WO2021124767A1 - 建設機械の油圧回路 - Google Patents

建設機械の油圧回路 Download PDF

Info

Publication number
WO2021124767A1
WO2021124767A1 PCT/JP2020/042803 JP2020042803W WO2021124767A1 WO 2021124767 A1 WO2021124767 A1 WO 2021124767A1 JP 2020042803 W JP2020042803 W JP 2020042803W WO 2021124767 A1 WO2021124767 A1 WO 2021124767A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling
switching valve
negative control
pressure
working machine
Prior art date
Application number
PCT/JP2020/042803
Other languages
English (en)
French (fr)
Inventor
純弥 小野
Original Assignee
ヤンマーパワーテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマーパワーテクノロジー株式会社 filed Critical ヤンマーパワーテクノロジー株式会社
Publication of WO2021124767A1 publication Critical patent/WO2021124767A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"

Definitions

  • the present invention relates to a hydraulic circuit of a construction machine.
  • Patent Document 1 discloses a hydraulic circuit of a construction machine having a split flow type variable displacement pump that is negatively controlled (hereinafter, also referred to as negative control control).
  • the present invention is a hydraulic circuit of a construction machine having a split flow type variable displacement pump controlled by a negative controller, and provides smooth running performance even when the amount of operation to the left and right traveling motors is different.
  • the purpose is to provide a hydraulic circuit for construction machinery that can be secured.
  • the hydraulic circuit of the construction machine of the present invention includes a split flow type variable capacity pump having a first discharge port and a second discharge port, and a first traveling motor driven by pressure oil discharged from the variable capacity pump.
  • a split flow type variable capacity pump having a first discharge port and a second discharge port
  • a first traveling motor driven by pressure oil discharged from the variable capacity pump.
  • 2 Travel motor 1st working machine actuator, 2nd working machine actuator, 1st center bypass oil passage from the 1st discharge port to the oil tank, and 2nd center bypass from the 2nd discharge port to the oil tank.
  • the first negative pump throttle and the second negative pump throttle arranged at the most downstream of the first center bypass oil passage and the second center bypass oil passage, and the first negative pump throttle and the second negative pump throttle, respectively.
  • An output means that outputs the smaller pressure of the upstream pressure as a negative pressure, a control device that controls the discharge amount of the variable displacement pump by a hydraulic signal corresponding to the negative pressure, and a control device.
  • a first traveling direction switching valve arranged in the first center bypass oil passage and controlling the first traveling motor, and a second traveling vehicle arranged in the second center bypass oil passage and controlling the second traveling motor.
  • a directional control valve for the second work machine that controls the work machine actuator, The first traveling operation lever for operating the first traveling direction switching valve, the second traveling operating lever for operating the second traveling direction switching valve, and the first working machine direction switching valve are provided.
  • a traveling detection means for detecting that at least one of the first traveling motor and the second traveling motor is being driven and transmitting a traveling detection signal is provided.
  • the bleed-off openings of the first traveling direction switching valve and the second traveling direction switching valve are such that the operating amounts of the first traveling operating lever and the second traveling operating lever reach predetermined values and the first traveling motor And has an opening characteristic corresponding to the maximum discharge amount of the variable displacement pump when the second traveling motor starts driving.
  • the bleed-off openings of the directional switching valve for the first working machine and the directional switching valve for the second working machine have opening characteristics corresponding to the discharge amount of the variable displacement pump controlled based on the negative control pressure.
  • the first traveling direction switching valve and The bleed-off opening of the second traveling direction switching valve is variable when the operating amount of the first traveling operation lever and the second traveling operation lever reaches a predetermined value and the first traveling motor and the second traveling motor start driving. It has an opening characteristic corresponding to the maximum discharge amount of the capacity pump. Therefore, even when the negative control is cut off at the time of travel detection and the discharge amount of the variable displacement pump is maximized, the operation amount of the travel operation lever is smaller, that is, the first travel direction switching valve or the second travel direction.
  • An appropriate amount of pressure oil can be bleeded from the bleed-off opening of the switching valve, suppressing the occurrence of abnormal boosting in the first traveling directional switching valve or the second traveling directional switching valve, and the operating amount of the traveling operation lever can be reduced. It is possible to prevent a sudden decrease in the traveling speed of the larger traveling motor. As a result, smooth running performance can be ensured.
  • the hydraulic excavator 1 includes a lower traveling body 2, a working machine 3, and an upper traveling body 4.
  • the lower traveling body 2 is driven by receiving power from the engine 42 to drive the hydraulic excavator 1.
  • the lower traveling body 2 includes a pair of left and right crawlers 21 and 21 and a pair of left and right traveling motors 22 and 22 (the right traveling motor 22 is not shown in FIG. 1).
  • the left and right traveling motors 22, 22 which are hydraulic motors drive the left and right crawlers 21 and 21, respectively, so that the hydraulic excavator 1 can move forward and backward.
  • the lower traveling body 2 is provided with a blade 23 and a blade lift cylinder 24 which is a hydraulic actuator for rotating the blade 23 in the vertical direction.
  • the work machine 3 is driven by receiving power from the engine 42 to perform excavation work such as earth and sand.
  • the work machine 3 includes a boom 31, an arm 32, and a bucket 33, and by driving these independently, excavation work is possible.
  • the boom 31, arm 32, and bucket 33 correspond to working portions, respectively, and the hydraulic excavator 1 has a plurality of working portions.
  • the boom 31 is rotated by a boom cylinder 31a whose base end is supported by the front portion of the upper swing body 4 and which can be expanded and contracted.
  • the arm 32 is rotated by an arm cylinder 32a whose base end portion is supported by the tip end portion of the boom 31 and which can be expanded and contracted.
  • the bucket 33 is rotated by a bucket cylinder 33a whose base end portion is supported by the tip end portion of the arm 32 and which can be expanded and contracted.
  • the boom cylinder 31a, arm cylinder 32a, and bucket cylinder 33a correspond to a hydraulic actuator that drives a working unit.
  • the bucket 33 is a container-shaped member provided at the tip of the work machine 3 and provided with claws for performing excavation work.
  • the bucket 33 is rotatably attached to the tip of the arm 32 via a pin 34. Further, the bucket 33 is connected to the bucket cylinder 33a via a link mechanism 35.
  • the upper swivel body 4 is configured to be swivelable with respect to the lower traveling body 2 via a swivel bearing (not shown).
  • a control unit 41, an engine 42, a swivel base 43, a swivel motor 44, and the like are arranged on the upper swivel body 4.
  • the upper swing body 4 swivels via the swivel bearing by the driving force of the swivel motor 44, which is a hydraulic motor.
  • the upper swing body 4 is provided with a plurality of hydraulic pumps (not shown in FIG. 1) driven by the engine 42. These hydraulic pumps supply pressure oil to the traveling motors 22, 22, the swivel motor 44, the blade lift cylinder 24, the boom cylinder 31a, the arm cylinder 32a, the bucket cylinder 33a, and the like.
  • a cockpit 411 is arranged in the cockpit 41.
  • a pair of work operation levers 421 and 412 are arranged on the left and right sides of the driver's seat 411, and a pair of travel operation levers 413 and 413 are arranged in front of the driver's seat 411.
  • the operator controls the engine 42, each hydraulic motor, each hydraulic actuator, etc. by sitting on the driver's seat 411 and operating the work operation levers 421, 412, the travel operation levers 413, 413, etc., and travels and turns. , Work, etc. can be performed.
  • the hydraulic excavator 1 has an integrated controller 7 (not shown in FIG. 1) as a control device.
  • the integrated controller 7 controls the control system of the hydraulic excavator 1 and outputs the control instruction to the hydraulic pump and the control instruction to the engine 42 described above.
  • the hydraulic circuit 5 included in the hydraulic excavator 1 will be described with reference to FIG.
  • the hydraulic circuit 5 includes a first traveling motor 22a, a second traveling motor 22b (either a left traveling motor 22 or a right traveling motor 22), a first working machine actuator 30a, a second working machine actuator 30b, and a third working machine actuator. It has 30c (any of boom cylinder 31a, arm cylinder 32a, bucket cylinder 33a), a blade lift cylinder 24, a swivel motor 44, a variable displacement pump 51, a fixed capacitance pump 52, and a pilot pump 53.
  • variable displacement pump 51 and the fixed capacitance pump 52 are driven by the engine 42, and the hydraulic actuators (first traveling motor 22a, second traveling motor 22b, first working machine actuator 30a, second working machine actuator 30b, third working machine).
  • the pressure oil supplied to the actuator 30c, the blade lift cylinder 24, and the swivel motor 44) is discharged.
  • the variable displacement pump 51 supplies pressure oil to the first traveling motor 22a, the second traveling motor 22b, the first working machine actuator 30a, the second working machine actuator 30b, the third working machine actuator 30c, and the blade lift cylinder 24.
  • the fixed capacity pump 52 is driven by supplying pressure oil to the swivel motor 44.
  • the variable displacement pump 51 can control the discharge amount of pressure oil by changing the inclination angle of the movable swash plate 51b by driving the pump regulator 51a.
  • the pump regulator 51a is driven by the pressure of the pilot oil (pilot pressure) discharged from the pilot pump 53.
  • An electromagnetic proportional valve 51c for controlling the pump regulator 51a is provided in the oil passage 53a between the pump regulator 51a and the pilot pump 53.
  • the electromagnetic proportional valve 51c can regulate the pressure signal (pilot signal pressure) input to the pump regulator 51a by a control command from the integrated controller 7.
  • the variable displacement pump 51 is a so-called split flow type hydraulic pump having a first discharge port P1 and a second discharge port P2.
  • the pressure oil discharged from the first discharge port P1 is supplied to the first traveling direction switching valve 55e and the first working machine direction switching valve 55a, which will be described later, via the first center bypass oil passage 51d.
  • the pressure oil discharged from the second discharge port P2 passes through the second center bypass oil passage 51e to the second traveling direction switching valve 55f, the second working machine direction switching valve 55b, and the third working machine direction, which will be described later. It is supplied to the switching valve 55c and the blade directional switching valve 55d.
  • the first negative control throttle 51f is provided at the most downstream of the first center bypass oil passage 51d.
  • the first negative control throttle 51f limits the flow of pressure oil flowing through the first center bypass oil passage 51d to generate a first negative control pressure upstream of the first negative control throttle 51f.
  • a second negative control throttle 51 g is provided at the most downstream of the second center bypass oil passage 51e.
  • the second negative control throttle 51g limits the flow of the pressure oil flowing through the second center bypass oil passage 51e to generate a second negative control pressure upstream of the second negative control throttle 51g.
  • the low-pressure selection valve 51j (corresponding to the output means) is a valve that selects and outputs a low-pressure pressure oil from the pressure oils flowing in each of the first center bypass oil passage 51d and the second center bypass oil passage 51e.
  • the low pressure selection valve 51j has three ports 511,512,513, the first port 511 is connected to the first center bypass oil passage 51d, and the second port 512 is connected to the second center bypass oil passage 51e. Has been done.
  • the third port 513 is connected to the negative control pressure sensor 51k.
  • the low pressure selection valve 51j can be switched to a plurality of positions by sliding the spool 514.
  • the spool 514 receives the first negative control pressure and the second negative control pressure so as to oppose each other, and changes the position according to the differential pressure between the first negative control pressure and the second negative control pressure.
  • the spool 514 is held in the neutral position shown in FIG. 2 by the urging force of the spring. In the neutral position, all three ports 511, 512, 513 communicate with each other, and the negative control pressure sensor 51k detects a pressure corresponding to the average of the first negative control pressure and the second negative control pressure.
  • the spool 514 moves to the left in FIG. At this position, the second center bypass oil passage 51e is cut off, and the first center bypass oil passage 51d is connected to the negative control pressure sensor 51k.
  • the negative control pressure sensor 51k detects the first negative control pressure on the low pressure side of the first negative control pressure and the second negative control pressure.
  • the spool 514 moves to the right in FIG. At this position, the first center bypass oil passage 51d is cut off, and the second center bypass oil passage 51e is connected to the negative control pressure sensor 51k.
  • the negative control pressure sensor 51k detects the second negative control pressure on the low pressure side of the first negative control pressure and the second negative control pressure. As described above, the negative control pressure sensor 51k detects the negative control pressure on the low pressure side of the first negative control pressure and the second negative control pressure, converts the detected value into an electric signal, and converts the detected value into an electric signal to the integrated controller 7 as an electric negative control signal pressure. Output to.
  • the first negative control relief valve 51m is arranged in parallel with the first negative control throttle 51f.
  • the first negative control relief valve 51m uses the pressure oil of the first center bypass oil passage 51d as an oil tank when the pressure of the first center bypass oil passage 51d on the upstream side of the first negative control throttle 51f exceeds a predetermined relief pressure. Miss to.
  • the first negative control relief valve 51m discharges the pressure oil to the oil tank and the first negative control pressure. Can be controlled to less than the applied relief pressure.
  • the second negative control relief valve 51n is arranged in parallel with the second negative control throttle 51g, and when the second negative control pressure upstream of the second negative control throttle 51g becomes equal to or higher than the preset relief pressure, The pressure oil can be discharged to the oil tank and the second negative control pressure can be controlled to be less than the applied relief pressure.
  • the pressure oil discharged from the fixed capacity pump 52 is supplied to the turning direction switching valve 55g, which will be described later, via the third center bypass oil passage 52a.
  • a direction switching valve 55 is provided.
  • the directional control valve 55 is a pilot-type directional control valve capable of switching the direction and capacity of the pressure oil pumped from the variable displacement pump 51 and the fixed capacitance pump 52 to the hydraulic actuator.
  • the directional control valve 55 can be switched to a plurality of positions by sliding the spool. When no pilot signal pressure is applied to either of the two pilot ports of the directional control valve 55, the directional control valve 55 is held in the neutral position by the urging force of the spring.
  • the direction switching valve 55 When the direction switching valve 55 is in the neutral position, the pressure oil is not supplied to the corresponding hydraulic actuator and passes through the first center bypass oil passage 51d, the second center bypass oil passage 51e, and the third center bypass oil passage 52a. Flows into the oil tank.
  • the directional control valve 55 when a pilot signal pressure is applied to any of the pilot ports of the directional control valve 55, the directional control valve 55 is switched from the neutral position to another position, and the pressure oil is supplied to the corresponding hydraulic actuator. ..
  • the first working machine direction switching valve 55a corresponding to the first working machine actuator 30a
  • the second working machine direction switching valve 55b corresponding to the second working machine actuator 30b
  • the third working machine actuator 30c The third working machine direction switching valve 55c corresponding to the above, the blade direction switching valve 55d corresponding to the blade lift cylinder 24, the first traveling direction switching valve 55e corresponding to the first traveling motor 22a, and the second traveling motor 22b.
  • the corresponding second traveling direction switching valve 55f and the swivel direction switching valve 55g corresponding to the swivel motor 44 are provided. These directional control valves are collectively called control valves.
  • the pilot pump 53 mainly discharges pilot oil as a command input to the directional control valve 55.
  • FIG. 2 does not show the oil passage from the pilot pump 53 to the directional control valve 55.
  • the pilot pump 53 is driven by the engine 42 and discharges pressure oil to generate a pilot signal pressure in the oil passage 53a.
  • the hydraulic circuit 5 includes a pair of work operation levers 421 and 412 (corresponding to the first work operation lever and the second work operation lever) and a pair of travel operation levers 413 and 413 (first travel operation lever and second). (Corresponding to the traveling operation lever) is connected.
  • the first work operation lever is mainly for operating the first work machine actuator 30a, and is a remote control valve for switching the direction and pressure of the pilot pressure oil supplied to the direction switching valve 55a for the first work machine.
  • the second work operation lever is mainly for operating the second work machine actuator 30b, and is a remote control valve for switching the direction and pressure of the pilot pressure oil supplied to the direction switching valve 55b for the second work machine.
  • first traveling operation lever is for operating the first traveling motor 22a, and has a remote control valve for switching the direction and pressure of the pilot pressure oil supplied to the first traveling direction switching valve 55e. ..
  • the second traveling operation lever is for operating the second traveling motor 22b, and has a remote control valve for switching the direction and pressure of the pilot pressure oil supplied to the second traveling direction switching valve 55f.
  • the oil passage 53a between the pilot pump 53 and the pump regulator 51a is branched into a travel detection oil passage 53b.
  • the travel detection oil passage 53b is the first travel detection direction that moves in conjunction with the second travel detection direction switching valve 56f that moves in conjunction with the second travel direction switching valve 55f and the first travel direction switching valve 55e. It reaches the oil tank through the switching valve 56e.
  • the first traveling direction switching valve 56e is integrated with the first traveling direction switching valve 55e and moves in conjunction with the first traveling direction switching valve 55e.
  • the first travel detection direction switching valve 56e can be switched to a plurality of positions by sliding the spool. When the first traveling direction switching valve 55e is held in the neutral position, the first traveling direction switching valve 56e is also held in the neutral position. When the first traveling direction switching valve 55e is switched from the neutral position to another position, the first traveling direction switching valve 56e is also switched from the neutral position to another position in conjunction with this.
  • the first travel detection direction switching valve 56e When the first travel detection direction switching valve 56e is in the neutral position, the first travel detection direction switching valve 56e does not block the travel detection oil passage 53b. Therefore, the pressure oil can be distributed through the travel detection oil passage 53b. On the other hand, when the first travel detection direction switching valve 56e is in a position other than the neutral position, the first travel detection direction switching valve 56e shuts off the travel detection oil passage 53b. Similarly, the second travel detection direction switching valve 56f can be switched to a communication position for communicating the travel detection oil passage 53b or a shutoff position for blocking the travel detection oil passage 53b.
  • the travel detection oil passage 53b is branched into a signal oil passage 53c on the upstream side of the second travel detection direction switching valve 56f.
  • the signal oil passage 53c is connected to the travel detection pressure sensor 53d.
  • the travel operation levers 413 and 413 are operated, and the first travel detection direction switching valve 56e linked with the first travel direction switching valve 55e or the second travel detection direction switching valve interlocked with the second travel direction switching valve 55f.
  • the travel detection oil passage 53b is blocked and a pressure is applied downstream of the throttle 53e, and this pressure is applied to the travel detection pressure sensor 53d via the signal oil passage 53c. Is entered in.
  • the travel detection pressure sensor 53d converts the input signal pressure into an electric signal and outputs the travel detection signal to the integrated controller 7. As a result, the travel detection pressure sensor 53d can detect that at least one of the first travel motor 22a and the second travel motor 22b is being driven and transmit a travel detection signal.
  • a negative controller pressure sensor 51k, a travel detection pressure sensor 53d, an electromagnetic proportional valve 51c, and the like are electrically connected to the integrated controller 7.
  • the integrated controller 7 sends a control command to the electromagnetic proportional valve 51c.
  • the operation of the electromagnetic proportional valve 51c is controlled by the integrated controller 7, and the pilot signal pressure (corresponding to the hydraulic signal) to the pump regulator 51a can be adjusted according to the magnitude of the applied control current value. That is, the control command is, for example, a control current value.
  • the integrated controller 7 generates a control command based on the negative control signal pressure input from the negative control pressure sensor 51k. As a result, the integrated controller 7 can control the discharge amount of the variable displacement pump 51 based on the hydraulic signal according to the negative control pressure. Negative control can also be performed by directly inputting the negative control pressure to the pump regulator 51a.
  • the larger the lever operation amount of the first work operation lever that is, the larger the required flow rate of the first work machine actuator 30a, the more the direction switching for the first work machine communicating with the first center bypass oil passage 51d.
  • the bleed-off opening of the valve 55a becomes smaller, the flow rate of the pressure oil passing through the first negative control throttle 51f decreases, and the first negative control pressure becomes lower.
  • the discharge amount of the variable displacement pump 51 is increased.
  • the discharge amount of the variable displacement pump 51 is controlled so as to increase as the lever operation amount increases.
  • the integrated controller 7 transmits a control command to the electromagnetic proportional valve 51c so as to shut off the hydraulic signal to the pump regulator 51a.
  • the discharge amount of the variable displacement pump 51 is maximized.
  • FIG. 3 shows the opening characteristics of the bleed-off opening of the first traveling direction switching valve 55e (or the second traveling direction switching valve 55f) and the direction switching valve 55a for the first working machine (or the direction switching for the second working machine). It is a figure which shows the opening characteristic of the bleed-off opening of a valve 55b).
  • 91 shown by a one-point chain line is the opening area characteristic of the bleed-off opening of the directional switching valve 55a for the first working machine
  • 92 shown by the solid line is the bleed-off opening of the directional switching valve 55e for the first traveling machine. It is an opening area characteristic.
  • the opening area characteristic of the bleed-off opening of the directional switching valve 55b for the second working machine is the same as that of the directional switching valve 55a for the first working machine, and the opening area of the bleed-off opening of the directional switching valve 55f for the second traveling machine.
  • the characteristics are the same as those of the first traveling direction switching valve 55e.
  • the opening area A1 of the bleed-off opening when the lever operating amount of the first work operating lever is L1 is an opening area capable of passing the minimum discharge amount of the variable displacement pump 51. That is, the bleed-off opening of the directional control valve 55a for the first work machine is the variable capacity pump 51 when the operation amount of the first work operation lever reaches a predetermined value L1 and the first work machine actuator 30a starts driving. It has an opening characteristic corresponding to the minimum discharge amount.
  • the bleed-off opening of the directional control valve 55a for the first working machine is an opening area characteristic optimized for negative control, which is an opening area characteristic according to the discharge amount of the variable displacement pump 51 controlled by a hydraulic signal according to the negative control pressure. It can be said that it has.
  • the opening characteristic of the bleed-off opening of the direction switching valve 55 depends on the discharge amount of the variable displacement pump 51 controlled by the negative control pressure of the center bypass oil passage communicating with the bleed-off opening. Therefore, even when the lever operation amount of the first work operation lever is small, the discharge amount of the variable displacement pump 51 is reduced due to the characteristics of the negative control, so that the flow rate of the pressure oil flowing through the first center bypass oil passage 51d is small. As a result, the area of the bleed-off opening in the negative control with respect to the lever operation amount is set smaller than the area of the bleed-off opening in the so-called bleed-off control.
  • the bleed-off openings of the first traveling direction switching valve 55e and the second traveling direction switching valve 55f are tentatively opened to the first working machine direction switching valve 55a. If the opening area characteristics optimized for negative control are set in the same manner as the bleed-off opening of the directional control valve 55b for the second working machine, the following problems may occur.
  • the lever operation amount of the first travel operation lever is large and the lever operation amount of the second travel operation lever is small, that is, the required flow rate of the first travel motor 22a is large and the required flow rate of the second travel motor 22b is large.
  • the first negative control pressure becomes lower than the second negative control pressure
  • the discharge amount of the variable capacity pump 51 is controlled by the first negative control pressure on the low pressure side, and the variable capacity pump 51 runs from the first discharge port P1 to the first run.
  • a large flow rate of pressure oil is discharged according to the required flow rate of the motor 22a.
  • the bleed-off openings of the first traveling direction switching valve 55e and the second traveling direction switching valve 55f are openings corresponding to the required flow rates of the pressure oils of the first traveling motor 22a and the second traveling motor 22b. It is configured to have an opening area characteristic optimized for bleed-off control, which is an area characteristic.
  • the opening area A2 of the bleed-off opening when the lever operating amount of the first traveling operation lever is L1 is an opening area capable of passing the maximum discharge amount of the variable displacement pump 51.
  • the opening area A2 is larger than the opening area A1. That is, the bleed-off opening of the first traveling direction switching valve 55e is the maximum discharge of the variable displacement pump 51 when the operating amount of the first traveling operating lever reaches a predetermined value L1 and the first traveling motor 22a starts driving. It has an opening characteristic corresponding to the amount. It can be said that the bleed-off opening of the first traveling direction switching valve 55e has an opening area characteristic optimized for bleed-off control, which is an opening area characteristic according to the required flow rate of the pressure oil of the first traveling motor 22a.
  • the hydraulic circuit 5 of the hydraulic excavator 1 is discharged from the split flow type variable capacity pump 51 having the first discharge port P1 and the second discharge port P2 and the variable capacity pump 51.
  • the first traveling motor 22a, the second traveling motor 22b, the first working machine actuator 30a, and the second working machine actuator 30b driven by the pressure oil, and the first center bypass oil passage from the first discharge port P1 to the oil tank.
  • a low pressure selection valve 51j that outputs the smaller pressure of the pressure on the upstream side of the first negative control throttle 51f and the second negative control throttle 51g as the negative control pressure, and the hydraulic signal corresponding to the negative control pressure.
  • the integrated controller 7 that controls the discharge amount of the variable displacement pump 51 by A second traveling direction switching valve 55e arranged in the first center bypass oil passage 51d and controlling the first traveling motor 22a and a second traveling direction switching valve 55e arranged in the second center bypass oil passage 51e and controlling the second traveling motor 22b.
  • the traveling direction switching valve 55f and the first center bypass oil passage 51d are arranged, and the first working machine direction switching valve 55a for controlling the first working machine actuator 30a and the second center bypass oil passage 51e are arranged.
  • a first work operation lever for operating, a second work operation lever for operating the directional control valve 55b for the second work machine, and A travel detection pressure sensor 53d that detects that at least one of the first travel motor 22a and the second travel motor 22b is being driven and transmits a travel detection signal is provided.
  • the bleed-off openings of the first traveling direction switching valve 55e and the second traveling direction switching valve 55f are such that the operating amounts of the first traveling operation lever and the second traveling operation lever reach a predetermined value L1 and the first traveling motor It has an opening characteristic corresponding to the maximum discharge amount of the variable displacement pump 51 when the 22a and the second traveling motor 22b start driving.
  • the bleed-off openings of the directional switching valve 55a for the first working machine and the directional switching valve 55b for the second working machine have opening characteristics corresponding to the discharge amount of the variable displacement pump 51 controlled based on the negative control pressure.
  • the discharge amount of the variable displacement pump 51 becomes maximum, but the first traveling direction. Since the bleed-off openings of the switching valve 55e and the second traveling directional switching valve 55f have an opening area characteristic optimized for bleed-off control, the first traveling directional switching valve 55e having the smaller lever operation amount of the traveling operation lever Alternatively, an appropriate amount of pressure oil can be bleeded from the bleed-off opening of the second traveling direction switching valve 55f, and the occurrence of abnormal boosting in the first traveling direction switching valve 55e or the second traveling direction switching valve 55f is suppressed. Therefore, it is possible to prevent a sudden decrease in the traveling speed of the traveling motor having a larger lever operating amount of the traveling operation lever. As a result, smooth running performance can be ensured.
  • the area of the bleed-off opening of the first traveling direction switching valve and the second traveling direction switching valve is the area of the first traveling direction switching valve and the first traveling direction switching valve. It is said that the opening characteristic of the bleed-off opening of the second traveling direction switching valve is larger than the area of the bleed-off opening when the opening characteristic corresponds to the discharge amount of the variable displacement pump controlled based on the negative control pressure. It may be configured.
  • the opening area of the bleed-off opening of the first traveling direction switching valve 55e and the second traveling direction switching valve 55f is the opening characteristic of the bleed-off opening of the first traveling direction switching valve 55e and the second traveling direction switching valve 55f. It is set larger than the area of the bleed-off opening when the opening characteristic corresponds to the discharge amount of the variable capacitance pump 51 controlled based on the negative control pressure.
  • the bleed-off openings of the directional switching valve 55a for the first working machine and the directional switching valve 55b for the second working machine are the first work operation lever and the second work. It may be configured to have an opening characteristic corresponding to the minimum discharge amount of the variable displacement pump 51 when the operation amount of the operation lever reaches a predetermined value and the first work machine actuator 30a and the second work machine actuator 30b start driving. ..
  • the travel detection oil passage 53b, the travel detection pressure sensor 53d, or the like is used as the travel detection means, but the present invention is not limited thereto.
  • the travel detection means the first travel is performed by measuring the pilot secondary pressure to be depressurized by the remote control valves of the first travel operation lever and the second travel operation lever that operate the first travel motor 22a and the second travel motor 22b. It may be detected that the motor 22a and the second traveling motor 22b have been operated. Further, as the traveling detection means, a method of measuring and detecting the pressure of the first traveling motor 22a and the second traveling motor 22b with a pressure sensor or the like may be used.
  • the low pressure selection valve 51j is used as an output means for outputting the smaller of the first negative control pressure and the second negative control pressure as the negative control pressure
  • the pressure sensor detects and outputs the first negative control pressure and the second negative control pressure, respectively, and the integrated controller 7 selects and outputs the low pressure of the first negative control pressure and the second negative control pressure input from the pressure sensor. You may try to do so.
  • the present invention can be used for construction machines such as hydraulic excavators.
  • Hydraulic excavator 5 Flood control circuit 7: Integrated controller 51: Variable capacity pump 51d: 1st center bypass oil passage 51e: 2nd center bypass oil passage 51f: 1st negative control throttle 51g: 2nd negative control throttle 51j: Low pressure selection valve 51k: Negative control pressure sensor 55: Direction switching valve 55a: Direction switching valve for the first working machine 55b: Direction switching valve for the second working machine 55e: Direction switching valve for the first running 55f: Direction switching valve for the second running P1: 1st discharge port P2: 2nd discharge port

Abstract

油圧回路(5)は、ネガコン圧に応じた油圧信号により可変容量ポンプ(51)の吐出量を制御する統合コントローラ(7)と、走行検知信号を発信する走行検知用圧力センサ(53d)とを備え、走行用方向切換弁(55e,55f)のブリードオフ開口は、走行モータ(22a,22b)が駆動を開始する時の可変容量ポンプ(51)の最大吐出量に対応した開口特性を有し、作業機用方向切換弁(55a,55b)のブリードオフ開口は、ネガコン圧に基づき制御される可変容量ポンプ(51)の吐出量に対応した開口特性を有し、統合コントローラ(7)は、走行検知信号が入力されると、油圧信号を遮断して、可変容量ポンプ(51)の吐出量を最大とする。

Description

建設機械の油圧回路
 本発明は、建設機械の油圧回路に関する。
 下記特許文献1には、ネガティブコントロール制御(以下、ネガコン制御ともいう)されるスプリットフロー型の可変容量ポンプを有する建設機械の油圧回路が開示されている。
 特許文献1の油圧回路では、進行方向に対して左右の一方のクローラを大操作で、他方のクローラを小操作で行う緩旋回を行った場合、小操作を行ったクローラの走行モータの方向切換弁のブリードオフ開口に大量の圧油がブリードしようとする。ネガコン制御に最適化したブリードオフ開口の特性では、適切にブリードすることができずに回路内の圧力が上がり、エンジンストール防止のために可変容量ポンプの吐出量を下げる機能が働き、大操作を行ったクローラの走行モータの走行速度が急減に低下するという問題が発生する。
特開2012-233551号公報
 そこで、本発明は上記課題に鑑み、ネガコン制御されるスプリットフロー型の可変容量ポンプを有する建設機械の油圧回路であって、左右の走行モータへの操作量が異なる場合にも滑らかな走行性を確保できる建設機械の油圧回路を提供することを目的とする。
 本発明の建設機械の油圧回路は、第1吐出ポート及び第2吐出ポートを有するスプリットフロー型の可変容量ポンプと、前記可変容量ポンプから吐出された圧油により駆動される第1走行モータ、第2走行モータ、第1作業機アクチュエータ、及び第2作業機アクチュエータと、前記第1吐出ポートから油タンクに至る第1センターバイパス油路と、前記第2吐出ポートから油タンクに至る第2センターバイパス油路と、前記第1センターバイパス油路及び前記第2センターバイパス油路の最下流にそれぞれ配置された第1ネガコン絞り及び第2ネガコン絞りと、前記第1ネガコン絞り及び前記第2ネガコン絞りの上流側の圧力のうち小さい方の圧力をネガコン圧として出力する出力手段と、前記ネガコン圧に応じた油圧信号により前記可変容量ポンプの吐出量を制御する制御装置と、
 前記第1センターバイパス油路に配置され、前記第1走行モータを制御する第1走行用方向切換弁と、前記第2センターバイパス油路に配置され、前記第2走行モータを制御する第2走行用方向切換弁と、前記第1センターバイパス油路に配置され、前記第1作業機アクチュエータを制御する第1作業機用方向切換弁と、前記第2センターバイパス油路に配置され、前記第2作業機アクチュエータを制御する第2作業機用方向切換弁と、
 前記第1走行用方向切換弁を操作するための第1走行操作レバーと、前記第2走行用方向切換弁を操作するための第2走行操作レバーと、前記第1作業機用方向切換弁を操作するための第1作業操作レバーと、前記第2作業機用方向切換弁を操作するための第2作業操作レバーと、
 前記第1走行モータと前記第2走行モータの少なくとも一つが駆動していることを検知して走行検知信号を発信する走行検知手段と、を備え、
 前記第1走行用方向切換弁及び前記第2走行用方向切換弁のブリードオフ開口は、前記第1走行操作レバー及び前記第2走行操作レバーの操作量が所定値に達して前記第1走行モータ及び前記第2走行モータが駆動を開始する時の前記可変容量ポンプの最大吐出量に対応した開口特性を有し、
 前記第1作業機用方向切換弁及び前記第2作業機用方向切換弁のブリードオフ開口は、前記ネガコン圧に基づき制御される前記可変容量ポンプの吐出量に対応した開口特性を有し、
 前記制御装置は、前記走行検知信号が入力されると、前記油圧信号を遮断して、前記可変容量ポンプの吐出量を最大とする。
 本発明によれば、ネガコン制御されるスプリットフロー型の可変容量ポンプを有する建設機械の油圧回路において、左右の走行モータへの操作量が異なる場合であっても、第1走行用方向切換弁及び第2走行用方向切換弁のブリードオフ開口が、第1走行操作レバー及び第2走行操作レバーの操作量が所定値に達して第1走行モータ及び第2走行モータが駆動を開始する時の可変容量ポンプの最大吐出量に対応した開口特性を有するようにしている。このため、走行検知時にネガコン制御を遮断して可変容量ポンプの吐出量が最大となった際にも、走行操作レバーの操作量が小さいほうの第1走行用方向切換弁又は第2走行用方向切換弁のブリードオフ開口から適量の圧油をブリードさせることができ、第1走行用方向切換弁又は第2走行用方向切換弁での異常昇圧の発生を抑えて、走行操作レバーの操作量が大きいほうの走行モータの走行速度の急激な低下を防ぐことができる。その結果、滑らかな走行性を確保することができる。
本実施形態に係る油圧ショベルを示す側面図である。 本実施形態に係る油圧ショベルの油圧回路を示す図である。 第1走行用方向切換弁及び第1作業機用方向切換弁のブリードオフ開口の開口特性を示す図である。
 以下に、本発明の実施形態について図面を参照しながら説明する。
 [油圧ショベルの構造]
 まず、図1を参照しながら、建設機械の一例としての油圧ショベル1の概略構造について説明する。油圧ショベル1は、下部走行体2と、作業機3と、上部走行体4と、を備える。
 下部走行体2は、エンジン42からの動力を受けて駆動し、油圧ショベル1を走行させる。下部走行体2は、左右一対のクローラ21,21及び左右一対の走行モータ22,22(図1では右走行モータ22は図示していない)を備える。油圧モータである左右の走行モータ22,22が左右のクローラ21,21をそれぞれ駆動することで油圧ショベル1の前後進を可能としている。また、下部走行体2には、ブレード23、及びブレード23を上下方向に回動させるための油圧アクチュエータであるブレードリフトシリンダ24が設けられている。
 作業機3は、エンジン42からの動力を受けて駆動し、土砂等の掘削作業を行うものである。作業機3は、ブーム31、アーム32、及びバケット33を備え、これらを独立して駆動することによって掘削作業を可能としている。ブーム31、アーム32、及びバケット33は、それぞれ作業部に相当し、油圧ショベル1は、複数の作業部を有する。
 ブーム31は、基端部が上部旋回体4の前部に支持されて、伸縮自在に可動するブームシリンダ31aによって回動される。また、アーム32は、基端部がブーム31の先端部に支持されて、伸縮自在に可動するアームシリンダ32aによって回動される。そして、バケット33は、基端部がアーム32の先端部に支持されて、伸縮自在に可動するバケットシリンダ33aによって回動される。ブームシリンダ31a、アームシリンダ32a、及びバケットシリンダ33aは、作業部を駆動する油圧アクチュエータに相当する。
 バケット33は、作業機3の先端に設けられ、掘削作業を行うためのツメを備えた容器状の部材である。バケット33は、アーム32の先端にピン34を介して回動可能に取り付けられている。さらに、バケット33は、リンク機構35を介してバケットシリンダ33aと連結されている。
 上部旋回体4は、下部走行体2に対して旋回ベアリング(図示しない)を介して旋回可能に構成されている。上部旋回体4には、操縦部41、エンジン42、旋回台43、旋回モータ44等が配置されている。油圧モータである旋回モータ44の駆動力で上部旋回体4が旋回ベアリングを介して旋回する。また、上部旋回体4には、エンジン42により駆動される複数の油圧ポンプ(図1では図示していない)が配設される。これらの油圧ポンプが、走行モータ22,22、旋回モータ44、ブレードリフトシリンダ24、ブームシリンダ31a、アームシリンダ32a、及びバケットシリンダ33a等に圧油を供給する。
 操縦部41には、操縦席411が配置されている。操縦席411の左右に一対の作業操作レバー412,412、前方に一対の走行操作レバー413,413が配置されている。作業者は、操縦席411に着座して作業操作レバー412,412、走行操作レバー413,413等を操作することによって、エンジン42、各油圧モータ、各油圧アクチュエータ等の制御を行い、走行、旋回、作業等を行うことができる。
 また、油圧ショベル1は、制御装置としての統合コントローラ7(図1には図示していない)を有する。統合コントローラ7は、油圧ショベル1の制御システムを司り、上述した油圧ポンプへの制御指示やエンジン42への制御指示を出力する。
 [油圧回路の構成]
 図2を用いて、油圧ショベル1が有する油圧回路5について説明する。油圧回路5は、第1走行モータ22a、第2走行モータ22b(左走行モータ22、右走行モータ22のいずれか)、第1作業機アクチュエータ30a、第2作業機アクチュエータ30b、第3作業機アクチュエータ30c(ブームシリンダ31a、アームシリンダ32a、バケットシリンダ33aのいずれか)、ブレードリフトシリンダ24、旋回モータ44、可変容量ポンプ51、固定容量ポンプ52、およびパイロットポンプ53、を有する。
 可変容量ポンプ51及び固定容量ポンプ52は、エンジン42によって駆動され、油圧アクチュエータ(第1走行モータ22a、第2走行モータ22b、第1作業機アクチュエータ30a、第2作業機アクチュエータ30b、第3作業機アクチュエータ30c、ブレードリフトシリンダ24、旋回モータ44)へ供給される圧油を吐出する。可変容量ポンプ51は、第1走行モータ22a、第2走行モータ22b、第1作業機アクチュエータ30a、第2作業機アクチュエータ30b、第3作業機アクチュエータ30c、及びブレードリフトシリンダ24に圧油を供給して駆動する。固定容量ポンプ52は、旋回モータ44に圧油を供給して駆動する。
 可変容量ポンプ51は、ポンプレギュレータ51aの駆動により可動斜板51bの傾斜角度を変更することで圧油の吐出量を制御可能としている。ポンプレギュレータ51aは、パイロットポンプ53から吐出されたパイロット油の圧力(パイロット圧)により駆動される。
 ポンプレギュレータ51aとパイロットポンプ53との間の油路53aには、ポンプレギュレータ51aの制御用の電磁比例弁51cが設けられている。電磁比例弁51cは、統合コントローラ7からの制御指令によりポンプレギュレータ51aに入力される圧力信号(パイロット信号圧)を調圧可能となっている。
 可変容量ポンプ51は、第1吐出ポートP1と第2吐出ポートP2を有する、いわゆるスプリットフロー型の油圧ポンプである。第1吐出ポートP1から吐出された圧油は、第1センターバイパス油路51dを介して後述する第1走行用方向切換弁55e及び第1作業機用方向切換弁55aへ供給される。第2吐出ポートP2から吐出された圧油は、第2センターバイパス油路51eを介して後述する第2走行用方向切換弁55f、第2作業機用方向切換弁55b、第3作業機用方向切換弁55c、及びブレード用方向切換弁55dへ供給される。
 第1センターバイパス油路51dの最下流には、第1ネガコン絞り51fが設けられている。第1ネガコン絞り51fは、第1センターバイパス油路51dを流れる圧油の流れを制限して第1ネガコン絞り51fの上流で第1ネガコン圧を発生させる。同様に、第2センターバイパス油路51eの最下流には、第2ネガコン絞り51gが設けられている。第2ネガコン絞り51gは、第2センターバイパス油路51eを流れる圧油の流れを制限して第2ネガコン絞り51gの上流で第2ネガコン圧を発生させる。
 低圧選択弁51j(出力手段に相当する)は、第1センターバイパス油路51d及び第2センターバイパス油路51eのそれぞれを流れる圧油のうち低圧の圧油を選択して出力する弁である。低圧選択弁51jは、3つのポート511,512,513を有しており、第1ポート511が第1センターバイパス油路51dに接続され、第2ポート512が第2センターバイパス油路51eに接続されている。第3ポート513は、ネガコン圧力センサ51kに接続されている。低圧選択弁51jは、スプール514を摺動させることにより複数のポジションに切り換えることが可能である。スプール514は、第1ネガコン圧及び第2ネガコン圧を互いに抗するように受圧しており、第1ネガコン圧と第2ネガコン圧の差圧に応じてポジションを変える。
 具体的には、スプール514は、第1ネガコン圧と第2ネガコン圧が同じ場合、スプリングの付勢力により、図2に示す中立位置に保持される。中立位置では、3つのポート511,512,513がすべて連通しており、ネガコン圧力センサ51kは、第1ネガコン圧と第2ネガコン圧の平均相当の圧力を検出する。
 一方、第1ネガコン圧が第2ネガコン圧よりも低い場合、スプール514は図2で左方へ移動する。この位置では、第2センターバイパス油路51eが遮断され、第1センターバイパス油路51dがネガコン圧力センサ51kに接続される。これにより、ネガコン圧力センサ51kは、第1ネガコン圧と第2ネガコン圧のうち低圧側の第1ネガコン圧を検出する。また、第2ネガコン圧が第1ネガコン圧よりも低い場合、スプール514は図2で右方へ移動する。この位置では、第1センターバイパス油路51dが遮断され、第2センターバイパス油路51eがネガコン圧力センサ51kに接続される。これにより、ネガコン圧力センサ51kは、第1ネガコン圧と第2ネガコン圧のうち低圧側の第2ネガコン圧を検出する。以上により、ネガコン圧力センサ51kは、第1ネガコン圧と第2ネガコン圧のうち低圧側のネガコン圧を検出し、検出した値を電気信号に変換し、電気的なネガコン信号圧として統合コントローラ7に対して出力する。
 第1ネガコンリリーフ弁51mは、第1ネガコン絞り51fと並列に配置されている。第1ネガコンリリーフ弁51mは、第1ネガコン絞り51fの上流側の第1センターバイパス油路51dの圧力が所定のリリーフ圧を超えた場合に、第1センターバイパス油路51dの圧油を油タンクに逃す。これにより、第1ネガコンリリーフ弁51mは、第1ネガコン絞り51fの上流における第1ネガコン圧が予め設定されたリリーフ圧以上になった場合に、圧油を油タンクに排出して第1ネガコン圧をかかるリリーフ圧未満に制御することができる。
 同様に、第2ネガコンリリーフ弁51nは、第2ネガコン絞り51gと並列に配置されており、第2ネガコン絞り51gの上流における第2ネガコン圧が予め設定されたリリーフ圧以上になった場合に、圧油を油タンクに排出して第2ネガコン圧をかかるリリーフ圧未満に制御することができる。
 固定容量ポンプ52から吐出された圧油は、第3センターバイパス油路52aを介して後述する旋回用方向切換弁55gへと供給される。
 油圧アクチュエータ(第1作業機アクチュエータ30a、第2作業機アクチュエータ30b、第3作業機アクチュエータ30c、ブレードリフトシリンダ24、第1走行モータ22a、第2走行モータ22b、旋回モータ44)には、それぞれ対応する方向切換弁55が設けられる。方向切換弁55は、可変容量ポンプ51及び固定容量ポンプ52から油圧アクチュエータへ圧送する圧油の方向と容量を切り換え可能なパイロット式の方向切換弁である。方向切換弁55は、スプールを摺動させることにより複数のポジションに切り換えることが可能である。方向切換弁55の2つのパイロットポートのいずれにもパイロット信号圧が付与されない場合、スプリングの付勢力により、方向切換弁55は中立位置に保持される。方向切換弁55が中立位置にある場合、圧油は、対応する油圧アクチュエータに供給されず、第1センターバイパス油路51d、第2センターバイパス油路51e、及び第3センターバイパス油路52aを通って油タンクに流れる。一方、方向切換弁55の何れかのパイロットポートにパイロット信号圧が付与された場合、方向切換弁55が中立位置から他のポジションに切り換えられて、圧油は、対応する油圧アクチュエータに供給される。
 本実施形態においては、第1作業機アクチュエータ30aに対応する第1作業機用方向切換弁55a、第2作業機アクチュエータ30bに対応する第2作業機用方向切換弁55b、第3作業機アクチュエータ30cに対応する第3作業機用方向切換弁55c、ブレードリフトシリンダ24に対応するブレード用方向切換弁55d、第1走行モータ22aに対応する第1走行用方向切換弁55e、第2走行モータ22bに対応する第2走行用方向切換弁55f、旋回モータ44に対応する旋回用方向切換弁55gが設けられている。これらの方向切換弁は、まとめてコントロールバルブと呼ばれる。
 パイロットポンプ53は、主に方向切換弁55へ入力される指令としてのパイロット油を吐出する。ただし、図2ではパイロットポンプ53から方向切換弁55に至る油路は記載していない。パイロットポンプ53は、エンジン42によって駆動され、圧油を吐出することにより、油路53a内にパイロット信号圧を発生させる。
 また、油圧回路5には、一対の作業操作レバー412,412(第1作業操作レバー及び第2作業操作レバーに相当する)、一対の走行操作レバー413,413(第1走行操作レバー及び第2走行操作レバーに相当する)が接続される。第1作業操作レバーは、主として第1作業機アクチュエータ30aを操作するためのものであり、第1作業機用方向切換弁55aに供給されるパイロット圧油の向きと圧力を切り換えるためのリモコン弁を有する。第2作業操作レバーは、主として第2作業機アクチュエータ30bを操作するためのものであり、第2作業機用方向切換弁55bに供給されるパイロット圧油の向きと圧力を切り換えるためのリモコン弁を有する。また、第1走行操作レバーは、第1走行モータ22aを操作するためのものであり、第1走行用方向切換弁55eに供給されるパイロット圧油の向きと圧力を切り換えるためのリモコン弁を有する。第2走行操作レバーは、第2走行モータ22bを操作するためのものであり、第2走行用方向切換弁55fに供給されるパイロット圧油の向きと圧力を切り換えるためのリモコン弁を有する。
 パイロットポンプ53とポンプレギュレータ51aとの間の油路53aは、走行検知油路53bに分岐されている。走行検知油路53bは、第2走行用方向切換弁55fに連動して動く第2走行検知用方向切換弁56f、及び第1走行用方向切換弁55eに連動して動く第1走行検知用方向切換弁56eを通って油タンクに至る。
 第1走行検知用方向切換弁56eは、第1走行用方向切換弁55eに一体化されており、第1走行用方向切換弁55eと連動して動く。第1走行検知用方向切換弁56eは、スプールを摺動させることにより複数のポジションに切り換えることが可能である。第1走行用方向切換弁55eが中立位置に保持されている場合、第1走行検知用方向切換弁56eも中立位置に保持される。第1走行用方向切換弁55eが中立位置から他のポジションに切り換えられた場合、これに連動して第1走行検知用方向切換弁56eも中立位置から他のポジションに切り換えられる。
 第1走行検知用方向切換弁56eが中立位置にある場合、第1走行検知用方向切換弁56eは、走行検知油路53bを閉塞することがない。そのため、圧油は、走行検知油路53bを介して流通することができる。一方、第1走行検知用方向切換弁56eが中立位置以外のポジションにある場合、第1走行検知用方向切換弁56eは、走行検知油路53bを遮断する。同様に、第2走行検知用方向切換弁56fは、走行検知油路53bを連通させる連通位置又は走行検知油路53bを遮断する遮断位置に切り換わることができる。
 走行検知油路53bは、第2走行検知用方向切換弁56fよりも上流側で信号用油路53cに分岐されている。信号用油路53cは、走行検知用圧力センサ53dに接続されている。走行操作レバー413,413が操作され、第1走行用方向切換弁55eと連動する第1走行検知用方向切換弁56e又は第2走行用方向切換弁55fに連動する第2走行検知用方向切換弁56fが中立位置から中立位置以外のポジションとなることにより、走行検知油路53bが遮断されて絞り53eの下流に圧が立ち、この圧が信号用油路53cを介して走行検知用圧力センサ53dに入力される。走行検知用圧力センサ53dは、入力された信号圧を電気信号に変換し、走行検知信号として統合コントローラ7に出力する。これにより、走行検知用圧力センサ53dは、第1走行モータ22aと第2走行モータ22bの少なくとも一つが駆動していることを検知して走行検知信号を発信することができる。
 [制御系の構成]
 統合コントローラ7には、ネガコン圧力センサ51k、走行検知用圧力センサ53d、及び電磁比例弁51c等が電気的に接続されている。
 統合コントローラ7は、電磁比例弁51cに制御指令を発信する。電磁比例弁51cは、統合コントローラ7によって作動制御されており、印加される制御電流値の大きさに応じて、ポンプレギュレータ51aに対するパイロット信号圧(油圧信号に相当する)を調圧することができる。すなわち、制御指令は、例えば制御電流値である。統合コントローラ7は、ネガコン圧力センサ51kから入力されたネガコン信号圧に基づいて制御指令を生成する。これにより、統合コントローラ7は、ネガコン圧に応じた油圧信号に基づき可変容量ポンプ51の吐出量を制御することができる。なお、ポンプレギュレータ51aにネガコン圧を直接入力することでネガコン制御をすることもできる。
 ネガコン制御において、例えば、第1作業操作レバーのレバー操作量が大きくなるほど、すなわち第1作業機アクチュエータ30aの要求流量が大きくなるほど、第1センターバイパス油路51dに連通する第1作業機用方向切換弁55aのブリードオフ開口が小さくなり、第1ネガコン絞り51fを通過する圧油の流量が減少して第1ネガコン圧は低くなる。第1ネガコン圧が低くなると、可変容量ポンプ51の吐出量を増大させる。その結果、ネガコン制御では、可変容量ポンプ51の吐出量は、レバー操作量の増大に応じて増大するように制御される。
 統合コントローラ7は、走行検知用圧力センサ53dから発信された走行検知信号が入力されると、ポンプレギュレータ51aに対する油圧信号を遮断するように電磁比例弁51cに制御指令を発信する。ポンプレギュレータ51aに対する油圧信号が遮断されることにより、可変容量ポンプ51の吐出量は最大となる。
 [ブリードオフ開口]
 図3は、第1走行用方向切換弁55e(または第2走行用方向切換弁55f)のブリードオフ開口の開口特性、及び第1作業機用方向切換弁55a(または第2作業機用方向切換弁55b)のブリードオフ開口の開口特性を示す図である。図3において、一点鎖線で示す91は、第1作業機用方向切換弁55aのブリードオフ開口の開口面積特性であり、実線で示す92は、第1走行用方向切換弁55eのブリードオフ開口の開口面積特性である。なお、第2作業機用方向切換弁55bのブリードオフ開口の開口面積特性は、第1作業機用方向切換弁55aと同じであり、第2走行用方向切換弁55fのブリードオフ開口の開口面積特性は、第1走行用方向切換弁55eと同じである。
 図3に示すように、第1作業機用方向切換弁55aが中立位置にあり、第1作業操作レバー(作業操作レバー412)のレバー操作量がゼロのとき(第1作業機用方向切換弁55aに付与されるパイロット信号圧がゼロのとき)、第1センターバイパス油路51dに連通するブリードオフ開口は全開であり、開口面積は最大である。第1作業操作レバーのレバー操作量が増大するにつれ、ブリードオフ開口は閉じていき、開口面積は減少する。このとき、レバー操作量がL1までは開口面積は急激に減少し、レバー操作量がL1を超えると開口面積は緩やかに減少し、レバー操作量がL2に達するとブリードオフ開口は全閉となる。第1作業操作レバーのレバー操作量がL1に達したとき、第1作業機アクチュエータ30aが駆動を開始する。第1作業操作レバーのレバー操作量がL1のときのブリードオフ開口の開口面積A1は、可変容量ポンプ51の最小吐出量を通過させることが可能な開口面積となっている。すなわち、第1作業機用方向切換弁55aのブリードオフ開口は、第1作業操作レバーの操作量が所定値L1に達して第1作業機アクチュエータ30aが駆動を開始する時の可変容量ポンプ51の最小吐出量に対応した開口特性を有している。第1作業機用方向切換弁55aのブリードオフ開口は、ネガコン圧に応じた油圧信号で制御される可変容量ポンプ51の吐出量に応じた開口面積特性であるネガコン制御に最適化した開口面積特性を有するとも言える。
 ネガコン制御において、方向切換弁55のブリードオフ開口の開口特性は、ブリードオフ開口に連通するセンターバイパス油路のネガコン圧により制御される可変容量ポンプ51の吐出量に依存する。したがって、第1作業操作レバーのレバー操作量が小さい場合でも、ネガコン制御の特性により可変容量ポンプ51の吐出量は減少されるため、第1センターバイパス油路51dに流れる圧油の流量が少なくなり、その結果、レバー操作量に対するネガコン制御におけるブリードオフ開口の面積は、いわゆるブリードオフ制御におけるブリードオフ開口の面積に比べて小さく設定されている。
 ところで、ネガコン制御される可変容量ポンプ51を有する油圧回路5において、仮に第1走行用方向切換弁55e及び第2走行用方向切換弁55fのブリードオフ開口を、第1作業機用方向切換弁55a及び第2作業機用方向切換弁55bのブリードオフ開口と同じようにネガコン制御に最適化した開口面積特性に設定すると、次のような問題が生じ得る。
 例えば、第1走行操作レバーのレバー操作量が大きく、かつ第2走行操作レバーのレバー操作量が小さいとき、すなわち第1走行モータ22aの要求流量が大きく、かつ第2走行モータ22bの要求流量が小さいとき、第1ネガコン圧が第2ネガコン圧より低くなり、低圧側の第1ネガコン圧によって可変容量ポンプ51の吐出量は制御され、可変容量ポンプ51は、第1吐出ポートP1から第1走行モータ22aの要求流量に合わせて大流量の圧油を吐出する。このとき、要求流量の小さい第2センターバイパス油路51eに対しても第2吐出ポートP2から大流量の圧油が吐出されることとなり、ネガコン制御に最適化した開口面積特性を有する第2走行用方向切換弁55fのブリードオフ開口では、開口面積が小さいため、圧損が大きく異常昇圧が発生する。これにより、可変容量ポンプ51は、異常昇圧を検知して、エンジンストールを防ぐために馬力制御によって吐出量を減少させる。その結果、第1走行モータ22aの要求流量が満たされなくなり、第1走行モータ22aの走行速度が急激に低下してしまう。
 そのため、本発明において、第1走行用方向切換弁55e及び第2走行用方向切換弁55fのブリードオフ開口は、第1走行モータ22a及び第2走行モータ22bの圧油の要求流量に応じた開口面積特性であるブリードオフ制御に最適化した開口面積特性を有するように構成される。
 具体的には、図3に示すように、第1走行用方向切換弁55eが中立位置にあり、第1走行操作レバー(走行操作レバー413)のレバー操作量がゼロのとき(第1走行用方向切換弁55eに付与されるパイロット信号圧がゼロのとき)、第1センターバイパス油路51dに連通するブリードオフ開口は全開であり、開口面積は最大である。第1走行操作レバーのレバー操作量が増大するにつれ、ブリードオフ開口は閉じていき、開口面積は減少する。このとき、レバー操作量がL1までは開口面積は急激に減少し、レバー操作量がL1を超えると開口面積は緩やかに減少し、レバー操作量がL2に達するとブリードオフ開口は全閉となる。第1走行操作レバーのレバー操作量がL1に達したとき、第1走行モータ22aが駆動を開始する。第1走行操作レバーのレバー操作量がL1のときのブリードオフ開口の開口面積A2は、可変容量ポンプ51の最大吐出量を通過させることが可能な開口面積となっている。開口面積A2は、開口面積A1より大きくなっている。すなわち、第1走行用方向切換弁55eのブリードオフ開口は、第1走行操作レバーの操作量が所定値L1に達して第1走行モータ22aが駆動を開始する時の可変容量ポンプ51の最大吐出量に対応した開口特性を有している。第1走行用方向切換弁55eのブリードオフ開口は、第1走行モータ22aの圧油の要求流量に応じた開口面積特性であるブリードオフ制御に最適化した開口面積特性を有するとも言える。
 以上のように、本実施形態に係る油圧ショベル1の油圧回路5は、第1吐出ポートP1及び第2吐出ポートP2を有するスプリットフロー型の可変容量ポンプ51と、可変容量ポンプ51から吐出された圧油により駆動される第1走行モータ22a、第2走行モータ22b、第1作業機アクチュエータ30a、及び第2作業機アクチュエータ30bと、第1吐出ポートP1から油タンクに至る第1センターバイパス油路51dと、第2吐出ポートP2から油タンクに至る第2センターバイパス油路51eと、第1センターバイパス油路51d及び第2センターバイパス油路51eの最下流にそれぞれ配置された第1ネガコン絞り51f及び第2ネガコン絞り51gと、第1ネガコン絞り51f及び第2ネガコン絞り51gの上流側の圧力のうち小さい方の圧力をネガコン圧として出力する低圧選択弁51jと、前記ネガコン圧に応じた油圧信号により可変容量ポンプ51の吐出量を制御する統合コントローラ7と、
 第1センターバイパス油路51dに配置され、第1走行モータ22aを制御する第1走行用方向切換弁55eと、第2センターバイパス油路51eに配置され、第2走行モータ22bを制御する第2走行用方向切換弁55fと、第1センターバイパス油路51dに配置され、第1作業機アクチュエータ30aを制御する第1作業機用方向切換弁55aと、第2センターバイパス油路51eに配置され、第2作業機アクチュエータ30bを制御する第2作業機用方向切換弁55bと、
 第1走行用方向切換弁55eを操作するための第1走行操作レバーと、第2走行用方向切換弁55fを操作するための第2走行操作レバーと、第1作業機用方向切換弁55aを操作するための第1作業操作レバーと、第2作業機用方向切換弁55bを操作するための第2作業操作レバーと、
 第1走行モータ22aと第2走行モータ22bの少なくとも一つが駆動していることを検知して走行検知信号を発信する走行検知用圧力センサ53dと、を備え、
 第1走行用方向切換弁55e及び第2走行用方向切換弁55fのブリードオフ開口は、前記第1走行操作レバー及び前記第2走行操作レバーの操作量が所定値L1に達して第1走行モータ22a及び第2走行モータ22bが駆動を開始する時の可変容量ポンプ51の最大吐出量に対応した開口特性を有し、
 第1作業機用方向切換弁55a及び第2作業機用方向切換弁55bのブリードオフ開口は、ネガコン圧に基づき制御される可変容量ポンプ51の吐出量に対応した開口特性を有し、
 統合コントローラ7は、前記走行検知信号が入力されると、前記油圧信号を遮断して、可変容量ポンプ51の吐出量を最大とする。
 この構成によれば、第1走行モータ22aと第2走行モータ22bの少なくとも一つが駆動していることが検知されると、可変容量ポンプ51の吐出量は最大となるが、第1走行用方向切換弁55e及び第2走行用方向切換弁55fのブリードオフ開口がブリードオフ制御に最適化した開口面積特性を有するため、走行操作レバーのレバー操作量が小さいほうの第1走行用方向切換弁55e又は第2走行用方向切換弁55fのブリードオフ開口から適量の圧油をブリードさせることができ、第1走行用方向切換弁55e又は第2走行用方向切換弁55fでの異常昇圧の発生を抑えて、走行操作レバーのレバー操作量が大きいほうの走行モータの走行速度の急激な低下を防ぐことができる。その結果、滑らかな走行性を確保することができる。
 また、本実施形態に係る油圧ショベル1の油圧回路5において、前記第1走行用方向切換弁及び前記第2走行用方向切換弁のブリードオフ開口の面積が、前記第1走行用方向切換弁及び前記第2走行用方向切換弁のブリードオフ開口の開口特性を前記ネガコン圧に基づき制御される前記可変容量ポンプの吐出量に対応した開口特性とした場合のブリードオフ開口の面積に比べて大きいという構成でもよい。
 第1走行用方向切換弁55e及び第2走行用方向切換弁55fのブリードオフ開口の開口面積を第1走行用方向切換弁55e及び第2走行用方向切換弁55fのブリードオフ開口の開口特性をネガコン圧に基づき制御される可変容量ポンプ51の吐出量に対応した開口特性とした場合のブリードオフ開口の面積に比べて大きく設定する。これにより、ネガコン制御されるスプリットフロー型の可変容量ポンプ51を有する油圧ショベル1で緩旋回やスピンターンを行っても、走行操作レバーのレバー操作量が小さいほうの第1走行用方向切換弁55e又は第2走行用方向切換弁55fのブリードオフ開口から適量の圧油をブリードさせることができる。したがって、第1走行用方向切換弁55e又は第2走行用方向切換弁55fでの異常昇圧の発生を抑えて、走行操作レバーのレバー操作量が大きいほうの走行モータの走行速度の急激な低下を防ぐことができる。その結果、滑らかな走行性を確保することができる。
 また、本実施形態に係る油圧ショベル1の油圧回路5において、第1作業機用方向切換弁55a及び第2作業機用方向切換弁55bのブリードオフ開口は、第1作業操作レバー及び第2作業操作レバーの操作量が所定値に達して第1作業機アクチュエータ30a及び第2作業機アクチュエータ30bが駆動を開始する時の可変容量ポンプ51の最小吐出量に対応した開口特性を有するという構成でもよい。
 [他の実施形態]
 上記の実施形態では、走行検知手段として、走行検知油路53b、走行検知用圧力センサ53d等を用いた例を示したが、これに限定されない。走行検知手段としては、第1走行モータ22a及び第2走行モータ22bを操作する第1走行操作レバー及び第2走行操作レバーのリモコン弁によって減圧するパイロット2次圧を測定することにより、第1走行モータ22a及び第2走行モータ22bが操作されたことを検知してもよい。また、走行検知手段としては、第1走行モータ22a、第2走行モータ22bの圧力を圧力センサ等で計測して検知する方法でもよい。
 上記の実施形態では、第1ネガコン圧と第2ネガコン圧のうち小さい方の圧力をネガコン圧として出力する出力手段として、低圧選択弁51jを用いる例を示したが、これに限定されない。第1ネガコン圧と第2ネガコン圧をそれぞれ圧力センサで検知して出力し、圧力センサから入力された第1ネガコン圧と第2ネガコン圧のうち低圧のネガコン圧を統合コントローラ7が選択して出力するようにしてもよい。
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本開示の趣旨を逸脱しない範囲で種々変形が可能である。
 本発明は、油圧ショベルなどの建設機械に利用可能である。
  1  :油圧ショベル
  5  :油圧回路
  7  :統合コントローラ
 51  :可変容量ポンプ
 51d :第1センターバイパス油路
 51e :第2センターバイパス油路
 51f :第1ネガコン絞り
 51g :第2ネガコン絞り
 51j :低圧選択弁
 51k :ネガコン圧力センサ
 55  :方向切換弁
 55a :第1作業機用方向切換弁
 55b :第2作業機用方向切換弁
 55e :第1走行用方向切換弁
 55f :第2走行用方向切換弁
 P1  :第1吐出ポート
 P2  :第2吐出ポート

Claims (3)

  1.  第1吐出ポート及び第2吐出ポートを有するスプリットフロー型の可変容量ポンプと、前記可変容量ポンプから吐出された圧油により駆動される第1走行モータ、第2走行モータ、第1作業機アクチュエータ、及び第2作業機アクチュエータと、前記第1吐出ポートから油タンクに至る第1センターバイパス油路と、前記第2吐出ポートから油タンクに至る第2センターバイパス油路と、前記第1センターバイパス油路及び前記第2センターバイパス油路の最下流にそれぞれ配置された第1ネガコン絞り及び第2ネガコン絞りと、前記第1ネガコン絞り及び前記第2ネガコン絞りの上流側の圧力のうち小さい方の圧力をネガコン圧として出力する出力手段と、前記ネガコン圧に応じた油圧信号により前記可変容量ポンプの吐出量を制御する制御装置と、
     前記第1センターバイパス油路に配置され、前記第1走行モータを制御する第1走行用方向切換弁と、前記第2センターバイパス油路に配置され、前記第2走行モータを制御する第2走行用方向切換弁と、前記第1センターバイパス油路に配置され、前記第1作業機アクチュエータを制御する第1作業機用方向切換弁と、前記第2センターバイパス油路に配置され、前記第2作業機アクチュエータを制御する第2作業機用方向切換弁と、
     前記第1走行用方向切換弁を操作するための第1走行操作レバーと、前記第2走行用方向切換弁を操作するための第2走行操作レバーと、前記第1作業機用方向切換弁を操作するための第1作業操作レバーと、前記第2作業機用方向切換弁を操作するための第2作業操作レバーと、
     前記第1走行モータと前記第2走行モータの少なくとも一つが駆動していることを検知して走行検知信号を発信する走行検知手段と、を備え、
     前記第1走行用方向切換弁及び前記第2走行用方向切換弁のブリードオフ開口は、前記第1走行操作レバー及び前記第2走行操作レバーの操作量が所定値に達して前記第1走行モータ及び前記第2走行モータが駆動を開始する時の前記可変容量ポンプの最大吐出量に対応した開口特性を有し、
     前記第1作業機用方向切換弁及び前記第2作業機用方向切換弁のブリードオフ開口は、前記ネガコン圧に基づき制御される前記可変容量ポンプの吐出量に対応した開口特性を有し、
     前記制御装置は、前記走行検知信号が入力されると、前記油圧信号を遮断して、前記可変容量ポンプの吐出量を最大とする、建設機械の油圧回路。
  2.  前記第1走行用方向切換弁及び前記第2走行用方向切換弁のブリードオフ開口の面積が、前記第1走行用方向切換弁及び前記第2走行用方向切換弁のブリードオフ開口の開口特性を前記ネガコン圧に基づき制御される前記可変容量ポンプの吐出量に対応した開口特性とした場合のブリードオフ開口の面積に比べて大きい、請求項1に記載の建設機械の油圧回路。
  3.  前記第1作業機用方向切換弁及び前記第2作業機用方向切換弁のブリードオフ開口は、前記第1作業操作レバー及び前記第2作業操作レバーの操作量が所定値に達して前記第1作業機アクチュエータ及び前記第2作業機アクチュエータが駆動を開始する時の前記可変容量ポンプの最小吐出量に対応した開口特性を有する、請求項1又は2に記載の建設機械の油圧回路。
PCT/JP2020/042803 2019-12-17 2020-11-17 建設機械の油圧回路 WO2021124767A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-227150 2019-12-17
JP2019227150A JP2021095950A (ja) 2019-12-17 2019-12-17 建設機械の油圧回路

Publications (1)

Publication Number Publication Date
WO2021124767A1 true WO2021124767A1 (ja) 2021-06-24

Family

ID=76430964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042803 WO2021124767A1 (ja) 2019-12-17 2020-11-17 建設機械の油圧回路

Country Status (2)

Country Link
JP (1) JP2021095950A (ja)
WO (1) WO2021124767A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316839A (ja) * 2003-04-18 2004-11-11 Kayaba Ind Co Ltd 液圧駆動装置
JP2013023811A (ja) * 2011-07-14 2013-02-04 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316839A (ja) * 2003-04-18 2004-11-11 Kayaba Ind Co Ltd 液圧駆動装置
JP2013023811A (ja) * 2011-07-14 2013-02-04 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械

Also Published As

Publication number Publication date
JP2021095950A (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
US11078646B2 (en) Shovel and control valve for shovel
KR20200022400A (ko) 쇼벨 및 쇼벨의 제어방법
JP6891079B2 (ja) 建設機械の油圧駆動システム
KR20070095446A (ko) 유압 구동 장치
JP7001574B2 (ja) 建設機械
KR101807980B1 (ko) 작업기의 제어 시스템 및 저압 선택 회로
JP7071198B2 (ja) 作業車両の油圧回路
CN113056616A (zh) 油压驱动系统
JP6307292B2 (ja) 作業機の制御システム
WO2021124767A1 (ja) 建設機械の油圧回路
CN108884843B (zh) 挖土机及挖土机用控制阀门
CN111344459A (zh) 工程机械的驱动系统
JP2009179983A (ja) 作業機械の油圧制御回路
JP7001572B2 (ja) 建設機械
US10208457B2 (en) Working machine control system
JP7001554B2 (ja) クレーン機能付き油圧ショベル
JP6964059B2 (ja) 建設機械
JP7408505B2 (ja) 作業機
AU2019246449A1 (en) Hydraulic circuit for work vehicle
WO2020189352A1 (ja) 建設機械の油圧回路及び油圧回路
JP5755865B2 (ja) 油圧駆動装置および油圧駆動装置を備えた作業機械
JP2017145950A (ja) 油圧モータの油圧駆動装置及び建設車両
JP2002089511A (ja) 建設機械の油圧回路
JP2011236971A (ja) 作業機械の油圧システム
CN117897538A (zh) 挖土机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903345

Country of ref document: EP

Kind code of ref document: A1