WO2012099220A1 - 3次元形状計測方法および3次元形状計測装置 - Google Patents
3次元形状計測方法および3次元形状計測装置 Download PDFInfo
- Publication number
- WO2012099220A1 WO2012099220A1 PCT/JP2012/051125 JP2012051125W WO2012099220A1 WO 2012099220 A1 WO2012099220 A1 WO 2012099220A1 JP 2012051125 W JP2012051125 W JP 2012051125W WO 2012099220 A1 WO2012099220 A1 WO 2012099220A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hologram
- measurement
- light
- dimensional shape
- object surface
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 153
- 238000000691 measurement method Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 129
- 238000001914 filtration Methods 0.000 claims abstract description 27
- 238000000605 extraction Methods 0.000 claims abstract description 14
- 239000013598 vector Substances 0.000 claims description 22
- 230000001427 coherent effect Effects 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- 238000001093 holography Methods 0.000 abstract description 11
- 230000008901 benefit Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 63
- 230000008569 process Effects 0.000 description 56
- 230000003287 optical effect Effects 0.000 description 47
- 238000005286 illumination Methods 0.000 description 30
- 238000012545 processing Methods 0.000 description 24
- 238000009826 distribution Methods 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000004364 calculation method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 238000003384 imaging method Methods 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 230000036544 posture Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000002366 time-of-flight method Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0866—Digital holographic imaging, i.e. synthesizing holobjects from holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
- G03H2001/0033—Adaptation of holography to specific applications in hologrammetry for measuring or analysing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0443—Digital holography, i.e. recording holograms with digital recording means
- G03H2001/0445—Off-axis recording arrangement
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2210/00—Object characteristics
- G03H2210/30—3D object
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2210/00—Object characteristics
- G03H2210/62—Moving object
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2222/00—Light sources or light beam properties
- G03H2222/35—Transverse intensity distribution of the light beam
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2222/00—Light sources or light beam properties
- G03H2222/40—Particular irradiation beam not otherwise provided for
- G03H2222/44—Beam irradiating the object at recording stage
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2223/00—Optical components
- G03H2223/18—Prism
Definitions
- the present invention relates to a three-dimensional shape measurement method and a three-dimensional shape measurement apparatus using digital holography.
- various three-dimensional light measurement methods for a rough object are known.
- a projector that uses a lattice image obtained by projecting a lattice pattern onto a target object from a projector.
- a spot light method that captures the spot of the beam light irradiated on the target object and obtains the spatial coordinates from the image formation position in the image, and a slit-shaped light on the object is irradiated with slit light.
- these measurement methods mainly target stationary objects, and there is a limit to highly accurate three-dimensional shape measurement of moving objects.
- these methods use an imaging lens for a projector or a photographing optical system (camera), which causes measurement errors due to image distortion or focus shift, and limits the accuracy of three-dimensional measurement.
- intensity modulated light of pulse laser light or CW laser light is emitted, and scattered reflected light from the object surface is recorded at 30 frames per second, and the original modulated signal and the reflected modulated signal of the light are reflected.
- a TOF type three-dimensional distance measuring camera for obtaining a distance from a phase difference to a target object has appeared.
- the distance measurement accuracy is only about 1 cm, and in order to realize accuracy of 1 mm or less, there are problems such as pulsing in the light source, speeding up the intensity modulation of the CW wave, and speeding up the signal processing circuit. It has become.
- a rough surface shape interference measurement method using holography has been studied.
- Holography is a technique for recording an object light wavefront and reproducing a light wavefront or an image in a three-dimensional space.
- This interference measurement method requires two holograms for generating interference fringes, and basically the measurement object is limited to a stationary object.
- interference fringe analysis and phase connection are usually performed.
- the phase connection is prone to errors due to speckle effects. Speckle occurs in the interference measurement of the rough surface shape.
- the contrast of the observed interference fringes decreases when the object surface is removed, and is localized near the surface.
- errors are likely to occur due to speckles and the localization of interference fringes.
- interference fringe analysis and phase connection which are essential in interferometry, are prone to errors for objects with large depths and complex shapes with discontinuous surfaces. Is not suitable.
- a focusing method as a method for obtaining the object shape from the contrast of the object image recorded by the image sensor.
- the focusing method a plurality of images are recorded while changing the focal length of the lens, and the object surface position is obtained by obtaining the focus position (focus point) of the object surface from the recorded images.
- the focusing method it is necessary to instantaneously record a plurality of images having different focal lengths. Therefore, as a method for realizing the dynamic shape measurement of the micro component, a focusing method utilizing the advantage of free focus image reproduction by holography has been proposed (for example, see Patent Document 1).
- the measurement method using the focusing method described in Patent Document 1 described above is intended for measuring a component that reflects light, such as a mirror or a lens, and is applied to a rough surface object that emits scattered light. It cannot be applied. This is because, when a rough surface object is irradiated with laser light, speckles (speckle patterns) are generated and the speckles become noise, so that the measurement accuracy is remarkably lowered. Therefore, it can be said that a highly accurate three-dimensional measurement method for the shape of a moving object has not been known.
- being able to measure with high accuracy means, for example, that it can be measured with accuracy of about the wavelength of light in principle.
- optical three-dimensional measurement that measures the surface shape of an object in a non-contact manner includes a designation stage in which a marker is added to the object surface to specify a measurement point, a fixing stage in which the surface position to which the marker is added is fixed, and a marker This is performed through a three-stage process called a measurement stage for obtaining the distance to the point to which is added.
- the previous two steps are performed continuously.
- the designation stage is a stage for assigning a ruler.
- the fixing step is a step of acquiring an image or hologram of an object with a ruler.
- the measurement stage is a stage for reading a ruler in an image or a hologram.
- it is necessary to use a sufficiently long ruler that is accurate to the wavelength of light and does not require phase connection at a specified stage.
- it is necessary to perform high-speed recording according to the speed of the moving object, for example, recording without time difference (one-shot recording) in the fixing stage, and to eliminate the influence of speckle in the measuring stage.
- An object of the present invention is to solve the above-described problems, and to provide a three-dimensional shape measurement method and a three-dimensional shape measurement apparatus capable of realizing highly accurate three-dimensional measurement of the shape of a moving object with a simple configuration.
- a three-dimensional shape measurement method provides a three-dimensional shape measurement method for measuring a three-dimensional shape of an object surface using a digital hologram in which interference fringes projected on the object surface are recorded.
- a projection step of projecting an interference fringe F having a single spatial frequency fi on the surface a recording step of recording the interference fringe F projected on the object surface by the projection step as a digital hologram by the light receiving element, and a digital recorded by the recording step
- a plurality of reconstructed images with different focal lengths from the hologram and a measurement step for obtaining a distance to each point on the object surface by applying a focusing method to the interference fringes F in each reconstructed image,
- the component of the single spatial frequency fi corresponding to the interference fringe is extracted from each reproduced image by spatial frequency filtering. Characterized in that it comprises an interference fringe extraction step.
- the interference fringes F projected on the object surface in the projection step have a sinusoidal light intensity.
- the projection step forms an interference fringe F projected onto the object surface by the interference of two coherent laser beams, and interferes regardless of the position of the object surface as viewed from the light receiving surface of the light receiving element. It is preferable to project the interference fringes F on the object surface so that the arrangement of the fringes F is constant.
- the recording process it is preferable to record the interference fringes F as an off-axis hologram I OR using off-axis reference beam R.
- the measurement step includes a modulation step for performing spatial heterodyne modulation on the hologram based on the phase ⁇ L of the inline reference light L for reproduction and the phase ⁇ R of the off-axis reference light R, and a conjugate from the hologram.
- a filtering step of performing spatial frequency filtering to remove image components off by performing a modulation process and filtering process in this order or a reverse order with respect to off-axis hologram I oR recorded by the recording step comprising a complex amplitude generating step of generating the complex amplitude inline hologram J OL from axis hologram I OR, a plurality of the reproduced image generated by changing the focal length using the complex amplitude inline hologram J OL generated by the complex amplitude generating step It is preferable to perform an interference fringe extraction step on the.
- the measurement process is to complex amplitude inline hologram J OL generated by the complex amplitude generating step, by performing the spatial heterodyne modulation using phase phi L of the reproducing-line reference light L
- a wavefront hologram h at a predetermined focal position is generated by obtaining a transformation function G obtained by Fourier transforming and plane-wave-expanding the transformation function G using Fourier spatial frequencies (u, v, w) satisfying the plane wave dispersion relation.
- a plane wave expansion step, and using a wavefront hologram h generated by the plane wave expansion step It is preferable to determine the focal point zp.
- the recording step simultaneously acquires a plurality of off-axis holograms I OR (j) using a plurality of light receiving elements, and the measuring step is performed from each of the off-axis holograms I OR (j). It is preferable to generate the object light complex amplitude in-line hologram g (j) and use a hologram obtained by synthesizing them as the object light complex amplitude in-line hologram g.
- the measurement step generates a wavefront hologram h by the plane wave expansion step at a focal position closer to the object surface than the hologram surface, and includes a measurement point P (xp, yp) from the wavefront hologram h. It is preferable to cut out the hologram ⁇ h, generate a plurality of micro-holograms h ′ having different focal positions based on the micro-hologram ⁇ h, determine the focus using these micro-holograms h ′, and determine the focal point zp. .
- the measurement step is a Fourier transform of the product of the reproduced image
- the window function W is preferably a Gaussian function type window function.
- the measurement process is absolutely 2 consists square reproduced image values of the micro hologram Delta] h
- the three-dimensional shape measuring apparatus of the present invention is a three-dimensional shape measuring apparatus for measuring a three-dimensional shape of an object surface using a digital hologram in which interference fringes projected on the object surface are recorded.
- An interference fringe F having wave light intensity is formed by the interference of two coherent laser beams and projected onto the object surface, and the interference fringe F projected onto the object surface by the projection unit is off-axis hologram I by the light receiving element.
- a recording unit for recording on the digital hologram as OR and a plurality of reproduction images with different focal lengths are generated from the digital hologram recorded by the recording unit, and the object surface is detected by applying a focusing method to the interference fringes F in each reproduction image.
- a measurement unit for obtaining a distance to each point, and the measurement unit is configured to obtain a single spatial frequency f corresponding to the interference fringe from each reproduced image.
- An interference fringe extraction unit that extracts the component of i by spatial frequency filtering is provided.
- the projection unit projects the interference fringes F projected onto the object surface so that the arrangement of the interference fringes F is constant regardless of the position of the object surface when viewed from the light receiving surface of the light receiving element. It is preferable to project to
- the focusing method is applied by extracting interference fringes having a single spatial frequency from the hologram recording the projection image, the influence of noise due to speckle is reduced or eliminated.
- Highly accurate three-dimensional measurement since this method can obtain the absolute distance from the calculation of the focus measure using the free focus image, it is possible to avoid problems such as phase jump of interference fringes and interference fringe localization in interference measurement, High-accuracy three-dimensional measurement is possible even for an object with a large depth or an object with a complex shape having a discontinuous surface.
- the three-dimensional shape measurement apparatus of the present invention highly accurate three-dimensional shape measurement by the above-described three-dimensional shape measurement method can be realized.
- FIG. 1 is a flowchart of a three-dimensional shape measurement method according to an embodiment of the present invention.
- FIG. 2 is a plan view of an optical system used for carrying out the measurement method.
- FIG. 3 is a perspective view of the optical system showing a state of interference fringe projection and hologram acquisition by the measurement method.
- FIG. 4 is a plan view for explaining the configuration of interference fringes used in the implementation of the measurement method.
- FIG. 5A is a frequency distribution diagram showing an example of a spatial frequency spectrum of an interference fringe image recorded on a hologram by the same measuring method
- FIG. 5B is a single frequency portion extracted from FIG. 5A.
- 3 is a frequency distribution diagram of three-dimensional display.
- FIG. 6 is a plan view of the optical system showing how to obtain a hologram of reference light.
- FIG. 7 is a plan view showing another example of the optical system.
- FIG. 8 is a plan view showing how a hologram of reference light is acquired in the optical system.
- FIG. 9 is a flowchart of the measurement process in the measurement method.
- FIG. 10 is a flowchart of the hologram conversion process in the measurement process.
- FIG. 11A is a block diagram for explaining another embodiment of the hologram conversion step in the measurement step, and
- FIG. 11B is a block diagram showing a modification of FIG. 11A.
- FIG. 12 is a flowchart of the focusing repetition process in the measurement process.
- FIG. 13 is a perspective view for explaining a measurement process according to another embodiment of the measurement method.
- FIG. 14 is a flowchart of the focusing repetition process in the measurement process.
- FIG. 15 is a flowchart of a focusing method process according to another embodiment in the measurement process.
- FIG. 16 is a plan view showing a relationship between a light receiving element and an object for explaining a three-dimensional shape measuring method and apparatus according to still another embodiment.
- FIG. 17 is a plan view showing the relationship between a hologram and a reproduced image for explaining the measurement method.
- FIG. 18 is a block diagram of a three-dimensional shape measuring apparatus according to an embodiment of the present invention.
- FIG. 19A is an image of interference fringes obtained using the three-dimensional shape measurement method and the three-dimensional shape measurement apparatus of the present invention, and
- FIG. 19B shows the arrangement of objects imaged in the image.
- FIG. 20 is an enlarged image of the image region 3c in FIG.
- FIG. 21 is an enlarged image of the image area 3e in FIG.
- FIG. 22 is a three-dimensional display spectrum diagram showing the distribution of the two-dimensional spatial frequency of the image of FIG.
- FIG. 23 is a graph showing an example of how the focus measure changes with respect to the position from the focus.
- FIG. 24 is a change diagram of the distance from the hologram giving the interference fringe image of FIG. 20 to the planar object measured using the measurement method of the present invention.
- the measurement method of the present invention is a method of measuring the three-dimensional shape of an object surface using a digital hologram in which interference fringes F projected on the object surface are recorded, and the projection step (S1). And a recording step (S2) and a measuring step (S3).
- the projection step (S1) an interference fringe F having a single spatial frequency fi generated by the interference of the two illumination lights L1 and L2 is projected onto the object.
- the object light O is a scattered light of the interference fringes F, by the light receiving element under an off-axis reference beam R, recorded as off-axis holograms I OR.
- the measurement step (S3) generates a plurality of reconstructed images with different focal lengths based on the recorded off-axis hologram I OR recording step (S2), components of a single spatial frequency corresponding to the interference fringes F from the reproduced image And the distance to the object surface is determined by the focusing method.
- the projecting step (S1) and the recording step (S2) are performed using, for example, the optical system shown in FIG. 2, and the measuring step (S3) is performed by calculation processing.
- This measurement method combines a measurement method based on a focusing method that takes advantage of the ability to reproduce a free-focus image by holography with a single spatial frequency component extraction process to avoid the influence of speckle.
- the projection process (S1) and the recording process (S2) will be described in detail with reference to FIGS. 2 to 8, and then the measurement process (S3) will be described in detail with reference to FIGS.
- the optical system 10 used in this measurement method shapes and projects the laser 2 that is a monochromatic coherent light source and the laser light from the laser 2 into illumination light L1 and L2 and reference light R.
- an optical element group including a lens 21 and the like, a light receiving element 4 (image sensor), and a computer 5 that controls the laser 2 and the light receiving element 4.
- the light receiving element 4 is arranged with the light receiving surface facing in the coordinate axis z direction shown in the figure. In front of the light receiving element 4 in the center z direction (on the imaging axis), an object 3 to be measured for a three-dimensional shape is arranged.
- the xy direction of the orthogonal coordinate system xyz is defined along each side of the rectangular light receiving element 4.
- the x direction and the z direction are illustrated as horizontal directions, the optical system 10 can generally be used in any posture.
- the optical element group for the illumination light L1 includes lenses 21 and 22, a beam splitter BS1, a mirror M1, a beam splitter BS2, a mirror M2, a lens 23, and a prism 20 along the optical path from the laser 2. Yes.
- the optical element group for the illumination light L2 includes a mirror M3, a lens 24, and the prism 20 along another optical path branched by the beam splitter BS2.
- the lenses 21 and 22 expand the laser light into parallel light having a large diameter.
- the beam splitter BS1 branches the laser light into illumination light L1 and L2 and reference light R.
- the beam splitter BS2 branches the laser light into two illumination lights L1 and L2.
- the lenses 23 and 24 turn parallel light into spherical wave light.
- the prism 20 is arranged at a lower position (see FIG. 3) out of the field of view of the light receiving element 4 with the apex angle directed toward the object direction (irradiation direction), and is reflected from the lenses 23 and 24 by a reflecting surface sandwiching the apex angle. Are reflected and projected toward the object 3 as illumination lights L1 and L2.
- the optical element group for the reference light R includes mirrors M4 and M5 and a lens 25 along another optical path branched by the beam splitter BS1.
- the lens 25 converts parallel light into spherical wave light and projects it toward the light receiving surface of the light receiving element 4.
- the spherical wave illumination lights L1 and L2 overlap each other and become illumination light L12 to illuminate the object 3.
- the spherical wave illumination lights L1 and L2 can be regarded as plane waves PW1 and PW2 sufficiently far from the center of the spherical wave. As shown in FIG. 4, when two plane waves PW1 and PW2 overlap and interfere with each other, an interference pattern uniformly distributed in a three-dimensional space appears.
- This interference pattern is, for example, interference having a single spatial frequency (referred to as fi) in a plane orthogonal to a combined wave number vector (referred to as k12) of the wave number vectors (referred to as k1 and k2) of the two plane waves PW1 and PW2. It becomes a stripe F. Further, when the illumination light L12 having such an interference pattern is projected onto an object and the diffused light on the object surface is observed from the direction of the synthetic wave vector k12, the brightness and darkness in one direction is uniform regardless of the position on the object surface. Interference fringes F that change in the same way are observed. In the case of the configuration of the optical system 10 in FIGS. 2 and 3, an interference fringe F is observed in which a bright and dark pattern (vertical stripe pattern) in the y direction as viewed from the light receiving element 4 is repeated in the x direction (lateral direction) at a single spatial frequency fi. Is done.
- interference fringe F and “illumination light L12 having an interference pattern that causes interference fringe F to appear on the object surface” are identified, and “projecting interference fringe F onto the object surface” means “ The illumination light L12 is projected onto the object to cause the interference fringes F to appear on the object surface.
- the interference fringes F projected onto the object surface are formed by the interference of two coherent laser beams, that is, the spherical wave illumination lights L1 and L2, and the light receiving element 4 This is a step of projecting onto the object surface so that the arrangement of the interference fringes F is constant regardless of the position of the object surface as viewed from the light receiving surface.
- the interference fringes F picked up by the light receiving element 4 are striped at regular intervals without being bent by the object shape.
- the optical system 10 is arranged so that the imaging axis of the light receiving element 4 and the wave vector k12 of the illumination light L12 are included in the same plane so that such a projection step (S1) can be performed.
- the arrangement of the prism 20 can be arranged above the light receiving element 4 shown in FIG. Further, the prism 20 can be rotated by 90 ° around the vertical axis and can be arranged beside the light receiving element 4, that is, left or right, or can be arranged at any other position around the light receiving element 4. In the case of the horizontal arrangement, the direction of the interference fringes F is horizontal, and in the case of the diagonal position arrangement, the direction of the interference fringes F is oblique.
- the spherical wave illumination lights L1 and L2 which are laser lights from the laser 2 which is a monochromatic coherent light source usually have sinusoidal light intensity, and therefore the interference fringes F due to interference of these lights have sinusoidal light intensity.
- the spatial frequency of the interference fringes F can be set to a single spatial frequency fi with high purity.
- the magnitude of the frequency fi can be set by adjusting the intersection angle of the wave number vectors k1 and k2 of the illumination lights L1 and L2.
- the setting of the single spatial frequency fi will be further described.
- the conditions for identifying and recognizing each interference fringe F are as follows: Condition ⁇ ⁇ , and therefore (z / D) ⁇ ⁇ (z / T) ⁇ . Therefore, it is necessary to satisfy D> T. That is, it is necessary to set the distance T between the point light sources to be smaller than the width D of the light receiving element 4.
- the interference fringes F In order to effectively use the interference fringes F projected on the object surface, the interference fringes F need to be appropriately observed and recorded as bright and dark interference fringes. That is, if the change in brightness of the interference fringes F is weak, the projected interference fringes F cannot be recorded and reproduced well.
- the interference fringe F is left as it is. Therefore, it is necessary to take measures such as increasing the intensity of scattered light scattered on the object surface.
- a powder such as titanium oxide having a high refractive index and a low light absorption rate may be applied to the object surface.
- the illumination light is more effectively scattered by such a roughening of the reflecting surface, it is possible to record a hologram of interference fringes F having a higher spatial frequency.
- processing as powder coating is unnecessary.
- this measurement method uses a reproduction image of the interference fringes F projected on the rough object surface.
- speckles are inevitably generated due to the unevenness of the object surface.
- a speckle is a bright and dark pattern generated by light intensity randomly changing due to interference of light scattered on an object surface, and has a wide spatial frequency bandwidth.
- the measurement accuracy is remarkably lowered unless the influence of the speckle is reduced.
- FIG. 5A shows a spatial frequency distribution obtained from a reproduced image by a hologram in which interference fringes F having a single spatial frequency fi are recorded.
- the interference fringes F in which interference fringes in the y-axis direction are arranged at regular intervals in the x-axis direction, that is, at a single spatial frequency fi are projected onto a uniform diffusion surface.
- the reproduced image has a wide range due to the mutual interference between the two alternating current components SP and SN having the spatial frequencies fi and ⁇ fi and the direct current component S0 having the frequency 0 due to the interference fringes F and the scattered light. It is an image in which speckle SS having a frequency band is overlapped. Therefore, as shown in FIG. 5B, only the AC component SP of the spatial frequency fi is narrowed by ( ⁇ fx, ⁇ y) by performing the processing described later on the reproduced image of the interference fringe F recorded on the hologram.
- the range (specifically, for example, only the peak value) can be taken out to reduce or eliminate the influence of low-intensity and widely distributed speckle spectral components.
- an interference fringe F having a sinusoidal light intensity distribution and a single spatial frequency fi is projected onto the object surface as image information to be applied to the object surface, and only a component having the same spatial frequency as the interference fringe is extracted from the reproduced image.
- the spherical wave light is used as the illumination lights L1 and L2.
- any illumination light that can project the desired interference fringes F onto the object surface may be used, and the illumination lights L1 and L2 may be configured by plane waves.
- the laser light having the laser 2 as a light source is branched and used as the illumination light L1 and L2, but a light source separate from the laser 2 may be used as the light source for the illumination light L1 and L2.
- the wavelength of the illumination light can be arbitrarily set independently of the wavelength ⁇ of the laser light from the laser 2.
- the interference fringes F may be configured by slit light or the like instead of the interference fringes.
- the light intensity distribution of the interference fringes F can be obtained with a purer sine wave light intensity distribution, and a clearer spatial frequency distribution can be obtained and measurement accuracy can be improved. There is no need.
- the reference light R is irradiated from the direction inclined with respect to the imaging axis, that is, from the off-axis direction (off-axis direction) toward the center of the light receiving surface of the light receiving element 4.
- Object light O based on interference fringes F projected onto the surface of the object 3 is incident on the light receiving element 4.
- the object light O is scattered light from the rough surface of the object 3. From the light receiving surface of the light receiving element 4, vertical stripes of interference fringes F regularly arranged in the x direction can be seen together with the object 3.
- the recording step in the measurement process (S2) it may be recorded to a single off-axis hologram I OR for one orientation of the object 3 to be measuring the shape.
- For objects that exercise may be recorded off-axis hologram I OR of one by one every time the posture is needed during exercise. That is, in this measurement method, it is only necessary to acquire only one hologram among a plurality of off-axis holograms having different phase states, which are required for one posture of an object in so-called phase shift digital holography.
- the optical system 10 for performing such one-shot recording can be easily configured.
- the optical element section group for the reference light L includes mirrors M1, M6, M7 and a lens 26 along the optical path branched by the beam splitter BS1.
- the lens 26 converts the reference light L into a spherical wave and projects the spherical wave onto the light receiving element 4.
- the optical system 10 records the interference image of the reference beam R and the reproducing-line reference light L by the light receiving element 4 as off-axis holograms I LR is a digital hologram. As a result, the phase difference between the offline reference light R and the reproduction inline reference light L can be recorded as a hologram.
- the in-line reference light L for reproduction has the same wavelength ⁇ as the wavelength ⁇ of the reference light R, and the optical axis thereof may be normally the central front direction of the light receiving element 4.
- Off-axis hologram I LR unless there is no change in condition of the reference light R to be projected against the light-receiving element 4, can be dispensed in a single recording. That is, the off-axis hologram I LR can be shared with the off-axis hologram I OR recorded for each posture of the object 3 or an object different from the object 3 under a certain condition.
- the object light O is recorded as an off-axis hologram without passing through the imaging lens, so that an image of the interference fringe F without distortion can be recorded, and the reproduced image also becomes an image without distortion. .
- the optical system 10 shown in FIG. 7 is a system in which the optical element group for the reference light R in the optical system shown in FIG. 2 is arranged more compactly.
- the optical element group for the reference light R includes a mirror M4 and lenses 27 and 28 along the optical path branched by the beam splitter BS1.
- the lenses 27 and 28 expand the diameter of the reference light R at a shorter distance than in the case of FIG.
- the light receiving element 4 is rotated by 90 ° around the y axis (not shown) and moved to change the position of the light receiving surface next to the prism 20 (the light receiving axis is x). direction).
- a half mirror HM1 is newly introduced to reflect the object light O by 90 ° and enter the light receiving element 4 whose arrangement has been changed. Since the prism 20 is disposed at a position away from the front position of the light receiving element 4, the illumination lights L1 and L2 from the prism 20 do not hit the half mirror HM1. What is important in the optical system 10 is that the interference fringes F appear at a fixed position without being distorted regardless of the surface shape of the object 3 when viewed from the light receiving element 4.
- the optical system 10 shown in FIG. 8 is a system in the case of projecting the reproduction in-line reference light L in order to acquire information of the reference light R.
- the optical element group for the reference light L includes mirrors M8, M9, M10, and a lens 29 along the optical path branched by the beam splitter BS1.
- the reference light L is projected through the lens 29 from the same direction as the object light O, is reflected by the half mirror HM1, and enters the light receiving element 4 from the front direction. Thereby, the information of the reference light R is recorded as the off-axis hologram ILR .
- the projection condition of the reference beam R is, as long as it is held to the original constant conditions, recording of the off-axis hologram I LR can dispense with one recording under certain conditions. Therefore, the spread of the spatial arrangement of the optical element group for the reference light L is acceptable.
- the measurement process is a process of measuring the three-dimensional shape of the object by sequentially performing the hologram conversion process (# 1) and the focusing repetition process (# 2).
- This step is a step for preparing the hologram g to be focused, and is a pretreatment step in the measurement step.
- the next focusing repetition step (# 2) is a step of substantially executing shape measurement by obtaining a focal point by applying a focusing method to each measurement point of one hologram g representing the entire image.
- the hologram converting step (# 1) is a step of reproducing a projection interference fringe recorded as an accurate complex amplitude inline hologram using one-shot digital holography as a non-distorted image by performing numerical calculation from the complex amplitude inline hologram. It is.
- the focusing repetition step (# 2) extracts a component having the same spatial frequency as the projected interference fringe from the reproduced image, and applies a focusing method to this component from the hologram recording surface to the measurement point on the object surface. And a plurality of types of processing methods can be applied.
- these steps will be described in detail in order.
- the hologram conversion step performs complex amplitude generating step (S31) and the second modulation step and (S32) in turn, generates a complex amplitude hologram J OL converts the off-axis hologram I OR Then, a hologram g to be focused is generated from the complex amplitude hologram J OL .
- the combined light intensity I OR (x, y) generated by the object light O and the off-axis reference light R in the above formula, and the combined light intensity I generated by the reproduction in-line reference light L and the off-axis reference light R LR (x, y) is represented by the following expressions (4) and (5), respectively. These are recorded as an off-axis hologram I OR and an off-axis hologram I LR using the light receiving element 4, respectively.
- the first term on the right side is the light intensity component of the object light O or the inline reference light L for reproduction
- the second term is the light intensity component of the off-axis reference light R.
- the third and fourth terms of each equation represent a direct image component and a conjugate image component that are created by modulating the object light O or the reproduction inline reference light L with the off-axis reference light R, respectively.
- the above-described spatial frequency filtering is performed by Fourier transform that expresses each expression (4) and (5) in frequency space, filtering by a bandpass filter, and subsequent inverse Fourier transform.
- a spherical wave is used as the off-axis reference light R, it is easy to separate the image component directly from the light intensity component and the conjugate image component in the frequency space, but the direct image is not necessarily a spherical wave.
- the amplitude R 0 and the phase ⁇ R of the off-axis reference light R can be removed from the equation (6), and the complex amplitude in-line hologram J for the reproduction in-line reference light L can be removed.
- OL is calculated
- Process of division is the process of spatial heterodyne modulation has become a process of removing the reference beam R component (both intensity and phase) from the complex amplitude off-axis hologram J OR.
- a complex amplitude hologram J LR is obtained in advance from one off-axis hologram I LR in which the off-axis reference light R is recorded using the reproduction in-line reference light L.
- a complex amplitude in-line hologram J OL required for image reproduction can be obtained from the axis hologram I OR .
- the second term and the third term on the right side of Equation (9) are obtained from the third and fourth terms on the right side of Equation (4), respectively.
- An image is directly reproduced from the second term on the right side of Equation (9), and a conjugate image is reproduced from the third term. Therefore, spatial frequency filtering is performed on Equation (9), and only the second term in which the direct image is recorded is separated and extracted. Then, an accurate complex amplitude in-line hologram J OL for image reproduction is required.
- the first term and the third term on the right side of Equation (9) include the phases ⁇ R and ⁇ L of both the reference light R and the reference light L, while the second term is the phase of the reference light L. which it is intended to include only ⁇ L. That is, the second term on the right side of Equation (9) is composed only of in-line components, and the first and third terms on the right side include off-axis components.
- the above-described conversion process performs fast Fourier transform (FFT) on the hologram I H to form a hologram I HF, and the center of the spatial frequency distribution with respect to this hologram I HF parts and hologram ⁇ I HF> performs a filtering process by the window leaving a, again hologram ⁇ I HF>, done by performing a fast Fourier transform (inverse transform), to produce the final complex amplitude inline hologram J OL.
- FFT fast Fourier transform
- the same result can be obtained by performing spatial frequency filtering first and then performing spatial heterodyne modulation. That is, Fourier transform, filtering, and inverse Fourier transform are performed on the off-axis hologram I OR to obtain holograms I F , ⁇ I F >, and I ′, respectively, and the subsequent spatial heterodyne modulation H makes one component
- the final complex amplitude inline hologram J OL is obtained.
- an object light complex amplitude in-line hologram g (x, y) shown in the following equation (10) is obtained.
- the hologram conversion step (# 1) in the measurement step (S3) includes a complex amplitude generation step (S31) and a second modulation step (S32).
- the complex amplitude generating step (S31) includes a modulation step of performing spatial heterodyne modulation hologram based on the phase phi R phase phi L and off-axis reference beam R of the reference line for reproduction light L, conjugate image from the hologram wherein the filtering step of performing spatial frequency filtering in order to remove the components for off-axis hologram I oR recorded by the recording step (S2), and these modulation processes and filtering processes in this order or the reverse order by performing a step of generating complex amplitude inline hologram J OL from off-axis hologram I OR.
- the second modulation step (S32), compared complex amplitude inline hologram J OL generated by the complex amplitude generating step (S31), performing the spatial heterodyne modulation using phase phi L of the reproducing-line reference light L Is a step of generating the object light complex amplitude inline hologram g representing the object light wavefront in the hologram surface defined by the light receiving surface of the light receiving element by removing the reproduction inline reference light L component.
- the focusing repetition process includes a plane wave expanding process (S33), an interference fringe extracting process (S34), a focusing determining process (S35), and a reproduction position changing process (S37). This is a step of obtaining the object shape recorded in the object light complex amplitude in-line hologram g.
- Plane wave development step S33 In the plane wave expansion step, a conversion function G obtained by subjecting the object light complex amplitude in-line hologram g (x, y) to Fourier transform is obtained, and a Fourier spatial frequency (u, v, w) satisfying the dispersion relation of the plane wave is determined as the conversion function G.
- a wavefront hologram (h) at a predetermined focal position is generated by using the plane wave development.
- the upper wavefront h (x, y, d) is obtained.
- d is not limited to a positive number and can be an arbitrary value.
- u and v in (u, v, w) are Fourier spatial frequencies in the x and y directions, respectively.
- the Fourier spatial frequency w in the z direction is obtained from a plane wave dispersion formula as a function of u and v including the wavelength ⁇ as a parameter, as shown in the following formula (13).
- This wavefront hologram h (x, y) is an exact solution of the Helmholtz equation that satisfies the boundary condition g (x, y) on the light receiving surface (hologram surface) of the light receiving element 4.
- Interference fringe extraction step S34 By performing spatial frequency filtering on the reproduced image
- 2 at the position z d and extracting only the single spatial frequency fi component of the interference fringe F, the interference fringe F is extracted.
- An interference fringe image K which is an image in which the influence of speckle is reduced is obtained.
- FFT fast Fourier transform
- the filtering process is performed in the frequency space, and then the fast Fourier transform is performed again. This is realized by performing transformation (inverse transformation).
- FIG. 13 and 14 show another embodiment of the focusing repetition step (# 2).
- this embodiment instead of setting the entire wavefront hologram h (x, y, d) as a target of the focusing method, two types of micro holograms ⁇ h, h ′ are set and the focusing method is applied to each micro hologram. Apply.
- the point of using the minute holograms ⁇ h, h ′ is different from the embodiment shown in FIG. As shown in FIG.
- the minute hologram h ′ is generated based on the minute hologram ⁇ h, and a plurality of minute holograms having different focal positions are generated, for example, for each ⁇ z. Note that the minute hologram ⁇ h is regarded as the minute hologram h ′ at the point that is the object of focus determination.
- the size for cutting out the minute hologram ⁇ h is set based on the shape measurement accuracy (resolution) in the x direction and the y direction so as to have sufficient accuracy and an appropriate processing time.
- the distance to each measurement point on the object surface is obtained by searching for the focal distance at which the interference fringe reproduction image converges most clearly. Therefore, in the distance measurement by this in-focus method, a sufficient spread is necessary around the measurement point to include the difference in brightness of the projected interference fringes, and the minute hologram ⁇ h is cut out with such a size.
- “Cut out” means that the calculation range is limited to a numerical value, and can be calculated using, for example, a rectangular window function.
- the processing content in the plane wave development step (S43) of this embodiment is the same as the processing content in the plane wave development step (S33) of FIG.
- a minute hologram ⁇ h including a predetermined measurement point P (xp, yp) is cut out.
- the focus determination step (S46) the focus determination is performed by obtaining a focus measure from the interference fringe image K ′. If in-focus, the in-focus zp is recorded as object shape data at the measurement point P (xp, yp). In the focus determination, in the repetitive processing described below, the focus measure is stored for each position z. For example, the maximum value of the focus measure is detected, and the position z that gives the maximum value is determined as the focus. zp may be used.
- step (S45) is repeated using the micro-hologram h ′ newly generated by the above equations (11) and (12). Further, when it is determined that the focus is achieved in the focus determination step (S46) (YES in S47) and the measurement process is not completed (NO in S49), the measurement point P (xp, yp) is moved. (S50), the processing from step (S44) is repeated. When the shape measurement is completed for all the predetermined measurement points P (xp, yp) (YES in S49), the focusing repetition process is ended, and the three-dimensional shape measurement is ended.
- (Still another embodiment of the focusing repetition process) 15 and 16 show still another embodiment of the focusing repetition step (# 2).
- a focusing method is performed using a spatial window function, and the processing in steps (S44) to (S48) enclosed by a broken line in FIG. 14 is improved in accuracy.
- 2 and the window function W composed of the square of the absolute value of the minute hologram h ′ is Fourier-transformed using a single spatial frequency fi.
- the function is obtained as the focus measure H, and the focus is determined based on the magnitude of the focus measure H.
- the window function W for example, a Gaussian function type window function can be used.
- the inclination of the minute surface on the object corresponding to the minute hologram h ′ is reflected.
- the sizes of the window function W and the minute hologram h ′ are set so that the region covered by the window function W is included in the region of the minute hologram h ′. Further, the size of the window function W is set so as to have a sufficient spread around the measurement point to include the difference in brightness of the projected interference fringes.
- the minute hologram setting step (S51) is the same as the minute hologram setting step (S44) described with reference to FIG.
- the gradient vector ⁇ of the minute surface of the object 3 included as an image in the minute hologram ⁇ h is obtained.
- the gradient vector ⁇ is a vector amount indicating in what direction the minute surface on the object is inclined from these planes with the xy plane, that is, the hologram surface, in other words, the light receiving surface of the light receiving element 4 as a reference of zero gradient. is there.
- the gradient vector ⁇ is expressed using, for example, an angle representing the contour line direction on the minute surface of the object and a surface inclination angle.
- the gradient vector ⁇ is, for example, 2 consisting of the absolute value of a function obtained by Fourier transforming a reproduced image
- This contrast image is an image from which fine change components (alternating current components) due to the interference fringes F are removed, and is an image expressing a large shape change in the entire reproduced image
- the shape of the window function W is set in accordance with the gradient vector ⁇ .
- the spatial distribution of the projected interference fringes reproduced near the measurement point P (xp, yp) depends on the magnitude and direction of the gradient vector ⁇ on the object surface. Therefore, in order to increase the measurement accuracy, it is effective to set the parameter value that determines the width and shape of the window function W by using the spatial distribution of interference fringe contrast reproduced near the measurement point, that is, the gradient vector ⁇ . It is. Further, in the distance measurement by the in-focus method, it is necessary to expand to express the focus measure of the projected interference fringe around the measurement point, and for this reason, the measurement point P (xp) for each measurement point on the xy plane.
- Yp is set as a spatial window function W (x-xp, y-yp).
- the settings related to these window functions W will be described after explanation of the following focus measure calculation step (S54), focus determination step (S55), and iterative processing step (S57).
- the focus measure calculation step (S54) includes a reproduction image
- step (S55) If it is determined that the in-focus state is not obtained in the in-focus determination step (S55) (NO in S56), a micro hologram h ′ having a different reproduction position z is generated based on the micro hologram ⁇ h (S57), and the step ( The processing from step (S53) is repeated until YES is obtained in S56).
- the process in step (S57) is the same as the process in step (S48) in FIG.
- the speckle component S (fi, 0, z) is a main cause of measurement error in the focusing method.
- the AC component A (fi, 0, z) is proportional to the window area of the window function W.
- the speckle component S (fi, 0, z) which is random noise, is proportional to the size of the window function.
- increasing the area of the window increases the uncertainty of the position of the measurement point P (xp, yp).
- the width ⁇ of the spatial distribution of interference fringe intensity in the direction perpendicular to the contour line is the magnitude of the gradient vector ⁇ of the object surface (same as the gradient ⁇ and the same symbol). It is inversely proportional to
- the width WT of the window function in the direction perpendicular to the contour line is within the range of WT ⁇ .
- the width ⁇ of the interference fringe intensity distribution becomes wider, and the width WT of the window function described above can be increased, thereby improving the measurement accuracy. it can.
- the contour line direction the influence of the position uncertainty on the focusing measure is small, so that the influence of speckle can be suppressed small by taking a large window function width in this direction.
- the shape parameters a and b of the window function W in the above equation (17) may be adjusted.
- the window function W of the above equation (17) is a function in which the window direction is fixed in the x direction and the y direction. By rotating the window function W in the xy plane, the contour direction The window function W having a shape along
- the fringe spacing ⁇ of the interference fringes F is reduced, the gradient ⁇ of the object surface is reduced, and the window function width in the contour line direction is increased as long as the resolution limit of the reproduced image is not exceeded. Measurement accuracy can be increased. Since the gradient ⁇ of the object surface depends on the relative arrangement of the object 3 with respect to the light receiving element 4, the arrangement should be adjusted as much as possible.
- FIG. 16 and 17 show another embodiment of the present measurement method.
- three light receiving elements 41, 42, and 43 are used to record an interference fringe image projected on the surface of the object 3 on a hologram.
- the configuration of the interference fringes F (not shown) is, for example, the same as the configuration shown in FIG.
- the light receiving elements 41, 42, and 43 are arranged along the arrangement direction (x direction) of the fringes of interference fringes F (not shown). In general, the number of light receiving elements can be plural.
- a plurality of light receiving elements arranged in the x direction are used to record vertical interference fringes, and a complex amplitude in-line hologram having a large numerical aperture in the x direction is used using a plurality of recording holograms. Can be created.
- the resolution of a reproduced image can be increased by using a large numerical aperture hologram g (x, y).
- a large numerical aperture hologram g (x, y) when image reproduction is performed from a large numerical aperture hologram using FFT, if the number of sampling points is excessive, the calculation time increases and image reproduction becomes difficult.
- data having different frequency bands can be calculated in a state of being added together. In other words, each information recorded in different frequency bands is stored without being lost even if they are spatially overlapped.
- the complex amplitude inline hologram JOL and the object beam complex amplitude inline hologram g (x, y) hold information for reproducing an image in each divided area.
- a hologram having a wide aperture information incorporated in a small aperture hologram can be created by superimposing a broadband large numerical aperture hologram g (x, y).
- the synthetic hologram ⁇ g (j) becomes a periodic hologram.
- a high-resolution image can be reproduced from this synthesized hologram ⁇ g (j).
- the calculation processing time for the synthetic hologram ⁇ g (j) is shortened to 1 / n in the case of the hologram g having a full width of n ⁇ D. If the width D is smaller than the size of the reproduced image, the reproduced images are reproduced adjacent to each other, so that the width D needs to be set larger than the reproduced image.
- FIG. 18 shows the three-dimensional shape measuring apparatus 1.
- the measurement apparatus 1 includes a projection unit 11, a recording unit 12, a measurement unit 13, and a control unit 14 that controls them.
- the projection unit 11 forms an interference fringe F having a single spatial frequency fi and a sinusoidal light intensity by the interference of two coherent laser beams and projects it onto the object surface.
- the projection unit 11 includes a light source 11a that emits laser light for forming the interference fringes F, and an optical system 11b that guides the laser light from the light source 11a to the object surface.
- the light source 11a is, for example, the laser 2 shown in FIG. 2, and in this case, a light source 12a (described later) used in the recording unit 12 is shared.
- the optical system 11b includes, for example, an optical element group for the illumination lights L1 and L2 shown in FIG.
- the recording unit 12 records the interference fringe F projected on the object surface by the projection unit 11 as a off-axis hologram IOR on the digital hologram by the light receiving element.
- the recording unit 12 includes a light source 12a that emits laser light for off-axis reference light R and reproduction inline reference light L, a light receiving element 12b, and an optical system 12c that guides the laser light from the light source 12a to the light receiving element 12b. ing.
- the light source 12a is, for example, the laser 2 shown in FIG. 2, and in this case, the light source 11a used in the projection unit 11 is shared.
- the light receiving element 12b is an image sensor such as a CCD, for example, and is, for example, the light receiving element 4 in FIG.
- the optical system 12c includes, for example, an optical element group for the reference light R shown in FIG. 2 and an optical element group for the reference light L shown in FIG.
- the projection unit 11 projects the interference fringes F projected on the object surface onto the object surface so that the arrangement of the interference fringes F is constant regardless of the position of the object surface when viewed from the light receiving surface of the light receiving element 4. Further, the recording unit 12 records an off-axis hologram I LR by the off-axis reference light R and the reproduction in-line reference light L.
- the measuring unit 13 generates a plurality of reproduced images of the interference fringes F with different focal lengths from the digital holograms I OR and I LR recorded by the recording unit 12, and applies the focusing method to the interference fringes F in the respective reproduced images. To find the distance to each point on the object surface.
- the measurement unit 13 includes a complex amplitude generation unit 13a, a second modulation unit 13b, a plane wave expansion unit 13c, an interference fringe extraction unit 13d, a focus determination unit 13e, a minute hologram processing unit 13f, and a window function processing unit. 13g.
- a symbol such as (J OL ) added to each part name in the block indicates main output data or processing target data.
- the complex amplitude generation unit 13 a generates a complex amplitude inline hologram J OL from the off-axis hologram I OR recorded by the recording unit 12.
- Second modulator 13b generates the object beam complex amplitude inline hologram g in the hologram plane by performing spatial heterodyne modulation to complex amplitude inline hologram J OL.
- the plane wave developing unit 13c generates a wavefront hologram h by developing a plane wave using a Fourier spatial frequency (u, v, w) on a conversion function G obtained by performing a Fourier transform on the object light complex amplitude in-line hologram g. Note that a free-focus image (arbitrary-focus image) can be generated by the plane wave developing unit 13c. Further, the plane wave developing unit 13c performs aperture synthesis processing for generating a hologram ⁇ g (j) in which broadband wide numerical aperture holograms g are divided and overlapped with each other to capture broadband information in a small aperture
- the interference fringe extraction unit 13d performs filtering processing on various reproduced images to extract the component of the single spatial frequency fi corresponding to the interference fringe F, thereby reducing the speckle component, and is a target of focus determination.
- An image or hologram including the information of the interference fringe F with a low noise ratio is generated.
- the in-focus determination unit 13e determines in-focus using a reproduction image having different focal positions generated from the wavefront hologram h, the minute holograms ⁇ h, h ′, and the in-focus zp for each measurement point P (xp, yp). To decide.
- the minute hologram processing unit 13f cuts out the minute hologram ⁇ h from the wavefront hologram h, sets a window function for cutting out, or generates a minute hologram h ′ from the minute hologram ⁇ h.
- the window function processing unit 13g performs Fourier transform on the product of the reproduced image
- the measuring unit 13 determines the in-focus by performing the in-focus determination based on the magnitude
- the control unit 14 includes a general computer equipped with a monitor display, a control signal and data input / output device, a memory, and the like. Each unit of the measurement unit 13 described above is mainly configured by software, and these are stored, for example, in the program storage unit of the control unit 14 and called up and operated as needed.
- the control unit 14 is responsible for the role of the computer 5 shown in FIGS.
- Such a three-dimensional shape measurement apparatus 1 can perform the three-dimensional shape measurement by executing the above-described three-dimensional shape measurement method.
- an accurate and distortion-free high-resolution free-focus image can be recorded using the one-shot recording method, and the influence of speckle can be reduced and reproduced.
- the focusing method the position, shape, deformation, etc. of a moving object in a four-dimensional space (space + time) can be measured with high accuracy. That is, according to the measuring apparatus 1, one off-axis hologram IOR is respectively shot in each of various shapes and postures of the object 3 under the condition that one off-axis hologram ILR is recorded in one shot. by keeping record, it worked up by, for each off-axis hologram I oR, it is possible to perform the shape measurement of the shape and orientation of the object 3.
- the measuring apparatus 1 since a necessary hologram can be recorded without passing through the imaging lens, problems such as focus shift and image distortion caused by the use of the imaging lens can be avoided. Therefore, high-precision shape measurement without distortion can be performed not only in the air but also in an object recorded in water having a refractive index different from that of air. Further, by using a pulse laser as the light source 12a (laser 2), shape measurement by high-speed recording of a high-speed moving object becomes possible.
- Example An embodiment of a three-dimensional shape measurement method will be described with reference to FIGS.
- a distance measurement experiment for measuring the distance to the diffusion plane was performed.
- the measurement object is obtained by applying a white paint having a thickness of 10 ⁇ m or less to the surface of a cubic glass having a surface accuracy of 2 cm ⁇ 2 cm having a wavelength or less.
- This measurement object was placed at a position of about 85 cm from the image sensor with the object side surface inclined by 45 degrees.
- the interference fringes were projected on the surface of the measurement object so as to form a vertical stripe pattern. Therefore, these arrangements are the same as those shown in FIG.
- the obtained complex amplitude in-line hologram had a pixel pitch of 7.4 ⁇ m and a pixel count of 4096 ⁇ 4096, and an image was reproduced from this hologram by numerical calculation.
- FIG. 19A shows an image reproduced at a position near the surface of the object 3, and FIG. 19B shows a part of the measurement object 3 corresponding to the reproduced image.
- the x direction is horizontal
- the y direction is vertical
- the surfaces 3a and 3b of the object 3 are recorded and reproduced together with vertical interference fringes.
- An enlarged view of the region 3c in the reproduced image is shown in FIG. Note that the pattern 3d in FIGS. 19A and 19B is a pattern for position confirmation.
- an interference fringe having a stripe interval of about 200 ⁇ m is reproduced within a width of about 6 mm in the x direction.
- FIG. 21 shows an enlarged view of the region 3e in FIG.
- the size of the image shown in FIG. 21 corresponds to the size of the minute hologram ⁇ h, and the size of the window function W is a size that fits in this image.
- FIG. 22 shows the spectral distribution in the two-dimensional frequency space (fx-fy space) of the reproduced image 3e in FIG.
- a peak of the DC component S0 having a high peak
- peaks of two AC components SP and SN corresponding to the spatial frequencies fi and -fi arranged in the fx direction appear on both sides thereof, and further, speckle.
- the component SS appears as a background component having a wide frequency width in the spectrum distribution diagram.
- FIG. 23 shows an example of a focus measure curve measured using a reproduced image at a certain measurement point P (xp, yp), that is, an example of the focus measure
- the hologram recording in this case is recorded by projecting interference fringes with an interval of about 80 ⁇ m on a diffusion plane placed at an angle of about 45 degrees from the image sensor at a distance of about 85 degrees.
- FIG. 24 shows the result of measuring the surface position along the central horizontal direction on the surface 3b of the object 3 shown in FIG. 19 (b).
- interference fringes with a fringe spacing of about 80 ⁇ m were projected, and a circular Gaussian function type window with a window radius of about 0.5 mm was adopted as a spatial window function.
- the diffusion plane to be measured is a plane that is inclined by about 45 degrees at a distance of 85 cm from the image sensor.
- a value of 72 ⁇ m was obtained as the mean square error of the measurement distance.
- glass coated with a light-transmitting white paint is used as a subject, so that high contrast cannot be obtained and high spatial frequency interference fringe projection cannot be performed.
- the measurement error of 72 ⁇ m can be considered mainly due to speckle in the reproduced image.
- titanium oxide powder having a high refractive index and a low light absorption rate high contrast and high spatial frequency interference fringe projection can be performed. Measurement is possible.
- the interference fringes F projected onto the object surface can be a combination of a plurality of single spatial frequencies fi.
- two types of interference fringes F1 and F2 having different single spatial frequencies f1 and f2 can be formed and projected onto the object surface.
- the directions of the two types of interference fringes F1 and F2 may be the same direction, an orthogonal direction, or an oblique direction.
- the window function W can be set by selecting an appropriate interference fringe according to the gradient vector ⁇ of the object surface.
- the phase ⁇ L can be obtained by calculation if the distance from the light receiving element 4 to the point light source of the reference light L is known.
- the distance ⁇ can be obtained by recording a hologram of an object with a known scale with the reference light L, and comparing the size of an object image reproduced from the hologram with the size of an object with a known scale.
- a plane wave can be used as the reproduction inline reference light L. In this case, it can be considered that the distance ⁇ is infinite.
- the phase ⁇ L of the plane wave is constant on the light receiving surface of the light receiving element 4 and can be easily determined using the interference fringe hologram of the reference light L. Further, the off-axis reference light R and the reproduction in-line reference light L are not limited to spherical wave light.
- the present invention relates to the field of recording and measuring the three-dimensional shape of a moving object and a stationary object that are deformed, displaced, and vibrating, for example, the design design field, the plastic processing field, the fluid equipment field, the robot vision field, the product inspection field. It can be used in the medical / beauty field.
- the present invention can be used for parts inspection at the manufacturing site, performance evaluation of parts and equipment in the operating state and failure analysis, etc., vibration and deformation of parts and equipment that are moving at high speed and rotating, It can be used for continuous measurement along a time series such as movement, high-speed or real-time measurement.
- the present invention can be used not only for a subject in the air but also for measuring the shape of a moving object or a stationary object in a medium such as water having a refractive index different from that of air.
- the resolution ⁇ is proportional to the distance z to the measurement position.
- the resolution in the depth direction (z direction) is proportional to the focal depth ⁇ .
- the depth of focus ⁇ is proportional to the square of the distance z. Therefore, the value of resolution ⁇ increases as the distance z increases under a constant hologram width D, and the resolution value of distance detection in the depth direction increases in proportion to the square of the distance z.
- the resolution limit varies depending on the distance z, and the resolution of the reproduced image and the resolution of distance detection decrease as the distance z increases. Conversely, the resolution of the reproduced image and the resolution of distance detection increase as the distance z decreases. Table 1 below shows specific numerical examples of the relationship between the distance z and the resolution under a fixed hologram width D.
- the time resolution is determined by the number of hologram images acquired (number of frames) per second.
- the number of frames is determined by the operating speed of the projection unit 11 and the recording unit 12 of the shape measuring apparatus 1 because the shape measuring method of the present invention is a one-shot recording / recording method. Therefore, a short pulse laser light source, for example, a pulse laser beam having a short time width of several nsec is used as the light source 11a (2) of the projection unit 11, and a dedicated memory is used as the light receiving element 12a (4) of the recording unit 12.
- 100 million frames (10 8 images / second) can be realized by using a high-speed CMOS. In this case, the time resolution is 10 ⁇ 8 seconds.
- the shape measuring method of the present invention is a measuring method having a large dynamic range with respect to the distance z from a microscopic world at a small place to a world exceeding several tens of meters at a large place. . Therefore, the shape can be measured from a small one to a large one with an appropriate distance z and an unprecedented resolution.
- the present invention can record a shape with an unprecedented time resolution of, for example, 10 ⁇ 8 seconds. It can be applied to shape measurement, displacement measurement, vibration analysis, etc. during high-speed rotation, such as multistage turbine blades with deep depth and spiral pump blades for water supply. Furthermore, it can be applied as a means for recording and analyzing, for example, temporal changes in explosion phenomenon, deformation and cracking of an object shape caused by ballistic impact, and its growth, propagation of surface acoustic waves.
- a short pulse laser light source can be used as a light source for illumination
- Calibration of the image sensor is unnecessary
- Can measure object shapes with large depths
- Can measure overhang shapes and complex shapes with discontinuous surfaces
- Can measure with high accuracy
- Can measure shapes of underwater objects There is no measurement technique that combines these features.
- digital photogrammetry technology and TOF distance measurement technology are currently in practical use as three-dimensional shape measurement technology for moving objects.
- the digital photogrammetry technique is based on the stereo method, and it is necessary to calibrate the image sensor in order to accurately obtain the parameters of the camera used (image distance, principal point position, lens distortion coefficient) before measurement.
- the measurement accuracy and measurement depth for a moving object are limited by the resolution limit and the depth of focus of the camera used.
- the TOF distance measurement technique detects the distance by the reciprocation time of light reciprocating between the camera and the subject, and can also measure an overhang shape.
- the distance detection resolution of an apparatus that has been put to practical use is only about 1 cm, and it is necessary to correct the distortion of the camera lens in order to measure with high accuracy.
- the present invention has the following advantages when compared with the conventional shape measurement technology.
- an imaging lens is not used for recording a hologram, it is not necessary to calibrate the image sensor as in the digital photogrammetry technique.
- an accurate free-focus image is reproduced from an in-line hologram recorded in one shot, an object shape having a large depth can be measured as compared with a conventional measurement method using a camera.
- a short-pulse laser light source it is possible to measure high-speed events of about nanoseconds in supersonic moving objects, rotating objects, explosion and ballistic impact tests, and the like.
- the distance is detected by the in-focus method, it is possible to measure a complex shape having an overhang shape or a discontinuous surface as in the TOF distance measurement technique.
- speckles are generated.
- the influence of speckles is eliminated by uniform and finely spaced interference fringe projection and spatial frequency sampling. is doing.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Geometry (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Holo Graphy (AREA)
Abstract
Description
図2に示すように、本計測方法に用いる光学システム10は、単色のコヒーレント光源であるレーザ2と、レーザ2からのレーザ光を照明光L1,L2と参照光Rとに成形して投射するためのレンズ21等から成る光学素子群と、受光素子4(イメージセンサ)と、レーザ2と受光素子4とを制御するコンピュータ5と、を備えている。受光素子4は、図中に示した座標軸z方向に受光面を向けて配置される。受光素子4の中央z方向前方(撮像軸上)には、3次元形状を計測する対象となる物体3が配置される。また、直交座標系xyzのxy方向は、矩形の受光素子4の各辺に沿って定義されている。また、x方向とz方向とを水平方向として例示しているが、光学システム10は、一般に任意の姿勢で使用することができる。
図2、図3に示すように、球面波照明光L1,L2は互いに重なり、照明光L12となって、物体3を照明する。球面波照明光L1,L2は、球面波の中心から十分遠方において平面波PW1,PW2と見做すことができる。図4に示すように、2つの平面波PW1,PW2が重なって干渉すると、3次元空間において一様に分布した干渉パターンが現れる。この干渉パターンは、例えば、2つの平面波PW1,PW2の波数ベクトル(k1,k2とする)の合成波数ベクトル(k12とする)に直交する平面内において単一空間周波数(fiとする)を有する干渉縞Fとなる。また、このような干渉パターンの照明光L12を物体に投光し、その物体表面での拡散光を合成波数ベクトルk12の方向から観測すると、物体表面における位置にかかわらず、一方向において明暗が一様に変化する干渉縞Fが観測される。図2、図3の光学システム10の構成の場合、受光素子4から見てy方向の明暗模様(縦縞模様)がx方向(横方向)に単一空間周波数fiで繰り返される干渉縞Fが観測される。
図2に戻って、記録工程を説明する。図2に示すように、参照光Rは、撮像軸に対して傾いた方向、すなわちオフアクシス方向(軸外し方向)から受光素子4の受光面の中央に向けて照射される。受光素子4には、物体3の表面に投影された干渉縞Fに基づく物体光Oが入射する。物体光Oは、物体3の粗面からの散乱光である。受光素子4の受光面からは、物体3と共に、規則正しくx方向に並んだ縦縞の干渉縞Fが見える。光学システム10は、受光素子4によって、物体光Oと参照光Rとの干渉像をディジタルホログラムであるオフアクシスホログラムIORとして記録する。本計測方法における記録工程(S2)では、形状を計測する対象となる物体3の1つの姿勢に対して1枚のオフアクシスホログラムIORを記録すればよい。運動している物体については、運動中における必要とされる姿勢毎に1枚づつのオフアクシスホログラムIORを記録すればよい。つまり、本計測方法では、いわゆる位相シフトディジタルホログラフィにおいて、物体の1つの姿勢に対して必要とされる、互いに位相状態の異なる複数のオフアクシスホログラムのうち1枚のホログラムだけが取得できればよい。このようなワンショット記録を行うための光学システム10は容易に構成することができる。
次に、図9、図10、図11、図12を参照して計測工程を説明する。図9に示すように、計測工程は、ホログラム変換工程(#1)と合焦反復工程(#2)とを順番に行って物体の3次元形状計測を行う工程である。最初のホログラム変換工程(#1)は、記録工程で記録した1枚のオフアクシスホログラムIORからz=0における物体光波面を表す1枚の物体光複素振幅インラインホログラムgを生成する工程である。この工程は合焦法の対象となるホログラムgを準備する工程であり、計測工程における前処理工程である。次の合焦反復工程(#2)は、全体画像を表す1枚のホログラムgの各測定点毎に合焦法を適用して合焦点を求めることにより、形状計測を実質的に実行する工程である。言い換えると、ホログラム変換工程(#1)は、ワンショットディジタルホログラフィを使って正確な複素振幅インラインホログラムとして記録した投影干渉縞を、複素振幅インラインホログラムから数値計算を行って無歪画像として再生する工程である。また、合焦反復工程(#2)は、再生画像から投影干渉縞と同じ空間周波数の成分を取り出し、この成分に対して合焦法を適用してホログラム記録面から物体表面上の測定点までの距離を特定する工程であり、複数種類の処理方法を適用することができる。以下、順番にこれらの工程を詳細説明する。
図10に示すように、ホログラム変換工程は、複素振幅生成工程(S31)と第2変調工程(S32)とを順番に行って、オフアクシスホログラムIORを変換して複素振幅ホログラムJOLを生成し、複素振幅ホログラムJOLから合焦法の対象となるホログラムgを生成する。
ここで、数式表現による画像記録を説明する。ホログラム画像記録には、照明光、参照光、物体光などが関与する。そこで、受光素子4の表面における位置座標(x,y)および時間変数tを用いて、物体光O(x,y,t)、オフアクシス参照光R(x,y,t)、および再生用インライン参照光L(x,y,t)等と表し、それぞれ一般的な形で、下式(1)(2)(3)のように表す。これらの光は、互いにコヒーレントな角周波数ωの光である。各式中の係数、引数、添え字などは、一般的な表現と意味に解釈される。また、以下の各式において、位置座標(x,y)等の明示などは、適宜省略される。
次に、図11(a)(b)を参照して、複素振幅ホログラムJLRの求め方の他の例を説明する。上記式(4)の光強度IOR(x,y)を電子的にオフアクシスホログラムIORとして記録すると、第3項の直接像成分と第4項の共役像成分とが分離されて、それぞれ異なる空間周波数帯域に記録される。そこで、2次元空間周波数領域において、直接像成分と共役像成分とが、物体光の光強度O0 2の成分と重ならないようにして3次元像をオフアクシスホログラムIORとして記録したものとする。
上記工程によって得られた複素振幅インラインホログラムJOLから正確な光波面を再生するために、ヘルムホルツ方程式の厳密解である平面波を用いて物体光を展開する。そこで、まず、複素振幅インラインホログラムJOLに対して、再生用インライン参照光Lの位相φL(x,y)を用いる空間ヘテロダイン変調を行う。この変調を第2変調と称することにする。位相φL(x,y)を用いる空間ヘテロダイン変調は、例えば、式(8)に示される複素振幅インラインホログラムJOLに、exp(iφL(x,y))を乗じることで実施される。この空間ヘテロダイン変調の結果、下式(10)に示す物体光複素振幅インラインホログラムg(x,y)が得られる。この物体光複素振幅インラインホログラムg(x,y)は、受光素子4の受光面における物体光波面、すなわち、受光面の法線方向にz座標軸をとり、受光面の位置をz=0としたときのz=0における物体光波面を表す。
図12に示すように、合焦反復工程は、平面波展開工程(S33)と、干渉縞抽出工程(S34)と、合焦判定工程(S35)と、再生位置変更工程(S37)とを備えて、物体光複素振幅インラインホログラムgに記録されている物体形状を求める工程である。
平面波展開工程は、物体光複素振幅インラインホログラムg(x,y)をフーリエ変換して成る変換関数Gを求め、変換関数Gを平面波の分散関係を満たすフーリエ空間周波数(u,v,w)を用いて平面波展開することにより所定焦点位置における波面ホログラム(h)を生成する。電磁波に関するヘルムホルツ方程式の厳密解として平面波がある。この厳密解である平面波を用いて、物体光Oを記録したホログラムを展開することによって、正確な光波面を再生することができる。そこで、まず、上式(10)におけるホログラムg(x,y)をフーリエ変換して、z=0における変換関数Gを、下式(11)のように求める。
位置z=dにおける再生画像|h(x,y,d)|2に対して空間周波数フィルタリングを行い、干渉縞Fの単一空間周波数fi成分のみを抜き出すことにより、干渉縞Fを抽出して、スペックルの影響を低減した画像である干渉縞画像Kが得られる。なお、図5(b)およびその説明を参照。この干渉縞抽出のための空間周波数フィルタリングは、再生画像|h(x,y,d)|2に高速フーリエ変換(FFT)を施し、この周波数空間においてフィルタリング処理を行った後、再度、高速フーリエ変換(逆変換)を施すことによって実現される。
スペックルの影響を低減した干渉縞画像Kは、位置z=d、すなわち画像再生位置(焦点距離)を任意に変化させて生成することができる。従って、焦点距離の異なる複数の干渉縞画像Kを用いて、各測定点P(xp,yp)毎に、例えばコントラストによる合焦測度(合焦を判定するための尺度)を求めて合焦判定をすることにより合焦位置すなわち合焦点zpを決定して、スペックルの影響を低減した状態で物体形状計測を行うことができる。
図13、図14は合焦反復工程(#2)の他の実施形態を示す。この実施形態は、波面ホログラムh(x,y,d)の全体を合焦法の対象とする替わりに、2種類の微小ホログラムΔh,h’を設定して各微小ホログラムに対して合焦法を適用する。この微小ホログラムΔh,h’を用いる点が上述の図12に示される実施形態とは異なる。図13に示すように、微小ホログラムΔhは、波面ホログラムhをホログラム面(z=0)よりも物体3の表面に近い所定の位置z=z0に生成し、その波面ホログラムhから測定点P(xp,yp)を含む微小ホログラムを切り取ったものである。微小ホログラムh’は、微小ホログラムΔhに基づいて生成され、互いに、例えばΔz毎に、焦点位置の異なる複数の微小ホログラムが生成される。なお、微小ホログラムΔhは、合焦判定の対象とされる点において、微小ホログラムh’と見做される。微小ホログラムΔhを切り出すサイズは、x方向およびy方向の形状測定精度(分解能)に基づいて、十分な精度と適切な処理時間となるように設定する。合焦点方式による距離計測では、干渉縞再生画像が最も鮮明に収束する焦点距離を検索することにより物体表面上の各測定点までの距離を求める。従って、この合焦点方式による距離計測においては測定点の周りに投影干渉縞の明暗の差が含まれるに十分な広がりが必要であり、微小ホログラムΔhはそのようなサイズで切り出される。なお、「切り出す」とは、演算範囲を数値限定するという意味であり、計算上は、例えば矩形の窓関数を用いて行うことができる。
図15、図16は合焦反復工程(#2)のさらに他の実施形態を示す。この実施形態は、空間窓関数を用いて合焦法を行うものであり、上述の図14において破線で囲んで示したステップ(S44)~(S48)における処理の高精度化を図るものである。概要を述べると、この合焦反復工程は、微小ホログラムh’の絶対値の2乗から成る再生画像|h’|2と窓関数Wとの積を単一空間周波数fiを用いてフーリエ変換した関数を合焦測度Hとして求め、その合焦測度Hの大きさによって合焦判定をする。窓関数Wとして、例えばガウス関数型の窓関数を用いることができる。窓関数Wの形状を設定する際に、微小ホログラムh’に対応する物体上の微小表面の傾斜を反映させる。窓関数Wと微小ホログラムh’とは、窓関数Wがカバーする領域を微小ホログラムh’の領域に包含するように、相互のサイズが設定される。また、窓関数Wのサイズは、測定点の周りに投影干渉縞の明暗の差が含まれるに十分な広がりを持つように設定される。
図16、図17は本計測方法の他の実施形態を示す。本実施形態は、図16に示すように、物体3の表面に投影された干渉縞の像をホログラムに記録するために、3つの受光素子41,42,43を用いるものである。干渉縞F(不図示)の構成は、例えば、図3に示した構成と同じとする。受光素子41,42,43は、干渉縞F(不図示)の縞の配列方向(x方向)に沿って配置される。受光素子の個数は、一般に複数とすることができる。このように、x方向(水平方向)に配列した複数の受光素子を用いて、垂直方向の干渉縞を記録し、複数枚の記録ホログラムを使ってx方向の開口数が大きい複素振幅インラインホログラムを作成することができる。
図18は3次元形状計測装置1を示す。計測装置1は、投影部11と、記録部12と、計測部13と、これらを制御する制御部14とを備えている。投影部11は、単一空間周波数fiと正弦波光強度とを有する干渉縞Fを互いにコヒーレントな2つのレーザ光の干渉によって形成して物体表面に投影する。投影部11は、干渉縞Fを形成するためのレーザ光を発する光源11aと、光源11aからのレーザ光を物体表面まで導く光学システム11bとを備えている。光源11aは、例えば、図2に示したレーザ2であり、この場合、記録部12で用いる光源12a(後述)が共用される。光学システム11bは、例えば、図2に示した照明光L1,L2用の光学素子群等から構成される。
図19乃至図24によって、3次元形状計測方法の実施例を説明する。本発明の計測方法による高精度計測の有利性を確認するために、拡散平面(光拡散性の平面)までの距離を計測する距離計測実験を行った。計測物体は、面精度が波長以下の2cm×2cmの立方体ガラスの表面に厚さ10μm以下の白色塗料を塗布したものである。この計測物体を、イメージセンサから約85cmの位置に物体側面を45度傾けて配置した。干渉縞は、この計測物体の表面に縦方向の縞模様と成るように投影した。従って、これらの配置は、図3に示した配置と同じである。計測物体の表面上の干渉縞を上述のワンショットホログラフィを用いて記録した。得られた複素振幅インラインホログラムは、画素ピッチ7.4μm、画素数4096×4096を有し、このホログラムから数値計算によって画像を再生した。
本発明の形状計測方法において、再生像の横方向(xy方向)の分解能δは、ホログラムの開口数NA=D/(2z)と光波長λを用いてδ=λ/(NA)=2λz/Dと表され、ホログラム幅Dが一定の下では分解能δは測定位置までの距離zに比例する。一方、縞間隔αの再生干渉縞の場合、焦点深度ζは、大略ζ=α/(NA)と表される。奥行き方向(z方向)の分解能は、焦点深度ζに比例する。縞間隔αを分解能δに比例した値α=kδに設定するとζ=α/(NA)=kλ/(NA)2=4kλz2/D2となり、焦点深度ζは距離zの二乗に比例する。従って、ホログラム幅Dが一定の下では距離zが大きくなるほど、分解能δの値は大きくなり、奥行き方向の距離検出の分解能の値は距離zの二乗に比例して大きくなる。つまり、解像度限界は距離zによって変化し、距離zが大きくなるほど再生像の分解能も距離検出の分解能も低下し、逆に、距離zが小さくなるほど再生像の分解能も距離検出の分解能も向上する。ホログラム幅Dが一定の下で距離zと分解能との関係の具体的な数値例を示すと、下表1のようになる。
本発明の形状計測方法において、時間分解能は、毎秒当たりのホログラム画像取得数(フレーム数)によって決まる。また、このフレーム数は、本発明の形状計測方法がワンショット記録記録方法であるので、形状計測装置1の投影部11と記録部12の動作速度によって決まる。そこで、投影部11の光源11a(2)として、短パルスレーザ光源、例えば、数nsec程度の時間幅の短いパルスレーザ光を用い、記録部12の受光素子12a(4)として、専用のメモリを有する高速のCMOSを用いることにより、例えば、1億フレーム(108画像/秒)を実現できる。この場合、時間分解能は、10-8秒となる。
本発明の形状計測方法は、上記の表1に示すように、小さなところでは、顕微鏡的な世界から、大きなところでは、数10mを超える世界まで、距離zに対する大きなダイナミックレンジを有する測定方法である。従って、小さなものから、大きなものまで、適切な距離zと従来にない分解能のもとで形状を計測することができる。また、本発明は、上記のように、例えば10-8秒という従来にない時間分解能のもとで形状を記録することができるので、クランクシャフトのような奥行きのある回転体や、さらに大型で深い奥行きを持つ多段タービンブレードや送水用の渦巻ポンプブレードなどの、高速回転中の形状計測、変位計測、振動解析などに適用することができる。さらに、爆発現象の時間変化、弾道の衝撃による物体形状の変形や亀裂の発生とその成長、弾性表面波の伝搬などの記録と解析などの手段として適用することができる。
上記の適用可能性は、本発明が、以下のような特徴を持つことによる;(1)照明用光源として短パルスレーザ光源を使用可能、(2)イメージセンサのキャリブレーションが不要、(3)深度の大きい物体形状を計測可能、(4)オーバーハング形状や不連続面を持つ複雑形状の計測が可能、(5)高精度計測が可能、(6)水中物体の形状計測が可能。これらの特徴を兼ね備えた計測技術は、従来存在しない。例えば、運動物体に対する3次元形状計測技術として現在実用化されている技術に、デジタル写真測量技術とTOF距離測定技術とがある。デジタル写真測量技術は、ステレオ法を原理としており、計測の前に使用カメラのパラメータ(画像距離、主点位置、レンズ歪み係数)を正確に求めるためイメージセンサのキャリブレーションを行う必要がある。また、運動物体に対する計測精度と計測深度とは、使用カメラの解像限界と焦点深度によって制限される。TOF距離測定技術は、カメラと被写体間を往復する光の往復時間により距離を検出するものであり、オーバーハング形状も計測できる。しかしながら、実用化されている装置の距離検出分解能は1cm程度に留まっており、高精度に計測するにはカメラレンズの歪み補正を行う必要がある。
10 光学システム
11 投影部
12 記録部
13 計測部
13d 干渉縞抽出部
2,11a,12a レーザ(光源)
3 物体
4,41~43、12b 受光素子(イメージセンサ)
fi 単一空間周波数
g 物体光複素振幅インラインホログラム
g(j) 物体光複素振幅インラインホログラム
h 波面ホログラム
h’ 微小ホログラム
Δh 微小ホログラム
zp 合焦点
F 干渉縞
G 変換関数
H 合焦測度
L 再生用インライン参照光
O 物体光
P 測定点
R オフアクシス参照光
W 窓関数
IOR オフアクシスホログラム
IOR(j) オフアクシスホログラム
JOL 複素振幅インラインホログラム
φL 再生用インライン参照光の位相
φR オフアクシス参照光の位相
Claims (13)
- 物体表面に投影した干渉縞を記録したディジタルホログラムを用いて物体表面の3次元形状を計測する3次元形状計測方法において、
物体表面に単一空間周波数fiを有する干渉縞Fを投影する投影工程と、
前記投影工程によって物体表面に投影した干渉縞Fを受光素子によってホログラムとして記録する記録工程と、
前記記録工程によって記録されたホログラムから焦点距離を変えた複数の再生像を生成し、各再生像における干渉縞Fに対する合焦法の適用によって物体表面の各点までの距離を求める計測工程と、を備え、
前記計測工程は、前記合焦法を適用する際に空間周波数フィルタリングによって前記各再生像から前記干渉縞に対応する単一空間周波数fiの成分を抽出する干渉縞抽出工程を備えることを特徴とする3次元形状計測方法。 - 前記投影工程において物体表面に投影する干渉縞Fは正弦波光強度を有することを特徴とする請求項1に記載の3次元形状計測方法。
- 前記投影工程は、物体表面に投影する干渉縞Fを互いにコヒーレントな2つのレーザ光の干渉によって形成し、前記受光素子の受光面から見て物体表面の位置にかかわらず干渉縞Fの配置が一定となるように前記干渉縞Fを物体表面に投影することを特徴とする請求項1または請求項2に記載の3次元形状計測方法。
- 前記記録工程は、前記干渉縞Fをオフアクシス参照光Rを用いるオフアクシスホログラムIORとして記録することを特徴とする請求項1乃至請求項3のいずれか一項に記載の3次元形状計測方法。
- 前記計測工程は、
再生用インライン参照光Lの位相φLと前記オフアクシス参照光Rの位相φRとに基づいてホログラムに空間ヘテロダイン変調を行う変調工程と、ホログラムから共役像成分を取り除くために空間周波数フィルタリングを行うフィルタリング工程とを有して、前記記録工程によって記録されたオフアクシスホログラムIORに対して前記変調工程とフィルタリング工程とをこの順またはこの逆順で行うことにより前記オフアクシスホログラムIORから複素振幅インラインホログラムJOLを生成する複素振幅生成工程を備え、
前記複素振幅生成工程によって生成された複素振幅インラインホログラムJOLを用いて焦点距離を変えて生成される複数の再生像に対して前記干渉縞抽出工程を行うことを特徴とする請求項4に記載の3次元形状計測方法。 - 前記計測工程は、
前記複素振幅生成工程によって生成された複素振幅インラインホログラムJOLに対し、前記再生用インライン参照光Lの位相φLを用いて空間ヘテロダイン変調を行うことにより再生用インライン参照光L成分を除去して前記受光素子の受光面で定義されるホログラム面における物体光波面を表す物体光複素振幅インラインホログラムgを生成する第2変調工程と、
前記物体光複素振幅インラインホログラムgをフーリエ変換して成る変換関数Gを求め、前記変換関数Gを平面波の分散関係を満たすフーリエ空間周波数(u,v,w)を用いて平面波展開することにより所定焦点位置における波面ホログラムhを生成する平面波展開工程と、を備え、
前記平面波展開工程によって生成された波面ホログラムhを用いて合焦点zpを決定することを特徴とする請求項5に記載の3次元形状計測方法。 - 前記記録工程は、複数の受光素子を用いて同時に複数のオフアクシスホログラムIOR(j)を取得し、
前記計測工程は、前記各オフアクシスホログラムIOR(j)の各々から前記物体光複素振幅インラインホログラムg(j)を生成すると共に、それらを互いに重ねて合成したホログラムを物体光複素振幅インラインホログラムgとして用いることを特徴とする請求項6に記載の3次元形状計測方法。 - 前記計測工程は、前記平面波展開工程による波面ホログラムhを前記ホログラム面よりも物体表面に近い焦点位置に生成し、その波面ホログラムhから測定点P(xp,yp)を含む微小ホログラムΔhを切り取り、前記微小ホログラムΔhに基づいて互いに焦点位置の異なる複数の微小ホログラムh’を生成し、それらの微小ホログラムh’を用いて合焦点zpを決定することを特徴とする請求項6または請求項7に記載の3次元形状計測方法。
- 前記計測工程は、前記微小ホログラムh’の絶対値の2乗から成る再生画像|h’|2と窓関数Wとの積を前記単一空間周波数fiを用いてフーリエ変換した関数を合焦測度Hとして求め、その合焦測度Hの大きさによって合焦判定をして合焦点zpを決定することを特徴とする請求項8に記載の3次元形状計測方法。
- 前記窓関数Wは、ガウス関数型の窓関数であることを特徴とする請求項9に記載の3次元形状計測方法。
- 前記計測工程は、前記微小ホログラムΔhの絶対値の2乗から成る再生画像|Δh|2から当該再生画像|Δh|2に対応する物体表面の勾配ベクトルΔを求め、その勾配ベクトルΔに基づいて前記窓関数Wの窓の大きさと向きとを調整することを特徴とする請求項9または請求項10に記載の3次元形状計測方法。
- 物体表面に投影した干渉縞を記録したディジタルホログラムを用いて物体表面の3次元形状を計測する3次元形状計測装置において、
単一空間周波数fiと正弦波光強度とを有する干渉縞Fを互いにコヒーレントな2つのレーザ光の干渉によって形成して物体表面に投影する投影部と、
前記投影部によって物体表面に投影した干渉縞Fを受光素子によってオフアクシスホログラムIORとしてディジタルホログラムに記録する記録部と、
前記記録部によって記録されたディジタルホログラムから焦点距離を変えた複数の再生像を生成し、各再生像における干渉縞Fに対する合焦法の適用によって物体表面の各点までの距離を求める計測部と、を備え、
前記計測部は、前記各再生像から前記干渉縞に対応する単一空間周波数fiの成分を空間周波数フィルタリングによって抽出する干渉縞抽出部を備えることを特徴とする3次元形状計測装置。 - 前記投影部は、物体表面に投影する干渉縞Fを、前記受光素子の受光面から見て物体表面の位置にかかわらず干渉縞Fの配置が一定となるように物体表面に投影することを特徴とする請求項12に記載の3次元形状計測装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/980,775 US9036900B2 (en) | 2011-01-21 | 2012-01-19 | Three-dimensional shape measurement method and three-dimensional shape measurement device |
EP12736629.2A EP2667150B1 (en) | 2011-01-21 | 2012-01-19 | Three-dimensional shape measurement method and three-dimensional shape measurement device |
JP2012553773A JP5467321B2 (ja) | 2011-01-21 | 2012-01-19 | 3次元形状計測方法および3次元形状計測装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011010842 | 2011-01-21 | ||
JP2011-010842 | 2011-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012099220A1 true WO2012099220A1 (ja) | 2012-07-26 |
Family
ID=46515839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/051125 WO2012099220A1 (ja) | 2011-01-21 | 2012-01-19 | 3次元形状計測方法および3次元形状計測装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9036900B2 (ja) |
EP (1) | EP2667150B1 (ja) |
JP (1) | JP5467321B2 (ja) |
WO (1) | WO2012099220A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103322941A (zh) * | 2013-07-09 | 2013-09-25 | 河北工程大学 | 一种准确获取三维显微图像的方法 |
TWI567383B (zh) * | 2015-02-17 | 2017-01-21 | 國立中山大學 | 利用條紋投影量測光滑物體的方法 |
JP2017538160A (ja) * | 2014-11-28 | 2017-12-21 | アイメック・タイワン・カンパニーIMEC Taiwan Co. | デジタルホログラフィにおけるオートフォーカスシステムおよびオートフォーカス方法 |
WO2020026626A1 (ja) * | 2018-08-01 | 2020-02-06 | ソニーセミコンダクタソリューションズ株式会社 | 計測装置 |
WO2020045589A1 (ja) * | 2018-08-29 | 2020-03-05 | 公立大学法人兵庫県立大学 | 表面形状計測装置および表面形状計測方法 |
JPWO2019044336A1 (ja) * | 2017-08-30 | 2020-10-01 | 公立大学法人兵庫県立大学 | ホログラフィック撮像装置および同装置に用いるデータ処理方法 |
CN114440789A (zh) * | 2022-01-21 | 2022-05-06 | 大连海事大学 | 旋转体速度、距离和三维形貌同步干涉测量方法及系统 |
US20220196389A1 (en) * | 2019-04-12 | 2022-06-23 | Basf Coatings Gmbh | Method for examining a coating of a probe surface |
EP4175283A4 (en) * | 2020-06-25 | 2023-11-22 | FUJIFILM Corporation | INFORMATION PROCESSING DEVICE, ASSOCIATED OPERATING METHOD AND OPERATING PROGRAM |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH707573A1 (de) * | 2013-02-07 | 2014-08-15 | Thomas Frizlen | Verfahren und System zur Bestimmung der Verlagerung eines Ankers. |
US9459094B2 (en) * | 2013-09-12 | 2016-10-04 | Hong Kong Applied Science and Technology Research Institute Company Limited | Color-encoded fringe pattern for three-dimensional shape measurement |
JP2015190776A (ja) * | 2014-03-27 | 2015-11-02 | キヤノン株式会社 | 画像処理装置および撮像システム |
JP6456084B2 (ja) * | 2014-09-24 | 2019-01-23 | キヤノン株式会社 | 画像処理装置、画像処理方法及びプログラム |
US9823352B2 (en) * | 2014-10-31 | 2017-11-21 | Rockwell Automation Safety Ag | Absolute distance measurement for time-of-flight sensors |
TWI553291B (zh) * | 2015-02-17 | 2016-10-11 | 國立中山大學 | 利用條紋投影量測透明物體的系統 |
US9736440B2 (en) * | 2015-05-26 | 2017-08-15 | Chunghwa Picture Tubes, Ltd. | Holographic projection device capable of forming a holographic image without misalignment |
US10423002B2 (en) * | 2015-06-17 | 2019-09-24 | Maxell, Ltd. | Imaging apparatus capable of generating an image using moire without a lens |
US10223793B1 (en) * | 2015-08-05 | 2019-03-05 | Al Incorporated | Laser distance measuring method and system |
US10466649B1 (en) * | 2015-08-06 | 2019-11-05 | Centauri, Llc | Systems and methods for simultaneous multi-channel off-axis holography |
CN105446111B (zh) * | 2016-01-06 | 2018-02-13 | 中国科学院上海光学精密机械研究所 | 一种应用于数字全息重构过程的对焦方法 |
KR102079181B1 (ko) * | 2016-03-04 | 2020-02-19 | 주식회사 고영테크놀러지 | 패턴광 조사 장치 및 방법 |
US10401145B2 (en) * | 2016-06-13 | 2019-09-03 | Carl Zeiss Industrielle Messtechnik Gmbh | Method for calibrating an optical arrangement |
KR102391838B1 (ko) * | 2016-06-20 | 2022-04-29 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | 드라이버 회로 및 전자 디바이스 |
JP6846950B2 (ja) * | 2017-03-03 | 2021-03-24 | 株式会社キーエンス | ロボットシミュレーション装置、ロボットシミュレーション方法、ロボットシミュレーションプログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器 |
JP6892286B2 (ja) * | 2017-03-03 | 2021-06-23 | 株式会社キーエンス | 画像処理装置、画像処理方法、及びコンピュータプログラム |
JP6846949B2 (ja) * | 2017-03-03 | 2021-03-24 | 株式会社キーエンス | ロボットシミュレーション装置、ロボットシミュレーション方法、ロボットシミュレーションプログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器 |
WO2019109091A1 (en) * | 2017-12-03 | 2019-06-06 | Munro Design & Technologies, Llc | Digital image processing systems for three-dimensional imaging systems with image intensifiers and methods thereof |
US10625824B2 (en) | 2018-01-13 | 2020-04-21 | Thomas Frizlen | Method and system for determining displacement of an anchor |
US11686935B2 (en) * | 2019-01-29 | 2023-06-27 | Meta Platforms Technologies, Llc | Interferometric structured illumination for depth determination |
US20210262787A1 (en) * | 2020-02-21 | 2021-08-26 | Hamamatsu Photonics K.K. | Three-dimensional measurement device |
DE102020119194B4 (de) | 2020-07-21 | 2022-06-15 | Carl Zeiss Jena Gmbh | Verfahren und Vorrichtung zur berührungslosen optischen Prüfung von Freiformflächen und Gittern |
CN112697258A (zh) * | 2020-12-17 | 2021-04-23 | 天津大学 | 一种基于单帧编码照明的视觉振动测量方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0312684B2 (ja) * | 1983-06-30 | 1991-02-20 | Kogyo Gijutsuin | |
JP2002526815A (ja) * | 1998-10-07 | 2002-08-20 | エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) | ディジタル・ホログラムを数値的に再構成することにより、振幅コントラスト画像と定量的位相コントラスト画像を同時に形成する方法と装置 |
JP2003232619A (ja) * | 2002-02-07 | 2003-08-22 | Ricoh Co Ltd | 動的形状測定方法及び装置 |
JP2007071793A (ja) * | 2005-09-09 | 2007-03-22 | Hitachi Zosen Corp | 構造部材のき裂検出方法 |
JP2007113974A (ja) * | 2005-10-19 | 2007-05-10 | Hitachi Zosen Corp | 位相シフトデジタルホログラフィ法を用いた歪計測方法および歪計測装置 |
JP2011010842A (ja) | 2009-07-01 | 2011-01-20 | Olympia:Kk | 遊技機 |
WO2011089820A1 (ja) * | 2010-01-22 | 2011-07-28 | 兵庫県 | 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置 |
WO2012005315A1 (ja) * | 2010-07-07 | 2012-01-12 | 兵庫県 | ホログラフィック顕微鏡、微小被写体のホログラム画像記録方法、高分解能画像再生用ホログラム作成方法、および画像再生方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3471556B2 (ja) * | 1997-03-27 | 2003-12-02 | 理化学研究所 | 位相シフトディジタルホログラフィ装置 |
CN101466998B (zh) * | 2005-11-09 | 2015-09-16 | 几何信息学股份有限公司 | 三维绝对坐标表面成像的方法和装置 |
WO2010092533A1 (en) * | 2009-02-13 | 2010-08-19 | Ecole Polytechnique Federale De Lausanne (Epfl) | Method and apparatus for 3d object shape and surface topology measurements by contour depth extraction acquired in a single shot |
TWI426296B (zh) * | 2009-06-19 | 2014-02-11 | Ind Tech Res Inst | 利用光學偏極特性之三維顯微共焦量測系統與方法 |
-
2012
- 2012-01-19 US US13/980,775 patent/US9036900B2/en not_active Expired - Fee Related
- 2012-01-19 EP EP12736629.2A patent/EP2667150B1/en not_active Not-in-force
- 2012-01-19 WO PCT/JP2012/051125 patent/WO2012099220A1/ja active Application Filing
- 2012-01-19 JP JP2012553773A patent/JP5467321B2/ja not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0312684B2 (ja) * | 1983-06-30 | 1991-02-20 | Kogyo Gijutsuin | |
JP2002526815A (ja) * | 1998-10-07 | 2002-08-20 | エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) | ディジタル・ホログラムを数値的に再構成することにより、振幅コントラスト画像と定量的位相コントラスト画像を同時に形成する方法と装置 |
JP2003232619A (ja) * | 2002-02-07 | 2003-08-22 | Ricoh Co Ltd | 動的形状測定方法及び装置 |
JP4023666B2 (ja) | 2002-02-07 | 2007-12-19 | 株式会社リコー | 動的形状測定方法及び装置 |
JP2007071793A (ja) * | 2005-09-09 | 2007-03-22 | Hitachi Zosen Corp | 構造部材のき裂検出方法 |
JP2007113974A (ja) * | 2005-10-19 | 2007-05-10 | Hitachi Zosen Corp | 位相シフトデジタルホログラフィ法を用いた歪計測方法および歪計測装置 |
JP2011010842A (ja) | 2009-07-01 | 2011-01-20 | Olympia:Kk | 遊技機 |
WO2011089820A1 (ja) * | 2010-01-22 | 2011-07-28 | 兵庫県 | 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置 |
WO2012005315A1 (ja) * | 2010-07-07 | 2012-01-12 | 兵庫県 | ホログラフィック顕微鏡、微小被写体のホログラム画像記録方法、高分解能画像再生用ホログラム作成方法、および画像再生方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2667150A4 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103322941A (zh) * | 2013-07-09 | 2013-09-25 | 河北工程大学 | 一种准确获取三维显微图像的方法 |
JP2017538160A (ja) * | 2014-11-28 | 2017-12-21 | アイメック・タイワン・カンパニーIMEC Taiwan Co. | デジタルホログラフィにおけるオートフォーカスシステムおよびオートフォーカス方法 |
TWI567383B (zh) * | 2015-02-17 | 2017-01-21 | 國立中山大學 | 利用條紋投影量測光滑物體的方法 |
US9739602B2 (en) | 2015-02-17 | 2017-08-22 | National Sun Yat-Sen University | Method for measuring three-dimensional profile of specular object by fringe projection |
JP7161777B2 (ja) | 2017-08-30 | 2022-10-27 | 兵庫県公立大学法人 | ホログラフィック撮像装置および同装置に用いるデータ処理方法 |
JPWO2019044336A1 (ja) * | 2017-08-30 | 2020-10-01 | 公立大学法人兵庫県立大学 | ホログラフィック撮像装置および同装置に用いるデータ処理方法 |
WO2020026626A1 (ja) * | 2018-08-01 | 2020-02-06 | ソニーセミコンダクタソリューションズ株式会社 | 計測装置 |
US11523099B2 (en) | 2018-08-01 | 2022-12-06 | Sony Semiconductor Solutions Corporation | Measurement device |
US11635289B2 (en) | 2018-08-29 | 2023-04-25 | University Of Hyogo | Surface shape measurement device and surface shape measurement method |
JPWO2020045589A1 (ja) * | 2018-08-29 | 2021-08-26 | 兵庫県公立大学法人 | 表面形状計測装置および表面形状計測方法 |
JP7231946B2 (ja) | 2018-08-29 | 2023-03-02 | 兵庫県公立大学法人 | 表面形状計測装置および表面形状計測方法 |
TWI797377B (zh) * | 2018-08-29 | 2023-04-01 | 公立大學法人兵庫縣立大學 | 表面形狀量測裝置以及表面形狀量測方法 |
WO2020045589A1 (ja) * | 2018-08-29 | 2020-03-05 | 公立大学法人兵庫県立大学 | 表面形状計測装置および表面形状計測方法 |
US20220196389A1 (en) * | 2019-04-12 | 2022-06-23 | Basf Coatings Gmbh | Method for examining a coating of a probe surface |
JP2022529613A (ja) * | 2019-04-12 | 2022-06-23 | ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング | プローブ表面のコーティングの検査方法 |
US11859962B2 (en) * | 2019-04-12 | 2024-01-02 | Basf Coatings Gmbh | Method for examining a coating of a probe surface |
JP7502328B2 (ja) | 2019-04-12 | 2024-06-18 | ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング | プローブ表面のコーティングの検査方法 |
EP4175283A4 (en) * | 2020-06-25 | 2023-11-22 | FUJIFILM Corporation | INFORMATION PROCESSING DEVICE, ASSOCIATED OPERATING METHOD AND OPERATING PROGRAM |
CN114440789A (zh) * | 2022-01-21 | 2022-05-06 | 大连海事大学 | 旋转体速度、距离和三维形貌同步干涉测量方法及系统 |
CN114440789B (zh) * | 2022-01-21 | 2023-06-06 | 大连海事大学 | 旋转体速度、距离和三维形貌同步干涉测量方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
EP2667150B1 (en) | 2018-03-14 |
EP2667150A1 (en) | 2013-11-27 |
US20130301909A1 (en) | 2013-11-14 |
JPWO2012099220A1 (ja) | 2014-06-30 |
US9036900B2 (en) | 2015-05-19 |
EP2667150A4 (en) | 2017-01-18 |
JP5467321B2 (ja) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5467321B2 (ja) | 3次元形状計測方法および3次元形状計測装置 | |
US6809845B1 (en) | Phase imaging using multi-wavelength digital holography | |
JP5352763B2 (ja) | 複素振幅インラインホログラムの生成方法および該方法を用いる画像記録装置 | |
JP5818341B2 (ja) | 形状計測装置および形状計測方法 | |
TW201510475A (zh) | 三維形貌輪廓量測裝置及其方法 | |
CN111238403A (zh) | 一种基于光场子孔径条纹图像的三维重建方法及装置 | |
JP7231946B2 (ja) | 表面形状計測装置および表面形状計測方法 | |
JP2003097922A (ja) | 表面形状測定装置及びその方法、プログラム並びに記憶媒体 | |
KR20200040209A (ko) | 측정 대상 물체의 3차원 형상 정보 생성 장치 | |
JP4025878B2 (ja) | 物体の再生像を得る装置、位相シフトデジタルホログラフィ変位分布計測装置及びパラメータを同定する方法 | |
US10042325B2 (en) | Image processing method | |
Pedraza Ortega et al. | Image processing for 3D reconstruction using a modified fourier transform profilometry method | |
JP3958099B2 (ja) | ホログラフィ装置 | |
JPH05306916A (ja) | 縞位相分布解析方法および縞位相分布解析装置 | |
KR102055307B1 (ko) | 측정 대상 물체의 3차원 형상 정보 생성 장치 | |
Kapusi et al. | White light interferometry in combination with a nanopositioning and nanomeasuring machine (NPMM) | |
KR102093885B1 (ko) | 측정 대상 물체의 3차원 형상 정보 생성 장치 | |
Echter et al. | Carrier fringe analysis algorithms for three degree of freedom optical probing | |
JP2022162306A (ja) | 表面形状計測装置および表面形状計測方法 | |
JP4023666B2 (ja) | 動的形状測定方法及び装置 | |
CN110006364A (zh) | 基于圆条纹径向空间载波相移的三维实时显微测量方法 | |
JP4177188B2 (ja) | 動的形状及び動的位置の同時測定方法、装置、光学素子 | |
KR20200042445A (ko) | 측정 대상 물체의 3차원 형상 정보 생성 장치 | |
Guo | Design and evaluation of phase mask for high-speed fringe projection | |
JP2023533767A (ja) | デジタルホログラム再構成システム及び方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12736629 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012553773 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13980775 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012736629 Country of ref document: EP |