WO2012099236A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2012099236A1
WO2012099236A1 PCT/JP2012/051182 JP2012051182W WO2012099236A1 WO 2012099236 A1 WO2012099236 A1 WO 2012099236A1 JP 2012051182 W JP2012051182 W JP 2012051182W WO 2012099236 A1 WO2012099236 A1 WO 2012099236A1
Authority
WO
WIPO (PCT)
Prior art keywords
och
formula
organic
organic electroluminescent
coordinating
Prior art date
Application number
PCT/JP2012/051182
Other languages
English (en)
French (fr)
Inventor
安達 千波矢
正幸 八尋
憲一 合志
修造 平田
ヒョ ジョン ホ
是史 久保田
平田 修
佑紀 柴野
Original Assignee
国立大学法人九州大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日産化学工業株式会社 filed Critical 国立大学法人九州大学
Priority to JP2012553779A priority Critical patent/JPWO2012099236A1/ja
Publication of WO2012099236A1 publication Critical patent/WO2012099236A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • Patent Document 1 As a technique capable of obtaining high luminance even in an ECL device that does not use an electrolyte, there has been a report that a light emission facilitating additive is used.
  • the luminescent facilitating additive is stabilized by coordinating with the luminescent dye oxidized at the electrode, and the frequency of collision between the oxidized form and reduced form of the dye in the device is increased, thereby increasing the brightness.
  • the frequency of collision between the oxidized form and reduced form of the dye in the device is increased, thereby increasing the brightness.
  • the present invention 1.
  • An organic electroluminescent device comprising a liquid compound having a coordinating substituent, 2.
  • the coordinating nonionic material is an organic substance containing one or more coordinating elements selected from oxygen, sulfur, selenium, tellurium, nitrogen, phosphorus, arsenic and antimony Organic electroluminescent elements, 5).
  • the organic electroluminescent element which has a liquid light emitting layer which operate
  • the light emitting layer can be kept in a liquid state both when driven and when not driven. For this reason, when the light emitting layer deteriorates, only the light emitting layer may be replaced (for example, cartridge, extraction / reinjection by circulation).
  • the light emitting layer is a liquid, the device can be manufactured by using a coating process, and thus can be applied to a lighting device having a large area. Furthermore, it is possible to manufacture a display element having higher flexibility than an organic EL element made of an existing solid organic thin film.
  • FIG. 2 is a diagram showing a 1 H-NMR spectrum of EHPy obtained in Synthesis Example 1.
  • FIG. 3 is a diagram showing current density-voltage characteristics of EL elements produced in Examples 1 to 3 and Comparative Example 1.
  • FIG. 3 is a diagram showing luminance-voltage characteristics of EL elements fabricated in Examples 1 to 3 and Comparative Example 1.
  • FIG. 6 is a diagram showing current density-voltage-luminance characteristics of an EL element produced in Example 4.
  • FIG. 10 is a graph showing current density-voltage-luminance characteristics of an EL element manufactured in Example 5.
  • FIG. 10 is a graph showing current density-voltage-luminance characteristics of an EL element manufactured in Example 6.
  • FIG. 10 is a graph showing current density-voltage-luminance characteristics of an EL element manufactured in Example 7.
  • FIG. 10 is a diagram showing current density-voltage-luminance characteristics of an EL element produced in Example 8.
  • 6 is a graph showing current density-voltage-luminance characteristics of an EL element manufactured in Comparative Example 2.
  • FIG. 10 is a graph showing current density-voltage-luminance characteristics of an EL element produced in Example 9.
  • 6 is a graph showing current density-voltage-luminance characteristics of an EL element manufactured in Comparative Example 3.
  • FIG. 4 is a 1 H-NMR spectrum of TeEGCz obtained in Synthesis Example 2.
  • FIG. 4 is a 1 H-NMR spectrum diagram of TPGCz obtained in Synthesis Example 3.
  • FIG. 6 is a 1 H-NMR spectrum diagram of EOECz obtained in Synthesis Example 4.
  • FIG. 6 is a 1 H-NMR spectrum diagram of TEGPy obtained in Synthesis Example 5.
  • FIG. 6 is a 1 H-NMR spectrum diagram of TEGPTA obtained in Synthesis Example 6.
  • FIG. 6 is a 1 H-NMR spectrum diagram of EHPTA obtained in Synthesis Example 7.
  • FIG. 10 is a graph showing current density-voltage-luminance characteristics of an EL element produced in Example 10.
  • 10 is a graph showing current density-voltage-luminance characteristics of an EL element manufactured in Comparative Example 4.
  • An organic electroluminescent device includes an anode, a cathode, and a light emitting layer that is liquid at room temperature and is interposed between these electrodes. And a liquid compound having a light-emitting ability and having a coordinating substituent.
  • the normal temperature means a range of 20 ° C. ⁇ 15 ° C. (5 to 35 ° C.) defined by JIS Z 8703.
  • the liquid light-emitting layer may be any liquid-emitting layer as long as it exhibits liquid properties, and at least one of the carrier transport material and the light-emitting material, which are constituent materials of the light-emitting layer, is a liquid, and the composition that constitutes the light-emitting layer A liquid thing can be used as the whole thing.
  • both functions of carrier transport ability and light emission ability cannot be clearly separated.
  • some carbazoles, triarylamines, carbon condensed ring dyes and the like have both functions.
  • a substance having both of these functions can be used, and any substance that exhibits liquid state can be used alone.
  • W is at least one substituent linked to the charge transport part Z, and may contain an ether bond, a thioether bond, an ester bond, a carbonate bond or an amide bond.
  • the ether bond, thioether bond, ester bond, carbonate bond, and amide bond may be present at the connecting portion of Z and W (this is also true for Z ′ described later).
  • the alkyl group may be linear, branched, or cyclic. However, when a linear alkyl group is used, the crystallinity is improved and the viscosity is increased by intermolecular interaction such as packing of alkyl chains. Since an increase is considered, a branched alkyl group is more preferable.
  • alkyl group having 1 to 30 carbon atoms examples include methyl, ethyl, n-propyl, i-propyl, c-propyl, n-butyl, i-butyl, s-butyl, t-butyl, c -Butyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, c-pentyl, 2-methyl-c -Butyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 1,1-dimethyl-n-butyl, 1-ethyl-n-butyl, 1,1,2-trimethyl-n -Propyl, c-hexyl, 1-methyl-c-pentyl, 1-ethyl-c-butyl, 1,2-dimethyl-c-
  • the alkyl group having 1 to 30 carbon atoms containing an ether bond, a thioether bond, an ester bond, a carbonate ester bond or an amide bond includes those having these bonds at any position of the alkyl group as described above. Specific examples include the following substituents.
  • alkyl group containing an ether bond examples include CH 2 OCH 3 , CH 2 OCH 2 CH 3 , CH 2 O (CH 2 ) 2 CH 3 , CH 2 OCH (CH 3 ) 2 , and CH 2 O.
  • alkyl group containing a thioether bond examples include a group in which the oxygen atom (O) of the alkyl group containing the ether bond is replaced with a sulfur atom (S).
  • alkyl group containing an ester bond examples include groups in which the oxygen atom (O) of the alkyl group containing an ether bond is replaced with C (O) O or OC (O).
  • alkyl group containing a carbonate bond include a group in which the oxygen atom (O) of the alkyl group containing an ether bond is replaced with OC (O) O.
  • a substituent having 6 to 30 carbon atoms is preferable from the viewpoint of easily becoming a liquid.
  • CH 2 CH 2 OCH 2 CH 2 OCH 3 CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2
  • Suitable carrier transporting materials include, for example, the following carbazole (X1), N, N-disubstituted or N, N, N-trisubstituted arylamine (X2).
  • W 1 to W 6 each independently represent a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate ester bond or an amide bond. (However, at least one of W 1 to W 3 and at least one of W 4 to W 6 is the above alkyl group), C 1 and C 2 are a single bond, or a substituted or unsubstituted aromatic ring Represents.
  • alkyl group includes linear, branched, and cyclic alkyl such as methyl, ethyl, isopropyl, t-butyl, 2-ethylhexyl, and cyclohexyl, which has a melting point of the above general formula [1].
  • the specific examples and preferred examples thereof are as described above.
  • Examples of the aromatic ring include a benzene ring and a naphthalene ring.
  • W 1, W 2, W 4 and W 5 are hydrogen atom
  • W 3 and W 6 is more preferably a alkyl
  • C 1 C 2 is preferably a benzene ring or a single bond. From these points, the following compound (X3) is preferable, compound [3] is more preferable, and compound [4] or compound [5] is still more preferable, but is not limited thereto.
  • W 4 to W 11 each independently represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate ester bond or an amide bond
  • W 4 to W 6 at least one of W 7 and W 8 , and at least one of W 9 to W 11 are the above alkyl groups.
  • R 1 to R 4 each independently represent an alkyl group having 1 to 30 carbon atoms.
  • a solid thing can also be used at normal temperature as a carrier transport material.
  • a carrier transport material may be appropriately selected from conventionally known materials.
  • the light emitting material which is the other material constituting the light emitting layer of the present invention may be appropriately selected from known materials.
  • carbon condensed rings such as anthracene derivatives, tetracene derivatives, pyrene derivatives, rubrene derivatives, decacyclene derivatives, etc.
  • Perylene derivatives such as perylene diimide; xanthene dyes such as rhodamine B; cyanine dyes; coumarin dyes such as coumarin 6 and C545T; quinacridone dyes such as Qd4 and DEQ; squalium dyes; styryl dyes; Derivatives; Phenoxazone dyes such as NileRed; Carbazole; Triarylamine; Tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ), Tris [2- ⁇ 3- (2-ethylhexyloxy) phenyl ⁇ pyridine Iridium (III) (Ir (e ppy) 3) iridium complex and the like; aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes, porphyrin zinc complexes
  • a liquid compound represented by the formula [2] can also be used as the light emitting material.
  • Z ′ is a dye portion, which is a carbon condensed ring dye, perylene derivative, xanthene dye, cyanine dye, coumarin dye, quinacridone dye, squalium dye, styryl dye, pyrazolone derivative, phenoxazone.
  • One substituent is an alkyl group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate ester bond or an amide bond.
  • Specific examples of the dye portion and the alkyl group include the same ones as described above.
  • Suitable Z ′ includes carbon condensed ring dyes, particularly rubrene derivatives and pyrene derivatives, and preferred W ′ is an alkyl group having 1 to 30 carbon atoms, particularly an alkyl group having 6 to 30 carbon atoms. Is mentioned.
  • Specific examples of the light-emitting material include the following pyrene derivative (Z1), which is a carbon condensed ring dye having excellent light-emitting properties.
  • W 1 to W 4 each independently represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate bond or an amide bond.
  • a 1 to A 4 represent a single bond or a substituted or unsubstituted aromatic ring.
  • specific examples of the alkyl group include those similar to the above W, and specific examples of the aromatic ring include those similar to the above.
  • An organic EL device having a light emitting layer that is not a host guest system can be obtained by using the compounds represented by (Z1) to (Z3) as a liquid light emitting material.
  • a light-emitting material that is solid at room temperature can be used as long as the entire material constituting the light-emitting layer is liquid.
  • a light emitting material may be appropriately selected from conventionally known materials. For example, tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), Bis (2-methyl-8-quinolinolato) (p-phenylphenolate) aluminum (III) (BAlq), 4,4′-bis (2,2-diphenylvinyl) biphenyl (DPVBi), and the like.
  • the coordinating nonionic material used together with the liquid light emitting material is not particularly limited as long as it is a nonionic organic compound having a coordinating element, What is necessary is just to select suitably and use what is melt
  • a coordinating element refers to an element having an electron pair (lone electron pair) not involved in a covalent bond and capable of coordinating with a Lewis acidic substance or the like by this electron pair.
  • suitable coordinating nonionic materials include organic substances containing one or more coordinating elements selected from oxygen, sulfur, selenium, tellurium, nitrogen, phosphorus, arsenic and antimony. Specific examples thereof include compounds represented by formulas (1) to (4), but are not limited thereto.
  • A represents a divalent organic group, specifically, an alkylene group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate ester bond or an amide bond, Examples thereof include a divalent aromatic ring which may contain an unsubstituted or substituted group, or a divalent heterocyclic ring which may contain an unsubstituted or substituted group.
  • the substituent include an alkyl group, an alkoxy group, and a halogen atom.
  • Examples of the divalent aromatic ring that may be unsubstituted or include a substituent include 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 1,6-naphthylene, 1,7-naphthylene, , 6-naphthylene, 2,7-naphthylene group and the like.
  • examples of the divalent heterocyclic ring include an imidazole ring, a pyridine ring, a pyrimidine ring, an indole ring, a quinoline ring, a furan ring, and a thiophene ring.
  • the alkylene group having 1 to 30 carbon atoms may be linear, branched or cyclic.
  • — (CH 2 ) k such as methylene group, ethylene group, trimethylene group, tetramethylene group and pentamethylene group.
  • the C1-C30 alkylene group containing an ether bond, a thioether bond, an ester bond, a carbonate ester bond or an amide bond includes those having these bonds at any position of the alkylene group as described above. Specific examples include the following substituents.
  • alkylene group containing an ether bond examples include —CH 2 CH 2 OCH 2 CH 2 OCH 2 —, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 —, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 —, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 —, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 —, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2- , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2- , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2- , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2- , -CH 2 CH 2 OCH 2 CH 2 OCH
  • alkylene group containing a thioether bond examples include a group in which the oxygen atom (O) of the alkylene group containing the ether bond is replaced with a sulfur atom (S).
  • alkylene group containing an ester bond examples include groups in which the oxygen atom (O) of the alkylene group containing an ether bond is replaced with C (O) O or OC (O).
  • alkylene group containing a carbonate bond include a group in which the oxygen atom (O) of the alkylene group containing an ether bond is replaced with OC (O) O.
  • the oxygen atom (O) of the alkylene group containing an ether bond was replaced with C (O) NH or NHC (O).
  • B represents a monovalent organic group, specifically, an alkyl group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate ester bond or an amide bond, unsubstituted or substituted And an aromatic ring which may contain a group, or a heterocyclic ring which may contain an unsubstituted or substituted group.
  • alkyl group having 1 to 30 carbon atoms and the aromatic ring include those described above.
  • heterocyclic ring examples include an imidazole ring, a pyridine ring, a pyrimidine ring, an indole ring, a quinoline ring, a furan ring, and a thiophene ring.
  • B an aromatic ring which may be unsubstituted or may contain a substituent is preferable, and a benzene ring is particularly preferable.
  • X 1 represents oxygen, sulfur, selenium or tellurium
  • Y 1 represents nitrogen, phosphorus, arsenic or antimony.
  • X 1 oxygen, sulfur is preferred, oxygen is more preferable.
  • Y 1 is preferably nitrogen or phosphorus.
  • n represents an integer of 0 to 100, preferably 1 to 10, and more preferably 1 to 5.
  • l represents an integer of 1 to 100, preferably 1 to 10, and more preferably 1 to 5.
  • more preferred coordination nonionic materials include those represented by the formulas (5) and (6), but are not limited thereto.
  • Specific examples of the compounds represented by the above formulas (1) and (5) include propylene glycol derivatives such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol diphenyl ether, dipropylene glycol dimethyl ether, tripropylene glycol dimethyl ether, and polypropylene glycol dimethyl ether.
  • propylene glycol derivatives such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol diphenyl ether, dipropylene glycol dimethyl ether, tripropylene glycol dimethyl ether, and polypropylene glycol dimethyl ether.
  • Glycerol derivatives such as triglycerides; bisphenol A derivatives such as bisphenol A dimethyl ether; 1,2-dimethoxybenzene, 1,2-diphenoxybenzene, 1,3-dimethoxybenzene, 1,3-diphenoxybenzene, 1,4- Examples include dimethoxybenzene, 1,4-diphenoxybenzene, diphenoxymethane and the like.
  • Specific examples of the compound represented by the above formula (3) include tetramethylethylenediamine, hexamethyldiethylenetriamine, octamethyltriethylenetetramine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino). ) Propane, 1,4-bis (diphenylphosphino) butane and the like.
  • Specific examples of the compound represented by the above formula (6) include 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-diphenoxyethane (compound of formula (7)), 1,2- Examples include dibenzyloxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and polyethylene glycol dimethyl ether.
  • Specific examples of the compound represented by the above formula (2) include crown ethers such as 12-crown-4, 15-crown-5, 18-crown-6 and dibenzo-18-crown-6; And thiocrown ethers such as 4.
  • Specific examples of the compound represented by the above formula (4) include 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane, 1,4,7,10,12-pentamethyl.
  • azacrown ethers such as -1,4,7,10,12-pentaazacyclopentadecane.
  • the blending amount of the coordinating nonionic material in the light emitting layer is not particularly limited, but considering the balance between the driving voltage lowering effect and the light emission luminance, 0.01 to 50% by mass Is preferable, 0.1 to 50% by mass is more preferable, and 1 to 40% by mass is even more preferable.
  • liquid compound having a carrier transporting ability and a light emitting ability and having a coordinating substituent is not particularly limited, and for example, a compound represented by the formula (8) can be suitably used. .
  • X 2 is a carrier transport and light emitting part, and is a carbazole derivative, thianthrene derivative, phenothiazine derivative, azepine derivative, triazole derivative, imidazole derivative, oxadiazole derivative, arylcycloalkane derivative, triarylamine derivative, phenylene Diamine derivatives, stilbene derivatives, oxazole derivatives, triphenylmethane derivatives, pyrazoline derivatives, fluorenone derivatives, polyaniline derivatives, silane derivatives, pyrrole derivatives, porphyrin derivatives, quinacridone derivatives, triarylphosphine oxide derivatives, anthracene derivatives, tetracene derivatives, pyrene derivatives, Carbon condensed ring dyes such as rubrene derivatives, decacyclene derivatives and perylene derivatives, metal or metal-free phthalocyanines, Representing the gin.
  • a carbazole derivative is a carb
  • Y 2 is at least one coordinating substituent linked to the carrier transport and light emitting portion X 2 .
  • the coordinating substituent is not particularly limited as long as it is a substituent containing a coordinating element, but is preferably a nonionic substituent.
  • the preferred coordinating element is preferably one or more selected from oxygen, sulfur, selenium, tellurium, nitrogen, phosphorus, arsenic and antimony, and a coordinating substituent containing these elements is used. It can be used suitably.
  • a coordinating substituent containing one or more coordinating elements selected from oxygen, sulfur, nitrogen and phosphorus is preferable, and a coordinating substituent containing oxygen is most preferable, and particularly an ether structure.
  • a coordinating substituent containing is preferable, and a coordinating substituent containing a polyether structure is more preferable.
  • coordinating substituent containing a (poly) ether structure for example, — (AO) m — (wherein A represents a divalent organic group and m represents an integer of 1 to 100). And groups containing the structure represented.
  • examples of the divalent organic group include the same groups as those exemplified for the coordination nonionic material.
  • a carbazole derivative is suitable, and in particular, a carbazole derivative having a coordinating substituent on the nitrogen atom represented by the formula (9) is suitable.
  • m is preferably 1 to 10, and more preferably 1 to 5.
  • the monovalent organic group include the same groups as those exemplified above for the coordination nonionic material, but an alkyl group having 1 to 30 carbon atoms is preferable.
  • m is preferably a compound of 2 to 4
  • m is preferably a compound of 1 in formula (11)
  • m is preferably a compound of 3 in formula (12).
  • a carbon condensed ring dye can also be suitably used as the liquid compound.
  • specific examples of carbon condensed ring dyes include anthracene dyes, diphenylanthracene dyes, tetracene dyes, rubrene dyes, pentacene dyes, pyrene dyes, perylene dyes, coronene dyes, triphenylene dyes, chrysene dyes.
  • the dye include a pyrene dye having a coordinative substituent represented by the formula (13).
  • Z represents a divalent organic group
  • A, B, and m have the same meaning as described above.
  • divalent organic group Z examples include the same ones as described above, and in particular, a divalent organic group represented by —QC (O) O— (wherein Q represents an alkylene group). Therefore, the pyrene dye represented by the formula (14) is preferable.
  • the alkylene group Q includes an alkylene group having 1 to 30 carbon atoms, preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms.
  • these alkylene groups The same as those mentioned above.
  • More specific examples of the liquid compound include those represented by the formula (15), but are not limited thereto.
  • m is preferably a compound of 3.
  • the organic electroluminescent element of the present invention since the above-described liquid light emitting layer is characterized, there are no particular limitations on the constituent members of the other elements, and conventionally known elements can be appropriately employed.
  • a transparent electrode typified by indium tin oxide (ITO) or indium zinc oxide (IZO), a polythiophene derivative having high charge transportability, a polyaniline derivative, or the like can be used.
  • the cathode material aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium, cesium-added ITO, or the like can be used.
  • the organic electroluminescent element of this invention may be equipped with the various functional layers generally used for an organic electroluminescent element other than an anode, a cathode, and a light emitting layer.
  • a functional layer include a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a carrier block layer, and the like.
  • the hole transport layer is a layer that is provided between the anode and the light emitting layer and has a function of transporting holes injected from the anode to the light emitting layer.
  • the thing similar to a hole transport material is mentioned.
  • the hole injection layer is a layer that is provided between the hole transport layer and the anode and has a function of increasing the hole injection efficiency from the anode. Examples of the material for forming the hole injection layer include copper phthalocyanine, 4,4 ′, 4 ′′ -tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), and the like.
  • the electron transport layer is a layer provided between the cathode and the light-emitting layer and having a function of transporting electrons injected from the cathode to the light-emitting layer.
  • the electron injection layer is a layer that is provided between the electron transport layer and the cathode and has a function of increasing the efficiency of electron injection from the cathode.
  • As a material for forming such an electron injection layer lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), magnesium fluoride (MgF 2 ), Examples thereof include strontium fluoride (SrF 2 ), Li (acac), lithium acetate, and lithium benzoate.
  • the carrier block layer is a layer for controlling the light emitting region, and can be formed between any of the above-described layers.
  • Examples of the material for forming such a carrier block layer include PBD, TAZ, and BCP.
  • FIG. 1 shows an organic EL element 1 which is an electroluminescent element according to an embodiment of the present invention.
  • the organic EL element 1 includes an anode 10, a cathode 20, and a light emitting layer 30 (hereinafter referred to as a liquid light emitting layer 30) that is interposed between the electrodes 10 and 20 and is liquid at room temperature.
  • the anode 10 is composed of a glass plate 11 and ITO 12 formed thereon.
  • the cathode 20 is composed of a glass plate 13 and ITO 14 formed thereon.
  • the liquid light emitting layer 30 includes a liquid material having carrier transporting ability and light emitting ability, and a coordinating nonionic material.
  • the following methods can be used. First, a coordinating nonionic material is added and dissolved in the liquid material having the carrier transport ability and the light emission ability to produce a liquid light emitter. Subsequently, the liquid light emitter is dropped onto the cathode 20, and the anode 10 is pressed thereon with an appropriate pressure to obtain the organic EL element 1 having the liquid light emitting layer 30. Further, when the liquid light emitting layer 30 includes a liquid compound having a carrier transporting ability and a light emitting ability and having a coordinating substituent, the liquid light emitting body made of the liquid compound is formed on the cathode 20. The organic EL element 1 having the liquid light emitting layer 30 may be manufactured by pressing the anode 10 with an appropriate pressure.
  • each layer is not limited to the material used by the said embodiment, As long as the function of each layer is exhibited, it can select from the various materials illustrated previously suitably and can be used.
  • the method for forming each layer is not limited to the method of the above embodiment, and a known method such as an evaporation method, a spray method, an ink jet method, or a sputtering method can be appropriately employed depending on the material to be used. .
  • a hole blocking layer, a hole injection layer, or the like may be formed as necessary.
  • Example 1 To 96 parts by mass of the liquid compound EHPy obtained in Synthesis Example 1, 4 parts by mass of 1,2-diphenoxyethane (hereinafter referred to as DPE, manufactured by Tokyo Chemical Industry Co., Ltd.) represented by the following structure was added and completely dissolved to obtain a liquid. A phosphor was prepared.
  • DPE 1,2-diphenoxyethane
  • the EL element was produced as follows. A glass substrate 11 with ITO 12 (anode 10) and a glass substrate 13 with ITO 14 (cathode), which were subjected to ultrasonic cleaning in the order of surfactant, pure water and isopropanol, and subjected to UV / ozone treatment (manufactured by Philgen, UV253S) for 12 minutes. 20) was prepared. In the glove box, a small amount of the previously prepared liquid light emitter is dropped onto the cathode 20 (ITO 14) and sandwiched between the anodes 10 and fixed with clips (not shown) from the outside. As shown in FIG. 1, an EL element 1 composed of glass substrate / ITO (anode) / liquid light emitter layer / ITO (cathode) / glass substrate was produced. The element area is 2 mm ⁇ 2 mm.
  • the current density-voltage-luminance characteristics of the manufactured EL element were measured. The results are shown in FIG. 3 and FIG.
  • the film thickness of the liquid light emitting layer of this device was calculated from the result of dielectric constant measurement, and found to be 0.92 ⁇ 0.05 ⁇ m.
  • luminescence was observed from 13.0 V, and when a voltage of 44.2 V was applied, a current density of 0.246 mA / cm 2 and a maximum luminance of 0.162 cd / m 2 were obtained.
  • Example 3 An EL device was prepared and evaluated in the same manner as in Example 1 except that 70 parts by mass of the liquid compound EHPy and 30 parts by mass of DPE were used. An evaluation result is combined with FIG. 3 and FIG. The film thickness of the liquid light emitting layer of this device was calculated from the result of dielectric constant measurement, and found to be 1.02 ⁇ 0.05 ⁇ m. As shown in FIGS. 3 and 4, luminescence was observed from 8.0 V, and a current density of 1.60 mA / cm 2 and a maximum luminance of 6.12 cd / m 2 were obtained when 28.6 V was applied.
  • Example 1 An EL device was prepared and evaluated in the same manner as in Example 1 except that the liquid light-emitting layer was made of only the liquid compound EHPy. An evaluation result is combined with FIG. 3 and FIG. When the film thickness of the liquid light emitting layer of this device was calculated from the result of dielectric constant measurement, it was 850 ⁇ 18 ⁇ m. As shown in FIGS. 3 and 4, luminescence was observed from 60.6 V, and when a voltage of 100 V was applied, a current density of 0.0665 mA / cm 2 and a maximum luminance of 0.576 cd / m 2 were obtained. As is clear from these results, it is understood that a drastic decrease in driving voltage is achieved by adding DPE which is a coordinating nonionic compound to the light emitting layer.
  • an organic EL device having a liquid light-emitting layer was prepared using a liquid compound having a carrier transport ability and a light-emitting ability shown below and having a coordinating substituent.
  • TEGCz and DEGCz were synthesized with reference to the method described in Synthetic Metals, 89 (3), 171 (1997).
  • tetraethylene glycol monomethyl ether (5.00 g, 24.0 mmol) and sodium hydroxide (2.07 g, 51.9 mmol) were added to THF (13 mL) and water (13 mL), and cooled at 0 ° C.
  • a THF solution (13 mL) of p-toluenesulfonic acid chloride (5.26 g, 27.6 mmol) was added dropwise over 10 minutes. After stirring at 0 ° C. for 3 hours, water (150 mL) and ethyl acetate (50 mL) were added and the layers were separated.
  • tripropylene glycol monomethyl ether 9.63 g, 46.7 mmol
  • sodium hydroxide 3.92 g, 98.0 mmol
  • THF 25 mL
  • water 25 mL
  • a THF solution 25 mL
  • paratoluenesulfonic acid chloride 10.1 g, 53.0 mmol
  • water 300 mL
  • ethyl acetate 100 mL
  • aqueous phase was extracted with ethyl acetate (100 mL ⁇ 2), and the combined organic phases were washed with saturated brine (150 mL). After dehydration with magnesium sulfate, the solvent was distilled off to obtain a colorless liquid compound 3 (12.7 g, yield 90%).
  • Phenothiazine manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as PTA
  • PTA Phenothiazine
  • sodium hydride manufactured by Wako Pure Chemical Industries, Ltd., 60% oiliness, 2.41 g, 60.2 mmol
  • TEGTs (19.2 g, 60.2 mmol
  • THF manufactured by Junsei Chemical Co., Ltd., 100 mL
  • ethyl acetate manufactured by Junsei Chemical Co., Ltd., 100 mL
  • water 100 mL
  • the measurement result of 1 H-NMR spectrum (CDCl 3 ) is shown in FIG. Note that TEGTs are registered with Dalton Trans. , 9043 (2009).
  • the EL element was produced as follows. A glass substrate 11 with ITO 12 (anode 10) and a glass substrate 13 with ITO 14 (cathode 20) which were subjected to ultrasonic cleaning in the order of surfactant, pure water and isopropanol, and subjected to UV / ozone treatment (manufactured by Filgen, UV253S) for 12 minutes. ) was prepared. In the glove box, a small amount of the liquid compound TeEGCz is dropped on the cathode 20 (on the ITO 14) and sandwiched between the anodes 10 and fixed with clips (not shown) from the outside of the laminate, as shown in FIG. An EL element 1 composed of glass substrate / ITO (anode) / liquid light emitter layer / ITO (cathode) / glass substrate was prepared. The element area is 2 mm ⁇ 2 mm.
  • the current density-voltage-luminance characteristics of the manufactured EL element were measured. The results are shown in FIG. When the film thickness of the liquid light emitting layer of this device was calculated from the results of dielectric constant measurement, it was 0.55 ⁇ 0.03 ⁇ m. As shown in FIG. 5, light emission was observed from 13.5 V, and when 23.5 V was applied, a current density of 17.6 mA / cm 2 and a maximum luminance of 0.0001 cd / m 2 were obtained.
  • Example 5 An EL device was prepared and evaluated in the same manner as in Example 4 except that the liquid compound was TEGCz. The evaluation results are shown in FIG. When the film thickness of the liquid light emitting layer of this device was calculated from the result of dielectric constant measurement, it was 0.72 ⁇ 0.04 ⁇ m. As shown in FIG. 6, light emission was observed from 14.0 V, and when a voltage of 30.5 V was applied, a current density of 3.29 mA / cm 2 and a maximum luminance of 0.018 cd / m 2 were obtained.
  • Example 6 An EL device was prepared and evaluated in the same manner as in Example 4 except that the liquid compound was DEGCz. The evaluation results are shown in FIG. The film thickness of the liquid light emitting layer of this device was calculated from the result of dielectric constant measurement, and was 0.68 ⁇ 0.03 ⁇ m. As shown in FIG. 7, light emission was observed from 11.5 V, and when a voltage of 29.0 V was applied, a current density of 1.11 mA / cm 2 and a maximum luminance of 0.0013 cd / m 2 were obtained.
  • Example 7 An EL device was prepared and evaluated in the same manner as in Example 4 except that the liquid compound was TPGCz. The evaluation results are shown in FIG. The film thickness of the liquid light emitting layer of this device was calculated from the result of dielectric constant measurement, and found to be 0.59 ⁇ 0.03 ⁇ m. As shown in FIG. 8, light emission was observed from 13.0 V, and a current density of 1.59 mA / cm 2 and a maximum luminance of 0.0010 cd / m 2 were obtained when 31.0 V was applied.
  • Example 8 An EL device was prepared and evaluated in the same manner as in Example 4 except that the liquid compound was EOECz. The evaluation results are shown in FIG. The film thickness of the liquid light emitting layer of this device was calculated from the results of dielectric constant measurement, and was 0.67 ⁇ 0.03 ⁇ m. As shown in FIG. 9, light emission was observed from 13.0 V, and when a voltage of 25.0 V was applied, a current density of 2.25 mA / cm 2 and a maximum luminance of 0.00079 cd / m 2 were obtained.
  • Example 2 An EL device was prepared and evaluated in the same manner as in Example 4 except that the liquid compound was EHCz. The evaluation results are shown in FIG. When the film thickness of the liquid light emitting layer of this device was calculated from the result of dielectric constant measurement, it was 0.65 ⁇ 0.03 ⁇ m. As shown in FIG. 10, light emission was observed from 55.5 V, and when a voltage of 100 V was applied, a current density of 0.144 mA / cm 2 and a maximum luminance of 0.00091 cd / m 2 were obtained.
  • Table 1 summarizes the evaluation results of the EL devices produced in Examples 4 to 8 and Comparative Example 2. As is clear from these results, when the light emitting layer contains a liquid carbazole material having a carrier transporting ability and a light emitting ability and having a coordinating substituent, a reduction in driving voltage can be achieved. Recognize.
  • Example 9 An EL device was prepared and evaluated in the same manner as in Example 4 except that the liquid compound was TEGPy. The evaluation results are shown in FIG. The film thickness of the liquid light emitting layer of this device was calculated from the result of dielectric constant measurement, and found to be 1.08 ⁇ 0.05 ⁇ m. As shown in FIG. 11, light emission was observed from 5.0 V, and when a voltage of 38.0 V was applied, a current density of 2.72 mA / cm 2 and a maximum luminance of 5.10 cd / m 2 were obtained.
  • Example 3 An EL device was prepared and evaluated in the same manner as in Example 4 except that the liquid compound was EHPy. The evaluation results are shown in FIG. The film thickness of the liquid light emitting layer of this device was calculated from the result of dielectric constant measurement, and found to be 0.85 ⁇ 0.04 ⁇ m. As shown in FIG. 12, light emission was observed from 63.5 V, and a current density of 0.0665 mA / cm 2 and a maximum luminance of 0.576 cd / m 2 were obtained when 100 V was applied.
  • Table 1 summarizes the evaluation results of the EL devices produced in Example 9 and Comparative Example 3. As is clear from these results, it is understood that when the light emitting layer contains a pyrene material having carrier transporting ability and light emitting ability and having a coordinating substituent, a reduction in driving voltage is achieved.
  • Example 10 As the liquid compound, a liquid luminescent material composed of 99.75 parts by mass of TEGPTA and 0.25 parts by mass of tetrabutylammonium tetrafluoroborate (Tokyo Chemical Industry Co., Ltd., hereinafter referred to as Bu 4 NBF 4 ) represented by the following structure was used. Except for the above, an EL element was produced and evaluated in the same manner as in Example 1. The evaluation results are shown in FIG. It was 1.3 +/- 0.1 micrometer when the film thickness of the liquid light emitting layer of this device was computed from the result of permittivity measurement. As shown in FIG. 19, light emission was observed from 19.8 V, and when 27.7 V was applied, a current density of 0.40 mA / cm 2 and a maximum luminance of 0.024 cd / m 2 were obtained.
  • Bu 4 NBF 4 tetrabutylammonium tetrafluoroborate
  • Example 4 An EL device was prepared and evaluated in the same manner as in Example 1 except that a liquid light emitting material composed of 99.75 parts by mass of EHPTA and 0.25 parts by mass of Bu 4 NBF 4 was used as the liquid compound. The results are shown in FIG. It was 1.4 +/- 0.1 micrometer when the film thickness of the liquid light emitting layer of this device was computed from the result of permittivity measurement. As shown in FIG. 20, light emission was observed from 34.3 V, and a current density of 0.12 mA / cm 2 and a maximum luminance of 0.001 cd / m 2 were obtained when 40.0 V was applied.
  • Table 2 summarizes the evaluation results of the EL elements produced in Example 10 and Comparative Example 4. As is clear from these results, when the light emitting layer contains a liquid phenothiazine material having carrier transporting ability and light emitting ability and having a coordinating substituent, a reduction in driving voltage can be achieved. Recognize.
  • Organic EL device electroactive device
  • Anode 10
  • Cathode 30

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 陽極10と、陰極20と、これら各極間に介在する、常温で液体の発光層30とを備え、発光層が、例えば、式(7)で示されるような、配位性非イオン性材料や、TeEGCz、TEGCz、TPGCz、EOECz、DEGCz等のポリエーテル構造等の配位性置換基を含み、キャリア輸送能および発光能を有する材料を含む有機電界発光素子。これにより、液体の発光層を備え、駆動時および非駆動時ともに発光層が液状を維持し得るとともに、発光寿命特性の良好な有機EL素子を提供できる。

Description

有機電界発光素子
 本発明は、有機電界発光素子に関し、さらに詳述すると、常温で液体の発光層を備えた有機電界発光素子に関する。
 有機エレクトロルミネッセンス素子(有機発光素子)(以下、有機EL素子という)は、陰極と陽極との間に、少なくとも1種の発光性有機化合物を含む薄膜の有機層(発光層)を挟んだ構成を有しており、この薄膜に電子および正孔(ホール)を注入・輸送して再結合させて励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光させる素子である。
 この有機EL素子は、発光性有機化合物を発光層に用いた発光素子であるため、軽量かつフレキシブル、そして安価で大面積のフルカラー表示が可能なディスプレイとして応用が期待されている。
 この有機EL素子で用いられる発光層では、正孔および電子両方のキャリア(電荷)の輸送、それらキャリアの再結合による励起子の形成、そして光放出の3つの過程によって駆動する。
 そのため、発光層には、これら3つの機能を満たす材料が必要不可欠であり、通常、その材料としては、これら3つの機能を発揮するキャリア輸送性発光材料や、3つの機能を補うために複数種の有機物を混合させたキャリア輸送材料/発光材料が用いられている。
 上記キャリア輸送材料/発光材料を発光層に用いた場合、発光材料がキャリア輸送材料で希釈されることから、濃度消光が抑えられ、高い発光効率を有する有機EL素子が得られると期待されている。このため、発光材料とキャリア輸送材料との多種多様な組み合わせについて精力的に研究がなされている。
 ところで、発光層用の発光材料には、単純に目的の蛍光波長および高い量子収率を持つものを用いればよいというわけではなく、特定の蛍光色素に適したキャリア輸送材料の選定を行う必要がある。この理由は、キャリア輸送材料中に輸送されたキャリアが再結合し、そこで生じる励起エネルギーがキャリア輸送材料中にドープされている蛍光色素の発光を誘起するためである。
 そのため、発光材料/キャリア輸送材料の各成分のHOMO/LUMOのエネルギー準位の相互関係、あるいは、それらの効率的なエネルギー移動の組み合せの選定が必要不可欠となってくる。
 現在、有機EL素子における重要な問題の1つに、焼付けと呼ばれる劣化がある。この現象は、有機EL素子に長時間電圧を印加することで、不純物が有機EL素子を構成する材料を分解もしくは変性することに起因するものと考えられている。
 この劣化を防ぐためには、電極表面の水分、酸素や、構成する有機薄膜に含まれる僅かな不純物等の除去が必要となる。
 その具体的な手法としては、有機EL素子を構成する有機物の純度および安定性の向上や、外部からの酸素および水分の混入を防ぐために乾燥剤等を封止する方法が利用されている。
 しかしながら、実用的な面から、有機EL素子の寿命は少なくとも100cd/m2で10万時間は必要とされており、その間の有機物の分解や、発生した不純物による素子の劣化は不可避といえる。
 上述した既存の有機EL素子は、これら各有機層の焼付けが素子の劣化の原因になっており、有機EL素子を構成する複数の有機層のうち一層でも劣化すれば、素子全体の寿命に大きく影響する。
 仮に、この劣化した有機層を、例えばカートリッジ等により、交換可能な構造とすれば、新たな有機層を供給し続けることができる結果、有機EL素子を半永久的に駆動できると考えられる。
 しかし、上述した既存の有機EL素子のほとんどは、固体の有機薄膜が用いられており、劣化した有機層のみを交換することは非常に困難である。
 近年、上記問題点の解決につながるような技術が開発されつつあり、例えば、非特許文献1では、発光層を液状化した有機EL素子が報告されている。発光層を液状あるいは半固形状にすることにより、劣化した液状の発光層は固体薄膜層と比較して交換し易いといえ、少なくとも発光層については、交換可能な発光素子となり得ると考えられる。
 しかし、非特許文献1に開示されている、発光層を液状化した有機EL素子は、既存の照明やディスプレイに置き換え可能なほどの高い特性を示す有機EL素子とは言い難く、その液体発光層やデバイス構造には最適化が必要であった。
 有機EL素子の特性向上の手段として、非特許文献2に開示されているように、高分子発光材料中に有機塩を添加してキャリアの注入効率を向上させることで、低駆動電圧および高輝度の発光素子が得られることが報告されている。
 また非特許文献3に開示されているように、液状発光層に有機塩を添加することで、同様の特性向上が見られることが報告されており、液状発光層を用いた有機EL素子の発光特性は、従来の固体有機EL素子の発光特性に近づいてきているといえる。
 しかし、上記非特許文献3に記載された、電解質を含む液状発光層を備えた有機EL素子の発光寿命は数十秒程度と、従来の固体有機EL素子と比べると極めて短く、永続的に発光を得るためには頻繁な発光層の交換が必要なものであり、また、上記非特許文献1に記載された、液状発光層を備えた有機EL素子の駆動電圧は極めて高く、必然的に消費電力が膨大となるため、いずれも実用化には至っていない。
 さらに、有機EL素子に類似の表示素子として、非特許文献4に開示されているような、電気化学発光素子(ECL素子)の研究が行われている。この素子からの発光は、電気化学的に発生させた色素の酸化体および還元体を、素子の溶媒中で衝突させることによって生成する励起子から放出される。一般的なECL素子は、溶媒中に色素と電解質を溶解させ、透明電極で挟んだ自己発光型表示素子である。このような電解質を含んだECL素子は、高輝度であるものの、電解質と発光材料の副反応などによる劣化が進み易く、実用化に至る技術とはなっていない。
 そこで、非特許文献5に開示されているような、劣化を防ぐために電解質を用いない系でのECL素子の作製が試されており、電解質による素子の劣化が起こらないため、高い安定性を持った素子とすることができている。しかし、電解質を用いない系では、素子のイオン伝導性が低いため、流すことができる電流量が小さく、必然的に高い輝度を得ることができなかった。
 近年、電解質を用いないECL素子においても高い輝度を得ることができる技術として、特許文献1に開示されているように、発光助長性添加物を用いるという報告がなされている。この系では、発光助長性添加物が、電極で酸化された発光色素に配位することで安定化し、素子中での色素の酸化体および還元体の衝突の頻度を大きくすることで、高い輝度を得ている。
 しかしながら、高い輝度を得ることはできるものの、駆動電圧という観点からは改善がなされておらず、実用化に至る技術とはなっていない。
特許第4104312号公報
Appl.Phys.Lett.,95,053304(2009) Synthetic Metals,123,207(2001) Adv.Mater.,DOI:10.1002/adma.201003505 Chem.Rev.,108,2506(2008) J.Electrochem.Soc.,129,1289(1982)
 本発明者らは、非特許文献1および3に開示されているように、常温で液体、かつ、駆動時および非駆動時ともに液状を維持し得る発光層を見出し、この発光層を備えた有機電界発光素子(有機EL素子)を既に報告しているが、電解質添加の有機EL素子は、低駆動電圧であるものの、素子の寿命が極めて短く、また、電解質無添加の有機EL素子は、駆動電圧が極めて高いという問題があった。
 本発明は、このような事情に鑑みてなされたものであり、液状の発光層を有し、低駆動電圧の有機EL素子を提供することを目的とする。
 本発明者らは、液状発光層を備えた有機EL素子の駆動電圧の低下を図るべく鋭意検討を重ねた結果、配位性非イオン性材料、またはキャリア輸送能および発光能を有し、かつ、配位性置換基を有する液状化合物を液体発光層に添加することにより、有機塩を添加しなくとも、有機電界発光素子(有機EL素子)の駆動電圧を低下し得ることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 陽極と、陰極と、これら各極間に介在する、常温で液体の発光層とを備え、前記発光層が、配位性非イオン性材料、またはキャリア輸送能および発光能を有し、かつ、配位性置換基を有する液状化合物を含むことを特徴とする有機電界発光素子、
2. 前記発光層が、キャリア輸送能および発光能を有する材料と、前記配位性非イオン性材料とから構成される1の有機電界発光素子、
3. 前記発光層が、キャリア輸送材料と、発光材料と、前記配位性非イオン性材料とから構成される1の有機電界発光素子、
4. 前記配位性非イオン性材料が、酸素、硫黄、セレン、テルル、窒素、リン、ヒ素およびアンチモンから選ばれる1種または2種以上の配位性元素を含む有機物である1~3のいずれかの有機電界発光素子、
5. 前記配位性非イオン性材料が、式(1)~(4)で示される化合物のいずれかを含む1~4のいずれかの有機電界発光素子、
Figure JPOXMLDOC01-appb-C000012
(式中、Aは、それぞれ独立して2価の有機基を表し、Bは、それぞれ独立して1価の有機基を表し、X1は、それぞれ独立して酸素、硫黄、セレンまたはテルルを表し、Y1は、それぞれ独立して窒素、リン、ヒ素またはアンチモンを表し、nは、それぞれ独立して0~100の整数を表し、lは、それぞれ独立して1~100の整数を表す。)
6. 前記配位性非イオン性材料が、式(5)で示される化合物を含む5の有機電界発光素子、
Figure JPOXMLDOC01-appb-C000013
(式中、A、Bおよびnは前記と同じ意味を表す。)
7. 前記配位性非イオン性材料が、式(6)で示される化合物を含む6の有機電界発光素子、
Figure JPOXMLDOC01-appb-C000014
(式中、Bおよびnは前記と同じ意味を表す。)
8. 前記配位性非イオン性材料が、式(7)で示される化合物を含む7の有機電界発光素子、
Figure JPOXMLDOC01-appb-C000015
9. 前記配位性非イオン性材料が、前記発光層中に0.01~50質量%含まれる1~8のいずれかの有機電界発光素子、
10. 前記液状化合物が、式(8)で示される1の有機電界発光素子、
Figure JPOXMLDOC01-appb-C000016
(式中、X2はキャリア輸送および発光部であって、カルバゾール誘導体、チアントレン誘導体、フェノチアジン誘導体、アゼピン誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサジアゾール誘導体、アリールシクロアルカン誘導体、トリアリールアミン誘導体、フェニレンジアミン誘導体、スチルベン誘導体、オキサゾール誘導体、トリフェニルメタン誘導体、ピラゾリン誘導体、フルオレノン誘導体、ポリアニリン誘導体、シラン誘導体、ピロール誘導体、ポルフィリン誘導体、キナクリドン誘導体、トリアリールホスフィンオキシド誘導体、炭素縮合環系色素、金属もしくは無金属のフタロシアニン誘導体、またはベンジジンを表し、Y2は、前記キャリア輸送および発光部に連結する少なくとも1つの配位性置換基を表す。)
11. 前記X2が、カルバゾール誘導体または炭素縮合環系色素である10の有機電界発光素子、
12. 前記配位性置換基が、エーテル構造を含む置換基である1,10または11の有機電界発光素子、
13. 前記配位性置換基が、ポリエーテル構造を含む置換基である1,10~12のいずれかの有機電界発光素子、
14. 前記液状化合物が、式(9)または式(13)で示される13の有機電界発光素子、
Figure JPOXMLDOC01-appb-C000017
(式中、AおよびZは、それぞれ独立して2価の有機基を表し、Bは、それぞれ独立して1価の有機基を表し、mは、それぞれ独立して1~100の整数を表す。)
15. 前記液状化合物が、式(10)で示される14の有機電界発光素子、
Figure JPOXMLDOC01-appb-C000018
(式中、mは前記と同じ意味を表す。)
16. 前記mが、2~4の整数である15の有機電界発光素子、
17. 前記液状化合物が、式(11)で示される14の有機電界発光素子、
Figure JPOXMLDOC01-appb-C000019
(式中、mは前記と同じ意味を表す。)
18. 前記mが、1である17の有機電界発光素子、
19. 前記液状化合物が、式(12)で示される14の有機電界発光素子、
Figure JPOXMLDOC01-appb-C000020
(式中、mは前記と同じ意味を表す。)
20. 前記mが、3である19の有機電界発光素子、
21. 前記液状化合物が、式(14)で示される14の有機電界発光素子、
Figure JPOXMLDOC01-appb-C000021
(式中、Qはアルキレン基を表し、A、Bおよびmは前記と同じ意味を表す。)
22. 前記mが、2~4の整数である21の有機電界発光素子、
23. 前記液状化合物が、式(15)で示される21の有機電界発光素子、
Figure JPOXMLDOC01-appb-C000022
(式中、mは前記と同じ意味を表す。)
24. 前記mが、3である23の有機電界発光素子
を提供する。
 本発明によれば、低電圧で作動する、液体発光層を有する有機電界発光素子を提供できる。
 この有機電界発光素子は、駆動時および非駆動時ともに発光層が液状を維持し得る。このため、発光層が劣化した場合に、発光層のみを交換する構成(例えば、カートリッジ、循環による抜き出し・再注入)とすることも可能である。
 また、発光層が液体であることから、塗布プロセスを用いて素子を製造することができるため、高面積の照明素子に応用可能である。
 さらに、既存の固体の有機薄膜からなる有機EL素子よりも、フレキシビリティーの高い表示素子の作製も可能になる。
本発明の一実施形態に係る有機EL素子を示す概略断面図である。 合成例1で得られたEHPyの1H-NMRスペクトルを示す図である。 実施例1~3および比較例1で作製したEL素子の電流密度-電圧特性を示す図である。 実施例1~3および比較例1で作製したEL素子の輝度-電圧特性を示す図である。 実施例4で作製したEL素子の電流密度-電圧-輝度特性を示す図である。 実施例5で作製したEL素子の電流密度-電圧-輝度特性を示す図である。 実施例6で作製したEL素子の電流密度-電圧-輝度特性を示す図である。 実施例7で作製したEL素子の電流密度-電圧-輝度特性を示す図である。 実施例8で作製したEL素子の電流密度-電圧-輝度特性を示す図である。 比較例2で作製したEL素子の電流密度-電圧-輝度特性を示す図である。 実施例9で作製したEL素子の電流密度-電圧-輝度特性を示す図である。 比較例3で作製したEL素子の電流密度-電圧-輝度特性を示す図である。 合成例2で得られたTeEGCzの1H-NMRスペクトル図である。 合成例3で得られたTPGCzの1H-NMRスペクトル図である。 合成例4で得られたEOECzの1H-NMRスペクトル図である。 合成例5で得られたTEGPyの1H-NMRスペクトル図である。 合成例6で得られたTEGPTAの1H-NMRスペクトル図である。 合成例7で得られたEHPTAの1H-NMRスペクトル図である。 実施例10で作製したEL素子の電流密度-電圧-輝度特性を示す図である。 比較例4で作製したEL素子の電流密度-電圧-輝度特性を示す図である。
 以下、本発明についてさらに詳しく説明する。
 本発明に係る有機電界発光素子は、陽極と、陰極と、これら各極間に介在する、常温で液体の発光層とを備え、この発光層が、配位性非イオン性材料、またはキャリア輸送能および発光能を有し、かつ、配位性置換基を有する液状化合物を含むものである。
 ここで、常温とは、JIS Z 8703で規定されている、20℃±15℃(5~35℃)の範囲を意味する。
 液体の発光層としては、発光層全体として液体の性状を示すものであればよく、発光層の構成材料であるキャリア輸送材料および発光材料の少なくとも一方が液体であるとともに、発光層を構成する組成物全体として液状のものを用いることができる。
 なお、物質によっては、キャリア輸送能および発光能の両機能を明確に分離できず、例えば、カルバゾール、トリアリールアミン、炭素縮合環系色素等の中には、両機能を併せ持つものも存在する。
 本発明では、発光層全体として液体の性状を示す限りにおいて、このような両機能を併せ持つ物質を用いることができ、また、液状を示すものであれば、それ単独で用いることもできる。
 本発明において、配位性非イオン性材料とともに用いられる液体のキャリア輸送材料としては、式〔1〕で示される化合物を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000023
 ここで、Zは、電荷輸送部であって、カルバゾール、トリアゾール、イミダゾール、オキサジアゾール、2,5-ジフェニル-1,3,4-オキサジアゾール、アリールシクロアルカン、トリアリールアミン、フェニレンジアミン、スチルベン、オキサゾール、トリフェニルメタン、ピラゾリン、アントラセン、フルオレノン、ポリアニリン、シラン、ピロール、フルオレン、ポルフィリン、キナクリドン、トリフェニルホスフィンオキシド、アントラセン誘導体,テトラセン誘導体,ピレン誘導体,ルブレン誘導体,デカシクレン誘導体,ペリレン誘導体等の炭素縮合環系色素、金属または無金属のフタロシアニン、金属または無金属のナフタロシアニン、ベンジジンを表す。
 これらの中でも、優れた正孔輸送性能を有するという点から、カルバゾールが好ましい。
 一方、Wは、上記電荷輸送部Zに連結する少なくとも1つの置換基であって、エーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合またはアミド結合を含んでいてもよい炭素数1~30のアルキル基を表す。なお、これらエーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合、アミド結合は、ZとWとの連結部に存在していてもよい(この点は、後述するZ′でも同様である)。
 この場合、アルキル基は、直鎖、分岐、環状のいずれでもよいが、直鎖状のアルキル基を用いた場合、アルキル鎖同士のパッキング等の分子間相互作用により、結晶性の向上や粘度の増加が考えられるため、分岐状のアルキル基がより好ましい。
 このような炭素数1~30のアルキル基の具体例としては、メチル、エチル、n-プロピル、i-プロピル、c-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、c-ブチル、n-ペンチル、1-メチル-n-ブチル、2-メチル-n-ブチル、3-メチル-n-ブチル、1,1-ジメチル-n-プロピル、c-ペンチル、2-メチル-c-ブチル、n-ヘキシル、1-メチル-n-ペンチル、2-メチル-n-ペンチル、1,1-ジメチル-n-ブチル、1-エチル-n-ブチル、1,1,2-トリメチル-n-プロピル、c-ヘキシル、1-メチル-c-ペンチル、1-エチル-c-ブチル、1,2-ジメチル-c-ブチル、n-ヘプチル、n-オクチル、2-エチルヘキシル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-ノナデシル、n-エイコシル基等が挙げられる。
 エーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合またはアミド結合を含んでいる炭素数1~30のアルキル基とは、上述したようなアルキル基の任意の位置にこれらの結合を有するものが挙げられ、具体的に下記のような置換基が挙げられる。
 エーテル結合を含んでいる上記アルキル基の具体例としては、CH2OCH3、CH2OCH2CH3、CH2O(CH22CH3、CH2OCH(CH32、CH2O(CH23CH3、CH2OCH2CH(CH32、CH2OC(CH33、CH2O(CH24CH3、CH2OCH(CH3)(CH22CH3、CH2O(CH22CH(CH3)CH3、CH2OCH(CH3)(CH23CH3、CH2O(CH25CH3、CH2OCH2CH(CH3)(CH22CH3、CH2O(CH22CH(CH3)CH2CH3、CH2O(CH23CH(CH3)CH3、CH2OC(CH32(CH22CH3、CH2OCH(CH2CH3)(CH22CH3、CH2OC(CH32CH(CH3)CH3、CH2O(CH26CH3、CH2O(CH27CH3、CH2OCH2CH(CH2CH3)(CH23CH3、CH2O(CH28CH3、CH2O(CH29CH3、CH2O(CH210CH3、CH2O(CH211CH3、CH2O(CH212CH3、CH2O(CH213CH3、CH2O(CH214CH3、CH2O(CH215CH3、CH2O(CH216CH3、CH2O(CH217CH3、CH2O(CH218CH3、CH2O(CH219CH3、CH2CH2OCH3、CH2CH2OCH2CH3、CH2CH2O(CH22CH3、CH2CH2OCH(CH32、CH2CH2O(CH23CH3、CH2CH2OCH2CH(CH32、CH2CH2OC(CH33、CH2CH2O(CH24CH3、CH2CH2OCH(CH3)(CH22CH3、CH2CH2O(CH22CH(CH3)CH3、CH2CH2OCH(CH3)(CH23CH3、CH2CH2O(CH25CH3、CH2CH2OCH2CH(CH3)(CH22CH3、CH2CH2O(CH22CH(CH3)CH2CH3、CH2CH2O(CH23CH(CH3)CH3、CH2CH2OC(CH32(CH22CH3、CH2CH2OCH(CH2CH3)(CH22CH3、CH2CH2OC(CH32CH(CH3)CH3、CH2CH2O(CH26CH3、CH2CH2O(CH27CH3、CH2CH2OCH2CH(CH2CH3)(CH23CH3、CH2CH2O(CH28CH3、CH2CH2O(CH29CH3、CH2CH2O(CH210CH3、CH2CH2O(CH211CH3、CH2CH2O(CH212CH3、CH2CH2O(CH213CH3、CH2CH2O(CH214CH3、CH2CH2O(CH215CH3、CH2CH2O(CH216CH3、CH2CH2O(CH217CH3、CH2CH2O(CH218CH3、CH2CH2O(CH219CH3、CH2CH2CH2OCH3、CH2CH2CH2OCH2CH3、CH2CH2CH2O(CH22CH3、CH2CH2CH2OCH(CH32、CH2CH2CH2O(CH23CH3、CH2CH2CH2OCH2CH(CH32、CH2CH2CH2OC(CH33、CH2CH2CH2O(CH24CH3、CH2CH2CH2OCH(CH3)(CH22CH3、CH2CH2CH2O(CH22CH(CH3)CH3、CH2CH2CH2OCH(CH3)(CH23CH3
CH2CH2CH2O(CH25CH3、CH2CH2CH2OCH2CH(CH3)(CH22CH3、CH2CH2CH2O(CH22CH(CH3)CH2CH3、CH2CH2CH2O(CH23CH(CH3)CH3、CH2CH2CH2OC(CH32(CH22CH3、CH2CH2CH2OCH(CH2CH3)(CH22CH3、CH2CH2CH2OC(CH32CH(CH3)CH3、CH2CH2CH2O(CH26CH3、CH2CH2CH2O(CH27CH3、CH2CH2CH2OCH2CH(CH2CH3)(CH23CH3、CH2CH2CH2O(CH28CH3、CH2CH2CH2O(CH29CH3、CH2CH2CH2O(CH210CH3、CH2CH2CH2O(CH211CH3、CH2CH2CH2O(CH212CH3、CH2CH2CH2O(CH213CH3、CH2CH2CH2O(CH214CH3、CH2CH2CH2O(CH215CH3、CH2CH2CH2O(CH216CH3、CH2CH2CH2O(CH217CH3、CH2CH2CH2O(CH218CH3、CH2CH2CH2O(CH219CH3、CH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3基等や、下記式で示される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 チオエーテル結合を含んでいる上記アルキル基の具体例としては、上記エーテル結合を含んでいるアルキル基の酸素原子(O)を、硫黄原子(S)に代えた基等が挙げられる。
 エステル結合を含んでいる上記アルキル基の具体例としては、上記エーテル結合を含んでいるアルキル基の酸素原子(O)を、C(O)OまたはOC(O)に代えた基等が挙げられる。
 炭酸エステル結合を含んでいる上記アルキル基の具体例としては、上記エーテル結合を含んでいるアルキル基の酸素原子(O)を、OC(O)Oに代えた基等が挙げられる。
 アミド結合を含んでいる炭素数1~30のアルキル基の具体例としては、上記エーテル結合を含んでいるアルキル基の酸素原子(O)を、C(O)NHまたはNHC(O)に代えた基等が挙げられる。
 これらの中でも、液体になり易いという点から、炭素数6~30の置換基が好ましく、具体的には、c-ヘキシル、1-メチル-c-ペンチル、1-エチル-c-ブチル、1,2-ジメチル-c-ブチル、n-ヘプチル、n-オクチル、2-エチルヘキシル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-ノナデシル、n-エイコシル基、CH2O(CH25CH3、CH2OCH(CH3)(CH23CH3、CH2OCH2CH(CH3)(CH22CH3、CH2O(CH22CH(CH3)CH2CH3、CH2O(CH23CH(CH3)CH3、CH2OC(CH32(CH22CH3、CH2OCH(CH2CH3)(CH22CH3、CH2OC(CH32CH(CH3)CH3、CH2O(CH26CH3、CH2O(CH27CH3、CH2OCH2CH(CH2CH3)(CH23CH3、CH2O(CH28CH3、CH2O(CH29CH3、CH2O(CH210CH3、CH2O(CH211CH3、CH2O(CH212CH3、CH2O(CH213CH3、CH2O(CH214CH3、CH2O(CH215CH3、CH2O(CH216CH3、CH2O(CH217CH3、CH2O(CH218CH3、CH2O(CH219CH3、CH2CH2O(CH25CH3、CH2CH2OCH(CH3)(CH23CH3、CH2CH2OCH2CH(CH3)(CH22CH3、CH2CH2O(CH22CH(CH3)CH2CH3、CH2CH2O(CH23CH(CH3)CH3、CH2CH2OC(CH32(CH22CH3、CH2CH2OCH(CH2CH3)(CH22CH3、CH2CH2OC(CH32CH(CH3)CH3、CH2CH2O(CH26CH3、CH2CH2O(CH27CH3、CH2CH2OCH2CH(CH2CH3)(CH23CH3、CH2CH2O(CH28CH3、CH2CH2O(CH29CH3、CH2CH2O(CH210CH3、CH2CH2O(CH211CH3、CH2CH2O(CH212CH3、CH2CH2O(CH213CH3、CH2CH2O(CH214CH3、CH2CH2O(CH215CH3、CH2CH2O(CH216CH3、CH2CH2O(CH217CH3、CH2CH2O(CH218CH3、CH2CH2O(CH219CH3、CH2CH2CH2O(CH25CH3、CH2CH2CH2OCH(CH3)(CH23CH3、CH2CH2CH2OCH2CH(CH3)(CH22CH3、CH2CH2CH2O(CH22CH(CH3)CH2CH3、CH2CH2CH2O(CH23CH(CH3)CH3、CH2CH2CH2OC(CH32(CH22CH3、CH2CH2CH2OCH(CH2CH3)(CH22CH3、CH2CH2CH2OC(CH32CH(CH3)CH3、CH2CH2CH2O(CH26CH3、CH2CH2CH2O(CH27CH3、CH2CH2CH2OCH2CH(CH2CH3)(CH23CH3、CH2CH2CH2O(CH28CH3、CH2CH2CH2O(CH29CH3、CH2CH2CH2O(CH210CH3、CH2CH2CH2O(CH211CH3、CH2CH2CH2O(CH212CH3、CH2CH2CH2O(CH213CH3、CH2CH2CH2O(CH214CH3、CH2CH2CH2O(CH215CH3、CH2CH2CH2O(CH216CH3、CH2CH2CH2O(CH217CH3、CH2CH2CH2O(CH218CH3、CH2CH2CH2O(CH219CH3
CH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3基等、並びにこれらの基の酸素原子(O)を、硫黄原子(S)に代えた基、C(O)OまたはOC(O)に代えた基、OC(O)Oに代えた基、およびC(O)NHまたはNHC(O)に代えた基等が好適である。
 より好ましくは、CH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3基等である。
 好適なキャリア輸送材料としては、例えば下記のカルバゾール(X1)、N,N-二置換またはN,N,N-三置換のアリールアミン(X2)等が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 上記式中、W1~W6は、それぞれ独立して、水素原子、またはエーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合もしくはアミド結合等を含んでもよい炭素数1~30のアルキル基を表し(ただし、W1~W3の少なくとも1つ、およびW4~W6の少なくとも1つは上記アルキル基である)、C1およびC2は、単結合、または置換もしくは非置換の芳香族環を表す。
 ここで、‘アルキル基’という用語は、メチル、エチル、イソプロピル、t-ブチル、2-エチルヘキシル、シクロヘキシルのような線状、分岐型、環状アルキルを含み、これは上記一般式〔1〕の融点を降下させる官能基(W)に相当し、その具体例および好適例は上述のとおりである。
 芳香族環としては、ベンゼン環、ナフタレン環等が挙げられる。
 本発明では、分子量の増加による粘度の増加を防ぐべく、W1、W2、W4およびW5が水素原子、W3およびW6がアルキルのものがより好ましく、さらには、C1,C2がベンゼン環または単結合のものが好ましい。
 これらの点から、下記化合物(X3)が好ましく、化合物〔3〕がより好ましく、化合物〔4〕または化合物〔5〕がより一層好ましいが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000027
(式中、W1~W3は上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000028
(式中、W3は上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000029
 また、下記で示される化合物も好適に用いることができる。
Figure JPOXMLDOC01-appb-C000030
(式中W4~W11は、それぞれ独立して、水素原子、またはエーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合もしくはアミド結合等を含んでもよい炭素数1~30のアルキル基を表す(ただし、W4~W6の少なくとも1つ、W7およびW8の少なくとも1つ、W9~W11の少なくとも1つは上記アルキル基である。)。)
Figure JPOXMLDOC01-appb-C000031
(式中、R1~R4は互いに独立して、炭素数1~30のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000032
 なお、後述する発光材料として液体材料を用いる場合、発光層を構成する材料全体として液体となる限りにおいて、キャリア輸送材料として常温で固体のものを用いることもできる。
 このような、キャリア輸送材料としては、従来公知の材料から適宜選択すればよく、例えば、(トリフェニルアミン)ダイマー誘導体(TPD)、(α-ナフチルジフェニルアミン)ダイマー(α-NPD)、[(トリフェニルアミン)ダイマー]スピロダイマー(Spiro-TAD)等のトリアリールアミン類、4,4’,4”-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のスターバーストアミン類;5,5”-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2’:5’,2”ターチオフェン(BMA-3T)等のオリゴチオフェン類、ポリビニルカルバゾール類などの正孔輸送材料;Alq3、BAlq、DPVBi、(2-(4-ビフェニル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール)(PBD)、トリアゾール誘導体(TAZ)、バソクプロイン(BCP)、シロール誘導体などの電子輸送材料が挙げられる。
 本発明の発光層を構成するもう一方の材料である発光材料としては、公知のものから適宜選択すればよく、例えば、アントラセン誘導体、テトラセン誘導体、ピレン誘導体、ルブレン誘導体、デカシクレン誘導体等の炭素縮合環系色素;ペリレンジイミド等のペリレン誘導体;ローダミンB等のキサンテン系色素;シアニン系色素;クマリン6やC545T等のクマリン系色素;Qd4やDEQ等のキナクリドン系色素;スクアリウム系色素;スチリル系色素;ピラゾロン誘導体;NileRed等のフェノキサゾン系色素;カルバゾール;トリアリールアミン;トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)、トリス[2-{3-(2-エチルヘキシルオキシ)フェニル}ピリジン]イリジウム(III)(Ir(ehppy)3)等のイリジウム錯体;アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体等の、Al、Zn、BeまたはTb、Eu、Dy等の希土類金属からなる中心金属、およびオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等の配位子から構成される金属錯体などを用いることができる。
 また、本発明においては、発光材料として、式〔2〕で示される液状の化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000033
 ここで、Z′は、色素部であって、炭素縮合環系色素、ペリレン誘導体、キサンテン系色素、シアニン系色素、クマリン系色素、キナクリドン系色素、スクアリウム系色素、スチリル系色素、ピラゾロン誘導体、フェノキサゾン系色素、カルバゾール、トリアリールアミン、イリジウム錯体、Al、Zn、Beまたは希土類金属からなる中心金属および配位子から構成される金属錯体を表し、W′は、上記色素部Z′に連結する少なくとも1つの置換基であって、エーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合またはアミド結合を含んでいてもよい炭素数1~30のアルキル基を表す。
 上記色素部およびアルキル基の具体例としては、上記と同様のものが挙げられる。
 好適なZ′としては、炭素縮環系色素、特に、ルブレン誘導体、ピレン誘導体が挙げられ、好適なW′としては、炭素数1~30のアルキル基、特に、炭素数6~30のアルキル基が挙げられる。
 具体的な発光材料としては、例えば、発光特性に優れる炭素縮合環系色素である、下記ピレン誘導体(Z1)が挙げられる。
Figure JPOXMLDOC01-appb-C000034
 上記式中、W1~W4は、それぞれ独立して、水素原子、またはエーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合もしくはアミド結合等を含んでもよい炭素数1~30のアルキル基を表し(ただし、W1~W4の少なくとも1つは上記アルキル基である)、A1~A4は、単結合、または置換もしくは非置換の芳香族環を表す。ここで、アルキル基の具体例としては、上記Wと同様のものが挙げられ、芳香族環の具体例としては、上記と同様のものが挙げられる。
 この場合も、分子量の増加に伴う粘度上昇を防止すべく、A1~A4が単結合のもの、すなわち、W1~W4が、炭素縮合環に直接結合した化合物(Z2)が好ましく、さらには、W1~W4の少なくとも1つが水素原子のもの、特に、3つが水素原子のものがより好ましい。
 これらの点から、下記化合物(Z3)が好ましいが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 上記(Z1)~(Z3)で示される化合物を液体発光材料としてホストゲストシステムではない発光層を備える有機EL素子とすることもできる。
 なお、キャリア輸送材料が液体の場合、発光層を構成する材料全体として液体となる限りにおいて、発光材料として常温で固体のものを用いることもできる。
 このような、発光材料としては、従来公知の材料から適宜選択すればよく、例えば、トリス(8-キノリノラート)アルミニウム(III)(Alq3)、ビス(8-キノリノラート)亜鉛(II)(Znq2)、ビス(2-メチル-8-キノリノラート)(p-フェニルフェノラート)アルミニウム(III)(BAlq)、4,4’-ビス(2,2-ジフェニルビニル)ビフェニル(DPVBi)等が挙げられる。
 上述したキャリア輸送材料および発光材料の配合比率は、組成物全体が液体となる範囲であれば特に限定されるものではなく、質量比で、キャリア輸送材料:発光材料=99.99:0.01~50:50程度とすることができるが、99:1が好ましい。
 本発明の有機電界発光素子において、上記液体発光材料とともに用いられる配位性非イオン性材料としては、配位性の元素を有する非イオン性の有機化合物であれば特に限定されるものではなく、上述した液状の発光材料およびキャリア輸送材料の少なくとも一方に溶解または分散するものを適宜選択して用いればよい。
 なお、配位性の元素とは、共有結合に関与していない電子対(孤立電子対)を有し、この電子対によってルイス酸性物質等に配位可能な元素をいう。
 本発明において、好適な配位性非イオン性材料としては、酸素、硫黄、セレン、テルル、窒素、リン、ヒ素およびアンチモンから選ばれる1種または2種以上の配位性元素を含む有機物を含むものが好ましく、具体的には、式(1)~(4)で示される化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000037
 上記式中、Aは2価の有機基を表し、具体的には、エーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合もしくはアミド結合等を含んでいてもよい炭素数1~30のアルキレン基、非置換もしくは置換基を含んでいてもよい2価の芳香環、または非置換もしくは置換基を含んでいてもよい2価の複素環などが挙げられる。なお、置換基としては、アルキル基、アルコキシ基、ハロゲン原子等が挙げられる。
 非置換もしくは置換基を含んでいてもよい2価の芳香環としては、1,2-フェニレン、1,3-フェニレン、1,4-フェニレン、1,6-ナフチレン、1,7-ナフチレン、2,6-ナフチレン、2,7-ナフチレン基等が挙げられる。
 同じく2価の複素環としては、イミダゾール環、ピリジン環、ピリミジン環、インドール環、キノリン環、フラン環、チオフェン環等が挙げられる。
 また、炭素数1~30のアルキレン基としては、直鎖、分岐、環状のいずれでもよく、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基等の-(CH2k-(k=1~30)基や、プロピレン基等が挙げられる。
 エーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合またはアミド結合を含んでいる炭素数1~30のアルキレン基とは、上述したようなアルキレン基の任意の位置にこれらの結合を有するものが挙げられ、具体的に下記のような置換基が挙げられる。
 エーテル結合を含んでいる上記アルキレン基の具体例としては、-CH2CH2OCH2CH2OCH2-、-CH2CH2OCH2CH2OCH2CH2OCH2-、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2-、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2-、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2-、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2-、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2-、-CH2CH2CH2OCH2CH2CH2OCH2-、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2-、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2-、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2-、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2-、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2-、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2-基等が挙げられる。
 チオエーテル結合を含んでいる上記アルキレン基の具体例としては、上記エーテル結合を含んでいるアルキレン基の酸素原子(O)を、硫黄原子(S)に代えた基等が挙げられる。
 エステル結合を含んでいる上記アルキレン基の具体例としては、上記エーテル結合を含んでいるアルキレン基の酸素原子(O)を、C(O)OまたはOC(O)に代えた基等が挙げられる。
 炭酸エステル結合を含んでいる上記アルキレン基の具体例としては、上記エーテル結合を含んでいるアルキレン基の酸素原子(O)を、OC(O)Oに代えた基等が挙げられる。
 アミド結合を含んでいる炭素数1~30のアルキレン基の具体例としては、上記エーテル結合を含んでいるアルキレン基の酸素原子(O)を、C(O)NHまたはNHC(O)に代えた基等が挙げられる。
 これらの中でも、Aとしては、-(CH2k-(k=1~30)基が好ましく、-(CH2k-(k=1~10)基がより好ましく、-(CH2k-(k=1~5)基がより一層好ましい。
 Bは、1価の有機基を表し、具体的には、エーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合もしくはアミド結合を含んでいてもよい炭素数1~30のアルキル基、非置換もしくは置換基を含んでいてもよい芳香環、または非置換もしくは置換基を含んでいてもよい複素環などが挙げられる。
 上記炭素数1~30のアルキル基、芳香環としては、上記と同様のものが挙げられる。
 複素環としては、イミダゾール環、ピリジン環、ピリミジン環、インドール環、キノリン環、フラン環、チオフェン環等が挙げられる。
 これらの中でも、Bとしては、非置換または置換基を含んでいてもよい芳香環が好ましく、とくにベンゼン環が好適である。
 X1は、酸素、硫黄、セレンまたはテルルを表し、Y1は、窒素、リン、ヒ素またはアンチモンを表す。
 これらの中でも、X1としては、酸素、硫黄が好ましく、酸素がより好ましい。
 また、Y1としては、窒素、リンが好ましい。
 nは0~100の整数を表すが、1~10が好ましく、1~5がより好ましい。
 lは1~100の整数を表すが、1~10が好ましく、1~5がより好ましい。
 以上の点から、より好適な配位性非イオン性材料としては、式(5)および(6)で示されるものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000038
(式中、A、Bおよびnは、上記と同じ意味を表す。)
 上記式(1)および(5)で示される化合物の具体例としては、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジフェニルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、ポリプロピレングリコールジメチルエーテル等のプロピレングリコール誘導体;トリグリセリド等のグリセロール誘導体;ビスフェノールAジメチルエーテル等のビスフェノールA誘導体;1,2-ジメトキシベンゼン、1,2-ジフェノキシベンゼン、1,3-ジメトキシベンゼン、1,3-ジフェノキシベンゼン、1,4-ジメトキシベンゼン、1,4-ジフェノキシベンゼン、ジフェノキシメタンなどが挙げられる。
 上記式(3)で示される化合物の具体例としては、テトラメチルエチレンジアミン、ヘキサメチルジエチレントリアミン、オクタメチルトリエチレンテトラミン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタンなどが挙げられる。
 上記式(6)で示される化合物の具体例としては、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジフェノキシエタン(式(7)の化合物)、1,2-ジベンジロキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ポリエチレングリコールジメチルエーテルなどが挙げられる。
 上記式(2)で示される化合物の具体例としては、12-クラウン-4、15-クラウン-5、18-クラウン-6、ジベンゾ-18-クラウン-6等のクラウンエーテル;テトラチオ12-クラウン-4等のチオクラウンエーテルなどが挙げられる。
 上記式(4)で示される化合物の具体例としては、1,4,7,10-テトラメチル-1,4,7,10-テトラアザシクロドデカン、1,4,7,10,12-ペンタメチル-1,4,7,10,12-ペンタアザシクロペンタデカン等のアザクラウンエーテルなどが挙げられる。
 本発明において、発光層中における配位性非イオン性材料の配合量は、特に限定されるものではないが、駆動電圧低下効果と発光輝度とのバランスを考慮すると、0.01~50質量%が好ましく、0.1~50質量%がより好ましく、1~40質量%がより一層好ましい。
 一方、キャリア輸送能および発光能を有し、かつ、配位性置換基を有する液状化合物としては特に限定されるものではなく、例えば、式(8)で示される化合物を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000039
 ここで、X2は、キャリア輸送および発光部であって、カルバゾール誘導体、チアントレン誘導体、フェノチアジン誘導体、アゼピン誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサジアゾール誘導体、アリールシクロアルカン誘導体、トリアリールアミン誘導体、フェニレンジアミン誘導体、スチルベン誘導体、オキサゾール誘導体、トリフェニルメタン誘導体、ピラゾリン誘導体、フルオレノン誘導体、ポリアニリン誘導体、シラン誘導体、ピロール誘導体、ポルフィリン誘導体、キナクリドン誘導体、トリアリールホスフィンオキシド誘導体、アントラセン誘導体,テトラセン誘導体,ピレン誘導体,ルブレン誘導体,デカシクレン誘導体,ペリレン誘導体等の炭素縮合環系色素、金属または無金属のフタロシアニン、ベンジジンを表す。
 これらの中でも、優れたキャリア輸送能を有することから、カルバゾール誘導体が好ましい。
 また、Y2は、上記キャリア輸送および発光部X2に連結する少なくとも1つの配位性置換基である。
 ここで、配位性置換基としては、配位性の元素を含有する置換基であれば特に限定されるものではないが、非イオン性の置換基であることが好ましい。
 この場合、好適な配位性元素としては、酸素、硫黄、セレン、テルル、窒素、リン、ヒ素およびアンチモンから選ばれる1種または2種以上が好ましく、これらの元素を含む配位性置換基を好適に用いることができる。
 中でも、酸素、硫黄、窒素およびリンから選ばれる1種または2種以上の配位性元素を含む配位性置換基が好ましく、酸素を含む配位性置換基が最適であり、特に、エーテル構造を含む配位性置換基が好ましく、さらには、ポリエーテル構造を含む配位性置換基がより好ましい。
 (ポリ)エーテル構造を含む配位性置換基としては、例えば、-(AO)m-(式中、Aは、2価の有機基を表し、mは1~100の整数を表す。)で表される構造を含む基が挙げられる。
 ここで、2価の有機基としては、上記配位性非イオン性材料で例示した基と同様のものが挙げられる。
 本発明で用いられる液状化合物としては、カルバゾール誘導体が好適であり、特に、式(9)で示される、窒素原子上に配位性置換基を有するカルバゾール誘導体が好適である。
Figure JPOXMLDOC01-appb-C000040
(式中、Bは1価の有機基を表し、Aおよびmは上記と同じ意味を表す。)
 上記式(9)において、mは、1~10が好ましく、1~5がより好ましい。
 また、1価の有機基としては、上記配位性非イオン性材料で例示した基と同様のものが挙げられるが、炭素数1~30のアルキル基が好ましい。
 より好ましい液状化合物の具体例としては、式(10)~(12)で示されるものが挙げられるが、これらに限定されるものではない。
 なお、式(10)においては、mは2~4の化合物が好ましく、式(11)においては、mは1の化合物が好ましく、式(12)においては、mは3の化合物が好ましい。
Figure JPOXMLDOC01-appb-C000041
(式中、mは上記と同じ意味を表す。)
 また、本発明では、液状化合物として炭素縮合環系色素も好適に用いることができる。
 炭素縮合環系色素の具体例としては、アントラセン系色素、ジフェニルアントラセン系色素、テトラセン系色素、ルブレン系色素、ペンタセン系色素、ピレン系色素、ペリレン系色素、コロネン系色素、トリフェニレン系色素、クリセン系色素などが挙げられるが、特に、式(13)で示される、配位性置換基を有するピレン系色素が好適である。
Figure JPOXMLDOC01-appb-C000042
(式中、Zは2価の有機基を表し、A、Bおよびmは上記と同様の意味を表す。)
 2価の有機基Zとしては、上記と同様のものが挙げられるが、特に-Q-C(O)O-(式中、Qはアルキレン基を示す。)で示される2価の有機基が好適であり、したがって、式(14)で示されるピレン系色素が好適である。
Figure JPOXMLDOC01-appb-C000043
(式中、A、Bおよびmは上記と同じ意味を表す。)
 ここで、アルキレン基Qとしては、炭素数1~30のアルキレン基、好ましくは炭素数1~10のアルキレン基、より好ましくは炭素数1~5のアルキレン基が挙げられ、これらアルキレン基の具体例としては、上記と同様のものが挙げられる。
 より好ましい液状化合物の具体例としては、式(15)で示されるものが挙げられるが、これに限定されるものではない。
 なお、式(15)においては、mは3の化合物が好ましい。
Figure JPOXMLDOC01-appb-C000044
(式中、mは上記と同じ意味を表す。)
 本発明の有機電界発光素子では、上述の液体発光層に特徴があるため、その他の素子の構成部材には特に制限はなく、従来公知のものを適宜採用することができる。
 例えば、陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、高電荷輸送性を有するポリチオフェン誘導体、ポリアニリン誘導体などを用いることができる。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム、セシウム添加ITOなどを用いることができる。
 また、本発明の有機電界発光素子は、陽極、陰極および発光層の他に、有機電界発光素子に一般的に用いられる各種機能層を備えていてもよい。
 このような機能層としては、正孔輸送層、正孔注入層、電子輸送層、電子注入層、キャリアブロック層などが挙げられる。
 正孔輸送層は、陽極と発光層との間に設けられ、陽極から注入された正孔を発光層へ輸送する機能を有する層であり、その材料としては、上記キャリア輸送材料で例示した正孔輸送材料と同様のものが挙げられる。
 また、正孔注入層は、正孔輸送層と陽極との間に設けられ、陽極からの正孔注入効率を高める機能を有する層である。
 正孔注入層を形成する材料としては、銅フタロシアニン、4,4’,4”-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)等が挙げられる。
 電子輸送層は、陰極と発光層との間に設けられ、陰極から注入された電子を発光層へ輸送する機能を有する層であり、その材料としては、上記キャリア輸送材料で例示した電子輸送材料と同様のものが挙げられる。
 電子注入層は、電子輸送層と陰極との間に設けられ、陰極からの電子注入効率を高める機能を有する層である。
 このような電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)、フッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、フッ化ストロンチウム(SrF2)、Li(acac)、酢酸リチウム、安息香酸リチウム等が挙げられる。
 キャリアブロック層は、発光領域をコントロールするための層であり、上述した任意の層間に形成し得る層である。
 このようなキャリアブロック層を形成する材料としては、PBD、TAZ、BCP等が挙げられる。
 次に、本発明の電界発光素子の実施の一形態を、図面を参照しつつ説明する。
 図1には、本発明の一実施形態に係る電界発光素子である、有機EL素子1が示されている。
 この有機EL素子1は、陽極10と、陰極20と、これら各極10,20間に介在する、常温で液体の発光層30(以下、液体発光層30という)とを備えている。
 本実施形態において、陽極10は、ガラス板11と、この上に成膜されたITO12とから構成されている。
 一方、陰極20は、ガラス板13と、この上に成膜されたITO14とから構成されている。
 液体発光層30は、キャリア輸送能および発光能を有する液体材料並びに配位性非イオン性材料を含んで構成されている。
 以上のように構成される有機EL素子の作製方法としては特に制限はないが、例えば、下記のような手法を用いることができる。
 まず、上記キャリア輸送能および発光能を有する液体材料中に、配位性非イオン性材料を加えて溶解させて液体発光体を作製する。
 続いて、陰極20上に、上記液体発光体を滴下し、その上に陽極10を適切な圧力で押しつけて、液体発光層30を有する有機EL素子1を得る。
 また、液体発光層30が、キャリア輸送能および発光能を有し、かつ、配位性置換基を有する液状化合物を含んで構成される場合、陰極20上に、当該液状化合物からなる液体発光体を滴下し、その上に陽極10を適切な圧力で押しつけて、液体発光層30を有する有機EL素子1を作製すればよい。
 なお、各層を構成する材料は、上記実施形態で用いた材料に限定されるものではなく、各層の機能を発揮する限りにおいて、先に例示した各種材料から適宜選択して用いることができる。
 また、各層の成膜方法も上記実施形態の手法に限定されるものではなく、用いる材料に応じて、蒸着法、スプレー法、インクジェット法、スパッタリング法等の公知の手法を適宜採用することができる。
 さらに、必要に応じて、ホールブロック層や正孔注入層等を形成してもよい。
 以下、合成例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例で用いた測定装置は以下のとおりである。
(1)電流-電圧-輝度特性
 フォトディテクター付き半導体パラメーターアナライザー(アジレント社製、B1500A)と光パワー-メーター(ニューポート、1930C)によって計測した。
(2)1H-NMR
装置:AVANCE 500、Bruker社製
装置:JNM-LA400、日本電子データム(株)製
[合成例1]EHPyの合成
Figure JPOXMLDOC01-appb-C000045
 4-(1-ピレニル)酪酸(5.8g,20.0mmol)、1-ブロモ-2-エチルヘキサン(7.7g,40.0mmol)および炭酸カリウム(8.3g,60.0mmol)をDMF(7.1mL)に加え、90℃で4時間撹拌した。溶媒を減圧留去した後、クロロホルム(50mL)を加えて水洗(50mL×3)した。硫酸マグネシウムを加えて乾燥し、カラムクロマトグラフィー(n-ヘキサン/クロロホルム=8/2(v/v))にて精製し、無色透明の液体としてEHPy(7.41g)を得た。同定は1H-NMRスペクトルにて行った。NMRスペクトルを図2に示す。
[実施例1]
 合成例1で得られた液状化合物EHPy96質量部に、下記構造で示される1,2-ジフェノキシエタン(以下DPE、東京化成工業(株)製)4質量部を加え、完全に溶解させて液体発光体を調製した。
Figure JPOXMLDOC01-appb-C000046
 EL素子の作製は以下にようにして行った。
 界面活性剤、純水、イソプロパノールの順で超音波洗浄し、UV/オゾン処理(フィルジェン社製、UV253S)を12分間施したITO12付きガラス基板11(陽極10)およびITO14付きガラス基板13(陰極20)を用意した。
 グローブボックス中で、先に調製した液体発光体を陰極20上(ITO14上)に少量滴下し、陽極10で挟み込んで得られた積層体の外側からクリップ(図示省略)で挟んで固定し、図1に示されるような、ガラス基板/ITO(陽極)/液体発光体層/ITO(陰極)/ガラス基板からなるEL素子1を作製した。素子面積は2mm×2mmである。
 作製したEL素子の電流密度-電圧-輝度特性を測定した。結果を図3および図4に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、0.92±0.05μmであった。
 図3および図4に示されるように、発光は13.0Vから観測され、44.2V印加時に0.246mA/cm2の電流密度と0.162cd/m2の最大輝度が得られた。
[実施例2]
 液状化合物EHPy90質量部、DPEを10質量部とした以外は、実施例1と同様にEL素子を作製して評価を行った。評価結果を図3および図4に併せて示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、0.80±0.04μmであった。
 図3および4に示されるように、発光は10.4Vから観測され、33.8V印加時に0.391mA/cm2の電流密度と1.71cd/m2の最大輝度が得られた。
[実施例3]
 液状化合物EHPy70質量部、DPEを30質量部とした以外は、実施例1と同様にEL素子を作製して評価を行った。評価結果を図3および図4に併せて示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、1.02±0.05μmであった。
 図3および図4に示されるように、発光は8.0Vから観測され、28.6V印加時に1.60mA/cm2の電流密度と6.12cd/m2の最大輝度が得られた。
[比較例1]
 液状発光層を、液状化合物EHPyのみとした以外は、実施例1と同様にEL素子を作製して評価を行った。評価結果を図3および図4に併せて示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、850±18μmであった。
 図3および図4に示されるように、発光は60.6Vから観測され、100V印加時に0.0665mA/cm2の電流密度と0.576cd/m2の最大輝度が得られた。
 これらの結果より明らかなように、発光層に配位性非イオン性化合物であるDPEを添加することにより、駆動電圧の大幅な低下が達成されることがわかる。
 次に、以下に示すキャリア輸送能および発光能を有し、かつ、配位性置換基を有する液状化合物を用い、液体発光層を有する有機EL素子を作製した。
 なお、TEGCzおよびDEGCzは、Synthetic Metals,89(3),171(1997)に記載の方法を参考に合成した。
Figure JPOXMLDOC01-appb-C000047
[合成例2]TeEGCzの合成
Figure JPOXMLDOC01-appb-C000048
 窒素気流下、テトラエチレングリコールモノメチルエーテル(5.00g、24.0mmol)および水酸化ナトリウム(2.07g、51.9mmol)をTHF(13mL)および水(13mL)に加え、0℃で冷却しながら、パラトルエンスルホン酸クロリド(5.26g、27.6mmol)のTHF溶液(13mL)を10分かけて滴下した。0℃で3時間撹拌後、水(150mL)および酢酸エチル(50mL)を追加し、分液した。水相を酢酸エチル(50mL×2)で抽出後、合わせた有機相を飽和食塩水(75mL)で洗浄した。硫酸マグネシウムで脱水後、溶媒を留去することで、無色液状の化合物1(8.33g、収率96%)を得た。
Figure JPOXMLDOC01-appb-C000049
 窒素気流下、カルバゾール(2.01g、12.0mmol)をTHF(15mL)に溶解させ、濃度1.6Mのn-ブチルリチウムヘキサン溶液(8.0mL、12.6mmol)を室温で5分かけて滴下した。得られた反応溶液を、2時間還流した。室温に冷却後、化合物1(4.74g、13.1mmol)のTHF溶液(10mL)を5分かけて滴下した。得られた反応溶液を、4時間還流した。室温に冷却後、水(100mL)および酢酸エチル(100mL)を追加し、分液した。水相を酢酸エチル(50mL×2)で抽出後、合わせた有機相を飽和食塩水(100mL)で洗浄した。硫酸マグネシウムで脱水後、溶媒を留去した。カラムクロマトグラフィー(シリカゲル、n-ヘキサン/酢酸エチル=75/25~25/75(v/v))にて精製し、無色透明の液体としてTeEGCz(3.96g、収率92%)を得た。同定は1H-NMRスペクトルにて行った。NMRスペクトルを図13に示す。
[合成例3]TPGCzの合成
Figure JPOXMLDOC01-appb-C000050
 窒素気流下、トリプロピレングリコールモノメチルエーテル(9.63g、46.7mmol)および水酸化ナトリウム(3.92g、98.0mmol)をTHF(25mL)および水(25mL)に加え、0℃で冷却しながら、パラトルエンスルホン酸クロリド(10.1g、53.0mmol)のTHF溶液(25mL)を10分かけて滴下した。0℃で3時間撹拌後、水(300mL)および酢酸エチル(100mL)を追加し、分液した。水相を酢酸エチル(100mL×2)で抽出後、合わせた有機相を飽和食塩水(150mL)で洗浄した。硫酸マグネシウムで脱水後、溶媒を留去した。カラムクロマトグラフィー(シリカゲル、n-ヘキサン/酢酸エチル=65/35(v/v))にて精製し、無色透明の液体として化合物2(6.76g、収率40%)を得た。
Figure JPOXMLDOC01-appb-C000051
 窒素気流下、カルバゾール(2.01g、12.0mmol)をTHF(15mL)に溶解させ、濃度1.6Mのn-ブチルリチウムヘキサン溶液(8.0mL、12.6mmol)を室温で5分かけて滴下した。得られた反応溶液を、2時間還流した。室温に冷却後、化合物2(4.75g、13.2mmol)のTHF溶液(10mL)を5分かけて滴下した。得られた反応溶液を、3時間還流した。室温に冷却後、水(100mL)および酢酸エチル(100mL)を追加し、分液した。水相を酢酸エチル(50mL×2)で抽出後、合わせた有機相を飽和食塩水(100mL)で洗浄した。硫酸マグネシウムで脱水後、溶媒を留去した。カラムクロマトグラフィー(シリカゲル、n-ヘキサン/酢酸エチル=80/20(v/v))にて精製し、無色透明の液体としてTPGCz(3.88g、収率91%)を得た。同定は1H-NMRスペクトルにて行った。NMRスペクトルを図14に示す。
[合成例4]EOECzの合成
Figure JPOXMLDOC01-appb-C000052
 窒素気流下、2-エトキシエタノール(5.21g、57.8mmol)および水酸化ナトリウム(4.77g、119mmol)をTHF(30mL)および水(30mL)に加え、0℃で冷却しながら、パラトルエンスルホン酸クロリド(12.6g、66.0mmol)のTHF溶液(30mL)を25分かけて滴下した。0℃で3時間撹拌後、水(300mL)および酢酸エチル(100mL)を追加し、分液した。水相を酢酸エチル(100mL×2)で抽出後、合わせた有機相を飽和食塩水(150mL)で洗浄した。硫酸マグネシウムで脱水後、溶媒を留去することで、無色液状の化合物3(12.7g、収率90%)を得た。
Figure JPOXMLDOC01-appb-C000053
 窒素気流下、カルバゾール(2.00g、12.0mmol)をTHF(15mL)に溶解させ、濃度1.6Mのn-ブチルリチウムヘキサン溶液(8.0mL、12.6mmol)を室温で5分かけて滴下した。得られた反応溶液を、2時間還流した。室温に冷却後、化合物3(3.21g、13.2mmol)のTHF溶液(10mL)を10分かけて滴下した。得られた反応溶液を、4時間還流した。室温に冷却後、水(100mL)および酢酸エチル(100mL)を追加し、分液した。水相を酢酸エチル(50mL×2)で抽出後、合わせた有機相を飽和食塩水(100mL)で洗浄した。硫酸マグネシウムで脱水後、溶媒を留去した。カラムクロマトグラフィー(シリカゲル、n-ヘキサン/酢酸エチル=91/9(v/v))にて精製し、無色透明の液体としてEOECz(2.64g、収率92%)を得た。同定は1H-NMRスペクトルにて行った。NMRスペクトルを図15に示す。
[合成例5]TEGPyの合成
Figure JPOXMLDOC01-appb-C000054
 4-(1-ピレニル)酪酸(3.5g,11.8mmol)、[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]p-トルエンスルホネート(TEG-Ts、4.6g,14.7mmol、アルドリッチ製)および水素化ナトリウム(50%油性,0.70g、14.6mmol)をDMF(40mL)に加え、80℃で6時間撹拌した。溶媒を減圧留去した後、クロロホルム(100mL)を加え、不溶物を濾別した。溶媒を減圧留去した後、カラムクロマトグラフィー(クロロホルム/酢酸エチル=100/0~95/5(v/v))にて精製し、黄色の液体としてTEGPy(4.2g,83%)を得た。同定は1H-NMRスペクトルにて行った。NMRスペクトルを図16に示す。
[合成例6]TEGPTAの合成
Figure JPOXMLDOC01-appb-C000055
 フェノチアジン(東京化成工業(株)製、以下、PTA)(10.0g、50.2mmol)、水素化ナトリウム(和光純薬工業(株)製、60%油性,2.41g、60.2mmol)およびTEGTs(19.2g、60.2mmol)をTHF(純正化学(株)製、100mL)に加え、還流下にて17時間撹拌した。室温まで冷却後、酢酸エチル(純正化学(株)製、100mL)と水(100mL)を加え、分液した。水相を酢酸エチル(50mL、2回)で抽出後、合わせた有機相を飽和食塩水(200mL)で洗浄した。硫酸マグネシウム(純正化学(株)製)で脱水後、溶媒を留去した。カラムクロマトグラフィー(SiO2,ヘキサン/酢酸エチル=75/25~50/50(v/v))にて精製を行った後、濃縮することで、目的化合物を無色透明な液体として得た(17.1g、99%)。1H-NMRスペクトル(CDCl3)の測定結果を図17に示す。
 なお、TEGTsは、Dalton Trans.,9043(2009)に記載の方法を参考に合成した。
[合成例7]EHPTAの合成
Figure JPOXMLDOC01-appb-C000056
 PTA(5.00g、25.1mmol)、水素化ナトリウム(和光純薬工業(株)製、60%油性,1.20g、30.1mmol)およびEHTs(5.81g、30.1mmol)をTHF(純正化学(株)製、50mL)に加え、還流下にて8時間撹拌した。室温まで冷却後、酢酸エチル(純正化学(株)製、50mL)と水(50mL)を加え、分液した。水相を酢酸エチル(50mL、2回)で抽出後、合わせた有機相を飽和食塩水(100mL)で洗浄した。硫酸マグネシウム(純正化学(株)製)で脱水後、溶媒を留去した。カラムクロマトグラフィー(SiO2,ヘキサン/酢酸エチル=100/0~98/2(v/v))にて精製を行った後、濃縮することで、目的化合物を無色透明な液体として得た(7.51g、96%)。1H-NMRスペクトル(CDCl3)の測定結果を図18に示す。
 なお、EHTsは、Dalton Trans.,3955(2009)に記載の方法を参考に合成した。
[実施例4]
 EL素子の作製は以下にようにして行った。
 界面活性剤、純水、イソプロパノールの順で超音波洗浄し、UV/オゾン処理(フィルゲン社製、UV253S)を12分間施したITO12付きガラス基板11(陽極10)およびITO14付きガラス基板13(陰極20)を用意した。
 グローブボックス中で、液状化合物TeEGCzを陰極20上(ITO14上)に少量滴下し、陽極10で挟み込んで得られた積層体の外側からクリップ(図示省略)で挟んで固定し、図1に示されるような、ガラス基板/ITO(陽極)/液体発光体層/ITO(陰極)/ガラス基板からなるEL素子1を作製した。素子面積は2mm×2mmである。
 作製したEL素子の電流密度-電圧-輝度特性を測定した。結果を図5に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、0.55±0.03μmであった。
 図5に示されるように、発光は13.5Vから観測され、23.5V印加時に17.6mA/cm2の電流密度と0.0011cd/m2の最大輝度が得られた。
[実施例5]
 液状化合物をTEGCzとした以外は実施例4と同様にEL素子を作製して評価を行った。評価結果を図6に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、0.72±0.04μmであった。
 図6に示されるように、発光は14.0Vから観測され、30.5V印加時に3.29mA/cm2の電流密度と0.018cd/m2の最大輝度が得られた。
[実施例6]
 液状化合物をDEGCzとした以外は実施例4と同様にEL素子を作製して評価を行った。評価結果を図7に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、0.68±0.03μmであった。
 図7に示されるように、発光は11.5Vから観測され、29.0V印加時に1.11mA/cm2の電流密度と0.0013cd/m2の最大輝度が得られた。
[実施例7]
 液状化合物をTPGCzとした以外は実施例4と同様にEL素子を作製して評価を行った。評価結果を図8に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、0.59±0.03μmであった。
 図8に示されるように、発光は13.0Vから観測され、31.0V印加時に1.59mA/cm2の電流密度と0.0010cd/m2の最大輝度が得られた。
[実施例8]
 液状化合物をEOECzとした以外は実施例4と同様にEL素子を作製して評価を行った。評価結果を図9に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、0.67±0.03μmであった。
 図9に示されるように、発光は13.0Vから観測され、25.0V印加時に2.25mA/cm2の電流密度と0.00079cd/m2の最大輝度が得られた。
[比較例2]
 液状化合物をEHCzとした以外は実施例4と同様にEL素子を作製して評価を行った。評価結果を図10に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、0.65±0.03μmであった。
 図10に示されるように、発光は55.5Vから観測され、100V印加時に0.144mA/cm2の電流密度と0.00091cd/m2の最大輝度が得られた。
 実施例4~8および比較例2で作製したEL素子の評価結果を表1にまとめて示す。これらの結果から明らかなように、発光層に、キャリア輸送能および発光能を有し、かつ配位性置換基を有する液体のカルバゾール材料が含まれれば、駆動電圧の低下が達成されることがわかる。
[実施例9]
 液状化合物をTEGPyとした以外は実施例4と同様にEL素子を作製して評価を行った。評価結果を図11に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、1.08±0.05μmであった。
 図11に示されるように、発光は5.0Vから観測され、38.0V印加時に2.72mA/cm2の電流密度と5.10cd/m2の最大輝度が得られた。
[比較例3]
 液状化合物をEHPyとした以外は実施例4と同様にEL素子を作製して評価を行った。評価結果を図12に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、0.85±0.04μmであった。
 図12に示されるように、発光は63.5Vから観測され、100V印加時に0.0665mA/cm2の電流密度と0.576cd/m2の最大輝度が得られた。
 実施例9および比較例3で作製したEL素子の評価結果を表1にまとめて示す。これらの結果から明らかなように、発光層に、キャリア輸送能および発光能を有し、かつ配位性置換基を有するピレン材料が含まれれば、駆動電圧の低下が達成されることがわかる。
Figure JPOXMLDOC01-appb-T000057
[実施例10]
 液状化合物としてTEGPTA99.75質量部および下記構造で示されるテトラブチルアンモニウムテトラフルオロボラート(東京化成工業(株)製、以下、Bu4NBF4)0.25質量部からなる液体発光材料を用いた以外は、実施例1と同様にEL素子を作製して評価を行った。評価結果を図19に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ1.3±0.1μmであった。
 図19に示されるように、発光は19.8Vから観測され、27.7V印加時に0.40mA/cm2の電流密度と0.024cd/m2の最大輝度が得られた。
Figure JPOXMLDOC01-appb-C000058
[比較例4]
 液状化合物としてEHPTA99.75質量部およびBu4NBF40.25質量部からなる液体発光材料を用いた以外は、実施例1と同様にEL素子を作製して評価を行った。結果を図20に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ1.4±0.1μmであった。
 図20に示されるように、発光は34.3Vから観測され、40.0V印加時に0.12mA/cm2の電流密度と0.001cd/m2の最大輝度が得られた。
 実施例10および比較例4で作製したEL素子の評価結果を表2にまとめて示す。これらの結果より明らかなように、発光層に、キャリア輸送能および発光能を有し、かつ配位性置換基を有する液体のフェノチアジン材料が含まれれば、駆動電圧の低下が達成されることがわかる。
Figure JPOXMLDOC01-appb-T000059
1 有機EL素子(電界発光素子)
10 陽極
20 陰極
30 液体発光層

Claims (24)

  1.  陽極と、陰極と、これら各極間に介在する、常温で液体の発光層とを備え、
     前記発光層が、配位性非イオン性材料、またはキャリア輸送能および発光能を有し、かつ、配位性置換基を有する液状化合物を含むことを特徴とする有機電界発光素子。
  2.  前記発光層が、キャリア輸送能および発光能を有する材料と、前記配位性非イオン性材料とから構成される請求項1記載の有機電界発光素子。
  3.  前記発光層が、キャリア輸送材料と、発光材料と、前記配位性非イオン性材料とから構成される請求項1記載の有機電界発光素子。
  4.  前記配位性非イオン性材料が、酸素、硫黄、セレン、テルル、窒素、リン、ヒ素およびアンチモンから選ばれる1種または2種以上の配位性元素を含む有機物である請求項1~3のいずれか1項記載の有機電界発光素子。
  5.  前記配位性非イオン性材料が、式(1)~(4)で示される化合物のいずれかを含む請求項1~4のいずれか1項記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは、それぞれ独立して2価の有機基を表し、Bは、それぞれ独立して1価の有機基を表し、X1は、それぞれ独立して酸素、硫黄、セレンまたはテルルを表し、Y1は、それぞれ独立して窒素、リン、ヒ素またはアンチモンを表し、nは、それぞれ独立して0~100の整数を表し、lは、それぞれ独立して1~100の整数を表す。)
  6.  前記配位性非イオン性材料が、式(5)で示される化合物を含む請求項5記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000002
    (式中、A、Bおよびnは前記と同じ意味を表す。)
  7.  前記配位性非イオン性材料が、式(6)で示される化合物を含む請求項6記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Bおよびnは前記と同じ意味を表す。)
  8.  前記配位性非イオン性材料が、式(7)で示される化合物を含む請求項7記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000004
  9.  前記配位性非イオン性材料が、前記発光層中に0.01~50質量%含まれる請求項1~8のいずれか1項記載の有機電界発光素子。
  10.  前記液状化合物が、式(8)で示される請求項1記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000005
    (式中、X2はキャリア輸送および発光部であって、カルバゾール誘導体、チアントレン誘導体、フェノチアジン誘導体、アゼピン誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサジアゾール誘導体、アリールシクロアルカン誘導体、トリアリールアミン誘導体、フェニレンジアミン誘導体、スチルベン誘導体、オキサゾール誘導体、トリフェニルメタン誘導体、ピラゾリン誘導体、フルオレノン誘導体、ポリアニリン誘導体、シラン誘導体、ピロール誘導体、ポルフィリン誘導体、キナクリドン誘導体、トリアリールホスフィンオキシド誘導体、炭素縮合環系色素、金属もしくは無金属のフタロシアニン誘導体、またはベンジジンを表し、
     Y2は、前記キャリア輸送および発光部に連結する少なくとも1つの配位性置換基を表す。)
  11.  前記X2が、カルバゾール誘導体または炭素縮合環系色素である請求項10記載の有機電界発光素子。
  12.  前記配位性置換基が、エーテル構造を含む置換基である請求項1,10または11記載の有機電界発光素子。
  13.  前記配位性置換基が、ポリエーテル構造を含む置換基である請求項1,10~12のいずれか1項記載の有機電界発光素子。
  14.  前記液状化合物が、式(9)または式(13)で示される請求項13記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000006
    (式中、AおよびZは、それぞれ独立して2価の有機基を表し、Bは、それぞれ独立して1価の有機基を表し、mは、それぞれ独立して1~100の整数を表す。)
  15.  前記液状化合物が、式(10)で示される請求項14記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000007
    (式中、mは前記と同じ意味を表す。)
  16.  前記mが、2~4の整数である請求項15記載の有機電界発光素子。
  17.  前記液状化合物が、式(11)で示される請求項14記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000008
    (式中、mは前記と同じ意味を表す。)
  18.  前記mが、1である請求項17記載の有機電界発光素子。
  19.  前記液状化合物が、式(12)で示される請求項14記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000009
    (式中、mは前記と同じ意味を表す。)
  20.  前記mが、3である請求項19記載の有機電界発光素子。
  21.  前記液状化合物が、式(14)で示される請求項14記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000010
    (式中、Qはアルキレン基を表し、A、Bおよびmは前記と同じ意味を表す。)
  22.  前記mが、2~4の整数である請求項21記載の有機電界発光素子。
  23.  前記液状化合物が、式(15)で示される請求項21記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000011
    (式中、mは前記と同じ意味を表す。)
  24.  前記mが、3である請求項23記載の有機電界発光素子。
PCT/JP2012/051182 2011-01-20 2012-01-20 有機電界発光素子 WO2012099236A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012553779A JPWO2012099236A1 (ja) 2011-01-20 2012-01-20 有機電界発光素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-009557 2011-01-20
JP2011009559 2011-01-20
JP2011-009559 2011-01-20
JP2011009557 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012099236A1 true WO2012099236A1 (ja) 2012-07-26

Family

ID=46515853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051182 WO2012099236A1 (ja) 2011-01-20 2012-01-20 有機電界発光素子

Country Status (3)

Country Link
JP (1) JPWO2012099236A1 (ja)
TW (1) TW201243021A (ja)
WO (1) WO2012099236A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133065A1 (ja) * 2013-02-28 2014-09-04 国立大学法人岩手大学 発光デバイス、及びその製造方法、塗料並びに塗布装置
JP2015216095A (ja) * 2014-04-21 2015-12-03 日本化学工業株式会社 電気化学発光セル及び電気化学発光セルの発光層形成用組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066885A1 (fr) * 2001-02-20 2002-08-29 Sanyo Electric Co., Ltd. Element luminescent
JP2008303365A (ja) * 2007-06-11 2008-12-18 Toppan Printing Co Ltd 蛍光材料、発光インク組成物および有機el素子
JP2009054952A (ja) * 2007-08-29 2009-03-12 Toshiba Corp 発光装置
JP2009191232A (ja) * 2008-02-18 2009-08-27 Toppan Printing Co Ltd 蛍光性化合物、発光性インク組成物および有機el素子
JP2009224747A (ja) * 2007-10-29 2009-10-01 Dainippon Printing Co Ltd 液体発光素子、発光表示装置、発光表示装置の製造方法、発光体
WO2011010656A1 (ja) * 2009-07-21 2011-01-27 国立大学法人九州大学 有機電界発光素子
WO2012014976A1 (ja) * 2010-07-30 2012-02-02 国立大学法人九州大学 有機電界発光素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066885A1 (fr) * 2001-02-20 2002-08-29 Sanyo Electric Co., Ltd. Element luminescent
JP2008303365A (ja) * 2007-06-11 2008-12-18 Toppan Printing Co Ltd 蛍光材料、発光インク組成物および有機el素子
JP2009054952A (ja) * 2007-08-29 2009-03-12 Toshiba Corp 発光装置
JP2009224747A (ja) * 2007-10-29 2009-10-01 Dainippon Printing Co Ltd 液体発光素子、発光表示装置、発光表示装置の製造方法、発光体
JP2009191232A (ja) * 2008-02-18 2009-08-27 Toppan Printing Co Ltd 蛍光性化合物、発光性インク組成物および有機el素子
WO2011010656A1 (ja) * 2009-07-21 2011-01-27 国立大学法人九州大学 有機電界発光素子
WO2012014976A1 (ja) * 2010-07-30 2012-02-02 国立大学法人九州大学 有機電界発光素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133065A1 (ja) * 2013-02-28 2014-09-04 国立大学法人岩手大学 発光デバイス、及びその製造方法、塗料並びに塗布装置
WO2014132381A1 (ja) * 2013-02-28 2014-09-04 国立大学法人岩手大学 発光デバイス、及びその製造方法、塗料並びに塗布装置
JPWO2014133065A1 (ja) * 2013-02-28 2017-02-02 国立大学法人岩手大学 発光デバイス、及びその製造方法、塗料並びに塗布装置
JP2015216095A (ja) * 2014-04-21 2015-12-03 日本化学工業株式会社 電気化学発光セル及び電気化学発光セルの発光層形成用組成物

Also Published As

Publication number Publication date
JPWO2012099236A1 (ja) 2014-06-30
TW201243021A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
KR102006506B1 (ko) 유기 일렉트로 루미네선스 소자 및 그것에 사용하는 화합물
JP6668755B2 (ja) イリジウム錯体化合物、該化合物の製造方法、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
Shen et al. Ambipolar Conductive 2, 7‐Carbazole Derivatives for Electroluminescent Devices
KR101801412B1 (ko) 카바졸 화합물 및 그 용도
JP5686379B2 (ja) 有機電界発光素子
KR101862881B1 (ko) 유기 전기발광 소자용 재료 및 그것을 이용한 유기 전기발광 소자
KR102285640B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
Zhang et al. Solution-processed efficient deep-blue fluorescent organic light-emitting diodes based on novel 9, 10-diphenyl-anthracene derivatives
JP5875119B2 (ja) 有機電界発光素子
KR20150026960A (ko) 정공 수송 재료
KR20130121516A (ko) 신규한 아릴아민을 사용한 정공 수송 물질 및 이를 포함한 유기 전계 발광 소자
KR101311840B1 (ko) 신규한 3차 아릴 아민 및 이를 포함한 유기전계 발광소자
KR101327301B1 (ko) 아민계 정공수송 물질 및 이를 포함한 유기전계 발광소자
KR20160051742A (ko) 2-아미노카바졸 화합물 및 그의 용도
WO2012099236A1 (ja) 有機電界発光素子
KR20210088445A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
JP5888748B2 (ja) 有機電界白色発光素子
JP7029966B2 (ja) 化合物、組成物、液状組成物、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子
KR101582804B1 (ko) 주석 중심 덴드리머 화합물 및 이를 포함하는 유기 전계 발광소자
KR101519504B1 (ko) 카르보란 화합물을 포함하는 청색 인광용 전하 수송 재료 및 이를 함유하는 청색 인광 유기발광소자
WO2013089217A1 (ja) 有機電界発光素子
JPWO2012099237A1 (ja) 有機電界発光素子
JP2014049469A (ja) 有機電界発光素子
JP2020132544A (ja) カルバゾール誘導体、それよりなるホスト材料及びそれを用いた有機el素子
KR20200006858A (ko) 유기발광소자 발광층용 조성물, 신규한 유기발광화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553779

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12737122

Country of ref document: EP

Kind code of ref document: A1