WO2012099232A1 - ヒータおよびこれを備えたグロープラグ - Google Patents

ヒータおよびこれを備えたグロープラグ Download PDF

Info

Publication number
WO2012099232A1
WO2012099232A1 PCT/JP2012/051170 JP2012051170W WO2012099232A1 WO 2012099232 A1 WO2012099232 A1 WO 2012099232A1 JP 2012051170 W JP2012051170 W JP 2012051170W WO 2012099232 A1 WO2012099232 A1 WO 2012099232A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
lead
joint
heater
leads
Prior art date
Application number
PCT/JP2012/051170
Other languages
English (en)
French (fr)
Inventor
淳 米玉利
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN2012800058798A priority Critical patent/CN103329615A/zh
Priority to EP12736794.4A priority patent/EP2667686B1/en
Priority to KR1020137019531A priority patent/KR101488748B1/ko
Priority to US13/980,628 priority patent/US9291144B2/en
Priority to JP2012553776A priority patent/JP5827247B2/ja
Publication of WO2012099232A1 publication Critical patent/WO2012099232A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/027Heaters specially adapted for glow plug igniters

Definitions

  • the present invention is, for example, for a heater for ignition or flame detection in a combustion-type in-vehicle heating device, a heater for ignition of various combustion devices such as an oil fan heater, a heater for a glow plug of an automobile engine, and various sensors such as an oxygen sensor.
  • the present invention relates to a heater used for a heater, a heater for heating a measuring instrument, and a glow plug including the heater.
  • a glow plug used as an ignition assist for a diesel engine is, for example, a resistor having a folded shape, a pair of leads joined to each end of the resistor, and a resistor embedded in the front and a rear side.
  • the heater includes a heater including an insulating base in which the pair of leads are embedded. Glow plugs having such a configuration are required to have higher temperatures and higher durability, such as being used as afterglows for exhaust gas purification in order to comply with stricter environmental regulations.
  • the load is still large due to the shrinkage difference between the resistor and the lead.
  • the resistor and the lead overlap in the direction perpendicular to the axial direction of the lead, and the joint between the both ends of the resistor and the lead is located on the cross section cut in the width direction perpendicular to the axial direction of the lead. This is because the stress due to thermal expansion in the width direction at each joint is synthesized especially at the time of rapid temperature rise.
  • the periphery of the joint between the resistor and the lead, in particular, the opposing joint of the insulating base Micro cracks are likely to occur between the parts, and there is a risk of causing dielectric breakdown (short) between the leads.
  • the present invention has been made in view of the above circumstances, and provides a heater and a glow plug provided with the heater, in which a joint between the resistor and the lead is prevented from cracking and causing dielectric breakdown between the leads. For the purpose.
  • the heater according to the present invention includes a resistor having a folded shape, a pair of leads joined to respective ends of the resistor, the resistor being embedded at the front, and the pair of leads being embedded at the rear.
  • the rear end of the joint portion with the lead is located behind the rear end of the joint portion between the other end portion of the resistor and the lead.
  • the heater of the present invention is characterized in that, in the above configuration, the lead surrounds an end portion of the resistor when viewed in a cross section perpendicular to the axial direction of the lead in the joint portion. Is.
  • the heater of the present invention is characterized in that, in the above configuration, one end of the resistor is on the positive electrode side.
  • the heater of the present invention in the above configuration, has a position of a tip of the joint between the one end of the resistor and the lead, and the joint of the other end of the resistor and the lead.
  • the position of the tip of the lead is different with respect to the axial direction of the lead.
  • the tip of the joint portion between the one end portion of the resistor and the lead is the tip of the joint portion between the other end portion of the resistor and the lead. It is located behind the rear end.
  • a glow plug according to the present invention includes the heater according to any one of the above configurations, and a metal holding member that is electrically connected to one end of the pair of leads and holds the heater. It is characterized by that.
  • the rear end of the joined portion between the one end of the resistor and the lead is located behind the rear end of the joined portion of the other end of the resistor and the lead.
  • FIG. 1 It is a longitudinal section showing an example of an embodiment of a heater of the present invention.
  • A) is an enlarged cross-sectional view in which a region A including a junction between the resistor and the lead shown in FIG. 1 is enlarged, and (b) is a cross-sectional view taken along line XX shown in (a).
  • A) is the expanded sectional view which expanded the area
  • FIG. 1 is a longitudinal sectional view showing an example of an embodiment of a heater according to the present invention.
  • FIG. 2A is an enlarged cross-sectional view of an area A including a junction between the resistor and the lead shown in FIG. 1
  • FIG. 2B is a cross-sectional view taken along line XX shown in FIG. It is sectional drawing.
  • FIG. 3A is an enlarged cross-sectional view showing a region including a joint portion between a resistor and a lead, showing another example of the embodiment of the heater of the present invention
  • FIG. It is XX sectional drawing shown to (a).
  • the heater 1 includes a resistor 3 having a folded shape, a pair of leads 4 joined to respective ends of the resistor 3, and a pair of resistors 3 embedded in the front and a pair of rearwardly. And the insulating base 2 in which the lead 4 is embedded.
  • the resistor 3 and the lead 4 overlap in a direction perpendicular to the axial direction of the lead 4.
  • the rear end of the joint portion 51 between one end of the body 3 and the lead 4 is located behind the rear end of the joint portion 52 between the other end of the resistor 3 and the lead 4.
  • the insulating base 2 in the heater 1 of the present embodiment is formed, for example, in a rod shape or a plate shape.
  • a resistor 3 and a pair of leads 4 are embedded in the insulating base 2.
  • the insulating base 2 is made of ceramics, which makes it possible to provide the heater 1 with high reliability at the time of rapid temperature rise.
  • ceramics having electrical insulation properties such as oxide ceramics, nitride ceramics, carbide ceramics can be used.
  • the insulating substrate 2 is preferably made of silicon nitride ceramics. This is because silicon nitride ceramics is superior in terms of high strength, high toughness, high insulation, and heat resistance because silicon nitride, which is a main component, is used.
  • the insulating base 2 made of a silicon nitride ceramic is, for example, 3 to 12% by mass of a rare earth such as Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 as a sintering aid with respect to silicon nitride as a main component.
  • Element oxide, 0.5 to 3% by mass of Al 2 O 3 , and SiO 2 are mixed so that the amount of SiO 2 contained in the sintered body is 1.5 to 5% by mass, and formed into a predetermined shape. It can be obtained by hot press firing at 1650-1780 ° C.
  • the length of the insulating base 2 is, for example, 20 to 50 mm, and the diameter of the insulating base 2 is, for example, 3 to 5 mm.
  • the coefficient of thermal expansion of the silicon nitride ceramic that is the base material can be brought close to the coefficient of thermal expansion of the resistor 3, and the durability of the heater 1 can be improved.
  • the resistor 3 embedded in the insulating substrate 2 has a folded section in the longitudinal cross section, and the heat generating portion 31 that generates most heat near the center of the folded shape located at the tip (near the middle point of the folding). Yes.
  • the resistor 3 is embedded at the front end side of the insulating base 2, and the distance from the front end of the resistor 3 (near the center of the folded shape) to the rear end of the resistor 3 (rear end of the joint portion 51) is 2 for example. Formed to ⁇ 10 mm.
  • the cross-sectional shape of the resistor 3 may be any shape such as a circle, an ellipse, or a rectangle, and is usually formed so that the cross-sectional area is smaller than a lead 4 described later.
  • the material for forming the resistor 3 a material mainly composed of carbides such as W, Mo, Ti, nitrides, silicides, and the like can be used.
  • the insulating base 2 is made of silicon nitride ceramics
  • tungsten carbide (WC) is one of the above-mentioned materials in that the difference in thermal expansion coefficient from the insulating base 2 is small, the heat resistance is high, and the specific resistance is small.
  • the resistor 3 is preferably composed mainly of WC of an inorganic conductor, and the content of silicon nitride added thereto is 20% by mass or more.
  • the conductor component serving as the resistor 3 has a higher coefficient of thermal expansion than silicon nitride, and thus is usually in a state where tensile stress is applied.
  • the thermal expansion coefficient is brought close to that of the insulating base 2, and the stress due to the difference in thermal expansion coefficient between the temperature rise and the temperature drop of the heater 1 is relieved. be able to.
  • the content of silicon nitride contained in the resistor 3 is 40% by mass or less, the resistance value of the resistor 3 can be made relatively small and stabilized.
  • the content of silicon nitride contained in the resistor 3 is preferably 20% by mass to 40% by mass. More preferably, the silicon nitride content is 25% by mass to 35% by mass. Further, as a similar additive to the resistor 3, boron nitride can be added in an amount of 4% by mass to 12% by mass instead of silicon nitride.
  • the lead 4 embedded in the insulating base 2 is connected to the resistor 3 at one end side, and the other end is led out to the surface of the insulating base 2.
  • leads 4 are respectively joined to both end portions (one end portion and the other end portion) of a resistor 3 having a folded shape from one end to the other end.
  • One lead 4 has one end connected to one end of the resistor 3 and the other end exposed from the side surface near the rear end of the insulating base 2.
  • the other lead 4 has one end connected to the other end of the resistor 3 and the other end exposed from the rear end of the insulating base 2.
  • the lead 4 is formed using the same material as that of the resistor 3.
  • the lead 4 has a larger cross-sectional area than the resistor 3, and the content of the forming material of the insulating base 2 is less than that of the resistor 3. By doing so, the resistance value per unit length is low.
  • WC is suitable as a material for the lead 4 in that the difference in coefficient of thermal expansion from the insulating substrate 2 is small, the heat resistance is high, and the specific resistance is small.
  • the lead 4 is preferably composed mainly of WC, which is an inorganic conductor, and silicon nitride is added to the lead 4 so that the content is 15% by mass or more.
  • the thermal expansion coefficient of the lead 4 can be made closer to the thermal expansion coefficient of silicon nitride constituting the insulating base 2. Further, when the content of silicon nitride is 40% by mass or less, the resistance value of the lead 4 becomes small and stable. Accordingly, the silicon nitride content is preferably 15% by mass to 40% by mass. More preferably, the silicon nitride content is 20% by mass to 35% by mass.
  • the resistor 3 and the lead 4 overlap in a direction perpendicular to the axial direction of the lead 4, and one end of the resistor 3 and the lead 4 are overlapped.
  • the rear end of the joint portion 51 is positioned behind the rear end of the joint portion 52 between the other end portion of the resistor 3 and the lead 4.
  • the resistor 3 and the lead 4 overlap in a direction perpendicular to the axial direction of the lead 4.
  • the resistor 3 and the lead 4 are included.
  • the joint portions 51 and 52 are viewed in a longitudinal section including both the axes of the one lead 4 and the other lead 4
  • the lead 4 is disposed inside and the resistor is disposed outside, and the joint surface is the lead 4.
  • the shape is inclined from the direction perpendicular to the axial direction.
  • the lengths of the joints 51 and 52 in the axial direction of the respective leads 4 (the distance from the front end to the rear end of the joints 51 and 52 is, for example, 0.5-3 mm.
  • Examples of the shape of the joint portions 51 and 52 include a shape in which the joint surface is inclined from a direction perpendicular to the axial direction of the lead 4 as seen in the longitudinal section of the heater 1 as shown in FIG.
  • the shape is not limited and includes a shape in which the lead 4 surrounds the end of the resistor 3 when viewed in a cross section perpendicular to the axial direction of the lead 4 as shown in FIG.
  • the thermal stress applied to the rear ends of the joint portions 51 and 52 that are most thermally expanded at the time of rapid temperature rise is the lead. Due to the stress in the width direction synthesized in the width direction perpendicular to the axial direction, microcracks are likely to occur, and there is a risk of causing dielectric breakdown (short) between the leads.
  • the rear end of the joint 51 between the one end of the resistor 3 and the lead 4 is located behind the rear end of the joint 52 between the other end of the resistor 3 and the lead 4. .
  • the position of the rear end of the joint 51 and the position of the rear end of the joint 52 are different (displaced) in the axial direction of the lead 4.
  • the rear end of the joint 51 is located 10 ⁇ m to 2 mm behind the rear end of the joint 52 with respect to the distance of deviation between the position of the rear end of the joint 51 and the position of the rear end of the joint 52. Is effective.
  • one joint surface (for example, the joint surface on the positive electrode side) is perpendicular to the axial direction of the lead 4.
  • the inclination angle inclined from the direction is preferably inclined by 0.1 to 15 degrees from the inclination angle inclined from the direction perpendicular to the axial direction of the lead 4 of the other bonding surface (for example, the bonding surface on the negative electrode side).
  • the stress in the width direction formed by combining the thermal stress applied to the rear end of each joint that is most thermally expanded at the time of rapid temperature increase in the width direction perpendicular to the axial direction of the lead 4 is reduced. Since the load is small, it is possible to make it difficult for dielectric breakdown (short circuit).
  • the lead 4 surrounds the end portion of the resistor 3 when viewed in a cross section perpendicular to the axial direction of the lead 4 at the joint portions 51 and 52.
  • the lead 4 covering the resistor 3 that thermally expands at the time of rapid temperature rise serves as a buffer material with insulating ceramics having different linear expansion coefficients, and the load can be reduced. Dielectric breakdown (short) can be made difficult.
  • one end of the resistor 3 located on the rear side is on the positive electrode side.
  • the resistor 3 junction portion in which the rear end of the positive electrode side joint portion 51 to which a load is applied first due to the inrush current at the time of current application is the most thermally expanded in the width direction perpendicular to the axial direction of the lead 4 52) (due to the absence of the resistor 3 when viewed in the width direction from the rear end of the joint 51), it is possible to disperse the load during repeated use. It becomes difficult.
  • the position of the tip of the joint 51 between one end of the resistor 3 and the lead 4 and the position of the tip of the joint 52 between the other end of the resistor 3 and the lead 4 are the axis of the lead 4. It is preferable that the directions are different (shifted). According to this shape, not only the rear end of the joint portion 51 and the rear end of the joint portion 52 but also the front end of the joint portion 51 and the front end of the joint portion 52 are displaced with respect to the axial direction of the lead 4. The stress synthesized in the width direction perpendicular to the axial direction of the lead 4 is reduced, the load is reduced, and the dielectric breakdown (short circuit) is difficult to occur.
  • the tip of the joint 51 between one end of the resistor 3 and the lead 4 is located behind the rear end of the joint 52 between the other end of the resistor 3 and the lead 4. Is preferred. According to this shape, since the joint portion 51 and the joint portion 52 are completely deviated with respect to the axial direction of the lead 4, almost no stress is synthesized in the width direction perpendicular to the axial direction of the lead 4 at the time of rapid temperature rise. The load becomes smaller and it becomes difficult for dielectric breakdown (short circuit).
  • the above heater 1 can be used for a glow plug (not shown). That is, the glow plug (not shown) of the present invention is electrically connected to the end of one of the above-described heater 1 and a pair of leads 4 constituting the heater 1 and the heater 1.
  • the structure includes a metal holding member (sheath metal fitting) to be held. With this structure, the heater 1 is less likely to cause dielectric breakdown (short circuit), and thus a glow plug that can be used for a long time can be realized.
  • the heater 1 of the present embodiment can be formed by, for example, an injection molding method using a die having the shape of the resistor 3, the lead 4 and the insulating base 2 having the configuration of the present embodiment.
  • a conductive paste to be the resistor 3 and the lead 4 including the conductive ceramic powder and the resin binder is manufactured, and a ceramic paste to be the insulating base 2 including the insulating ceramic powder and the resin binder is manufactured.
  • a conductive paste molded body (molded body a) having a predetermined pattern to be the resistor 3 is formed by an injection molding method or the like using the conductive paste. Then, with the molded body a held in the mold, the conductive paste is filled into the mold to form a conductive paste molded body (molded body b) having a predetermined pattern to be the leads 4. Thereby, the molded product a and the molded product b connected to the molded product a are held in the mold.
  • a part of the mold is replaced with one for molding the insulating base 2, and then the ceramic paste that becomes the insulating base 2 in the mold Fill.
  • a molded body (molded body d) of the heater 1 in which the molded body a and the molded body b are embedded in a ceramic paste molded body (molded body c) is obtained.
  • the obtained molded body d is fired at a temperature of 1650 ° C. to 1780 ° C. and a pressure of 30 MPa to 50 MPa, whereby the heater 1 can be manufactured.
  • the firing is preferably performed in a non-oxidizing gas atmosphere such as hydrogen gas.
  • the heater 1 of this embodiment is completed.
  • the heater of the example of the present invention was manufactured as follows.
  • a conductive paste containing 50% by mass of tungsten carbide (WC) powder, 35% by mass of silicon nitride (Si 3 N 4 ) powder, and 15% by mass of a resin binder is injection-molded into a mold, as shown in FIG. A molded body a which becomes a resistor having a shape as shown was produced.
  • WC tungsten carbide
  • Si 3 N 4 silicon nitride
  • the conductive paste serving as a lead is filled in the mold to be connected to the molded body a and have a shape as shown in FIG. A molded body b to be a lead was produced.
  • the positions of the tip of the joint 51 and the tip of the joint 52 in the lead axis direction are the same, the length of the joint 51 in the lead axis direction is 0.9 mm, and the length of the joint 52 in the lead axis direction is 1.0.
  • the position of the rear end of the joint 51 and the rear end of the joint 52 in the lead axis direction was shifted by 0.1 mm.
  • the positions in the lead axis direction of the joint 51 and the tips of the joint 52 match, and the positions in the lead axis between the rear end of the joint 51 and the rear end of the joint 52 are the same. I made a glow plug.
  • a cold cycle test was conducted using these glow plugs.
  • the conditions of the thermal cycle test are as follows: First, energize the heater and set the applied voltage so that the temperature of the resistor is 1400 ° C. 1) Energize for 5 minutes, 2) Deenergize for 2 minutes 1), 2) The cycle was 10,000 cycles.
  • the resistance change of the sample of the example of the present invention was 1% or less and no microcracks were observed.
  • the resistance change of the sample of the comparative example was 5% or more, and microcracks were confirmed.
  • Heater 2 Insulating substrate 3: Resistor 31: Heat generation part 4: Lead 51, 52: Joint

Abstract

 【課題】 抵抗体とリードとの接合部にクラックが入ってリード間の絶縁破壊が起こるのを抑制されたヒータおよびこれを備えたグロープラグを提供する。 【解決手段】 本発明のヒータ1は、折返し形状をなした抵抗体3と、抵抗体3のそれぞれの端部に接合された一対のリード4と、先方に抵抗体3を埋設するとともに後方に一対のリード4を埋設した絶縁基体2とを備え、抵抗体3とリード4との接合部51,52において、リード4の軸方向に垂直な方向に抵抗体3とリード4とが重なっており、抵抗体3の一方の端部とリード4との接合部51の後端が、抵抗体3の他方の端部とリード4との接合部52の後端よりも後方に位置している。

Description

ヒータおよびこれを備えたグロープラグ
 本発明は、例えば燃焼式車載暖房装置における点火用若しくは炎検知用のヒータ、石油ファンヒータ等の各種燃焼機器の点火用のヒータ、自動車エンジンのグロープラグ用のヒータ、酸素センサ等の各種センサ用のヒータ、測定機器の加熱用のヒータ等に利用されるヒータおよびこれを備えたグロープラグに関するものである。
 ディーゼルエンジンの着火補助用として用いられるグロープラグは、例えば、折返し形状をなした抵抗体と、抵抗体のそれぞれの端部に接合された一対のリードと、先方に抵抗体を埋設するとともに後方に前記一対のリードを埋設した絶縁基体とを備えたヒータを含む構成になっている。このような構成のグロープラグは、強まる環境規制への対応の為、排ガス浄化用のアフターグローとしての使用もされるなど、より高温・高耐久性が求められている。
 これらの要求に応えるため、より高温での使用が可能なセラミック製グロープラグが使用されているが、抵抗体とリードとの接合部は抵抗変化や熱膨張差によりマイクロクラックの等の発生頻度が高く、これによる抵抗変化やリード間の絶縁破壊(ショート)が問題とる。
 そこで、マイクロクラックの発生しやすい抵抗体とリードとの接合面がリードの軸に平行な断面で見たときに斜めとなるようにしてその面積を大きくして耐久性を向上させる等の対応が取られている(特許文献1、特許文献2を参照)。
特開2002-334768号公報 特開2003-22889号公報
 しかしながら、抵抗値の変わる抵抗体とリードとの接合部では、抵抗体とリードとの収縮差により、依然として負荷が大きい。リードの軸方向に垂直な方向に抵抗体とリードとが重なっており、抵抗体の両端とリードとのそれぞれの接合部がリードの軸方向に垂直な幅方向で切断した断面上に位置していることで、特に急速昇温時にそれぞれの接合部における幅方向の熱膨張による応力が合成されるからであり、その結果、抵抗体とリードとの接合部の周囲、特に絶縁基体の対向する接合部間においてマイクロクラックが入りやすく、リード間での絶縁破壊(ショート)を起こすおそれがある。
 本発明は上記の事情に鑑みてなされたもので、抵抗体とリードとの接合部にクラックが入ってリード間の絶縁破壊が起こるのを抑制されたヒータおよびこれを備えたグロープラグを提供することを目的とする。
 本発明のヒータは、折返し形状をなした抵抗体と、該抵抗体のそれぞれの端部に接合された一対のリードと、先方に前記抵抗体を埋設するとともに後方に前記一対のリードを埋設した絶縁基体とを備え、前記抵抗体と前記リードとの接合部において、前記リードの軸方向に垂直な方向に前記抵抗体と前記リードとが重なっており、前記抵抗体の一方の端部と前記リードとの前記接合部の後端が、前記抵抗体の他方の端部と前記リードとの前記接合部の後端よりも後方に位置していることを特徴とするものである。
 また、本発明のヒータは、上記の構成において、前記接合部において、前記リードの軸方向に垂直な断面で視たとき、前記リードが前記抵抗体の端部を取り囲んでいることを特徴とするものである。
 また、本発明のヒータは、上記の構成において、前記抵抗体の一方の端部が正極側であることを特徴とするものである。
 また、本発明のヒータは、上記の構成において、前記抵抗体の一方の端部と前記リードとの前記接合部の先端の位置と前記抵抗体の他方の端部と前記リードとの前記接合部の先端の位置とが、前記リードの軸方向に関して異なっていることを特徴とするものである。
 また、本発明のヒータは、上記の構成において、前記抵抗体の一方の端部と前記リードとの前記接合部の先端が、前記抵抗体の他方の端部と前記リードとの前記接合部の後端よりも後方に位置していることを特徴とするものである。
 また、本発明のグロープラグは、上記の構成のいずれかに記載のヒータと、前記一対のリードの一方の端部に電気的に接続されるとともに前記ヒータを保持する金属製保持部材とを備えたことを特徴とするものである。
 本発明のヒータによれば、抵抗体の一方の端部とリードとの接合部の後端が、抵抗体の他方の端部とリードとの接合部の後端よりも後方に位置していることにより、急速昇温時に最も熱膨張するそれぞれの接合部の後端に加わる熱応力がリードの軸方向に垂直な幅方向で合成されてなる応力が小さくなり、負荷が小さくなるため絶縁破壊(ショート)しにくくすることができる。
本発明のヒータの実施の形態の一例を示す縦断面図である。 (a)は図1に示す抵抗体とリードとの接合部を含む領域Aを拡大した拡大断面図であり、(b)は(a)に示すX-X線断面図である。 (a)は本発明のヒータの実施の形態の他の例を示す抵抗体とリードとの接合部を含む領域を拡大した拡大断面図であり、(b)は(a)に示すX-X線断面図である。
 本発明のヒータの実施の形態の例について図面を参照して詳細に説明する。
 図1は本発明のヒータの実施の形態の一例を示す縦断面図である。また、図2(a)は図1に示す抵抗体とリードとの接合部を含む領域Aを拡大した拡大断面図であり、図2(b)は図2(a)に示すX-X線断面図である。また、図3(a)は本発明のヒータの実施の形態の他の例を示す抵抗体とリードとの接合部を含む領域を拡大した拡大断面図であり、図3(b)は図3(a)に示すX-X線断面図である。
 本実施の形態のヒータ1は、折返し形状をなした抵抗体3と、抵抗体3のそれぞれの端部に接合された一対のリード4と、先方に抵抗体3を埋設するとともに後方に一対のリード4を埋設した絶縁基体2とを備え、抵抗体3とリード4との接合部51,52において、リード4の軸方向に垂直な方向に抵抗体3とリード4とが重なっており、抵抗体3の一方の端部とリード4との接合部51の後端が、抵抗体3の他方の端部とリード4との接合部52の後端よりも後方に位置している。
 本実施の形態のヒータ1における絶縁基体2は、例えば棒状または板状に形成されたものである。この絶縁基体2には抵抗体3および一対のリード4が埋設されている。ここで、絶縁基体2はセラミックスからなることが好ましく、これにより急速昇温時の信頼性が高いヒータ1を提供することが可能になる。具体的には、酸化物セラミックス,窒化物セラミックス,炭化物セラミックス等の電気的な絶縁性を有するセラミックスが挙げられる。特に、絶縁基体2は、窒化珪素質セラミックスからなることが好適である。窒化珪素質セラミックスは、主成分である窒化珪素が高強度、高靱性、高絶縁性および耐熱性の観点で優れているからである。窒化珪素質セラミックスからなる絶縁基体2は、例えば、主成分の窒化珪素に対して、焼結助剤として3~12質量%のY,Yb,Er等の希土類元素酸化物、0.5~3質量%のAl、さらに焼結体に含まれるSiO量として1.5~5質量%となるようにSiOを混合し、所定の形状に成形し、その後、1650~1780℃でホットプレス焼成することにより得ることができる。絶縁基体2の長さは、例えば20~50mmに形成され、絶縁基体2の直径は例えば3~5mmに形成される。
 なお、絶縁基体2として窒化珪素質セラミックスからなるものを用いる場合、MoSiO,WSi等を混合し分散させることが好ましい。この場合、母材である窒化珪素質セラミックスの熱膨張率を抵抗体3の熱膨張率に近づけることができ、ヒータ1の耐久性を向上させることができる。
 絶縁基体2に埋設された抵抗体3は、縦断面の形状が折返し形状をなしていて、先端に位置する折返し形状の中央付近(折返しの中間点付近)が最も発熱する発熱部31となっている。この抵抗体3は絶縁基体2の先端側に埋設されていて、抵抗体3の先端(折返し形状の中央付近)から抵抗体3の後端(接合部51の後端)までの距離は例えば2~10mmに形成される。なお、抵抗体3の横断面の形状は、円、楕円、矩形などいずれの形状でもよく、通常は後述するリード4よりも断面積が小さくなるように形成される。
 抵抗体3の形成材料としては、W,Mo,Tiなどの炭化物、窒化物、珪化物などを主成分とするものを使用することができる。絶縁基体2が窒化珪素質セラミックスからなる場合、絶縁基体2との熱膨張率の差が小さい点、高い耐熱性を有する点および比抵抗が小さい点で、上記の材料のなかでも炭化タングステン(WC)が抵抗体3の材料として優れている。さらに、絶縁基体2が窒化珪素質セラミックスからなる場合、抵抗体3は、無機導電体のWCを主成分とし、これに添加される窒化珪素の含有率が20質量%以上であるものが好ましい。例えば、窒化珪素質セラミックスからなる絶縁基体2中において、抵抗体3となる導体成分は窒化珪素と比較して熱膨張率が大きいため、通常は引張応力がかかった状態にある。これに対して、抵抗体3中に窒化珪素を添加することにより、熱膨張率を絶縁基体2のそれに近づけて、ヒータ1の昇温時および降温時の熱膨張率の差による応力を緩和することができる。また、抵抗体3に含まれる窒化珪素の含有量が40質量%以下であるときには、抵抗体3の抵抗値を比較的小さくして安定させることができる。従って、抵抗体3に含まれる窒化珪素の含有量は20質量%~40質量%であることが好ましい。より好ましくは、窒化珪素の含有量は25質量%~35質量%がよい。また、抵抗体3への同様の添加物として、窒化珪素の代わりに窒化硼素を4質量%~12質量%添加することもできる。
 絶縁基体2に埋設されたリード4は、一端側で抵抗体3に接続され、他端側は絶縁基体2の表面に導出されている。図1に示すものは、一端から他端にかけて折返し形状をなす抵抗体3の両端部(一方の端部および他方の端部)にそれぞれリード4が接合されている。そして、一方のリード4は、一端が抵抗体3の一端に接続され、他端が絶縁基体2の後端寄りの側面から露出している。また、他方のリード4は、一端が抵抗体3の他端に接続され、他端が絶縁基体2の後端部から露出している。
 このリード4は、抵抗体3と同様の材料を用いて形成され、例えば、抵抗体3よりも断面積を大きくしたり、絶縁基体2の形成材料の含有量を抵抗体3よりも少なくしたりすることによって、単位長さ当たりの抵抗値が低くなっているものである。特に、WCが、絶縁基体2との熱膨張率の差が小さい点、高い耐熱性を有する点および比抵抗が小さい点で、リード4の材料として好適である。また、リード4は無機導電体であるWCを主成分とし、これに窒化珪素を含有量が15質量%以上となるように添加することが好ましい。窒化珪素の含有量が増すにつれてリード4の熱膨張率を、絶縁基体2を構成する窒化珪素の熱膨張率に近づけることができる。また、窒化珪素の含有量が40質量%以下であるときには、リード4の抵抗値が小さくなるとともに安定する。従って、窒化珪素の含有量は15質量%~40質量%が好ましい。より好ましくは、窒化珪素の含有量は20質量%~35質量%とするのがよい。
 そして、抵抗体3とリード4との接合部51,52において、リード4の軸方向に垂直な方向に抵抗体3とリード4とが重なっており、抵抗体3の一方の端部とリード4との接合部51の後端が、抵抗体3の他方の端部とリード4との接合部52の後端よりも後方に位置している。
 ここで、抵抗体3とリード4との接合部51,52においてリード4の軸方向に垂直な方向に抵抗体3とリード4とが重なっているとは、接合部51,52をリード4の軸方向に垂直な横断面で視たときに抵抗体3とリード4とを含む形状になっていることをいう。例えば、一方のリード4および他方のリード4の両方の軸を含む縦断面で接合部51、52をで視たとき、リード4が内側で抵抗体が外側に配置され、接合面がリード4の軸方向に垂直な方向から傾いている形状である。接合部51,52のそれぞれのリード4の軸方向に関する長さ(接合部51,52の先端から後端までの距離は、例えば0.5~3mmに形成される。
 接合部51,52の形状としては、例えば図2に示すようにヒータ1の縦断面で見て接合面がリード4の軸方向に垂直な方向から傾いている形状が挙げられるが、この形状に限定されるものではなく、後述する図3に示すようなリード4の軸方向に垂直な断面で視たときにリード4が抵抗体3の端部を取り囲んでいる形状も含まれる。
 上述のような接合面がリード4の軸方向に垂直な方向から傾いている形状である場合に、急速昇温時に最も熱膨張するそれぞれの接合部51,52の後端に加わる熱応力がリードの軸方向に垂直な幅方向で合成されてなる幅方向への応力によって、マイクロクラックが入りやすく、リード間での絶縁破壊(ショート)を起こすおそれがある。
 そこで、抵抗体3の一方の端部とリード4との接合部51の後端が、抵抗体3の他方の端部とリード4との接合部52の後端よりも後方に位置している。換言すれば、接合部51の後端の位置と接合部52の後端の位置とがリード4の軸方向に関して異なっている(ずれている)。
 なお、接合部51の後端の位置と接合部52の後端の位置とのずれの距離に関して、接合部51の後端は接合部52の後端よりも10μm~2mm後方に位置しているのが効果的である。また、リード4の軸方向に関して接合部51の先端の位置と接合部52の先端の位置が同じ場合には、一方の接合面(例えば正極側の接合面)のリード4の軸方向に垂直な方向から傾斜した傾斜角は、他方の接合面(例えば負極側の接合面)のリード4の軸方向に垂直な方向から傾斜した傾斜角よりも0.1~15度傾斜しているのがよい。
 この構成によれば、急速昇温時に最も熱膨張するそれぞれの接合部の後端に加わる熱応力がリード4の軸方向に垂直な幅方向で合成されてなる幅方向への応力が小さくなり、負荷が小さくなるため絶縁破壊(ショート)しにくくすることができる。
 ここで、図3に示すように、接合部51,52において、リード4の軸方向に垂直な断面で視たとき、リード4が抵抗体3の端部を取り囲んでいることが好ましい。この形状によれば、急速昇温時、熱膨張する抵抗体3を覆うリード4が、線膨張係数の違う絶縁性セラミックスとの緩衝材の役割を果たし、負荷を低減することができるため、より絶縁破壊(ショート)しにくくすることができる。
 また、後方に位置している抵抗体3の一方の端部が正極側であることが好ましい。この形状によれば、電流印加時の突入電流によって最初に負荷のかかる正極側の接合部51の後端が、リード4の軸方向に垂直な幅方向において最も熱膨張する抵抗体3(接合部52)の断面とずれる(接合部51の後端から幅方向を見たときに抵抗体3がない)ことによって、繰り返し使用時の負荷を分散させることができるため、さらに絶縁破壊(ショート)しにくくなる。
 また、抵抗体3の一方の端部とリード4との接合部51の先端の位置と抵抗体3の他方の端部とリード4との接合部52の先端の位置とが、リード4の軸方向に関して異なっている(ずれている)ことが好ましい。この形状によれば、接合部51の後端および接合部52の後端のみならず、接合部51の先端および接合部52の先端もリード4の軸方向に関してずれているため、急速昇温時、リード4の軸方向に垂直な幅方向へ合成される応力が小さくなり、負荷が小さくなって絶縁破壊(ショート)しにくくなる。
 また、抵抗体3の一方の端部とリード4との接合部51の先端が、抵抗体3の他方の端部とリード4との接合部52の後端よりも後方に位置していることが好ましい。この形状によれば、接合部51と接合部52とがリード4の軸方向に関して完全にずれているため、急速昇温時、リード4の軸方向に垂直な幅方向へ合成される応力がほとんどなくなり、負荷が小さくなって絶縁破壊(ショート)しにくくなる。
 上述のヒータ1はグロープラグ(図示せず)に用いることができる。すなわち、本発明のグロープラグ(図示せず)は、上述のヒータ1と、ヒータ1を構成する一対のリード4のうちの一方のリード4の端部に電気的に接続されるとともにヒータ1を保持する金属製保持部材(シース金具)とを備えた構成であり、この構成により、ヒータ1が絶縁破壊(ショート)しにくいことから、長期間使用可能なグロープラグを実現することができる。
 次に、本実施の形態のヒータ1の製造方法の一例について説明する。
 本実施の形態のヒータ1は、例えば、上記本実施の形態の構成の抵抗体3、リード4および絶縁基体2の形状の金型を用いた射出成形法等によって形成することができる。
 まず、導電性セラミック粉末,樹脂バインダー等を含む、抵抗体3およびリード4となる導電性ペーストを作製するとともに、絶縁性セラミック粉末,樹脂バインダー等を含む絶縁基体2となるセラミックペーストを作製する。
 次に、導電性ペーストを用いて射出成形法等によって抵抗体3となる所定パターンの導電性ペーストの成形体(成形体a)を形成する。そして、成形体aを金型内に保持した状態で、導電性ペーストを金型内に充填してリード4となる所定パターンの導電性ペーストの成形体(成形体b)を形成する。これにより、成形体aと、この成形体aに接続された成形体bとが、金型内に保持された状態となる。
 次に、金型内に成形体aおよび成形体bを保持した状態で、金型の一部を絶縁基体2の成形用のものに取り替えた後、金型内に絶縁基体2となるセラミックペーストを充填する。これにより、成形体aおよび成形体bがセラミックペーストの成形体(成形体c)に埋設されたヒータ1の成形体(成形体d)が得られる。
 次に、得られた成形体dを1650℃~1780℃の温度、30MPa~50MPaの圧力で焼成することにより、ヒータ1を作製することができる。なお、焼成は水素ガス等の非酸化性ガス雰囲気中で行なうことが好ましい。
 以上の方法で、本実施の形態のヒータ1が完成する。
 本発明の実施例のヒータを以下のようにして作製した。
 まず、炭化タングステン(WC)粉末を50質量%、窒化珪素(Si)粉末を35質量%、樹脂バインダーを15質量%含む導電性ペーストを、金型内に射出成形して図1に示すような形状の抵抗体となる成形体aを作製した。
 次に、この成形体aを金型内に保持した状態で、リードとなる上記の導電性ペーストを金型内に充填することにより、成形体aと接続させて図1に示すような形状のリードとなる成形体bを作製した。
 次に、成形体aおよび成形体bを金型内に保持した状態で、窒化珪素(Si)粉末を85質量%、焼結助剤としてのイッテリビウム(Yb)の酸化物(Yb)を10質量%、抵抗体およびリードに熱膨張率を近づけるための炭化タングステン(WC)を5質量%含むセラミックペーストを、金型内に射出成形した。これにより、絶縁基体となる成形体c中に成形体aおよび成形体bが埋設された構成の成形体dを作製した。
 次に、得られた成形体dを円筒状の炭素製の型に入れた後、窒素ガスから成る非酸化性ガス雰囲気中で、1700℃の温度、35MPaの圧力の圧力でホットプレスを行ない焼結して、本発明実施例となるヒータを作製した。そして、得られたヒータの後端寄りの側面に露出したリード端部に筒状の金属製保持部材をロウ付けしてグロープラグを作製した。
 なお、接合部51の先端と接合部52の先端とのリード軸方向に関する位置は一致しており、接合部51のリード軸方向長さは0.9mm、接合部52のリード軸方向長さは1.0mmであり、接合部51の後端と接合部52の後端とのリード軸方向に関する位置は0.1mmずれていた。
 一方、比較例として、接合部51の先端と接合部52の先端とのリード軸方向に関する位置が一致し、接合部51の後端と接合部52の後端とのリード軸方向に関する位置も一致しているグロープラグも作製した。
 これらのグロープラグを用いて冷熱サイクル試験を行なった。冷熱サイクル試験の条件は、まずヒータに通電して抵抗体の温度が1400℃になるように印加電圧を設定し、1)5分間通電、2)2分間非通電の1),2)を1サイクルとし、1万サイクル繰り返した。
 冷熱サイクル試験前後のヒータの抵抗値の変化を測定したところ、本発明実施例の試料は抵抗変化が1%以下で、マイクロクラックも見られなかった。これに対し、比較例の試料は、抵抗変化が5%以上であり、マイクロクラックが確認された。
1:ヒータ
2:絶縁基体
3:抵抗体
31:発熱部
4:リード
51,52:接合部

Claims (6)

  1.  折返し形状をなした抵抗体と、該抵抗体のそれぞれの端部に接合された一対のリードと、
    先方に前記抵抗体を埋設するとともに後方に前記一対のリードを埋設した絶縁基体とを備え、前記抵抗体と前記リードとの接合部において、前記リードの軸方向に垂直な方向に前記抵抗体と前記リードとが重なっており、
    前記抵抗体の一方の端部と前記リードとの前記接合部の後端が、前記抵抗体の他方の端部と前記リードとの前記接合部の後端よりも後方に位置していることを特徴とするヒータ。
  2.  前記接合部において、前記リードの軸方向に垂直な断面で視たとき、前記リードが前記抵抗体の端部を取り囲んでいることを特徴とする請求項1に記載のヒータ。
  3.  前記抵抗体の一方の端部が正極側であることを特徴とする請求項1または請求項2に記載のヒータ。
  4.  前記抵抗体の一方の端部と前記リードとの前記接合部の先端の位置と前記抵抗体の他方の端部と前記リードとの前記接合部の先端の位置とが、前記リードの軸方向に関して異なっていることを特徴とする請求項1または請求項2に記載のヒータ。
  5.  前記抵抗体の一方の端部と前記リードとの前記接合部の先端が、前記抵抗体の他方の端部と前記リードとの前記接合部の後端よりも後方に位置していることを特徴とする請求項1または請求項2に記載のヒータ。
  6.  請求項1または請求項2に記載のヒータと、前記一対のリードのうちの一方のリードの端部に電気的に接続されるとともに前記ヒータを保持する金属製保持部材とを備えたグロープラグ。
PCT/JP2012/051170 2011-01-20 2012-01-20 ヒータおよびこれを備えたグロープラグ WO2012099232A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2012800058798A CN103329615A (zh) 2011-01-20 2012-01-20 加热器以及具有该加热器的电热塞
EP12736794.4A EP2667686B1 (en) 2011-01-20 2012-01-20 Heater and glow plug provided with same
KR1020137019531A KR101488748B1 (ko) 2011-01-20 2012-01-20 히터 및 이것을 구비한 글로 플러그
US13/980,628 US9291144B2 (en) 2011-01-20 2012-01-20 Heater and glow plug including the same
JP2012553776A JP5827247B2 (ja) 2011-01-20 2012-01-20 ヒータおよびこれを備えたグロープラグ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011009953 2011-01-20
JP2011-009953 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012099232A1 true WO2012099232A1 (ja) 2012-07-26

Family

ID=46515849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051170 WO2012099232A1 (ja) 2011-01-20 2012-01-20 ヒータおよびこれを備えたグロープラグ

Country Status (6)

Country Link
US (1) US9291144B2 (ja)
EP (1) EP2667686B1 (ja)
JP (2) JP5827247B2 (ja)
KR (1) KR101488748B1 (ja)
CN (1) CN103329615A (ja)
WO (1) WO2012099232A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701979B2 (ja) 2011-04-27 2015-04-15 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
JP5909573B2 (ja) * 2015-03-24 2016-04-26 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
JP6592103B2 (ja) * 2015-11-27 2019-10-16 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
JP6740995B2 (ja) * 2017-06-30 2020-08-19 株式会社デンソー 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置
JP6879190B2 (ja) * 2017-12-19 2021-06-02 株式会社デンソー 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186971U (ja) * 1985-05-09 1986-11-21
JP2000130754A (ja) * 1998-10-26 2000-05-12 Ngk Spark Plug Co Ltd セラミックグロープラグ
JP2002334768A (ja) 2001-05-02 2002-11-22 Ngk Spark Plug Co Ltd セラミックヒータ及びそれを用いたグロープラグ
JP2003022889A (ja) 2001-05-02 2003-01-24 Ngk Spark Plug Co Ltd セラミックヒータ、それを用いたグロープラグ及びセラミックヒータの製造方法
JP2006049279A (ja) * 2004-06-29 2006-02-16 Ngk Spark Plug Co Ltd セラミックヒータ、グロープラグ及びセラミックヒータの製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195580A (ja) * 1985-02-22 1986-08-29 京セラ株式会社 セラミツクヒ−タ
JPH01313362A (ja) * 1988-06-09 1989-12-18 Ngk Spark Plug Co Ltd セラミック発熱体およびその製造方法
JP3044630B2 (ja) 1991-02-06 2000-05-22 ボッシュ ブレーキ システム株式会社 セラミックヒータ型グロープラグ
JP2804393B2 (ja) * 1991-07-31 1998-09-24 京セラ株式会社 セラミックヒータ
WO1997038223A1 (fr) * 1996-04-10 1997-10-16 Denso Corporation Bougie de prechauffage, son procede de fabrication, et detecteur de courant ionique
JPH10208853A (ja) * 1996-11-19 1998-08-07 Ngk Spark Plug Co Ltd セラミックヒータ、およびその製造方法
US6483089B1 (en) * 1999-05-26 2002-11-19 Aladdin Temp-Rite, Llc Heat retentive food storage/delivery container and system
JP3810947B2 (ja) 1999-06-16 2006-08-16 ボッシュ株式会社 セラミックヒータ型グロープラグ
JP3889536B2 (ja) * 1999-10-29 2007-03-07 日本特殊陶業株式会社 セラミックヒータ及びその製造方法、並びに該セラミックヒータを備えるグロープラグ
JP2001165440A (ja) * 1999-12-08 2001-06-22 Ngk Spark Plug Co Ltd グロープラグ及びその製造方法
JP2001324141A (ja) * 2000-05-16 2001-11-22 Bosch Automotive Systems Corp セラミックヒータ型グロープラグおよびその製造方法
JP4253444B2 (ja) * 2001-02-21 2009-04-15 日本特殊陶業株式会社 セラミックグロープラグ
US6653601B2 (en) 2001-05-02 2003-11-25 Ngk Spark Plug Co., Ltd. Ceramic heater, glow plug using the same, and method for manufacturing the same
JP2003148731A (ja) * 2001-08-28 2003-05-21 Ngk Spark Plug Co Ltd グロープラグ
EP1612486B1 (en) 2004-06-29 2015-05-20 Ngk Spark Plug Co., Ltd Glow plug
WO2007013497A1 (ja) * 2005-07-26 2007-02-01 Kyocera Corporation ロウ付け構造体、セラミックヒータおよびグロープラグ
JP5188506B2 (ja) * 2007-10-29 2013-04-24 京セラ株式会社 セラミックヒータおよびこれを備えたグロープラグ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186971U (ja) * 1985-05-09 1986-11-21
JP2000130754A (ja) * 1998-10-26 2000-05-12 Ngk Spark Plug Co Ltd セラミックグロープラグ
JP2002334768A (ja) 2001-05-02 2002-11-22 Ngk Spark Plug Co Ltd セラミックヒータ及びそれを用いたグロープラグ
JP2003022889A (ja) 2001-05-02 2003-01-24 Ngk Spark Plug Co Ltd セラミックヒータ、それを用いたグロープラグ及びセラミックヒータの製造方法
JP2006049279A (ja) * 2004-06-29 2006-02-16 Ngk Spark Plug Co Ltd セラミックヒータ、グロープラグ及びセラミックヒータの製造方法

Also Published As

Publication number Publication date
CN103329615A (zh) 2013-09-25
EP2667686A4 (en) 2017-06-21
US9291144B2 (en) 2016-03-22
JP6139629B2 (ja) 2017-05-31
KR101488748B1 (ko) 2015-02-03
US20130291819A1 (en) 2013-11-07
JP2016006803A (ja) 2016-01-14
KR20130103612A (ko) 2013-09-23
EP2667686A1 (en) 2013-11-27
EP2667686B1 (en) 2019-03-13
JPWO2012099232A1 (ja) 2014-06-30
JP5827247B2 (ja) 2015-12-02

Similar Documents

Publication Publication Date Title
JP6139629B2 (ja) ヒータおよびこれを備えたグロープラグ
JP6247375B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5436675B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5575260B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5766282B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5721584B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5864301B2 (ja) ヒータおよびこれを備えたグロープラグ
JP6199951B2 (ja) ヒータおよびこれを備えたグロープラグ
WO2014003093A1 (ja) ヒータおよびこれを備えたグロープラグ
JP5944815B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5726311B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5829691B2 (ja) ヒータおよびこれを備えたグロープラグ
JP6272519B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5829443B2 (ja) ヒータおよびこれを備えたグロープラグ
JP6085050B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5909573B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5751968B2 (ja) ヒータおよびこれを備えたグロープラグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553776

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980628

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137019531

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012736794

Country of ref document: EP