WO2012093688A1 - イミダゾール化合物の製造方法、イミダゾール化合物、イミダゾール系化合物、有機金属錯体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置、及び照明装置 - Google Patents

イミダゾール化合物の製造方法、イミダゾール化合物、イミダゾール系化合物、有機金属錯体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置、及び照明装置 Download PDF

Info

Publication number
WO2012093688A1
WO2012093688A1 PCT/JP2012/050087 JP2012050087W WO2012093688A1 WO 2012093688 A1 WO2012093688 A1 WO 2012093688A1 JP 2012050087 W JP2012050087 W JP 2012050087W WO 2012093688 A1 WO2012093688 A1 WO 2012093688A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
imidazole compound
compound
substituent
solvent
Prior art date
Application number
PCT/JP2012/050087
Other languages
English (en)
French (fr)
Inventor
真樹 沼田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011002084A external-priority patent/JP2012144455A/ja
Priority claimed from JP2011002083A external-priority patent/JP2012144454A/ja
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US13/978,406 priority Critical patent/US20130270541A1/en
Priority to KR1020137017116A priority patent/KR20130140810A/ko
Priority to CN2012800046521A priority patent/CN103443081A/zh
Priority to EP12732174.3A priority patent/EP2662365A4/en
Publication of WO2012093688A1 publication Critical patent/WO2012093688A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0896Compounds with a Si-H linkage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a method for producing an imidazole compound, an imidazole compound, an imidazole compound, an organometallic complex, a material for an organic electroluminescence element, an organic electroluminescence element, a display device, and a lighting device.
  • Patent Documents 1 and 2 describe N-phenyl-2-phenylimidazole derivatives in which substituents are introduced at the 2-position and 6-position of the N-position phenyl group. Examples of this substituent include a methyl group, an isopropyl group, a phenyl group, a 4-isopropylphenyl group, and a 3,5-dimethylphenyl group.
  • the bulkiness of the substituent is defined by a steric parameter (Es value).
  • Patent Document 1 and Patent Document 2 a metal complex having a ligand of an imidazole compound into which a bulky substituent is introduced at the 2-position and 6-position of the N-position phenyl group has an emission wavelength on the short wavelength side. And the emission spectrum becomes sharper, and is said to be useful as a blue light-emitting material with excellent color purity.
  • the yield decreases as the bulk of the substituent of the imidazole compound increases (as the Es value decreases), and further, the synthesis cannot be performed.
  • the substituent is a methyl group, it can be synthesized, but the yield of an imidazole compound having an isopropyl group or a phenyl group is very low, not at a practical level, and a carbazole group that is a bulky substituent.
  • Patent Documents 1 and 2 disclose synthesis examples of imidazole compounds having an isopropyl group or a phenyl group, but do not disclose synthesis examples of imidazole compounds having a bulky substituent. Therefore, it can be said that it cannot be provided at a practical level. Therefore, in order to obtain a light emitting material having a sharper emission spectrum and capable of emitting light on the short wavelength side, an imidazole compound in which substituents are introduced at the 2-position and 6-position of the N-position phenyl group, and the imidazole compound are obtained in high yield. A manufacturing method that can be manufactured is desired.
  • An object of the present invention is to provide an imidazole compound production method, an imidazole compound, an organometallic complex, which can produce an imidazole compound useful for obtaining a luminescent material having a sharp emission spectrum and capable of emitting light on a short wavelength side, It is to provide an organic electroluminescence element material, an organic electroluminescence element using the organic electroluminescence element material, a display device including the organic electroluminescence element, and an illumination device.
  • an imidazole compound represented by the following general formula (1) is reacted with a compound represented by the following general formula (2) and a compound represented by the following general formula (3).
  • a method for producing an imidazole compound In reacting the compound represented by the general formula (2) with the compound represented by the general formula (3), the number of moles of the compound represented by the general formula (2) in the reaction system N f2 [ Mol] and the total volume V A [liter] of the ether solvent having 5 or less carbon atoms satisfy the relationship of the following mathematical formula (1).
  • R 1 represents a hydrogen atom or a substituent
  • Z 1 represents an atomic group necessary to form a hydrocarbon ring group or a heterocyclic group
  • the hydrocarbon ring group or the heterocyclic group formed by said Z 1 is, the R 1 1 or more
  • Have R 2 and R 3 each represent a bond, a hydrogen atom or an aromatic hydrocarbon group, and are bonded to each other to form a 5-membered hydrocarbon ring, a 6-membered hydrocarbon ring, a 5-membered heterocyclic ring or a 6-membered heterocyclic ring.
  • these rings may have a substituent
  • Z 2 represents an atomic group necessary to form a 5-membered hydrocarbon ring, a 6-membered hydrocarbon ring, a 5-membered heterocyclic ring or a 6-membered heterocyclic ring together with C—C
  • R 4 represents a hydrogen atom or a substituent
  • m represents an integer of 1 to 5.
  • M represents a boron atom, a magnesium atom, a silicon atom, a tin atom, or a zinc atom, and may further have a substituent, Z 1 , R 1 , R 2 , and R 3 are respectively synonymous with the general formula (1).
  • the number of moles N f2 of the compound represented by the general formula (2) and the total volume V A satisfy the relationship of the following mathematical formula (2).
  • the number of moles N f2 of the compound represented by the general formula (2) and the total volume V A satisfy the relationship of the following mathematical formula (3).
  • the ether solvent having 5 or less carbon atoms is at least one ether solvent selected from tetrahydrofuran, tetrahydropyran, 1,4-dioxane, 1,3-dioxane, diethyl ether, and 1,2-dimethoxyethane. Is preferred.
  • the second solvent includes at least one solvent selected from an aliphatic hydrocarbon solvent having 7 or more carbon atoms, an aromatic hydrocarbon solvent, and an ether solvent having 6 or more carbon atoms,
  • the number of moles N f2 of the compound represented by the general formula (2) in the reaction system In reacting the compound represented by the general formula (2) with the compound represented by the general formula (3), the number of moles N f2 of the compound represented by the general formula (2) in the reaction system. And the total volume V B of the second solvent preferably satisfy the relationship of the following mathematical formula (4).
  • the number of moles N f2 of the compound represented by the general formula (2) in the reaction system and the total volume V B of the second solvent satisfy the relationship of the following formula (5).
  • the ether solvent having 6 or more carbon atoms is at least one selected from dipropyl ether, dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, methoxybenzene, ethoxybenzene, methylanisole, ethylanisole, dimethoxybenzene, and methoxyethoxybenzene.
  • the carbon number of the aliphatic hydrocarbon solvent having 7 or more carbon atoms is 7 or more and 50 or less, It is preferable that the aromatic hydrocarbon solvent has 6 to 20 carbon atoms.
  • the aromatic hydrocarbon solvent is preferably at least one solvent selected from benzene, toluene, xylene, ethylbenzene, trimethylbenzene, and tetramethylbenzene.
  • M in the general formula (3) is preferably a zinc atom which may have a substituent.
  • the imidazole compound of the present invention is an imidazole compound produced by the method for producing an imidazole compound of the present invention.
  • the imidazole compound of the present invention is characterized in that, in the following general formula (1), R 1 represents a substituent having a steric parameter (Es) value of ⁇ 2.0 or less.
  • Z 1 represents an atomic group necessary for forming a hydrocarbon ring group or a heterocyclic group
  • the hydrocarbon ring group or the heterocyclic group formed in Z 1 represents one or more of R 1
  • R 2 and R 3 represent a bond, a hydrogen atom or an aromatic hydrocarbon group, and are bonded to each other to form a 5-membered hydrocarbon ring, a 6-membered hydrocarbon ring, a 5-membered heterocycle or a 6-membered heterocycle.
  • a ring may be formed, and these rings may have a substituent, Z 2 represents an atomic group necessary to form a 5-membered hydrocarbon ring, a 6-membered hydrocarbon ring, a 5-membered heterocyclic ring or a 6-membered heterocyclic ring together with C—C; R 4 represents a hydrogen atom or a substituent, m represents an integer of 1 to 5.
  • R 1 preferably represents a substituent having a steric parameter (Es) value of ⁇ 2.5 or less.
  • R 1 preferably represents a substituent having a steric parameter (Es) value of ⁇ 3.0 or less.
  • R 1 preferably represents a substituent having a steric parameter (Es) value of ⁇ 5.0 or less.
  • R 1 preferably represents a substituent having a molecular weight of 42 or more.
  • R 1 preferably represents a substituent having a molecular weight of 76 or more.
  • R 1 preferably represents a substituent having a molecular weight of 115 or more.
  • R 1 preferably represents a substituent having a molecular weight of 166 or more.
  • the imidazole compound of the present invention is It has the imidazole compound of the present invention as a partial structure.
  • the organometallic complex of the present invention is It has the imidazole compound of the present invention as a partial structure.
  • organometallic complex of the present invention It is preferable to include at least one metal element selected from the group 8 to group 11 metal elements of the periodic table.
  • the material for an organic electroluminescence element of the present invention is It contains at least one of the imidazole compound of the present invention, the imidazole compound of the present invention, and the organometallic complex of the present invention.
  • the organic electroluminescence element of the present invention is Having a plurality of organic compound layers including a light emitting layer between an anode and a cathode; At least one layer of the organic compound layers includes the material for an organic electroluminescence element of the present invention.
  • the display device of the present invention includes: The organic electroluminescence element of the present invention is provided.
  • the lighting device of the present invention is The organic electroluminescence element of the present invention is provided.
  • an imidazole compound production method capable of producing an imidazole compound useful in obtaining a light-emitting material having a sharp emission spectrum and capable of emitting light on a short wavelength side, a imidazole compound, and the imidazole compound as a partial structure.
  • FIG. 3 shows a 1 H-NMR spectrum of an imidazole compound.
  • FIG. 2 is an enlarged view of a part of the 1 H-NMR spectrum of FIG. The figure which shows a high performance liquid chromatography analysis result. The figure which shows a high performance liquid chromatography analysis result.
  • the imidazole compound of this embodiment is represented by the general formula (1).
  • Z 1 represents an atomic group necessary for forming a hydrocarbon ring group or a heterocyclic group.
  • These hydrocarbon ring groups or heterocyclic groups have one or more substituents represented by R 1 described below.
  • the number is preferably one of 1, 2, 3, 4, and 5. When the number of R 1 is plural, each R 1 may be the same or different.
  • imidazole compounds represented by the general formula (1) imidazole compounds each having R 1 at the ortho position of the hydrocarbon ring group or heterocyclic group are preferred.
  • R 1 represents a hydrogen atom or a substituent.
  • substituent represented by R 1 include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, Tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl group, propargyl group, etc.), aromatic Hydrocarbon group (also called aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, toly
  • R 1 is preferably a substituent having a steric parameter (Es) value of ⁇ 1.70 or less. More preferred is a substituent having an Es value of ⁇ 2.0 or less, still more preferred is a substituent having an Es value of ⁇ 2.5 or less, and even more preferred is an Es value of ⁇ 3.0 or less. A substituent, particularly preferably a substituent of ⁇ 5.0 or less.
  • the Es value is a steric parameter derived from chemical reactivity, and it can be said that the smaller this value is, the sterically bulky substituent. Therefore, the smaller the Es value, the better.
  • Es value for example, “Structure Activity Relationship of Drugs: Guideline to Drug Design and Action Mechanism Research (No.
  • the Es value in the present embodiment is a value represented by assuming that the Es value of a hydrogen atom is 0.
  • Examples of the substituent having a value of ⁇ 2.5 or less include —tC 4 H 9 (tert-butyl group), and examples of the substituent having an Es value of ⁇ 3.0 or less include —CH ( C 2 H 5 ) 2 (3- (n-pentyl) group), —CHBr 2 (dibromomethyl group), —CCl 3 (trichloromethyl group), —CBr 3 (tribromomethyl group), and Es value
  • Examples of the substituent having a value of ⁇ 5.0 or less include —C (C 6 H 5 ) 3 (triphenylmethyl group).
  • the substituent R 1 may be further substituted with respect to these substituents.
  • R 1 satisfies the range of the Es value and is preferably a substituent having a molecular weight of 43 or more, more preferably a substituent having a molecular weight of 77 or more, and a molecular weight of 116.
  • the above substituents are more preferable, the molecular weight is more preferably 127 or more, and the molecular weight is more preferably 166 or more.
  • Examples of the substituent having a molecular weight of 43 or more include an isopropyl group (molecular weight: 43), and examples of the substituent having a molecular weight of 77 or more include a phenyl group (molecular weight: 77), and a molecular weight of 116 or more.
  • Examples of the substituent include, for example, an indole group (molecular weight: 116).
  • Examples of the substituent having a molecular weight of 127 or more include a naphthyl group (molecular weight: 127), and examples of the substituent having a molecular weight of 166 or more. Is, for example, a carbazole group (molecular weight: 166).
  • Z 1 is representative of the atomic group necessary to form a hydrocarbon ring group
  • a hydrocarbon ring group a cycloalkyl group Or an aryl group (aromatic ring group) is mentioned.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclododecyl group, and a norbornyl group.
  • the cycloalkyl group preferably has 5 to 10 carbon atoms, and more preferably 5 to 7 carbon atoms.
  • Aryl group As the aryl group, a phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, biphenyl-2-yl group, biphenyl- 3-yl group, biphenyl-4-yl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl Group, m-terphenyl-4-yl Group, m-terphenyl-3-
  • Z 1 is representative of even atomic group necessary to form a heterocyclic group, the heterocyclic group, aliphatic heterocyclic group, an aromatic Group heterocyclic group and the like.
  • Aliphatic heterocyclic group As the aliphatic heterocyclic group, epoxy ring, aziridine ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring , Tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ⁇ -caprolactone ring, ⁇ -caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring, 1,3-dioxane ring , 1,4-dioxane ring, trioxane ring, t
  • Aromatic heterocyclic group includes pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazole) -1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group Dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (one in which one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced
  • R 2 and R 3 represent a bond, a hydrogen atom or an aromatic hydrocarbon group, and are bonded to each other to form a 5-membered hydrocarbon ring, a 6-membered hydrocarbon ring, a 5-membered hydrocarbon ring, A heterocycle or a 6-membered heterocycle may be formed. Furthermore, these rings may have the substituent R 1 .
  • the 5-membered or 6-membered hydrocarbon ring include a cyclopentane ring, a cyclopentadiene ring, a cyclohexane ring, a cyclohexadiene ring, and a benzene ring.
  • a 5-membered or 6-membered aromatic heterocyclic ring for example, oxazole ring, oxadiazole ring, oxatriazole ring, isoxazole ring, tetrazole ring, thiadiazole ring, thiatriazole
  • 5-membered to 6-membered non-aromatic heterocycle Ring for example, pyrrolidine ring, piperazine ring, pyrazolidine ring, imidazolidine ring, isoxazolidine ring, isothiazolidine ring).
  • Z 2 represents an atomic group necessary for forming a 5-membered hydrocarbon ring, a 6-membered hydrocarbon ring, a 5-membered heterocyclic ring or a 6-membered heterocyclic ring together with C—C.
  • the 5-membered hydrocarbon ring, 6-membered hydrocarbon ring, 5-membered heterocycle or 6-membered heterocycle is the same as described for R 2 and R 3 above.
  • R 4 represents a hydrogen atom or a substituent.
  • substituents include the substituent R 1 described above.
  • m represents an integer of 1 to 5. When the number of R 4 is 2 or more, each R 4 may be the same or different.
  • the hydrocarbon ring group formed by Z 1 is preferably an aryl group, more preferably a phenyl group. Furthermore, the substituent R 1 is preferably substituted at the 2-position and 6-position of the phenyl group.
  • Examples of the specific structure of the imidazole compound of the present embodiment include the following. However, the present invention is not limited to imidazole compounds having these structures.
  • reaction 1 Method for producing imidazole compound
  • the compound represented by the general formula (2) and the compound represented by the general formula (3) are reacted (hereinafter, this reaction is referred to as reaction 1).
  • the imidazole compound represented by the general formula (1) that satisfies the relationship of the mathematical formula (1) is manufactured.
  • M is preferably a zinc atom which may have a substituent.
  • the synthesis reaction of the compound represented by the general formula (3) which is the synthesis reaction in the previous stage of the reaction 1, and the reaction 1 are continuously performed in terms of the reaction mechanism. (Also referred to as “one-pot synthesis”), and the manufacturing process can be simplified.
  • V A is the sum of these when a plurality of types of ether solvents having 5 or less carbon atoms are contained in the reaction system.
  • the production method of the imidazole compound of the present embodiment is preferably performed in a state satisfying the relationship of the mathematical formula (2), and more preferably performed in a state satisfying the relationship of the mathematical formula (3).
  • ether solvent having 5 or less carbon atoms examples include tetrahydrofuran, tetrahydropyran, 1,4-dioxane, 1,3-dioxane, diethyl ether, and 1,2-dimethoxyethane.
  • the solvent can be said to be an ether solvent having 2 to 5 carbon atoms.
  • the amount of the ether solvent having 5 or less carbon atoms added at the time of charging the reaction 1 can be adjusted.
  • the reaction system includes Solvent removal treatment is performed on the solution, and the amount of the ether solvent having 5 or less carbon atoms is adjusted so as to satisfy any one of the formulas (1) to (3).
  • Solvent removal methods include a vacuum distillation method in which the solvent is removed under reduced pressure using a solvent trap vessel and various vacuum pumps cooled by various cooling systems, and a solvent is removed under normal pressure using a Dean-Stark trap.
  • the atmospheric distillation method to remove can be used.
  • an ether solvent having 6 or more carbon atoms or an aliphatic hydrocarbon having 7 or more carbon atoms is satisfied in the reaction system while satisfying any relationship of the formulas (1) to (3). It is preferable that at least one solvent selected from a solvent and an aromatic hydrocarbon solvent is included.
  • Preferred examples of the ether solvent having 6 or more carbon atoms include dipropyl ether, dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, methoxybenzene, ethoxybenzene, methylanisole, ethylanisole, dimethoxybenzene, and methoxyethoxybenzene.
  • the ether solvent having 6 or more carbon atoms is preferably an ether solvent having 6 to 30 carbon atoms, and more preferably an ether solvent having 8 to 15 carbon atoms.
  • the aliphatic hydrocarbon solvent having 7 or more carbon atoms is preferably selected from aliphatic hydrocarbon solvents having 7 to 50 carbon atoms, and n-heptane, n-octane, n-nonane and n-decane are preferred examples. As mentioned. More preferably, the aliphatic hydrocarbon solvent is an aliphatic hydrocarbon solvent having 8 to 30 carbon atoms.
  • the aromatic hydrocarbon solvent is preferably selected from aromatic hydrocarbon solvents having 6 to 20 carbon atoms, and preferred examples include benzene, toluene, xylene, ethylbenzene, trimethylbenzene, and tetramethylbenzene. More preferably, the aromatic hydrocarbon solvent is an aromatic hydrocarbon solvent having 7 to 10 carbon atoms.
  • an inorganic basic compound used as necessary during the reaction 1 include sodium carbonate, potassium carbonate, cesium carbonate, and potassium phosphate.
  • organic basic compound used as necessary in the reaction 1 include sodium acetate, potassium acetate, sodium tert-butoxide, potassium tert-butoxide and the like.
  • a palladium catalyst As the metal catalyst used in the reaction 1, a palladium catalyst, a nickel catalyst, or the like is preferably used.
  • a palladium catalyst a palladium compound having a phosphine ligand is preferably used, and examples thereof include Pd (PPh 3 ) 4 and PdCl 2 (PPh 3 ) 2 .
  • palladium compounds not containing a phosphine ligand such as Pd (OAc) 2 , Pd (dba) 2 , Pd 2 (dba) 3 , PPh 3 , tricyclohexylphosphine, tri-tert-butylphosphine, dppe, dppp
  • a palladium compound having a phosphine ligand in the reaction system can also be prepared by mixing a phosphine ligand such as dppf in the reaction system.
  • a palladium catalyst used for forming a carbon-carbon (CC) bond known to those skilled in the art is preferably used.
  • nickel catalyst a nickel compound having a phosphine ligand is preferably used, and examples thereof include NiCl 2 (dppe), NiCl 2 (dppf), and NiCl 2 (PPh 3 ) 2 .
  • nickel catalysts used for the formation of C—C bonds known to those skilled in the art are preferably used.
  • the synthesis method disclosed in the prior art can produce an imidazole compound with a low yield or a synthesis impossible with a high yield.
  • the reason is presumed as follows.
  • the ether solvent is a molecule composed of an oxygen atom and a hydrocarbon group, and the hydrophobicity of the solvent increases as the carbon number of the hydrocarbon group increases.
  • “Surfactants—Physical Properties, Applications, and Chemical Ecology” Kelsha (1979, 1st printing)
  • “Surfactants” Sudyo Publishing (1986, 4th printing)
  • the reaction 1 is performed in a state where a large amount of tetrahydrofuran having 4 carbon atoms is present in the reaction system as a reaction solvent (a state in which the relationship represented by the formula (1) is not satisfied).
  • the synthesis reaction yield of the imidazole compound represented by the general formula (1) is low or cannot be synthesized.
  • the yield is dramatically improved by performing the reaction in a state or satisfying the relationship represented by the mathematical formula (1) and performing the reaction in a state satisfying the mathematical formula (4). From this, it is considered that the hydrophobicity of the solvent present in the reaction system has a great influence.
  • the imidazole compound represented by (1) can be synthesized in high yield.
  • imidazole compounds By using the imidazole compound produced by the method for producing an imidazole compound of the present embodiment, an imidazole compound having the imidazole compound as a partial structure can be obtained.
  • the imidazole compound of this embodiment has the imidazole compound represented by the general formula (1) as a partial structure. That is, if the compound has a structure represented by the general formula (1) even partially, it corresponds to the imidazole compound of the present embodiment. Therefore, for example, polysubstituted compounds such as L-104 to L-119 exemplified as imidazole compounds also correspond to the imidazole compounds of this embodiment. Specific examples of the imidazole compound of the present embodiment will be further described below.
  • the organometallic complex which has the said imidazole compound as a partial structure can be obtained using the imidazole compound manufactured with the manufacturing method of the imidazole compound of this embodiment.
  • This organometallic complex preferably contains at least one metal selected from the metal elements from Group 8 to Group 11 of the Periodic Table.
  • the metal is preferably platinum or iridium.
  • this organometallic complex for example, a compound in which the imidazole compound represented by the general formula (1) is used as a ligand for the metal elements from Group 8 to Group 11 of the Periodic Table can be given.
  • This organometallic complex has an imidazole compound represented by the general formula (1) as a ligand, and thus can be used as a light emitting material having a sharp emission spectrum and capable of emitting light on the short wavelength side. Therefore, it is particularly useful as a blue light emitting organic EL device material. Specific examples of such organometallic complexes are shown below, but are not limited thereto.
  • An organic electroluminescent element material can be provided using at least one of the imidazole compound produced by the method for producing an imidazole compound of the present embodiment, the imidazole compound, and the organometallic complex.
  • the organic electroluminescence element is referred to as an organic EL element
  • the organic electroluminescence element material is referred to as an organic EL element material.
  • the imidazole compound production method of the present embodiment makes it possible to produce an imidazole compound that is useful as a material for an organic EL device, which was difficult to produce by a conventional production method, and as a result, such production.
  • the following organic EL device containing an imidazole compound that has been difficult to be produced can be efficiently produced.
  • This organic EL element is An organic EL device comprising an organic compound layer having one or more layers between an anode and a cathode, The organic compound layer includes a light emitting layer, Any one of the organic compound layers includes an organometallic complex, The organometallic complex has an imidazole compound represented by the following general formula (4) as a partial structure.
  • R 1 is a substituent having a steric parameter (Es) value of ⁇ 1.70 or less
  • Z 1 represents an atomic group necessary for forming a hydrocarbon ring group or a heterocyclic group
  • the hydrocarbon ring group or the heterocyclic group formed in Z 1 represents one or more of R 1
  • R 2 and R 3 represent a bond, a hydrogen atom or an aromatic hydrocarbon group, and are bonded to each other to form a 5-membered hydrocarbon ring, a 6-membered hydrocarbon ring, a 5-membered heterocycle or a 6-membered heterocycle.
  • a ring may be formed, and these rings may have a substituent, Z 2 represents an atomic group necessary to form a 5-membered hydrocarbon ring, a 6-membered hydrocarbon ring, a 5-membered heterocyclic ring or a 6-membered heterocyclic ring together with C—C; R 4 represents a hydrogen atom or a substituent, m represents an integer of 1 to 5.
  • Z 1 , Z 2 , R 1 , R 2 , R 3 , and R 4 are the same as those described in the general formula (1), and thus detailed description thereof is omitted.
  • R 1 is a steric parameter (Es) value of ⁇ 1.70 or less and may be larger than ⁇ 2.0.
  • R 1 is preferably a substituent having an Es value of ⁇ 2.0 or less, more preferably a substituent having an Es value of ⁇ 2.5 or less, and even more preferably an Es value of ⁇ 3.
  • the substituent is 0 or less, and particularly preferably -5.0 or less.
  • the R 1 substituent preferably has a molecular weight of 43 or more, more preferably 77 or more, more preferably 116 or more, still more preferably 127 or more, and particularly preferably. Is 165 or more.
  • the organometallic complex having the imidazole compound represented by the general formula (4) as a partial structure is preferably a metal element selected from the group 8 to group 11 metal elements of the periodic table More preferably, the metal element is either iridium or platinum. Specific examples of the organometallic complex include (C-1) to (C-12), but are not limited thereto.
  • this organometallic complex is preferably included in the light emitting layer, and particularly preferably included as a light emitting dopant material.
  • This organic EL element preferably emits phosphorescence.
  • the present invention also provides a display device or a lighting device including the organic EL element.
  • the organic EL element has an organic compound layer between a cathode and an anode, and the organic compound layer includes at least one layer composed of an organic compound.
  • the organic compound layer may contain an inorganic compound.
  • at least one of the organic compound layers includes the material for the organic EL element.
  • the organic compound layer has at least one light emitting layer. Therefore, the organic compound layer may be composed of, for example, a single light emitting layer, and is used in known organic EL elements such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer.
  • the layers to be stacked may be laminated via the light emitting layer.
  • the structure of the multilayer organic EL element for example, (A) Anode / hole injection / transport layer / light emitting layer / cathode, (B) Anode / light emitting layer / electron injection / transport layer / cathode, (C) Anode / hole injection / transport layer / light emitting layer / electron injection / transport layer / cathode, (D) Anode / hole injection / transport layer / light emitting layer / hole barrier layer / electron injection / transport layer / cathode, The thing laminated
  • the “hole injection / transport layer” means “at least one of a hole injection layer and a hole transport layer”, and “electron injection / transport layer” means “electron injection layer and electron transport layer”. It means “at least one of the layers”.
  • An organic EL device material containing the imidazole compound or the imidazole compound can be used as a host of the light emitting layer, or an organic EL device material containing the organometallic complex can be used as a dopant of the light emitting layer.
  • the organometallic complex is particularly useful for forming a blue light-emitting layer because it has a sharp emission spectrum as described above and emits light on the short wavelength side.
  • an organic EL element having a blue light emitting layer but also an organic EL element having a red light emitting layer and an organic EL element having a green light emitting layer can be arranged side by side to constitute a display device or a lighting device capable of color display.
  • a red light emitting layer and a green light emitting layer may be separately laminated on the blue light emitting layer to constitute a white light emitting organic EL element.
  • a so-called tandem element structure is preferable.
  • An organic EL element that emits white light can also be suitably used for a display device and a lighting device.
  • an arbitrary material can be selected from known materials used in conventional organic EL elements.
  • the second embodiment of the present invention will be described in detail below.
  • the same contents as those of the first embodiment and the same structural elements as those of the first embodiment are denoted by the same reference numerals and names, and the description thereof is omitted or simplified.
  • the imidazole compound of this embodiment is represented by the general formula (1).
  • Z 1 represents an atomic group necessary for forming a hydrocarbon ring group or a heterocyclic group.
  • These hydrocarbon ring groups or heterocyclic groups have one or more substituents represented by R 1 described below.
  • the number is preferably one of 1, 2, 3, 4, and 5. When the number of R 1 is plural, each R 1 may be the same or different.
  • imidazole compounds represented by the general formula (1) imidazole compounds each having R 1 at the ortho position of the hydrocarbon ring group or heterocyclic group are preferred.
  • R 1 represents a substituent having a steric parameter (Es) value of ⁇ 2.0 or less.
  • Es steric parameter
  • Preferred is a substituent having an Es value of ⁇ 2.5 or less, more preferred is a substituent having an Es value of ⁇ 3.0 or less, and still more preferred is a substitution having an Es value of ⁇ 5.0 or less.
  • the Es value is a steric parameter derived from chemical reactivity, and it can be said that the smaller this value is, the sterically bulky substituent. Therefore, the smaller the Es value, the better.
  • the Es value in the present embodiment is a value represented by assuming that the Es value of a hydrogen atom is 0.
  • Examples of the substituent having a value of ⁇ 2.5 or less include —tC 4 H 9 (tert-butyl group), and examples of the substituent having an Es value of ⁇ 3.0 or less include —CH ( C 2 H 5 ) 2 (3- (n-pentyl) group), —CHBr 2 (dibromomethyl group), —CCl 3 (trichloromethyl group), —CBr 3 (tribromomethyl group), and Es value Examples of the substituent having a value of ⁇ 5.0 or less include —C (C 6 H 5 ) 3 (triphenylmethyl group). Substituent Y described later may be further substituted with respect to these substituents.
  • the Es value of the carbazolyl group is presumed to be within the range of -2.0 to -2.5 because the 9-H-fluorene group and the carbazolyl group are similar in structure.
  • R 1 satisfies the range of the Es value and is preferably a substituent having a molecular weight of 43 or more, more preferably a substituent having a molecular weight of 77 or more, and a molecular weight of 116.
  • the above substituents are more preferable, the molecular weight is more preferably 127 or more, and the molecular weight is more preferably 166 or more.
  • Examples of the substituent having a molecular weight of 43 or more include an isopropyl group (molecular weight: 43), and examples of the substituent having a molecular weight of 77 or more include a phenyl group (molecular weight: 77), and a molecular weight of 116 or more.
  • Examples of the substituent include, for example, an indole group (molecular weight: 116).
  • Examples of the substituent having a molecular weight of 127 or more include a naphthyl group (molecular weight: 127), and examples of the substituent having a molecular weight of 166 or more. Is, for example, a carbazole group (molecular weight: 166).
  • Z 1 is representative of the atomic group necessary to form a hydrocarbon ring group
  • the hydrocarbon ring group the first embodiment examples thereof include the same cycloalkyl group and aryl group (aromatic ring group) as in the embodiment. These groups may have a substituent Y described later.
  • Z 1 is representative of even atomic group necessary to form a heterocyclic group, the heterocyclic group, the same as the first embodiment An aliphatic heterocyclic group, an aromatic heterocyclic group, etc. are mentioned.
  • hydrocarbon ring groups or heterocyclic groups may further have a substituent in addition to the substituent represented by R 1 .
  • this substituent is referred to as a substituent Y.
  • substituent Y examples include those similar to those exemplified as examples of the substitution represented by R 1 in the first embodiment.
  • R 2 and R 3 represent a bond, a hydrogen atom or an aromatic hydrocarbon group, and are bonded to each other to form a 5-membered hydrocarbon ring, a 6-membered hydrocarbon ring, a 5-membered hydrocarbon ring, A heterocycle or a 6-membered heterocycle may be formed. Further, these rings may have the substituent Y. Examples of the 5-membered or 6-membered hydrocarbon ring and the 5-membered or 6-membered heterocyclic ring are the same as those described in the first embodiment.
  • Z 2 represents an atomic group necessary for forming a 5-membered hydrocarbon ring, a 6-membered hydrocarbon ring, a 5-membered heterocyclic ring or a 6-membered heterocyclic ring together with C—C.
  • the 5-membered hydrocarbon ring, 6-membered hydrocarbon ring, 5-membered heterocycle or 6-membered heterocycle is the same as described for R 2 and R 3 above.
  • R 4 represents a hydrogen atom or a substituent.
  • substituent Y examples include the substituent Y.
  • m represents an integer of 1 to 5. When the number of R 4 is 2 or more, each R 4 may be the same or different.
  • the hydrocarbon ring group formed by Z 1 is preferably an aryl group, more preferably a phenyl group. Further, R 1 is preferably substituted at the 2-position and 6-position of the phenyl group.
  • the structure of the imidazole compound of the present embodiment include the following. However, the present invention is not limited to imidazole compounds having these structures.
  • the imidazole compound of this embodiment is manufactured by the method demonstrated below.
  • the imidazole compound of the present embodiment is a compound represented by the following general formulas (2) and (3), if necessary, in the presence of at least one of an inorganic basic compound and an organic basic compound, and The reaction can be carried out in an organic solvent in the presence of a metal catalyst (this reaction is hereinafter referred to as reaction 2).
  • X represents a halogen atom
  • Z 2 , R 4 , and m are respectively synonymous with the general formula (1).
  • M represents a boron atom, a magnesium atom, a silicon atom, a tin atom, or a zinc atom that may have a substituent
  • Z 1 , R 1 , R 2 , and R 3 are Each is synonymous with Formula (1).
  • Examples of the inorganic basic compound, the organic basic compound, and the metal catalyst that are used as necessary during the reaction 2 include the same as those described in the first embodiment.
  • the organic solvent used in the reaction 2 an ether solvent, an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, or the like is preferably used.
  • the amount of the ether solvent having 5 or less carbon atoms is small. Specifically, in carrying out the reaction 2, the total volume V A [liter] of the number of moles N f2 [mol] of the compound represented by the general formula (2) in the reaction system and the ether solvent having 5 or less carbon atoms.
  • V A is the sum of these when a plurality of types of ether solvents having 5 or less carbon atoms are contained in the reaction system.
  • the amount of the ether solvent having 5 or less carbon atoms to be added when the reaction 2 is charged can be adjusted.
  • the reaction system Solvent removal treatment is performed on the solution, and the amount of the ether solvent having 5 or less carbon atoms is adjusted so as to satisfy any one of the formulas (1) to (3).
  • Examples of the ether solvent having 5 or less carbon atoms and the solvent removal method include the same methods as those described in the first embodiment.
  • the reaction system contains at least one solvent selected from an ether solvent having 6 or more carbon atoms, an aliphatic hydrocarbon solvent having 7 or more carbon atoms, and an aromatic hydrocarbon solvent, an ether having 5 or less carbon atoms Even more preferable than the case of carrying out only with a solvent.
  • Liter] and the number of moles N f2 [mol] of the compound represented by the general formula (2) preferably satisfy the relationship of the following formula (5), and more preferably satisfy the relationship of the following formula (6). .
  • ether solvent having 6 or more carbon atoms examples include the aliphatic hydrocarbon solvent having 7 or more carbon atoms, and the aromatic hydrocarbon solvent are the same as those described in the first embodiment.
  • imidazole compounds examples include the same compounds as those described in the first embodiment, but are not limited thereto.
  • the organometallic complex of this embodiment has an imidazole compound represented by the general formula (1) as a partial structure.
  • the organometallic complex of the present embodiment preferably contains at least one metal selected from metal elements from Group 8 to Group 11 of the Periodic Table.
  • the metal is preferably platinum or iridium.
  • Examples of the organometallic complex of the present embodiment include those having, as a ligand, an imidazole compound represented by the general formula (1) with respect to metal elements from Group 8 to Group 11 of the Periodic Table. It is done.
  • the organometallic complex of the present invention can be synthesized by a known method.
  • the organometallic complex of the present embodiment can be used as a light emitting material having a sharp emission spectrum and capable of emitting light on the short wavelength side. Therefore, it is particularly useful as a blue light emitting organic EL device material.
  • organometallic complex having the imidazole compound of the present embodiment in a partial structure are the same as those described in the first embodiment, but are not limited thereto.
  • the material for an organic electroluminescence element of this embodiment contains at least one of the imidazole compound represented by the general formula (1), the organic compound, and the organometallic complex.
  • Organic EL elements, display devices, lighting devices The layer configuration of the organic EL element of this embodiment is the same as that described in the first embodiment.
  • the organic EL device material containing the imidazole compound of the present embodiment or the imidazole compound of the present embodiment can be used as a host of the light emitting layer, and includes the organometallic complex of the present embodiment.
  • An organic EL element material can also be used as a dopant for the light emitting layer.
  • the same effects as those of the first embodiment can be obtained.
  • organic EL element of the present embodiment in addition to the organic EL element material of the present embodiment, an arbitrary material can be selected and used from known materials used in conventional organic EL elements.
  • Table 1 summarizes the relationship of the amount of solvent in the reaction system in Synthesis Example 3.
  • the solution mass (24.4 g) is calculated from the specific gravity (0.68) of the n-BuLi hexane solution, and then the mass of n-hexane (20.56 g) is subtracted from the mass of the solution by subtracting the mass of n-BuLi (3.84 g).
  • the volume was calculated and converted into volume with the specific gravity of n-hexane (0.66).
  • the reaction was deactivated by adding a small amount of water to the sample. This is diluted with dichloromethane (200 ml), and an aqueous solution of tetrasodium ethylenediaminetetraacetate dihydrate (62.43 g, 150 mmol) is added thereto, shaken well in a separatory funnel, and the pH of the aqueous phase becomes 10 or more. A sodium hydroxide aqueous solution was added to adjust. The dichloromethane phase was collected, extracted from the aqueous phase several times with dichloromethane, dried over anhydrous magnesium sulfate, filtered and concentrated.
  • an oil rotary pump is connected to the three-necked flask containing compound 2 through a solvent trap cooled with a dry ice / acetone refrigerant, and the three-necked flask is heated to about 40 ° C. under reduced pressure.
  • the solvent 310 ml was removed from the reaction system (solvent removal step).
  • the removal amount of the solvent is the amount collected in the solvent trap.
  • Table 1 summarizes the relationship of the amount of solvent in the reaction system in Synthesis Example 4.
  • the relationship between the total volume V A [liter] of tetrahydrofuran, which is an ether solvent having 5 or less carbon atoms, and the number of moles N f2 [mole] of iodobenzene was calculated by the same calculation as in (Synthesis Example 3).
  • V A / N f2 ⁇ 0.96 the relationship of the mathematical formula (3) was satisfied.
  • the relationship between the volume V B [liter] of toluene, which is an aromatic hydrocarbon solvent having 7 carbon atoms, and the number of moles N f2 [mol] of iodobenzene is as shown in Table 1.
  • the reaction was deactivated by adding a small amount of water to the sample. This is diluted with dichloromethane (300 ml), an aqueous solution of tetrasodium ethylenediaminetetraacetate dihydrate (129.9 g, 312 mmol) is added thereto, shaken well in a separatory funnel, and the pH of the aqueous phase becomes 10 or more. A sodium hydroxide aqueous solution was added to adjust. The dichloromethane phase was collected, extracted from the aqueous phase several times with dichloromethane, dried over anhydrous magnesium sulfate, filtered and concentrated.
  • an oil rotary pump is connected to the three-necked flask containing compound 2 through a solvent trap cooled with a dry ice / acetone refrigerant, and the three-necked flask is heated to about 40 ° C. under reduced pressure.
  • the solvent 250 ml was removed from the reaction system (solvent removal step).
  • the removal amount of the solvent is the amount collected in the solvent trap.
  • Table 1 summarizes the relationship of the amount of solvent in the reaction system in Synthesis Example 5.
  • the relationship between the total volume V A [liter] of tetrahydrofuran, which is an ether solvent having 5 or less carbon atoms, and the number of moles N f2 [mol] of 2-Bromodibenzofuran is (Synthesis Example 3) With similar calculations, V A / N f2 ⁇ 0.66 Thus, the relationship of the mathematical formula (3) was satisfied.
  • the relationship between the volume V B [liter] of toluene and the number of moles N f2 [mol] of 2-Bromodibenzofuran is as shown in Table 1.
  • V B / N f2 1
  • the relationship of the mathematical formula (5) was satisfied. Therefore, the reaction conditions of Synthesis Example 5 were performed under the conditions satisfying the relations of Equation (3) and Equation (5).
  • the reaction was deactivated by adding a small amount of water to the sample. This is diluted with dichloromethane (300 ml), to which is added an aqueous solution of tetrasodium ethylenediaminetetraacetate dihydrate (62.4 g, 150 mmol), shaken well in a separatory funnel, and the pH of the aqueous phase becomes 10 or more. A sodium hydroxide aqueous solution was added to adjust. The dichloromethane phase was collected, extracted from the aqueous phase several times with dichloromethane, dried over anhydrous magnesium sulfate, filtered and concentrated.
  • Residual iodine was deactivated by adding sodium thiosulfate / sodium hydroxide aqueous solution, and the sample was transferred to a separatory funnel and extracted three times with dichloromethane. The extract was dried over anhydrous magnesium sulfate, filtered and concentrated. This was purified by silica gel chromatography (hexane) and recrystallized from hexane (150 ml) at ⁇ 10 ° C. to obtain a white solid (2-Fluoro-1,3-diiodobenzene). This compound was identified by 1 H-NMR and FD-MS. Yield 62.0g Yield 53%
  • 2-Fluoro-1,3-diiodobenzene (61.9 g, 178 mmol), carbazole (71.4 g, 427.2 mmol), K 3 PO 4 (151.14 g, 712 mmol), CuI (6.78 g, 35.6 mmol) ), Trans-1,2-diaminocyclohexane (12.8 ml, 106.8 mmol) and 1,4-dioxane (178 ml) were added and refluxed for 16 hours.
  • compound 7 In a nitrogen atmosphere, compound 7 (5.69 g, 12 mmol) and tetrahydrofuran (72 ml) were placed in a three-necked flask, and then n-BuLi hexane solution (7.2 ml, moles of n-BuLi in the solution: 12 mmol, mol) at room temperature. Concentration (number of moles of n-BuLi / amount of solution): 1.67M) was added and stirred for 30 minutes. Next, a solution of zinc chloride (2.04 g, 15 mmol) dissolved in tetrahydrofuran (15 ml) was added over 5 minutes. Compound 8 was directly used in the next reaction without purification.
  • Table 1 summarizes the relationship of the amount of solvent in the reaction system in Synthesis Example 10. As shown in Table 1, since the total amount of the solvent remaining in the flask after the solvent removal step was 4.4 ml, the total volume V A [liter] of tetrahydrofuran, which is an ether solvent having 5 or less carbon atoms, was 4.4 ml. It can be said that it was the following. Therefore, the relationship between the total volume V A [liter] of tetrahydrofuran, which is an ether solvent having 5 or less carbon atoms, and the number of moles N f2 [mol] of iodobenzene is as shown in Table 1. V A / N f2 ⁇ 0.44 Thus, the relationship of the mathematical formula (3) was satisfied.
  • the reaction was deactivated by adding a small amount of water to the sample. This is diluted with dichloromethane (200 ml), and an aqueous solution of tetrasodium ethylenediaminetetraacetate dihydrate (8.32 g, 20 mmol) is added thereto, shaken well in a separatory funnel, and the pH of the aqueous phase becomes 10 or more. A sodium hydroxide aqueous solution was added to adjust. The dichloromethane phase was recovered, further extracted from the aqueous phase with dichloromethane several times, dried over anhydrous magnesium sulfate, filtered, concentrated and dried.
  • the reaction was deactivated by adding a small amount of water to the sample. This is diluted with dichloromethane (200 ml), and an aqueous solution of tetrasodium ethylenediaminetetraacetate dihydrate (62.43 g, 150 mmol) is added thereto, shaken well in a separatory funnel, and the pH of the aqueous phase becomes 10 or more. A sodium hydroxide aqueous solution was added to adjust. The dichloromethane phase was collected, extracted from the aqueous phase several times with dichloromethane, dried over anhydrous magnesium sulfate, filtered and concentrated.
  • the reaction was deactivated by adding a small amount of water to the sample. This is diluted with dichloromethane (300 ml), and an aqueous solution of tetrasodium ethylenediaminetetraacetate dihydrate (129.9 g, 312 mmol) is added thereto, shaken well in a separatory funnel, and the pH of the aqueous phase becomes 10 or more. A sodium hydroxide aqueous solution was added to adjust. The dichloromethane phase was collected, extracted from the aqueous phase several times with dichloromethane, dried over anhydrous magnesium sulfate, filtered and concentrated. However, the presence of the target product could not be confirmed by thin layer chromatography.
  • the reaction was deactivated by adding a small amount of water to the sample. This is diluted with dichloromethane (300 ml), and an aqueous solution of ethylenediaminetetraacetic acid tetrasodium dihydrate (62.4 g, 150 mmol) is added thereto, shaken well in a separatory funnel, and the pH of the aqueous phase becomes 10 or more. A sodium hydroxide aqueous solution was added to adjust. The dichloromethane phase was collected, extracted from the aqueous phase several times with dichloromethane, dried over anhydrous magnesium sulfate, filtered and concentrated. However, the presence of the target product could not be confirmed by thin layer chromatography.
  • FIGS. 3A and 3B The results of high performance liquid chromatography analysis using this solution are shown in FIGS. 3A and 3B.
  • compound 9 can be synthesized in a relatively good yield in the present invention, and compound 9 cannot be synthesized by the conventional method as shown in the comparative example. I understand that.
  • Table 2 compares the yields of the compounds 3, 4, 5, and 9 synthesized in Examples 1 to 4 and Comparative Examples 1 to 4.
  • the manufacturing method of the imidazole compound which concerns on this invention is a very useful manufacturing method, when synthesize
  • the present invention can provide an imidazole compound that cannot be synthesized by a conventional method.
  • the imidazole compound which cannot be synthesized by the synthesis methods disclosed in Patent Document 1 and Patent Document 2 is described so that it can be clearly produced even by a person skilled in the art taking into account the common general knowledge at the time of filing this application. Therefore, the imidazole compound which cannot be synthesized described in Patent Document 1 and Patent Document 2 cannot be a “cited invention” for the present invention.
  • a judicial example Heisei 11 (Gyo-ke) 285), "... If the invention is incomplete or cannot be implemented for some reason, it is assumed that it already exists.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 下記一般式(1)で表されるイミダゾール化合物を、1-アリールイミダゾールとハロゲン原子置換化合物とを反応させて製造するイミダゾール化合物の製造方法であって、この反応を行うにあたって、反応系中の前記ハロゲン原子置換化合物のモル数Nf(2)[モル]と炭素数5以下のエーテル溶媒の合計容積Vsol[リットル]とが、Vsol/Nf(2)≦3、の関係を満たす。(式(1)中、R、及びRは、置換基等を表し、Zは、炭化水素環基等を形成するのに必要な原子群を表し、R、及びRは、結合手、水素原子または芳香族炭化水素基を表し、Zは、C-Cと共に5員の炭化水素環等を形成するのに必要な原子群を表し、mは、1以上5以下の整数を表す。)

Description

イミダゾール化合物の製造方法、イミダゾール化合物、イミダゾール系化合物、有機金属錯体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置、及び照明装置
 本発明は、イミダゾール化合物の製造方法、イミダゾール化合物、イミダゾール系化合物、有機金属錯体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置、及び照明装置に関する。
 従来、イミダゾール化合物は、様々な用途で用いられているが、近年、有機エレクトロルミネッセンス素子用材料としても用いられるようになっている。例えば、金属錯体の配位子としてイミダゾール化合物が用いられている。
 特許文献1や特許文献2には、N-フェニル-2-フェニルイミダゾール誘導体であって、N位のフェニル基の2位および6位に置換基を導入したものが記載されている。この置換基としては、メチル基、イソプロピル基、フェニル基、4-イソプロピルフェニル基、3,5-ジメチルフェニル基などが例示されている。特許文献2では、この置換基の嵩高さが立体パラメータ(Es値)によって規定されている。
 そして、特許文献1や特許文献2は、当該N位のフェニル基の2位および6位に嵩高い置換基を導入したイミダゾール化合物を配位子とした金属錯体は、その発光波長が短波長側にシフトし、発光スペクトルが鋭くなるため、色純度の優れた青色発光材料として有用であるとしている。
特表2008-542203号公報 特開2008-303150号公報
 しかしながら、特許文献1や特許文献2に開示された合成方法では、イミダゾール化合物の当該置換基の嵩高さが増すほど(Es値が小さくなるほど)収率が低くなり、さらには合成できない。例えば、当該置換基がメチル基であれば、合成可能であるが、イソプロピル基やフェニル基を有するイミダゾール化合物の収率は、非常に低くて実用レベルではなく、より嵩高い置換基であるカルバゾール基を有するイミダゾール化合物は、合成できない。また、特許文献1や特許文献2には、イソプロピル基やフェニル基を有するイミダゾール化合物の合成例が開示されるが、それよりも嵩高い置換基を有するイミダゾール化合物の合成例が開示されていないことからも、実用レベルで提供することができていないといえる。
 そのため、より発光スペクトルが鋭く短波長側で発光可能な発光材料を得るべく、前記N位のフェニル基の2位および6位に置換基を導入したイミダゾール化合物、およびそのイミダゾール化合物を高い収率で製造できる製造方法が望まれている。
 本発明の目的は、発光スペクトルが鋭く短波長側で発光可能な発光材料を得るにあたって有用なイミダゾール化合物を高い収率で製造できるイミダゾール化合物の製造方法、イミダゾール系化合物、及び有機金属錯体、これらを含む有機エレクトロルミネッセンス素子用材料、この有機エレクトロルミネッセンス素子用材料を用いる有機エレクトロルミネッセンス素子、並びにこの有機エレクトロルミネッセンス素子を備える表示装置、及び照明装置を提供することである。
 本発明のイミダゾール化合物の製造方法は、下記一般式(1)で表されるイミダゾール化合物を、下記一般式(2)で表される化合物と下記一般式(3)で表される化合物とを反応させて製造するイミダゾール化合物の製造方法であって、
 前記一般式(2)で表される化合物と前記一般式(3)で表される化合物とを反応させるにあたって、反応系中の前記一般式(2)で表される化合物のモル数Nf2[モル]と炭素数5以下のエーテル溶媒の合計容積V[リットル]とが、下記数式(1)の関係を満たす
 ことを特徴とする。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、
 Rは、水素原子または置換基を表し、
 Zは、炭化水素環基または複素環基を形成するのに必要な原子群を表し、前記Zにて形成される前記炭化水素環基または前記複素環基は、前記Rを1以上有し、
 RおよびRは、結合手、水素原子または芳香族炭化水素基を表し、互いに結合して5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成してもよく、さらにこれらの環が置換基を有してもよく、
 Zは、C-Cと共に5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成するのに必要な原子群を表し、
 Rは、水素原子または置換基を表し、
 mは、1~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000006

(式(2)中、
 Xは、ハロゲン原子を表し、
 Z、R、およびmは、前記一般式(1)と各々同義である。)
Figure JPOXMLDOC01-appb-C000007

(式(3)中、
 Mは、ホウ素原子、マグネシウム原子、シリコン原子、スズ原子、又は亜鉛原子を表し、さらに置換基を有してもよく、
 Z、R、R、およびRは、前記一般式(1)と各々同義である。)
  [数1]
     V/Nf2≦3 …(1)
 本発明のイミダゾール化合物の製造方法において、
 前記一般式(2)で表される化合物のモル数Nf2と前記合計容積Vとが、下記数式(2)の関係を満たす
 ことが好ましい。
  [数2]
     V/Nf2≦2 …(2)
 本発明のイミダゾール化合物の製造方法において、
 前記一般式(2)で表される化合物のモル数Nf2と前記合計容積Vとが、下記数式(3)の関係を満たす
 ことが好ましい。
  [数3]
     V/Nf2≦1 …(3)
 本発明のイミダゾール化合物の製造方法において、
 前記炭素数5以下のエーテル溶媒が、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、1,3-ジオキサン、ジエチルエーテル、および1,2-ジメトキシエタンの中から選ばれる少なくとも一つのエーテル溶媒である
 ことが好ましい。
 本発明のイミダゾール化合物の製造方法において、
 前記反応系の溶媒を除去する溶媒除去処理を実施して前記モル数Nf2と前記合計容積Vとの関係を調整する
 ことが好ましい。
 本発明のイミダゾール化合物の製造方法において、
 前記反応系中に、第二の溶媒として炭素数7以上の脂肪族炭化水素溶媒、芳香族炭化水素溶媒、および炭素数6以上のエーテル溶媒の中から選ばれる少なくとも一つの溶媒が含まれ、
 前記一般式(2)で表される化合物と前記一般式(3)で表される化合物とを反応させるにあたって、前記反応系中の前記一般式(2)で表される化合物のモル数Nf2と前記第二の溶媒の合計容積Vとが、下記数式(4)の関係を満たす
 ことが好ましい。
  [数4]
     0.1≦V/Nf2 …(4)
 本発明のイミダゾール化合物の製造方法において、
 前記反応系中の前記一般式(2)で表される化合物のモル数Nf2と前記第二の溶媒の合計容積Vとが、下記数式(5)の関係を満たす
 ことが好ましい。
  [数5]
     0.1≦V/Nf2≦10 …(5)
 本発明のイミダゾール化合物の製造方法において、
 前記炭素数6以上のエーテル溶媒が、ジプロピルエーテル、ジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、メトキシベンゼン、エトキシベンゼン、メチルアニソール、エチルアニソール、ジメトキシベンゼン、およびメトキシエトキシベンゼンの中から選ばれる少なくとも一つの溶媒である
 ことが好ましい。
 本発明のイミダゾール化合物の製造方法において、
 前記炭素数7以上の脂肪族炭化水素溶媒の炭素数が7以上50以下であり、
 前記芳香族炭化水素溶媒の炭素数が6以上20以下である
 ことが好ましい。
 本発明のイミダゾール化合物の製造方法において、
 前記芳香族炭化水素溶媒が、ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、およびテトラメチルベンゼンの中から選ばれる少なくとも一つの溶媒である
 ことが好ましい。
 本発明のイミダゾール化合物の製造方法において、
 前記一般式(3)中のMは、置換基を有してもよい亜鉛原子である
 ことが好ましい。
 本発明のイミダゾール化合物は、前記本発明のイミダゾール化合物の製造方法によって製造されるイミダゾール化合物であることを特徴とする。
 本発明のイミダゾール化合物は、下記一般式(1)において、Rが立体パラメータ(Es)値で-2.0以下の置換基を表すことを特徴とする。
Figure JPOXMLDOC01-appb-C000008
(ただし、前記一般式(1)において、
 Zは、炭化水素環基または複素環基を形成するのに必要な原子群を表し、前記Zにて形成される前記炭化水素環基または前記複素環基が、前記Rを1以上有し、
 R、及びRは、結合手、水素原子または芳香族炭化水素基を表し、互いに結合して5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成してもよく、さらにこれらの環が置換基を有してもよく、
 Zは、C-Cと共に5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成するのに必要な原子群を表し、
 Rは、水素原子または置換基を表し、
 mは、1~5の整数を表す。)
 本発明のイミダゾール化合物において、
 前記Rは、立体パラメータ(Es)値で-2.5以下の置換基を表す
 ことが好ましい。
 本発明のイミダゾール化合物において、
 前記Rは、立体パラメータ(Es)値で-3.0以下の置換基を表す
 ことが好ましい。
 本発明のイミダゾール化合物において、
 前記Rは、立体パラメータ(Es)値で-5.0以下の置換基を表す
 ことが好ましい。
 本発明のイミダゾール化合物において、
 前記Rは、分子量が42以上の置換基を表す
 ことが好ましい。
 本発明のイミダゾール化合物において、
 前記Rは、分子量が76以上の置換基を表す
 ことが好ましい。
 本発明のイミダゾール化合物において、
 前記Rは、分子量が115以上の置換基を表す
 ことが好ましい。
 本発明のイミダゾール化合物において、
 前記Rは、分子量が166以上の置換基を表す
 ことが好ましい。
 本発明のイミダゾール系化合物は、
 前記本発明のイミダゾール化合物を部分構造として有する
 ことを特徴とする。
 本発明の有機金属錯体は、
 前記本発明のイミダゾール化合物を部分構造として有する
 ことを特徴とする。
 本発明の有機金属錯体において、
 周期律表の第8族から第11族までの金属元素の中から選ばれる少なくとも一つの金属元素を含む
 ことが好ましい。
 本発明の有機エレクトロルミネッセンス素子用材料は、
 前記本発明のイミダゾール化合物、前記本発明のイミダゾール系化合物、及び前記本発明の有機金属錯体のうち少なくとも一つを含む
 ことを特徴とする。
 本発明の有機エレクトロルミネッセンス素子は、
 陽極と陰極との間に発光層を含む複数の有機化合物層を有し、
 前記有機化合物層のうち少なくとも1層が前記本発明の有機エレクトロルミネッセンス素子用材料を含む
 ことを特徴とする。
 本発明の表示装置は、
 前記本発明の有機エレクトロルミネッセンス素子を備える
 ことを特徴とする。
 本発明の照明装置は、
 前記本発明の有機エレクトロルミネッセンス素子を備える
 ことを特徴とする。
 本発明によれば、発光スペクトルが鋭く短波長側で発光可能な発光材料を得るにあたって有用なイミダゾール化合物を高い収率で製造できるイミダゾール化合物の製造方法、イミダゾール化合物、このイミダゾール化合物を部分構造として有するイミダゾール系化合物、及び有機金属錯体、これらを含む有機エレクトロルミネッセンス素子用材料、この有機エレクトロルミネッセンス素子用材料を用いる有機エレクトロルミネッセンス素子、並びにこの有機エレクトロルミネッセンス素子を備える表示装置、及び照明装置を提供することができる。
イミダゾール化合物の1H-NMRスペクトルを示す図。 図1の1H-NMRスペクトルの一部を拡大した図。 高速液体クロマトグラフィー分析結果を示す図。 高速液体クロマトグラフィー分析結果を示す図。
[第1実施形態]
 以下に本発明の第1実施形態について詳述する。
〔イミダゾール化合物〕
 本実施形態のイミダゾール化合物は、前記一般式(1)で表される。
 一般式(1)において、Zは、炭化水素環基または複素環基を形成するのに必要な原子群を表す。これらの炭化水素環基または複素環基は、次に説明するRで表される置換基を1以上有する。その数は、好ましくは1,2,3,4,5のいずれかである。Rの数が複数であるとき、互いのRは、同じであってもよく、異なっていてもよい。また、前記一般式(1)で表されるイミダゾール化合物のうち、これらの炭化水素環基または複素環基のオルト位にそれぞれRを有するイミダゾール化合物が好ましい。
 Rは、水素原子または置換基を表す。
 Rで表される置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
 一般式(1)において、Rは、立体パラメータ(Es)値で-1.70以下の置換基であることが好ましい。より好ましくは、Es値が-2.0以下の置換基であり、さらに好ましくは、Es値が-2.5以下の置換基であり、よりさらに好ましくは、Es値が-3.0以下の置換基であり、特に好ましくは、-5.0以下の置換基である。
 Es値とは化学反応性より誘導された立体パラメータであり、この値が小さいほど立体的に嵩高い置換基ということができる。そのため、Es値が小さいほど好ましい。
 Es値に関しては、例えば、構造活性懇話会編 「薬物の構造活性相関 ドラッグデザインと作用機作研究への指針(化学の領域 増刊122号)」(南江堂 1979年刊)p124-126、Unger,S.H.,Hansch,C.,Prog.Phys.Org.Chem.,12,91(1976)、「American Chemical Society Professional Reference Book,’Exploring QSAR’p.81 Table 3-3」に記載されている。
 本実施形態におけるEs値は、水素原子のEs値を0として表される値である。
 Es値が-2.0以下の置換基としては、例えば、-CF(トリフルオロメチル基)、9-H-フルオレン基(Es値=-2.34)やカルバゾリル基が挙げられ、Es値が-2.5以下の置換基としては、例えば、-t-C(tert-ブチル基)が挙げられ、Es値が-3.0以下の置換基としては、例えば、-CH(C(3-(n-ペンチル)基)、-CHBr(ジブロモメチル基)、-CCl(トリクロロメチル基)、-CBr(トリブロモメチル基)が挙げられ、Es値が-5.0以下の置換基としては、例えば、-C(C(トリフェニルメチル基)が挙げられる。これらの置換基に対して前記置換基Rがさらに置換されていてもよい。
 一般式(1)において、Rは、前記Es値の範囲を満たすと共に、分子量が43以上の置換基であることが好ましく、分子量が77以上の置換基であることがより好ましく、分子量が116以上の置換基であることがより好ましく、分子量が127以上の置換基であることがより好ましく、分子量が166以上の置換基であることがより好ましい。分子量が43以上の置換基としては、例えば、イソプロピル基(分子量:43)が挙げられ、分子量が77以上の置換基としては、例えば、フェニル基(分子量:77)が挙げられ、分子量が116以上の置換基としては、例えば、インドール基(分子量:116)が挙げられ、分子量が127以上の置換基としては、例えば、ナフチル基(分子量:127)が挙げられ、分子量が166以上の置換基としては、例えば、カルバゾール基(分子量:166)が挙げられる。
・炭化水素環基
 上述のとおり、一般式(1)において、Zは、炭化水素環基を形成するのに必要な原子群を表すものであり、この炭化水素環基としては、シクロアルキル基またはアリール基(芳香族環基)が挙げられる。
・シクロアルキル基
 シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基、ノルボルニル基等が挙げられる。該シクロアルキル基は、好ましくは炭素数5以上10以下であり、さらに好ましくは炭素数5以上7以下である。
・アリール基
 アリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、ビフェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニル-4-イル基、4”-t-ブチル-p-ターフェニル-4-イル基、フルオレニル基等が挙げられる。該アリール基は、好ましくは、炭素数6以上18以下であり、さらに好ましくは、炭素数6以上12以下である。
・複素環基
 上述のとおり、一般式(1)において、Zは、複素環基を形成するのに必要な原子群も表すものであり、複素環基としては、脂肪族複素環基、芳香族複素環基等が挙げられる。
・脂肪族複素環基
 脂肪族複素環基としては、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1、1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環等の脂肪族複素環由来のものを挙げることができる。該脂肪族複素環基は、好ましくは、環構成原子数5以上10以下であり、さらに好ましくは、環構成原子数5以上7以下である。
・芳香族複素環基
 芳香族複素環基としては、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が挙げられる。該芳香族複素環基は、好ましくは、環構成原子数5以上18以下であり、さらに好ましくは、環構成原子数5以上13以下である。
 一般式(1)において、R、及びRは、結合手、水素原子または芳香族炭化水素基を表し、互いに結合して5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成してもよい。さらに、これらの環が前記置換基Rを有してもよい。
 5員または6員の炭化水素環としては、シクロペンタン環、シクロペンタジエン環、シクロヘキサン環、シクロヘキサジエン環、ベンゼン環等が挙げられる。
 また、5員または6員の複素環としては、5員または6員の芳香族複素環(例えば、オキサゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、トリアゾール環)、5員~6員の非芳香族複素環(例えば、ピロリジン環、ピペラジン環、ピラゾリジン環、イミダゾリジン環、イソオキサゾリジン環、イソチアゾリジン環)が挙げられる。
 一般式(1)において、Zは、C-Cと共に5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成するのに必要な原子群を表す。
 5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環は、前記R、及びRにて説明したものと同様である。
 一般式(1)において、Rは、水素原子または置換基を表す。この置換基としては、前記置換基Rが挙げられる。
 一般式(1)において、mは、1以上5以下の整数を表す。Rの数が2以上のとき、互いのRは、同じであってもよく、異なっていてもよい。
 一般式(1)において、Zによって形成される炭化水素環基は、アリール基であることが好ましく、フェニル基であることがより好ましい。
 さらに、このフェニル基の2位および6位に前記置換基Rが置換されていることが好ましい。
 本実施形態のイミダゾール化合物の具体的な構造としては、例えば、次のようなものが挙げられる。但し、本発明は、これらの構造のイミダゾール化合物に限定されない。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
〔イミダゾール化合物の製造方法〕
 本実施形態のイミダゾール化合物の製造方法は、前記一般式(2)で表される化合物と前記一般式(3)で表される化合物とを反応(以下、この反応を反応1と称する。)させて前記数式(1)の関係を満たす前記一般式(1)で表されるイミダゾール化合物を製造するものである。そして、反応1を行なうにあたって、反応系中の前記一般式(2)で表される化合物のモル数Nf(2)[モル]と炭素数5以下のエーテル溶媒の合計容積V[リットル]とが上記数式(1)の関係を満たす。
 一般式(3)において、Mは、置換基を有してもよい亜鉛原子であることが好ましい。この場合には、反応1の前段階の合成反応である一般式(3)で表される化合物の合成反応と、反応1との、反応機構上は2段階の合成反応を、連続して行うこと(「1ポット合成」とも呼ばれる。)ができ、製造工程が簡略化できるため好ましい。
 Vは、反応系中に炭素数5以下のエーテル溶媒が複数種類含まれるときは、これらの合計である。
 本実施形態のイミダゾール化合物の製造方法は、前記数式(2)の関係を満たす状態で行うことが好ましく、前記数式(3)の関係を満たす状態で行うことがより好ましい。
 炭素数5以下のエーテル溶媒としては、例えば、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、1,3-ジオキサン、ジエチルエーテル、1,2-ジメトキシエタンが挙げられる。同溶媒は、炭素数2以上5以下のエーテル溶媒とも言える。
 前記数式(1)~(3)のいずれかの関係を満たすには、反応1の仕込み時に加える炭素数5以下のエーテル溶媒の量で調整できる。また、反応1に用いる試薬の溶解性や反応1を実施する前の工程の都合などにより、反応1を行う前の時点で下記数式(6)の関係となっている場合には、反応系に対して溶媒除去処理を行い、前記数式(1)~(3)のいずれかの関係を満たすように炭素数5以下のエーテル溶媒の量を調整する。
  [数6]
     V/Nf2>3 …(6)
 溶媒除去処理の方法としては、各種の冷却システムにより冷却された溶媒トラップ容器と各種真空ポンプを用いて減圧下において溶媒を除去する減圧蒸留法や、Dean-Starkトラップを用いて常圧下で溶媒を除去する常圧蒸留法を用いることが出来る。
 本実施形態のイミダゾール化合物の製造方法において、前記数式(1)~(3)のいずれかの関係を満たすとともに、反応系中に炭素数6以上のエーテル溶媒、炭素数7以上の脂肪族炭化水素溶媒、芳香族炭化水素溶媒から選ばれる少なくとも1つの溶媒が含まれていることが好ましい。
 この場合、反応1を行うにあたって、炭素数6以上のエーテル溶媒、炭素数7以上の脂肪族炭化水素溶媒、芳香族炭化水素溶媒から選ばれる少なくとも1つの溶媒の合計容積V[リットル]と前記一般式(2)で表される化合物のモル数Nf2[モル]とが前記数式(4)の関係を満たすことが好ましく、前記数式(5)の関係を満たすことがより好ましい。
 炭素数6以上のエーテル溶媒としては、ジプロピルエーテル、ジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、メトキシベンゼン、エトキシベンゼン、メチルアニソール、エチルアニソール、ジメトキシベンゼン、メトキシエトキシベンゼンが好ましい例として挙げられる。炭素数6以上の同エーテル溶媒としては、好適には、炭素数6以上30以下のエーテル溶媒であり、さらに好適には、炭素数8以上15以下のエーテル溶媒である。
 炭素数7以上の脂肪族炭化水素溶媒としては、炭素数が7以上50以下の脂肪族炭化水素溶媒から選ばれると好ましく、n-ヘプタン、n-オクタン、n-ノナン、n-デカンが好ましい例として挙げられる。さらに好ましくは、同脂肪族炭化水素溶媒は、炭素数が8以上30以下の脂肪族炭化水素溶媒である。
 芳香族炭化水素溶媒としては、炭素数6以上20以下の芳香族炭化水素溶媒から選ばれると好ましく、ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、テトラメチルベンゼンが好ましい例として挙げられる。さらに好ましくは、同芳香族炭化水素溶媒は、炭素数が7以上10以下の芳香族炭化水素溶媒である。
 また、本実施形態のイミダゾール化合物の製造方法において、前記反応1の際に、必要に応じて無機塩基性化合物、及び有機塩基性化合物の少なくともいずれかの共存下において、かつ、金属触媒存在下において有機溶媒中で反応させることが好ましい。
 反応1の際に必要に応じて用いられる無機塩基性化合物としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸カリウムなどが挙げられる。
 反応1の際に必要に応じて用いられる有機塩基性化合物としては酢酸ナトリウム、酢酸カリウム、ナトリウムtert-ブトキシド、カリウムtert-ブトキシドなどが挙げられる。
 反応1の際に用いられる金属触媒としては、パラジウム触媒、ニッケル触媒等が好適に用いられる。
 パラジウム触媒としては、ホスフィン配位子を有するパラジウム化合物が好適に用いられ、Pd(PPh、PdCl(PPh等が挙げられる。
 また、Pd(OAc)、Pd(dba)、Pd(dba)等のホスフィン配位子を含まないパラジウム化合物と、PPh、トリシクロヘキシルホスフィン、トリ-tert-ブチルホスフィン、dppe、dppp、dppf等のホスフィン配位子とを反応系中で混合させることで、当該反応系中でホスフィン配位子を有するパラジウム化合物を調製することも出来る。
 また、これら以外にも、当業者に公知の炭素-炭素(C-C)結合形成に用いられるパラジウム触媒が好適に用いられる。
 ニッケル触媒としては、ホスフィン配位子を有するニッケル化合物が好適に用いられ、例えば、NiCl(dppe)、NiCl(dppf)、NiCl(PPhが挙げられる。また、これら以外にも当業者に公知のC-C結合形成に用いられるニッケル触媒が好適に用いられる。
 以上のとおり説明した本実施形態のイミダゾール化合物の製造方法によれば、従来技術で開示される合成方法では、収率が低かったり、合成不可能であったりしたイミダゾール化合物を高い収率で製造できる。
 その理由は、次に示すように推測される。
 エーテル溶媒は、酸素原子と炭化水素基から構成される分子であり、炭化水素基の炭素数が増えるに従い、溶媒の疎水性が増加する。この点については、例えば「界面活性剤 -物性・応用・化学生態学-」(講談社(1979年 第1刷))、や「新界面活性剤」(三共出版(1986年 第4刷))に記載されている。
 後述する実施例で示されているように、炭素数が4であるテトラヒドロフランが反応溶媒として反応系に多量に存在する状態(前記数式(1)で示す関係を満たさない状態)で反応1を行った場合は、一般式(1)で表されるイミダゾール化合物の合成反応収率が低いか、若しくは合成不可能である。一方、反応系に存在するテトラヒドロフランの量を少なくしたり、反応系にトルエンを加えて反応溶媒中に占めるテトラヒドロフランの割合を小さくしたりすることで、すなわち、前記数式(1)で示す関係を満たす状態で反応を行ったり、前記数式(1)で示す関係を満たすとともに、前記数式(4)を満たす状態で反応を行ったりすることで、該収率が劇的に改善される。このことから、反応系に存在する溶媒の疎水性が大きく影響していると考えられる。
 つまり、反応系に存在する炭素数5以下のエーテル溶媒が多い場合は、該収率が低いが、反応系に存在する炭素数5以下のエーテル溶媒の量を少なくしたり、炭素数6以上のエーテル溶媒、炭素数7以上の脂肪族炭化水素溶媒、芳香族炭化水素溶媒から選ばれる少なくとも1つの溶媒を反応系に加えて反応溶媒中に占めるテトラヒドロフランの割合を小さくしたりすることで、一般式(1)で表されるイミダゾール化合物を高収率で合成できる。
〔イミダゾール系化合物〕
 本実施形態のイミダゾール化合物の製造方法で製造されたイミダゾール化合物を用いて、当該イミダゾール化合物を部分構造として有するイミダゾール系化合物を得ることができる。
 本実施形態のイミダゾール系化合物は、前記一般式(1)で表されるイミダゾール化合物を部分構造として有する。つまり、化合物が部分的にでも前記一般式(1)で表される構造を有すれば、本実施形態のイミダゾール系化合物に該当する。そのため、例えば、イミダゾール化合物として例示した、L-104~L-119のような多置換の化合物も本実施形態のイミダゾール系化合物に該当する。
 本実施形態のイミダゾール系化合物について、具体例をさらに追加して次に示す。
Figure JPOXMLDOC01-appb-C000014
〔有機金属錯体〕
 また、本実施形態のイミダゾール化合物の製造方法で製造されたイミダゾール化合物を用いて、当該イミダゾール化合物を部分構造として有する有機金属錯体を得ることができる。
 この有機金属錯体は、周期律表の第8族から第11族までの金属元素の中から選ばれる少なくとも一つの金属を含むことが好ましい。金属としては、白金またはイリジウムであることが好ましい。
 この有機金属錯体としては、例えば、周期律表の第8族から第11族までの金属元素に対して一般式(1)で表されるイミダゾール化合物を配位子としたものが挙げられる。
 この有機金属錯体は、一般式(1)で表されるイミダゾール化合物を配位子として有することにより、発光スペクトルが鋭く短波長側で発光可能な発光材料として利用できる。そのため、特に青色発光の有機EL素子用材料として有用である。
 このような有機金属錯体の具体例について、次に示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000015
〔有機エレクトロルミネッセンス素子用材料〕
 本実施形態のイミダゾール化合物の製造方法で製造されたイミダゾール化合物、前記イミダゾール系化合物、及び前記有機金属錯体のうち少なくとも一つを用いて有機エレクトロルミネッセンス素子用材料を提供できる。なお、以下、有機エレクトロルミネッセンス素子を有機EL素子と称し、有機エレクトロルミネッセンス素子用材料を有機EL素子用材料と称する。
〔有機EL素子、表示装置、照明装置〕
 また、以下の有機EL素子も本発明の別の実施形態の1つとして捉えることもできる。すなわち、上記本実施形態のイミダゾール化合物の製造方法によって、従来の製造方法では製造が困難であった有機EL素子用の材料として有用なイミダゾール化合物を製造できるようになり、その結果、このような製造が困難であったイミダゾール化合物を含む以下の有機EL素子を効率的に製造できるようになった。
 この有機EL素子は、
 陽極と陰極との間に1以上の層を有する有機化合物層を備える有機EL素子であって、
 前記有機化合物層は、発光層を含み、
 前記有機化合物層のいずれか1層は、有機金属錯体を含み、
 前記有機金属錯体は、下記一般式(4)で表されるイミダゾール化合物を部分構造とすることを特徴とする。
Figure JPOXMLDOC01-appb-C000016
(ただし、前記一般式(4)において、
 Rは、立体パラメータ(Es)値が-1.70以下の置換基であり、
 Zは、炭化水素環基または複素環基を形成するのに必要な原子群を表し、前記Zにて形成される前記炭化水素環基または前記複素環基が、前記Rを1以上有し、
 R、及びRは、結合手、水素原子または芳香族炭化水素基を表し、互いに結合して5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成してもよく、さらにこれらの環が置換基を有してもよく、
 Zは、C-Cと共に5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成するのに必要な原子群を表し、
 Rは、水素原子または置換基を表し、
 mは、1~5の整数を表す。)
 上記、Z,Z,R,R,R,Rの好適例は、上記一般式(1)における説明と同義であるので、詳細な説明を省略する。
 一般式(4)において、Rは、立体パラメータ(Es)値で、-1.70以下であり、-2.0より大きくてもよい。Rは、好ましくは、Es値が-2.0以下の置換基であり、さらに好ましくは、Es値が-2.5以下の置換基であり、よりさらに好ましくは、Es値が-3.0以下の置換基であり、特に好ましくは-5.0以下の置換基である。
 また、上記Rの置換基は、好適には分子量が43以上であり、さらに好適には77以上であり、より好適には116以上であり、よりさらに好適には127以上であり、特に好適には165以上である。
 また、一般式(4)で表されるイミダゾール化合物を部分構造として有する上記有機金属錯体は、好適には、周期律表の第8族から第11族までの金属元素の中から選ばれる金属元素を含み、さらに好適には、同金属元素は、イリジウムまたは白金のいずれかである。
 有機金属錯体の具体例としては、上記(C-1)~(C-12)が挙げられるが、これらに限定されない。
 また、この有機金属錯体は、発光層に含まれることが好適であり、特に発光ドーパント材料として含まれることが好適である。この有機EL素子は、燐光発光するものであることが好ましい。
 また、別の実施形態として、本発明は、上記有機EL素子を備える表示装置または照明装置も提供する。
 前記有機EL素子について、以下により詳しく説明する。
 前記有機EL素子は、陰極と陽極との間に、有機化合物層を有し、有機化合物層は、有機化合物で構成される層を少なくとも一層含む。なお、有機化合物層は、無機化合物を含んでいてもよい。
 この有機EL素子において、有機化合物層のうち少なくとも1層が前記有機EL素子用材料を含む。この有機化合物層は、少なくとも一つの発光層を有する。そのため、有機化合物層は、例えば、一層の発光層で構成されていてもよいし、正孔注入層、正孔輸送層、電子注入層、及び電子輸送層等の公知の有機EL素子で採用される層が発光層を介して積層構成されていてもよい。
 多層型の有機EL素子の構造としては、例えば、
 (a)陽極/正孔注入・輸送層/発光層/陰極、
 (b)陽極/発光層/電子注入・輸送層/陰極、
 (c)陽極/正孔注入・輸送層/発光層/電子注入・輸送層/陰極、
 (d)陽極/正孔注入・輸送層/発光層/正孔障壁層/電子注入・輸送層/陰極、
の多層構成で積層したものが挙げられる。
 なお、前記「正孔注入・輸送層」は「正孔注入層および正孔輸送層のうちの少なくともいずれか1つ」を意味し、「電子注入・輸送層」は「電子注入層および電子輸送層のうちの少なくともいずれか1つ」を意味する。
 前記イミダゾール化合物や前記イミダゾール系化合物を含む有機EL素子用材料を発光層のホストとして用いることもできるし、前記有機金属錯体を含む有機EL素子用材料を発光層のドーパントとして用いることもできる。
 後者の場合、前記有機金属錯体は、前記のとおり発光スペクトルが鋭く短波長側で発光するため、特に青色発光層の形成に特に有用である。
 青色発光層を有する有機EL素子だけでなく、赤色発光層を有する有機EL素子および緑色発光層を有する有機EL素子を並べて配置してカラー表示可能な表示装置や照明装置を構成することもできる。
 また、青色発光層に対して別途赤色発光層および緑色発光層を積層させて、白色発光の有機EL素子を構成することもできる。この場合、いわゆるタンデム型の素子構造とするのが好ましい。白色発光する有機EL素子も、表示装置および照明装置に好適に用いることができる。
 前記有機EL素子において、前記有機EL素子用材料の他には、従来の有機EL素子において使用される公知のものの中から任意の材料を選択して用いることができる。
[第2実施形態]
 以下に本発明の第2実施形態について詳述する。
 なお、第2実施形態の説明においては、第1実施形態と同一の内容および第1実施形態と同一の構造要素は、同一符号や名称を付す等して説明を省略もしくは簡略にする。
〔イミダゾール化合物〕
 本実施形態のイミダゾール化合物は、前記一般式(1)で表される。
 一般式(1)において、Zは、炭化水素環基または複素環基を形成するのに必要な原子群を表す。これらの炭化水素環基または複素環基は、次に説明するRで表される置換基を1以上有する。その数は、好ましくは1,2,3,4,5のいずれかである。Rの数が複数であるとき、互いのRは、同じであってもよく、異なっていてもよい。また、前記一般式(1)で表されるイミダゾール化合物のうち、これらの炭化水素環基または複素環基のオルト位にそれぞれRを有するイミダゾール化合物が好ましい。
 一般式(1)において、Rは、立体パラメータ(Es)値で-2.0以下の置換基を表す。好ましくは、Es値が-2.5以下の置換基であり、より好ましくは、Es値が-3.0以下の置換基であり、よりさらに好ましくは、Es値が-5.0以下の置換基である。
 Es値とは化学反応性より誘導された立体パラメータであり、この値が小さいほど立体的に嵩高い置換基ということができる。そのため、Es値が小さいほど好ましい。
 本実施形態におけるEs値は、水素原子のEs値を0として表される値である。
 Es値が-2.0以下の置換基としては、例えば、-CF(トリフルオロメチル基)、9-H-フルオレン基(Es値=-2.34)やカルバゾリル基が挙げられ、Es値が-2.5以下の置換基としては、例えば、-t-C(tert-ブチル基)が挙げられ、Es値が-3.0以下の置換基としては、例えば、-CH(C(3-(n-ペンチル)基)、-CHBr(ジブロモメチル基)、-CCl(トリクロロメチル基)、-CBr(トリブロモメチル基)が挙げられ、Es値が-5.0以下の置換基としては、例えば、-C(C(トリフェニルメチル基)が挙げられる。これらの置換基に対して後述の置換基Yがさらに置換されていてもよい。なお、カルバゾリル基のEs値は、9-H-フルオレン基とカルバゾリル基とが構造において類似しているため、-2.0~-2.5の範囲に含まれると推測される。
 一般式(1)において、Rは、前記Es値の範囲を満たすと共に、分子量が43以上の置換基であることが好ましく、分子量が77以上の置換基であることがより好ましく、分子量が116以上の置換基であることがより好ましく、分子量が127以上の置換基であることがより好ましく、分子量が166以上の置換基であることがより好ましい。分子量が43以上の置換基としては、例えば、イソプロピル基(分子量:43)が挙げられ、分子量が77以上の置換基としては、例えば、フェニル基(分子量:77)が挙げられ、分子量が116以上の置換基としては、例えば、インドール基(分子量:116)が挙げられ、分子量が127以上の置換基としては、例えば、ナフチル基(分子量:127)が挙げられ、分子量が166以上の置換基としては、例えば、カルバゾール基(分子量:166)が挙げられる。
・炭化水素環基
 上述のとおり、一般式(1)において、Zは、炭化水素環基を形成するのに必要な原子群を表すものであり、この炭化水素環基としては、第1実施形態と同様のシクロアルキル基またはアリール基(芳香族環基)が挙げられる。これらの基は、後述する置換基Yを有していてもよい。
・複素環基
 上述のとおり、一般式(1)において、Zは、複素環基を形成するのに必要な原子群も表すものであり、複素環基としては、第1実施形態と同様の脂肪族複素環基、芳香族複素環基等が挙げられる。
 これらの炭化水素環基または複素環基は、Rで表される置換基の他にさらに置換基を有していてもよい。以下、この置換基を置換基Yと称する。
 この置換基Yの例としては、第1実施形態におけるRで表される置換起の例として挙げたものと同様のものが挙げられる。
 一般式(1)において、R、及びRは、結合手、水素原子または芳香族炭化水素基を表し、互いに結合して5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成してもよい。さらに、これらの環が前記置換基Yを有してもよい。
 なお、5員または6員の炭化水素環および5員または6員の複素環としては、第1実施形態で挙げたものと同様のものが挙げられる。
 一般式(1)において、Zは、C-Cと共に5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成するのに必要な原子群を表す。
 5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環は、前記R、及びRにて説明したものと同様である。
 一般式(1)において、Rは、水素原子または置換基を表す。この置換基としては、前記置換基Yが挙げられる。
 一般式(1)において、mは、1以上5以下の整数を表す。Rの数が2以上のとき、互いのRは、同じであってもよく、異なっていてもよい。
 一般式(1)において、Zによって形成される炭化水素環基は、アリール基であることが好ましく、フェニル基であることがより好ましい。
 さらに、このフェニル基の2位および6位にRが置換されていることが好ましい。
 本実施形態のイミダゾール化合物の具体的な構造としては、例えば、次のようなものが挙げられる。但し、本発明は、これらの構造のイミダゾール化合物に限定されない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
〔イミダゾール化合物の製造方法〕
 本実施形態のイミダゾール化合物は、以下に説明する方法によって製造される。
 本実施形態のイミダゾール化合物は、下記一般式(2)、及び(3)で表される化合物を、必要に応じて無機塩基性化合物、及び有機塩基性化合物の少なくともいずれかの共存下において、かつ、金属触媒存在下において有機溶媒中で反応させることで製造できる(以下、この反応を反応2と称する。)。
Figure JPOXMLDOC01-appb-C000021
 一般式(2)において、Xは、ハロゲン原子を表し、Z、R、及びmは、一般式(1)と各々同義である。
Figure JPOXMLDOC01-appb-C000022
 一般式(3)において、Mは、置換基を有してもよいホウ素原子、マグネシウム原子、シリコン原子、スズ原子、亜鉛原子を表し、Z、R、R、及びRは、一般式(1)と各々同義である。
 反応2の際に必要に応じて用いられる無機塩基性化合物、有機塩基性化合物、および金属触媒としては、第1実施形態で挙げたものと同様のものが挙げられる。
 反応2の際に用いられる有機溶媒としては、エーテル溶媒、脂肪族炭化水素溶媒、芳香族炭化水素溶媒等が好適に用いられる。
 反応2の反応系において、炭素数5以下のエーテル溶媒量が少ない方が好ましい。具体的には、反応2を行なうにあたって、反応系中の前記一般式(2)で表される化合物のモル数Nf2[モル]と炭素数5以下のエーテル溶媒の合計容積V[リットル]とが、下記数式(1)の関係を満たすことが好ましく、下記数式(2)の関係を満たすことがより好ましく、下記数式(3)の関係を満たすことがさらに好ましい。Vは、反応系中に炭素数5以下のエーテル溶媒が複数種類含まれるときは、これらの合計である。
  [数7]
     V/Nf2≦3 …(1)
  [数8]
     V/Nf2≦2 …(2)
  [数9]
     V/Nf2≦1 …(3)
 前記数式(1)~(3)のいずれかの関係を満たすには、反応2の仕込み時に加える炭素数5以下のエーテル溶媒の量で調整できる。また、反応2に用いる試薬の溶解性や反応2を実施する前の工程の都合などにより、反応2を行う前の時点で下記数式(4)の関係となっている場合には、反応系に対して溶媒除去処理を行い、前記数式(1)~(3)のいずれかの関係を満たすように炭素数5以下のエーテル溶媒の量を調整する。
  [数10]
     V/Nf2>3 …(4)
 炭素数5以下のエーテル溶媒および溶媒除去処理の方法としては、第1実施形態で挙げたものと同様のものが挙げられる。
 また、反応系中に炭素数6以上のエーテル溶媒、炭素数7以上の脂肪族炭化水素溶媒、芳香族炭化水素溶媒から選ばれる少なくとも1つの溶媒が含まれていると、炭素数5以下のエーテル溶媒のみで行う場合よりもさらに好ましい。
 この場合、反応2を行うにあたって、反応系中の炭素数6以上のエーテル溶媒、炭素数7以上の脂肪族炭化水素溶媒、芳香族炭化水素溶媒から選ばれる少なくとも1つの溶媒の合計容積V[リットル]と前記一般式(2)で表される化合物のモル数Nf2[モル]とが下記数式(5)の関係を満たすことが好ましく、下記数式(6)の関係を満たすことがより好ましい。
  [数11]
     V/Nf2≧0.1 …(5)
  [数12]
    10≧V/Nf2≧0.1 …(6)
 炭素数6以上のエーテル溶媒、炭素数7以上の脂肪族炭化水素溶媒、および芳香族炭化水素溶媒としては、第1実施形態で挙げたものと同様のものが挙げられる。
 このような条件の下で反応2を行うことで、従来技術で開示される合成方法で合成不可能であった、嵩高い置換基であるRが、Zにて形成される炭化水素環基または複素環基に存在するイミダゾール化合物を合成できる。
〔イミダゾール系化合物〕
 本実施形態のイミダゾール系化合物は、第1実施形態で挙げたものと同様のものが挙げられるが、これらに限定されない。
〔有機金属錯体〕
 本実施形態の有機金属錯体は、前記一般式(1)で表されるイミダゾール化合物を部分構造として有する。
 本実施形態の有機金属錯体は、周期律表の第8族から第11族までの金属元素の中から選ばれる少なくとも一つの金属を含むことが好ましい。金属としては、白金またはイリジウムであることが好ましい。
 本実施形態の有機金属錯体としては、例えば、周期律表の第8族から第11族までの金属元素に対して一般式(1)で表されるイミダゾール化合物を配位子としたものが挙げられる。本発明の有機金属錯体は、公知の方法で合成され得る。
 本実施形態の有機金属錯体は、一般式(1)で表されるイミダゾール化合物を配位子として有することにより、発光スペクトルが鋭く短波長側で発光可能な発光材料として利用できる。そのため、特に青色発光の有機EL素子用材料として有用である。
 本実施形態のイミダゾール化合物を部分構造に有する有機金属錯体は、第1実施形態で挙げたものと同様のものが挙げられるが、これらに限定されない。
〔有機エレクトロルミネッセンス素子用材料〕
 本実施形態の有機エレクトロルミネッセンス素子用材料は、前記一般式(1)で表されるイミダゾール化合物、前記有機化合物および前記有機金属錯体のうち少なくとも一つを含むことが好ましい。
〔有機EL素子、表示装置、照明装置〕
 本実施形態の有機EL素子の層構成は、第1実施形態で挙げたものと同様のものが挙げられる。
 第1実施形態と同様に、本実施形態のイミダゾール化合物や本実施形態のイミダゾール系化合物を含む有機EL素子用材料を発光層のホストとして用いることもできるし、本実施形態の有機金属錯体を含む有機EL素子用材料を発光層のドーパントとして用いることもできる。また、これらに対する効果についても、第1実施形態のものと同様のものが得られる。
 本実施形態の有機EL素子において、本実施形態の前記有機EL素子用材料の他には、従来の有機EL素子において使用される公知のものの中から任意の材料を選択して用いることができる。
 以下、本発明に係る実施例を説明するが、本発明はこれらの実施例によって限定されない。
〔実施例1〕イミダゾール化合物(化合物3)の合成
(合成例1)化合物1の合成
Figure JPOXMLDOC01-appb-C000023
 三口フラスコにメタノール(100ml)、グリオキサール水溶液(40質量%)(11.4ml,100mmol)、及び2,6-ジイソプロピルアニリン(17.73g,100mmol)を入れ、室温で16時間撹拌した。その後、メタノール(400ml)、塩化アンモニウム(6.42g,120mmol)、及びホルムアルデヒド水溶液(37質量%)(16.2ml,200mmol)を加え8時間還流させた。
 反応終了後、エバポレータで濃縮し、水酸化ナトリウム水溶液でpH10に調整した。試料を分液ロートに移し、ジクロロメタンで抽出を行い、無水硫酸マグネシウムで乾燥後、ろ過、濃縮を行った。これをシリカゲルクロマトグラフィー(ジクロロメタン:酢酸エチル=9:1(容積比))で精製し、さらにヘキサンから再結晶して白色の固体(化合物1)を得た。
 化合物1の同定は、1H-NMR、及びFD-MSにて行った。
  収量 9.2g
  収率 40%
(合成例2)化合物2の合成
Figure JPOXMLDOC01-appb-C000024
 窒素雰囲気下、三口フラスコに化合物1(27.4g,60mmol)、及びテトラヒドロフラン(60ml)を入れ、溶解させた。溶液を0℃に冷却し、n-BuLiヘキサン溶液(35.9ml,溶液中のn-BuLiのモル数:60mmol,モル濃度(n-BuLiモル数/溶液量):1.67M)を10分かけて加え、0℃で30分撹拌した。次にテトラヒドロフラン(100ml)に溶解させた塩化亜鉛(13.6g, 100mmol)の溶液を10分かけて加えた。その後、溶液を室温まで戻した。n-BuLiヘキサン溶液の溶媒には、n-ヘキサンを用いた。後に説明する他の実施例、及び比較例においても同様である。
 化合物2については、精製等を行わずに、次の反応にそのまま用いた。
(合成例3)化合物3の合成
Figure JPOXMLDOC01-appb-C000025
 合成例2で化合物2を調製した後、そのまま、この化合物2が入った三口フラスコに、ドライアイス/アセトンの冷媒を用いて冷却した溶媒トラップを介して油回転ポンプを接続し、減圧下にて三口フラスコを40℃程度に加熱して反応系から溶媒(150ml)を除去した(溶媒除去工程)。ここで溶媒の除去量は溶媒トラップに捕集された量である。
 この後、系内に窒素を入れて常圧に戻し、反応系中に2-tert-butyl-5-Bromopyrimidine(10.8g,50mmol)、及びPd(PPh3)4(2.89g,2.5mmol)を加え、窒素雰囲気下にて90℃で16時間反応させた。
 合成例3における反応系の溶媒量の関係を表1にまとめた。
 なお、n-ブタンは、合成例2の反応によりn-BuLi(分子量MW=64.06)が変化して生成した。具体的には、n-BuLi(60mmol)がn-ブタン(60mmol,5.8ml)に変化した。なお、n-ブタンの容積は、n-ブタンの分子量(MW=58.12)、及びn-ブタンの比重(0.60)に基づいて算出した。
 また、n-ヘキサンの容積は、次のようにして求めた。まず、n-BuLiヘキサン溶液の比重(0.68)から溶液質量(24.4g)を算出し、次に溶液質量からn-BuLi(3.84g)の質量を引いてn-ヘキサンの質量(20.56g)を算出し、n-ヘキサンの比重(0.66)で容積に換算して求めた。
 これらの計算は、以下の実施例、及び比較例においても同様である。
Figure JPOXMLDOC01-appb-T000026
 表1に示すように、溶媒除去工程後にフラスコ内に残っていた全ての溶媒量が47.0mlであったため、炭素数5以下のエーテル溶媒であるテトラヒドロフランの合計容積V[リットル]は、47.0ml以下であったといえる。
 よって、炭素数5以下のエーテル溶媒であるテトラヒドロフランの合計容積V[リットル]と、2-tert-butyl-5-Bromopyrimidineのモル数Nf2[モル]との関係は表1に示したように、
     V/Nf2≦0.94
となり、前記数式(3)の関係を満たしていた。
 反応終了後、試料に少量の水を加えて反応を失活した。これをジクロロメタン(200ml)で希釈し、これにエチレンジアミン四酢酸四ナトリウム二水和物(62.43g,150mmol)の水溶液を加え、分液ロート中でよく振り、さらに水相のpHが10以上になるよう水酸化ナトリウム水溶液を加えて調整した。ジクロロメタン相を回収し、さらに水相からジクロロメタンで数回抽出し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。これをシリカゲルクロマトグラフィー(ジクロロメタン:アセトン=95:5(容積比))で精製し、その後、ヘキサン/酢酸エチル混合溶媒から再結晶を行い、白色の固体(化合物3)を得た。
 化合物3の同定は、1H-NMR、及びFD-MSにて行った。
  収量 15.2g
  収率 84%
〔実施例2〕イミダゾール化合物(化合物4)の合成
(合成例4)化合物4の合成
Figure JPOXMLDOC01-appb-C000027
 合成例2と同様の工程で、化合物1(28.5g,125mmol)と、テトラヒドロフラン(125ml)と、n-BuLiヘキサン溶液(74.9ml,溶液中のn-BuLiのモル数:125mmol,モル濃度(n-BuLiモル数/溶液量):1.67M)と、テトラヒドロフラン(208ml)に溶解させた塩化亜鉛(28.4g,208mmol)とを含む溶液から化合物2を調製した。調製後、そのまま、化合物2が入った三口フラスコにドライアイス/アセトンの冷媒を用いて冷却した溶媒トラップを介して油回転ポンプを接続し、減圧下にて三口フラスコを40℃程度に加熱して反応系から溶媒(310ml)を除去した(溶媒除去工程)。ここで溶媒の除去量は溶媒トラップに捕集された量である。
 この後、系内に窒素を入れて常圧に戻し、反応系中にトルエン(104ml)を加え(トルエン添加工程)、次いでヨードベンゼン(21.3g,104mmol)、及びPd(PPh3)4(2.89g,2.5mmol)を加え、窒素雰囲気下にて120℃で16時間反応させた。
 合成例4における反応系の溶媒量の関係を表1にまとめた。
 このとき、炭素数5以下のエーテル溶媒であるテトラヒドロフランの合計容積V[リットル]と、ヨードベンゼンのモル数Nf2[モル]との関係は、(合成例3)と同様の計算により、表1に示したように、
      V/Nf2≦0.96
となり、前記数式(3)の関係を満たしていた。
 さらに、炭素数が7の芳香族炭化水素溶媒であるトルエンの容積V[リットル]と、ヨードベンゼンのモル数Nf2[モル]との関係は、表1に示したように、
     V/Nf2=1
となり、前記数式(5)の関係を満たしていた。
 なお、合成例4における反応系には、溶媒除去工程後であっても炭素数が6の脂肪族炭化水素溶媒であるn-ヘキサンが含まれている可能性もある。しかし、溶媒除去工程後のn-ヘキサンの容積は、その後に添加したトルエンの容積に比べて小さいため、n-ヘキサンを考慮したとしても、前記数式(5)の関係は依然として満たされる。この点については、後述する実施例3、及び実施例4においても同様である。
 したがって、合成例4の反応条件は、数式(3)且つ数式(5)の関係を満たす条件で実施された。
 反応終了後、試料に少量の水を加えて反応を失活した。これをジクロロメタン(300ml)で希釈し、これにエチレンジアミン四酢酸四ナトリウム二水和物(129.9g, 312mmol)の水溶液を加え、分液ロート中でよく振り、さらに水相のpHが10以上になるよう水酸化ナトリウム水溶液を加えて調整した。ジクロロメタン相を回収し、さらに水相からジクロロメタンで数回抽出し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。これをシリカゲルクロマトグラフィー(トルエン:酢酸エチル=95:5(容積比))で精製し、その後、ヘキサン/酢酸エチル混合溶媒から再結晶を行い、白色の固体を得た。
 化合物4の同定は、1H-NMR、及びFD-MSにて行った。
  収量 24.7g
  収率 78%
〔実施例3〕イミダゾール化合物(化合物5)の合成
(合成例5)化合物5の合成
Figure JPOXMLDOC01-appb-C000028
 合成例2と同様の工程で、化合物1(15.98g, 70mmol)と、テトラヒドロフラン(140ml)と、n-BuLiヘキサン溶液(41.9ml, 溶液中のn-BuLiのモル数:70mmol, モル濃度(n-BuLiモル数/溶液量):1.67M)と、テトラヒドロフラン(100ml)に溶解させた塩化亜鉛(13.6g,100mmol)とを含む溶液から化合物2を調製した。調製後、そのまま、化合物2が入った三口フラスコにドライアイス/アセトンの冷媒を用いて冷却した溶媒トラップを介して油回転ポンプを接続し、減圧下にて三口フラスコを40℃程度に加熱して反応系から溶媒(250ml)を除去した(溶媒除去工程)。ここで溶媒の除去量は溶媒トラップに捕集された量である。
 この後、系内に窒素を入れて常圧に戻し、反応系中にトルエン(50ml)を加え(トルエン添加工程)、次いで2-Bromodibenzofuran(12.35g, 50mmol)、及びPd(PPh3)4(2.89g, 2.5mmol)を加え、窒素雰囲気下にて120℃で18時間反応させた。
 合成例5における反応系の溶媒量の関係を表1にまとめた。
 表1に示したように、炭素数5以下のエーテル溶媒であるテトラヒドロフランの合計容積V[リットル]と、2-Bromodibenzofuranのモル数Nf2[モル]との関係は、(合成例3)と同様の計算により、
      V/Nf2≦0.66
となり、前記数式(3)の関係を満たしていた。
 さらに、トルエンの容積V[リットル]と、2-Bromodibenzofuranのモル数Nf2[モル]との関係は、表1に示したように、
     V/Nf2=1
となり、前記数式(5)の関係を満たしていた。
 したがって、合成例5の反応条件は、数式(3)且つ数式(5)の関係を満たす条件で実施された。
 反応終了後、試料に少量の水を加えて反応を失活した。これをジクロロメタン(300ml)で希釈し、これにエチレンジアミン四酢酸四ナトリウム二水和物(62.4g, 150mmol)の水溶液を加え、分液ロート中でよく振り、さらに水相のpHが10以上になるよう水酸化ナトリウム水溶液を加えて調整した。ジクロロメタン相を回収し、さらに水相からジクロロメタンで数回抽出し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。これをシリカゲルクロマトグラフィー(ジクロロメタン:酢酸エチル=95:5(容積比))で精製し、その後、ヘキサン/酢酸エチル混合溶媒から再結晶を行い、白色の固体(化合物5)を得た。
 化合物5の同定は、1H-NMR、及びFD-MSにて行った。
  収量 15.8g
  収率 80%
〔実施例4〕イミダゾール化合物(化合物9)の合成
(合成例6) 化合物(2-Fluoro-1,3-diiodobenzene)の合成
Figure JPOXMLDOC01-appb-C000029
 窒素雰囲気下、三口フラスコに2-Fluoroiodobenzene(75.0g,338mmol)、及びテトラヒドロフラン(676ml)を入れて-70℃に冷却し、そこへ予めジイソプロピルアミン (41.0g, 405.6mmol)、n-BuLiヘキサン溶液(228.1ml, 溶液中のn-BuLiのモル数:371.8mmol, モル濃度(n-BuLiモル数/溶液量):1.63M)、及びテトラヒドロフラン(300ml)から調製したリチウムジイソプロピルアミド/テトラヒドロフラン溶液を20分かけて滴下した。-70℃で1時間撹拌した後、ヨウ素 (94.4g, 371.8mmol)を加え、ゆっくりと室温に戻し、12時間撹拌した。
 反応終了後、少量の水を加えて失活した後、エバポレータで濃縮した。チオ硫酸ナトリウム/水酸化ナトリウム水溶液を加えて残存ヨウ素を失活し、試料を分液ロートに移して、ジクロロメタンで3回抽出した。無水硫酸マグネシウムで乾燥し、ろ過、濃縮した。これをシリカゲルクロマトグラフィー(ヘキサン)で精製し、ヘキサン(150ml)から-10℃で再結晶を行い、白色の固体(2-Fluoro-1,3-diiodobenzene)を得た。
 この化合物の同定は1H-NMRとFD-MSにて行った。
  収量 62.0g
  収率 53%
(合成例7) 化合物6の合成
Figure JPOXMLDOC01-appb-C000030
 窒素雰囲気下、三口フラスコに2-Fluoro-1,3-diiodobenzene(61.9g, 178mmol)、カルバゾール(71.4g, 427.2mmol)、K3PO4(151.14g, 712mmol)、CuI(6.78g, 35.6mmol)、trans-1,2-diaminocyclohexane(12.8ml, 106.8mmol)、及び1,4-ジオキサン(178ml)を入れ、16時間還流させた。
 反応終了後、室温まで冷却した後、試料をトルエン(500ml)に溶解させセライトを用いてろ過して無機塩をろ別し、ろ液を濃縮した。このろ液にメタノールを加えて試料を析出させ、分散洗浄を行い、試料をろ取して、真空乾燥(50℃、8時間)して白色の固体(化合物6)を得た。
 化合物6の同定は、1H-NMR、及びFD-MSにて行った。
  収量 42.57g
  収率 56%
(合成例8) 化合物7の合成
Figure JPOXMLDOC01-appb-C000031
 窒素雰囲気下、三口フラスコに水素化カリウム(3.0g, 75mmol)、及びN,N-ジメチルホルムアミド(50ml)を入れ、0℃に冷却しておき、そこへN,N-ジメチルホルムアミド(50ml)に溶解させたイミダゾール(6.81g, 100mmol)の溶液を水素ガスの発生速度に注意しながら20分かけて加え、その後、室温で1時間撹拌した。次いで、化合物6(21.32g, 50mmol)を加えて6時間還流させた。
 反応終了後、水(200ml)を加えて析出試料をろ取した。試料をジクロロメタンに溶解させ、無水硫酸マグネシウムで乾燥し、ろ過、濃縮した。これをシリカゲルクロマトグラフィー(ジクロロメタン:酢酸エチル=9:1(容積比))で精製し、その後ヘキサンで分散洗浄し、ろ取、真空乾燥(50℃、8時間)して白色の固体(化合物7)を得た。
 化合物7の同定は、1H-NMR、及びFD-MSにて行った。
  収量 17.79g
  収率 75%
(合成例9) 化合物8の合成
Figure JPOXMLDOC01-appb-C000032
 窒素雰囲気下、三口フラスコに化合物7(5.69g, 12mmol)、及びテトラヒドロフラン(72ml)を入れ、次いで、室温でn-BuLiヘキサン溶液(7.2ml, 溶液中のn-BuLiのモル数:12mmol, モル濃度(n-BuLiモル数/溶液量):1.67M)を加え、30分間撹拌した。次にテトラヒドロフラン(15ml)に溶解させた塩化亜鉛 (2.04g, 15mmol)の溶液を5分かけて加えた。
 化合物8については、精製等を行わずに次の反応にそのまま用いた。
(合成例10) 化合物9の合成
Figure JPOXMLDOC01-appb-C000033
 合成例9で化合物8を合成した後、そのまま、この化合物8が入った三口フラスコに、ドライアイス/アセトンの冷媒を用いて冷却した溶媒トラップを介して油回転ポンプを接続し、減圧下にて三口フラスコを40℃程度に加熱して反応系から溶媒(90ml)を除去した(溶媒除去工程)。ここで溶媒の除去量は溶媒トラップに捕集された量である。
 この後、室温に冷却した後、系内に窒素を入れて常圧に戻し、トルエン(30ml)を加え(トルエン添加工程)、次いでヨードベンゼン(2.04g, 10mmol)、及びPd(PPh3)4(231mg, 0.2mmol)を加え、窒素雰囲気下にて120℃で16時間反応させた。
 合成例10における反応系の溶媒量の関係を表1にまとめた。
 表1に示すように、溶媒除去工程後にフラスコ内に残っていた全ての溶媒量が4.4mlであったため、炭素数5以下のエーテル溶媒であるテトラヒドロフランの合計容積V[リットル]は、4.4ml以下であったといえる。
 よって、炭素数5以下のエーテル溶媒であるテトラヒドロフランの合計容積V[リットル]と、ヨードベンゼンのモル数Nf2[モル]との関係は表1に示したように、
     V/Nf2≦0.44
となり、前記数式(3)の関係を満たしていた。
 さらに、トルエンの容積V[リットル]と、ヨードベンゼンのモル数Nf2[モル]との関係は表1に示したように、
     V/Nf2=3.0
となり、前記数式(5)の関係を満たしていた。
 したがって、合成例10の反応条件は、数式(3)且つ数式(5)の関係を満たす条件で実施された。
 反応終了後、試料に少量の水を加えて反応を失活した。これをジクロロメタン(200ml)で希釈し、これにエチレンジアミン四酢酸四ナトリウム二水和物(8.32g, 20mmol)の水溶液を加え、分液ロート中でよく振り、さらに水相のpHが10以上になるよう水酸化ナトリウム水溶液を加えて調整した。ジクロロメタン相を回収し、さらに水相からジクロロメタンで数回抽出し、無水硫酸マグネシウムで乾燥、ろ過、濃縮、乾固した。これをシリカゲルクロマトグラフィー(トルエン:酢酸エチル=90:10(容積比))で精製し、その後メタノールで分散洗浄を行い、白色の固体(化合物9)を得た。
 化合物9の同定は、1H-NMR、及びFD-MSにて行った。図1、及び図2に、化合物5の1H-NMRスペクトルを示す。
  収量 2.3g
  収率 42%
〔比較例1〕イミダゾール化合物(化合物3)の合成
(合成例11)
Figure JPOXMLDOC01-appb-C000034
 合成例2と同様の工程で、化合物1(27.4g, 60mmol)と、テトラヒドロフラン(60ml)と、n-BuLiヘキサン溶液(35.9ml, 溶液中のn-BuLiのモル数:60mmol,モル濃度(n-BuLiモル数/溶液量):1.67M)と、テトラヒドロフラン(100ml)に溶解させた塩化亜鉛(13.6g, 100mmol)とを含む溶液から化合物2を調製した。調製後、そのまま、化合物2が入った三口フラスコに2-tert-butyl-5-Bromopyrimidine(10.8g, 50mmol)、及びPd(PPh3)4(2.89g, 2.5mmol)を加え、窒素雰囲気下にて90℃で16時間反応させた。つまり、比較例1では、溶媒除去工程を実施せず、トルエンも添加しなかった。
 合成例11における反応系の溶媒量の関係を表1にまとめた。
 表1に示すように、炭素数5以下のエーテル溶媒であるテトラヒドロフランの合計容積V[リットル]と、2-tert-butyl-5-Bromopyrimidineのモル数Nf2[モル]との関係は、合成例3と同様の計算により、
      V/Nf2=3.2
となり、前記数式(1)の関係を満たしていなかった。
 反応終了後、試料に少量の水を加えて反応を失活した。これをジクロロメタン(200ml)で希釈し、これにエチレンジアミン四酢酸四ナトリウム二水和物(62.43g, 150mmol)の水溶液を加え、分液ロート中でよく振り、さらに水相のpHが10以上になるよう水酸化ナトリウム水溶液を加えて調整した。ジクロロメタン相を回収し、さらに水相からジクロロメタンで数回抽出し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。これをシリカゲルクロマトグラフィー(ジクロロメタン:アセトン=95:5(容積比))で精製し、白色の固体(化合物3)を得た。
 化合物3の同定は、1H-NMR、及びFD-MSにて行った。
  収量 0.72g
  収率 4%
〔比較例2〕イミダゾール化合物(化合物4)の合成
(合成例12)
Figure JPOXMLDOC01-appb-C000035
 合成例2と同様の工程で、化合物1(28.5g, 125mmol)と、テトラヒドロフラン(125ml)と、n-BuLiヘキサン溶液(74.9ml, 溶液中のn-BuLiのモル数:125mmol, モル濃度(n-BuLiモル数/溶液量):1.67M)と、テトラヒドロフラン(208ml)に溶解させた塩化亜鉛(28.4g,208mmol)とを含む溶液から化合物2を調製した。調製後、そのまま、化合物2が入った三口フラスコにヨードベンゼン(21.3g, 104mmol)、及びPd(PPh3)4(2.89g, 2.5mmol)を加え、窒素雰囲気下にて16時間還流させた。つまり、比較例2では、溶媒除去工程を実施せず、トルエンも添加しなかった。
 合成例12における反応系の溶媒量の関係を表1にまとめた。
 表1に示すように、炭素数5以下のエーテル溶媒であるテトラヒドロフランの合計容積V[リットル]と、ヨードベンゼンのモル数Nf2[モル]との関係は、合成例3と同様の計算により、
      V/Nf2=3.2
となり、前記数式(1)の関係を満たしていなかった。
 反応終了後、試料に少量の水を加えて反応を失活した。これをジクロロメタン(300ml)で希釈し、これにエチレンジアミン四酢酸四ナトリウム二水和物(129.9g, 312mmol)の水溶液を加え、分液ロート中でよく振り、さらに水相のpHが10以上になるよう水酸化ナトリウム水溶液を加えて調整した。ジクロロメタン相を回収し、さらに水相からジクロロメタンで数回抽出し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。しかし、薄層クロマトグラフィーによって目的物の存在は確認できなかった。
〔比較例3〕イミダゾール化合物(化合物5)の合成
(合成例13)
Figure JPOXMLDOC01-appb-C000036
 合成例2と同様の工程で、化合物1(15.98g, 70mmol)と、テトラヒドロフラン(140ml)と、n-BuLiヘキサン溶液(41.9ml, 溶液中のn-BuLiのモル数:70mmol, モル濃度(n-BuLiモル数/溶液量):1.67M)と、テトラヒドロフラン(100ml)に溶解させた塩化亜鉛(13.6g,100mmol)とを含む溶液から化合物2を調製した。調製後、そのまま、化合物2が入った三口フラスコに2-Bromodibenzofuran(12.35g, 50mmol)、及びPd(PPh3)4(2.89g, 2.5mmol)を加え、窒素雰囲気下にて18時間還流させた。つまり、比較例3では、溶媒除去工程を実施せず、トルエンも添加しなかった。
 合成例13における反応系の溶媒量の関係を表1にまとめた。
 表1に示すように、炭素数5以下のエーテル溶媒であるテトラヒドロフランの合計容積V[リットル]と、2-Bromodibenzofuranのモル数Nf2[モル]との関係は、合成例3と同様の計算により、
      V/Nf2=4.8
となり、前記数式(1)の関係を満たしていなかった。
 反応終了後、試料に少量の水を加えて反応を失活した。これをジクロロメタン(300ml)で希釈し、これにエチレンジアミン四酢酸四ナトリウム二水和物(62.4g, 150mmol)の水溶液を加え、分液ロート中でよく振り、さらに水相のpHが10以上になるよう水酸化ナトリウム水溶液を加えて調整した。ジクロロメタン相を回収し、さらに水相からジクロロメタンで数回抽出し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。しかし、薄層クロマトグラフィーによって目的物の存在は確認できなかった。
〔比較例4〕イミダゾール化合物(化合物9)の合成
(合成例14)
Figure JPOXMLDOC01-appb-C000037
 合成例9と同様にして、化合物7(5.69g, 12mmol)と、テトラヒドロフラン(72ml)と、n-BuLiヘキサン溶液(7.2ml, 溶液中のn-BuLiのモル数:12mmol, モル濃度(n-BuLiモル数/溶液量):1.67M)と、テトラヒドロフラン(15ml)に溶解させた塩化亜鉛(2.04g, 15mmol)とを含む溶液から化合物8を調製した。調製後、そのまま、化合物8が入った三口フラスコにヨードベンゼン(2.04g, 10mmol)、及びPd(PPh3)4(231mg, 0.2mmol)を加え、窒素雰囲気下にて16時間還流させた。つまり、比較例4では、溶媒除去工程を実施せず、トルエンも添加しなかった。
 合成例14における反応系の溶媒量の関係を表1にまとめた。
 表1に示すように、炭素数5以下のエーテル溶媒であるテトラヒドロフランの合計容積V[リットル]と、ヨードベンゼンのモル数Nf2[モル]との関係は、合成例3と同様の計算により、
      V/Nf2=(72+15)×10-3/10×10-3=8.7
となり、前記数式(1)の関係を満たしていなかった。
 反応終了後、試料に少量の水を加えて反応を失活した。これをジクロロメタン(200ml)で希釈し、これにエチレンジアミン四酢酸四ナトリウム二水和物(8.32g, 20mmol)の水溶液を加え、分液ロート中でよく振り、さらに水相のpHが10以上になるよう水酸化ナトリウム水溶液を加えて調整した。ジクロロメタン相を回収し、さらに水相からジクロロメタンで数回抽出し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。後述する高速液体クロマトグラフィー分析の結果から、合成例14では、化合物9が確認されなかった。
〔液体クロマトグラフィー分析〕
 シリカゲルクロマトグラフィー精製前に、実施例4、及び比較例4の化合物9の合成において得られた試料をそれぞれ、100mlのメスシリンダーを用いて100mlのテトラヒドロフラン溶液に調製し、その後、10分の1の濃度に希釈する工程(具体的には溶液を1ml抜き取り、10mlのメスシリンダーを用いて10mlのテトラヒドロフラン溶液に調製する工程)を3回繰り返し、実質的には試料が100Lのテトラヒドロフラン中に溶解しているのに相当する濃度の溶液を10ml調製した。
 この溶液を用いて高速液体クロマトグラフィー分析を行った結果を図3A及び図3Bに示す。
 ・高速液体クロマトグラフィー分析条件
 高速液体クロマトグラフィー装置は、Agilent Technologies社製 Agilent 1100シリーズ(型式:バイナリポンプ G1312A)を用い、以下の条件にて測定した。
  カラム:Inertsil ODS3V(φ4.6mm×250mm、5μm)
  移動相:0.1質量%HCOOH+0.1質量%HCOONH4水溶液/アセトニトリル=30/70(v/v)(容積比)
  流速:1000μl/min
  注入量:5.0μl
  UV検出波長:254nm
〔質量分析〕
 また、質量分析も行い、チャート上の各ピーク成分について、原料である化合物7、目的物9であることを確認した。
 高速液体クロマトグラフィー分析、及び質量分析の結果から、本発明において化合物9が比較的良好な収率で合成可能であり、比較例で示すように従来技術の方法では化合物9が合成不可能であることが分かる。
 上記実施例1~4、及び上記比較例1~4で合成した化合物3、4、5、及び9の収率を対比して表2に示す。
Figure JPOXMLDOC01-appb-T000038
 表2に示すように、同じ目的化合物であっても、比較例の合成方法では、極めて収率が低いか、若しくは合成できないのに対し、実施例の合成方法では、高い収率で合成できる。
 よって、本発明に係るイミダゾール化合物の製造方法は、一般式(1)で示すイミダゾール化合物を合成する上で、極めて有用な製造方法であることが分かる。
〔本発明と従来技術との関係〕
 以上のように、本発明は、従来技術の方法では合成不可能なイミダゾール化合物を提供できる。
 なお、特許文献1や特許文献2に開示された合成方法では合成できない当該イミダゾール化合物については、当業者が本願出願時の技術常識を参酌しても、製造できることが明らかであるように記載されていないため、特許文献1や特許文献2に記載された合成できない当該イミダゾール化合物は、本発明に対する「引用発明」とはなり得ない。
 また、裁判例(平成11(行ケ)285)によれば、『・・・当該発明が、未完成であったり、何らかの理由で実施不可能であったりすれば、これを既に存在するものとして新規性判断の基準とすることができないのは当然というべきであるから、その意味で、「頒布された刊行物に記載された発明」となるためには、当該発明が当業者にとって実施され得るものであることを要する、ということはできる。・・・』と判断がなされている。この裁判例に基づいて考えても、特許文献1や特許文献2記載された合成できない当該イミダゾール化合物は、「引用発明」とはなり得ない。
 なお、米国においても同様の判断が存在し(In re WIGGINS, CCPA 1973)、欧州においても同様の判断が存在する(T206/83(0J1987,5))。

Claims (27)

  1.  下記一般式(1)で表されるイミダゾール化合物を、下記一般式(2)で表される化合物と下記一般式(3)で表される化合物とを反応させて製造するイミダゾール化合物の製造方法であって、
     前記一般式(2)で表される化合物と前記一般式(3)で表される化合物とを反応させるにあたって、反応系中の前記一般式(2)で表される化合物のモル数Nf2[モル]と炭素数5以下のエーテル溶媒の合計容積V[リットル]とが、下記数式(1)の関係を満たす
     ことを特徴とするイミダゾール化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、
     Rは、水素原子または置換基を表し、
     Zは、炭化水素環基または複素環基を形成するのに必要な原子群を表し、前記Zにて形成される前記炭化水素環基または前記複素環基は、前記Rを1以上有し、
     RおよびRは、結合手、水素原子または芳香族炭化水素基を表し、互いに結合して5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成してもよく、さらにこれらの環が置換基を有してもよく、
     Zは、C-Cと共に5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成するのに必要な原子群を表し、
     Rは、水素原子または置換基を表し、
     mは、1以上5以下の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002

    (式(2)中、
     Xは、ハロゲン原子を表し、
     Z、R、およびmは、前記一般式(1)と各々同義である。)
    Figure JPOXMLDOC01-appb-C000003

    (式(3)中、
     Mは、ホウ素原子、マグネシウム原子、シリコン原子、スズ原子、又は亜鉛原子を表し、さらに置換基を有してもよく、
     Z、R、R、およびRは、前記一般式(1)と各々同義である。)
      [数1]
         V/Nf2≦3 …(1)
  2.  請求項1に記載のイミダゾール化合物の製造方法において、
     前記一般式(2)で表される化合物のモル数Nf2と前記合計容積Vとが、下記数式(2)の関係を満たす
     ことを特徴とするイミダゾール化合物の製造方法。
      [数2]
         V/Nf2≦2 …(2)
  3.  請求項1に記載のイミダゾール化合物の製造方法において、
     前記一般式(2)で表される化合物のモル数Nf2と前記合計容積Vとが、下記数式(3)の関係を満たす
     ことを特徴とするイミダゾール化合物の製造方法。
      [数3]
         V/Nf2≦1 …(3)
  4.  請求項1から請求項3までのいずれか一項に記載のイミダゾール化合物の製造方法において、
     前記炭素数5以下のエーテル溶媒が、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、1,3-ジオキサン、ジエチルエーテル、および1,2-ジメトキシエタンの中から選ばれる少なくとも一つのエーテル溶媒である
     ことを特徴とするイミダゾール化合物の製造方法。
  5.  請求項1から請求項4までのいずれか一項に記載のイミダゾール化合物の製造方法において、
     前記反応系の溶媒を除去する溶媒除去処理を実施して前記モル数Nf2と前記合計容積Vとの関係を調整する
     ことを特徴とするイミダゾール化合物の製造方法。
  6.  請求項1から請求項5までのいずれか一項に記載のイミダゾール化合物の製造方法において、
     前記反応系中に、第二の溶媒として炭素数7以上の脂肪族炭化水素溶媒、芳香族炭化水素溶媒、および炭素数6以上のエーテル溶媒の中から選ばれる少なくとも一つの溶媒が含まれ、
     前記一般式(2)で表される化合物と前記一般式(3)で表される化合物とを反応させるにあたって、前記反応系中の前記一般式(2)で表される化合物のモル数Nf2と前記第二の溶媒の合計容積Vとが、下記数式(4)の関係を満たす
     ことを特徴とするイミダゾール化合物の製造方法。
      [数4]
         0.1≦V/Nf2 …(4)
  7.  請求項6に記載のイミダゾール化合物の製造方法において、
     前記反応系中の前記一般式(2)で表される化合物のモル数Nf2と前記第二の溶媒の合計容積Vとが、下記数式(5)の関係を満たす
     ことを特徴とするイミダゾール化合物の製造方法。
      [数5]
         0.1≦V/Nf2≦10 …(5)
  8.  請求項6又は請求項7に記載のイミダゾール化合物の製造方法において、
     前記炭素数6以上のエーテル溶媒が、ジプロピルエーテル、ジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、メトキシベンゼン、エトキシベンゼン、メチルアニソール、エチルアニソール、ジメトキシベンゼン、およびメトキシエトキシベンゼンの中から選ばれる少なくとも一つの溶媒である
     ことを特徴とするイミダゾール化合物の製造方法。
  9.  請求項6から請求項8までのいずれか一項に記載のイミダゾール化合物の製造方法において、
     前記炭素数7以上の脂肪族炭化水素溶媒の炭素数が7以上50以下であり、
     前記芳香族炭化水素溶媒の炭素数が6以上20以下である
     ことを特徴とするイミダゾール化合物の製造方法。
  10.  請求項6から請求項9までのいずれか一項に記載のイミダゾール化合物の製造方法において、
     前記芳香族炭化水素溶媒が、ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、およびテトラメチルベンゼンの中から選ばれる少なくとも一つの溶媒である
     ことを特徴とするイミダゾール化合物の製造方法。
  11.  請求項1から請求項10までのいずれか一項に記載のイミダゾール化合物の製造方法において、
     前記一般式(3)中のMは、置換基を有してもよい亜鉛原子である
     ことを特徴とするイミダゾール化合物の製造方法。
  12.  請求項1から請求項11までのいずれか一項に記載のイミダゾール化合物の製造方法によって製造されるイミダゾール化合物。
  13.  下記一般式(1)において、Rが立体パラメータ(Es)値で-2.0以下の置換基を表すことを特徴とするイミダゾール化合物。
    Figure JPOXMLDOC01-appb-C000004

     
    (ただし、前記一般式(1)において、
     Zは、炭化水素環基または複素環基を形成するのに必要な原子群を表し、前記Zにて形成される前記炭化水素環基または前記複素環基が、前記Rを1以上有し、
     R、及びRは、結合手、水素原子または芳香族炭化水素基を表し、互いに結合して5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成してもよく、さらにこれらの環が置換基を有してもよく、
     Zは、C-Cと共に5員の炭化水素環、6員の炭化水素環、5員の複素環または6員の複素環を形成するのに必要な原子群を表し、
     Rは、水素原子または置換基を表し、
     mは、1~5の整数を表す。)
  14.  請求項13に記載のイミダゾール化合物において、
     前記Rは、立体パラメータ(Es)値で-2.5以下の置換基を表す
     ことを特徴とするイミダゾール化合物。
  15.  請求項13に記載のイミダゾール化合物において、
     前記Rは、立体パラメータ(Es)値で-3.0以下の置換基を表す
     ことを特徴とするイミダゾール化合物。
  16.  請求項13に記載のイミダゾール化合物において、
     前記Rは、立体パラメータ(Es)値で-5.0以下の置換基を表す
     ことを特徴とするイミダゾール化合物。
  17.  請求項13から請求項16までのいずれか一項に記載のイミダゾール化合物において、
     前記Rは、分子量が43以上の置換基を表す
     ことを特徴とするイミダゾール化合物。
  18.  請求項13から請求項16までのいずれか一項に記載のイミダゾール化合物において、
     前記Rは、分子量が77以上の置換基を表す
     ことを特徴とするイミダゾール化合物。
  19.  請求項13から請求項16までのいずれか一項に記載のイミダゾール化合物において、
     前記Rは、分子量が116以上の置換基を表す
     ことを特徴とするイミダゾール化合物。
  20.  請求項13から請求項16までのいずれか一項に記載のイミダゾール化合物において、
     前記Rは、分子量が166以上の置換基を表す
     ことを特徴とするイミダゾール化合物。
  21.  請求項13から請求項20までのいずれか一項に記載のイミダゾール化合物を部分構造として有する
     ことを特徴とするイミダゾール系化合物。
  22.  請求項13から請求項20までのいずれか一項に記載のイミダゾール化合物を部分構造として有する
     ことを特徴とする有機金属錯体。
  23.  請求項22に記載の有機金属錯体において、
     周期律表の第8族から第11族までの金属元素の中から選ばれる少なくとも一つの金属元素を含む
     ことを特徴とする有機金属錯体。
  24.  請求項13から請求項20までのいずれか一項に記載のイミダゾール化合物、請求項21に記載のイミダゾール系化合物、及び請求項22または請求項23に記載の有機金属錯体のうち少なくとも一つを含む
     ことを特徴とする有機エレクトロルミネッセンス素子用材料。
  25.  陽極と陰極との間に発光層を含む複数の有機化合物層を有し、
     前記有機化合物層のうち少なくとも1層が請求項24に記載の有機エレクトロルミネッセンス素子用材料を含む
     ことを特徴とする有機エレクトロルミネッセンス素子。
  26.  請求項25に記載の有機エレクトロルミネッセンス素子を備える
     ことを特徴とする表示装置。
  27.  請求項25に記載の有機エレクトロルミネッセンス素子を備える
     ことを特徴とする照明装置。
PCT/JP2012/050087 2011-01-07 2012-01-05 イミダゾール化合物の製造方法、イミダゾール化合物、イミダゾール系化合物、有機金属錯体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置、及び照明装置 WO2012093688A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/978,406 US20130270541A1 (en) 2011-01-07 2012-01-05 Imidazole compound production method, imidazole compound, imidazole-based compound, organic metal complex, material for organic electroluminescent element, organic electroluminescent element, display device, and lighting device
KR1020137017116A KR20130140810A (ko) 2011-01-07 2012-01-05 이미다졸 화합물의 제조 방법, 이미다졸 화합물, 이미다졸계 화합물, 유기 금속 착물, 유기 일렉트로루미네선스 소자용 재료, 유기 일렉트로루미네선스 소자, 표시 장치 및 조명 장치
CN2012800046521A CN103443081A (zh) 2011-01-07 2012-01-05 咪唑化合物的制造方法、咪唑化合物、咪唑系化合物、有机金属络合物、有机电致发光元件用材料、有机电致发光元件、显示装置以及照明装置
EP12732174.3A EP2662365A4 (en) 2011-01-07 2012-01-05 PROCESS FOR PRODUCING IMIDAZOLE COMPOUND, IMIDAZOLE COMPOUND, IMIDAZOLE COMPOUND, ORGANIC METAL COMPLEX, MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, AND LIGHTING DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011002084A JP2012144455A (ja) 2011-01-07 2011-01-07 イミダゾール化合物の製造方法、およびイミダゾール化合物
JP2011002083A JP2012144454A (ja) 2011-01-07 2011-01-07 イミダゾール化合物、イミダゾール系化合物、有機金属錯体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP2011-002083 2011-01-07
JP2011-002084 2011-01-07

Publications (1)

Publication Number Publication Date
WO2012093688A1 true WO2012093688A1 (ja) 2012-07-12

Family

ID=46457539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050087 WO2012093688A1 (ja) 2011-01-07 2012-01-05 イミダゾール化合物の製造方法、イミダゾール化合物、イミダゾール系化合物、有機金属錯体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置、及び照明装置

Country Status (6)

Country Link
US (1) US20130270541A1 (ja)
EP (1) EP2662365A4 (ja)
KR (1) KR20130140810A (ja)
CN (1) CN103443081A (ja)
TW (1) TW201233675A (ja)
WO (1) WO2012093688A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140067910A (ko) * 2012-11-26 2014-06-05 유니버셜 디스플레이 코포레이션 지연 형광을 갖는 유기 발광 화합물
US20140350642A1 (en) * 2011-12-27 2014-11-27 Merck Patent Gmbh Metal Complexes Comprising 1,2,3-Triazoles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105777645B (zh) * 2016-03-18 2018-05-22 中山大学 一种基于esipt特性的配位化合物lifm-cl1及其制备方法和应用
US20170324049A1 (en) 2016-05-05 2017-11-09 Universal Display Corporation Organic Electroluminescent Materials and Devices
EP3533788A1 (en) * 2018-02-28 2019-09-04 Novaled GmbH Organic material for an electronic optoelectronic device and electronic device comprising the organic material
TWI820231B (zh) * 2018-10-11 2023-11-01 德商拜耳廠股份有限公司 用於製備經取代咪唑衍生物之方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192366A (ja) * 1989-12-22 1991-08-22 Mitsubishi Paper Mills Ltd 電子写真感光体
WO2004009604A2 (en) * 2001-05-11 2004-01-29 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands
JP2005068110A (ja) * 2003-08-27 2005-03-17 Mitsubishi Chemicals Corp 有機金属錯体、発光材料、および有機電界発光素子
WO2006121811A1 (en) * 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability
JP2008303150A (ja) * 2007-06-05 2008-12-18 Konica Minolta Holdings Inc イミダゾール化合物の合成方法及び有機金属錯体
US20110057559A1 (en) * 2007-12-28 2011-03-10 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
KR20110079401A (ko) * 2009-12-30 2011-07-07 (주)씨에스엘쏠라 유기 발광 소자 및 이를 위한 유기 발광 화합물

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192366A (ja) * 1989-12-22 1991-08-22 Mitsubishi Paper Mills Ltd 電子写真感光体
WO2004009604A2 (en) * 2001-05-11 2004-01-29 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands
JP2005068110A (ja) * 2003-08-27 2005-03-17 Mitsubishi Chemicals Corp 有機金属錯体、発光材料、および有機電界発光素子
WO2006121811A1 (en) * 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability
JP2008542203A (ja) 2005-05-06 2008-11-27 ユニバーサル ディスプレイ コーポレイション 安定oled材料及び改善された安定性を有するデバイス
JP2008303150A (ja) * 2007-06-05 2008-12-18 Konica Minolta Holdings Inc イミダゾール化合物の合成方法及び有機金属錯体
US20110057559A1 (en) * 2007-12-28 2011-03-10 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
KR20110079401A (ko) * 2009-12-30 2011-07-07 (주)씨에스엘쏠라 유기 발광 소자 및 이를 위한 유기 발광 화합물

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"New Surfactant", 1986, SANKYO PUBLISHING CO., LTD.
"Surfactant-Property, Application, Chemical Ecology", 1979, KODANSHA LTD.
BELLINA FABIO ET AL.: "Regioselective synthesis of 1,5-diaryl-lH-imidazoles by palladium- catalyzed direct arylation of 1-aryl-lH-imidazoles", JOURNAL OF ORGANIC CHEMISTRY, vol. 70, no. 10, 2005, pages 3997 - 4005, XP002669349 *
See also references of EP2662365A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140350642A1 (en) * 2011-12-27 2014-11-27 Merck Patent Gmbh Metal Complexes Comprising 1,2,3-Triazoles
KR20140067910A (ko) * 2012-11-26 2014-06-05 유니버셜 디스플레이 코포레이션 지연 형광을 갖는 유기 발광 화합물
KR102147000B1 (ko) * 2012-11-26 2020-08-24 유니버셜 디스플레이 코포레이션 지연 형광을 갖는 유기 발광 화합물

Also Published As

Publication number Publication date
KR20130140810A (ko) 2013-12-24
TW201233675A (en) 2012-08-16
EP2662365A1 (en) 2013-11-13
EP2662365A4 (en) 2014-06-11
CN103443081A (zh) 2013-12-11
US20130270541A1 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
WO2012093688A1 (ja) イミダゾール化合物の製造方法、イミダゾール化合物、イミダゾール系化合物、有機金属錯体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP5522245B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5516668B2 (ja) 有機エレクトロルミネッセンス素子材料
JP5741636B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
TWI541247B (zh) 具有幾何失真電荷轉移態之四配位鉑及鈀錯合物及彼等於發光裝置中之應用
JP2012144455A (ja) イミダゾール化合物の製造方法、およびイミダゾール化合物
JP2008069268A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008303150A (ja) イミダゾール化合物の合成方法及び有機金属錯体
JP2009057505A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2016017688A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物及び発光性薄膜
WO2020054627A1 (ja) スクアリリウム化合物、発光性組成物及び発光性フィルム
JPWO2015029964A1 (ja) 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置
JP2020040912A (ja) 含窒素複素環化合物の製造方法
JP5030148B2 (ja) 多置換芳香族化合物の製造方法
JP4420660B2 (ja) 有機ボラジン化合物およびその製造法
JP5272608B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
CN107188906A (zh) 二苯并磷杂茂化合物及其合成方法和应用
CN113583056B (zh) 基于螺芴-螺芴结构的6/5/6四齿环金属铂或钯配合物的发光材料及其应用
JP2012144454A (ja) イミダゾール化合物、イミダゾール系化合物、有機金属錯体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置、及び照明装置
Zi et al. Luminescent mono‐and dinuclear copper (I) complexes based on bulky bisphosphino‐substituted benzimidazole derivatives
Tani et al. Synthesis of Re (I) complexes bearing tridentate 2, 6-bis (7′-azaindolyl) phenyl ligand with green emission properties
Zhu et al. Peripheral engineering of platinum (II) dicarbene pincer complexes for efficient blue hyperphosphorescent organic light-emitting diodes
JP2006076969A (ja) 複合体、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5428285B2 (ja) アミノチオフェンアルデヒド化合物の製造方法
CN114349773B (zh) 一种碳硼烷橙色发光材料及其制备方法和发光薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137017116

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012732174

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13978406

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE