WO2012093703A1 - 履帯式走行装置を備えた作業機の油圧駆動装置 - Google Patents

履帯式走行装置を備えた作業機の油圧駆動装置 Download PDF

Info

Publication number
WO2012093703A1
WO2012093703A1 PCT/JP2012/050126 JP2012050126W WO2012093703A1 WO 2012093703 A1 WO2012093703 A1 WO 2012093703A1 JP 2012050126 W JP2012050126 W JP 2012050126W WO 2012093703 A1 WO2012093703 A1 WO 2012093703A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
travel
valve
control valve
flow rate
Prior art date
Application number
PCT/JP2012/050126
Other languages
English (en)
French (fr)
Inventor
和繁 森
釣賀 靖貴
高橋 究
圭文 竹林
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to US13/976,232 priority Critical patent/US20130287601A1/en
Priority to JP2012551877A priority patent/JP5750454B2/ja
Priority to EP12732178.4A priority patent/EP2662576B1/en
Priority to CN201280004518.1A priority patent/CN103299087B/zh
Publication of WO2012093703A1 publication Critical patent/WO2012093703A1/ja
Priority to US15/262,500 priority patent/US10287751B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/02Travelling-gear, e.g. associated with slewing gears
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/026Pressure compensating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/002Calibrating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • E02F3/325Backhoes of the miniature type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • E02F3/964Arrangements on backhoes for alternate use of different tools of several tools mounted on one machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/321Directional control characterised by the type of actuation mechanically
    • F15B2211/322Directional control characterised by the type of actuation mechanically actuated by biasing means, e.g. spring-actuated
    • F15B2211/323Directional control characterised by the type of actuation mechanically actuated by biasing means, e.g. spring-actuated the biasing means being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/355Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/521Pressure control characterised by the type of actuation mechanically
    • F15B2211/522Pressure control characterised by the type of actuation mechanically actuated by biasing means, e.g. spring-actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/528Pressure control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/575Pilot pressure control
    • F15B2211/5756Pilot pressure control for opening a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members
    • F15B2211/782Concurrent control, e.g. synchronisation of two or more actuators

Definitions

  • the present invention relates to a hydraulic drive device for a working machine equipped with a crawler type traveling device, and more particularly, to a hydraulic drive device for a working machine that facilitates ensuring straight travel performance during traveling.
  • the hydraulic pump In a working machine equipped with a conventional crawler type traveling device, for example, a hydraulic drive device of an actuator of a hydraulic excavator, the hydraulic pump (main pump) has a hydraulic pressure so that the discharge pressure of the hydraulic pump (main pump) is higher than the maximum load pressure of multiple actuators by a target differential pressure.
  • Some control the discharge flow rate of the pump, and such a hydraulic system is called a load sensing system.
  • the differential pressure before and after the plurality of flow control valves is held at a predetermined differential pressure by the pressure compensation valve, and each of the actuators is controlled regardless of the load pressure of each actuator during the combined operation of simultaneously driving the plurality of actuators.
  • Pressure oil can be supplied at a ratio corresponding to the opening area of the flow control valve.
  • Such a load sensing system is described in Patent Document 1, for example.
  • a differential pressure reducing valve that outputs a differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of a plurality of actuators (hereinafter referred to as differential pressure PLS) as an absolute pressure is provided.
  • the output pressure of the pressure reducing valve is guided to multiple pressure compensating valves, each target compensating differential pressure of the pressure compensating valve is set by the differential pressure PLS, and control is performed to maintain the differential pressure PLS before and after the flow control valve at the differential pressure PLS.
  • the differential pressure PLS is determined according to the degree of saturation.
  • the target compensation differential pressure of the pressure compensation valve that is, the differential pressure before and after the flow control valve, becomes smaller. It can be.
  • a hydraulic system called an open circuit system equipped with an open center type direction switching valve is also widely used.
  • this open circuit system for example, as described in Patent Document 2, normally, left and right traveling motors are independently supplied with pressure oil from two hydraulic pumps to perform traveling.
  • two pressure oil supply oil passages for supplying pressure oil from two hydraulic pumps to two directional control valves for traveling are connected via meandering correction circuits.
  • the valve device provided in the meandering correction circuit is switched from the shut-off position to the throttle communication position, otherwise the valve device Is kept at the shut-off position, thereby preventing deterioration in operability in cases other than the straight traveling operation, and when the straight traveling operation is performed, straight traveling correction of the traveling meander is made possible.
  • a traveling device for example, a hydraulic drive device of a hydraulic mini excavator
  • the rated traveling speed determined by the engine speed and the pump discharge flow rate is determined by the opening area of the flow control valve and the capacity of the traveling motor.
  • the specifications of the left and right flow control valves and the left and right traveling motors are set to the same specifications.
  • the actual speed difference (rotational speed difference) between the left and right traveling motors is affected by the opening area of the flow control valve and the volumetric efficiency of the traveling motor. Actually, product processing error, flow control valve opening area, travel motor manufacturing error, etc.
  • a speed difference may occur between the left and right traveling motors during a traveling operation.
  • the vehicle body meanders and cannot perform the intended straight traveling.
  • the current countermeasure is to check the product at the time of shipment from the factory, for example, and if there is such a problem, replace the traveling motor to replace the part. The same applies when such a malfunction occurs during operation by the user after shipment from the factory.
  • the traveling motor is a large device, and replacing it requires an excessive cost and work amount. Also, the certainty was low.
  • the object of the present invention is to perform the traveling by supplying pressure oil from at least one hydraulic pump to the left and right traveling motors, and to make a special change to the main circuit without exchanging a large device such as a traveling motor. It is an object of the present invention to provide a hydraulic drive device for a working machine having a crawler type traveling device that can easily perform straight traveling correction of traveling meandering.
  • the present invention provides an engine, a variable displacement main pump driven by the engine, and first and second traveling units driven by pressure oil discharged from the main pump.
  • a plurality of flow control valves including a plurality of actuators including a hydraulic motor; first and second flow control valves for traveling that control flow rates of pressure oil supplied from the main pump to the plurality of actuators; And at least one of the first and second travel flow control valves, in the hydraulic drive device for a working machine having a crawler-type travel device having left and right crawler belts driven by rotation of the second travel hydraulic motor, respectively. It is assumed that a flow rate correction device for limiting the maximum flow rate output from one of the travel flow rate control valves to a preset flow rate is provided.
  • the traveling meandering correction method by the flow rate correction apparatus includes the following two methods.
  • One is a case in which adjustment is performed by attaching a flow rate correction device when it is found that there is a problem with traveling meandering, such as during a check before shipping the product of the working machine.
  • the other is a case where a flow rate correction device is attached in advance to the hydraulic drive device of the work implement, and then adjustment is performed when it is found that there is a problem of traveling meandering.
  • a flow rate correction device is attached in advance to the hydraulic drive device of the work implement, and then adjustment is performed when it is found that there is a problem of traveling meandering.
  • it is known which side of the first and second travel flow control valves has a higher (or lower) rotational speed of the travel motor, so which of the first and second travel flow control valves
  • a flow rate correction device may be attached to either side.
  • the flow meander is attached in such a manner, and the maximum flow rate supplied to the first hydraulic motor is adjusted to be equal to the maximum flow rate supplied to the second hydraulic motor, so that the traveling meander Can be corrected.
  • the traveling meander can be corrected.
  • the flow correction device is installed in advance and adjustment is made when it is found that there is a problem with traveling meandering, it is not necessary to perform the work of attaching the flow correction device at the time of adjustment, so the straight movement of the traveling meander is quick. Correction can be performed. Further, since the flow rate correction device is attached to both sides of the first and second travel flow control valves, it is possible to widen the range of straight travel correction of the traveling meander.
  • a plurality of pressure compensation valves including first and second travel pressure compensation valves that respectively control front and rear differential pressures of the plurality of flow control valves, and a discharge pressure of the main pump is a maximum load of the plurality of actuators.
  • a pump control device that performs load sensing control of the displacement of the main pump so as to be higher than the pressure by a target differential pressure, and the plurality of pressure compensation valves have a differential pressure across the flow control valve that is equal to a discharge pressure of the main pump.
  • the flow rate correction device includes: A target compensation differential pressure adjusting device that corrects a target compensation differential pressure of a travel pressure compensation valve corresponding to the travel flow control valve among the first and first travel pressure compensation valves.
  • the maximum flow rate supplied to the first hydraulic motor and the second flow rate are corrected by correcting the opening of the traveling pressure compensation valve in the opening direction or the closing direction.
  • the target compensation differential pressure adjusting device includes an adjustment pin having an adjustment pin for adjusting a biasing force of a spring that sets a target compensation differential pressure of the traveling pressure compensation valve. It is.
  • the target compensation differential pressure adjustment device includes a pressure reducing valve that corrects the target compensation differential pressure of the traveling pressure compensation valve by reducing the pressure of a pilot hydraulic power source.
  • Pressure reducing valve unit is a pressure reducing valve that corrects the target compensation differential pressure of the traveling pressure compensation valve by reducing the pressure of a pilot hydraulic power source.
  • the hydraulic drive device for the working machine further includes a travel operation device including a remote control valve that generates a control pilot pressure for operating the travel flow control valve, and the flow correction device includes the travel correction device.
  • a travel operation device including a remote control valve that generates a control pilot pressure for operating the travel flow control valve
  • the flow correction device includes the travel correction device.
  • a pressure control valve unit that is disposed between the remote control valve of the operating device and the travel flow control valve and includes a pressure control valve that reduces a control pilot pressure of the remote control valve.
  • the hydraulic drive device for the working machine further includes a travel operation device including a remote control valve that generates a control pilot pressure for operating the travel flow control valve
  • the flow rate correction device includes:
  • the pressure reducing valve unit is provided between a remote control valve of the traveling operation device and the flow control valve for traveling, and includes a pressure reducing valve for reducing a control pilot pressure of the remote control valve.
  • straight traveling correction of traveling meander can be easily performed without replacing a large device such as a traveling motor and without making any special change to the main circuit.
  • FIG. 3 shows the appearance of the hydraulic excavator.
  • a hydraulic excavator well known as a work machine includes an upper swing body 300, a lower traveling body 301, and a swing type front work machine 302.
  • the front work machine 302 includes a boom 306, an arm 307, The bucket 308 is configured.
  • the upper swing body 300 can swing the lower traveling body 301 by the rotation of the swing motor 5.
  • a swing post 303 is attached to the front portion of the upper swing body 300, and a front work machine 302 is attached to the swing post 303 so as to be movable up and down.
  • the swing post 303 can be rotated in the horizontal direction with respect to the upper swing body 300 by expansion and contraction of the swing cylinder 9. 12 can be turned up and down by expansion and contraction.
  • the lower traveling body 301 includes a central frame 304, and a blade 305 that moves up and down by the expansion and contraction of the blade cylinder 7 is attached to the central frame 304.
  • the lower traveling body 301 includes a crawler-type travel device 315 that travels by driving the left and right crawler belts 310 and 311 by the rotation of the travel motors 6 and 8.
  • 1A and 2B show a hydraulic drive device for a working machine according to a first embodiment of the present invention.
  • the hydraulic drive device in the present embodiment is discharged from the engine 1, the main main pump 2 driven by the engine 1, the pilot pump 3 driven by the engine 1 in conjunction with the main pump 2, and the main pump 2.
  • a plurality of actuators 5, 6, 7, 8, 9, 10, 11, 12 driven by the pressurized oil and a control valve 4 are provided.
  • the working machine including the crawler type traveling apparatus is, for example, a hydraulic mini excavator
  • the actuator 5 is a swing motor of the hydraulic excavator
  • the actuators 6 and 8 are left and right traveling motors
  • the actuator 7 is a blade.
  • the actuator 9 is a swing cylinder
  • the actuators 10, 11, and 12 are a boom cylinder, an arm cylinder, and a bucket cylinder, respectively.
  • the control valve 4 is connected to the supply oil passage 2a of the main pump 2, and has a plurality of valve sections 13, 14, 15, 16, 17 for controlling the direction and flow rate of the pressure oil supplied from the main pump 2 to each actuator. , 18, 19, 20 and the signal oil by selecting the highest load pressure (hereinafter referred to as the maximum load pressure) PLmax among the load pressures of the plurality of actuators 5, 6, 7, 8, 9, 10, 11, 12
  • a plurality of shuttle valves 22a, 22b, 22c, 22d, 22e, 22f, and 22g output to the passage 21 and a supply oil passage 2a of the main pump 2 are provided to limit the maximum discharge pressure (maximum pump pressure) of the main pump 2.
  • the differential pressure PLS with respect to ax exceeds a certain fixed value set by the spring 25a, a part of the discharge flow rate of the main pump 2 is returned to the tank 0, and the differential pressure PLS is less than the fixed value set by the spring 25a.
  • an unload valve 25 for keeping. Outlet sides of the unload valve 25 and the main relief valve 23 are connected to the tank oil passage 29 in the control valve 2 and connected to the tank 0.
  • the valve section 13 includes a flow control valve 26a and a pressure compensation valve 27a
  • the valve section 14 includes a flow control valve 26b and a pressure compensation valve 27b
  • the valve section 15 includes a flow control valve 26c and a pressure compensation valve 27c
  • the valve section 16 is composed of a flow control valve 26d and a pressure compensation valve 27d
  • the valve section 17 is composed of a flow control valve 26e and a pressure compensation valve 27e
  • the valve section 18 is composed of a flow control valve 26f and a pressure
  • the valve section 19 includes a flow rate control valve 26g and a pressure compensation valve 27g
  • the valve section 20 includes a flow rate control valve 26h and a pressure compensation valve 27h.
  • the flow control valves 26a to 26h control the direction and flow rate of the pressure oil supplied from the main pump 2 to the actuators 5 to 12, respectively.
  • the pressure compensation valves 27a to 27h are differential pressures before and after the flow control valves 26a to 26h. To control each.
  • the pressure compensating valves 27a to 27h have valve-opening side pressure receiving portions 28a, 28b, 28c, 28d, 28e, 28f, 28g, and 28h for setting a target differential pressure.
  • the pressure receiving portions 28a to 28h include a differential pressure reducing valve 24.
  • the target compensation differential pressure is set by the absolute pressure of the differential pressure PLS between the hydraulic pump pressure Pd and the maximum load pressure PLmax (hereinafter referred to as the absolute pressure PLS). In this way, by controlling the differential pressure across the flow control valves 26a-26h to the same differential pressure PLS, the pressure compensation valves 27a-27h have the maximum differential pressure across the flow control valves 26a-26h equal to the hydraulic pump pressure Pd.
  • Control is performed so as to be equal to the differential pressure PLS from the load pressure PLmax.
  • the discharge flow rate of the main pump 2 is distributed according to the opening area ratio of the flow rate control valves 26a to 26h regardless of the load pressure of the actuators 5 to 12. Combined operability can be ensured.
  • the differential pressure PLS decreases according to the degree of supply shortage, and the pressure compensation valves 27a to 27h control accordingly.
  • the discharge flow rate of the main pump 2 can be distributed to ensure composite operability.
  • the hydraulic drive device is connected to the supply oil passage 3 a of the pilot pump 3, and includes an engine speed detection valve device 30 that outputs an absolute pressure according to the discharge flow rate of the pilot pump 3, and an engine speed detection valve device 30.
  • a pilot hydraulic pressure source 33 having a pilot relief valve 32 that is connected to the downstream side and keeps the pressure of the pilot oil passage 31 constant, and a flow control valve 26a that is connected to the pilot oil passage 31 and uses the hydraulic pressure of the pilot hydraulic pressure source 32 as a source pressure.
  • Remote control valves for generating control pilot pressures a, b, c, d, d, f, g, h, i, j, k, l, m, n, o, p for operating up to 26h
  • Operation lever devices (operation devices) 34a, 34b, 34c, 34d, 34e, 34f, 34g, and 34h are provided.
  • the engine speed detection valve device 30 includes an oil passage 30e that connects the supply oil passage 3a of the pilot pump 3 to the pilot oil passage 31, a throttle element (fixed throttle) 30f provided in the oil passage 30e, and an oil passage 30e. And a flow rate detecting valve 30a connected in parallel to the throttle element 30f and a differential pressure reducing valve 30b.
  • the input side of the flow rate detection valve 30 a is connected to the supply oil passage 3 a of the pilot pump 3, and the output side of the flow rate detection valve 30 a is connected to the pilot oil passage 31.
  • the flow rate detection valve 30a has a variable throttle 30c that increases the opening area as the passing flow rate increases, and the discharge oil of the pilot pump 3 passes through both the throttle element 30f and the variable throttle 30c of the flow rate detection valve 30a. Flow to the pilot oil passage 31 side. At this time, a differential pressure increases and decreases as the passing flow rate increases in the throttle element 30f and the variable throttle portion 30c of the flow rate detection valve 30a, and the differential pressure reducing valve 30b outputs the differential pressure as the absolute pressure Pa. To do. Since the discharge flow rate of the pilot pump 3 varies depending on the rotation speed of the engine 1, the discharge flow rate of the pilot pump 3 can be detected by detecting the differential pressure across the throttle element 30f and the variable throttle portion 30c.
  • variable throttle portion 30c increases the opening area as the passing flow rate increases (as the front-rear differential pressure increases), so that the degree of increase in the front-rear differential pressure becomes milder as the passing flow rate increases. It is configured as follows.
  • the main pump 2 is a variable displacement hydraulic pump, and includes a pump control device 35 for controlling the tilt angle (capacity) thereof.
  • the pump control device 35 includes a horsepower control tilt actuator 35a, an LS control valve 35b, and an LS control tilt actuator 35c.
  • the horsepower control tilt actuator 35a reduces the tilt angle of the main pump 2 when the discharge pressure of the main pump 2 increases, and limits the input torque of the main pump 2 so as not to exceed the preset maximum torque. This limits the horsepower consumed by the main pump 2 and prevents the engine 1 from being stopped (engine stall) due to overload.
  • the LS control valve 35b has pressure receiving portions 35d and 35e opposed to each other, and the pressure receiving portion 35d has an absolute pressure Pa (first pressure) generated by the differential pressure reducing valve 30b of the engine speed detection valve device 30 through the oil passage 40. Stipulated value) is introduced as a target differential pressure (target LS differential pressure) of load sensing control, the absolute pressure PLS generated by the differential pressure reducing valve 24 is guided to the pressure receiving part 35e, and the absolute pressure PLS is greater than the absolute pressure Pa.
  • PLS target LS differential pressure
  • the pressure of the pilot hydraulic source 33 is guided to the LS control tilt actuator 35c to reduce the tilt angle of the main pump 2, and when the absolute pressure PLS becomes lower than the absolute pressure Pa (PLS ⁇ Pa).
  • the LS control tilting actuator 35c is connected to the tank T to increase the tilting angle of the main pump 2, so that the discharge pressure Pd of the main pump 2 is higher by the absolute pressure Pa (target differential pressure) than the maximum load pressure PLmax. Inclination amount of main pump 2 (displacement volume) Control to.
  • the control valve 35b and the LS control tilting actuator 35c are configured so that the discharge pressure Pd of the main pump 2 is higher than the maximum load pressure PLmax of the plurality of actuators 5, 6, 7, 8, 9, 10, 11, 12, and the load sensing control target.
  • a load sensing type pump control means for controlling the tilting of the main pump 2 so as to increase by the differential pressure is configured.
  • the absolute pressure Pa is a value that changes according to the engine speed
  • the absolute pressure Pa is used as the target differential pressure of the load sensing control
  • the target compensated differential pressure of the pressure compensation valves 27a to 27h is used for the main pump 2.
  • the actuator speed can be controlled in accordance with the engine speed.
  • the variable throttle portion 30c of the flow rate detection valve 30a of the engine speed detection valve device 30 is configured so that the degree of increase in the front-rear differential pressure becomes moderate as the passing flow rate increases.
  • the set pressure of the spring 25a of the unload valve 25 is the absolute pressure Pa (target difference of load sensing control) generated by the differential pressure reducing valve 30b of the engine speed detecting valve device 30 when the engine 1 is at the rated maximum speed. Pressure).
  • the hydraulic drive device shown in FIGS. 1A and 2B rotates the left travel motor 6 when the operation levers of the operation lever devices 34b and 34d for travel are operated with a full stroke in the right direction in the drawing with the intention of a straight traveling operation.
  • the flow control valve 26b is provided on the side where the valve-opening side pressure receiving portion 28b for setting the target differential pressure of the pressure compensation valve 27b for left travel is located.
  • a flow rate correction device 39 is provided for limiting the maximum flow rate output from the flow rate to a preset flow rate.
  • the flow rate correction device 39 is a target compensation differential pressure adjustment device that corrects the target compensation differential pressure of the traveling pressure compensation valve 27b by the biasing force of the target compensation differential pressure adjustment spring 36b.
  • the target compensation differential pressure of the left travel pressure compensation valve 27b is adjusted using the pressure adjusting device to correct the maximum flow rate of the travel flow control valve 26b.
  • FIG. 2A is a cross-sectional view of normal pressure compensation valves 27b and 27d for right and left travel without the flow rate correction device 39
  • FIG. 2B is a pressure compensation valve 27b and 27d for left and right travel with the flow rate correction device 39.
  • FIG. 2A and FIG. 2B the symbols for the right traveling motor 8, the right traveling flow control valve 26d, and the right traveling pressure compensation valve 27d are shown in parentheses.
  • the left and right traveling pressure compensation valves 27b and 27d are inserted into the pressure compensation valve portion of the housing 38 of the traveling valve sections 14 and 16 of the control valve 4 so as to be slidable in the axial direction.
  • the pressure receiving chamber 64b where the valve-opening pressure receiving portion 63b for feedback is located is closed by a plug 65b.
  • the target compensation differential pressure adjusting spring 36b that biases in the valve opening direction is disposed in the pressure receiving chamber 64b.
  • the target compensation differential pressure adjusting springs 36b and 36d are for preferentially supplying pressure oil to the traveling motors 6 and 8 during the traveling combined operation to stabilize traveling.
  • the target compensation differential pressure adjusting springs 36b and 36d are used to correct the target compensation differential pressure of the pressure compensation valve 27b in the flow rate correction device 39.
  • Some types of pressure compensation valves do not include the target compensation differential pressure adjustment springs 36b and 36d. In that case, a dedicated target compensation differential pressure adjustment spring may be newly incorporated.
  • the flow rate correction device 39 (target compensation differential pressure adjustment device) is configured by a plug 37 with an adjustment mechanism that adjusts the biasing force of the target compensation differential pressure adjustment spring 36b.
  • the plug 37 with adjusting mechanism is an adjusting device for adjusting the maximum flow rate of the flow control valve 26b, and includes a plug body 37a, an adjustment pin 37b incorporated in the plug body 37a, and a lock nut 37c. .
  • the screw size of the plug body 37a is the same as that of the plug 65b.
  • the adjustment pin 37b protrudes into the male threaded portion 37e that engages with the plug main body 37a, the pressure receiving chamber 64d, the spring receiver 37f that engages with the target compensation differential pressure adjusting spring 36b, and the opposite side of the pressure receiving chamber 64d.
  • a tool operation unit 37g having a hexagonal cross section is provided.
  • a tool such as a box wrench is attached to the tool operation unit 37g and rotated to change the axial position of the adjustment pin 37b, and the target compensation differential pressure adjustment spring 36b By adjusting the urging force, the target compensation differential pressure of the pressure compensation valve 27b is adjusted. After the target compensation differential pressure is adjusted, the position of the adjustment pin 37b is fixed by tightening the lock nut 37c, and the adjustment of the target compensation differential pressure is completed.
  • a normal pressure compensation valve 27b not equipped with the flow rate correction device 39 shown in FIG. 2A is attached as the pressure compensation valve 27b for left running. Yes.
  • the flow control valve 26b is supplied from the pressure oil of the pilot hydraulic source 33.
  • 26d, control pilot pressures d, h for operating are generated and guided to the flow control valves 26b, 26d.
  • the pressure oil discharged from the main pump 2 is guided to the left and right traveling motors 6 and 8 via the pressure compensation valves 27b and 27d and the flow rate control valves 26b and 26d.
  • the actuator load pressures of the left and right traveling motors 6 and 8 guided to the valve-opening pressure receiving portions 28b and 28d of the left and right traveling pressure compensating valves 27b and 27d are equal, but in rare cases, the weight balance of the fuselage and the traveling motor are rare. Due to the manufacturing error, the left and right traveling motors 6 and 8 may be different in speed (rotational speed difference), and traveling meandering may occur.
  • the plug 65b provided on the valve-opening side receiving portion 28b (or 28d) side of the traveling pressure compensation valve 27b (or 27d) having the lower rotational speed is removed, and as shown in FIG. 37, the adjusting pin 37b of the plug 37 with adjusting mechanism is operated as described above and adjusted in the right direction in the figure, and the urging force of the target compensating differential pressure adjusting spring 36b is increased, whereby the pressure compensating valve 27b (or 27d) is adjusted.
  • straight running correction of the traveling meander can be performed.
  • straight traveling correction of traveling meandering can be easily performed without replacing a large device such as a traveling motor. Further, it is possible to easily perform straight-line correction of traveling meandering without adding any special change to the main circuit ⁇ Second Embodiment> 4A and 4B show a hydraulic drive device for a working machine according to a second embodiment of the present invention.
  • the first embodiment is adjusted by providing a flow rate correction device 39 (target compensation differential pressure adjustment device) when there is a problem at the time of checking before shipment, whereas before the shipment.
  • flow rate correction devices 39A and 39B target compensation differential pressure adjustment
  • the flow rate correction devices 39A and 39B are configured by plugs 37A and 37B with adjustment mechanisms that adjust the urging forces of the target compensation differential pressure adjustment springs 36b and 36d, respectively.
  • the plugs 37A and 37B with adjustment mechanism are configured in the same manner as the plug 37 with adjustment mechanism in the flow rate correction device 39 (target compensation differential pressure adjustment device) of the first embodiment. .
  • the adjustment pins 37b and 37b (see FIG. 2B) of the plugs 37A and 37B with adjustment mechanism are fixed at the initial positions, and the biasing force of the target compensation differential pressure adjustment spring 36b is set to a specified value.
  • the flow control valves 26b and 26d are operated from the pressure oil of the pilot hydraulic source 33. Control pilot pressures d and h are generated and guided to the flow control valves 26b and 26d.
  • the pressure oil discharged from the main pump 2 is guided to the left and right traveling motors 6 and 8 via the pressure compensation valves 27b and 27d and the flow rate control valves 26b and 26d.
  • the actuator load pressures of the left and right traveling motors 6 and 8 guided to the valve-opening pressure receiving portions 28b and 28d of the left and right traveling pressure compensating valves 27b and 27d are equal, but in rare cases, the weight balance of the fuselage and the traveling motor are rare. Due to the manufacturing error, the left and right traveling motors 6 and 8 may be different in speed (rotational speed difference), and traveling meandering may occur.
  • the adjustment pin 37b of the plug 37A (or 37B) with an adjustment mechanism attached to the traveling pressure compensation valve 27b (or 27d) having the lower rotational speed is operated as described above to adjust to the right in the figure, and the target compensation difference
  • the opening of the pressure compensation valve 27b (or 27d) is corrected in the opening direction, and the flow rate to the left traveling motor 6 (or 8) is adjusted to the right traveling motor 8 ( Or adjust to be equal to 6).
  • straight running correction of the traveling meander can be performed.
  • the flow rate correction devices 39A and 39B configured by the plugs 37A and 37B with adjustment mechanisms for adjusting the urging forces of the target compensation differential pressure adjustment springs 36b and 36d are preliminarily applied to the pressure compensation valves 27b and 27d for left and right traveling.
  • the flow rate correction devices 39A and 39B are attached to both the pressure compensating valves 27b and 27d for the left and right traveling, it is possible to widen the straight traveling correction range of the traveling meander.
  • the present embodiment can provide the same effects as those of the first embodiment. Further, according to the present embodiment, it is not necessary to perform the work of attaching the flow rate correction device at the time of adjustment, so that the straight traveling correction of the traveling meander can be performed quickly. In addition, since the flow rate correction devices 39A and 39B are attached to both the pressure compensating valves 27b and 27d for the left and right traveling, it is possible to widen the straight traveling correction range of the traveling meander.
  • ⁇ Third Embodiment> 5A and 5B show a hydraulic drive device for a working machine according to a third embodiment of the present invention.
  • the flow compensation device 39 (target compensation differential pressure adjustment device) is configured by the plug 37 with an adjustment mechanism that adjusts the urging force of the eye compensation differential pressure adjustment spring 36b or 36d in the first embodiment.
  • the flow rate correction device 69 (target compensation differential pressure adjusting device) reduces the pressure of the pilot hydraulic power source 33 to the target compensation differential pressure of the left travel pressure compensation valve 27b (or travel pressure compensation valve 27d).
  • the pressure reducing valve unit 140 including the pressure reducing valve 40 to be corrected is configured.
  • the pressure reducing valve 40 includes an adjustment device (adjustment mechanism 73) for adjusting the maximum flow rate of the flow control valve 26b for left travel (or the flow control valve 26d for right travel).
  • the hydraulic drive device shown in FIGS. 5A and 5B has a left travel motor 6 when the operation levers of the operation lever devices 34b and 34d for travel are operated in the right direction in the figure with a full stroke in order to perform a straight traveling operation.
  • the right traveling motor 8 is lower than the rotational speed of the right traveling motor 8, and the left traveling is on the side where the valve-opening pressure receiving portion 28b for setting the target differential pressure of the pressure compensating valve 27b for left traveling is located.
  • a pressure reducing valve unit 140 having a pressure reducing valve 40 for correcting the target compensation differential pressure of the pressure compensating valve 27b for use by reducing the pressure of the pilot hydraulic pressure source 33 is connected.
  • the pressure reducing valve unit 140 has a pipe 71 in which the pressure reducing valve 40 is arranged, and the upstream side of the pipe 71 is connected to an oil passage 39 that guides the pressure oil from the pilot hydraulic power source 33 to the differential pressure reducing valve 24, and the downstream side. Is connected to a correction pressure receiving portion 66b additionally provided on the side where the valve opening side pressure receiving portion 28b for setting the target differential pressure of the pressure compensation valve 27b is located.
  • the pressure reducing valve 40 has an adjusting mechanism 73 that adjusts the urging force of the spring 72 that sets the pressure reducing valve output pressure as an adjusting device for adjusting the maximum flow rate of the flow control valve 26b.
  • the adjustment mechanism 73 includes an adjustment pin and a lock nut (not shown) incorporated in the pressure reducing valve 40, like the plug 37 with an adjustment mechanism shown in FIG. 2B.
  • the pressure reducing valve 40 generates pressure oil having a pressure according to the setting of the spring 72 based on the pressure oil from the pilot hydraulic power source 33, and guides this pressure oil to the corrected pressure receiving portion 66b of the travel pressure compensating valve 27b. Adjust the target compensation differential pressure when driving.
  • Pilot pressures d and h are generated and guided to the flow control valves 26b and 26d.
  • the pressure oil discharged from the main pump 2 is guided to the left and right traveling motors 6 and 8 via the pressure compensation valves 27b and 27d and the flow rate control valves 26b and 26d.
  • the actuator load pressures of the left and right traveling motors 6 and 8 guided to the valve-opening pressure receiving portions 28b and 28d of the left and right traveling pressure compensating valves 27b and 27d are equal, but in rare cases, the weight balance of the fuselage and the traveling motor are rare. Due to the manufacturing error, the left and right traveling motors 6 and 8 may be different in speed (rotational speed difference), and traveling meandering may occur.
  • the valve-opening side pressure receiving portion 28b (or 28d) of the running pressure compensation valve 27b (or 27d) having the lower rotation speed is used.
  • the pressure reducing valve unit 140 is connected to the side where is located, and the pressure oil from the pilot oil passage 39 is reduced by the pressure reducing valve 40 and guided to the corrected pressure receiving portion 66b (or 66d).
  • ⁇ Fourth Embodiment> 6A and 6B show a hydraulic drive device for a working machine according to a fourth embodiment of the present invention.
  • the third embodiment is adjusted by connecting a pressure reducing valve unit 140 which is a flow rate correction device 69 (target compensation differential pressure adjustment device) when there is a problem at the time of check before shipment.
  • a pressure reducing valve unit 140 which is a flow rate correction device 69 (target compensation differential pressure adjustment device) when there is a problem at the time of check before shipment.
  • the flow rate correction device 69A is provided in the valve housings on the valve-opening side pressure receiving portions 28b, 28d of both the left and right traveling pressure compensation valves 27b, 27d.
  • 69B target compensation differential pressure adjusting device
  • the configuration of the pressure reducing valve units 140A and 140B is the same as that of the pressure reducing valve unit 140 of the third embodiment, and has pressure reducing valves 40b and 40d and pipes 71b and 71d in which the pressure reducing valves 40b and 40d are respectively arranged.
  • the upstream side of 71b, 71d is connected to an oil passage 39 that guides the pressure oil from the pilot hydraulic source 33 to the differential pressure reducing valve 24, and the downstream side is a valve-opening side pressure for setting the target differential pressure of the pressure compensating valves 27b, 27d.
  • the pressure receiving portions 66b and 66d are additionally provided on the side where the portions 28b and 28d are located.
  • the pressure reducing valves 40b and 40d are adjusting devices 73b and 73d for adjusting the urging forces of the springs 72b and 72d for setting the pressure reducing valve output pressure as adjusting devices for adjusting the maximum flow rates of the flow control valves 26b and 26d, respectively. Have.
  • the springs 72b and 72d of the pressure reducing valves 40b and 40d are set to zero, and the output pressure of the pressure reducing valves 40b and 40d is set as the tank pressure.
  • the flow control valves 26b and 26d are operated from the pressure oil of the pilot hydraulic source 33. Control pilot pressures d and h are generated and guided to the flow control valves 26b and 26d.
  • the pressure oil discharged from the main pump 2 is guided to the left and right traveling motors 6 and 8 via the pressure compensation valves 27b and 27d and the flow rate control valves 26b and 26d.
  • the actuator load pressures of the left and right traveling motors 6 and 8 guided to the valve-opening pressure receiving portions 28b and 28d of the left and right traveling pressure compensating valves 27b and 27d are equal, but in rare cases, the weight balance of the fuselage and the traveling motor are rare. Due to the manufacturing error, the left and right traveling motors 6 and 8 may be different in speed (rotational speed difference), and traveling meandering may occur.
  • the valve-opening side pressure receiving portion 28b (or 28d) of the running pressure compensation valve 27b (or 27d) having the lower rotation speed is used.
  • the adjustment pin of the adjustment mechanism 73b (or 73d) of the pressure reducing valve 40b (or 40d) of the pressure reducing valve unit 140A (or 140B) connected to the side where is located the biasing force of the spring 72b (or 72d) is increased.
  • the output pressure is increased to correct the opening of the pressure compensation valve 27b (or 27d) in the opening direction so that the flow rate to the left traveling motor 6 (or 8) becomes equal to that of the right traveling motor 8 (or 6). Adjust to.
  • straight running correction of the traveling meander can be performed.
  • the pressure reducing valve units 140A and 140B are attached in advance to both the left and right pressure compensating valves 27b and 27d, so that it is not necessary to perform additional work for installing the pressure reducing valve unit when meandering. It is possible to perform straight running correction of traveling meandering. Moreover, since pressure reducing valve units 140A and 140B (flow rate correction device or target compensation differential pressure adjusting device) are attached to both pressure compensation valves 27b and 27d for left and right traveling, the range of straight traveling correction of traveling meandering is widened. can do.
  • the present embodiment can provide the same effects as those of the first embodiment. Further, according to the present embodiment, it is not necessary to perform the work of attaching the flow rate correction device at the time of adjustment, so that the straight traveling correction of the traveling meander can be performed quickly. Moreover, since pressure reducing valve units 140A and 140B (flow rate correction device or target compensation differential pressure adjusting device) are attached to both pressure compensation valves 27b and 27d for left and right traveling, the range of straight traveling correction of traveling meandering is widened. can do.
  • ⁇ Fifth Embodiment> 7A and 7B show a hydraulic drive device for a working machine according to a fifth embodiment of the present invention.
  • the flow rate correction devices 39 and 69 are configured by target compensation differential pressure adjustment devices in the first to fourth embodiments, whereas the flow rate correction device 79 is replaced with a travel operation lever device 34b (
  • the pressure control valve unit 142 includes a pressure control valve 42 that is disposed between the remote control valve 34d) and the flow control valve 26b (or 26d) and reduces the control pilot pressure of the remote control valve.
  • the pressure control valve 42 includes an adjustment device (adjustment mechanism 83) for adjusting the maximum flow rate of the left flow control valve 26b (or the right flow control valve 26d).
  • the hydraulic drive device shown in FIGS. 7A and 7B has the left travel motor 6 when the operation levers of the operation lever devices 34b and 34d for travel are operated with full strokes in the right direction in the drawing with the intention of straight traveling operation. Is higher than the rotational speed of the right travel motor 8, and the forward control pilot pressure d is flowed out of the control pilot pressure cd generated by the remote control valve of the control lever device 34b for left travel.
  • a pressure control valve unit 142 having a pressure control valve 42 for reducing the forward control pilot pressure d is connected to a pipe leading to the control valve 26b.
  • the pressure control valve unit 142 has a pipe 81 in which the pressure control valve 42 is arranged, and the upstream side of the pipe 81 is connected to a remote control valve of the left travel operation lever device 34b that outputs a forward control pilot pressure d.
  • the downstream side is connected to the tank line.
  • the pressure control valve 42 is a variable relief valve, and has an adjustment mechanism 83 that adjusts the biasing force of the spring 82 that sets the relief pressure as an adjustment device for adjusting the maximum flow rate of the flow control valve 26b.
  • the adjustment mechanism 83 includes an adjustment pin and a lock nut (not shown) incorporated in the pressure control valve 42, like the plug 37 with an adjustment mechanism shown in FIG. 2B.
  • the pressure control valve 42 limits the maximum pressure of the forward control pilot pressure d generated by the remote control valve of the left travel operation lever device 34b to a pressure corresponding to the setting of the spring 82, and the stroke of the flow control valve 26b. Regulate and control flow rate.
  • Pilot pressures d and h are generated and guided to the flow control valves 26b and 26d.
  • the pressure oil discharged from the main pump 2 is guided to the left and right traveling motors 6 and 8 via the pressure compensation valves 27b and 27d and the flow rate control valves 26b and 26d.
  • the actuator load pressures of the left and right traveling motors 6 and 8 guided to the valve-opening pressure receiving portions 28b and 28d of the left and right traveling pressure compensating valves 27b and 27d are equal, but in rare cases, the weight balance of the fuselage and the traveling motor are rare. Due to the manufacturing error, the left and right traveling motors 6 and 8 may be different in speed (rotational speed difference), and traveling meandering may occur.
  • the control pilot pressure d (or h) for operating the flow control valve having the higher rotation speed is set to the flow control valve 26b (or The pressure control valve unit 142 is connected between the pipe line leading to 26d) and the tank line. Then, the control pin pressure d (or h) is reduced by operating the adjustment pin of the adjustment mechanism 83 of the pressure control valve 42 to weaken the biasing force of the spring 82, and the stroke of the flow control valve 26b (or 26d) is reduced.
  • the straight traveling correction of the traveling meander can be performed.
  • ⁇ Sixth Embodiment> 8A and 8B show a hydraulic drive device for a working machine according to a sixth embodiment of the present invention.
  • the flow rate correcting device 79 is disposed between the remote control valve of the operating lever device 34b (or 34d) for travel and the flow control valve 26b (or 26d), and the remote control valve
  • the flow rate correction device 89 is connected to the remote control valve of the operating lever device 34b (or 34d) for travel and the flow rate control.
  • the pressure reducing valve unit 143 is disposed between the valves 26b (or 26d) and includes a pressure reducing valve 43 for reducing the control pilot pressure of the remote control valve.
  • the pressure reducing valve 43 includes an adjustment device (adjustment mechanism 93) for adjusting the maximum flow rate of the flow control valve 26b for left travel (or the flow control valve 26d for right travel).
  • the hydraulic drive device shown in FIGS. 8A and 8B has a left travel motor 6 when the operation levers of the operation lever devices 34b and 34d for travel are operated with a full stroke in the right direction in the drawing with the intention of a straight traveling operation. Is higher than the rotational speed of the right travel motor 8, and the forward control pilot pressure d is flowed out of the control pilot pressure cd generated by the remote control valve of the control lever device 34b for left travel.
  • a pressure reducing valve unit 143 provided with a pressure reducing valve 43 for reducing the forward control pilot pressure d is connected to a conduit leading to the control valve 26b.
  • the pressure reducing valve unit 143 has a pipe 91 in which the pressure reducing valve 43 is arranged, and the upstream side of the pipe 91 is connected to a remote control valve of a left traveling operation lever device 34b that outputs a forward control pilot pressure d.
  • the downstream side is connected to a conduit that guides the forward control pilot pressure d to the flow control valve 26b.
  • the pressure reducing valve 43 has an adjusting mechanism 93 that adjusts the urging force of the spring 92 that sets the pressure reducing valve output pressure as an adjusting device for adjusting the maximum flow rate of the flow control valve 26b for left travel.
  • the adjustment mechanism 93 includes an adjustment pin and a lock nut (not shown) incorporated in the pressure reducing valve 43, like the plug 37 with an adjustment mechanism shown in FIG. 2B.
  • the pressure reducing valve 43 reduces the maximum pressure of the forward control pilot pressure d generated by the remote control valve of the left travel operation lever device 34b to a pressure corresponding to the setting of the spring 92, and regulates the stroke of the flow control valve 26b. The flow rate is controlled.
  • Pilot pressures d and h are generated and guided to the flow control valves 26b and 26d.
  • the pressure oil discharged from the main pump 2 is guided to the left and right traveling motors 6 and 8 via the pressure compensation valves 27b and 27d and the flow rate control valves 26b and 26d.
  • the actuator load pressures of the left and right traveling motors 6 and 8 guided to the valve-opening pressure receiving portions 28b and 28d of the left and right traveling pressure compensating valves 27b and 27d are equal, but in rare cases, the weight balance of the fuselage and the traveling motor are rare. Due to the manufacturing error, the left and right traveling motors 6 and 8 may be different in speed (rotational speed difference), and traveling meandering may occur.
  • the control pilot pressure d (or h) for operating the flow control valve having the higher rotation speed is set to the flow control valve 26b (or 26 d) is connected to the pressure reducing valve unit 143. Then, by operating the adjustment pin of the adjustment mechanism 93 of the pressure reducing valve 43 to weaken the biasing force of the spring 92, the control pilot pressure d (or h) is reduced, and the stroke of the flow control valve 26b (or 26d) is regulated. Then, by adjusting the output flow rate of the flow rate control valve 26b (or 26d), straight running correction of the traveling meander can be performed.
  • FIG. 9 shows a hydraulic drive device for a working machine according to a seventh embodiment of the present invention.
  • the hydraulic drive apparatus includes an engine 44, two main pumps 45, 46, 47 driven by the engine 44, and the engine 44 in conjunction with the main pumps 45, 46, 47.
  • the working machine provided with the crawler type traveling device is, for example, a hydraulic mini excavator
  • the actuator 5 is a swing motor of the hydraulic excavator
  • the actuators 6 and 8 are left and right traveling motors
  • the actuator 7 is a blade.
  • the actuator 9 is a swing cylinder
  • the actuators 10, 11, and 12 are a boom cylinder, an arm cylinder, and a bucket cylinder, respectively.
  • the control valve 49 is connected to the pressure oil supply oil passages 45a, 46a, 47a of the main pumps 45, 46, 47, and controls the direction and flow rate of the pressure oil supplied from the main pumps 45, 46, 47 to each actuator.
  • a plurality of flow control valves are provided.
  • the flow rate control valves 50a to 50h control the direction and flow rate of the pressure oil supplied from the main pumps 45, 46, and 47 to the actuators 5 to 12, respectively.
  • the pressure oil discharged from the discharge ports of the two hydraulic pumps 45 and 46 is meter-in channels (inflow channels) 50b1 or 50b2 of the flow control valves 50b and 50d;
  • the return oil from the traveling motors 6 and 8 is guided to the respective traveling motors 6 and 8 through 50d1 or 50d2, and the meter-out flow paths (outflow side flow paths) 50b3, 50b4 or 50d3 of the flow control valves 50b and 50d. It is returned to tank 0 via 50d4.
  • the hydraulic pumps 45 and 46 are variable displacement types, and the displacement (displacement volume) is changed and the discharge flow rate is increased or decreased by controlling the tilt position.
  • a horsepower control actuator 51 is usually provided, and the tilt position is controlled so as to reduce the flow rate accordingly when the discharge pressure of the hydraulic pumps 45 and 46 rises.
  • the flow control valves 50b and 50d are of an open center type (center bypass type) and have center bypass flow paths 50b5 and 50d5 connected to the center bypass lines 52 and 53.
  • the center bypass flow paths 50b5, 50d5 are fully opened
  • the meter-in flow paths 50b1, 50b2; 50d1, 50d2 are fully closed
  • the hydraulic pumps 45, 46 Is discharged from the hydraulic oil supply passages 45a and 46a connected to the discharge ports of the hydraulic pumps 45 and 46, the center bypass lines 52 and 53, and the center bypass passages 50b5 and 50d5 to the tank via the tank lines 54 and 55. Returned.
  • the center bypass passages 50b5 and 50d5 reduce the opening area according to the amount of operation, and the maximum switching position (full) of the flow control valves 50b and 50d. Fully closed immediately before the stroke position.
  • the meter-in flow paths 50b1, 50b2; 50d1, 50d2 of the flow control valves 50b, 50d increase the opening area according to the operation amount of the flow control valves 50b, 50d, and the maximum switching position (full stroke) of the flow control valves 50b, 50d. Fully open immediately before (position).
  • the pressure oil supply oil passages 45a and 46a are provided with main relief valves (not shown) as safety means for regulating the maximum discharge pressure of the hydraulic pumps 45 and 46.
  • the flow control valves 50b and 50d are hydraulic switching valves having hydraulic pilot portions 50b6, 50b7 and 50d6, 50d7, which are operated by the control pilot pressure generated by the remote control valve of the operating lever devices 34b, 34d for traveling.
  • the discharge pressure of the pilot pump 48 is guided as a primary pressure to the remote control valves of the operation lever devices 34b and 34d.
  • the hydraulic pumps 45 and 46 and the pilot pump 48 are driven by the engine 44.
  • the discharge pressure of the pilot pump 48 is kept at a certain pressure by the pilot relief valve 56.
  • This embodiment includes the same flow rate correction device 79 (pressure control valve unit 142) as that of the fifth embodiment.
  • the pressure control valve unit 142 has a pipe 81 in which the pressure control valve 42 is arranged, and the upstream side of the pipe 81 is connected to a remote control valve of the left travel operation lever device 34b that outputs a forward control pilot pressure d.
  • the downstream side is connected to the tank line.
  • the pressure control valve 42 is a variable relief valve, and has an adjustment mechanism 83 that adjusts the urging force of the spring 82 that sets the relief pressure, as an adjustment device for adjusting the maximum flow rate of the flow control valve 50b.
  • the adjustment mechanism 83 includes an adjustment pin and a lock nut (not shown) incorporated in the pressure control valve 42, like the plug 37 with an adjustment mechanism shown in FIG. 2B.
  • the pressure control valve 42 limits the maximum pressure of the forward control pilot pressure d generated by the remote control valve of the left travel operation lever device 34b to a pressure corresponding to the setting of the spring 82, and the stroke of the flow control valve 50b. Regulate and control flow rate.
  • the flow rates guided to the left and right traveling motors 6 and 8 at this time are the same, but in rare cases they are not equal due to manufacturing errors of the main pumps 45 and 46 and the traveling motor, and the speed difference between the left and right traveling motors 6 and 8 (rotational speed difference). ) May occur and traveling meandering may occur.
  • the control pilot pressure d (or h) for operating the flow control valve having the higher rotation speed is set to the flow control valve 50b (or The pressure control valve unit 142 is connected between the pipeline leading to 50d) and the tank line. Then, the control pin pressure d (or h) is reduced by operating the adjustment pin of the adjustment mechanism 83 of the pressure control valve 42 to weaken the biasing force of the spring 82, and the stroke of the flow control valve 50b (or 50d) is reduced.
  • straight running correction of the traveling meander can be performed.
  • FIG. 10 shows a hydraulic drive device for a working machine according to an eighth embodiment of the present invention.
  • This embodiment includes the same flow rate correction device 89 (pressure reducing valve unit 143) as that of the sixth embodiment.
  • the hydraulic drive device shown in FIG. 10 rotates the left traveling motor 6 when the operating levers of the operating lever devices 34b and 34d for traveling are operated in the full right direction in the drawing with the intention of straight traveling operation. Is higher than the rotational speed of the right travel motor 8, and the forward control pilot pressure d is selected from the control pilot pressure cd generated by the remote control valve of the left travel operation lever device 34b.
  • a pressure reducing valve unit 143 having a pressure reducing valve 43 for reducing the forward control pilot pressure d is connected to the pipe leading to the pipe.
  • the pressure reducing valve unit 143 has a pipe 91 in which the pressure reducing valve 43 is arranged, and the upstream side of the pipe 91 is connected to a remote control valve of a left traveling operation lever device 34b that outputs a forward control pilot pressure d.
  • the downstream side is connected to a conduit that guides the forward control pilot pressure d to the flow control valve 26b.
  • the pressure reducing valve 43 has an adjusting mechanism 93 that adjusts the urging force of the spring 92 that sets the pressure reducing valve output pressure as an adjusting device for adjusting the maximum flow rate of the flow control valve 50b for left travel.
  • the adjustment mechanism 93 includes an adjustment pin and a lock nut (not shown) incorporated in the pressure reducing valve 43, like the plug 37 with an adjustment mechanism shown in FIG. 2B.
  • the pressure reducing valve 43 reduces the maximum pressure of the forward control pilot pressure d generated by the remote control valve of the left travel operation lever device 34b to a pressure corresponding to the setting of the spring 92, and regulates the stroke of the flow control valve 50b. The flow rate is controlled.
  • the flow rates guided to the left and right traveling motors 6 and 8 at this time are the same, but in rare cases they are not equal due to manufacturing errors of the main pumps 45 and 46 and the traveling motor, and the speed difference between the left and right traveling motors 6 and 8 (rotational speed difference). ) May occur and traveling meandering may occur.
  • the control pilot pressure d (or h) for operating the flow control valve having the higher rotation speed is set to the flow control valve 50b (or 50 d) is connected to the pressure reducing valve unit 143. Then, the control pin pressure d (or h) is reduced by operating the adjustment pin of the adjustment mechanism 93 of the pressure reducing valve 43 to weaken the biasing force of the spring 92, and the stroke of the flow control valve 50b (or 50d) is regulated. Then, by adjusting the output flow rate of the flow rate control valve 50b (or 50d), straight running correction of the traveling meander can be performed.
  • the present embodiment can provide the same effects as those of the first embodiment. ⁇ Others>
  • some embodiments when the present invention is applied to a hydraulic excavator have been described.
  • the present invention is not limited to these embodiments.
  • a description will be given of the case where the flow rate correction device is adjusted by attaching the flow rate correction device when it is found that there is a problem of traveling meandering when checking the flow rate correction device before product shipment.
  • a flow rate correction device is attached in advance to the hydraulic drive device of the work implement, and then adjustment is performed when it is found that there is a problem of traveling meandering. May be.
  • the present invention can be applied to work machines other than the hydraulic excavator (for example, a hydraulic crane, a bulldozer, etc.) as long as the work machine includes a crawler type traveling device. Can be applied to achieve the same effect.

Abstract

 左右走行モータに少なくとも1の油圧ポンプから圧油を供給して走行を行うもので、走行モータ等の大物装置を交換しなくても、かつメイン回路に特別な変更を加えることなく、容易に走行蛇行の直進補正を行うことができる履帯式走行装置を備えた作業機の油圧駆動装置を提供する。 工場出荷時に走行試験を行い、蛇行した場合には、回転数の低い方の走行用圧力補償弁27b(または27d)の開弁側受庄部28b(または28d)側に設けられていたプラグ65bを取り外し、調整機構付プラグ37を取付け、調整機構付プラグ37の調整ピン37bを操作し、目標補償差圧調整バネ36bの付勢力を強めることで、圧力補償弁27b(または27d)の開口を開き方向に補正し、左走行モータ6(または8)への流量を右走行モータ8(または6)と等しくなるように調整する。

Description

履帯式走行装置を備えた作業機の油圧駆動装置
 本発明は、履帯式走行装置を備えた作業機の油圧駆動装置に係わり、特に、走行時の走行直進性の確保を容易にした作業機の油圧駆動装置に関する。
 従来の履帯式走行装置を備えた作業機、例えば油圧ショベルのアクチュエータの油圧駆動装置には、油圧ポンプ(メインポンプ)の吐出圧が複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう油圧ポンプの吐出流量を制御するものがあり、このような油圧システムはロードセンシングシステムと呼ばれている。このロードセンシングシステムでは、複数の流量制御弁の前後差圧をそれぞれ圧力補償弁により所定差圧に保持し、複数のアクチュエータを同時に駆動する複合操作時にそれぞれのアクチュエータの負荷圧の大小に係わらず各流量制御弁の開口面積に応じた比率で圧油を供給できるようにしている。
 このようなロードセンシングシステムは、例えば特許文献1に記載されている。特許文献1記載のロードセンシングシステムでは、油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧(以下差圧PLSという)を絶対圧として出力する差圧減圧弁を設け、この差圧減圧弁の出力圧を複数の圧力補償弁に導き、圧力補償弁のそれぞれの目標補償差圧を差圧PLSにより設定して、流量制御弁の前後差圧をその差圧PLSに保持するよう制御することが行われており、これにより上述のように複数のアクチュエータを同時に駆動する複合動作時に、油庄ポンプの吐出流量が不足するサチュレーション状態になったとき、サチュレーションの程度に応じて差圧PLSが低下し、圧力補償弁の目標補償差圧すなわち流量制御弁の前後差圧が小さくなるため、油圧ポンプの吐出流量をそれぞれのアクチュエータが要求する流量の比に再分配することができる。
 また、履帯式走行装置を備えた作業機の油圧駆動装置においては、オープンセンタタイプの方向切換弁(流量制御弁)を備えたオープン回路システムと呼ばれる油圧システムも広く用いられている。このオープン回路システムにおいては、例えば特許文献2に記載のように、通常、左右走行モータに2つの油圧ポンプからそれぞれ独立して圧油を供給し走行を行わせる構成となっている。また、特許文献2に記載の油圧駆動装置においては、2つの油圧ポンプから走行用の2つの方向切換弁にそれぞれ圧油を供給する2つの圧油供給油路を蛇行補正回路を介して接続し、左右の走行操作レバーを前進及び後進のいずれか一方の同方向にフル入力操作したときは蛇行補正回路に設けられた弁装置を遮断位置から絞り連通位置に切り換え、それ以外のときは弁装置を遮断位置に保持し、これにより走行直進操作以外の場合の操作性悪化を防止し、なおかつ走行直進操作をした場合には走行蛇行の直進補正を可能としている。
特開2001-193705号公報 特開2006-82767号公報
 履帯式走行装置を備えた作業機、例えば、油圧ミニショベルの油圧駆動装置においては、特許文献1に記載されたロードセンシングシステム或いは特許文献2に記載されたオープン回路システムのいずれの油圧システムにおいても、エンジン回転数とポンプ吐出流量によって決まる定格の走行速度は流量制御弁の開口面積と走行モータの容量により決定されている。左右の流量制御弁の及び左右走行モータの仕様は同仕様に設定されている。この場合、実際の左右の走行モータの速度差(回転数差)は、流量制御弁の開口面積と走行モータの容積効率に影響される。実際には製品の加工誤差や流量制御弁の開口面積や走行モータの製造誤差などは考慮されているが、まれに製品の加工誤差や流量制御弁の開口面積や走行モータの製造誤差により、直進走行操作時に左右の走行モータに速度差が発生することがある。左右の走行モータに速度差が発生すると車体は走行蛇行し、意図する直進走行ができなくなる。
 このような問題に対し、現状の対応策では、例えば工場からの出荷時に製品をチェックし、そのような不具合があった場合は走行モータを交換するなどの部品の交換で対応している。工場からの出荷後に、ユーザによる稼働中にそのような不具合が生じた場合も同様である。しかし、走行モータは大物装置であり、これの交換には過大な費用や作業量を要する。また、確実性が低かった。
 特許文献2に記載の油圧駆動装置においては、2つの圧油供給油路を蛇行補正回路を介して接続した回路構成とすることで、流量制御弁の開口面積や走行モータに製造誤差があっても、走行蛇行の直進補正を行うことができる。しかし、2つの油圧ポンプからそれぞれ圧油が供給される2つの圧油供給油路を蛇行補正回路を介して接続することは油圧駆動装置のメイン回路そのものの構成を変更することであり、既存のメイン回路をそのまま使う場合の調整には適用することができない。
 本発明の目的は、左右走行モータに少なくとも1の油圧ポンプから圧油を供給して走行を行うもので、走行モータ等の大物装置を交換しなくても、かつメイン回路に特別な変更を加えることなく、容易に走行蛇行の直進補正を行うことができる履帯式走行装置を備えた作業機の油圧駆動装置を提供することである。
 本発明は、上記課題を解決するために、エンジンと、このエンジンにより駆動される可変容量型のメインポンプと、このメインポンプから吐出された圧油により駆動される走行用の第1及び第2油圧モータを含む複数のアクチュエータと、前記メインポンプから前記複数のアクチュエータに供給される圧油の流量を制御する第1及び第2走行用流量制御弁を含む複数の流量制御弁と、前記第1及び第2走行用油圧モータの回転によってそれぞれ駆動される左右の履帯とを備えた履帯式走行装置を備えた作業機の油圧駆動装置において、前記第1及び第2走行用流量制御弁の少なくともどちらか一方の走行用流量制御弁から出力される最大流量を予め設定した流量に制限する流量補正装置を備えるものとする。
 以上のように構成した本発明における流量補正装置による走行蛇行の補正方法には、下記の2通りがある。一つは、作業機の製品出荷前のチェック時等に、走行蛇行の不具合があることが分かった時点で流量補正装置を取り付けて調整を行う場合である。他の一つは、作業機の油圧駆動装置に予め流量補正装置を取り付けておき、その後、走行蛇行の不具合があることが分かった時点で調整を行う場合である。前者の場合は、第1及び第2走行用流量制御弁のどちらの側の走行モータの回転数が高い(或いは低い)かが分かっているので、第1及び第2走行用流量制御弁のどちらか一方の側に流量補正装置を取り付ければよい。後者の場合は、流量補正装置を取り付ける時点では、走行蛇行の不具合があるかどうか分からないので、第1及び第2走行用流量制御弁の両方の側に取り付ける必要がある。
 いずれにしても、そのように流量補正装置を取り付けて、第1の油圧モータに供給される最大流量と第2油圧モータに供給される最大流量とが等しくなるように調整することで、走行蛇行の直進補正を行うことができる。これにより走行モータ等の大物装置を交換しなくても、かつメイン回路に特別な変更を加えることなく、容易に走行蛇行の直進補正を行うことができる。
 また、走行蛇行の不具合があることが分かった時点で流量補正装置を取り付けて調整を行う場合は、流量補正装置が1つで済み,経済的である。
 予め流量補正装置を取り付けておき、走行蛇行の不具合があることが分かった時点で調整を行う場合は、調整を行う時点では流量補正装置を取り付ける作業を行う必要がないため、素早く走行蛇行の直進補正を行うことができる。また、第1及び第2走行用流量制御弁の両方の側に流量補正装置が取り付けられているため、走行蛇行の直進補正の幅を広くすることができる。
 好ましくは、前記複数の流量制御弁の前後差圧をそれぞれ制御する第1及び第2走行用圧力補償弁を含む複数の圧力補償弁と、前記メインポンプの吐出圧が前記複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるようメインポンプの押しのけ容積をロードセンシング制御するポンプ制御装置とを備え、前記複数の圧力補償弁は、前記流量制御弁の前後差圧が前記メインポンプの吐出圧と前記複数のアクチュエータの最高負荷圧との差圧に保持されるようにそれぞれの流量制御弁の前後差圧を制御する履帯式走行装置を備えた作業機の油圧駆動装置において、前記流量補正装置は、前記第1及び第走行用圧力補償弁のうち前記走行用流量制御弁に対応する走行用圧力補償弁の目標補償差圧を補正する目標補償差圧調整装置であるものとする。
 このように構成した本発明においては、いわゆるロードセンシングシステムにおいて、走行用の圧力補償弁の開口を開き方向或いは閉じ方向に補正することで、第1の油圧モータに供給される最大流量と第2油圧モータに供給される最大流量とが等しくなるように調整し、走行蛇行の直進補正を行うことができる。これにより走行モータ等の大物装置を交換しなくても、かつメイン回路に特別な変更を加えることなく、容易に走行蛇行の直進補正を行うことができる。
 好ましくは、上記作業機の油圧駆動装置において、前記目標補償差圧調整装置は、前記走行用圧力補償弁の目標補償差圧を設定するバネの付勢力を調整する調整ピンを有する調整機構付プラグである。
 また、好ましくは、上記作業機の油圧駆動装置において、前記目標補償差圧調整装置は、前記走行用圧力補償弁の目標補償差圧をパイロット油圧源の圧力を減圧して補正する減圧弁を備えた減圧弁ユニットである。
 好ましくは、上記作業機の油圧駆動装置において、前記走行用流量制御弁を操作するための制御パイロット圧を生成するリモコン弁を備えた走行用操作装置を更に備え、前記流量補正装置は、前記走行用操作装置のリモコン弁と前記走行用流量制御弁の間に配置され、前記リモコン弁の制御パイロット圧を減圧する圧力制御弁を備えた圧力制御弁ユニットである。
 また、好ましくは、上記作業機の油圧駆動装置において、前記走行用流量制御弁を操作するための制御パイロット圧を生成するリモコン弁を備えた走行用操作装置を更に備え、前記流量補正装置は、前記走行用操作装置のリモコン弁と前記走行用流量制御弁の間に配置され、前記リモコン弁の制御パイロット圧を減圧する減圧弁を備えた減圧弁ユニットである。
 本発明によれば、走行モータ等の大物装置を交換しなくても、かつメイン回路に特別な変更を加えることなく、容易に走行蛇行の直進補正を行うことができる。
本発明の第1の実施形態に係わる油圧駆動装置の図示左半分を示す図である。 本発明の第1の実施形態に係わる油圧駆動装置の図示右半分を示す図である。 本発明の第1実施形態における圧力補償弁部の断面図である。 本発明の第1実施形態における圧力補償弁部の断面図である。 油圧ショベルの外観図である。 本発明の第2の実施形態に係わる油圧駆動装置の図示左半分を示す図である。 本発明の第2の実施形態に係わる油圧駆動装置の図示右半分を示す図である。 本発明の第3の実施形態に係わる油圧駆動装置の図示左半分を示す図である。 本発明の第3の実施形態に係わる油圧駆動装置の図示右半分を示す図である。 本発明の第4の実施形態に係わる油圧駆動装置の図示左半分を示す図である。 本発明の第4の実施形態に係わる油圧駆動装置の図示右半分を示す図である。 本発明の第5の実施形態に係わる油圧駆動装置の図示左半分を示す図である。 本発明の第5の実施形態に係わる油圧駆動装置の図示右半分を示す図である。 本発明の第6の実施形態に係わる油圧駆動装置の図示左半分を示す図である。 本発明の第6の実施形態に係わる油圧駆動装置の図示右半分を示す図である。 本発明の第7の実施形態に係わる油圧駆動装置を示す図である。 本発明の第8の実施形態に係わる油圧駆動装置を示す図である。
<油圧ショベル>
 図3に油圧ショベルの外観を示す。
 図3において、作業機としてよく知られている油圧ショベルは、上部旋回体300と、下部走行体301と、スイング式のフロント作業機302を備え、フロント作業機302は、ブーム306、アーム307、バケット308から構成されている。上部旋回体300は下部走行体301を旋回モータ5の回転によって旋回可能である。上部旋回体300の前部にはスィングポスト303が取り付けられ、このスィングポスト303にフロント作業機302が上下動可能に取り付けられている。スイングポスト303はスイングシリンダ9の伸縮により上部旋回体300に対して水平方向に回動可能であり、フロント作業機302のブーム306、アーム307、バケット308はブームシリンダ10、アームシリンダ11、バケットシリンダ12の伸縮により上下方向に回動可能である。下部走行体301は中央フレーム304を備え、この中央フレーム304にはブレードシリンダ7の伸縮により上下動作を行うブレード305が取り付けられている。下部走行体301は、走行モータ6,8の回転により左右の履帯310,311を駆動することによって走行を行う履帯式走行装置315を備えている。
<第1の実施形態>
 図1A及び図2Bに本発明の第1の実施形態に係わる作業機の油圧駆動装置を示す。
 本実施形態における油圧駆動装置は、エンジン1と、エンジン1によって駆動されるメインのメインポンプ2と、メインポンプ2と連動してエンジン1により駆動されるパイロットポンプ3と、メインポンプ2から吐出された圧油により駆動される複数のアクチュエータ5,6,7,8,9,10,11,12と、コントロールバルブ4とを備えている。
 本実施形態に係わる履帯式走行装置を備えた作業機は、例えば油圧ミニショベルであり、アクチュエータ5は油圧ショベルの旋回モータであり、アクチュエータ6,8は左右の走行モータであり、アクチュエータ7はブレードシリンダであり、アクチュエータ9はスイングシリンダであり、アクチュエータ10,11,12はそれぞれブームシリンダ、アームシリンダ、バケットシリンダである。
 コントロールバルブ4は、メインポンプ2の供給油路2aに接続され、メインポンプ2から各アクチュエータに供給される圧油の方向と流量をそれぞれ制御する複数のバルブセクション13,14,15,16,17,18,19,20と、複数のアクチュエータ5,6,7,8,9,10,11,12の負荷圧のうち最も高い負荷圧(以下、最高負荷圧という)PLmaxを選択して信号油路21に出力する複数のシャトル弁22a,22b,22c,22d,22e,22f,22gと、メインポンプ2の供給油路2aに設けられ、メインポンプ2の最高吐出圧(最高ポンプ圧)を制限するメインリリーフ弁23と、メインポンプ2の吐出圧(ポンプ圧)Pdと最高負荷圧PLmaxとの差圧PLSを絶対圧として出力する差圧減圧弁24と、ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSがバネ25aにより設定されたある一定値を超えたときにメインポンプ2の吐出流量の一部をタンク0に戻し、差圧PLSをバネ25aにより設定された一定値以下に保つアンロード弁25とを有している。アンロード弁25及びメインリリーフ弁23の出側はコントロールバルブ2内でタンク油路29に接続され、タンク0に接続されている。
 バルブセクション13は流量制御弁26aと圧力補償弁27aとから構成され、バルブセクション14は流量制御弁26bと圧力補償弁27bとから構成され、バルブセクション15は流量制御弁26cと圧力補償弁27cとから構成され、バルブセクション16は流量制御弁26dと圧力補償弁27dとから構成され、バルブセクション17は流量制御弁26eと圧力補償弁27eとから構成され、バルブセクション18は流量制御弁26fと圧力補償弁27fとから構成され、バルブセクション19は流量制御弁26gと圧力補償弁27gとから構成され、バルブセクション20は流量制御弁26hと圧力補償弁27hとから構成されている。
 流量制御弁26a~26hは、メインポンプ2からそれぞれのアクチュエータ5~12に供給される圧油の方向と流量をそれぞれ制御し、圧力補償弁27a~27hは流量制御弁26a~26hの前後差圧をそれぞれ制御する。
 圧力補償弁27a~27hは目標差圧設定用の開弁側受圧部28a,28b,28c,28d,28e,28f,28g,28hを有し、この受圧部28a~28hには差圧減圧弁24の出力圧が導かれ、油圧ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSの絶対圧(以下絶対圧PLSという)により目標補償差圧が設定される。このように流量制御弁26a~26hの前後差圧を同じ差圧PLSという値に制御することにより、圧力補償弁27a~27hは流量制御弁26a~26hの前後差圧が油圧ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSに等しくなるように制御する。これにより複数のアクチュエータを同時に駆動する複合操作時は、アクチュエータ5~12の負荷圧の大小に係わらず、流量制御弁26a~26hの開口面積比に応じてメインポンプ2の吐出流量を分配し、複合操作性を確保することができる。また、メインポンプ2の吐出流量が要求流量に満たないサチュレーション状態になった場合は、差圧PLSはその供給不足の程度に応じて低下し、これに応じて圧力補償弁27a~27hが制御する流量制御弁26a~26hの前後差圧が同じ割合で低下して流量制御弁26a~26hの通過流量が同じ割合で減少するため、この場合も流量制御弁26a~26hの開口面積比に応じてメインポンプ2吐出流量を分配し、複合操作性を確保することができる。
 また、油圧駆動装置は、パイロットポンプ3の供給油路3aに接続され、パイロットポンプ3の吐出流量に応じて絶対圧を出力するエンジン回転数検出弁装置30と、エンジン回転数検出弁装置30の下流側に接続され、パイロット油路31の圧力を一定に保つパイロットリリーフ弁32を有するパイロット油圧源33と、パイロット油路31に接続され、パイロット油圧源32の油圧を元圧として流量制御弁26a~26hを操作するための制御パイロット圧a,b,c,d,d,f,g,h,i,j,k,l,m,n,o,p,を生成するためのリモコン弁を備えた操作レバー装置(操作装置)34a,34b,34c,34d,34e,34f,34g,34hとを備えている。
 エンジン回転数検出弁装置30は、パイロットポンプ3の供給油路3aをパイロット油路31に接続する油路30eと、この油路30eに設けられた絞り要素(固定絞り)30fと、油路30e及び絞り要素30fに並列に接続された流量検出弁30aと、差圧減圧弁30bとを有している。流量検出弁30aの入力側はパイロットポンプ3の供給油路3aに接続され、流量検出弁30aの出力側はパイロット油路31に接続されている。流量検出弁30aは通過流量が増大するにしたがって開口面積を大きくする可変絞り部30cを有し、パイロットポンプ3の吐出油は絞り要素30f及び流量検出弁30aの可変絞り部30cの両方を通過してパイロット油路31側へと流れる。このとき、絞り要素30fと流量検出弁30aの可変絞り部30cには通過流量が増加するにしたがって大きくなる前後差圧が発生し、差圧減圧弁30bはその前後差圧を絶対圧Paとして出力する。パイロットポンプ3の吐出流量はエンジン1の回転数によって変化するため、絞り要素30f及び可変絞り部30cの前後差圧を検出することにより、パイロットポンプ3の吐出流量を検出することができ、エンジン1の回転数を検出することができる。また、可変絞り部30cは、通過流量が増大するにしたがって(前後差圧が高くなるにしたがって)開口面積を大きくすることにより、通過流量が増大するにしたがって前後差圧の上昇度合いが緩やかになるように構成されている。
 メインポンプ2は可変容量型の油圧ポンプであり、その傾転角(容量)を制御するためのポンプ制御装置35を備えている。ポンプ制御装置35は馬力制御傾転アクチュエータ35aと、LS制御弁35b及びLS制御傾転アクチュエータ35cとを有している。
 馬力制御傾転アクチュエータ35aはメインポンプ2の吐出圧が高くなるとメインポンプ2の傾転角を減らして、メインポンプ2の入力トルクが予め設定した最大トルクを越えないように制限するものであり、これによりメインポンプ2の消費馬力を制限し、過負荷によるエンジン1の停止(エンジンストール)を防止する。
 LS制御弁35bは対向する受圧部35d,35eを有し、受圧部35dには油路40を介してエンジン回転数検出弁装置30の差圧減圧弁30bで生成された絶対圧Pa(第1規定値)がロードセンシング制御の目標差圧(目標LS差圧)として導かれ、受圧部35eに差圧減圧弁24で生成された絶対圧PLSが導かれ、絶対圧PLSが絶対圧Paよりも高くなると(PLS>Pa)、パイロット油圧源33の圧力をLS制御傾転アクチュエータ35cに導いてメインポンプ2の傾転角を減らし、絶対圧PLSが絶対圧Paよりも低くなると(PLS<Pa)、LS制御傾転アクチュエータ35cをタンクTに連通してメインポンプ2の傾転角を増やし、これによりメインポンプ2の吐出圧Pdが最高負荷圧PLmaxよりも絶対圧Pa(目標差圧)だけ高くなるようにメインポンプ2の傾転量(押しのけ容積)を制御する。制御弁35b及びLS制御傾転アクチュエータ35cは、メインポンプ2の吐出圧Pdが複数のアクチユエータ5,6,7,8,9,10,11,12の最高負荷圧PLmaxよりもロードセンシング制御の目標差圧分だけ高くなるようメインポンプ2の傾転を制御するロードセンシング方式のポンプ制御手段を構成する。
 ここで、絶対圧Paはエンジン回転数に応じて変化する値であるため、絶対圧Paをロードセンシング制御の目標差圧として用い、圧力補償弁27a~27hの目標補償差圧をメインポンプ2の吐出圧Pdと最高負荷圧PLmaxとの差圧の絶対圧PLSにより設定することにより、エンジン回転数に応じたアクチュエータスピードの制御が可能となる。また、上記のようにエンジン回転数検出弁装置30の流量検出弁30aの可変絞り部30cは、通過流量が増大するにしたボって前後差圧の上昇度合いが緩やかになるように構成されており、これによりエンジン回転数に応じたサチュレーション現象の改善が図れ、エンジン回転数を低く設定した場合に良好な微操作性が得られる。
 アンロード弁25のバネ25aの設定圧は、エンジン1が定格最高回転数にあるときのエンジン回転数検出弁装置30の差圧減圧弁30bで生成された絶対圧Pa(ロードセンシング制御の目標差圧)よりも高くなるように設定されている。
 図1A及び図2Bに示す油圧駆動装置は、走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作したときに、左走行モータ6の回転数が右走行モータ8の回転数よりも低かった場合のものであり、左走行用の圧力補償弁27bの目標差圧設定用の開弁側受圧部28bが位置する側に、流量制御弁26bから出力される最大流量を予め設定した流量に制限する流量補正装置39が設けられている。本実施形態においては、流量補正装置39は走行用の圧力補償弁27bの目標補償差圧を目標補償差圧調整バネ36bの付勢力によって補正する目標補償差圧調整装置であり、この目標補償差圧調整装置を用いて左走行用の圧力補償弁27bの目標補償差圧を調整し、走行流量制御弁26bの最大流量を補正する。
 流量補正装置39(目標補償差圧調整装置)の詳細を図2A及び図2Bを用いて説明する。図2Aは、流量補正装置39を備えない通常の左右走行用の圧力補償弁27b,27dの断面図であり、図2Bは、流量補正装置39を備えた左右走行用の圧力補償弁27b,27dの断面図である。図2A及び図2B中、右走行モータ8、右走行用の流量制御弁26d、右走行用の圧力補償弁27dの符号はかっこ書きで示している。
 図2Aにおいて、左右走行用の圧力補償弁27b,27dは、コントロールバルブ4の走行バルブセクション14,16のハウジング38の圧力補償弁部分に軸方向(図示左右方向)に摺動自在に挿入された弁体61bと、弁体61bに設けられ、それぞれ、流量制御弁26bの上流側の圧力及び下流側の圧力(左走行モータ6の負荷圧)が導かれるフィードバック用の閉弁側受圧部62b及び開弁側受圧部63bと、弁体61aに設けられ、差圧減圧弁24(図1A及び図2B参照)の出力圧が導かれる上記の目標差圧設定用の開弁側受圧部28bとを備え、フィードバック用の開弁側受圧部63bが位置する受圧室64bはプラグ65bによって閉じられている。また、受圧室64b内に開弁方向に付勢する上記の目標補償差圧調整バネ36bが配置されている。
 右走行用の圧力補償弁27dも同様であり、弁体61dと、フィードバック用の閉弁側受圧部62d及び開弁側受圧部63dと、目標差圧設定用の開弁側受圧部28dと、受圧室64dと、プラグ65dと、目標補償差圧調整バネ36dとを備えている。
 目標補償差圧調整バネ36b,36dは、走行複合操作時に走行モータ6,8に優先的に圧油を供給し、走行を安定させるためのものである。本実施形態では、流量補正装置39において圧力補償弁27bの目標補償差圧を補正するのに、この目標補償差圧調整バネ36b,36dを利用している。なお、圧力補償弁のタイプによっては、目標補償差圧調整バネ36b,36dを備えていないものもあり、その場合は、新たに専用の目標補償差圧調整バネを組み込めばよい。
 図2Bにおいて、流量補正装置39(目標補償差圧調整装置)は、その目標補償差圧調整バネ36bの付勢力を調整する調整機構付プラグ37によって構成されている。調整機構付プラグ37は、流量制御弁26bの最大流量を調整するための調整装置であり、プラグ本体37aと、プラグ本体37aに組み込まれた調整ピン37bと、ロックナット37cとから構成されている。プラグ本体37aのねじサイズはプラグ65bと同じである。調整ピン37bは、プラグ本体37aとねじ係合する雄ねじ部37eと、受圧室64d内に突出し、目標補償差圧調整バネ36bに係合するバネ受け37fと、受圧室64dの反対側に突出した断面六角形の工具操作部37gを備え、工具操作部37gにボックスレンチ等の工具を装着して回転することで、調整ピン37bの軸方向の位置を変化させ、目標補償差圧調整バネ36bの付勢力を調整して、圧力補償弁27bの目標補償差圧を調整する。また、目標補償差圧の調整後は、ロックナット37cを締め付けることにより、調整ピン37bの位置を固定し、目標補償差圧の調整を完了させる。
 本実施形態の機能を説明する。
 本実施の形態においては、工場からの出荷時の製品チェック前は、左走行用の圧力補償弁27bとしては、図2Aに示す流量補正装置39を備えない通常の圧力補償弁27bが装着されている。このような油圧駆動装置において、走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作すると、パイロット油圧源33の圧油から流量制御弁26b,26dを操作するための制御パイロット圧d,hが生成され、流量制御弁26b,26dに導かれる。メインポンプ2から吐出された圧油は圧力補償弁27b,27d、流量制御弁26b,26dを介して左右走行モータ6,8へ導かれる。
 本来はこの時の左右走行用圧力補償弁27b,27dの開弁側受圧部28b,28dへ導かれる左右の走行モータ6,8のアクチュエータ負荷圧は等しいが、まれに機体の重量バランスや走行モータの製造誤差により等しくならず左右の走行モータ6,8に速度差(回転数差)が生じ走行蛇行が発生することがある。
 工場からの出荷時に上記のように操作して走行試験を行い、蛇行した場合には、以下のように補正を行う。
 回転数の低い方の走行用圧力補償弁27b(または27d)の開弁側受庄部28b(または28d)側に設けられていたプラグ65bを取り外し、図2Bに示すように、調整機構付プラグ37を取付け、調整機構付プラグ37の調整ピン37bを上述したように操作して図示右方向に調整し、目標補償差圧調整バネ36bの付勢力を強めることで、圧力補償弁27b(または27d)の開口を開き方向に補正し、左走行モータ6(または8)への流量を右走行モータ8(または6)と等しくなるように調整する。これにより走行蛇行の直進補正を行うことができる。
 以上のように本実施形態によれば、走行モータ等の大物装置を交換しなくても容易に走行蛇行の直進補正を行うことができる。また、メイン回路に特別な変更を加えることなく、容易に走行蛇行の直進補正を行うことができる
<第2の実施形態>
 図4A及び図4Bに本発明の第2の実施形態に係わる作業機の油圧駆動装置を示す。
 本実施の形態は、第1の実施形態が、出荷前のチェック時に不具合があった場合に流量補正装置39(目標補償差圧調整装置)を設けて調整を行ったのに対して、出荷前の製品としての作業機の油圧駆動装置において、左右の走行用圧力補償弁27b,27dの両方の開弁側受圧部28b,28d側のバルブハウジングに流量補正装置39A,39B(目標補償差圧調整装置)を予め取付けておき、必要なときに直ちに調整できるようにしたものである。流量補正装置39A,39B(目標補償差圧調整装置)は、それぞれ、目標補償差圧調整バネ36b,36dの付勢力を調整する調整機構付プラグ37A,37Bによって構成されている。調整機構付プラグ37A,37Bは第1の実施形態の流量補正装置39(目標補償差圧調整装置)における調整機構付プラグ37と同様に構成されている。。
 上記以外の構成は、第1の実施形態と同じである。
 第2の実施形態の機能を説明する。
 最初は、調整機構付プラグ37A,37Bの調整ピン37b,37b(図2B参照)を初期位置に固定して目標補償差圧調整バネ36bの付勢力を規定値に設定しておく。この状態で、走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作すると、パイロット油圧源33の圧油から流量制御弁26b,26dを操作するための制御パイロット圧d,hが生成され、流量制御弁26b,26dに導かれる。メインポンプ2から吐出された圧油は圧力補償弁27b,27d、流量制御弁26b,26dを介して左右走行モータ6,8へ導かれる。
 本来はこの時の左右走行用圧力補償弁27b,27dの開弁側受圧部28b,28dへ導かれる左右の走行モータ6,8のアクチュエータ負荷圧は等しいが、まれに機体の重量バランスや走行モータの製造誤差により等しくならず左右の走行モータ6,8に速度差(回転数差)が生じ走行蛇行が発生することがある。
 工場からの出荷時に上記のように操作して走行試験を行い、蛇行した場合には、以下のように補正を行う。
 回転数が低い方の走行用圧力補償弁27b(または27d)に取付けた調整機構付プラグ37A(または37B)の調整ピン37bを上述したように操作して図示右方向に調整し、目標補償差圧調整バネ36b(または36d)の付勢力を強めることで、圧力補償弁27b(または27d)の開口を開き方向に補正し、左走行モータ6(または8)への流量を右走行モータ8(または6)と等しくなるように調整する。これにより走行蛇行の直進補正を行うことができる。
 本実施形態では、目標補償差圧調整バネ36b,36dの付勢力を調整する調整機構付プラグ37A,37Bによって構成された流量補正装置39A,39Bを左右走行用の圧力補償弁27b,27dに予め取付けていおくことで、蛇行した方の圧力補償弁において、通常のプラグ65b(または65d)を調整機構付プラグに付替える作業を行う必要がないため、素早く走行蛇行の直進補正を行うことができる。また、左右走行用の圧力補償弁27b,27dの両方に流量補正装置39A,39Bが取り付けられているため、走行蛇行の直進補正の幅を広くすることができる。
 このように本実施の形態によっても、第1の実施の形態と同様の効果が得られる。また、本実施の形態によれば、調整を行う時点で流量補正装置を取り付ける作業を行う必要がないため、素早く走行蛇行の直進補正を行うことができる。また、左右走行用の圧力補償弁27b,27dの両方に流量補正装置39A,39Bが取り付けられているため、走行蛇行の直進補正の幅を広くすることができる。
<第3の実施形態>
 図5A及び図5Bに本発明の第3の実施形態に係わる作業機の油圧駆動装置を示す。
 本実施の形態は、第1の実施形態が流量補正装置39(目標補償差圧調整装置)を目補償差圧調整バネ36bまたは36dの付勢力を調整する調整機構付プラグ37で構成したのに対して、流量補正装置69(目標補償差圧調整装置)を、左走行用の圧力補償弁27b(または走行用の圧力補償弁27d)の目標補償差圧をパイロット油圧源33の圧力を減圧して補正する減圧弁40を備えた減圧弁ユニット140で構成したものである。減圧弁40は、左走行用の流量制御弁26b(または右走行用の流量制御弁26d)の最大流量を調整するための調整装置(調整機構73)を備えている。
 すなわち、図5A及び図5Bに示す油圧駆動装置は、走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作したときに、左走行モータ6の回転数が右走行モータ8の回転数よりも低かった場合のものであり、左走行用の圧力補償弁27bの目標差圧設定用の開弁側受圧部28bが位置する側に、左走行用の圧力補償弁27bの目標補償差圧をパイロット油圧源33の圧力を減圧して補正する減圧弁40を備えた減圧弁ユニット140が接続されている。減圧弁ユニット140は、減圧弁40が配置される配管71を有し、配管71の上流側はパイロット油圧源33からの圧油を差圧減圧弁24へ導く油路39に接続され、下流側は圧力補償弁27bの目標差圧設定用の開弁側受圧部28bが位置する側に追加で設けられた補正受圧部66bに接続されている。減圧弁40は、流量制御弁26bの最大流量を調整するための調整装置として、減圧弁出力圧力を設定するバネ72の付勢力を調整する調整機構73を有している。
 調整機構73は、図2Bに示した調整機構付プラグ37と同様、減圧弁40に組み込まれた図示しない調整ピンとロックナットとから構成されている。減圧弁40は、パイロット油圧源33からの圧油に基づいて、バネ72の設定に応じた圧力の圧油を生成し、この圧油を走行用圧力補償弁27bの補正受圧部66bに導き、走行時の目標補償差圧を調整する。
 上記以外の構成は、第1の実施形態と同じである。
 第3の実施形態の機能を説明する。
 走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作すると、パイロット油圧源33の圧油から流量制御弁26b,26dを操作するための制御パイロット圧d,hが生成され、流量制御弁26b,26dに導かれる。メインポンプ2から吐出された圧油は圧力補償弁27b,27d、流量制御弁26b,26dを介して左右走行モータ6,8へ導かれる。
 本来はこの時の左右走行用圧力補償弁27b,27dの開弁側受圧部28b,28dへ導かれる左右の走行モータ6,8のアクチュエータ負荷圧は等しいが、まれに機体の重量バランスや走行モータの製造誤差により等しくならず左右の走行モータ6,8に速度差(回転数差)が生じ走行蛇行が発生することがある。
 工場からの出荷時に上記のように操作して走行試験を行い、蛇行した場合には、回転数が低い方の走行用圧力補償弁27b(または27d)の開弁側受圧部28b(または28d)が位置する側に減圧弁ユニット140を接続し、補正受圧部66b(または66d)にパイロット油路39からの圧油を減圧弁40により減圧して導く構成とする。そして、減圧弁40の調整機構73の調整ピンを操作して、バネ72の付勢力を強めることで、出力圧力を高くして圧力補償弁27b(または27d)の開口を開き方向に補正し、左走行モータ6(または8)への流量を右走行モータ8(または6)と等しくなるように調整する。これにより走行蛇行の直進補正を行うことができる。
 このように本実施の形態によっても、第1の実施の形態と同様の効果が得られる。
<第4の実施形態>
 図6A及び図6Bに本発明の第4の実施形態に係わる作業機の油圧駆動装置を示す。
 本実施の形態は、第3の実施形態が、出荷前のチェック時に不具合があった場合に流量補正装置69(目標補償差圧調整装置)である減圧弁ユニット140を接続して調整を行ったのに対して、出荷前の製品としての作業機の油圧駆動装置において、左右の走行用圧力補償弁27b,27dの両方の開弁側受圧部28b,28d側のバルブハウジングに、流量補正装置69A,69B(目標補償差圧調整装置)である減圧弁ユニット140A,140Bを予め接続しておき、必要なときに直ちに調整できるようにしたものである。減圧弁ユニット140A,140Bの構成は第3の実施形態の減圧弁ユニット140と同じであり、それぞれ、減圧弁40b,40dと減圧弁40b,40dが配置される配管71b,71dを有し、配管71b,71dの上流側はパイロット油圧源33からの圧油を差圧減圧弁24へ導く油路39に接続され、下流側は圧力補償弁27b,27dの目標差圧設定用の開弁側受圧部28b,28dが位置する側に追加で設けられた補正受圧部66b,66dに接続されている。減圧弁40b,40dは、それぞれ、流量制御弁26b,26dの最大流量を調整するための調整装置として、減圧弁出力圧力を設定するバネ72b,72dの付勢力を調整する調整機構73b,73dを有している。
 上記以外の構成は、第3の実施形態と同じである。
 第4の実施形態の機能を説明する。
 最初は、減圧弁40b,40dのバネ72b,72dの設定はゼロにして減圧弁40b,40dの出力圧をタンク圧としておく。この状態で、走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作すると、パイロット油圧源33の圧油から流量制御弁26b,26dを操作するための制御パイロット圧d,hが生成され、流量制御弁26b,26dに導かれる。メインポンプ2から吐出された圧油は圧力補償弁27b,27d、流量制御弁26b,26dを介して左右走行モータ6,8へ導かれる。
 本来はこの時の左右走行用圧力補償弁27b,27dの開弁側受圧部28b,28dへ導かれる左右の走行モータ6,8のアクチュエータ負荷圧は等しいが、まれに機体の重量バランスや走行モータの製造誤差により等しくならず左右の走行モータ6,8に速度差(回転数差)が生じ走行蛇行が発生することがある。
 工場からの出荷時に上記のように操作して走行試験を行い、蛇行した場合には、回転数が低い方の走行用圧力補償弁27b(または27d)の開弁側受圧部28b(または28d)が位置する側に接続した減圧弁ユニット140A(または140B)の減圧弁40b(または40d)の調整機構73b(または73d)の調整ピンを操作して、バネ72b(または72d)の付勢力を強めることで、出力圧力を高くして圧力補償弁27b(または27d)の開口を開き方向に補正し、左走行モータ6(または8)への流量を右走行モータ8(または6)と等しくなるように調整する。これにより走行蛇行の直進補正を行うことができる。
 本実施形態では、減圧弁ユニット140A,140Bを左右走行用の圧力補償弁27b,27dの両方に予め取付けることで、蛇行した場合に減圧弁ユニットを追加設置する作業を行う必要がないため、素早く走行蛇行の直進補正を行うことができる。また、左右走行用の圧力補償弁27b,27dの両方に減圧弁ユニット140A,140B(流量補正装置いは目標補償差圧調整装置)が取り付けられているため、走行蛇行の直進補正の幅を広くすることができる。
 このように本実施の形態によっても、第1の実施の形態と同様の効果が得られる。また、本実施の形態によれば、調整を行う時点で流量補正装置を取り付ける作業を行う必要がないため、素早く走行蛇行の直進補正を行うことができる。また、左右走行用の圧力補償弁27b,27dの両方に減圧弁ユニット140A,140B(流量補正装置いは目標補償差圧調整装置)が取り付けられているため、走行蛇行の直進補正の幅を広くすることができる。
<第5の実施形態>
 図7A及び図7Bに本発明の第5の実施形態に係わる作業機の油圧駆動装置を示す。
 本実施の形態は、第1~第4の実施形態が流量補正装置39,69を目標補償差圧調整装置で構成したのに対して、流量補正装置79を、走行用の操作レバー装置34b(または34d)のリモコン弁と流量制御弁26b(または26d)の間に配置され、当該リモコン弁の制御パイロット圧を減圧する圧力制御弁42を備えた圧力制御弁ユニット142で構成したものである。圧力制御弁42は、左走行用の流量制御弁26b(または右走行用の流量制御弁26d)の最大流量を調整するための調整装置(調整機構83)を備えている。
 すなわち、図7A及び図7Bに示す油圧駆動装置は、走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作したときに、左走行モータ6の回転数が右走行モータ8の回転数よりも高かった場合のものであり、左走行用の操作レバー装置34bのリモコン弁が生成する制御パイロット圧c.dのうち前進用の制御パイロット圧dを流量制御弁26bへ導く管路に、前進用の制御パイロット圧dを減圧する圧力制御弁42を備えた圧力制御弁ユニット142が接続されている。圧力制御弁ユニット142は、圧力制御弁42が配置される配管81を有し、配管81の上流側は前進用の制御パイロット圧dを出力する左走行用の操作レバー装置34bのリモコン弁に接続され、下流側はタンクラインに接続されている。圧力制御弁42は可変リリーフ弁であり、流量制御弁26bの最大流量を調整するための調整装置として、リリーフ圧力を設定するバネ82の付勢力を調整する調整機構83を有している。
 調整機構83は、図2Bに示した調整機構付プラグ37と同様、圧力制御弁42に組み込まれた図示しない調整ピンとロックナットとから構成されている。圧力制御弁42は、左走行用の操作レバー装置34bのリモコン弁が生成する前進用の制御パイロット圧dの最大圧力をバネ82の設定に応じた圧力に制限し、流量制御弁26bのストロークを規制し流量を制御する。
 上記以外の構成は、第1の実施形態と同じである。
 第5の実施形態の機能を説明する。
 走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作すると、パイロット油圧源33の圧油から流量制御弁26b,26dを操作するための制御パイロット圧d,hが生成され、流量制御弁26b,26dに導かれる。メインポンプ2から吐出された圧油は圧力補償弁27b,27d、流量制御弁26b,26dを介して左右走行モータ6,8へ導かれる。
 本来はこの時の左右走行用圧力補償弁27b,27dの開弁側受圧部28b,28dへ導かれる左右の走行モータ6,8のアクチュエータ負荷圧は等しいが、まれに機体の重量バランスや走行モータの製造誤差により等しくならず左右の走行モータ6,8に速度差(回転数差)が生じ走行蛇行が発生することがある。
 工場からの出荷時に上記のように操作して走行試験を行い、蛇行した場合には、回転数が高い方の流量制御弁操作用の制御パイロット圧d(またはh)を流量制御弁26b(または26d)に導く管路とタンクラインとの間に圧力制御弁ユニット142を接続する。そして、圧力制御弁42の調整機構83の調整ピンを操作して、バネ82の付勢力を弱めることで制御パイロット圧d(またはh)を減圧し、流量制御弁26b(または26d)のストロークを規制し、流量制御弁26b(または26d)の出力流量を調整することで走行蛇行の直進補正を行うことができる。
 このように本実施の形態によっても、第1の実施の形態と同様の効果が得られる。
<第6の実施形態>
 図8A及び図8Bに本発明の第6の実施形態に係わる作業機の油圧駆動装置を示す。
 本実施の形態は、第5の実施形態が流量補正装置79を、走行用の操作レバー装置34b(または34d)のリモコン弁と流量制御弁26b(または26d)の間に配置され、当該リモコン弁の制御パイロット圧を減圧する圧力制御弁42を備えた圧力制御弁ユニット142で構成したのに対して、流量補正装置89を、走行用の操作レバー装置34b(または34d)のリモコン弁と流量制御弁26b(または26d)の間に配置され、当該リモコン弁の制御パイロット圧を減圧する減圧弁43を備えた減圧弁ユニット143で構成したものである。減圧弁43は、左走行用の流量制御弁26b(または右走行用の流量制御弁26d)の最大流量を調整するための調整装置(調整機構93)を備えている。
 すなわち、図8A及び図8Bに示す油圧駆動装置は、走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作したときに、左走行モータ6の回転数が右走行モータ8の回転数よりも高かった場合のものであり、左走行用の操作レバー装置34bのリモコン弁が生成する制御パイロット圧c.dのうち前進用の制御パイロット圧dを流量制御弁26bへ導く管路に、前進用の制御パイロット圧dを減圧する減圧弁43を備えた減圧弁ユニット143が接続されている。減圧弁ユニット143は、減圧弁43が配置される配管91を有し、配管91の上流側は前進用の制御パイロット圧dを出力する左走行用の操作レバー装置34bのリモコン弁に接続され、下流側は前進用の制御パイロット圧dを流量制御弁26bへ導く管路に接続されている。減圧弁43は、左走行用の流量制御弁26bの最大流量を調整するための調整装置として、減圧弁出力圧力を設定するバネ92の付勢力を調整する調整機構93を有している。
 調整機構93は、図2Bに示した調整機構付プラグ37と同様、減圧弁43に組み込まれた図示しない調整ピンとロックナットとから構成されている。減圧弁43は、左走行用の操作レバー装置34bのリモコン弁が生成する前進用の制御パイロット圧dの最大圧力をバネ92の設定に応じた圧力に減圧し、流量制御弁26bのストロークを規制し流量を制御する。
 上記以外の構成は、第1の実施形態と同じである。
 第6の実施形態の機能を説明する。
 走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作すると、パイロット油圧源33の圧油から流量制御弁26b,26dを操作するための制御パイロット圧d,hが生成され、流量制御弁26b,26dに導かれる。メインポンプ2から吐出された圧油は圧力補償弁27b,27d、流量制御弁26b,26dを介して左右走行モータ6,8へ導かれる。
 本来はこの時の左右走行用圧力補償弁27b,27dの開弁側受圧部28b,28dへ導かれる左右の走行モータ6,8のアクチュエータ負荷圧は等しいが、まれに機体の重量バランスや走行モータの製造誤差により等しくならず左右の走行モータ6,8に速度差(回転数差)が生じ走行蛇行が発生することがある。
 工場からの出荷時に上記のように操作して走行試験を行い、蛇行した場合には、回転数が高い方の流量制御弁操作用の制御パイロット圧d(またはh)を流量制御弁26b(または26d)に導く管路に減圧弁ユニット143を接続する。そして、減圧弁43の調整機構93の調整ピンを操作して、バネ92の付勢力を弱めることで制御パイロット圧d(またはh)を減圧し、流量制御弁26b(または26d)のストロークを規制し、流量制御弁26b(または26d)の出力流量を調整することで走行蛇行の直進補正を行うことができる。
 このように本実施の形態によっても、第1の実施の形態と同様の効果が得られる。
<第7の実施形態>
 図9に本発明の第7の実施形態に係わる作業機の油圧駆動装置を示す。
 図9において、本実施の形態に係わる油圧駆動装置は、エンジン44と、エンジン44によって駆動される2つのメインポンプ45,46,47と、メインポンプ45,46,47と連動してエンジン44により駆動されるパイロットポンプ48と、メインポンプ45,46,47から吐出された圧油により駆動される複数のアクチュエータ5,6,7,8,9,10,11,12と、コントロールバルブ49とを備えている。
 本実施形態に係わる履帯式走行装置を備えた作業機は、例えば油圧ミニショベルであり、アクチュエータ5は油圧ショベルの旋回モータであり、アクチュエータ6,8は左右の走行モータであり、アクチュエータ7はブレードシリンダであり、アクチュエータ9はスイングシリンダであり、アクチュエータ10,11,12はそれぞれブームシリンダ、アームシリンダ、バケットシリンダである。
 コントロールバルブ49は、メインポンプ45,46,47の圧油供給油路45a,46a,47aに接続され、メインポンプ45,46,47から各アクチュエータに供給される圧油の方向と流量をそれぞれ制御する複数の流量制御弁を有している。
 流量制御弁50a~50hは、メインポンプ45,46,47からそれぞれのアクチュエータ5~12に供給される圧油の方向と流量をそれぞれ制御する。
 流量制御弁50b,50dが切り換え操作されると、2つの油圧ポンプ45,46の吐出口から吐出された圧油は流量制御弁50b,50dのメータイン流路(流入側流路)50b1又は50b2;50d1又は50d2を介してそれぞれの走行モータ6,8に導かれ、走行モータ6,8からの戻り油は流量制御弁50b,50dのメータアウト流路(流出側流路)50b3,50b4又は50d3,50d4を介してタンク0に戻される。
 油圧ポンプ45,46は可変容量型であり、傾転位置を制御することで容量(押しのけ容積)を変え、吐出流量を増減する。油圧ポンプ45,46の制御手段として、通常、馬力制御アクチュエータ51が設けられ、油圧ポンプ45,46の吐出圧が上昇するとそれに応じて流量を減じるよう傾転位置が制御される。
 流量制御弁50b,50dはオープンセンタータイプ(センターバイパスタイプ)であり、センターバイパスライン52,53につながるセンタバイパス流路50b5,50d5を有している。流量制御弁50b,50dが中立位置(非操作位置)にあるとき、センターバイパス流路50b5,50d5は全開し、メータイン流路50b1,50b2;50d1,50d2は全閉し、油圧ポンプ45,46からの吐出油は油圧ポンプ45,46の吐出口に接続された圧油供給油路45a,46a、センターバイパスライン52,53、センターバイパス流路50b5,50d5からタンクライン54,55を介してタンクに戻される。流量制御弁50b,50dが中立位置から作動位置に切り換え操作されると、その操作量に応じてセンターバイパス流路50b5,50d5は開口面積を減らし、流量制御弁50b,50dの最大切換位置(フルストローク位置)の直前で全閉する。一方、流量制御弁50b,50dのメータイン流路50b1,50b2;50d1,50d2は流量制御弁50b,50dの操作量に応じて開口面積を増やし、流量制御弁50b,50dの最大切換位置(フルストローク位置)の直前で全開する。これにより流量制御弁50b,50dの操作量に応じた流量が走行モータ6,8に供給され、走行モータ6,8の回転速度が制御される。圧油供給油路45a,46aには油圧ポンプ45,46の最高吐出圧力を規制する安全手段としてのメインリリーフ弁(図示せず)が設けられている。
 流量制御弁50b,50dは油圧パイロット部50b6,50b7及び50d6,50d7を備えた油圧切換弁であり、走行用の操作レバー装置34b,34dのリモコン弁が生成する制御パイロット圧力により操作され、走行用操作レバー装置34b,34dのリモコン弁にはパイロットポンプ48の吐出圧力が一次圧として導かれている。油圧ポンプ45,46とパイロットポンプ48はエンジン44により駆動される。パイロットポンプ48の吐出圧力はパイロットリリーフ弁56によりある一定の圧力に保たれる。
 走行用操作レバー装置34b,34dの操作レバーが中立位置にある場合、流量制御弁50b,50dの油圧パイロット部50b6,50b7及び50d6,50d7は走行用操作レバー装置34b,34dのリモコン弁を介してタンク0へと連絡している。走行用操作レバー装置34b,34dの操作レバーが操作されると、走行用操作レバー装置34b,34dのリモコン弁の対応するものが加圧され、その圧力(出力圧)が制御パイロット圧力として流量制御弁50b,50dの対応する油圧パイロット部50b6,50b7及び50d6,50d7へとそれぞれ導かれる。これにより流量制御弁50b,50dが切換わり、走行モータ6,8に圧油が供給され、走行モータ6,8が回転する。
 本実施の形態は、第5の実施の形態と同じ流量補正装置79(圧力制御弁ユニット142)を備えている。
 すなわち、図9に示す油圧駆動装置は、走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作したときに、左走行モータ6の回転数が右走行モータ8の回転数よりも高かった場合のものであり、左走行用の操作レバー装置34bのリモコン弁が生成する制御パイロット圧c.dのうち前進用の制御パイロット圧dを流量制御弁26bへ導く管路に、前進用の制御パイロット圧dを減圧する圧力制御弁42を備えた圧力制御弁ユニット142が接続されている。圧力制御弁ユニット142は、圧力制御弁42が配置される配管81を有し、配管81の上流側は前進用の制御パイロット圧dを出力する左走行用の操作レバー装置34bのリモコン弁に接続され、下流側はタンクラインに接続されている。圧力制御弁42は可変リリーフ弁であり、流量制御弁50bの最大流量を調整するための調整装置として、リリーフ圧力を設定するバネ82の付勢力を調整する調整機構83を有している。
 調整機構83は、図2Bに示した調整機構付プラグ37と同様、圧力制御弁42に組み込まれた図示しない調整ピンとロックナットとから構成されている。圧力制御弁42は、左走行用の操作レバー装置34bのリモコン弁が生成する前進用の制御パイロット圧dの最大圧力をバネ82の設定に応じた圧力に制限し、流量制御弁50bのストロークを規制し流量を制御する。
 第7の実施形態の機能を説明する。
 走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作すると、パイロットポンプ48の圧油から流量制御弁50b,dを操作するための制御パイロット圧d,hが生成され、流量制御弁50b,dに導かれる。メインポンプ45,46から吐出された圧油は流量制御弁50b,dを介して左右走行モータ6,8へ導かれる。
 本来はこの時の左右走行モータ6,8へ導かれる流量は等しいが、まれにメインポンプ45,46や走行モータの製造誤差により等しくならず左右の走行モータ6,8に速度差(回転数差)が生じ走行蛇行が発生することがある。
 工場からの出荷時に上記のように操作して走行試験を行い、蛇行した場合には、回転数が高い方の流量制御弁操作用の制御パイロット圧d(またはh)を流量制御弁50b(または50d)に導く管路とタンクラインとの間に圧力制御弁ユニット142を接続する。そして、圧力制御弁42の調整機構83の調整ピンを操作して、バネ82の付勢力を弱めることで制御パイロット圧d(またはh)を減圧し、流量制御弁50b(または50d)のストロークを規制し、流量制御弁50b(または50d)の出力流量を調整することで走行蛇行の直進補正を行うことができる。
 このように本実施の形態によっても、第1の実施の形態と同様の効果が得られる。
<第8の実施形態>
 図10に本発明の第8の実施形態に係わる作業機の油圧駆動装置を示す。
 本実施の形態は第6の実施の形態と同じ流量補正装置89(減圧弁ユニット143)を備えている。
 すなわち、図10に示す油圧駆動装置は、走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作したときに、左走行モータ6の回転数が右走行モータ8の回転数よりも高かった場合のものであり、左走行用の操作レバー装置34bのリモコン弁が生成する制御パイロット圧c.dのうち前進用の制御パイロット圧dを流量制御弁26bへ導く管路に、前進用の制御パイロット圧dを減圧する減圧弁43を備えた減圧弁ユニット143が接続されている。減圧弁ユニット143は、減圧弁43が配置される配管91を有し、配管91の上流側は前進用の制御パイロット圧dを出力する左走行用の操作レバー装置34bのリモコン弁に接続され、下流側は前進用の制御パイロット圧dを流量制御弁26bへ導く管路に接続されている。減圧弁43は、左走行用の流量制御弁50bの最大流量を調整するための調整装置として、減圧弁出力圧力を設定するバネ92の付勢力を調整する調整機構93を有している。
 調整機構93は、図2Bに示した調整機構付プラグ37と同様、減圧弁43に組み込まれた図示しない調整ピンとロックナットとから構成されている。減圧弁43は、左走行用の操作レバー装置34bのリモコン弁が生成する前進用の制御パイロット圧dの最大圧力をバネ92の設定に応じた圧力に減圧し、流量制御弁50bのストロークを規制し流量を制御する。
 上記以外の構成は、第7の実施形態と同じである。
 第8の実施形態の機能を説明する。
 走行直進動作を意図して走行用の操作レバー装置34b,34dの操作レバーを図示右方向にフルストロークで操作すると、パイロットポンプ48の圧油から流量制御弁50b,dを操作するための制御パイロット圧d,hが生成され、流量制御弁50b,dに導かれる。メインポンプ45,46から吐出された圧油は流量制御弁50b,dを介して左右走行モータ6,8へ導かれる。
 本来はこの時の左右走行モータ6,8へ導かれる流量は等しいが、まれにメインポンプ45,46や走行モータの製造誤差により等しくならず左右の走行モータ6,8に速度差(回転数差)が生じ走行蛇行が発生することがある。
 工場からの出荷時に上記のように操作して走行試験を行い、蛇行した場合には、回転数が高い方の流量制御弁操作用の制御パイロット圧d(またはh)を流量制御弁50b(または50d)に導く管路に減圧弁ユニット143を接続する。そして、減圧弁43の調整機構93の調整ピンを操作して、バネ92の付勢力を弱めることで制御パイロット圧d(またはh)を減圧し、流量制御弁50b(または50d)のストロークを規制し、流量制御弁50b(または50d)の出力流量を調整することで走行蛇行の直進補正を行うことができる。
 このように本実施の形態によっても、第1の実施の形態と同様の効果が得られる。
<その他>
 以上において、本発明を油圧ショベルに適用した場合の幾つかの実施形態を説明したが、本発明はこれらの実施形態に限られるものではない。例えば、第5~第8の実施形態では、流量補正装置を作業機の製品出荷前のチェック時に、走行蛇行の不具合があることが分かった時点で流量補正装置を取り付けて調整を行う場合について説明したが、第2及び第4の実施の形態と同様、作業機の油圧駆動装置に予め流量補正装置を取り付けておき、その後、走行蛇行の不具合があることが分かった時点で調整を行うようにしてもよい。
 また、上記実施の形態では、作業機が油圧ショベルである場合について説明したが、履帯式走行装置を備えた作業機であれば、油圧ショベル以外作業機(例えば油圧クレーン、ブルドーザ等)に本発明を適用し、同様の効果を得ることができる。
1 エンジン
2 メインポンプ
3 パイロットポンプ
4 コントロールバルブ
5,6,7,8,9,10,11,12 アクチュエータ
(6,8 左右の走行モータ)
13,14,15,16,17,18,19,20 バルブセクション
25 アンロード弁
26a~26h  流量制御弁
27a~27h 圧力補償弁
28a~28h 受圧部
30 エンジン回転数検出弁装置
34a~34h 操作レバー装置
34b 操作レバー装置(走行用操作装置)
34d 操作レバー装置(走行用操作装置)
35 ポンプ制御装置
36b,36d 目標補償差圧調整バネ
37 調整機構付プラグ
37A,37B 調整機構付プラグ
37a プラグ本体
37b 調整ピン
37c ロックナット
38 ハウジング
39 流量補正装置(目標補償差圧調整装置)
39A,39B 流量補正装置(目標補償差圧調整装置)
40 減圧弁
40b,40d 減圧弁
42 圧力制御弁
43 減圧弁
44 エンジン
45,46,47 メインポンプ
49 コントロールバルブ
50a~50h 流量制御弁
61b,61b 弁体
65b,65b プラグ
66b,66d 補正受圧部
69 流量補正装置(目標補償差圧調整装置)
69A,69B 流量補正装置(目標補償差圧調整装置)
71 配管
71b,71d 配管
72 バネ
72b,72d バネ
73 調整機構付プラグ
73b,73d 調整機構付プラグ
79 流量補正装置
81 配管
82 バネ
83 調整機構付プラグ
89 流量補正装置
91 配管
92 バネ
93 調整機構付プラグ
140 減圧弁ユニット
140A,140B 減圧弁ユニット
142 圧力制御弁ユニット
143 減圧弁ユニット

Claims (6)

  1.  エンジン(1)と、このエンジンにより駆動される可変容量型のメインポンプ(2)と、このメインポンプから吐出された圧油により駆動される走行用の第1及び第2油圧モータ(5,8)を含む複数のアクチュエータ(5~12)と、前記メインポンプから前記複数のアクチュエータに供給される圧油の流量を制御する第1及び第2走行用流量制御弁(14,16)を含む複数の流量制御弁(13~20)と、前記第1及び第2走行用油圧モータの回転によってそれぞれ駆動される左右の履帯(310,311)とを備えた履帯式走行装置(315)を備えた作業機の油圧駆動装置において、
     前記第1及び第2走行用流量制御弁(14,16)の少なくともどちらか一方の走行用流量制御弁(14)から出力される最大流量を予め設定した流量に制限する流量補正装置(39)を備えることを特徴とする履帯式走行装置を備えた作業機の油圧駆動装置。
  2.  前記複数の流量制御弁(13~20)の前後差圧をそれぞれ制御する第1及び第2走行用圧力補償弁(27b,27d)を含む複数の圧力補償弁(27a~27h)と、前記メインポンプ(2)の吐出圧が前記複数のアクチュエータ(5~12)の最高負荷圧より目標差圧だけ高くなるようメインポンプの押しのけ容積をロードセンシング制御するポンプ制御装置(35)とを備え、前記複数の圧力補償弁は、前記流量制御弁の前後差圧が前記メインポンプの吐出圧と前記複数のアクチュエータの最高負荷圧との差圧に保持されるようにそれぞれの流量制御弁の前後差圧を制御する請求項1記載の履帯式走行装置(315)を備えた作業機の油圧駆動装置において、
     前記流量補正装置(39)は、前記第1及び第走行用圧力補償弁(27b,27d)のうち前記走行用流量制御弁(14)に対応する走行用圧力補償弁(27b)の目標補償差圧を補正する目標補償差圧調整装置(39)であることを特徴とする履帯式走行装置を備えた作業機の油圧駆動装置。
  3.  請求項2記載の履帯式走行装置(315)を備えた作業機の油圧駆動装置において、
     前記目標補償差圧調整装置(39)は、前記走行用圧力補償弁の目標補償差圧を設定するバネ(36b)の付勢力を調整する調整ピン(37b)を有する調整機構付プラグ(37)であることを特徴とする履帯式走行装置を備えた作業機の油圧駆動装置。
  4.  請求項2記載の履帯式走行装置(315)を備えた作業機の油圧駆動装置において、
     前記目標補償差圧調整装置は、前記走行用圧力補償弁の目標補償差圧をパイロット油圧源(33)の圧力を減圧して補正する減圧弁(40)を備えた減圧弁ユニット(140)であることを特徴とする履帯式走行装置を備えた作業機の油圧駆動装置。
  5.  請求項1記載の履帯式走行装置(315)を備えた作業機の油圧駆動装置において、
     前記走行用流量制御弁(14)を操作するための制御パイロット圧を生成するリモコン弁を備えた走行用操作装置(34b)を更に備え、
     前記流量補正装置(79)は、前記走行用操作装置のリモコン弁と前記走行用流量制御弁(14)の間に配置され、前記リモコン弁の制御パイロット圧を減圧する圧力制御弁(42)を備えた圧力制御弁ユニット(142)であることを特徴とする履帯式走行装置を備えた作業機の油圧駆動装置。
  6.  請求項1記載の履帯式走行装置(315)を備えた作業機の油圧駆動装置において、
     前記走行用流量制御弁(14)を操作するための制御パイロット圧を生成するリモコン弁を備えた走行用操作装置(34b)を更に備え、
     前記流量補正装置(89)は、前記走行用操作装置のリモコン弁と前記走行用流量制御弁(14)の間に配置され、前記リモコン弁の制御パイロット圧を減圧する減圧弁(43)を備えた減圧弁ユニット(143)であることを特徴とする履帯式走行装置を備えた作業機の油圧駆動装置。
PCT/JP2012/050126 2011-01-06 2012-01-05 履帯式走行装置を備えた作業機の油圧駆動装置 WO2012093703A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/976,232 US20130287601A1 (en) 2011-01-06 2012-01-05 Hydraulic drive system for working machine including track device of crawler type
JP2012551877A JP5750454B2 (ja) 2011-01-06 2012-01-05 履帯式走行装置を備えた作業機の油圧駆動装置
EP12732178.4A EP2662576B1 (en) 2011-01-06 2012-01-05 Hydraulic drive of work machine equipped with crawler-type traveling device
CN201280004518.1A CN103299087B (zh) 2011-01-06 2012-01-05 具有履带式行驶装置的作业机的液压驱动装置
US15/262,500 US10287751B2 (en) 2011-01-06 2016-09-12 Hydraulic drive system for working machine including track device of crawler type

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011001422 2011-01-06
JP2011-001422 2011-01-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/976,232 A-371-Of-International US20130287601A1 (en) 2011-01-06 2012-01-05 Hydraulic drive system for working machine including track device of crawler type
US15/262,500 Continuation US10287751B2 (en) 2011-01-06 2016-09-12 Hydraulic drive system for working machine including track device of crawler type

Publications (1)

Publication Number Publication Date
WO2012093703A1 true WO2012093703A1 (ja) 2012-07-12

Family

ID=46457553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050126 WO2012093703A1 (ja) 2011-01-06 2012-01-05 履帯式走行装置を備えた作業機の油圧駆動装置

Country Status (5)

Country Link
US (2) US20130287601A1 (ja)
EP (1) EP2662576B1 (ja)
JP (1) JP5750454B2 (ja)
CN (1) CN103299087B (ja)
WO (1) WO2012093703A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049102A (ja) * 2017-09-07 2019-03-28 日立建機株式会社 油圧作業機械

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548306B2 (ja) * 2011-03-24 2014-07-16 株式会社小松製作所 作業機制御システム、建設機械及び作業機制御方法
JP5878811B2 (ja) * 2012-04-10 2016-03-08 日立建機株式会社 建設機械の油圧駆動装置
CN104285014B (zh) * 2012-05-01 2016-11-16 日立建机株式会社 混合动力式作业机械
US9835180B2 (en) * 2013-01-25 2017-12-05 Hitachi Construction Machinery Tierra Co., Ltd Hydraulic drive system for construction machine
CN104995412B (zh) * 2013-03-22 2017-03-29 株式会社日立建机Tierra 工程机械的液压驱动装置
JP6021227B2 (ja) 2013-11-28 2016-11-09 日立建機株式会社 建設機械の油圧駆動装置
JP6021226B2 (ja) 2013-11-28 2016-11-09 日立建機株式会社 建設機械の油圧駆動装置
KR101798914B1 (ko) * 2013-12-26 2017-11-17 두산인프라코어 주식회사 건설기계의 메인컨트롤밸브의 제어 방법 및 제어 장치
CN104179738B (zh) * 2014-08-07 2016-04-13 龙工(上海)精工液压有限公司 一种滑移装载机开式液压系统
SE542526C2 (en) 2015-10-19 2020-06-02 Husqvarna Ab Energy buffer arrangement and method for remote controlled demolition robot
SE542525C2 (en) 2015-10-19 2020-06-02 Husqvarna Ab Automatic tuning of valve for remote controlled demolition robot
SE539241C2 (en) 2015-10-19 2017-05-23 Husqvarna Ab Adaptive control of hydraulic tool on remote demolition robot
JP6682476B2 (ja) * 2017-06-29 2020-04-15 株式会社クボタ 作業機
DE102017008359A1 (de) * 2017-09-06 2019-03-07 Hydac Fluidtechnik Gmbh Ventil
US10808733B2 (en) 2019-03-05 2020-10-20 Deere & Company Open center to open center load sense conversion valve and hydraulic systems therewith
US11053958B2 (en) * 2019-03-19 2021-07-06 Caterpillar Inc. Regeneration valve for a hydraulic circuit
JP7404170B2 (ja) * 2020-06-25 2023-12-25 株式会社小松製作所 作業機械の方位を較正するためのシステムおよび方法
US11680551B2 (en) * 2021-06-11 2023-06-20 Sun Hydraulics, Llc Pressure-compensated proportional flow control valve with an integrated turbine for flow rate sensing
CN114809173A (zh) * 2022-03-23 2022-07-29 中联重科股份有限公司 正流量挖掘机及其控制方法及装置、控制器和存储介质
CN114622618A (zh) * 2022-04-11 2022-06-14 华侨大学 新型负载转速双敏感系统、工程机械装置及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648197A (ja) * 1992-08-04 1994-02-22 Komatsu Ltd 油圧走行車両用油圧回路の直進補償装置
JPH06330901A (ja) * 1993-05-26 1994-11-29 Hitachi Constr Mach Co Ltd 流量制御装置
JPH0776863A (ja) * 1993-09-09 1995-03-20 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JP2001193705A (ja) 2000-01-12 2001-07-17 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP2003004003A (ja) * 2001-06-22 2003-01-08 Kobelco Contstruction Machinery Ltd 油圧ショベルの油圧制御回路
JP2003113806A (ja) * 2001-10-01 2003-04-18 Hitachi Constr Mach Co Ltd 走行式建設機械の油圧駆動装置
JP2006082767A (ja) 2004-09-17 2006-03-30 Hitachi Constr Mach Co Ltd 走行式建設機械の油圧駆動装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3321483A1 (de) * 1983-06-14 1984-12-20 Linde Ag, 6200 Wiesbaden Hydraulische einrichtung mit einer pumpe und mindestens zwei von dieser beaufschlagten verbrauchern hydraulischer energie
KR940009219B1 (ko) * 1989-03-30 1994-10-01 히다찌 겐끼 가부시기가이샤 장궤식차량의 유압구동장치
DE69023116T2 (de) * 1989-07-27 1996-03-28 Hitachi Construction Machinery Anordnung zur steuerung einer hydraulischen pumpe.
US5129229A (en) * 1990-06-19 1992-07-14 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system for civil-engineering and construction machine
DE69128708T2 (de) * 1990-09-11 1998-08-20 Hitachi Construction Machinery Hydraulisches steuerungssystem für erdbaumaschine
WO1992006306A1 (en) * 1990-09-28 1992-04-16 Hitachi Construction Machinery Co., Ltd. Control system of hydraulic pump
US5289679A (en) * 1991-05-09 1994-03-01 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system with pressure compensating valve
DE4423572A1 (de) * 1994-07-05 1996-01-11 Caterpillar Inc Load-Sensing-Hydrauliksystem mit Kompensation einer DELTAp-Abweichung
US5937645A (en) * 1996-01-08 1999-08-17 Nachi-Fujikoshi Corp. Hydraulic device
US6050090A (en) * 1996-06-11 2000-04-18 Kabushiki Kaisha Kobe Seiko Sho Control apparatus for hydraulic excavator
DE69918803T2 (de) * 1998-12-03 2005-08-04 Hitachi Construction Machinery Co., Ltd. Hydraulisches antriebsaggregat
US6408622B1 (en) * 1998-12-28 2002-06-25 Hitachi Construction Machinery Co., Ltd. Hydraulic drive device
DE19904616A1 (de) * 1999-02-05 2000-08-10 Mannesmann Rexroth Ag Steueranordnung für wenigstens zwei hydraulische Verbraucher und Druckdifferenzventil dafür
JP3612256B2 (ja) * 1999-12-22 2005-01-19 新キャタピラー三菱株式会社 作業機械の油圧回路
EP1164297B1 (en) * 2000-01-25 2005-08-31 Hitachi Construction Machinery Co., Ltd. Hydraulic driving device
JP4212225B2 (ja) * 2000-07-28 2009-01-21 株式会社小松製作所 建設機械における走行油圧回路
GB0522719D0 (en) * 2005-11-08 2005-12-14 Agco Gmbh Hydraulic system for utility vehicles, in particular agricultural tractors
GB2436856A (en) * 2006-04-07 2007-10-10 Agco Gmbh Pressure control for system with primary and secondary consumers
JP5150425B2 (ja) * 2008-09-11 2013-02-20 川崎重工業株式会社 油浸型ソレノイドの調整ネジ構造及びそれを備える油浸型ソレノイド
JP5135169B2 (ja) * 2008-10-31 2013-01-30 日立建機株式会社 建設機械の油圧駆動装置
JP5368414B2 (ja) * 2010-11-05 2013-12-18 日立建機株式会社 排気ガス浄化装置を備えた建設機械用油圧駆動システム
KR101953418B1 (ko) * 2011-10-20 2019-02-28 가부시키가이샤 히다치 겡키 티에라 전동식 유압 작업 기계의 유압 구동 장치
JP5338885B2 (ja) * 2011-11-10 2013-11-13 Smc株式会社 ピンチバルブ
JP5978035B2 (ja) * 2012-07-13 2016-08-24 株式会社フジキン 流体制御器用アクチュエータ
US9835180B2 (en) * 2013-01-25 2017-12-05 Hitachi Construction Machinery Tierra Co., Ltd Hydraulic drive system for construction machine
JP6021227B2 (ja) * 2013-11-28 2016-11-09 日立建機株式会社 建設機械の油圧駆動装置
US10677017B2 (en) * 2013-12-05 2020-06-09 Schlumberger Technology Corporation System and methodology for utilizing a flow control valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648197A (ja) * 1992-08-04 1994-02-22 Komatsu Ltd 油圧走行車両用油圧回路の直進補償装置
JPH06330901A (ja) * 1993-05-26 1994-11-29 Hitachi Constr Mach Co Ltd 流量制御装置
JPH0776863A (ja) * 1993-09-09 1995-03-20 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JP2001193705A (ja) 2000-01-12 2001-07-17 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP2003004003A (ja) * 2001-06-22 2003-01-08 Kobelco Contstruction Machinery Ltd 油圧ショベルの油圧制御回路
JP2003113806A (ja) * 2001-10-01 2003-04-18 Hitachi Constr Mach Co Ltd 走行式建設機械の油圧駆動装置
JP2006082767A (ja) 2004-09-17 2006-03-30 Hitachi Constr Mach Co Ltd 走行式建設機械の油圧駆動装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049102A (ja) * 2017-09-07 2019-03-28 日立建機株式会社 油圧作業機械
US11274418B2 (en) 2017-09-07 2022-03-15 Hitachi Construction Machinery Co., Ltd. Hydraulic work machine

Also Published As

Publication number Publication date
US10287751B2 (en) 2019-05-14
US20160376769A1 (en) 2016-12-29
EP2662576A4 (en) 2018-01-10
US20130287601A1 (en) 2013-10-31
JPWO2012093703A1 (ja) 2014-06-09
CN103299087A (zh) 2013-09-11
EP2662576A1 (en) 2013-11-13
CN103299087B (zh) 2016-07-06
EP2662576B1 (en) 2021-06-02
JP5750454B2 (ja) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5750454B2 (ja) 履帯式走行装置を備えた作業機の油圧駆動装置
JP5297187B2 (ja) 圧力補償装置を有する油圧システム
WO2015064025A1 (ja) 建設機械の油圧駆動システム
JP6001846B2 (ja) 油圧制御装置、及びそれを備える建設機械
JP6730798B2 (ja) 油圧駆動装置
WO2015080112A1 (ja) 建設機械の油圧駆動装置
US10969026B2 (en) Valve device
JP2010528244A (ja) 外部圧力補償器を有する油圧システム
JP6840756B2 (ja) ショベル、ショベル用コントロールバルブ
JP6286216B2 (ja) 作業機の制御システム及び低圧選択回路
JP6307292B2 (ja) 作業機の制御システム
JP6194259B2 (ja) 作業機の制御システム
WO2019049327A1 (ja) 油圧駆動装置
JP2007120573A (ja) 油圧制御装置
WO2015040800A1 (ja) 液圧駆動装置
JP2005119619A (ja) 走行式建設機械の油圧駆動装置
WO2021124767A1 (ja) 建設機械の油圧回路
JP7121641B2 (ja) 流体圧制御装置
JP2005096704A (ja) 走行式建設機械の油圧駆動装置
JP2018128066A (ja) 油圧駆動装置
JP2004270780A (ja) 建設機械の油圧駆動装置
JP2017218988A (ja) ポンプ装置
JP2018128063A (ja) 油圧駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551877

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13976232

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012732178

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE