WO2012096260A1 - レーザ切断前の化学強化に用いられるガラス板 - Google Patents

レーザ切断前の化学強化に用いられるガラス板 Download PDF

Info

Publication number
WO2012096260A1
WO2012096260A1 PCT/JP2012/050282 JP2012050282W WO2012096260A1 WO 2012096260 A1 WO2012096260 A1 WO 2012096260A1 JP 2012050282 W JP2012050282 W JP 2012050282W WO 2012096260 A1 WO2012096260 A1 WO 2012096260A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
tempered glass
laser beam
content
cutting
Prior art date
Application number
PCT/JP2012/050282
Other languages
English (en)
French (fr)
Inventor
齋藤 勲
小池 章夫
泰成 岩永
裕介 小林
達弥 岩崎
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2012096260A1 publication Critical patent/WO2012096260A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0736Shaping the laser spot into an oval shape, e.g. elliptic shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic

Definitions

  • the present invention relates to a glass plate used for chemical strengthening before laser cutting.
  • cover glasses protective glass
  • portable devices such as mobile phones and PDAs
  • a glass substrate is widely used as a display substrate.
  • Tempered glass is also used as automotive window glass and architectural window glass.
  • Tempered glass is produced by, for example, an air cooling tempering method or a chemical tempering method.
  • the air-cooling strengthening method rapidly cools the glass near the softening point from the front and back surfaces, and creates a temperature difference between the front and back surfaces of the glass and the inside, so that the surface layer and the back surface layer where compressive stress remains are formed.
  • the chemical strengthening method ion-exchanges the front and back surfaces of the glass, and replaces ions with a small ion radius (for example, Li ions and Na ions) contained in the glass with ions with a large ion radius (for example, K ions). By doing so, the front surface layer and the back surface layer in which the compressive stress remains are formed.
  • an intermediate layer in which tensile stress remains is formed between the front surface layer and the back surface layer as a reaction.
  • This invention was made in view of the said subject, Comprising: It aims at providing the glass plate used for the chemical strengthening before laser cutting with the favorable locus
  • a glass plate used for chemical strengthening before laser cutting according to one aspect of the present invention, When the absorption coefficient of the glass plate with respect to laser light having a central wavelength band of 1075 to 1095 nm is ⁇ (cm ⁇ 1 ) and the thickness of the glass plate is t (cm), 0.001 ⁇ ⁇ ⁇ t ⁇ 3.0 It is characterized by satisfying the formula.
  • FIG. 2 is a schematic diagram showing an example of stress distribution in a cross section taken along line AA in FIG. 1B.
  • FIG. 2 is a schematic diagram showing an example of stress distribution in a cross section taken along line BB in FIG. 1B.
  • the product of the light source output of a laser beam having a central wavelength band of 1075 to 1095 nm that can cut the tempered glass plate with high accuracy, the absorption coefficient ( ⁇ ) of the tempered glass plate with respect to the laser beam, and the thickness (t) of the tempered glass plate It is a figure which shows the relationship with ((alpha) xt).
  • Laser light source output with a center wavelength band of 1075 to 1095 nm that can cut a tempered glass plate with high accuracy, and the iron content when all iron in the tempered glass plate is converted to trivalent iron oxide It is a figure which shows the relationship. It is a figure which shows the relationship between the light source output of the laser beam whose center wavelength band is 1075-1095 nm which can cut
  • FIGS. 1A and 1B are explanatory diagrams of a method for cutting a tempered glass plate formed by strengthening a glass plate according to the first embodiment of the present invention.
  • FIG. 1B is a plan view of FIG. 1A.
  • the surface (one main surface) 12 of the tempered glass plate 10 is irradiated with the laser light 20, and the irradiation region 22 of the laser light 20 is moved on the surface 12 of the tempered glass plate 10. By doing so, stress is applied to the tempered glass plate 10 to cut the tempered glass plate 10.
  • the tempered glass plate 10 is produced by, for example, a chemical tempering method.
  • strengthening is selected according to a use.
  • soda lime glass is used as the reinforcing glass.
  • non-alkali glass that does not substantially contain an alkali metal element is used as the reinforcing glass.
  • the front and back surfaces (both main surfaces) of the glass are ion-exchanged, and ions with a small ion radius (for example, Li ions and Na ions) contained in the glass are ions with a large ion radius (for example, K ions).
  • ions with a small ion radius for example, Li ions and Na ions
  • the front surface layer and the back surface layer in which the compressive stress remains are formed.
  • an intermediate layer in which a tensile stress remains is formed between the front surface layer and the back surface layer.
  • the chemical strengthening method is suitable for strengthening soda lime glass containing an alkali metal element.
  • the tempered glass board 10 of this embodiment is produced by the chemical strengthening method, it can also be produced by the air cooling strengthening method.
  • the air-cooling strengthening method the glass near the softening point is rapidly cooled from the front and back surfaces (both main surfaces), and a temperature difference is created between the front and back surfaces (both main surfaces) and the inside of the glass. A front surface layer and a back surface layer in which stress remains are formed.
  • the air cooling strengthening method is used for strengthening a thick glass
  • the chemical strengthening method is used for strengthening a thin glass (for example, a thickness of 0.2 cm or less).
  • FIG. 2 is a schematic diagram showing an example of the distribution of residual stress in the tempered glass plate before irradiation with laser light.
  • FIG. 2 shows an example of residual stress distribution of a tempered glass sheet (hereinafter referred to as “chemically tempered glass sheet”) reinforced by a chemical tempering method.
  • FIG. 3 is a cross-sectional view of an example of a tempered glass plate before irradiation with laser light.
  • the direction of the arrow indicates the direction in which the stress is applied, and the size of the arrow indicates the magnitude of the stress.
  • the tempered glass plate 10 includes a front surface layer 13 and a back surface layer 15 where compressive stress remains, and an intermediate layer 17 provided between the front surface layer 13 and the back surface layer 15 where tensile stress remains.
  • the surface layer of the end surface of the tempered glass plate 10 may be composed of only a layer in which compressive stress remains, or may be composed of a layer in which compressive stress remains and a layer in which tensile stress remains.
  • the compressive stress (> 0) remaining on the front surface layer 13 and the back surface layer 15 tends to gradually decrease from the front surface 12 and the back surface 14 of the tempered glass plate 10 toward the inside.
  • the tensile stress (> 0) remaining in the intermediate layer 17 is substantially constant.
  • CS is the maximum residual compressive stress (surface compressive stress) (> 0) in the surface layer 13 and the back layer 15, and CT is the internal residual tensile stress in the intermediate layer 17 (average value of residual tensile stress in the intermediate layer 17).
  • > 0 and DOL indicate the thicknesses of the surface layer 13 and the back surface layer 15, respectively.
  • CS, CT, and DOL can be adjusted by the strengthening process conditions. For example, CS, CT, and DOL can be adjusted by the cooling rate of the glass in the case of the wind-cooling down method.
  • CS, CT, and DOL are ion-exchanged by immersing glass in a treatment liquid (for example, KNO 3 molten salt) in the case of chemical strengthening, and can be adjusted by the concentration, temperature, immersion time, etc. of the treatment liquid. is there.
  • a treatment liquid for example, KNO 3 molten salt
  • the front surface layer 13 and the back surface layer 15 of the present embodiment have the same thickness and the same maximum residual compressive stress, but may have different thicknesses or different maximum residual compressive stresses. .
  • the chemically tempered glass plate has a smaller thickness of the surface layer 13 and a thickness of the back layer 15 than the air-cooled tempered glass plate, and therefore compressive stress is generated intensively. Therefore, the maximum residual compressive stress CS can be 600 MPa or more in each of the front surface layer 13 and the back surface layer 15, and the scratch resistance of the front surface 12 and the back surface 14 is good. Further, when the maximum residual compressive stress CS is 600 MPa or more in each of the front surface layer 13 and the back surface layer 15, the internal residual tensile stress CT is sufficiently large. It can cut well.
  • the chemically tempered glass plate is, for example, expressed by mass% based on oxide, SiO 2 : 50 to 74%, Al 2 O 3 : 4 to 25%, B 2 O 3 : 0 to 10%, MgO: 1 to 10% , CaO: 0 to 5%, SrO: 0 to 5%, BaO: 0 to 5%, Na 2 O: 5 to 20%, K 2 O: 0 to 10%, ZrO 2 : 0 to 10%, Fe 2 O 3 : 0.01 to 5.0% is contained.
  • the content of Fe 2 O 3 is the content of iron when converted all iron chemically strengthened glass sheet in an oxide of trivalent iron.
  • the surface layer 13 and the back surface layer 15 are formed by ion exchange.
  • the chemical composition of the entire glass is almost the same before and after the chemical strengthening. Therefore, a glass plate used for chemical strengthening before laser cutting (hereinafter simply referred to as “chemical strengthening glass plate”) has substantially the same chemical composition as the chemically strengthened glass plate.
  • the glass sheet for chemical strengthening is expressed in terms of mass% based on oxide, SiO 2 : 50 to 74%, Al 2 O 3 : 4 to 25%, B 2 O 3 : 0 to 10%, MgO: 1 to 10 %, CaO: 0 to 5%, SrO: 0 to 5%, BaO: 0 to 5%, Na 2 O: 5 to 20%, K 2 O: 0 to 10%, ZrO 2 : 0 to 10%, Fe 2 O 3 : 0.01 to 5.0% is contained.
  • the content of Fe 2 O 3 is the content of iron when converted all iron chemically strengthened glass plate in an oxide of trivalent iron.
  • the scribe line (groove line) is not formed in advance on the surface 12 of the tempered glass plate 10 along the planned cutting line.
  • the scribe line may be formed in advance, but in this case, the number of steps increases, and the work is complicated. Further, if the scribe line is formed in advance, the glass may be lost.
  • an initial crack is formed in advance at the cutting start position.
  • the method for forming the initial crack may be a general method, for example, a cutter, a file, or a laser.
  • the initial crack need not be formed in advance.
  • a microcrack is formed during grinding, so that an initial crack need not be formed in advance.
  • the irradiation region 22 of the laser beam 20 (for example, the center of the irradiation region 22 of the laser beam 20) is directed from the end of the tempered glass plate 10 toward the inside along the planned cutting line. , Moved in a straight line or curved line. Thereby, the crack 30 (refer FIG. 1A and FIG. 1B) is formed toward the inner side from the edge part of the tempered glass board 10, and the tempered glass board 10 is cut
  • the irradiation region 22 of the laser beam 20 may be moved in a P-shape. In this case, the end of the planned cutting line included in the movement path intersects the middle of the planned cutting line.
  • the support that supports the tempered glass plate 10 may be moved or rotated, or the light source of the laser light 20 is moved. May be. Further, a mirror provided in the middle of the path of the laser beam 20 may be rotated.
  • the irradiation region 22 of the laser beam 20 is formed in a circular shape as shown in FIGS. 1A and 1B, for example, but may be rectangular or elliptical.
  • the shape is not limited.
  • the roundness of the irradiation region 22 is preferably 0.5R or less. When the roundness is 0.5R or less, when the center of the irradiation region 22 is moved along the curved cutting plan line on the surface 12 of the tempered glass plate 10, the required accuracy of the rotation control of the irradiation region 22 is It is preferable because it is low.
  • the roundness is a difference (R ⁇ r) between the radii R and r of two concentric circles which are the circumscribed circle C11 and the inscribed circle C12 of the irradiation region 22.
  • R represents the radius of the circumscribed circle C11 of the irradiation region 22
  • r represents the radius of the inscribed circle C12 of the irradiation region 22.
  • the irradiation region 22 of the laser beam 20 is the thickness of the tempered glass plate 10, the maximum residual compressive stress (CS), the internal residual tensile stress (CT), the surface layer 13 and the back surface layer 15. Is moved at a speed according to the thickness (DOL) of the laser beam, the light source output of the laser beam 20, and the like.
  • the laser light 20 is emitted from the light source, then condensed by a condenser lens or the like, and imaged on the surface 12 of the tempered glass plate 10.
  • the condensing position of the laser light 20 may be on the light source side or on the back surface 14 side with respect to the front surface 12 of the tempered glass plate 10. Further, if the heating temperature is not too high, that is, if the light condensing area can keep the annealing point or less, the condensing position of the laser light 20 is in the tempered glass plate 10, particularly in the intermediate layer 17 as shown in FIG. It may be.
  • the condensing position of the laser beam 20 is in the intermediate layer 17, the area where stress is generated by the laser beam 20 can be minimized, so that the cutting accuracy can be increased and the light source output of the laser beam 20 can be reduced. Can do.
  • the laser beam 20 is absorbed as heat in the process of passing through the tempered glass plate 10, and the intensity is reduced.
  • the condensing position of the laser light 20 is set at the back surface 14 or in the vicinity thereof. May be. Since the difference between the heating temperature of the front surface 12 and the heating temperature of the back surface 14 is small, the heating efficiency is good and the light source output of the laser light 20 can be reduced.
  • the optical axis 21 of the laser light 20 may be orthogonal to the surface 12 on the surface 12 of the tempered glass plate 10 as shown in FIGS. 1A and 5 (the optical axis is not shown in FIG. 1A), for example. As described in the third embodiment, it may intersect with the surface 12 at an angle. If the laser beam 20 reflected by the surface 12 may affect the laser oscillator, if the optical axis 21 of the laser beam 20 crosses the surface 12 at an angle, most of the reflected light does not return to the laser oscillator. Can be reduced.
  • the strengthening is performed by utilizing the extension of cracks due to the residual tensile stress of the intermediate layer 17 instead of the action of only the laser beam 20.
  • the glass plate 10 is cut. That is, as will be described in detail later, cracks generated in the tempered glass plate 10 due to the residual tensile stress of the intermediate layer 17 by heating the intermediate layer 17 in the irradiation region 22 of the laser light 20 at a temperature below the annealing point under the above conditions. It is possible to cut the tempered glass sheet 10 by the crack 30 due to the residual tensile stress by controlling the extension of the tension 30.
  • the intermediate layer 17 is heated at a temperature below the annealing point because when the heating is performed above the annealing point, the glass becomes high temperature and a viscous flow easily occurs even in a short time during which the laser beam passes. This is because the compressive stress generated by the laser beam is relieved by this viscous flow.
  • the laser beam 20 When the laser beam 20 is perpendicularly incident on the surface 12 of the tempered glass plate 10, the laser beam 20 travels the same distance as the thickness t (cm) of the tempered glass plate 10 and is emitted from the back surface 14. In this case, when the tempered glass plate 10 and the laser beam 20 satisfy the expression 0 ⁇ ⁇ t ⁇ 3.0, the laser beam 20 reaches the inside without being absorbed by the surface of the tempered glass plate 10. become. The inside of the tempered glass plate 10 is sufficiently heated, and the stress generated in the tempered glass plate 10 changes from the state shown in FIG. 3 to the state shown in FIG. 6 or FIG.
  • FIG. 6 is a schematic diagram showing an example of stress distribution in the cross section along the line AA in FIG. 1B, and is a schematic diagram showing an example of stress distribution in the cross section including the irradiation region of the laser beam.
  • FIG. 7 is a schematic diagram showing an example of stress distribution in the cross section along the line BB in FIG. 1B, and is a schematic diagram showing an example of stress distribution in the cross section behind the cross section shown in FIG.
  • “rear” means the rear of the laser beam 20 in the scanning direction. 6 and 7, the direction of the arrow indicates the direction of the stress, and the length of the arrow indicates the magnitude of the stress.
  • tensile stress is generated in the intermediate layer 17 in the cross section behind the cross section shown in FIG. 6, as shown in FIG. 7.
  • This tensile stress is larger than the residual tensile stress, and a crack 30 is formed in a portion where the tensile stress reaches a predetermined value.
  • the crack 30 penetrates from the front surface 12 to the back surface 14 of the tempered glass plate 10, and the cutting in this embodiment is a so-called full cut cutting.
  • the crack 30 is cut because the position of the irradiation region 22 has the stress distribution as shown in FIG.
  • the tip position of the crack 30 moves so as to follow the position of the irradiation region 22 without moving away from the planned line. Therefore, the extension of the crack 30 can be controlled by the laser beam 20.
  • the extension of the crack 30 can be controlled by the laser beam 20 in the tempered glass plate 10 by setting ⁇ ⁇ t to be larger than 0 and not larger than 3.0.
  • ⁇ ⁇ t since the crack 30 extends just after the irradiation area
  • the tip of the crack 30 may follow the irradiation region 22 instead of following the irradiation region 22. The closer the tip of the crack 30 is to the irradiation region 22, or the more it overlaps, the cutting accuracy is further improved.
  • ⁇ ⁇ t is preferably as close to 0 as possible when the laser wavelength used is close to the wavelength range of visible light. However, since ⁇ ⁇ t is too small, the absorption efficiency is deteriorated. Therefore, it is preferably 0.0005 or more (laser light absorption rate 0.05% or more), more preferably 0.002 or more (laser light absorption rate 0.2). % Or more), more preferably 0.004 or more (laser light absorption rate 0.4% or more).
  • ⁇ ⁇ t is preferably 3.0 or less (laser light absorptivity 95% or less), more preferably 0.3 or less (laser light absorptivity 26% or less), further preferably 0.105 or less (laser The light absorption rate is 10% or less), particularly preferably 0.02 or less (laser light absorption rate 2% or less).
  • CT internal residual tensile stress
  • the internal residual tensile stress (CT) is 15 MPa or more so that the residual tensile stress of the intermediate layer 17 is more dominant than the tensile stress generated by the laser light 20 among the tensile stresses used for cutting.
  • CT internal residual tensile stress
  • the distance between the position where the tensile stress reaches a predetermined value (that is, the tip position of the crack 30) and the position of the laser beam 20 within the tempered glass plate 10 is sufficiently short, so that the cutting accuracy can be improved. It can be improved.
  • the internal residual tensile stress (CT) of the intermediate layer 17 is more preferably 30 MPa or more, and further preferably 40 MPa.
  • CT internal residual tensile stress
  • the tensile stress used for cutting is only the residual tensile stress of the intermediate layer 17, and the trajectory accuracy of the cutting line can be further improved.
  • the upper limit value of the internal residual tensile stress (CT) is 120 MPa. In the current technology, it can be tempered only up to about 120 MPa for technical reasons of tempering treatment. However, if chemically tempered glass having an internal residual tensile stress (CT) exceeding 120 MPa can be produced, the present invention can naturally be applied. It is.
  • a near infrared laser (hereinafter simply referred to as “near infrared”) having a wavelength of 800 to 1100 nm is used.
  • the near-infrared laser for example, a Yb fiber laser (wavelength: 1000 to 1100 nm), a Yb disk laser (wavelength: 1000 to 1100 nm), an Nd: YAG laser (wavelength: 1064 nm), a high-power semiconductor laser (wavelength: 808 to 980 nm) ).
  • These near-infrared lasers have high output and are inexpensive, and it is easy to adjust ⁇ ⁇ t within a desired range.
  • a high-power and inexpensive near-infrared laser is used as the light source of the laser light 20, but the types of light sources may be various.
  • UV laser wavelength: 355 nm
  • green laser wavelength: 532 nm
  • Ho: YAG laser wavelength: 2080 nm
  • Er YAG laser (2940 nm)
  • laser using a mid-infrared light parametric oscillator wavelength: 2600 To 3450 nm.
  • the oscillation method of the laser beam 20 is not limited, and either a CW laser that continuously oscillates the laser beam or a pulse laser that oscillates the laser beam intermittently can be used.
  • the intensity distribution of the laser light 20 is not limited, and may be a Gaussian type or a top hat type.
  • FIG. 8 shows the light source output of a laser beam having a center wavelength band of 1075 to 1095 nm that can cut the tempered glass plate with high accuracy, the absorption coefficient ( ⁇ ) of the tempered glass plate with respect to the laser beam, and the thickness (t ) And the product ( ⁇ ⁇ t).
  • FIG. 8 is a log-log graph showing the relationship in Examples 1-1 to 1-4, Examples 2-1 to 2-20, and Examples 3-1 to 3-8, which will be described later.
  • ⁇ ⁇ t may be set to 0.001 or more. Since a general-purpose near infrared laser is used, the cost can be reduced.
  • ⁇ ⁇ t is more preferably 0.002 or more, and further preferably 0.003 or more. In order to obtain good cutting accuracy, ⁇ ⁇ t is preferably 3.0 or less, more preferably 0.3 or less, still more preferably 0.105 or less, and particularly preferably 0.02 or less.
  • the absorption coefficient ( ⁇ ) is substantially the same before and after chemical strengthening.
  • the glass thickness (t) is substantially the same before and after chemical strengthening. Therefore, the preferable range of ⁇ ⁇ t in the chemically strengthened glass plate may be the same as the preferable range of ⁇ ⁇ t in the chemically strengthened glass plate.
  • ⁇ ⁇ t in the glass plate for chemical strengthening is preferably 0.001 or more, more preferably 0.002 or more, further preferably 0.003 or more for the purpose of using a general-purpose near infrared laser having an output of 500 W or less. is there.
  • ⁇ ⁇ t in the chemically strengthened glass plate is preferably 3.0 or less, more preferably 0.3 or less, still more preferably 0.105 or less, and particularly preferably 0.02. It is as follows.
  • the absorption coefficient ( ⁇ ) hardly depends on the wavelength of the laser beam 20 when the wavelength of the laser beam 20 is in the range of 800 to 1100 nm. Therefore, a laser beam having a central wavelength band of 1075 to 1095 nm is used for measuring the absorption coefficient ( ⁇ ), and the laser beam for cutting has a wavelength of 800 nm or more and less than 1075 nm, or the wavelength is longer than 1095 nm and 1100 nm.
  • the following laser light may be used.
  • the absorption coefficient ( ⁇ ) is determined by the glass composition of the tempered glass plate 10 in the near-infrared wavelength region near 1000 nm (800 to 1100 nm).
  • the absorption coefficient ( ⁇ ) increases as the content of iron (Fe), the content of cobalt (Co), and the content of copper (Cu) in the tempered glass plate 10 increase.
  • the absorption coefficient ( ⁇ ) increases in the vicinity of the absorption wavelength of the rare earth atoms.
  • the adjustment of the absorption coefficient ( ⁇ ) uses iron from the viewpoints of glass transparency and cost, and cobalt, copper, and rare earth elements may not be substantially contained in the tempered glass plate 10.
  • FIG. 9 shows a laser light source output with a central wavelength band of 1075 to 1095 nm that can cut a tempered glass plate with high accuracy, and iron when all iron in the tempered glass plate is converted to trivalent iron oxide.
  • the content (hereinafter, referred to as "Fe 2 O 3 content”) is a diagram showing the relationship between.
  • FIG. 9 is a log-log graph showing the relationship in Examples 1-1 to 1-4, Examples 2-1 to 2-20, and Examples 3-1 to 3-8, which will be described later.
  • the absorption coefficient ( ⁇ ) of the tempered glass plate 10 with respect to near infrared rays decreases and the thermal conversion efficiency of the laser light 20 decreases, so that the light source is required as shown in FIG. Output increases.
  • the tempered glass plate 10 is cut using a general-purpose near-infrared laser having an output of 500 W or less, the Fe 2 O 3 content in the tempered glass plate 10 is 0.01 mass% or more (that is, 100 mass ppm or more). It may be.
  • the Fe 2 O 3 content is more preferably 200 ppm by mass or more, further preferably 500 ppm by mass or more, and particularly preferably 1000 ppm by mass or more.
  • Fe 2 O 3 content in the tempered glass plate 10 is preferably 5 mass% or less. If the Fe 2 O 3 content is 5% by mass or less, good visible light transmittance can be obtained. Moreover, since the absorption coefficient ((alpha)) of the tempered glass board 10 with respect to near infrared rays can be restrained low and the inside of the tempered glass board 10 can be heated, a favorable cutting precision is obtained.
  • the Fe 2 O 3 content is more preferably 1% by mass or less, and further preferably 0.5% by mass or less. In particular, when it is desired to suppress coloring of the tempered glass plate 10, it is preferably 0.3% by mass or less, more preferably 0.25% by mass or less, and particularly preferably 0.15% by mass or less.
  • the preferable range of Fe 2 O 3 content of chemically strengthened glass plate in has a preferred range of Fe 2 O 3 content of chemically strengthened glass sheet in May be the same. That is, the content of Fe 2 O 3 in the glass plate for chemical strengthening is preferably 100 ppm by mass or more, more preferably 200 ppm, because the tempered glass plate 10 is cut using a general-purpose near infrared laser having an output of 500 W or less.
  • the Fe 2 O 3 content in the chemically strengthened glass plate is preferably 5% by mass or less, more preferably 1% by mass or less, and even more preferably 0.5% by mass. It is as follows. In particular, when it is desired to suppress coloring of the tempered glass plate 10, it is preferably 0.3% by mass or less, more preferably 0.25% by mass or less, and particularly preferably 0.15% by mass or less.
  • the tempered glass plate 10 contains divalent iron ions and trivalent iron ions as iron, and the divalent iron ions mainly contribute to the absorption of near infrared rays.
  • FIG. 10 shows the light source output of laser light having a central wavelength band of 1075 to 1095 nm that can cut a tempered glass plate with high accuracy, and the content of divalent iron in the tempered glass plate in terms of oxide (hereinafter referred to as “Fe”). It is a figure which shows the relationship with " 2+ content”.
  • FIG. 10 is a log-log graph showing the relationship in Examples 1-1 to 1-4, Examples 2-1 to 2-20, and Examples 3-1 to 3-8, which will be described later.
  • the Fe 2+ content in the tempered glass plate 10 is preferably 20 ppm by mass or more.
  • the Fe 2+ content is more preferably 50 mass ppm or more, further preferably 100 mass ppm or more, and particularly preferably 200 mass ppm or more.
  • the Fe 2+ content is preferably 60000 mass ppm or less, more preferably 10000 mass ppm or less, and still more preferably. It is 5000 mass ppm or less, and particularly preferably 3000 mass ppm or less.
  • the preferable range of Fe 2+ content of the chemically strengthened glass plate in is the same as the preferable range of Fe 2+ content of the chemically strengthened glass sheet in Good. That is, since the tempered glass plate 10 is cut using a general-purpose near-infrared laser having an output of 500 W or less, the Fe 2+ content in the glass plate for chemical strengthening is preferably 20 mass ppm or more, more preferably 50 mass ppm. As mentioned above, More preferably, it is 100 mass ppm or more, Most preferably, it is 200 mass ppm or more.
  • the Fe 2+ content in the chemically strengthened glass plate is preferably 60000 mass ppm or less, more preferably 10,000 mass ppm or less, still more preferably 5000 mass ppm or less, and particularly preferably 3000.
  • the mass is ppm or less.
  • the absorption coefficient ( ⁇ ) in the near-infrared wavelength region is set according to the use after cutting the tempered glass sheet 10.
  • the absorption coefficient ( ⁇ ) is preferably 3 cm ⁇ 1 or less.
  • the absorption coefficient ( ⁇ ) is preferably 0.6 cm ⁇ 1 or less.
  • the absorption coefficient ( ⁇ ) is preferably 0.2 cm ⁇ 1 or less.
  • the thickness (t) of the tempered glass plate 10 is preferably 0.01 to 0.2 cm in the case of chemically tempered glass. By setting the thickness (t) to 0.2 cm or less, the internal residual tensile stress (CT) can be sufficiently increased. On the other hand, when the thickness (t) is less than 0.01 cm, it is difficult to subject the glass to chemical strengthening treatment.
  • the thickness (t) is more preferably 0.03 to 0.15 cm, still more preferably 0.05 to 0.15 cm.
  • the irradiation region 22 of the laser beam 20 is larger than 0.18 mm when formed in a circle, and the thickness of the tempered glass plate 10. It is preferable to have a smaller diameter ( ⁇ ).
  • the diameter ( ⁇ ) is equal to or greater than the thickness of the tempered glass plate 10
  • the irradiation region 22 of the laser light 20 is too wide and the heating region is too wide, so that a part of the cut surface (particularly, a cutting start portion and a cutting end portion) is formed. May be slightly curved.
  • the diameter ( ⁇ ) may be smaller than 1.03 mm.
  • a diameter ((PHI)) is 0.5 mm or less, in order to improve the position controllability of the crack 30, a cutting precision will improve and it is more preferable.
  • the diameter ( ⁇ ) is 0.18 mm or less, when the power control of the laser beam 20 varies, the power density becomes too high, the cut surface becomes rough, and fine cracks may be formed.
  • ⁇ ⁇ t is as small as 0.105 or less (laser light absorptivity 10% or less)
  • variations in power control occur and even if the power density increases, the diameter ( ⁇ ) Even when the thickness is 0.18 mm or less, the cutting accuracy may be improved.
  • the power control accuracy of the laser beam 20 is high, the cutting accuracy may be improved even when the diameter ( ⁇ ) is 0.18 mm or less regardless of the value of ⁇ ⁇ t.
  • FIG. 11 is an explanatory diagram of a method for cutting a tempered glass plate formed by strengthening a glass plate according to the second embodiment of the present invention.
  • the same components as those in FIG. 11 are identical to FIG. 11 in FIG. 11, the same components as those in FIG. 11 in FIG. 11, the same components as those in FIG. 11
  • the surface 12 of the tempered glass plate 10 is irradiated with the laser light 20, and the irradiation region 22 of the laser light 20 is moved on the surface 12 of the tempered glass plate 10. Then, the tempered glass plate 10 is cut.
  • the tempered glass plate 10 and the laser beam 20 the absorption coefficient of the tempered glass plate 10 with respect to the laser beam 20 and alpha (cm -1), the thickness of the reinforced glass plates 10 t (cm)
  • the tempered glass sheet 10 is cut by utilizing the extension of cracks due to the residual tensile stress of the intermediate layer 17 by satisfying the formula of 0 ⁇ ⁇ t ⁇ 3.0. That is, by heating the intermediate layer 17 in the irradiation region 22 of the laser light 20 at a temperature below the annealing point, it is possible to control the extension of the crack 30 generated in the tempered glass plate 10 due to the residual tensile stress of the intermediate layer 17. It becomes. Therefore, the present embodiment can provide the same effects as those of the first embodiment.
  • the gas 40 is sprayed on the surface 12 of the tempered glass plate 10, and the spray region 42 of the gas 40 is formed on the surface 12 of the tempered glass plate 10. It moves in conjunction with the irradiation region 22 (with the irradiation region 22).
  • the spray region 42 may overlap with the irradiation region 22 or may be disposed in the vicinity of the irradiation region 22.
  • the spray area 42 may precede the irradiation area 22 or may follow the irradiation area 22.
  • gas 40 For example, compressed air etc. are used.
  • the gas 40 may be a cooling gas that locally cools the tempered glass plate 10, and in this case, the blowing region 42 of the gas 40 is behind the irradiation region 22 of the laser light 20 in the moving direction as shown in FIG. 11. You may make it follow the irradiation area
  • region 22 so that it may be located in the vicinity. As a result, a high temperature gradient is generated in the vicinity of the rear side in the moving direction of the irradiation region 22 of the laser light 20, so that the position where the tensile stress reaches a predetermined value (that is, the tip position of the crack 30) and the position of the laser light 20. The distance between them becomes shorter. Therefore, since the position controllability of the crack 30 is improved, the cutting accuracy can be further improved.
  • a predetermined value that is, the tip position of the crack 30
  • FIGS. 12A and 12B are explanatory diagrams of a method for cutting a tempered glass plate formed by strengthening a glass plate according to the third embodiment of the present invention.
  • 12A is a cross-sectional view taken along line AA in FIG. 12B.
  • FIG. 12B is a plan view of the tempered glass sheet. 12A and 12B, the same components as those in FIG.
  • the laser beam 20 is incident on the surface 12 of the tempered glass plate 10 perpendicularly.
  • the laser beam 20 is incident on the surface 12 of the tempered glass plate 10 at an angle. It is different in the point to do. Since the other configuration is the same as that of the first embodiment, the difference will be mainly described.
  • the cut surface of the tempered glass plate 10 is in the plate thickness direction. And become slanted. Therefore, the cutting pieces obtained by cutting the tempered glass plate 10 can be separated in the thickness direction.
  • the refraction angle ⁇ increases in accordance with Snell's law, so that the inclination of the cut surface of the tempered glass plate 10 with respect to the plate thickness direction increases. As this inclination increases, separation in the plate thickness direction after cutting becomes easier, but chamfering of the cut surface after cutting becomes troublesome.
  • the incident angle ⁇ is set according to the positional relationship between the optical axis 21 of the laser light 20 and the planned cutting line 11 on the surface 12 of the tempered glass plate 10. For example, as shown in FIG. 12B, when the optical axis 21 of the laser beam 20 is arranged perpendicularly to the planned cutting line 11 in plan view (thickness direction view), the incident angle ⁇ is in the range of 1 to 60 °. Is set. Note that the optical axis 21 of the laser light 20 may be disposed obliquely with respect to the planned cutting line 11 in plan view (view in the plate thickness direction).
  • the laser beam 20 When the laser beam 20 is incident on the front surface 12 of the tempered glass plate 10 at an angle, the laser beam 20 travels a distance of t / cos ⁇ and is emitted from the back surface 14.
  • the tempered glass plate 10 and the laser beam 20 satisfy the expression 0 ⁇ ⁇ t / cos ⁇ ⁇ 3.0, the laser beam 20 is not absorbed in the vicinity of the surface 12 of the tempered glass plate 10 and enters the inside. To reach up to. Therefore, as in the first embodiment, it is possible to control the extension of the cracks 30 generated in the tempered glass plate 10 by the residual tensile stress of the intermediate layer 17. Therefore, the present embodiment can provide the same effects as those of the first embodiment.
  • the laser beam 20 is near-infrared, a formula of 0.001 ⁇ ⁇ ⁇ t ⁇ 3.0 may be satisfied.
  • a laser beam having a central wavelength band of 1075 to 1095 nm is used for measuring the absorption coefficient ( ⁇ ), and the laser beam for cutting has a wavelength of 800 nm or more and less than 1075 nm, or the wavelength is longer than 1095 nm and 1100 nm. The following laser light may be used.
  • the gas 40 is blown onto the surface 12 of the tempered glass plate 10, and the spray region 42 of the gas 40 is irradiated on the surface 12 of the tempered glass plate 10 with the laser beam 20. It may be moved in conjunction with the region 22.
  • the spray region 42 of the gas 40 may overlap with the irradiation region 22 of the laser light 20 or may be disposed in the vicinity of the irradiation region 22 of the laser light 20. Further, the irradiation region 22 of the laser beam 20 may be disposed inside the outer edge of the spray region 42 of the gas 40.
  • Example 1-1 to Example 1-4 Glass plate for chemical strengthening
  • a glass raw material was prepared by mixing a plurality of types of raw materials.
  • the glass raw material was prepared by changing the amount of iron oxide (Fe 2 O 3 ) powder added to the base material having the same blending ratio so that the absorption coefficient ( ⁇ ) of the glass plate with respect to the laser beam became a desired value.
  • the prepared glass raw material is melted, and the melted molten glass is formed into a plate shape, then gradually cooled to near room temperature, cut, cut, and double-sided mirror polished to have a desired thickness of 50 mm ⁇ 50 mm glass plate Was made.
  • dissolving a glass raw material at high temperature a part of trivalent iron contained in molten glass is reduce
  • the Fe 2 O 3 content and the Fe 2+ content in each chemical strengthening glass plate were measured by a wet analysis method.
  • the wet analysis method first, the obtained glass was pulverized, and the pulverized glass powder was dissolved in an HF aqueous solution to prepare a test liquid.
  • This test liquid, a 2,2′-dipyridyl solution, and an ammonium acetate solution are mixed to develop color, the absorbance peak intensity is measured, and the Fe 2+ content is determined based on a calibration curve prepared in advance using a standard sample. calculate.
  • the above test liquid, hydroxylamine hydrochloric acid solution, 2,2'-dipyridyl solution, and ammonium acetate solution were mixed to reduce the color of all iron to divalent iron, and the absorbance peak intensity. Is measured, and the total iron amount (the iron content when all irons are converted to divalent iron oxides) is calculated. From the calculated total iron amount, the Fe 2 O 3 content (the iron content when all the irons are converted into trivalent iron oxides) is determined.
  • Example 1-1 and Example 1-2 the Fe 2 O 3 content was 0.029 mass%, and the Fe 2+ content was 90 mass ppm.
  • Example 1-3 the Fe 2 O 3 content was 0.195 mass%, and the Fe 2+ content was 400 mass ppm.
  • Example 1-4 the Fe 2 O 3 content was 7.4 mass%, and the Fe 2+ content was 56010 mass ppm.
  • each chemically strengthening glass plate was measured with a fluorescent X-ray analyzer (manufactured by Rigaku Denki Kogyo Co., Ltd., ZSX100e) and calibrated based on the content of Fe 2 O 3 obtained by a wet analysis method. Since Fe 2 O 3 content determined by a wet analysis method has high measurement accuracy than Fe 2 O 3 content measured by fluorescent X-ray analyzer, Fe 2 O 3 content of the true determined by a wet analysis The glass composition obtained with a fluorescent X-ray analyzer was corrected as a value.
  • the glass sheets for chemical strengthening produced in Examples 1-1 to 1-2 are expressed in terms of mass% on the basis of oxide, SiO 2 : 60.7%, Al 2 O 3 : 9.6%, MgO: 7. 0%, CaO: 0.1%, SrO: 0.1%, BaO: 0.1%, Na 2 O: 11.6%, K 2 O: 6.0%, ZrO 2: 4.8% containing Was.
  • a plurality of components other than Fe 2 O 3 SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, Na 2 O, K 2 O, and ZrO 2
  • the mass ratio was substantially the same as Example 1-1.
  • the absorption coefficient ( ⁇ ) of each chemically strengthened glass plate with respect to a laser beam having a central wavelength band of 1075 to 1095 nm was measured using an ultraviolet-visible near-infrared spectrophotometer (Lambda 950, manufactured by Perkin Elmer Japan). In Examples 1-1 and 1-2, the absorption coefficient ( ⁇ ) was 0.09 / cm. In Example 1-3, the absorption coefficient ( ⁇ ) was 0.48 / cm. In Example 1-4, the absorption coefficient ( ⁇ ) was 38.3 / cm.
  • Each chemically strengthened glass plate was produced by immersing the above-described chemically strengthened glass plate in KNO 3 molten salt, performing an ion exchange treatment, and then cooling to near room temperature.
  • the treatment conditions such as the temperature and immersion time of the KNO 3 molten salt were set so that the internal residual tensile stress (CT) was a desired value.
  • CT The internal residual tensile stress (CT) of each chemically strengthened glass plate is measured by measuring the surface compressive stress (CS) and the depth (DOL) of the compressive stress layer with a surface stress meter FSM-6000 (manufactured by Orihara Seisakusho). It calculated
  • CT (CS ⁇ DOL) / (t ⁇ 2 ⁇ DOL) (I)
  • CT (C1 ⁇ D1 / 2 + C2 ⁇ D2 / 2) / (t ⁇ D1 ⁇ D2) (II)
  • C1 represents the maximum residual compressive stress of the surface layer
  • D1 represents the thickness of the surface layer
  • C2 represents the maximum residual compressive stress of the back layer
  • D2 represents the thickness of the back layer.
  • the Fe 2 O 3 content and the Fe 2+ content in each chemically strengthened glass plate were substantially the same as before chemical strengthening as a result of measurement by a wet analysis method.
  • each chemically strengthened glass plate was measured with a fluorescent X-ray analyzer and calibrated based on the Fe 2 O 3 content determined by the wet analysis method. As a result, it was substantially the same as before chemical strengthening.
  • the surface layer and the back layer are formed by ion exchange. However, since the thickness of the surface layer and the back layer is small, it can be seen that the chemical composition of the entire glass is almost the same before and after the chemical strengthening.
  • the absorption coefficient ( ⁇ ) of each chemically strengthened glass plate with respect to laser light having a central wavelength band of 1075 to 1095 nm was approximately the same as the absorption coefficient before chemical strengthening as a result of measurement with an ultraviolet-visible near-infrared spectrophotometer. It is presumed that the chemical composition of the whole glass hardly changes before and after chemical strengthening.
  • the chemically strengthened glass plate was cut by the cutting method shown in FIGS. 1A and 1B. An initial crack was previously formed with a file at the cutting start position on the side surface of each chemically strengthened glass plate, and no scribe line was formed on the surface of each chemically strengthened glass plate.
  • the light source of the laser beam was a fiber laser (central wavelength band: 1075 to 1095 nm).
  • the optical axis of the laser beam was arranged so as to be orthogonal to the surface of each chemically strengthened glass plate.
  • the irradiation region of the laser beam was moved at a constant speed of 10 mm / sec over 50 mm from one end (initial crack) to the other end of the planned cutting line on the surface of each chemically strengthened glass plate.
  • the planned cutting line which is the center line of the movement path, was a straight line parallel to one side of the rectangular chemically strengthened glass plate, and the distance from one side was 10 mm.
  • the shape of the laser light irradiation area was circular.
  • the condensing position of the laser light was arranged at a position of ⁇ 10.3 to 20 mm from the surface (upper surface) of each chemically strengthened glass plate (the upper side (light source side) is positive with respect to the upper surface).
  • the converging angle of the laser beam was 1.4 to 33.4 °.
  • the cutting results were evaluated based on (1) cutting availability, (2) cutting edge quality, (3) cutting surface quality, and (4) maximum deviation.
  • the maximum deviation amount represents how much the cutting line has deviated from the planned cutting line on the surface of the chemically strengthened glass plate, and is a measurement of the fluctuation range in the direction orthogonal to the planned cutting line. This maximum deviation amount is measured excluding the cutting start portion and the cutting end portion.
  • Example 1-5 In Example 1-5 (Comparative Example), unlike Example 1-1 to Example 1-4 (Example), the value of thickness (t) ⁇ absorption coefficient ( ⁇ ) exceeds 3.0, and a chemically strengthened glass plate Attempted to cut.
  • Glass plate for chemical strengthening Chemical strengthening glass plates were produced in the same manner as in Examples 1-1 to 1-4.
  • the Fe 2 O 3 content and the Fe 2+ content in each chemical strengthening glass plate were measured by a wet analysis method.
  • the content of Fe 2 O 3 was 7.4% by mass
  • the content of Fe 2+ was 56010 ppm by mass.
  • each chemically strengthening glass plate was measured with a fluorescent X-ray analyzer and calibrated based on the Fe 2 O 3 content determined by a wet analysis method.
  • the mass ratio of a plurality of components other than Fe 2 O 3 SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, Na 2 O, K 2 O, and ZrO 2 ) It was almost the same as 1-1.
  • the absorption coefficient of each chemically strengthened glass plate with respect to laser light having a central wavelength band of 1075 to 1095 nm was measured with an ultraviolet-visible-near infrared spectrophotometer.
  • the absorption coefficient ( ⁇ ) was 38.3 / cm.
  • Each chemically strengthened glass plate was produced by setting the treatment conditions such as the temperature of KNO 3 molten salt and the immersion time so that the internal residual tensile stress (CT) was a desired value.
  • CT internal residual tensile stress
  • the Fe 2 O 3 content and the Fe 2+ content in each chemically strengthened glass plate were substantially the same as before chemical strengthening as a result of measurement by a wet analysis method.
  • each chemically strengthened glass plate was measured with a fluorescent X-ray analyzer and calibrated based on the Fe 2 O 3 content determined by the wet analysis method. As a result, it was substantially the same as before chemical strengthening.
  • the absorption coefficient ( ⁇ ) of each chemically strengthened glass plate with respect to laser light having a central wavelength band of 1075 to 1095 nm was approximately the same as the absorption coefficient before chemical strengthening as a result of measurement with an ultraviolet-visible near-infrared spectrophotometer.
  • Example 1-5 (Cut the chemically strengthened glass plate)
  • the irradiation region of the laser beam was moved on the chemically strengthened glass plate in the same manner as in Examples 1-1 to 1-4.
  • Example 1-6 to Example 1-10 In Examples 1-6 to 1-10 (comparative example), unlike Examples 1-1 to 1-4 (Examples), a chemically tempered glass is obtained using a carbon dioxide laser (wavelength: 10600 nm) as a laser light source. Tried to cut the board. Since the wavelength of the laser beam is greatly deviated from the range of 800 to 1100 nm, the laser beam having a wavelength of 10600 nm was used for measuring the absorption coefficient ( ⁇ ).
  • a carbon dioxide laser wavelength: 10600 nm
  • Glass plate for chemical strengthening Chemical strengthening glass plates were produced in the same manner as in Examples 1-1 to 1-4.
  • the Fe 2 O 3 content and the Fe 2+ content in each chemical strengthening glass plate were measured by a wet analysis method.
  • the Fe 2 O 3 content was 0.023 mass% and the Fe 2+ content was 90 mass ppm.
  • each chemically strengthening glass plate was measured with a fluorescent X-ray analyzer and calibrated based on the Fe 2 O 3 content determined by a wet analysis method.
  • a plurality of components other than Fe 2 O 3 SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, Na 2 O, K 2 O, and ZrO 2 )
  • the mass ratio was substantially the same as Example 1-1.
  • the absorption coefficient ( ⁇ ) of each chemically strengthened glass plate with respect to a laser beam having a wavelength of 10600 nm was measured with an ultraviolet-visible-near infrared spectrophotometer. In Examples 1-6 to 1-10, the absorption coefficient ( ⁇ ) was 1000 / cm or more.
  • Each chemically strengthened glass plate was produced by setting the treatment conditions such as the temperature of KNO 3 molten salt and the immersion time so that the internal residual tensile stress (CT) was a desired value.
  • CT internal residual tensile stress
  • the Fe 2 O 3 content and the Fe 2+ content in each chemically strengthened glass plate were substantially the same as before chemical strengthening as a result of measurement by a wet analysis method.
  • each chemically strengthened glass plate was measured with a fluorescent X-ray analyzer and calibrated based on the Fe 2 O 3 content determined by the wet analysis method. As a result, it was substantially the same as before chemical strengthening.
  • the absorption coefficient ( ⁇ ) of each chemically strengthened glass plate with respect to laser light having a wavelength of 10600 nm was approximately the same as the absorption coefficient before chemical strengthening as a result of measurement with an ultraviolet-visible-near infrared spectrophotometer.
  • the irradiation region of the laser light on the surface of the chemically strengthened glass plate has an elliptical shape (length 12 mm, width 3 mm) that is long in the moving direction. Increased irradiation time. In the same manner as in Examples 1-1 to 1-4, the irradiation region of the laser beam was moved on the chemically strengthened glass plate.
  • the chemically strengthened glass sheet can be cut with good cutting accuracy by setting the value of thickness (t) ⁇ absorption coefficient ( ⁇ ) to 3.0 or less.
  • the value of thickness (t) ⁇ absorption coefficient ( ⁇ ) exceeded 3.0, cutting was impossible, or even if it could be cut, the maximum deviation amount was large, and cutting accuracy was poor.
  • Example 2-1 to Example 2-20 [Example 2-1 to Example 2-20]
  • the chemical strengthening treatment conditions were changed to adjust the internal residual tensile stress (CT), and the relationship between the internal residual tensile stress (CT) and the maximum deviation amount was determined. Examined.
  • Glass plate for chemical strengthening Chemical strengthening glass plates were produced in the same manner as in Examples 1-1 to 1-4.
  • Example 2-1 The Fe 2 O 3 content and the Fe 2+ content in each chemical strengthening glass plate were measured by a wet analysis method.
  • Example 2-1 Example 2-2, Example 2-15, and Example 2-16
  • the Fe 2 O 3 content was 0.75 mass%, and the Fe 2+ content was 1490 mass ppm.
  • Example 2-3 Example 2-4, Example 2-7, and Example 2-8
  • the Fe 2 O 3 content was 0.075 mass%, and the Fe 2+ content was 270 mass ppm.
  • Example 2-5, Example 2-6, Example 2-9, Example 2-10, Example 2-19, and Example 2-20 the Fe 2 O 3 content was 0.20% by mass, and the Fe 2+ content was 600. The mass was ppm.
  • the Fe 2 O 3 content was 0.12 mass%, and the Fe 2+ content was 400 mass ppm.
  • the Fe 2 O 3 content was 0.3 mass% and the Fe 2+ content was 800 mass ppm.
  • each chemically strengthening glass plate was measured with a fluorescent X-ray analyzer and calibrated based on the Fe 2 O 3 content determined by a wet analysis method.
  • a plurality of components other than Fe 2 O 3 SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, Na 2 O, K 2 O, and ZrO 2 )
  • the mass ratio was substantially the same as Example 1-1.
  • the absorption coefficient of each chemically strengthened glass plate with respect to laser light having a central wavelength band of 1075 to 1095 nm was measured with an ultraviolet-visible-near infrared spectrophotometer.
  • the absorption coefficient ( ⁇ ) was 2.99 / cm.
  • the absorption coefficient ( ⁇ ) was 0.3 / cm.
  • the absorption coefficient ( ⁇ ) was 0.8 / cm.
  • the absorption coefficient ( ⁇ ) was 0.48 / cm.
  • the absorption coefficient ( ⁇ ) was 1.2 / cm.
  • Each chemically strengthened glass plate was produced by setting the treatment conditions such as the temperature of KNO 3 molten salt and the immersion time so that the internal residual tensile stress (CT) was a desired value.
  • CT internal residual tensile stress
  • the Fe 2 O 3 content and the Fe 2+ content in each chemically strengthened glass plate were substantially the same as the values before chemical strengthening as a result of measurement by a wet analysis method.
  • each chemically strengthened glass plate was measured with a fluorescent X-ray analyzer and calibrated based on the Fe 2 O 3 content determined by the wet analysis method. As a result, it was substantially the same as before chemical strengthening.
  • the absorption coefficient ( ⁇ ) of each chemically strengthened glass plate with respect to laser light having a central wavelength band of 1075 to 1095 nm was approximately the same as the absorption coefficient before chemical strengthening as a result of measurement with an ultraviolet-visible near-infrared spectrophotometer.
  • Example 3-1 to Example 3-8 In Examples 3-1 to 3-4 (Examples), chemically strengthened glass plates were produced in the same manner as in Examples 2-15 and 2-16, and the dimensions of the laser light irradiation area on the surface of the chemically strengthened glass plates were measured. The cutting result was evaluated by changing the shape.
  • Examples 3-5 to 3-8 Examples
  • a chemically strengthened glass plate was produced in the same manner as in Examples 2-1 and 2-2, and the region irradiated with laser light on the surface of the chemically strengthened glass plate. The dimensional shape was changed and the cutting results were evaluated.
  • the diameter ( ⁇ ) is larger than 0.18 mm, and the thickness of the chemically strengthened glass plate (1.0 mm). Smaller than), it can be seen that the cutting edge quality and the cutting surface quality are good.
  • the diameter ( ⁇ ) was 0.18 mm, there was a fine crack on the cut surface.
  • the diameter ( ⁇ ) was 1.03 mm, the end of the cut surface was slightly curved.
  • a plurality of tempered glass plates 10 may be stacked and cut at the same time. In this case, it is only necessary that the formula 0 ⁇ ⁇ t ⁇ 3.0 is satisfied in each tempered glass plate 10.
  • a formula of 0.001 ⁇ ⁇ ⁇ t ⁇ 3.0 may be satisfied.
  • Laser light having a central wavelength band of 1075 to 1095 nm is used for measuring the absorption coefficient ( ⁇ ), and laser light for cutting has a wavelength of 800 nm or more and less than 1075 nm, or a wavelength longer than 1095 nm but not longer than 1100 nm. Laser light may be used. It's okay.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Laser Beam Processing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 レーザ切断前の化学強化に用いられるガラス板であって、中心波長帯が1075~1095nmのレーザ光に対するガラス板の吸収係数をα(cm-1)、ガラス板の厚さをt(cm)として、0.001≦α×t≦3.0の式を満たす。

Description

レーザ切断前の化学強化に用いられるガラス板
 本発明は、レーザ切断前の化学強化に用いられるガラス板に関する。
 近年、携帯電話やPDAなどの携帯機器において、ディスプレイ(タッチパネルを含む)の保護や美観などを高めるため、カバーガラス(保護ガラス)を用いることが多くなっている。また、ディスプレイの基板として、ガラス基板が広く用いられている。
 一方、携帯機器の薄型化・軽量化が進行しており、携帯機器に用いられるガラスの薄板化が進行している。ガラスが薄くなると強度が低くなるので、ガラスの強度不足を補うため、圧縮応力が残留する表面層及び裏面層を有する強化ガラスが開発されている。強化ガラスは、自動車用窓ガラスや建築用窓ガラスとしても用いられている。
 強化ガラスは、例えば風冷強化法や化学強化法などで作製される。風冷強化法は、軟化点付近の温度のガラスを表面及び裏面から急冷し、ガラスの表面及び裏面と内部との間に温度差をつけることで、圧縮応力が残留する表面層及び裏面層を形成する。一方、化学強化法は、ガラスの表面及び裏面をイオン交換し、ガラスに含まれる小さなイオン半径のイオン(例えば、Liイオン、Naイオン)を、大きなイオン半径のイオン(例えば、Kイオン)に置換することで、圧縮応力が残留する表面層及び裏面層を形成する。いずれの方法でも、反作用として、表面層と裏面層との間に、引張応力が残留する中間層を形成することになる。
 強化ガラスを製造する場合、製品サイズのガラスを1枚ずつ強化処理するよりも、製品サイズよりも大型のガラスを強化処理した後、切断して多面取りすることが効率的である。
 そこで、強化ガラス板を切断する方法として、強化ガラス板の表面にレーザ光を照射し、強化ガラス板の表面上で、レーザ光の照射領域を移動させることで、強化ガラス板を切断する方法が提案されている(例えば、特許文献1参照)。
日本国特開2008-247732号公報
 ところで、上記の特許文献1では、レーザ光の光源として、炭酸ガスレーザを用いているので、レーザ光の大部分が強化ガラス板の表面近傍で熱として吸収されてしまう。そのため、ガラス表面におけるレーザ光の照射領域の直下に、残留引張応力よりも大きい引張応力が生じる。その結果、切断時に形成されるクラックが、レーザ光の照射領域を越えて、意図しない方向に急激に伸展することがあり、切断線の軌跡精度の悪化、すなわち切断線が所望の切断予定線から外れたり、または切断できずにガラスが粉砕したりすることもある。この傾向は、残留引張応力が大きくなるほど顕著である。
 本発明は、上記課題に鑑みてなされたものであって、切断線の軌跡精度が良好なレーザ切断前の化学強化に用いられるガラス板を提供することを目的とする。
 上記課題を解決するため、本発明の一の態様によるレーザ切断前の化学強化に用いられるガラス板は、
 中心波長帯が1075~1095nmのレーザ光に対する前記ガラス板の吸収係数をα(cm-1)、前記ガラス板の厚さをt(cm)として、0.001≦α×t≦3.0の式を満たすことを特徴とする。
 本発明によれば、切断線の軌跡精度が良好なレーザ切断前の化学強化に用いられるガラス板を提供することができる。
本発明の第1の実施形態に係るガラス板を強化してなる強化ガラス板の切断方法の説明図(1)である。 本発明の第1の実施形態に係るガラス板を強化してなる強化ガラス板の切断方法の説明図(2)である。 レーザ光を照射する前の強化ガラス板の残留応力の分布例を示す模式図である。 レーザ光を照射する前の強化ガラス板の一例を示す断面図である。 レーザ光の照射領域の真円度の一例を示す説明図である。 レーザ光の集光位置の一例を示す模式図である。 図1BのA-A線に沿った断面における応力の分布例を示す模式図である。 図1BのB-B線に沿った断面における応力の分布例を示す模式図である。 強化ガラス板を精度良く切断できる、中心波長帯が1075~1095nmのレーザ光の光源出力と、当該レーザ光に対する強化ガラス板の吸収係数(α)と強化ガラス板の厚さ(t)との積(α×t)との関係を示す図である。 強化ガラス板を精度良く切断できる、中心波長帯が1075~1095nmのレーザ光の光源出力と、強化ガラス板中の全ての鉄を3価の鉄の酸化物で換算したときの鉄の含有量との関係を示す図である。 強化ガラス板を精度良く切断できる、中心波長帯が1075~1095nmのレーザ光の光源出力と、強化ガラス板中の2価の鉄の酸化物換算での含有量との関係を示す図である。 本発明の第2の実施形態に係るガラス板を強化してなる強化ガラス板の切断方法の説明図である。 本発明の第3の実施形態に係るガラス板を強化してなる強化ガラス板の切断方法の説明図(1)である。 本発明の第3の実施形態に係るガラス板を強化してなる強化ガラス板の切断方法の説明図(2)である。
 以下、本発明を実施するための形態について図面を参照して説明する。
 [第1の実施形態]
 図1A及び図1Bは、本発明の第1の実施形態に係るガラス板を強化してなる強化ガラス板の切断方法の説明図である。図1Bは、図1Aの平面図である。図1A及び図1Bに示すように、強化ガラス板10の表面(一方の主面)12にレーザ光20を照射し、強化ガラス板10の表面12上で、レーザ光20の照射領域22を移動させることで、強化ガラス板10に応力を印加して、強化ガラス板10を切断する。
 強化ガラス板10は、例えば化学強化法などで作製される。強化用のガラスの種類は、用途に応じて選択される。例えば、自動車用窓ガラスや建築用窓ガラス、PDP用のガラス基板、カバーガラスの場合、強化用のガラスとしては、ソーダライムガラスが用いられる。また、LCD用のガラス基板の場合、強化用のガラスとしては、アルカリ金属元素を実質的に含まない無アルカリガラスが用いられる。
 化学強化法は、ガラスの表面及び裏面(両主面)をイオン交換し、ガラスに含まれる小さなイオン半径のイオン(例えば、Liイオン、Naイオン)を大きなイオン半径のイオン(例えば、Kイオン)に置換することで、圧縮応力が残留する表面層及び裏面層を形成する。その反作用として、表面層と裏面層との間に引張応力が残留する中間層を形成することになる。化学強化法は、アルカリ金属元素を含むソーダライムガラスを強化するのに好適である。
 尚、本実施形態の強化ガラス板10は、化学強化法で作製されるが、風冷強化法で作製することも可能である。風冷強化法は、軟化点付近の温度のガラスを表面及び裏面(両主面)から急冷し、ガラスの表面及び裏面(両主面)と内部との間に温度差をつけることで、圧縮応力が残留する表面層及び裏面層を形成する。風冷強化法は厚いガラスの強化に用いられ、薄い(例えば厚さ0.2cm以下)のガラスの強化には化学強化法が用いられる。
 図2は、レーザ光を照射する前の強化ガラス板の残留応力の分布例を示す模式図である。図2は、化学強化法で強化された強化ガラス板(以下、「化学強化ガラス板」という)の残留応力の分布例を示す。図3は、レーザ光を照射する前の強化ガラス板の一例の断面図である。図3において、矢印の方向は、応力の作用方向を示し、矢印の大きさは、応力の大きさを示す。
 図3に示すように、強化ガラス板10は、圧縮応力が残留する表面層13及び裏面層15と、表面層13と裏面層15との間に設けられ、引張応力が残留する中間層17とを有する。強化ガラス板10の端面の表層は、圧縮応力が残留する層のみで構成されても良いし、圧縮応力が残留する層と引張応力が残留する層とで構成されても良い。
 図2に示すように、表面層13及び裏面層15に残留する圧縮応力(>0)は、強化ガラス板10の表面12及び裏面14から内部に向けて徐々に小さくなる傾向がある。化学強化の場合、図2に示すように、中間層17に残留する引張応力(>0)はほぼ一定である。
 図2において、CSは表面層13や裏面層15における最大残留圧縮応力(表面圧縮応力)(>0)、CTは中間層17における内部残留引張応力(中間層17の残留引張応力の平均値)(>0)、DOLは表面層13や裏面層15の厚さをそれぞれ示す。CSやCT、DOLは、強化処理条件で調節可能である。例えば、CSやCT、DOLは、風冷強下法の場合、ガラスの冷却速度などで調節可能である。また、CSやCT、DOLは、化学強化法の場合、ガラスを処理液(例えば、KNO溶融塩)に浸漬してイオン交換するので、処理液の濃度や温度、浸漬時間などで調節可能である。なお、本実施形態の表面層13及び裏面層15は、同じ厚さ、同じ最大残留圧縮応力を有するが、異なる厚さを有しても良いし、異なる最大残留圧縮応力を有しても良い。
 化学強化ガラス板は、風冷強化ガラス板に比べて、表面層13の厚さ及び裏面層15の厚さが薄いので、圧縮応力が集中的に発生する。そのため、表面層13及び裏面層15においてそれぞれ最大残留圧縮応力CSが600MPa以上とすることが可能であり、表面12及び裏面14の耐傷性が良好である。また、表面層13及び裏面層15においてそれぞれ最大残留圧縮応力CSが600MPa以上の場合、内部残留引張応力CTが十分に大きいので、詳しくは後述するが、下記の切断方法によって化学強化ガラス板を精度良く切断することができる。
 化学強化ガラス板は、例えば酸化物基準の質量%表示で、SiO:50~74%、Al:4~25%、B:0~10%、MgO:1~10%、CaO:0~5%、SrO:0~5%、BaO:0~5%、NaO:5~20%、KO:0~10%、ZrO:0~10%、Fe:0.01~5.0%を含有する。ここで、Feの含有量は、化学強化ガラス板中の全ての鉄を3価の鉄の酸化物で換算したときの鉄の含有量である。
 化学強化法ではイオン交換によって表面層13及び裏面層15が形成されるが、表面層13及び裏面層15の厚さが薄いので、化学強化の前後でガラス全体の化学組成はほとんど変わらない。そのため、レーザ切断前の化学強化に用いられるガラス板(以下、単に「化学強化用ガラス板」という)は、化学強化ガラス板と略同じ化学組成を有する。
 化学強化用ガラス板は、例えば酸化物基準の質量%表示で、SiO:50~74%、Al:4~25%、B:0~10%、MgO:1~10%、CaO:0~5%、SrO:0~5%、BaO:0~5%、NaO:5~20%、KO:0~10%、ZrO:0~10%、Fe:0.01~5.0%を含有する。ここで、Feの含有量は、化学強化用ガラス板中の全ての鉄を3価の鉄の酸化物で換算したときの鉄の含有量である。
 強化ガラス板10の表面12には、切断予定線に沿って、スクライブ線(溝線)が予め形成されていない。スクライブ線を予め形成しても良いが、この場合、工程数が増えるので、作業が繁雑である。また、スクライブ線を予め形成すると、ガラスが欠けることがある。
 強化ガラス板10の端部には、切断開始位置に、初期クラックが予め形成されている。初期クラックの形成方法は、一般的な方法であって良く、例えばカッタやヤスリ、レーザで形成される。工程数を削減するため、初期クラックを予め形成しなくても良い。特に、強化ガラス板10の端部が切断前に予め回転砥石などで研削されている場合、研削時にマイクロクラックが形成されるので、初期クラックを予め形成しなくて良い。
 強化ガラス板10の表面12上において、レーザ光20の照射領域22(例えばレーザ光20の照射領域22の中心)は、強化ガラス板10の端部から内側に向けて、切断予定線に沿って、直線状や曲線状に移動される。これによって、強化ガラス板10の端部から内側に向けてクラック30(図1A及び図1B参照)を形成し、強化ガラス板10を切断する。レーザ光20の照射領域22は、P字状に移動されても良く、この場合、移動経路に含まれる切断予定線の終端は、切断予定線の途中と交わる。
 強化ガラス板10の表面12上において、レーザ光20の照射領域22を移動させるため、強化ガラス板10を支持する支持体を、移動または回転しても良いし、レーザ光20の光源を移動しても良い。また、レーザ光20の経路の途中に設けられるミラーを回転しても良い。
 強化ガラス板10の表面12上において、レーザ光20の照射領域22は、例えば図1A及び図1Bに示すように、円状に形成されているが、矩形状や楕円状などであっても良く、その形状に制限はない。なお、照射領域22の真円度は0.5R以下が好ましい。真円度が0.5R以下であると、強化ガラス板10の表面12上で曲線形状の切断予定線に沿って照射領域22の中心を移動させるとき、照射領域22の回転制御の要求精度が低いので好ましい。また、照射領域22の回転制御の精度が同程度の場合、切断予定線の法線方向における照射領域22の幅の変化が小さくなるため、切断精度が高くなる。例えば、切断予定線の曲率半径が小さい場合であっても精度良く切断できる。より好ましくは、真円度が0.3R以下である。さらに好ましくは、真円度が0.2R以下である。ここで、真円度は、図4に示すように、照射領域22の外接円C11及び内接円C12である2つの同心円の半径R、rの差(R-r)である。なお、Rは照射領域22の外接円C11の半径を示し、rは照射領域22の内接円C12の半径を示す。
 強化ガラス板10の表面12上において、レーザ光20の照射領域22は、強化ガラス板10の厚さや、最大残留圧縮応力(CS)、内部残留引張応力(CT)、表面層13や裏面層15の厚さ(DOL)、レーザ光20の光源出力などに応じた速度で移動される。
 レーザ光20は、光源から出射された後、集光レンズなどで集光され、強化ガラス板10の表面12に結像される。レーザ光20の集光位置は、強化ガラス板10の表面12を基準として、光源側であっても良いし、裏面14側であっても良い。また、加熱温度が高くなりすぎない、すなわち徐冷点以下を保てる集光面積であれば、図5に示すように、レーザ光20の集光位置は強化ガラス板10中、特に中間層17内であっても良い。レーザ光20の集光位置が中間層17内にある場合、レーザ光20によって応力が発生する領域を最小にできるので、切断精度を高めることができると共に、レーザ光20の光源出力を低減することができる。
 レーザ光20は、強化ガラス板10を通過する過程で熱として吸収され、強度が低くなる。
 そこで、裏面14におけるレーザ光20のパワー密度を高め、表面12の加熱温度と、裏面14の加熱温度との差を小さくするため、レーザ光20の集光位置は裏面14又はその近傍に設定されてもよい。表面12の加熱温度と、裏面14の加熱温度との差が小さいので、加熱効率が良く、レーザ光20の光源出力の低減が可能である。
 レーザ光20の光軸21は、強化ガラス板10の表面12において、例えば図1A及び図5(図1Aでは光軸の図示を省略する)に示すように表面12と直交していても良いし、第3の実施形態で説明するように表面12と斜めに交わっていても良い。表面12で反射するレーザ光20が、レーザ発振器に影響を及ぼすおそれがある場合、レーザ光20の光軸21が表面12と斜めに交わると、ほとんどの反射光がレーザ発振器に戻らないため、影響を小さくすることができる。
 従来の方法は、レーザ光のみの作用で切断するため、残留引張応力が大きな強化ガラスでは中間層の残留引張応力によるクラックが意図しない方向に急激に伸展し、所望の形状で切断出来なかった。
 一方、本実施形態では、強化ガラス板10とレーザ光20とが後述の式を満たすことによって、レーザ光20のみの作用ではなく、中間層17の残留引張応力によるクラックの伸展を利用して強化ガラス板10を切断する。すなわち、詳しくは後述するが、上記条件でレーザ光20の照射領域22における中間層17を徐冷点以下の温度で加熱することによって、中間層17の残留引張応力によって強化ガラス板10に生じるクラック30の伸展を制御して、残留引張応力によるクラック30によって強化ガラス板10を切断することが可能となる。なお、中間層17を徐冷点以下の温度で加熱するのは、徐冷点を超えて加熱すると、レーザ光が通過する短時間でもガラスが高温となり粘性流動が発生しやすい状態となるため、この粘性流動によりレーザ光によって発生させた圧縮応力が緩和されるからである。
 強化ガラス板10を通過するレーザ光20は、強化ガラス板10の表面12における強度をIとし、強化ガラス板10中を距離L(cm)だけ移動したときのレーザ光20の強度をIとすると、I=I×exp(-α×L)の式が成立する。この式は、ランベルト・ベールの法則と呼ばれるものである。αはレーザ光20に対する強化ガラス板10の吸収係数(cm-1)を表し、レーザ光20の波長や強化ガラス板10の化学組成などで決まる。
 レーザ光20は、強化ガラス板10の表面12に対して垂直に入射すると、強化ガラス板10の厚さt(cm)と同じ距離を移動して裏面14から出射する。この場合、強化ガラス板10とレーザ光20とが0<α×t≦3.0の式を満たすことによって、レーザ光20が強化ガラス板10の表面で吸収されずに内部にまで到達するようになる。強化ガラス板10の内部が十分に加熱され、強化ガラス板10に生じる応力は図3に示す状態から図6や図7に示す状態に変化する。
 図6は、図1BのA-A線に沿った断面における応力の分布例を示す模式図であって、レーザ光の照射領域を含む断面における応力の分布例を示す模式図である。図7は、図1BのB-B線に沿った断面における応力の分布例を示す模式図であって、図6に示す断面よりも後方の断面における応力の分布例を示す模式である。ここで、「後方」とは、レーザ光20の走査方向後方を意味する。図6及び図7において、矢印の方向は、応力の作用方向を示し、矢印の長さは、応力の大きさを示す。
 レーザ光20の照射領域22における中間層17では、レーザ光20の強度が十分に高いので、温度が周辺に比べて高くなり、図2及び図3に示す残留引張応力よりも小さい引張応力、または、圧縮応力が生じる。残留引張応力よりも小さい引張応力、または、圧縮応力が生じている部分では、クラック30の伸展が抑制される。クラック30の伸展を確実に防止するため、図6に示すように、圧縮応力が生じていることが好ましい。
 なお、レーザ光20の照射領域22における表面層13や裏面層15では、図2及び図3に示す残留圧縮応力よりも大きい圧縮応力が生じているので、クラック30の伸展が抑制されている。
 図6に示す圧縮応力との釣り合いのため、図6に示す断面よりも後方の断面では、図7に示すように、中間層17に引張応力が生じる。この引張応力は、残留引張応力よりも大きく、引張応力が所定値に達している部分に、クラック30が形成される。クラック30は強化ガラス板10の表面12から裏面14まで貫通しており、本実施形態の切断は所謂フルカット切断である。
 この状態で、レーザ光20の照射領域22を移動させると、強化ガラス板10の内部において照射領域22の位置が前述したように図6のような応力分布になっているため、クラック30が切断予定線から外れて自走するようなことはなく、照射領域22の位置に追従するようにクラック30の先端位置が移動する。従って、レーザ光20によってクラック30の伸展を制御できる。
 このように、本実施形態では、α×tを0より大きく3.0以下とすることで、強化ガラス板10において、レーザ光20によってクラック30の伸展を制御できる。そして、照射領域22の直後をクラック30が伸展するため、切断線が照射領域22の移動軌跡どおりに形成されるため、切断精度を向上できる。なお、クラック30の先端は、照射領域22の直後を追従するのでなく、照射領域22と重なって追従しても良い。クラック30の先端が照射領域22に近いほど、または重なっていることが切断精度をより向上させる。
 ガラスは、用途によっては、高い透明度が要求されるので、使用レーザ波長が可視光の波長領域に近い場合はα×tは0に近いほど良い。しかし、α×tは、小さすぎると吸収効率が悪くなるので、好ましくは0.0005以上(レーザ光吸収率0.05%以上)、より好ましくは0.002以上(レーザ光吸収率0.2%以上)、さらに好ましくは0.004以上(レーザ光吸収率0.4%以上)である。
 ガラスは、用途によっては、逆に低い透明度が要求されるので、使用レーザ波長が可視光の波長領域に近い場合はα×tは大きいほど良い。しかし、α×tが大きすぎるとレーザ光の表面吸収が大きくなるのでクラック伸展を制御できなくなる。このため、α×tは、好ましくは3.0以下(レーザ光吸収率95%以下)、より好ましくは0.3以下(レーザ光吸収率26%以下)、さらに好ましくは0.105以下(レーザ光吸収率10%以下)、特に好ましくは0.02以下(レーザ光吸収率2%以下)である。
 ところで、本発明者の知見によると、中間層17の内部残留引張応力(CT)が30MPa以上になると、中間層17の残留引張応力のみで、強化ガラス板10に形成されたクラックが自然に伸展する(自走する)。
 そこで、切断に使用される引張応力のうち、中間層17の残留引張応力が、レーザ光20によって発生する引張応力よりも支配的となるように、内部残留引張応力(CT)は、15MPa以上であることが好ましい。これによって、強化ガラス板10の内部において、引張応力が所定値に達する位置(即ち、クラック30の先端位置)と、レーザ光20の位置との間の距離が十分に短くなるので、切断精度を向上できる。
 中間層17の内部残留引張応力(CT)は、より好ましくは30MPa以上、さらに好ましくは40MPaである。内部残留引張応力(CT)が30MPa以上であると、切断に使用される引張応力は中間層17の残留引張応力のみとなり、切断線の軌跡精度をさらに向上できる。
 本実施形態の化学強化ガラスの切断において、内部残留引張応力(CT)の上限値は120MPaである。現在の技術では、強化処理の技術上の理由で、120MPa程度までしか強化できないが、内部残留引張応力(CT)が120MPaを超える化学強化ガラスを製造できれば、本発明を適用することも当然に可能である。
 レーザ光20の光源としては、波長が800~1100nmの近赤外線(以下、単に「近赤外線」という)のレーザが用いられる。近赤外線レーザとしては、例えば、Ybファイバーレーザ(波長:1000~1100nm)、Ybディスクレーザ(波長:1000~1100nm)、Nd:YAGレーザ(波長:1064nm)、高出力半導体レーザ(波長:808~980nm)が挙げられる。これらの近赤外線レーザは、高出力で安価であり、また、α×tを所望の範囲に調整するのが容易である。
 尚、本実施形態では、レーザ光20の光源として高出力で安価な近赤外線レーザが用いられるが、光源の種類は多種多様であってよい。例えば、UVレーザ(波長:355nm)、グリーンレーザ(波長:532nm)、Ho:YAGレーザ(波長:2080nm)、Er:YAGレーザ(2940nm)、中赤外光パラメトリック発振器を使用したレーザ(波長:2600~3450nm)などが挙げられる。また、レーザ光20の発振方式に制限はなく、レーザ光を連続発振するCWレーザ、レーザ光を断続発振するパルスレーザのいずれも使用可能である。また、レーザ光20の強度分布に制限はなく、ガウシアン型であっても、トップハット型であっても良い。
 図8は、強化ガラス板を精度良く切断できる、中心波長帯が1075~1095nmのレーザ光の光源出力と、当該レーザ光に対する強化ガラス板の吸収係数(α)と強化ガラス板の厚さ(t)との積(α×t)との関係を示す図である。図8は、後述の実施例1-1~1-4、実施例2-1~2-20、及び実施例3-1~3-8での関係を示す両対数グラフである。
 図8に示すように、α×tが小さくなるほど、レーザ光20の熱変換効率が低くなるので、光源に要求される出力が大きくなる。そこで、出力が500W以下の汎用の近赤外線レーザを使用する目的で、α×tは0.001以上に設定されてよい。汎用の近赤外線レーザを使用するので、コストの低減が可能である。α×tは、より好ましくは0.002以上、さらに好ましくは0.003以上である。また、良好な切断精度を得るためα×tは、好ましくは3.0以下、より好ましくは0.3以下、さらに好ましくは0.105以下、特に好ましくは0.02以下である。
 ところで、化学強化の前後でガラス全体の組成はほとんど変わらないので、レーザ光の波長が同じ場合、化学強化の前後で吸収係数(α)は略同じである。また、化学強化はイオン交換によって行われるので、化学強化の前後でガラスの厚さ(t)は略同じである。従って、化学強化用ガラス板におけるα×tの好ましい範囲は、化学強化ガラス板におけるα×tの好ましい範囲と同じであってよい。
 化学強化用ガラス板におけるα×tは、出力が500W以下の汎用の近赤外線レーザを使用する目的で、好ましくは0.001以上、より好ましくは0.002以上、さらに好ましくは0.003以上である。また、良好な切断精度を得るため、化学強化用ガラス板におけるα×tは、好ましくは3.0以下、より好ましくは0.3以下、さらに好ましくは0.105以下、特に好ましくは0.02以下である。
 吸収係数(α)は、レーザ光20の波長が800~1100nmの範囲内の場合、レーザ光20の波長にほとんど依存しない。そのため、吸収係数(α)の測定には中心波長帯が1075~1095nmのレーザ光が用いられ、切断用のレーザ光には波長が800nm以上1075nm未満のレーザ光、又は波長が1095nmよりも長く1100nm以下のレーザ光が用いられてもよい。
 吸収係数(α)は、1000nm付近(800~1100nm)の近赤外線波長領域では、強化ガラス板10のガラス組成などで定まる。強化ガラス板10中の鉄(Fe)の含有量、コバルト(Co)の含有量、銅(Cu)の含有量が多くなるほど、吸収係数(α)が大きくなる。さらに、強化ガラス板10中の希土類元素(例えばYb)の含有量が多くなるほど、希土類原子の吸収波長付近で吸収係数(α)が大きくなる。吸収係数(α)の調節にはガラスの透明性、及びコストの観点から鉄が用いられ、コバルト、銅、及び希土類元素は強化ガラス板10中に実質的に含まれていなくてよい。
 図9は、強化ガラス板を精度良く切断できる、中心波長帯が1075~1095nmのレーザ光の光源出力と、強化ガラス板中の全ての鉄を3価の鉄の酸化物で換算したときの鉄の含有量(以下、「Fe含有量」という)との関係を示す図である。図9は、後述の実施例1-1~1-4、実施例2-1~2-20、及び実施例3-1~3-8での関係を示す両対数グラフである。
 Fe含有量が少なくなるほど、近赤外線に対する強化ガラス板10の吸収係数(α)が小さくなり、レーザ光20の熱変換効率が低くなるので、図9に示すように光源に要求される出力が大きくなる。出力が500W以下の汎用の近赤外線レーザを用いて強化ガラス板10を切断するため、強化ガラス板10中のFe含有量は0.01質量%以上(即ち、100質量ppm以上)であってよい。Fe含有量は、より好ましくは200質量ppm以上、さらに好ましくは500質量ppm以上、特に好ましくは1000質量ppm以上である。
 また、強化ガラス板10中のFe含有量は、5質量%以下であることが好ましい。Fe含有量が5質量%以下であれば、良好な可視光透過率が得られる。また、近赤外線に対する強化ガラス板10の吸収係数(α)を低く抑えることができ、強化ガラス板10の内部を加熱することができるので、良好な切断精度が得られる。Fe含有量は、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下である。特に強化ガラス板10の着色を抑えたい場合、0.3質量%以下であることが好ましく、0.25質量%以下であることが好ましく、0.15質量%以下であることが特に好ましい。
 化学強化の前後で、ガラスの全体組成はほとんど変わらないので、化学強化用ガラス板中のFe含有量の好ましい範囲は、化学強化ガラス板中のFe含有量の好ましい範囲と同じであってよい。即ち、化学強化用ガラス板中のFe含有量は、出力が500W以下の汎用の近赤外線レーザを用いて強化ガラス板10を切断するため、好ましくは100質量ppm以上、より好ましくは200質量ppm以上、さらに好ましくは500質量ppm以上、特に好ましくは1000質量ppm以上である。また、良好な切断精度を得る目的等で、化学強化用ガラス板中のFe含有量は、好ましくは5質量%以下、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下である。特に強化ガラス板10の着色を抑えたい場合、0.3質量%以下であることが好ましく、0.25質量%以下であることが好ましく、0.15質量%以下であることが特に好ましい。
 強化ガラス板10は鉄として2価の鉄イオンと3価の鉄イオンとを含んでおり、主に2価の鉄イオンが近赤外線の吸収に寄与する。
 図10は、強化ガラス板を精度良く切断できる、中心波長帯が1075~1095nmのレーザ光の光源出力と、強化ガラス板中の2価の鉄の酸化物換算での含有量(以下、「Fe2+含有量」という)との関係を示す図である。図10は、後述の実施例1-1~1-4、実施例2-1~2-20、及び実施例3-1~3-8での関係を示す両対数グラフである。
 Fe2+含有量が少なくなるほど、近赤外線に対する強化ガラス板10の吸収係数(α)が小さくなり、レーザ光20の熱変換効率が低くなるので、図10に示すように光源に要求される出力が大きくなる。出力が500W以下の汎用の近赤外線レーザを用いて強化ガラス板10を切断するため、強化ガラス板10中のFe2+含有量は20質量ppm以上であることが好ましい。Fe2+含有量はより好ましくは50質量ppm以上、さらに好ましくは100質量ppm以上、特に好ましくは200質量ppm以上である。また、近赤外線に対する強化ガラス板10の吸収係数(α)を低く抑え、良好な切断精度を得るため、Fe2+含有量は好ましくは60000質量ppm以下、より好ましくは10000質量ppm以下、さらに好ましくは5000質量ppm以下、特に好ましくは3000質量ppm以下である。
 化学強化の前後で、ガラスの全体組成はほとんど変わらないので、化学強化用ガラス板中のFe2+含有量の好ましい範囲は、化学強化ガラス板中のFe2+含有量の好ましい範囲と同じであってよい。即ち、出力が500W以下の汎用の近赤外線レーザを用いて強化ガラス板10を切断するため、化学強化用ガラス板中のFe2+含有量は、好ましくは20質量ppm以上、より好ましくは50質量ppm以上、さらに好ましくは100質量ppm以上、特に好ましくは200質量ppm以上である。また、良好な切断精度を得るため、化学強化用ガラス板中のFe2+含有量は、好ましくは60000質量ppm以下、より好ましくは10000質量ppm以下、さらに好ましくは5000質量ppm以下、特に好ましくは3000質量ppm以下である。
 近赤外線波長領域での吸収係数(α)は、強化ガラス板10の切断後の用途に応じて設定される。例えば、自動車用窓ガラスの場合、吸収係数(α)は3cm-1以下であることが好ましい。また、建築用窓ガラスの場合、吸収係数(α)は0.6cm-1以下であることが好ましい。また、ディスプレイ用ガラスの場合、吸収係数(α)は0.2cm-1以下であることが好ましい。
 強化ガラス板10の厚さ(t)は、化学強化ガラスの場合、0.01~0.2cmであることが好ましい。厚さ(t)を0.2cm以下とすることで、内部残留引張応力(CT)を十分に高めることができる。一方、厚さ(t)が0.01cm未満になると、ガラスに化学強化処理を施すことが難しい。厚さ(t)は、より好ましくは0.03~0.15cm、さらに好ましくは0.05~0.15cmである。
 強化ガラス板10の表面(レーザ光20が入射する面)12において、レーザ光20の照射領域22は、円形に形成されている場合、0.18mmよりも大きく、且つ、強化ガラス板10の厚さよりも小さい直径(Φ)を有することが好ましい。直径(Φ)が強化ガラス板10の厚さ以上になると、レーザ光20の照射領域22が広すぎ、加熱領域が広すぎるので、切断面の一部(特に切断開始部分や切断終了部分)が僅かに湾曲することがある。直径(Φ)は1.03mmよりも小さくてよい。また、直径(Φ)が0.5mm以下であれば、クラック30の位置制御性を高めるため切断精度が向上し、より好ましい。一方、直径(Φ)が0.18mm以下になると、レーザ光20のパワー制御にばらつきが生じた際にパワー密度が高くなり過ぎ、切断面が荒れて、微細な亀裂が形成されることがある。しかしながら、例えばα×tが0.105以下(レーザ光吸収率10%以下)のように小さければ、パワー制御にばらつきが生じパワー密度が高くなったとしても影響を受けにくいため、直径(Φ)が0.18mm以下の場合でも、切断精度が向上することがある。また、レーザ光20のパワー制御の精度が高ければ、α×tの値にかかわらず直径(Φ)が0.18mm以下の場合でも、切断精度が向上することがある。
 [第2の実施形態]
 図11は、本発明の第2の実施形態に係るガラス板を強化してなる強化ガラス板の切断方法の説明図である。図11において、図1Aと同一構成には同一符号を付して説明を省略する。
 本実施形態では、第1の実施形態と同様に、強化ガラス板10の表面12にレーザ光20を照射し、強化ガラス板10の表面12上で、レーザ光20の照射領域22を移動させることで、強化ガラス板10を切断する。
 また、本実施形態では、強化ガラス板10とレーザ光20とが、レーザ光20に対する強化ガラス板10の吸収係数をα(cm-1)とし、強化ガラス板10の厚さをt(cm)として、0<α×t≦3.0の式を満たすことによって、中間層17の残留引張応力よるクラックの伸展を利用して強化ガラス板10を切断する。すなわち、レーザ光20の照射領域22における中間層17を徐冷点以下の温度で加熱することによって、中間層17の残留引張応力によって強化ガラス板10に生じるクラック30の伸展を制御することが可能となる。従って、本実施形態でも、第1の実施形態と同様の効果が得られる。
 これに加えて、本実施形態では、図11に示すように、強化ガラス板10の表面12にガス40を吹き付け、強化ガラス板10の表面12上でガス40の吹き付け領域42をレーザ光20の照射領域22と連動して(照射領域22と共に)移動させる。吹き付け領域42は、照射領域22と重なっていても良いし、照射領域22の近傍に配されても良い。また、吹き付け領域42は、照射領域22に先行しても良いし、照射領域22に追従しても良い。ガス40としては、特に限定されないが、例えば圧縮空気などが用いられる。
 圧縮空気によって、強化ガラス板10の表面12に付着している付着物(例えば粉塵)を吹き飛ばして、付着物がレーザ光20を吸収するのを防止できる。よって、強化ガラス板10の表面12が過熱されるのを防止できる。
 ガス40は、強化ガラス板10を局所的に冷却する冷却ガスであっても良く、この場合、ガス40の吹き付け領域42は、図11に示すようにレーザ光20の照射領域22の移動方向後方近傍に位置するように、照射領域22に追従させても良い。これによって、レーザ光20の照射領域22の移動方向後方近傍において、高い温度勾配が生じるので、引張応力が所定値に達する位置(即ち、クラック30の先端位置)と、レーザ光20の位置との間の距離が短くなる。よって、クラック30の位置制御性が高まるため、切断精度をさらに向上できる。
 [第3の実施形態]
 図12A及び図12Bは、本発明の第3の実施形態に係るガラス板を強化してなる強化ガラス板の切断方法の説明図である。図12Aは、図12BのA-A線に沿った断面図である。図12Bは、強化ガラス板の平面図である。図12A及び図12Bにおいて、図1A等と同一構成には同一符号を付して説明を省略する。
 上記第1の実施形態ではレーザ光20が強化ガラス板10の表面12に対して垂直に入射するのに対し、本実施形態ではレーザ光20が強化ガラス板10の表面12に対して斜めに入射する点で相違する。その他の構成は第1の実施形態と同様であるので、相違点を中心に説明する。
 レーザ光20の照射領域22の移動方向視で、図12Aに示すようにレーザ光20が強化ガラス板10の表面12に斜めに入射するので、強化ガラス板10の切断面が板厚方向に対して斜めになる。よって、強化ガラス板10の切断で得られる切断片同士の板厚方向への分離が可能である。
 レーザ光20の光軸21の入射角βが大きくなるほど、スネルの法則に従って屈折角γが大きくなるので、強化ガラス板10の切断面の板厚方向に対する傾きが大きくなる。この傾きが大きくなるほど、切断後の板厚方向への分離が容易となるが、切断後の切断面の面取り加工が面倒になる。
 入射角βは、レーザ光20の光軸21と、強化ガラス板10の表面12における切断予定線11との位置関係に応じて設定される。例えば図12Bに示すように平面視(板厚方向視)でレーザ光20の光軸21が切断予定線11に対して垂直に配置される場合、入射角βは1~60°の範囲内で設定される。尚、平面視(板厚方向視)で、レーザ光20の光軸21は、切断予定線11に対して斜めに配置されても良い。
 レーザ光20は、強化ガラス板10の表面12に対して斜めに入射すると、t/cosγの距離を移動して裏面14から出射する。この場合、強化ガラス板10とレーザ光20とが0<α×t/cosγ≦3.0の式を満たすことによって、レーザ光20が強化ガラス板10の表面12近傍で吸収されずに内部にまで到達するようになる。従って、第1の実施形態と同様に、中間層17の残留引張応力によって強化ガラス板10に生じるクラック30の伸展を制御することが可能となる。従って、本実施形態でも、第1の実施形態と同様の効果が得られる。
 尚、屈折角γが3°以下の場合、cosγ=1と近似することができるので、0<α×t≦3.0の式が成立すればよい。レーザ光20が近赤外線の場合、0.001≦α×t≦3.0の式が成立すればよい。また、吸収係数(α)の測定には中心波長帯が1075~1095nmのレーザ光が用いられ、切断用のレーザ光には波長が800nm以上1075nm未満のレーザ光、又は波長が1095nmよりも長く1100nm以下のレーザ光が用いられてもよい。
 尚、本実施形態において、第2の実施形態と同様に、強化ガラス板10の表面12にガス40を吹き付け、強化ガラス板10の表面12上でガス40の吹き付け領域42をレーザ光20の照射領域22と連動して移動させても良い。ガス40の吹き付け領域42は、レーザ光20の照射領域22と重なっていても良いし、レーザ光20の照射領域22の近傍に配されても良い。また、ガス40の吹き付け領域42の外縁よりも内側に、レーザ光20の照射領域22が配置されても良い。
 以下に、実施例などにより本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。
 [例1-1~例1-4]
 (化学強化用ガラス板)
 化学強化用ガラス板を作製するため、複数種類の原料を混ぜてガラス原料を調製した。ガラス原料は、ガラス板のレーザ光に対する吸収係数(α)が所望の値となるように、同じ配合比のベース材に対する酸化鉄(Fe)の粉末の添加量を変えて調製した。調製したガラス原料を溶解し、溶解した溶融ガラスを板状に成形した後、室温付近まで徐冷し、切断、切削、両面鏡面研磨することにより、所望の厚さを有する50mm×50mmのガラス板を作製した。なお、ガラス原料を高温で溶解する際、溶融ガラスに含まれる3価の鉄の一部が2価の鉄に還元され、Fe2+含有量が増える。
 各化学強化用ガラス板中のFe含有量、及びFe2+含有量は、湿式分析法で測定した。湿式分析法では、先ず、得られたガラスを粉砕し、粉砕したガラス粉末を、HF水溶液にて溶解し、試験液体を作製した。この試験液体と、2,2’-ジピリジル溶液と、酢酸アンモニウム溶液とを混合して発色させ、その吸光ピーク強度を測定し、標準試料により事前に作成した検量線を基にFe2+含有量を算出する。また、上記の試験液体と、ヒドロキシルアミン塩酸溶液と、2,2’-ジピリジル溶液と、酢酸アンモニウム溶液とを混合して全ての鉄を2価の鉄に還元して発色させ、その吸光ピーク強度を測定し、全鉄量(全ての鉄を2価の鉄の酸化物で換算したときの鉄の含有量)を算出する。算出された全鉄量からFe含有量(全ての鉄を3価の鉄の酸化物で換算したときの鉄の含有量)が求められる。
 例1-1及び例1-2ではFe含有量が0.029質量%、Fe2+含有量が90質量ppmであった。例1-3ではFe含有量が0.195質量%、Fe2+含有量が400質量ppmであった。例1-4ではFe含有量は7.4質量%、Fe2+含有量が56010質量ppmであった。
 各化学強化用ガラス板の化学組成は、蛍光X線分析装置(理学電気工業株式会社製、ZSX100e)で測定し、湿式分析法で求めたFe含有量を基に校正した。湿式分析法で求めたFe含有量は蛍光X線分析装置で測定したFe含有量よりも測定精度が高いので、湿式分析法で求めたFe含有量を真の値として蛍光X線分析装置で求めたガラス組成を補正した。
 例1-1~例1-2で作製した化学強化用ガラス板は、酸化物基準の質量%表示で、SiO:60.7%、Al:9.6%、MgO:7.0%、CaO:0.1%、SrO:0.1%、BaO:0.1%、NaO:11.6%、KO:6.0%、ZrO:4.8%含有していた。例1-3及び例1-4において、Fe以外の複数の成分(SiO、Al、MgO、CaO、SrO、BaO、NaO、KO、及びZrO)の質量比は、例1-1と略同一であった。
 中心波長帯が1075~1095nmのレーザ光に対する各化学強化用ガラス板の吸収係数(α)は、紫外可視近赤外分光光度計(パーキンエルマージャパン社製、Lambda950)を用いて測定した。例1-1及び例1-2では吸収係数(α)が0.09/cmであった。例1-3では吸収係数(α)が0.48/cmであった。例1-4では吸収係数(α)が38.3/cmであった。
 (化学強化ガラス板)
 各化学強化ガラス板は、上記の化学強化用ガラス板をKNO溶融塩に浸漬し、イオン交換処理した後、室温付近まで冷却することにより作製した。KNO溶融塩の温度や浸漬時間などの処理条件は、内部残留引張応力(CT)が所望の値となるように設定した。
 各化学強化ガラス板の内部残留引張応力(CT)は、表面応力計FSM-6000(折原製作所製)にて表面圧縮応力(CS)及び圧縮応力層の深さ(DOL)を測定し、その測定値と、化学強化ガラス板の厚さ(t)とから以下の数式(I)を用いて計算にて求めた。
CT=(CS×DOL)/(t-2×DOL)   (I)
 なお、測定の結果、各化学強化ガラス板の表面層及び裏面層は、同じ厚さ、同じ最大圧縮応力を有していた。
 ちなみに、表面層及び裏面層が異なる厚さ、異なる最大圧縮応力を有している場合、内部残留引張応力(CT)は、下記の数式(II)を用いて計算にて求められる。
CT=(C1×D1/2+C2×D2/2)/(t-D1-D2)   (II)
 上記式(II)中、C1は表面層の最大残留圧縮応力、D1は表面層の厚さ、C2は裏面層の最大残留圧縮応力、D2は裏面層の厚さを示す。
 各化学強化ガラス板中のFe含有量とFe2+含有量は、湿式分析法で測定した結果、化学強化前と略同一であった。
 各化学強化ガラス板の化学組成は、蛍光X線分析装置で測定し、湿式分析法で求めたFe含有量を基に校正した結果、化学強化前と略同一であった。化学強化法ではイオン交換によって表面層及び裏面層が形成されるが、表面層及び裏面層の厚さが薄いので、化学強化の前後でガラス全体の化学組成はほとんど変わらないことがわかる。
 中心波長帯が1075~1095nmのレーザ光に対する各化学強化ガラス板の吸収係数(α)は、紫外可視近赤外分光光度計で測定した結果、化学強化前の吸収係数と略同一であった。化学強化の前後でガラス全体の化学組成はほとんど変わらないためと推定される。
 (化学強化ガラス板の切断)
 化学強化ガラス板の切断は、図1A及び図1Bに示す切断方法で行った。各化学強化ガラス板の側面の切断開始位置にはヤスリで初期クラックを予め形成し、各化学強化ガラス板の表面にはスクライブ線を形成しなかった。
 レーザ光の光源は、ファイバーレーザ(中心波長帯:1075~1095nm)とした。レーザ光の光軸は、各化学強化ガラス板の表面に直交するように配置した。
 レーザ光の照射領域は、各化学強化ガラス板の表面上において、切断予定線の一端(初期クラック)から他端まで50mmにわたって10mm/secの一定速度で移動させた。移動経路の中心線である切断予定線は、矩形状の化学強化ガラス板の一辺と平行な直線状とし、一辺からの距離を10mmとした。レーザ光の照射領域の形状は、円状とした。
 レーザ光の集光位置は、各化学強化ガラス板の表面(上面)から-10.3~20mm(上面を基準として上方(光源側)を正とする)の位置に配置した。レーザ光の集光角は、1.4~33.4°とした。
 (切断結果の評価)
 切断結果は、(1)切断可否、(2)切断端部品質、(3)切断面品質、(4)最大ずれ量で評価した。
 (1)切断可否は、化学強化ガラス板を切断予定線で切断できた場合を「○」とし、クラックの伸展を制御できずにクラックが切断予定線から外れ自走した場合及び切断できずにガラスが粉砕した場合を「×」とした。
 (2)切断端部品質は、切断面を目視で観察し、切断面の端部(切断の開始部分及び終了部分)が平面であるか否かで評価した。切断面の端部が平面である場合を「○」とし、切断面の端部が湾曲面である場合を「×」とした。
 (3)切断面品質は、切断面を目視で観察し、切断面に亀裂が有るか否かで評価した。亀裂が視認できない場合を「○」とし、亀裂が視認できる場合を「×」とした。
 なお、(2)切断端部品質や(3)切断面品質の評価が「×」の場合であっても、切断精度が良好であれば、用途によっては、使用可能である。
 (4)最大ずれ量は、化学強化ガラス板の表面における切断予定線から切断線がどれだけ外れたかを表すものであって、切断予定線と直交する方向における変動幅を測定したものである。この最大ずれ量は、切断開始部分及び切断終了部分を除いて測定したものである。
 評価結果を、切断条件などと共に、表1に示す。表1等において「Redox」は、Fe2+含有量/2価の鉄の酸化物換算での全鉄量(%)を表す。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示す例1-1~例1-4では、切断可否、切断端部品質、切断面品質のいずれの評価も「○」であり、最大ずれ量は0mmであった。
 [例1-5]
 例1-5(比較例)では、例1-1~例1-4(実施例)と異なり、厚さ(t)×吸収係数(α)の値を3.0超とし、化学強化ガラス板の切断を試みた。
 (化学強化用ガラス板)
 化学強化用ガラス板は、例1-1~例1-4と同様に作製した。
 各化学強化用ガラス板中のFe含有量とFe2+含有量は、湿式分析法で測定した。例1-5ではFe含有量が7.4質量%であり、Fe2+含有量が56010質量ppmであった。
 各化学強化用ガラス板の化学組成は、蛍光X線分析装置で測定し、湿式分析法で求めたFe含有量を基に校正した。例1-5において、Fe以外の複数の成分(SiO、Al、MgO、CaO、SrO、BaO、NaO、KO、及びZrO)の質量比は、例1-1と略同一であった。
 中心波長帯が1075~1095nmのレーザ光に対する各化学強化用ガラス板の吸収係数は、紫外可視近赤外分光光度計で測定した。例1-5では吸収係数(α)が38.3/cmであった。
 (化学強化ガラス板)
 各化学強化ガラス板は、内部残留引張応力(CT)が所望の値となるようにKNO溶融塩の温度や浸漬時間などの処理条件を設定して作製した。
 各化学強化ガラス板中のFe含有量とFe2+含有量は、湿式分析法で測定した結果、化学強化前と略同一であった。
 各化学強化ガラス板の化学組成は、蛍光X線分析装置で測定し、湿式分析法で求めたFe含有量を基に校正した結果、化学強化前と略同一であった。
 中心波長帯が1075~1095nmのレーザ光に対する各化学強化ガラス板の吸収係数(α)は、紫外可視近赤外分光光度計で測定した結果、化学強化前の吸収係数と略同一であった。
 (化学強化ガラス板の切断)
 例1-5では、例1-1~例1-4と同様にして化学強化ガラス板上でレーザ光の照射領域を移動させた。
 評価結果を切断条件などと共に表2に示す。
 [例1-6~例1-10]
 例1-6~例1-10(比較例)では、例1-1~例1-4(実施例)と異なり、レーザ光の光源として炭酸ガスレーザ(波長:10600nm)を用いて、化学強化ガラス板の切断を試みた。レーザ光の波長が800~1100nmの範囲から大きく外れているので、吸収係数(α)の測定には波長10600nmのレーザ光を用いた。
 (化学強化用ガラス板)
 化学強化用ガラス板は、例1-1~例1-4と同様に作製した。
 各化学強化用ガラス板中のFe含有量とFe2+含有量は、湿式分析法で測定した。例1-6~例1-10ではFe含有量が0.023質量%、Fe2+含有量が90質量ppmであった。
 各化学強化用ガラス板の化学組成は、蛍光X線分析装置で測定し、湿式分析法で求めたFe含有量を基に校正した。例1-6~例1-10において、Fe以外の複数の成分(SiO、Al、MgO、CaO、SrO、BaO、NaO、KO、及びZrO)の質量比は、例1-1と略同一であった。
 波長が10600nmのレーザ光に対する各化学強化用ガラス板の吸収係数(α)は、紫外可視近赤外分光光度計で測定した。例1-6~例1-10では吸収係数(α)が1000/cm以上であった。
 (化学強化ガラス板)
 各化学強化ガラス板は、内部残留引張応力(CT)が所望の値となるようにKNO溶融塩の温度や浸漬時間などの処理条件を設定して作製した。
 各化学強化ガラス板中のFe含有量とFe2+含有量は、湿式分析法で測定した結果、化学強化前と略同一であった。
 各化学強化ガラス板の化学組成は、蛍光X線分析装置で測定し、湿式分析法で求めたFe含有量を基に校正した結果、化学強化前と略同一であった。
 波長が10600nmのレーザ光に対する各化学強化ガラス板の吸収係数(α)は、紫外可視近赤外分光光度計で測定した結果、化学強化前の吸収係数と略同一であった。
 (化学強化ガラス板の切断)
 炭酸ガスレーザによるレーザ光の大部分は化学強化ガラス板の表面で熱として吸収される。そこで、化学強化ガラス板の内部に熱ができるだけ伝達するように、化学強化ガラス板の表面におけるレーザ光の照射領域はその移動方向に長い楕円形状(長さ12mm、幅3mm)とし、レーザ光の照射時間を長くした。例1-1~例1-4と同様にして化学強化ガラス板上でレーザ光の照射領域を移動させた。
 評価結果を、切断条件などと共に、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から、厚さ(t)×吸収係数(α)の値を3.0以下とすることで、化学強化ガラス板を、良好な切断精度で切断できることがわかる。厚さ(t)×吸収係数(α)の値が3.0を越えると、切断できないか、切断できても最大ずれ量が大きく、切断精度が悪かった。
 [例2-1~例2-20]
 例2-1~例2-20(実施例)では、化学強化処理条件を変更して、内部残留引張応力(CT)を調節し、内部残留引張応力(CT)と最大ずれ量との関係を調べた。
 (化学強化用ガラス板)
 化学強化用ガラス板は、例1-1~例1-4と同様に作製した。
 各化学強化用ガラス板中のFe含有量とFe2+含有量は、湿式分析法で測定した。例2-1、例2-2、例2-15、及び例2-16ではFe含有量が0.75質量%、Fe2+含有量が1490質量ppmであった。例2-3、例2-4、例2-7、及び例2-8ではFe含有量が0.075質量%、Fe2+含有量が270質量ppmであった。例2-5、例2-6、例2-9、例2-10、例2-19、及び例2-20ではFe含有量が0.20質量%、Fe2+含有量が600質量ppmであった。例2-11、例2-13、及び例2-14ではFe含有量が0.12質量%、Fe2+含有量が400質量ppmであった。例2-12、例2-17及び例2-18ではFe含有量が0.3質量%、Fe2+含有量が800質量ppmであった。
 各化学強化用ガラス板の化学組成は、蛍光X線分析装置で測定し、湿式分析法で求めたFe含有量を基に校正した。例2-1~例2-20において、Fe以外の複数の成分(SiO、Al、MgO、CaO、SrO、BaO、NaO、KO、及びZrO)の質量比は、例1-1と略同一であった。
 中心波長帯が1075~1095nmのレーザ光に対する各化学強化用ガラス板の吸収係数は、紫外可視近赤外分光光度計で測定した。例2-1、例2-2、例2-15、及び例2-16では吸収係数(α)が2.99/cmであった。例2-3、例2-4、例2-7、及び例2-8では吸収係数(α)が0.3/cmであった。例2-5、例2-6、例2-9、例2-10、例2-19、及び例2-20では吸収係数(α)が0.8/cmであった。例2-11、例2-13、及び例2-14では吸収係数(α)が0.48/cmであった。例2-12、例2-17及び例2-18では吸収係数(α)が1.2/cmであった。
 (化学強化ガラス板)
 各化学強化ガラス板は、内部残留引張応力(CT)が所望の値となるようにKNO溶融塩の温度や浸漬時間などの処理条件を設定して作製した。
 各化学強化ガラス板中のFe含有量とFe2+含有量は、湿式分析法で測定した結果、化学強化前の値と略同一であった。
 各化学強化ガラス板の化学組成は、蛍光X線分析装置で測定し、湿式分析法で求めたFe含有量を基に校正した結果、化学強化前と略同一であった。
 中心波長帯が1075~1095nmのレーザ光に対する各化学強化ガラス板の吸収係数(α)は、紫外可視近赤外分光光度計で測定した結果、化学強化前の吸収係数と略同一であった。
 (化学強化ガラス板の切断)
 化学強化ガラス板の切断は、例1-1~例1-4と同様にして行った。切断の評価結果を切断条件と共に表3~表5に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3~表5から、内部残留引張応力(CT)を30MPa以上とすることで、残留引張応力によるクラックの伸展が支配的になり、最大ずれ量を0mmにできることがわかる。
 [例3-1~例3-8]
 例3-1~例3-4(実施例)では、例2-15及び例2-16と同様にして化学強化ガラス板を作製し、化学強化ガラス板の表面におけるレーザ光の照射領域の寸法形状を変更して、切断結果を評価した。
 また、例3-5~例3-8(実施例)では、例2-1及び例2-2と同様にして化学強化ガラス板を作製し、化学強化ガラス板の表面におけるレーザ光の照射領域の寸法形状を変更して、切断結果を評価した。
 評価結果を切断条件と共に表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6から、化学強化ガラス板の表面において、レーザ光の照射領域は、円形に形成されている場合、直径(Φ)が0.18mmよりも大きく、化学強化ガラス板の厚さ(1.0mm)よりも小さいと、切断端部品質や切断面品質が良いことがわかる。直径(Φ)が0.18mmの場合、切断面に微細な亀裂があった。また、直径(Φ)が1.03mmの場合、切断面の端部が僅かに湾曲していた。
 以上、本発明の実施形態および実施例について説明したが、本発明は上記実施形態および上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。
 例えば、複数枚の強化ガラス板10を重ねて同時に切断してもよく、この場合、各強化ガラス板10において0<α×t≦3.0の式が成立すればよい。レーザ光20が近赤外線の場合、0.001≦α×t≦3.0の式が成立すればよい。吸収係数(α)の測定には中心波長帯が1075~1095nmのレーザ光が用いられ、切断用のレーザ光には波長が800nm以上1075nm未満のレーザ光、又は波長が1095nmよりも長く1100nm以下のレーザ光が用いられてもよい。
てよい。
 本出願は、2011年1月11日に日本国特許庁に出願された特願2011-003496号、及び2011年8月31日に日本国特許庁に出願された特願2011-190024号に基づく優先権主張するものであり、特願2011-003496号、及び特願2011-190024号の全内容を本国際出願に援用する。
10  強化ガラス板
11  切断予定線
12  表面
13  表面層
14  裏面
15  裏面層
17  中間層
20  レーザ光
21  レーザ光の光軸
22  レーザ光の照射領域
30  クラック
40  ガス
42  ガスの吹き付け領域

Claims (6)

  1.  レーザ切断前の化学強化に用いられるガラス板であって、
     中心波長帯が1075~1095nmのレーザ光に対する前記ガラス板の吸収係数をα(cm-1)、前記ガラス板の厚さをt(cm)として、0.001≦α×t≦3.0の式を満たすことを特徴とするレーザ切断前の化学強化に用いられるガラス板。
  2.  0.001≦α×t≦0.3の式を満たす請求項1に記載のレーザ切断前の化学強化に用いられるガラス板。
  3.  前記ガラス板は、2価の鉄の酸化物換算での含有量が20~60000質量ppmであって、
     前記ガラス板の厚さが0.01~0.2cmである請求項1に記載のレーザ切断前の化学強化に用いられるガラス板。
  4.  前記ガラス板は、2価の鉄の酸化物換算での含有量が20~60000質量ppmであって、
     前記ガラス板の厚さが0.01~0.2cmである請求項2に記載のレーザ切断前の化学強化に用いられるガラス板。
  5.  前記ガラス板は、全ての鉄を3価の鉄の酸化物で換算したときの鉄の含有量が100質量ppm以上である請求項1~4のいずれか一項に記載のレーザ切断前の化学強化に用いられるガラス板。
  6.  前記ガラス板は、酸化物基準の質量%表示で、SiO:50~74%、Al:4~25%、B:0~10%、MgO:1~10%、CaO:0~5%、SrO:0~5%、BaO:0~5%、NaO:5~20%、KO:0~10%、ZrO:0~10%、Fe:0.01~5.0%を含有する請求項1~4のいずれか一項に記載のレーザ切断前の化学強化に用いられるガラス板。
     
PCT/JP2012/050282 2011-01-11 2012-01-10 レーザ切断前の化学強化に用いられるガラス板 WO2012096260A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-003496 2011-01-11
JP2011003496 2011-01-11
JP2011190024 2011-08-31
JP2011-190024 2011-08-31

Publications (1)

Publication Number Publication Date
WO2012096260A1 true WO2012096260A1 (ja) 2012-07-19

Family

ID=46506970

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2011/076289 WO2012096053A1 (ja) 2011-01-11 2011-11-15 強化ガラス板の切断方法
PCT/JP2012/050282 WO2012096260A1 (ja) 2011-01-11 2012-01-10 レーザ切断前の化学強化に用いられるガラス板
PCT/JP2012/050283 WO2012096261A1 (ja) 2011-01-11 2012-01-10 レーザ切断用の化学強化ガラス板
PCT/JP2012/050335 WO2012096285A1 (ja) 2011-01-11 2012-01-11 強化ガラス板の切断方法
PCT/JP2012/050334 WO2012096284A1 (ja) 2011-01-11 2012-01-11 強化ガラス板の切断方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076289 WO2012096053A1 (ja) 2011-01-11 2011-11-15 強化ガラス板の切断方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/JP2012/050283 WO2012096261A1 (ja) 2011-01-11 2012-01-10 レーザ切断用の化学強化ガラス板
PCT/JP2012/050335 WO2012096285A1 (ja) 2011-01-11 2012-01-11 強化ガラス板の切断方法
PCT/JP2012/050334 WO2012096284A1 (ja) 2011-01-11 2012-01-11 強化ガラス板の切断方法

Country Status (7)

Country Link
US (2) US20130291597A1 (ja)
EP (2) EP2664592A4 (ja)
JP (2) JP5201295B2 (ja)
KR (2) KR20140024842A (ja)
CN (2) CN103298757A (ja)
TW (4) TW201242920A (ja)
WO (5) WO2012096053A1 (ja)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503105A (ja) * 2009-08-28 2013-01-31 コーニング インコーポレイテッド 化学強化ガラス基板からガラス品をレーザ割断するための方法
WO2012128180A1 (ja) 2011-03-18 2012-09-27 旭硝子株式会社 ディスプレイ装置用化学強化ガラス
KR20140057573A (ko) * 2011-08-29 2014-05-13 아사히 가라스 가부시키가이샤 강화 유리판의 절단 방법 및 강화 유리판 절단 장치
KR20140053256A (ko) * 2011-08-31 2014-05-07 아사히 가라스 가부시키가이샤 강화 유리판의 절단 방법 및 강화 유리판 절단 장치
JP2014210669A (ja) * 2011-08-31 2014-11-13 旭硝子株式会社 強化ガラスの切断方法
WO2014010689A1 (ja) * 2012-07-11 2014-01-16 旭硝子株式会社 小サイズ板の製造方法及び構造体並びに構造体の製造方法
JP2015171955A (ja) * 2012-07-11 2015-10-01 旭硝子株式会社 湾曲板の製造方法
JP2015171954A (ja) * 2012-07-11 2015-10-01 旭硝子株式会社 積層板の製造方法
JP2015171953A (ja) * 2012-07-11 2015-10-01 旭硝子株式会社 機能性基板の製造方法
EP2891635B1 (en) * 2012-08-31 2017-05-03 Ceron Technologies Inc. Method for processing toughened glass and processing device for toughened glass
KR101355807B1 (ko) * 2012-09-11 2014-02-03 로체 시스템즈(주) 비금속 재료의 곡선 절단방법
US9126857B2 (en) * 2012-11-15 2015-09-08 Corning Incorporated Separation apparatuses for separating sheets of brittle material and methods for separating sheets of brittle material
WO2014079478A1 (en) * 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
EP2754524B1 (de) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
EP2781296B1 (de) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser
CN105189395A (zh) * 2013-04-12 2015-12-23 旭硝子株式会社 室外用化学强化玻璃板
TWI471279B (zh) * 2013-04-22 2015-02-01 Taiwan Mitsuboshi Diamond Ind Co Ltd 用於一化學強化玻璃基板之加工方法及加工設備
JP2016128362A (ja) * 2013-04-26 2016-07-14 旭硝子株式会社 ガラス板の切断方法
US9328011B2 (en) * 2013-06-04 2016-05-03 Coherent, Inc. Laser-scribing of chemically strengthened glass
KR101521542B1 (ko) * 2013-09-06 2015-05-29 주식회사 제우스 강화유리 절단장치 및 강화유리 절단방법
KR101682269B1 (ko) * 2013-09-25 2016-12-05 주식회사 엘지화학 레이저 커팅 장치 및 그 커팅 방법
CN103522031B (zh) * 2013-09-30 2016-06-29 苏州德龙激光股份有限公司 强化玻璃打孔方法
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US20150165560A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9260337B2 (en) * 2014-01-09 2016-02-16 Corning Incorporated Methods and apparatus for free-shape cutting of flexible thin glass
JP2015156427A (ja) * 2014-02-20 2015-08-27 アイシン精機株式会社 ガラス加工部品及びその製造方法並びに電子装置及びその製造方法
EP3107868B1 (en) * 2014-02-20 2021-05-26 Corning Incorporated Methods for cutting radii in flexible thin glass
DE102014205066A1 (de) * 2014-03-19 2015-10-08 Schott Ag Vorgespannter Glasartikel mit Laserinnengravur und Herstellverfahren
CN103880277B (zh) * 2014-03-26 2016-08-24 扬朋科技股份有限公司 强化玻璃的切割方法
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
CN208586209U (zh) 2014-07-14 2019-03-08 康宁股份有限公司 一种用于在工件中形成限定轮廓的多个缺陷的系统
CN107073642B (zh) * 2014-07-14 2020-07-28 康宁股份有限公司 使用长度和直径可调的激光束焦线来加工透明材料的系统和方法
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
JP2017532274A (ja) * 2014-08-20 2017-11-02 コーニング インコーポレイテッド フレキシブル薄型ガラスの切断において高エッジ強度を生み出す方法および装置
WO2016033040A1 (en) 2014-08-28 2016-03-03 Corning Incorporated Apparatus and method for cutting a glass sheet
JP6303950B2 (ja) * 2014-09-19 2018-04-04 旭硝子株式会社 ガラス板の加工方法
KR102185197B1 (ko) * 2014-10-17 2020-12-01 동우 화인켐 주식회사 유도 가열 장치
TW201628751A (zh) * 2014-11-20 2016-08-16 康寧公司 彈性玻璃基板之回饋控制的雷射切割
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
WO2016115017A1 (en) 2015-01-12 2016-07-21 Corning Incorporated Laser cutting of thermally tempered substrates using the multi photon absorption method
JP7292006B2 (ja) 2015-03-24 2023-06-16 コーニング インコーポレイテッド ディスプレイガラス組成物のレーザ切断及び加工
JP2018516215A (ja) 2015-03-27 2018-06-21 コーニング インコーポレイテッド 気体透過性窓、および、その製造方法
JP6769432B2 (ja) * 2015-05-15 2020-10-14 Agc株式会社 化学強化ガラス
WO2017007868A1 (en) 2015-07-07 2017-01-12 Corning Incorporated Apparatuses and methods for heating moving glass ribbons at separation lines and/or for separating glass sheets from glass ribbons
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
KR20180034586A (ko) * 2015-07-31 2018-04-04 코닝 인코포레이티드 강화된 비대칭 유리 적층물
CN107922259B (zh) * 2015-09-04 2021-05-07 Agc株式会社 玻璃板的制造方法、玻璃板、玻璃物品的制造方法、玻璃物品以及玻璃物品的制造装置
WO2017123573A2 (en) 2016-01-12 2017-07-20 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11795102B2 (en) * 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
EP3957611A1 (en) 2016-05-06 2022-02-23 Corning Incorporated Transparent substrates with improved edge surfaces
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
EP3490945B1 (en) 2016-07-29 2020-10-14 Corning Incorporated Methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
EP3529214B1 (en) 2016-10-24 2020-12-23 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US20190039940A1 (en) * 2017-08-02 2019-02-07 Guardian Glass, LLC Laser cutting strengthened glass
CN107529467B (zh) * 2017-08-21 2019-10-25 成都莱普科技有限公司 一种硅基mems晶圆多焦点激光切割系统及切割方法
TW201919805A (zh) * 2017-08-25 2019-06-01 美商康寧公司 使用遠焦光束調整組件以雷射處理透明工件的設備與方法
DE102017121140A1 (de) * 2017-09-01 2019-03-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laserbearbeitung eines transparenten Werkstücks
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
TW201946882A (zh) * 2018-05-07 2019-12-16 美商康寧公司 透明氧化物玻璃的雷射誘導分離
CO2018008278A1 (es) * 2018-06-30 2018-10-22 Agp America Sa Método para la fabricación de acristalamiento enrasado para vehículos
CN112566749B (zh) * 2018-08-20 2022-08-26 日本瑞翁株式会社 切割膜的制造方法、切割膜及切割膜用膜
DE102019119195A1 (de) * 2019-07-16 2021-01-21 Schott Ag Hermetisch verschlossene gehärtete Glasumhäusung und Verfahren zu deren Herstellung
CN116811379A (zh) 2019-08-06 2023-09-29 康宁股份有限公司 具有用于阻止裂纹的埋入式应力尖峰的玻璃层压体及其制造方法
KR20210110510A (ko) * 2020-02-28 2021-09-08 쇼오트 아게 유리 부재의 분리 방법 및 유리 서브부재

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139342A (ja) * 1999-11-09 2001-05-22 Nippon Sheet Glass Co Ltd プラズマディスプレイ装置及びその前面ガラス基板
JP2008000818A (ja) * 2007-07-26 2008-01-10 Lemi Ltd 脆性材料の割断方法およびそれに使用される脆性材料
WO2008108332A1 (ja) * 2007-03-02 2008-09-12 Nippon Electric Glass Co., Ltd. 強化板ガラスとその製造方法
JP2010138045A (ja) * 2008-12-15 2010-06-24 Nippon Electric Glass Co Ltd ガラス基板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952331C1 (de) * 1999-10-29 2001-08-30 Schott Spezialglas Gmbh Verfahren und Vorrichtung zum schnellen Schneiden eines Werkstücks aus sprödbrüchigem Werkstoff mittels Laserstrahlen
JP2003001449A (ja) * 2000-09-13 2003-01-08 Hamamatsu Photonics Kk レーザ加工装置
JP2003261344A (ja) * 2002-03-08 2003-09-16 Nippon Sheet Glass Co Ltd 熱強化ガラス物品の製造方法、およびそれに用いる製造装置
TW200306240A (en) * 2002-03-12 2003-11-16 Mitsuboshi Diamond Ind Co Ltd Method and device for processing fragile material
JP4938998B2 (ja) * 2004-06-07 2012-05-23 富士通株式会社 基板及び積層体の切断方法、並びに積層体の製造方法
JP2006256944A (ja) * 2005-03-14 2006-09-28 Lemi Ltd 脆性材料の割断方法及び装置
JP4275121B2 (ja) * 2005-09-05 2009-06-10 三菱重工業株式会社 太陽電池用ガラス基板の製造方法
KR101081613B1 (ko) * 2005-09-13 2011-11-09 가부시키가이샤 레미 취성재료의 할단방법 및 장치
JP2007261885A (ja) * 2006-03-29 2007-10-11 Lemi Ltd 重ねガラスの割断方法
JP2007301624A (ja) * 2006-05-15 2007-11-22 Shibaura Mechatronics Corp 割断装置及び割断方法
JP5005612B2 (ja) * 2008-05-24 2012-08-22 株式会社レミ 脆性材料のフルカット割断方法
JP2010089143A (ja) * 2008-10-10 2010-04-22 Mitsuboshi Diamond Industrial Co Ltd 脆性材料基板の割断方法及び割断装置
JP5294150B2 (ja) * 2009-01-23 2013-09-18 日本電気硝子株式会社 強化ガラスの製造方法
US8327666B2 (en) * 2009-02-19 2012-12-11 Corning Incorporated Method of separating strengthened glass
US8347651B2 (en) * 2009-02-19 2013-01-08 Corning Incorporated Method of separating strengthened glass
US8950217B2 (en) * 2010-05-14 2015-02-10 Hamamatsu Photonics K.K. Method of cutting object to be processed, method of cutting strengthened glass sheet and method of manufacturing strengthened glass member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139342A (ja) * 1999-11-09 2001-05-22 Nippon Sheet Glass Co Ltd プラズマディスプレイ装置及びその前面ガラス基板
WO2008108332A1 (ja) * 2007-03-02 2008-09-12 Nippon Electric Glass Co., Ltd. 強化板ガラスとその製造方法
JP2008000818A (ja) * 2007-07-26 2008-01-10 Lemi Ltd 脆性材料の割断方法およびそれに使用される脆性材料
JP2010138045A (ja) * 2008-12-15 2010-06-24 Nippon Electric Glass Co Ltd ガラス基板

Also Published As

Publication number Publication date
CN103298757A (zh) 2013-09-11
TW201240931A (en) 2012-10-16
JP5201295B2 (ja) 2013-06-05
WO2012096261A1 (ja) 2012-07-19
WO2012096285A1 (ja) 2012-07-19
JPWO2012096285A1 (ja) 2014-06-09
TW201242920A (en) 2012-11-01
JPWO2012096284A1 (ja) 2014-06-09
TW201235326A (en) 2012-09-01
EP2664592A1 (en) 2013-11-20
WO2012096284A1 (ja) 2012-07-19
EP2664592A4 (en) 2014-06-18
KR20140024843A (ko) 2014-03-03
TW201240930A (en) 2012-10-16
JP5431583B2 (ja) 2014-03-05
EP2664591A4 (en) 2014-06-18
WO2012096053A1 (ja) 2012-07-19
US20130291597A1 (en) 2013-11-07
KR20140024842A (ko) 2014-03-03
CN103298756A (zh) 2013-09-11
US20130291598A1 (en) 2013-11-07
EP2664591A1 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2012096260A1 (ja) レーザ切断前の化学強化に用いられるガラス板
JP6065910B2 (ja) 化学強化ガラス板の切断方法
WO2013084877A1 (ja) 強化ガラス板の切断方法、および強化ガラス板切断装置
US20140165652A1 (en) Cutting method for reinforced glass plate and reinforced glass plate cutting device
JP2014012611A (ja) 化学強化ガラス板
WO2013084879A1 (ja) 強化ガラス板の切断方法、及び強化ガラス板切断装置
WO2013031778A1 (ja) 強化ガラス板の切断方法、および強化ガラス板切断装置
WO2013150990A1 (ja) 強化ガラス板の切断方法、及び強化ガラス板切断システム
WO2012172960A1 (ja) ガラス板の切断方法
TW201040117A (en) Method of separating strengthened glass
JP2013043808A (ja) 強化ガラス板切断用保持具及び強化ガラス板の切断方法
WO2013011877A1 (ja) 板ガラス、その製造方法、および、その製造装置
JP2015034096A (ja) 強化ガラス板の切断方法、及び強化ガラス板切断装置
JP2012193090A (ja) ガラス板、およびその製造方法
JP2012193091A (ja) ガラス板、およびその製造方法
JP2015034095A (ja) 強化ガラス板の切断方法、および強化ガラス板切断装置
TW201245063A (en) Cutting method for strengthened glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12733895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP