives a margin of about 10% to the lift PB 0 when the use flow rate is 0, and when the use flow rate is the final point Q 0 . It is shown as a curve that smoothly connects the head (maximum required pressure) PA 1 with a margin of about 10% to the head PA 0 .
  • This standard control head curve B is stored in the storage unit of the control unit 15 of the water supply apparatus shown in FIG. 1, and based on this standard control head curve B, that is, for example, as shown in FIG.
  • the operating flow rate is Q 1
  • the rotational speed of the pump 1 is controlled so that the intersection point U 3 between the flow rate Q 1 and the standard control head curve B becomes the operating point (rotational speed N 1 ) of the pump 1. .
  • a standard control lift curve B having a margin of about 10% or more is set for the required lift curve A, and the rotational speed of the pump is controlled based on the standard control lift curve B. For example, when corrosion occurs in the pipe and the pipe loss becomes larger than the original design, the water supply device is prevented from failing to use its performance, or for some reason on the user side, If there is a request for more flow, this request can be met.
  • the rotational speed of the pump may be controlled to N 2 so that the intersection point U 2 , which has a lower head than that, becomes the operating point.
  • the rotational speed of the pump is increased, to consume much more power Become. This is contrary to the recent needs for energy conservation.
  • the user may not need to control the rotation speed of the pump based on the standard control head curve with sufficient margin. In such a case, it is possible to contribute to energy saving by controlling the rotational speed of the pump based on the control head curve having a minimum necessary margin.
  • Patent Document 1 is not intended to save such energy.
  • the present invention has been made in view of the above circumstances, and it is possible to control the pump so that the rotational speed of the pump becomes low while ensuring a constant flow rate, so that the water supply device can meet the demand for energy saving.
  • the purpose is to provide.
  • the invention according to claim 1 is a pump that pressurizes and feeds water, a frequency converter that supplies electric power to the pump and operates the pump at an arbitrary rotational speed, and a pressure on a discharge side of the pump.
  • a discharge-side pressure sensor to detect, and a control unit for controlling the rotation speed of the pump, wherein the control unit stores a plurality of control head curves indicating different relationships between the flow rate and the head, and alternatively
  • the water supply device is characterized in that the rotational speed of the pump is controlled based on the selected control head curve.
  • the first control lift curve and the second control lift curve in which the pressure (lift) is set lower than the first control lift curve are stored in the control unit. Then, usually, the rotational speed of the pump is controlled based on the first control lift curve, and if necessary, the pump rotational speed is controlled based on the second control lift curve. Compared to the case where the rotational speed of the pump is controlled based only on the curve, it is possible to save energy by reducing the rotational speed of the pump while maintaining the amount of water used.
  • the invention according to claim 2 is a switch button for sequentially switching a plurality of control head curves stored in the control unit, and a degree of energy saving corresponding to the control head curve used for controlling the rotational speed of the pump.
  • the user can easily select the control head curve used for the control by using the switching button, and the selected state can be confirmed on the energy saving display section.
  • the plurality of control lift curves are a standard control lift curve and a small flow rate energy saving control lift in which the lift on the small flow rate side is set lower than the standard control lift curve. It is a water supply apparatus of Claim 1 or 2 characterized by including a curve.
  • the plurality of control lift curves are a standard control lift curve, and a medium flow rate energy-saving control lift in which the lift of the medium flow rate range is set lower than the standard control lift curve. It is a water supply apparatus in any one of the Claims 1 thru
  • the plurality of control lift curves are a standard control lift curve and a large flow rate energy-saving control lift in which the lift of the large flow rate range is set lower than the standard control lift curve. It is a water supply apparatus in any one of the Claims 1 thru
  • the plurality of control lift curves include a standard control lift curve and a total flow rate energy saving type in which the lift of the entire flow rate range is set to be substantially parallel to the standard control lift curve. It is a water supply apparatus in any one of the Claims 1 thru
  • the water supply device of the present invention even if the amount of water used is the same, it is possible to operate the pump by selecting an operation point with a low rotation speed as necessary, thereby reducing the power used during water supply. It can save energy and lead to CO 2 reduction.
  • FIG. 3 is a diagram illustrating a configuration example of the water supply device according to the embodiment of the present invention.
  • the control unit 15 of the water supply apparatus includes a setting unit 16, a storage unit 17, a calculation unit 18, a display unit 19, and an I / O unit 20.
  • the setting unit 16 and the display unit 19 are provided in the operation panel 21 of the water supply device.
  • the configuration other than the control unit 15 is substantially the same as the configuration of the conventional water supply apparatus shown in FIG.
  • the setting unit 16 is used to set various setting values such as a plurality of control head curves indicating different relationships between the flow rate and the head by an external operation.
  • Various set values such as a plurality of control head curves set in the setting unit 16 are stored in the storage unit 17.
  • the lift (minimum required pressure) PB 1 when the use flow rate is 0 the lift (maximum required pressure) PA 1 when the use flow rate is the final point Q 0 , and the like are input to the storage unit 17 as set values.
  • the I / O unit 20 receives signals from various sensors installed in the water supply device, such as the output of the discharge side pressure sensor 4 and the signal of the flow switch 6, and sends them to the calculation unit 18.
  • the I / O unit 20 and each inverter 2 are connected to each other by communication means such as RS485, and various setting values, frequency command values, start / stop signals (start / stop signals), etc. from the control unit 15 to the inverter 2.
  • the control signal is sent to the control unit 15 from the inverter 2 and the operation status such as the actual frequency value and current value is sequentially sent.
  • FIG. 4 shows a plurality of control head curves set via the setting unit 16 and stored in the storage unit 17.
  • the standard control lift curve B having a margin of, for example, about a dozen percent with respect to the required lift curve A obtained from 3
  • three total flow rate energy-saving control lift curves C 1 , C 2 a total of four control head curve of C 3 is used.
  • the lift curves C 1 , C 2 , and C 3 for the energy saving type control for the entire flow rate range are set substantially lower in parallel with the lift curve B for the standard control over the entire flow rate range, and from the necessary lift curve A
  • the head is also set high.
  • lift is set to turn lower.
  • One of the four control lift curves B, C 1 , C 2 , C 3 is selected, and the pump 1 is based on the selected control lift curve B, C 1 , C 2 or C 3.
  • the rotation speed is controlled.
  • FIG. 5 shows a plan view of the operation panel 21 provided in the water supply apparatus.
  • the operation panel 21 includes a switching button 22 for sequentially switching the four control head curves B, C 1 , C 2 , C 3 stored in the control unit 17, and the rotational speed of the pump 1.
  • an energy saving display unit 23 indicating the degree of energy saving corresponding to the control head curve used for the control.
  • the standard control lift curve B is used for controlling the rotational speed of the pump 1 without the lamp of the energy saving display section 23 being lit.
  • the switch button 22 is pressed once, the lamp corresponding to “L” in the energy saving display section 23 is turned on, and the energy flow control curve C 1 for the entire flow rate region is used for controlling the rotational speed of the pump 1.
  • the switching button 22 is pressed twice, the lamp corresponding to “M” in the energy saving display section 23 is turned on, and the entire flow rate energy saving type control head curve C 2 is used for controlling the rotational speed of the pump 1.
  • the switch button 22 pressing the switch button 22 three times, the lamp is lit corresponding to the "H" of the energy-saving display unit 23, the total flow rate range energy-saving control head curve C 3 is used to control the rotational speed of the pump 1 The
  • the switching button 22 is pressed four times, the original state is restored.
  • the user can easily switch the control head curve B, C 1 , C 2 or C 3 used for the control by pressing the switch button 22, and confirm this switching state on the energy saving display unit 23. Can do.
  • the pump can be operated by selecting an operation point with a low rotation speed as necessary, thereby reducing the power consumed during water supply and saving energy. 2 can be reduced.
  • the head is set low over the entire flow rate range in parallel with the standard control head curve B, and the head is set higher than the required head curve A.
  • An example is shown in which a plurality of (in this example, three) lift curves C for energy saving control in the entire flow rate region are used to achieve substantially constant energy saving in the entire flow rate region.
  • an intermediate flow rate energy-saving control lift curve D in which the lift in the medium flow rate range is set lower than the standard control lift curve B is used so as to save energy mainly in the medium flow rate range.
  • stepwise energy saving may be achieved by using a plurality of medium flow rate energy saving type control lift curves D having a difference in lift between the standard control lift curve B and the medium flow rate range.
  • a large flow rate energy-saving control lift curve E in which the lift in the large flow rate region is set lower than the standard control lift curve B is used to save energy mainly in the large flow rate region. You may do it.
  • stepwise energy saving may be achieved by using a plurality of large-flow-rate energy-saving control lift curves E in which the difference in lift between the standard control lift curve B and the large-flow region is different.
  • the energy saving control head curve F is used mainly in the small flow rate region, by using the small flow rate energy saving type control head curve F in which the head in the small flow region is set lower than the standard control head curve B. You may do it.
  • stepwise energy saving may be achieved by using a plurality of small-flow-rate energy-saving control lift curves F in which the difference between the standard control lift curve B and the lift in the small-flow region is different.
  • the rotational speed of the pump may be controlled so as to obtain a desired flow rate and head while considering the energy saving effect by arbitrarily combining the small flow rate range energy-saving control head curve F shown in FIG.
  • Table 1 shows the relationship between time, water supply rate, water supply amount and power consumption (hourly power consumption), and table 1 shows the relationship between time, water supply rate, water supply amount and power consumption (power consumption per hour) when the head is 40 m 2 respectively.
  • control lift curves may be used to select a control lift curve that raises the lift when the user feels that the lift is low.
  • the control head curve is obtained by storing the standard control head curve B and several control head curves in which the heads of all or a part of the flow range of the curve B are lowered in the control unit.
  • the control lift curve B and several control lift curves in which the lift in all or a part of the flow rate range of the curve B is increased are stored in the control unit, and the control lift curve is selected. You may make it select.
  • the water supply apparatus of the present invention selects the control head curve for the purpose of energy saving to reduce the power consumption of the operation of the pump, but the present invention is not necessarily limited to this purpose. It is applicable also to the water supply apparatus which selects the control head curve for the purpose.
  • the present invention can be applied to a water supply device that supplies water such as tap water to an apartment house or a building using a pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

 一定の流量を確保したまま、回転速度が低くなるようにもポンプを制御できるようにして、省エネルギー化の要請に応えることができるようにする。 水を加圧して送水するポンプと、ポンプに電力を供給して該ポンプを変速運転する周波数変換器と、ポンプの吐出側の圧力を検知する吐出側圧力センサと、ポンプの回転速度を制御する制御部(15)とを備え、制御部(15)には、流量(Q)と揚程(H)の異なる関係を示す複数の制御用揚程曲線(B,C,C,C)が記憶され、択一的に選択された制御用揚程曲線(B,C,CまたはC)に基づいてポンプの回転速度が制御される。

Description

給水装置
 本発明は、ポンプを使用して、集合住宅やビルなどに水道水等の給水を行う給水装置に関する。
 集合住宅やビルなどに設置され、各給水端へ水を供給する装置として給水装置がある。図1は、このような給水装置の典型例を示すもので、給水装置は、モータMをそれぞれ有し水を加圧して送水する2台のポンプ1と、各ポンプ1を駆動するためのモータMに電力を供給するインバータ(周波数変換器)2を備えている。給水装置は、ポンプ1の吐出側に、圧力タンク3と吐出側圧力センサ4を備え、夫々のポンプ1毎にフロースイッチ(流量検出手段)6と逆止弁7を備えている。ポンプ1の吸込側配管8は、水道本管9に接続され、この吸込側配管8に吸込側圧力センサ10と逆流防止装置11とが設けられている。更に、水道本管9の圧力のみで給水を行うためのバイパス管12がポンプ1の吸込側配管8と吐出側配管13との間に設けられている。そして、バイパス管12の途中には逆止弁14が設けられている。ポンプ1の制御を行う制御部15は、これらのセンサ類からの信号に基づき、状況に応じたポンプ1の回転数制御及び台数制御を行う。
 なお、ポンプの吸込側配管が水道本管に接続された直結式給水装置ではなく、受水槽式の給水装置であれば、ポンプの吸込側配管は受水槽に接続され、受水槽に備えられた水位検知器が制御部に接続される。この受水槽式の給水装置の場合、逆流防止装置、吸込側圧力センサ、及びバイパス管は備えられていない。
 図2は、給水装置における、使用流量と該流量に必要な揚程(ヘッド)との関係を示す必要揚程曲線Aと、この必要揚程曲線Aを基に設定した標準制御用揚程曲線Bとを、ポンプのQ-H曲線(ポンプの回転速度N,N及びN)と共に示す。図2において、横軸は流量Qを示し、縦軸は揚程(ヘッド)Hを示す。
 必要揚程曲線Aは、例えば建物の揚程(最上階の高さ)H、水道器具に必要な圧力(水道器具の圧損)H、及び流量に依存する配管損失Hの合計(H+H+H)から求められる。この例では、使用流量が0の時の揚程PBと、同じく使用流量が最終点Qの時の揚程PAとを滑らかに結ぶ曲線として示されている。
 この必要揚程曲線Aは、あくまでも理想の揚程と使用流量との関係を求めたものであり、実際の設計に際しては、必要揚程曲線Aに対し、例えば十数%程度の余裕を持たせた標準制御用揚程曲線Bを設定し、この標準制御用揚程曲線Bに基づいてポンプの回転速度を制御することが広く行われている。この標準制御用揚程曲線Bは、使用流量が0の時の前記揚程PBに十数%程度の余裕を持たせた揚程(最低必要圧力)PBと、使用流量が最終点Qの時の前記揚程PAに十数%程度の余裕を持たせた揚程(最大必要圧力)PAとを滑らかに結ぶ曲線として示されている。
 この標準制御用揚程曲線Bは、図1に示す給水装置の制御部15の記憶部に記憶されており、この標準制御用揚程曲線Bに基づいて、つまり、例えば、図2に示すように、使用流量がQの時、この流量Qと標準制御用揚程曲線Bとの交点Uがポンプ1の運転ポイント(回転速度N)になるように、ポンプ1の回転速度が制御される。
 このように、必要揚程曲線Aに対し、例えば十数%程度の余裕を持たせた標準制御用揚程曲線Bを設定し、この標準制御用揚程曲線Bに基づいてポンプの回転速度を制御することで、例えば配管に腐食が発生して配管損失が設計当初に比べて大きくなった場合に、給水装置がその使用性能を出せなくなってしまうことを防止したり、また使用者側で何らかの理由により、もう少し流量を出したいとの要求があった場合に、この要求に応じることができる。
 なお、配管抵抗とポンプ性能曲線とから求められる流量をインプットし、求めた流量が得られるようにポンプの回転速度を自動的に合わせてゆく方法が提案されている(特許文献1参照)。この方法は、最初に流量を測定した地点で、流量が多ければポンプの回転速度を自動的に下げ、ポンプの回転速度を下げても更に流量が多ければ、更にポンプの回転速度を流量に合うように自動的に下げ、順次目標とする流量になるまでポンプの回転速度を自動的に調整してゆくようにしている。
特開昭59-51193号公報
 必要揚程曲線Aの十数%程度の余裕をもった標準制御用揚程曲線Bを設定し、この標準制御用揚程曲線Bのみに基づいてポンプの回転速度を制御する場合、省エネルギー化を図ろうとしても、柔軟に対応できなかった。例えば、図2に示すように、標準制御用揚程曲線Bのみに基づいて、使用者の使用流量がQとなるように、ポンプの回転速度を制御しようとすると、図2の流量Qと標準制御用揚程曲線Bとの交点Uが運転ポイントとなるようにポンプの回転速度がNに制御されるため、この運転ポイントを必要に応じて変更させることができない。
 しかしながら、使用者の使用流量Qが確保されていれば、図2に示す、流量Qと必要揚程曲線Aとの交点(回転速度N)Uよりも揚程が高く、上記交点Uよりも揚程が低い、交点Uが運転ポイントとなるように、ポンプの回転速度をNに制御してもよい場合がある。このような場合に、揚程の高い交点Uでポンプを運転すると、揚程の低い交点Uでポンプを運転する時に比べて、ポンプの回転速度は大きくなり、それだけ多くの電力を消費することになる。このことは、省エネルギーを厳しく求められる昨今のニーズに反する。
 また、使用者側では、十分な余裕を持った標準制御用揚程曲線に基づいてポンプの回転速度を制御する必要がない場合がある。このような場合には、必要最低限の余裕を持った制御用揚程曲線に基づいてポンプの回転速度を制御することで、省エネルギー化に貢献することができる。
 しかし、特許文献1に記載の発明は、かかる省エネルギー化を意図したものではない。
 本発明は上記事情に鑑みてされたもので、一定の流量を確保したまま、ポンプの回転速度が低くなるように制御できるようにして、省エネルギー化の要請に応えることができるようにした給水装置を提供することを目的とする。
 請求項1に記載の発明は、水を加圧して送水するポンプと、前記ポンプに電力を供給して該ポンプを任意の回転速度で運転する周波数変換器と、前記ポンプの吐出側の圧力を検知する吐出側圧力センサと、前記ポンプの回転速度を制御する制御部とを備え、前記制御部には、流量と揚程の異なる関係を示す複数の制御用揚程曲線が記憶され、択一的に選択された制御用揚程曲線に基づいて前記ポンプの回転速度が制御されることを特徴とする給水装置である。
 例えば第1制御用揚程曲線と、該第1制御用揚程曲線よりも圧力(揚程)を低く設定した第2制御用揚程曲線を制御部にそれぞれ記憶しておく。そして、通常は第1制御用揚程曲線に基づいてポンプの回転速度を制御し、必要に応じて、第2制御用揚程曲線に基づいてポンプの回転速度を制御することで、第1制御用揚程曲線のみに基づいてポンプの回転速度を制御した場合に比較して、使用水量を維持したままポンプの回転速度を落として省エネルギー化を図ることができる。
 請求項2に記載の発明は、前記制御部に記憶されている複数の制御用揚程曲線を順次切換える切換ボタンと、ポンプの回転速度の制御に使用される制御用揚程曲線に対応した省エネルギーの程度を示す省エネ表示部とを有する運転パネルを有することを特徴とする請求項1記載の給水装置である。
 これにより、制御に使用される制御用揚程曲線の選択を使用者が切換ボタンを使用して簡便に行い、この選択された状態を省エネ表示部で確認することができる。
 請求項3に記載の発明は、前記複数の制御用揚程曲線は、標準制御用揚程曲線と、標準制御用揚程曲線に対して小流量側の揚程を低く設定した小流量域省エネ型制御用揚程曲線とを含むことを特徴とする請求項1または2に記載の給水装置である。
 請求項4に記載の発明は、前記複数の制御用揚程曲線は、標準制御用揚程曲線と、標準制御用揚程曲線に対して中流量域の揚程を低く設定した中流量域省エネ型制御用揚程曲線とを含むことを特徴とする請求項1乃至3のいずれかに記載の給水装置である。
 請求項5に記載の発明は、前記複数の制御用揚程曲線は、標準制御用揚程曲線と、標準制御用揚程曲線に対して大流量域の揚程を低く設定した大流量域省エネ型制御用揚程曲線とを含むことを特徴とする請求項1乃至4のいずれかに記載の給水装置である。
 請求項6に記載の発明は、前記複数の制御用揚程曲線は、標準制御用揚程曲線と、標準制御用揚程曲線に対して略並行に全流量域の揚程を低く設定した全流量域省エネ型制御用揚程曲線とを含むことを特徴とする請求項1乃至5のいずれかに記載の給水装置である。
 本発明の給水装置によれば、同じ使用水量であっても、必要に応じて、回転速度の低い運転ポイントを選んでポンプを運転することができ、これによって、給水時の使用電力を抑えて省エネルギー化を図り、COの削減に繋げることができる。
従来の給水装置の構成例を示す図である。 給水装置における必要揚程曲線と従来の給水装置の標準制御用揚程曲線とを、ポンプのQ-H曲線と共に示すグラフである。 本発明の実施形態の給水装置の構成例を示す図である。 本発明の実施形態の給水装置の制御部に記憶されている複数の制御用揚程曲線を必要揚程曲線と共に示すグラフである。 本発明の実施形態の給水装置に備えられている運転パネルを示す平面図である。 本発明の制御用揚程曲線として使用される全流量域省エネ型制御用揚程曲線を必要揚程曲線及び標準制御用揚程曲線と共に示すグラフである。 本発明の制御用揚程曲線として使用される中流量域省エネ型制御用揚程曲線を必要揚程曲線及び標準制御用揚程曲線と共に示すグラフである。 本発明の制御用揚程曲線として使用される大流量域省エネ型制御用揚程曲線を必要揚程曲線及び標準制御用揚程曲線と共に示すグラフである。 本発明の制御用揚程曲線として使用される小流量域省エネ型制御用揚程曲線を必要揚程曲線及び標準制御用揚程曲線と共に示すグラフである。 給水装置を1日運転した時における給水量(流量)と時刻との関係を示すグラフである。
 以下、本発明の実施形態について、図3乃至図5を参照して詳細に説明する。なお、図1乃至図5において、同一または相当する要素には同一符号を付して重複した説明を省略する。
 図3は、本発明の実施形態の給水装置の構成例を示す図である。図3に示すように、給水装置の制御部15は、設定部16、記憶部17、演算部18、表示部19及びI/O部20を備えている。設定部16及び表示部19は、給水装置の運転パネル21に備えられている。なお、制御部15以外の構成は、図1に示す従来の給水装置の構成とほぼ同様である。
 設定部16は、外部操作により、流量と揚程の異なる関係を示す複数の制御用揚程曲線等の各種設定値を設定するのに使用される。設定部16において設定された複数の制御用揚程曲線等の各種設定値は、記憶部17に記憶される。例えば、使用流量が0のときの前記揚程(最低必要圧力)PB、使用流量が最終点Qのときの前記揚程(最大必要圧力)PA等が設定値として記憶部17に入力されて記憶される。I/O部20は、吐出側圧力センサ4の出力やフロースイッチ6の信号などの給水装置内に設置された各種センサからの信号を受け入れて演算部18に送る。また、I/O部20と各インバータ2は、RS485等の通信手段により互いに接続され、制御部15からインバータ2へは、各種設定値や周波数指令値、発停信号(起動・停止信号)などの制御信号が送られ、インバータ2から制御部15へは、実際の周波数値や電流値等の運転状況が逐次送られる。
 図4は、設定部16を介して設定されて記憶部17に記憶されている複数の制御用揚程曲線を示す。この例では、例えば建物の揚程(最上階の高さ)H、水道器具に必要な圧力(水道器具の圧損)H、及び流量に依存する配管損失Hの合計(H+H+H)から求められる必要揚程曲線Aに対し、例えば十数%程度の余裕を持たせた標準制御用揚程曲線Bの他に、3つの全流量域省エネ型制御用揚程曲線C,C,Cの合計4つの制御用揚程曲線が使用されている。
 全流量域省エネ型制御用揚程曲線C,C,Cは、標準制御用揚程曲線Bに対して略並行に、全流量域に亘って揚程が低く設定され、かつ必要揚程曲線Aよりも揚程が高く設定されている。そして、全流量域省エネ型制御用揚程曲線C,C,Cの順に、揚程が順に低くなるように設定されている。そして、この4つの制御用揚程曲線B,C,C,Cの内の一つが選択され、この選択された制御用揚程曲線B,C,CまたはCに基づいてポンプ1の回転速度が制御される。
 図5は、給水装置に備えられている運転パネル21の平面図を示す。図5に示すように、運転パネル21には、制御部17に記憶されている4つの制御用揚程曲線B,C,C,Cを順次切換える切換ボタン22と、ポンプ1の回転速度の制御に使用される制御用揚程曲線に対応した省エネルギーの程度を示す省エネ表示部23とを有している。
 これによって、切換ボタン22を押さない場合は、省エネ表示部23のランプが点灯することなく、標準制御用揚程曲線Bがポンプ1の回転速度の制御に使用される。そして、切換ボタン22を1回押すと、省エネ表示部23の“L”に対応するランプが点灯して、全流量域省エネ型制御用揚程曲線Cがポンプ1の回転速度の制御に使用される。切換ボタン22を2回押すと、省エネ表示部23の“M”に対応するランプが点灯して、全流量域省エネ型制御用揚程曲線Cがポンプ1の回転速度の制御に使用される。更に、切換ボタン22を3回押すと、省エネ表示部23の“H”に対応するランプが点灯して、全流量域省エネ型制御用揚程曲線Cがポンプ1の回転速度の制御に使用される。切換ボタン22を4回押すと元の状態に復帰する。
 これにより、制御に使用される制御用揚程曲線B,C,CまたはCの切換を使用者が切換ボタン22を押して簡便に行い、この切換えた状態を省エネ表示部23で確認することができる。
 次に、この給水装置によって、使用者の使用流量がQとなるように、ポンプの回転速度を制御する場合について、図4を参照して説明する。先ず、切換ボタン22を押さない場合、標準制御用揚程曲線Bに基づいて、ポンプ1の回転速度が制御され、標準制御用揚程曲線Bと流量がQとの交点Uがポンプ1の運転ポイントとなる。この時、省エネ表示部23のランプは点灯されない。
 使用者が切換ボタン22を1回押すと、全流量域省エネ型制御用揚程曲線Cに基づいて、ポンプ1の回転速度が制御され、全流量域省エネ型制御用揚程曲線Cと流量Qとの交点Uがポンプ1の運転ポイントとなる。この時、省エネ表示部23の“L”に対応するランプが点灯する。切換ボタン22を2回押すと、全流量域省エネ型制御用揚程曲線Cに基づいて、ポンプ1の回転速度が制御され、全流量域省エネ型制御用揚程曲線Cと流量Qとの交点Uがポンプ1の運転ポイントとなる。この時、省エネ表示部23の“M”に対応するランプが点灯する。そして、切換ボタン22を3回押すと、全流量域省エネ型制御用揚程曲線Cに基づいて、ポンプ1の回転速度が制御され、全流量域省エネ型制御用揚程曲線Cと流量Qとの交点Uがポンプ1の運転ポイントとなる。この時、省エネ表示部23の“H”に対応するランプが点灯する。
 このように、同じ使用流量であっても、必要に応じて、回転速度の低い運転ポイントを選んでポンプを運転できるようにすることで、給水時の使用電力を抑えて省エネルギー化を図り、COの削減に繋げることができる。
 上記の例では、図6に示すように、標準制御用揚程曲線Bに対して略並行に、全流量域に亘って揚程が低く設定され、かつ必要揚程曲線Aよりも揚程が高く設定された全流量域省エネ型制御用揚程曲線Cを複数(この例では3つ)使用して、全流量域において、ほぼ一定の省エネルギーを図るようにした例を示している。
 図7に示すように、標準制御用揚程曲線Bに対して中流量域の揚程を低く設定した中流量域省エネ型制御用揚程曲線Dを使用し、主に中流量域において省エネルギーを図るようにしてもよい。この場合、標準制御用揚程曲線Bと中流量域における揚程の差が異なる複数の中流量域省エネ型制御用揚程曲線Dを使用することで、段階的な省エネルギーを図るようにしてもよい。
 また、図8に示すように、標準制御用揚程曲線Bに対して大流量域の揚程を低く設定した大流量域省エネ型制御用揚程曲線Eを使用し、主に大流量域において省エネルギーを図るようにしてもよい。この場合、標準制御用揚程曲線Bと大流量域における揚程の差が異なる複数の大流量域省エネ型制御用揚程曲線Eを使用することで、段階的な省エネルギーを図るようにしてもよい。
 更に、図9に示すように、標準制御用揚程曲線Bに対して小流量域の揚程を低く設定した小流量域省エネ型制御用揚程曲線Fを使用し、主に小流量域において省エネルギーを図るようにしてもよい。この場合、標準制御用揚程曲線Bと小流量域おける揚程の差が異なる複数の小流量域省エネ型制御用揚程曲線Fを使用することで、段階的な省エネルギーを図るようにしてもよい。
 なお、図6に示す全流量域省エネ型制御用揚程曲線C、図7に示す中流量域省エネ型制御用揚程曲線D、図8に示す大流量域省エネ型制御用揚程曲線E、及び図9に示す小流量域省エネ型制御用揚程曲線Fを任意に組合せることで、省エネルギー効果を考慮しつつ、好みの流量、揚程となるように、ポンプの回転速度を制御するようにしてもよい。
 次に、1時間毎の給水量(流量)を図10に示す関係に維持したまま、揚程(給水圧力)を40mから36mに落として給水装置を一日運転した時における、揚程が36mの場合の時刻、給水率、給水量及び消費電力(時間毎消費電力)の関係を表1に、揚程が40mの場合の時刻、給水率、給水量及び消費電力(時間毎消費電力)の関係を表2にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 この表1と表2から、揚程(給水圧力)を40mら36mに落として給水装置を一日運転できれば、消費電力の合計を16.41kWhから13.99kWhに低下させることができ、一日で2.42kWhの省エネルギーとなることが判る。これを1年に換算すると、883kWhの省エネルギーとなる。この量をCOに換算すると358kg(東京電力推奨CO変換係数:1kWh=0.43kg)となる。杉1本のCOの吸収量は14.5kg(杉の木11000本で年間160tのCO吸収量=14.5kg/本(植物鉄栄養研究会))であるので、杉約25本分のCO削減となる。
 なお、複数の制御用揚程曲線を使用して、揚程が低いと使用者が感じた時に、逆に揚程を上げるようにした制御用揚程曲線を選ぶようにしてもよい。つまり、上述の実施形態では、標準制御用揚程曲線B及びこの曲線Bの全部又は一部の流量域の揚程を低くした幾つかの制御用揚程曲線を制御部に記憶させて制御用揚程曲線を選択するようにしているが、標準制御用揚程曲線B及びこの曲線Bの全部又は一部の流量域の揚程を高くした幾つかの制御用揚程曲線を制御部に記憶させて制御用揚程曲線を選択するようにしてもよい。
 これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことはいうまでもない。また、本発明の給水装置は、ポンプの運転の電力使用量を低減するという省エネルギーを目的にして制御用揚程曲線の選択するようにしているが、本発明は、必ずしもかかる目的だけではなく、節水を目的として制御用揚程曲線を選択する給水装置にも適用できる。
 本発明は、ポンプを使用して、集合住宅やビルなどに水道水等の給水を行う給水装置に適用可能である。
1 ポンプ
2 インバータ(周波数変換器)
3 圧力タンク
4 吐出側圧力センサ
8 吸込側配管
9 水道本管
10 吸込側圧力センサ
12 バイパス管
13 吐出側配管
15 制御部
16 設定部
17 記憶部
18 演算部
19 表示部
20 I/O部
21 運転パネル
22 切換ボタン
23 省エネ表示部
A 必要揚程曲線
B 標準制御用揚程曲線
C 全流量域省エネ型制御用揚程曲線
D 中流量域省エネ型制御用揚程曲線
E 大流量域省エネ型制御用揚程曲線
F 小流量域省エネ型制御用揚程曲線

Claims (6)

  1.  水を加圧して送水するポンプと、
     前記ポンプに電力を供給して該ポンプを任意の回転速度で運転する周波数変換器と、
     前記ポンプの吐出側の圧力を検知する吐出側圧力センサと、
     前記ポンプの回転速度を制御する制御部とを備え、
     前記制御部には、流量と揚程の異なる関係を示す複数の制御用揚程曲線が記憶され、択一的に選択された制御用揚程曲線に基づいて前記ポンプの回転速度が制御されることを特徴とする給水装置。
  2.  前記制御部に記憶されている複数の制御用揚程曲線を順次切換える切換ボタンと、ポンプの回転速度の制御に使用される制御用揚程曲線に対応した省エネルギーの程度を示す省エネ表示部とを有する運転パネルを有することを特徴とする請求項1記載の給水装置。
  3.  前記複数の制御用揚程曲線は、標準制御用揚程曲線と、標準制御用揚程曲線に対して小流量側の揚程を低く設定した小流量域省エネ型制御用揚程曲線とを含むことを特徴とする請求項1または2に記載の給水装置。
  4.  前記複数の制御用揚程曲線は、標準制御用揚程曲線と、標準制御用揚程曲線に対して中流量域の揚程を低く設定した中流量域省エネ型制御用揚程曲線とを含むことを特徴とする請求項1乃至3のいずれかに記載の給水装置。
  5.  前記複数の制御用揚程曲線は、標準制御用揚程曲線と、標準制御用揚程曲線に対して大流量域の揚程を低く設定した大流量域省エネ型制御用揚程曲線とを含むことを特徴とする請求項1乃至4のいずれかに記載の給水装置。
  6.  前記複数の制御用揚程曲線は、標準制御用揚程曲線と、標準制御用揚程曲線に対して略並行に全流量域の揚程を低く設定した全流量域省エネ型制御用揚程曲線とを含むことを特徴とする請求項1乃至5のいずれかに記載の給水装置。
PCT/JP2012/051196 2011-01-21 2012-01-20 給水装置 WO2012099242A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/980,259 US20140044560A1 (en) 2011-01-21 2012-01-20 Water supply apparatus
JP2012553784A JP5914365B2 (ja) 2011-01-21 2012-01-20 給水装置
CN201280005545.0A CN103314217B (zh) 2011-01-21 2012-01-20 供水装置
KR1020137021450A KR101760547B1 (ko) 2011-01-21 2012-01-20 급수 장치
EP12736816.5A EP2667033B1 (en) 2011-01-21 2012-01-20 Water supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-010432 2011-01-21
JP2011010432 2011-01-21

Publications (1)

Publication Number Publication Date
WO2012099242A1 true WO2012099242A1 (ja) 2012-07-26

Family

ID=46515859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051196 WO2012099242A1 (ja) 2011-01-21 2012-01-20 給水装置

Country Status (6)

Country Link
US (1) US20140044560A1 (ja)
EP (1) EP2667033B1 (ja)
JP (1) JP5914365B2 (ja)
KR (1) KR101760547B1 (ja)
CN (1) CN103314217B (ja)
WO (1) WO2012099242A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103742425A (zh) * 2014-01-22 2014-04-23 江苏双轮泵业机械制造有限公司 水循环系统节能修正方法
JP2014138497A (ja) * 2013-01-17 2014-07-28 Ebara Corp 流体供給装置
WO2014175248A1 (ja) 2013-04-26 2014-10-30 株式会社 荏原製作所 ポンプ装置
JP2014214715A (ja) * 2013-04-26 2014-11-17 株式会社荏原製作所 ポンプ装置
JP2014214743A (ja) * 2013-04-30 2014-11-17 株式会社荏原製作所 ポンプ装置
JP2019210819A (ja) * 2018-05-31 2019-12-12 株式会社荏原製作所 給水装置を制御するための制御ユニット、及び給水装置
JP2019210820A (ja) * 2018-05-31 2019-12-12 株式会社荏原製作所 給水装置を制御するための制御ユニット、及び給水装置
KR20220161695A (ko) * 2021-05-31 2022-12-07 (주) 인정테크 인버터 부스터 펌프 시스템의 가변압 제어방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2910788B1 (en) * 2014-02-25 2018-04-04 TACO ITALIA S.r.l. Method for controlling a pumping station within a fluid circulation system, related circulation system and pumping station for realizing said method
EP3156656B1 (de) * 2015-10-16 2020-03-25 Grundfos Holding A/S Pumpensteuerverfahren und druckerhöhungsvorrichtung
CN108825520A (zh) * 2018-05-04 2018-11-16 四川省宜宾惠美线业有限责任公司 一种离心式水泵节能的应用方法
CN109059216B (zh) * 2018-06-20 2020-08-04 广东美的暖通设备有限公司 空调系统及其水泵的控制方法和装置
EP3599037A1 (de) * 2018-07-25 2020-01-29 Primetals Technologies Germany GmbH Kühlstrecke mit einstellung der kühlmittelströme durch pumpen
DE102018217439A1 (de) * 2018-10-11 2020-04-16 Albert Ziegler Gmbh Pumpeneinrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951193A (ja) 1982-09-20 1984-03-24 Hitachi Ltd 可変速ポンプを備えた給水装置
JP2000110769A (ja) * 1998-10-02 2000-04-18 Toshiba Corp 可変速ポンプの速度制御装置
JP2005351252A (ja) * 2004-06-14 2005-12-22 Nikkiso Co Ltd 複数のタンクからの液体払い出し方法および液体払い出し装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370098A (en) * 1980-10-20 1983-01-25 Esco Manufacturing Company Method and apparatus for monitoring and controlling on line dynamic operating conditions
US5240380A (en) * 1991-05-21 1993-08-31 Sundstrand Corporation Variable speed control for centrifugal pumps
JP3922760B2 (ja) * 1997-04-25 2007-05-30 株式会社荏原製作所 流体機械
US6468042B2 (en) * 1999-07-12 2002-10-22 Danfoss Drives A/S Method for regulating a delivery variable of a pump
JP3768045B2 (ja) * 1999-09-24 2006-04-19 株式会社日立産機システム インバータ
EP1286458A1 (de) * 2001-08-22 2003-02-26 Pumpenfabrik Ernst Vogel Gesellschaft m.b.H. Verfahren und Vorrichtung zur Regelung von Kreiselarbeitsmaschinen
JP3917835B2 (ja) * 2001-09-28 2007-05-23 横河電機株式会社 加圧送水ポンプシステム
EP1329672B1 (en) * 2002-01-17 2006-10-11 Hitachi, Ltd. Energy collecting system and method of operating the same
JP4393310B2 (ja) * 2004-08-25 2010-01-06 株式会社日立製作所 ポンプ制御装置、ポンプ制御方法及びポンプ制御プログラム
CN1774994A (zh) * 2005-12-15 2006-05-24 西北农林科技大学 基于变频恒压控制下的喷微灌单元设计方法
CN101556068A (zh) * 2008-04-11 2009-10-14 上海瀚艺冷冻机械有限公司 中央空调系统中循环泵的恒压变频节能控制方法
JP2010209698A (ja) * 2009-03-06 2010-09-24 Toshiba Mitsubishi-Electric Industrial System Corp 冷却設備ポンプ省エネ制御装置
JP2011185190A (ja) * 2010-03-10 2011-09-22 Ebara Corp 制御装置一体型モータポンプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951193A (ja) 1982-09-20 1984-03-24 Hitachi Ltd 可変速ポンプを備えた給水装置
JP2000110769A (ja) * 1998-10-02 2000-04-18 Toshiba Corp 可変速ポンプの速度制御装置
JP2005351252A (ja) * 2004-06-14 2005-12-22 Nikkiso Co Ltd 複数のタンクからの液体払い出し方法および液体払い出し装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138497A (ja) * 2013-01-17 2014-07-28 Ebara Corp 流体供給装置
WO2014175248A1 (ja) 2013-04-26 2014-10-30 株式会社 荏原製作所 ポンプ装置
JP2014214715A (ja) * 2013-04-26 2014-11-17 株式会社荏原製作所 ポンプ装置
KR20160002957A (ko) 2013-04-26 2016-01-08 가부시키가이샤 에바라 세이사꾸쇼 펌프 장치
JP2014214743A (ja) * 2013-04-30 2014-11-17 株式会社荏原製作所 ポンプ装置
CN103742425A (zh) * 2014-01-22 2014-04-23 江苏双轮泵业机械制造有限公司 水循环系统节能修正方法
JP2019210819A (ja) * 2018-05-31 2019-12-12 株式会社荏原製作所 給水装置を制御するための制御ユニット、及び給水装置
JP2019210820A (ja) * 2018-05-31 2019-12-12 株式会社荏原製作所 給水装置を制御するための制御ユニット、及び給水装置
JP7081984B2 (ja) 2018-05-31 2022-06-07 株式会社荏原製作所 給水装置を制御するための制御ユニット、及び給水装置
JP7081985B2 (ja) 2018-05-31 2022-06-07 株式会社荏原製作所 給水装置を制御するための制御ユニット、及び給水装置
KR20220161695A (ko) * 2021-05-31 2022-12-07 (주) 인정테크 인버터 부스터 펌프 시스템의 가변압 제어방법
KR102502146B1 (ko) 2021-05-31 2023-02-23 (주) 인정테크 인버터 부스터 펌프 시스템의 가변압 제어방법

Also Published As

Publication number Publication date
EP2667033A4 (en) 2018-01-24
KR20140007838A (ko) 2014-01-20
KR101760547B1 (ko) 2017-07-21
JPWO2012099242A1 (ja) 2014-06-30
US20140044560A1 (en) 2014-02-13
EP2667033B1 (en) 2019-10-23
JP5914365B2 (ja) 2016-05-11
EP2667033A1 (en) 2013-11-27
CN103314217A (zh) 2013-09-18
CN103314217B (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
JP5914365B2 (ja) 給水装置
JP6100172B2 (ja) 給水装置及び給水方法
CN201347566Y (zh) 变频恒压供水自动控制系统
JP4691519B2 (ja) 中高層建物用増圧給水システム
JP4804787B2 (ja) 給水装置
JP5643385B2 (ja) 増圧給水システム
KR101170425B1 (ko) 에너지 절감을 위한 부스터펌프 병렬운전 방법
JP6121267B2 (ja) 増圧給水システム
CN203866905U (zh) 一种超高层建筑无负压供水设备
RU2399396C1 (ru) Способ управления системой хозяйственно-питьевого и пожарного водоснабжения и устройство для осуществления способа
JPH07331711A (ja) 中高層建物用増圧給水システム
CN111206651A (zh) 一种智能控制调压供水方法
CN108222126A (zh) 一种高层楼宇自分区叠压供水系统及供水方法
JP5362438B2 (ja) 増圧給水システム
CN210238630U (zh) 一种叠压式双重供水设备
CN207405692U (zh) 一种节能最大化的压力供水变频控制装置
JP5022389B2 (ja) 増圧給水システム
CN205530466U (zh) 一种供水稳定的高层叠压供水节能系统
RU86882U1 (ru) Насосная установка хозяйственно-питьевого и противопожарного водоснабжения
CN212534298U (zh) 一种多功能无负压节能供水装置
JP2015010405A (ja) 増圧給水システム
CN102720246A (zh) 组合式加压泵站
CN207314442U (zh) 一种高层建筑楼宇高低区节能供水设备
JPH0819915B2 (ja) 可変速ポンプの運転装置
CN205062914U (zh) 一种变频式无负压供水设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553784

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012736816

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137021450

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980259

Country of ref document: US