WO2012093668A1 - つき回り性良好な電気アルミニウム又はアルミニウム合金溶融塩めっき浴、並びにそれを用いた電気めっき方法及びその前処理方法 - Google Patents

つき回り性良好な電気アルミニウム又はアルミニウム合金溶融塩めっき浴、並びにそれを用いた電気めっき方法及びその前処理方法 Download PDF

Info

Publication number
WO2012093668A1
WO2012093668A1 PCT/JP2012/050017 JP2012050017W WO2012093668A1 WO 2012093668 A1 WO2012093668 A1 WO 2012093668A1 JP 2012050017 W JP2012050017 W JP 2012050017W WO 2012093668 A1 WO2012093668 A1 WO 2012093668A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
plating bath
molten salt
aluminum alloy
alloy molten
Prior art date
Application number
PCT/JP2012/050017
Other languages
English (en)
French (fr)
Inventor
井上 学
章 橋本
忠寛 大沼
俊樹 猪股
啓輔 野々村
完昭 金野
Original Assignee
ディップソール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディップソール株式会社 filed Critical ディップソール株式会社
Priority to US13/977,879 priority Critical patent/US9926638B2/en
Priority to JP2012551862A priority patent/JP5914954B2/ja
Priority to KR1020137016513A priority patent/KR20130132498A/ko
Priority to BR112013016483A priority patent/BR112013016483B1/pt
Priority to CN201280004661.0A priority patent/CN103298979B/zh
Priority to EP12732441.6A priority patent/EP2662478B1/en
Publication of WO2012093668A1 publication Critical patent/WO2012093668A1/ja
Priority to US15/892,585 priority patent/US10309025B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers

Definitions

  • the present invention relates to an electric aluminum or aluminum alloy molten salt plating bath that can be used at room temperature.
  • an aluminum metal material has excellent corrosion resistance, but aluminum has a high affinity for oxygen and a reduction potential is lower than that of hydrogen, so that electrodeposition from an aqueous solution is difficult. Therefore, conventionally, aluminum electroplating is performed in an organic solvent plating bath or a high-temperature molten salt bath.
  • typical organic solvent plating baths include those in which AlCl 3 and LiAlH 4 or LiH are dissolved in ether, those in tetrahydrofuran, and a toluene solution of NaF ⁇ 2Al (CH 2 H 5 ) 3. is there.
  • these baths There is a risk of explosion when in contact with air or water, and there is a problem that it is difficult to handle.
  • the present invention is an electric Al system that does not use benzene, toluene, xylene, naphthalene, or 1,3,5-trimethylbenzene, which is less likely to explode or ignite even when in contact with air or water, and that has an adverse effect on the human body.
  • An object is to provide a plating bath.
  • high-corrosion resistance is achieved by obtaining a uniform plating film with excellent throwing power, which suppresses the precipitation of black cationic nitrogen compounds that compete with aluminum even in the high current density portion and does not cause dendrite precipitation.
  • An object is to provide an electric Al-based plating bath capable of obtaining a plating film.
  • Another object of the present invention is to provide a chromium-free high corrosion-resistant rust-proof coating.
  • the present invention provides (A) an electric aluminum or aluminum alloy molten salt plating bath comprising (A) an aluminum halide as a main component and (B) at least one other halide.
  • One or more reducing compounds selected from the group consisting of hydrides of second to sixth periodic elements and / or hydrides of group 13 second to sixth periodic elements and amine borane compounds were added.
  • An electrolytic aluminum or aluminum alloy molten salt plating bath obtained by post-heating treatment is provided.
  • the present invention is also a pretreatment method for an electrolytic aluminum or aluminum alloy molten salt plating bath comprising (A) an aluminum halide as a main component and (B) at least one other halide, the plating bath And (C) one selected from the group consisting of a hydride of Group 1 to 2 and 6 elements of the periodic table and / or a hydride of Group 2 to 6 elements of Group 13 and an amine borane compound.
  • the present invention provides a pretreatment method for an electrolytic aluminum or aluminum alloy plating bath, wherein heat treatment is performed after adding two or more reducing compounds.
  • the present invention also provides an electroplating method using the electrolytic aluminum or aluminum alloy molten salt plating bath.
  • the plating bath of the present invention has no risk of explosion or ignition, and can obtain a smooth and dense Al plating or Al alloy plating film.
  • the coating since the coating has high corrosion resistance even when it is chrome-free, it can be expected to be used in a wide range of applications such as automobile parts and home appliance parts for the environment.
  • the electroaluminum or aluminum alloy molten salt plating bath of the present invention is a (A) aluminum halide main component, and (B) an electroaluminum or aluminum alloy molten salt plating bath containing at least one other halide. , (C) hydrides of Group 1 to 2-6 elements of the periodic table, hydrides of Groups 1 to 2 and 6 of the periodic table and Group 2 to 6 elements of the periodic table, and amine borane It heat-processes, after adding the 1 type, or 2 or more types of reducing compound chosen from the group which consists of a compound.
  • the aluminum halide (A) used in the present invention is represented by AlX 3 , where X is a halogen such as fluorine, chlorine, bromine or iodine, preferably chlorine or bromine. In view of economy, chlorine is most preferable.
  • the at least one other halide (B) used in the present invention is preferably a nitrogen-containing heteromonocyclic quaternary ammonium halide, more preferably N-alkylpyridinium halide, N-alkylimidazolium halide, N , N′-dialkylimidazolium halide, N-alkylpyrazolium halide, N, N′-dialkylpyrazolium halide, N-alkylpyrrolidinium halide and N, N-dialkylpyrrolidinium halide.
  • These halides may be used alone or in combination of two or more.
  • the N-alkylpyridinium halide may have a pyridium skeleton substituted with an alkyl group, and is represented by, for example, the following general formula (I).
  • R 1 is a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, preferably a linear or branched alkyl group having 1 to 5 carbon atoms
  • R 2 is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, preferably a linear or branched alkyl group having 1 to 3 carbon atoms
  • Is a halogen atom, and a bromine atom is most preferable as a halogen atom in consideration of reactivity.
  • Specific N-alkylpyridinium halides include, for example, N-methylpyridinium chloride, N-ethylpyridinium chloride, N-butylpyridinium chloride, N-hexylpyridinium chloride, 2-methyl-N-propylpyridinium chloride, 3-methyl- Examples thereof include N-ethylpyridinium chloride and those obtained by replacing these chlorines with bromine
  • N-alkylimidazolium halides and N, N′-dialkylimidazolium halides are represented, for example, by the following general formula (II).
  • R 3 is a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, preferably a linear or branched alkyl group having 1 to 5 carbon atoms
  • R 4 is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a linear or branched alkyl group having 1 to 3 carbon atoms.
  • N-alkylimidazolium halides and N, N′-alkylimidazolium halides include, for example, 1-methylimidazolium chloride, 1-ethylimidazolium chloride, 1-propylimidazolium chloride, 1-octylimidazolium chloride.
  • N-alkylpyrazolium halide and the N, N′-dialkylpyrazolium halide are represented by the following general formula (III), for example.
  • R 5 is a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, preferably a linear or branched alkyl group having 1 to 5 carbon atoms
  • R 6 is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a linear or branched alkyl group having 1 to 3 carbon atoms.
  • N-alkylpyrazolium halide and N, N′-alkylpyrazolium halide include 1-methylpyrazolium chloride, 2-methylpyrazolium chloride, 1-propylpyrazolium chloride, 2 -Propylpyrazolium chloride, 1-butylpyrazolium chloride, 2-butylpyrazolium chloride, 1-hexylpyrazolium chloride, 2-benzylpyrazolium chloride, 1-methyl-2-ethylpyrazolium chloride 1-methyl-2-propylpyrazolium chloride, 1-methyl-2-butylpyrazolium chloride, 1-methyl-2-hexylpyrazolium chloride, 1-methyl-2-benzylpyrazolium chloride, -Propyl-2-methylpyrazolium chloride, 1-bu Til-2-methylpyrazolium
  • the N-alkylpyrrolidinium halide and the N, N′-dialkylpyrrolidinium halide may have an alkyl group substituted on the pyrrolidinium skeleton, and are represented, for example, by the following general formula (IV).
  • R 7 is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, preferably a hydrogen atom or a linear or branched chain having 1 to 5 carbon atoms.
  • R 8 is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a linear or branched group having 1 to 3 carbon atoms.
  • N-alkylpyrrolidinium halides include, for example, N-methylpyrrolidinium chloride, N-ethylpyrrolidinium chloride, N-butylpyrrolidinium chloride, N-hexylpyrrolidinium chloride, 2-methyl- N-propylpyrrolidinium chloride, 3-methyl-N-ethylpyrrolidinium chloride, N-methyl-N-ethylpyrrolidinium chloride, N-methyl-N-propylpyrrolidinium chloride, N-methyl-N- Butylpyrrolidinium chloride, N-diethylpyrrolidinium chloride, N-ethyl-N-propylpyrrolidinium chloride,
  • the ratio of the number of moles of aluminum halide (A) to the number of moles of other halides (B) is preferably in the range of 1: 1 to 3: 1. More preferably, it is 2: 1.
  • the molar ratio in such a range, it is possible to suppress a reaction that seems to be a decomposition of pyridinium, imidazolium, pyrazolium and pyrrolidinium cations, and it is possible to suppress an increase in the viscosity of the plating bath. Therefore, deterioration of the plating bath and poor plating can be prevented.
  • the reducing compound (C) used in the present invention is a hydride of Group 1 to 2 and 6 elements of the periodic table and / or a hydride of Group 13 and 2 to 6 elements, and an amine borane compound. is there. These reducing compounds may be used alone or in combination of two or more.
  • Periodic Table Group 1 2-6 elements mean Li, Na, K, Rb and Cs, and among these elements, preferably 2nd-3rd elements (ie, Li and Na).
  • the group 13 second to sixth periodic elements mean B, Al, Ca, In, and Tl. Among these elements, the second to third periodic elements (that is, B and Al) are preferable. ).
  • An amine borane compound is a reaction product of Na borohydride and amines.
  • the reducing compound (C) is preferably lithium aluminum hydride, lithium hydride, lithium sodium hydride, sodium hydride, sodium borohydride, dimethylamine borane, diethylamine borane and trimethylamine borane. More preferred are lithium aluminum hydride and dimethylamine borane.
  • the amount of the reducing compound added is preferably 0.01 g / L to 100 g / L, more preferably 0.05 g / L to 30 g / L, still more preferably 0.1 g / L to 10 g / L. is there.
  • the electrolytic aluminum or aluminum alloy molten salt plating bath of the present invention is heat-treated after adding the reducing compound (C).
  • the heat treatment preferably includes heating in the range of 50 to 100 ° C., more preferably in the range of 60 to 80 ° C.
  • the reducing compound (C) is decomposed by the heating.
  • H 2 gas is generated.
  • the H 2 gas may be discharged from the liquid or may not be discharged.
  • the generated H 2 gas is discharged from the plating solution.
  • Examples of the method for discharging the H 2 gas from the plating solution include a method for naturally discharging while maintaining the heating, a method for applying ultrasonic waves, and a method for bubbling dry inert gas. These methods may be used in combination.
  • the inert gas examples include nitrogen and argon.
  • the time for maintaining warming is preferably 0.5 to 24 hours, more preferably 1 to 8 hours.
  • the frequency of the ultrasonic waves is preferably 20 to 60 KHz, more preferably 30 to 40 KHz.
  • the time for applying the ultrasonic wave is preferably 10 to 60 minutes, more preferably 20 to 40 minutes.
  • the bubbling temperature is preferably 10 to 120 ° C., more preferably 80 to 100 ° C.
  • the bubbling time is preferably 10 to 60 minutes, more preferably 20 to 40 minutes.
  • the electroaluminum or aluminum alloy molten salt plating bath of the present invention it is preferable to further remove the impurity metal derived from the aluminum halide (A) in the plating bath.
  • impurity metals iron, copper, and the like are included.
  • a method for removing the impurity metal in the plating bath a method of removing the impurity metal by immersing Al wire or Al powder in the plating solution, a cathode aluminum plate or an anode aluminum plate installed in the plating solution, and For example, a method of removing the impurity metal by applying an electric current can be used. Thereby, impurity metals, such as iron and copper, are removed.
  • the throwing power is further improved and a dense plating film can be obtained.
  • heating is preferably performed at a temperature of 10 to 120 ° C., more preferably at a temperature of 80 to 100 ° C.
  • the heating time is preferably 2 to 96 hours, more preferably 24 to 72 hours.
  • the bath temperature is preferably 50 to 120 ° C., more preferably 80 to The temperature is 100 ° C.
  • the cathode current density is preferably 0.1 to 10 A / dm 2 , more preferably 1 to 5 A / dm 2 .
  • the energization amount to the plating bath is preferably 10 AH / L to 20 AH / L, more preferably 15 to 20 AH / L.
  • the removal of the impurity metal may be performed after the build of the aluminum alloy molten salt plating bath, before the addition of the reducing compound (C), or after the addition. Preferably, before addition.
  • the electric aluminum or aluminum alloy molten salt plating bath of the present invention further contains a metal compound (D) such as Zr, Ti 2, Mo, W, Mn, Ni, Co, Sn, Zn, Si, Nd and Dy. May be.
  • a metal compound (D) such as Zr, Ti 2, Mo, W, Mn, Ni, Co, Sn, Zn, Si, Nd and Dy. May be.
  • the compound (D) are halides, and specific examples include zirconium tetrachloride, titanium tetrachloride, manganese chloride, molybdenum chloride, tungsten chloride and the like. These compounds may be used alone or in combination of two or more.
  • the content of the compound (D) is preferably 0.1 to 100 g / L, more preferably 0.1 to 10 g / L.
  • the electrolytic aluminum or aluminum alloy molten salt plating bath of the present invention may further contain an organic polymer (E).
  • the organic polymer (E) include styrene polymers and aliphatic diene polymers. These organic polymers may be used alone or in combination of two or more.
  • the styrenic polymer include styrene homopolymers such as styrene, ⁇ -methylstyrene, vinyltoluene, m-methylstyrene, copolymers thereof, and copolymers of styrene monomers and other polymerizable vinyl monomers. It is done.
  • vinyl monomers examples include maleic anhydride, maleic acid, acrylic acid, methacrylic acid, methyl methacrylate, glycidyl methacrylate, itaconic acid, acrylamide, acrylonitrile, maleimide, vinyl pyridine, vinyl carbazole, acrylic ester, methacrylic acid.
  • esters fumaric acid esters, vinyl ethyl ether, and vinyl chloride. Of these, ⁇ , ⁇ -unsaturated carboxylic acids having 3 to 10 carbon atoms or alkyl (1 to 3 carbon atoms) esters thereof are preferred.
  • the aliphatic diene polymer examples include polymers such as butadiene, isoprene, and pentadiene.
  • a polymer having a branched chain having a 1, 2, or 3, 4 structure, or a copolymer of these with another polymerizable vinyl monomer is preferable.
  • the vinyl monomer include those described for the styrene polymer.
  • the weight average molecular weight of the organic polymer (E) is preferably in the range of 200 to 80,000, more preferably in the range of 300 to 5000.
  • low and medium molecular weight polystyrene having a weight average molecular weight of about 300 to 5,000 and poly- ⁇ -methylstyrene are most preferred because of their good molten salt solubility.
  • the content of the organic polymer (E) is preferably in the range of 0.1 to 50 g / l, more preferably in the range of 1 to 10 g / l. If the organic polymer is used in such a range, dendrid precipitation can be prevented, a surface smoothing effect can be exhibited, and plating and injury can be prevented from occurring.
  • the electric aluminum or aluminum alloy molten salt plating bath of the present invention may further contain a brightener (F).
  • a brightener (F) aliphatic aldehyde, aromatic aldehyde, aromatic ketone, nitrogen-containing unsaturated heterocyclic compound, hydrazide compound, S-containing heterocyclic compound, aromatic hydrocarbon having S-containing substituent, aromatic Examples thereof include carboxylic acids and derivatives thereof, aliphatic carboxylic acids having a double bond and derivatives thereof, acetylene alcohol compounds, and trifluoroethylene chloride resins. These brighteners may be used alone or in combination of two or more.
  • aliphatic aldehyde examples include aliphatic aldehydes having 2 to 12 carbon atoms, and specific examples include tribromoacetaldehyde, metaaldehyde, 2-ethylhexyl aldehyde, lauryl aldehyde, and the like.
  • the aromatic aldehyde is, for example, an aromatic aldehyde having 7 to 10 carbon atoms, and specifically includes 0-carboxybenzaldehyde, benzaldehyde, 0-chlorobenzaldehyde, p-tolualdehyde, anisaldehyde, p-dimethylaminobenzaldehyde, terephthalate.
  • the aromatic ketone is, for example, an aromatic ketone having 8 to 14 carbon atoms, and specific examples include benzalacetone, benzophenone, acetophenone, terephthaloyl benzyl chloride and the like.
  • nitrogen-containing unsaturated heterocyclic compound examples include nitrogen heterocyclic compounds having 3 to 14 carbon atoms, specifically pyrimidine, pyrazine, pyridazine, s-triazine, quinoxaline, phthalazine, 1,10-phenanthroline, 1, Examples include 2,3-benzotriazole, acetoguanamine, cyanuric chloride, imidazole-4-acrylic acid and the like.
  • hydrazide compound include maleic acid hydrazide, isonicotinic acid hydrazide, phthalic acid hydrazide, and the like.
  • S-containing heterocyclic compound examples include S-containing heterocyclic compounds having 3 to 14 carbon atoms, and specific examples include thiouracil, thionicotinic acid amide, s-trithiane, 2-mercapto-4,6-dimethylpyrimidine, and the like. It is done.
  • the aromatic hydrocarbon having an S-containing substituent is, for example, an aromatic hydrocarbon having an S-containing substituent having 7 to 20 carbon atoms, and specifically includes thiobenzoic acid, thioindigo, thioindoxyl, thioxanthene, Examples include thioxanthone, 2-thiocoumarin, thiocresol, thiodiphenylamine, thionaphthol, thiophenol, thiobenzamide, thiobenzanilide, thiobenzaldehyde, thionaphthenequinone, thionaphthene, and thioacetanilide.
  • aromatic carboxylic acids and derivatives thereof include aromatic carboxylic acids having 7 to 15 carbon atoms and derivatives thereof. Specific examples include benzoic acid, terephthalic acid, and ethyl benzoate.
  • the aliphatic carboxylic acid having a double bond and its derivative are, for example, an aliphatic carboxylic acid having a double bond having 3 to 12 carbon atoms and its derivative, specifically, acrylic acid, crotonic acid, methacrylic acid, acrylic Examples include acid-2-ethylhexyl and 2-ethylhexyl methacrylate.
  • the acetylene alcohol compound include propargyl alcohol.
  • trifluorochloroethylene resin examples include trifluoroethylene chloride resins having an average molecular weight of 500 to 1300.
  • the content of the brightener is preferably in the range of 0.001 to 0.1 mol / l, more preferably in the range of 0.002 to 0.02 mol / l. When the brightener is used in such a range, a smoothing effect is obtained, and black smut-like precipitation does not occur even when plating is performed at a high current density.
  • the electroplating method of the present invention is carried out using the above electroaluminum or aluminum alloy molten salt plating bath. Electroplating can be performed by direct current or pulse current, and pulse current is particularly preferable. When pulse current is used, the duty ratio (ON / OFF ratio) is preferably 1: 2 to 2: 1, and most preferably 1: 1. It is preferable to use a pulse current with an ON time of 5 to 20 ms and an OFF time of 5 to 20 ms, because the deposited particles become dense and smooth.
  • the bath temperature is usually in the range of 25 to 120 ° C, preferably in the range of 50 to 100 ° C.
  • the current density is usually in the range of 0.1 to 15 A / dm 2 , and preferably in the range of 0.5 to 5 A / dm 2 .
  • the electroplating is performed in a dry oxygen-free atmosphere (dry nitrogen, dry, etc.) in terms of maintaining the stability of the plating bath and plating properties. Argon in dry air is desirable.
  • the electroplating method of the present invention is preferably performed using a barrel plating apparatus. Next, an Example and a comparative example are shown and this invention is demonstrated.
  • Example 1 A 99.9% Al wire was immersed in a bath in which AlCl 3 and 1-methyl-3-propylimidazolium bromide were mixed and melted at a molar ratio of 2: 1 and heated at 80 ° C. for 48 hours. Thereafter, filtration was performed, 3 g / L of dimethylamine borane was added, and the mixture was heated at 80 ° C. for 1 hour to prepare a plating bath. Next, the Hull cell copper plate (plate thickness 0.5 mm) used as the cathode was subjected to alkaline degreasing, alkaline electrolytic cleaning and pickling, pre-treatment, water washing, ethyl alcohol cleaning, and drying.
  • Example 2 A 99.9% Al wire was immersed in a bath in which AlCl 3 and 1-methyl-3-propylimidazolium bromide were mixed and melted at a molar ratio of 2: 1 and heated at 80 ° C. for 48 hours. Thereafter, filtration was performed, 0.5 g / L of lithium aluminum hydride was added, and the mixture was heated at 80 ° C. for 1 hour to prepare a plating bath. Next, the Hull cell copper plate (plate thickness 0.5 mm) used as the cathode was subjected to alkali degreasing, alkaline electrolytic cleaning and pickling, pre-treatment, water washing, ethyl alcohol cleaning and drying.
  • Example 3 A 99.9% Al wire was immersed in a bath in which AlCl 3 and 1-methyl-3-propylimidazolium bromide were mixed and melted at a molar ratio of 2: 1 and heated at 80 ° C. for 48 hours. In this bath, 3 g / L of anhydrous zirconium chloride and 3 g / L of anhydrous manganese chloride were added and dissolved. Thereafter, filtration was performed, 3 g / L of dimethylamine borane was added, and the mixture was heated at 80 ° C. for 1 hour to prepare a plating bath.
  • the Hull cell copper plate (plate thickness 0.5 mm) used as the cathode was subjected to alkali degreasing, alkaline electrolytic cleaning and pickling, pre-treatment, water washing, ethyl alcohol cleaning and drying.
  • the pretreated copper plate as a cathode and an aluminum plate (purity 99.9%) as an anode in a dry nitrogen gas atmosphere, bath temperature 50 ° C., pulse (duty ratio 1: 1, ON, OFF time 10 ms) at 1 A Al plating for 20 minutes was performed.
  • the plating bath was stirred with a stirrer. Table 1 shows the conductivity of the plating solution and the throwing power obtained from the appearance of the hull cell.
  • Example 4 A 99.9% Al wire was immersed in a bath in which AlCl 3 and 1-methyl-3-propylimidazolium bromide were mixed and melted at a molar ratio of 2: 1 and heated at 80 ° C. for 48 hours. In this bath, 3 g / L of anhydrous zirconium chloride and 3 g / L of anhydrous manganese chloride were added and dissolved. Thereafter, filtration was performed, 0.5 g / L of lithium aluminum hydride was added, and the mixture was heated at 80 ° C. for 1 hour to prepare a plating bath.
  • the Hull cell copper plate (plate thickness 0.5 mm) used as the cathode was subjected to alkali degreasing, alkaline electrolytic cleaning and pickling, pre-treatment, water washing, ethyl alcohol cleaning and drying.
  • the pretreated copper plate as a cathode and an aluminum plate (purity 99.9%) as an anode in a dry nitrogen gas atmosphere, bath temperature 50 ° C., pulse (duty ratio 1: 1, ON, OFF time 10 ms) at 1 A Al plating for 20 minutes was performed.
  • the plating bath was stirred with a stirrer. Table 1 shows the conductivity of the plating solution and the throwing power obtained from the appearance of the hull cell.
  • Example 5 A 99.9% Al wire was immersed in a bath in which AlCl 3 and 1-methyl-3-propylimidazolium bromide were mixed and melted at a molar ratio of 2: 1 and heated at 80 ° C. for 48 hours. Thereafter, filtration was performed, 3 g / L of dimethylamine borane was added, and the mixture was heated at 80 ° C. for 1 hour. Furthermore, 0.5 g / L of phenanthroline was added and mixed to prepare a plating bath.
  • the Hull cell copper plate (plate thickness 0.5 mm) used as the cathode was subjected to alkaline degreasing, alkaline electrolytic cleaning and pickling, pre-treatment, water washing, ethyl alcohol cleaning, and drying.
  • the pretreated copper plate as a cathode and an aluminum plate (purity 99.9%) as an anode in a dry nitrogen gas atmosphere, bath temperature 50 ° C., pulse (duty ratio 1: 1, ON, OFF time 10 ms) at 1 A Al plating for 20 minutes was performed.
  • the plating bath was stirred with a stirrer. Table 1 shows the conductivity of the plating solution, the reduction potential of the Al plating, and the throwing power obtained from the appearance of the hull cell.
  • Example 6 A 99.9% Al wire was immersed in a bath in which AlCl 3 and 1-methyl-3-propylimidazolium bromide were mixed and melted at a molar ratio of 2: 1 and heated at 80 ° C. for 48 hours. Thereafter, filtration was performed, 0.5 g / L of lithium aluminum hydride was added, and the mixture was heated at 80 ° C. for 1 hour. Further, a plating bath was prepared by adding and mixing 2.5 g / L of polystyrene (Picolatic A-75).
  • the Hull cell copper plate (plate thickness 0.5 mm) used as the cathode was subjected to alkali degreasing, alkaline electrolytic cleaning and pickling, pre-treatment, water washing, ethyl alcohol cleaning, and drying.
  • the pretreated copper plate as a cathode and an aluminum plate (purity 99.9%) as an anode in a dry nitrogen gas atmosphere, bath temperature 50 ° C., pulse (duty ratio 1: 1, ON, OFF time 10 ms) at 1 A Al plating for 20 minutes was performed.
  • the plating bath was stirred with a stirrer. Table 1 shows the conductivity of the plating solution, the reduction potential of the Al plating, and the throwing power obtained from the appearance of the hull cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

 本発明は、空気や水と接触した場合にも爆発、発火の危険性が少なく、かつ人体に悪影響を及ぼすベンゼン、トルエン、キシレン、ナフタレン、1,3,5-トリメチルベンゼンを使用しない電気Al系めっき浴を提供することを目的とする。本発明は、(A)ハロゲン化アルミニウムを主成分とし、(B)少なくとも1種の他のハロゲン化物を含んでなる電気アルミニウム又はアルミニウム合金溶融塩めっき浴に、(C)周期律表第1族第2~第6周期元素の水素化物及び/又は第13族第2~第6周期元素の水素化物、及びアミンボラン化合物からなる群より選ばれた1種又は2種以上の還元性化合物を添加した後加熱処理してなる電気アルミニウム又はアルミニウム合金溶融塩めっき浴を提供する。

Description

つき回り性良好な電気アルミニウム又はアルミニウム合金溶融塩めっき浴、並びにそれを用いた電気めっき方法及びその前処理方法
 本発明は、常温で使用できる電気アルミニウム又はアルミニウム合金溶融塩めっき浴に関するものである。
 アルミニウム金属材が優れた耐食性を有していることはよく知られているが、アルミニウムは酸素に対する親和力が大きく、また還元電位が水素より卑であるため、水溶液からの電析は困難である。そのため従来からアルミニウム電気めっきは有機溶媒系めっき浴や高温溶融塩浴にて行われている。ここで、有機溶媒系めっき浴としては、AlCl3とLiAlH4又はLiHとをエーテルに溶解したものや、テトラヒドロフランに溶解したもの、NaF・2Al(CH253のトルエン溶液が代表的である。しかしながら、これらの浴は。空気や水と接触した場合に爆発する危険性が有り、取り扱いにくいという問題がある。
 そこで、爆発の危険性がない浴として、アルミニウムハロゲン化物とアルキルピリジニウムハロゲン化物の混合溶融塩浴が提案されている(特開昭62-70592号公報)。しかしながら、このめっき浴からのめっきは電析が不均一で、平滑性に乏しく、特に膜厚を増加した場合や、電流密度を高くした場合には高電流密度部分がデンドライド状析出や黒色析出物となり、析出物が簡単に脱落してしまうという問題がある。また、めっきのつき回り性も乏しく得られためっき皮膜は、6価クロムを用いたクロメート処理なしでは、塩水噴霧試験などを実施した場合、期待される防錆力が得られなかった。そこで、溶融塩浴の問題を解決するための一つの方法として、ベンゼン、トルエン、キシレンなどで希釈する方法も提案されている。しかし、ベンゼン、トルエン、キシレンは、人体に悪影響を及ぼすことと、引火点が低く発火の危険性があることから、大量に使用するのは好ましくなくAlめっきの工業化の壁となっている。
 本発明は、空気や水と接触した場合にも爆発、発火の危険性が少なく、かつ人体に悪影響を及ぼすベンゼン、トルエン、キシレン、ナフタレン、1,3,5-トリメチルベンゼンを使用しない電気Al系めっき浴を提供することを目的とする。また、高電流密度部分においてもアルミニウムと競争して析出する黒色のカチオン性窒素化合物の析出が抑制され、かつデンドライト析出もない均一でつき回り性に優れためっき皮膜を得ることによって、高耐食性のめっき皮膜を得ることができる電気Al系めっき浴を提供することを目的とする。さらに本発明は、クロムフリーでの高耐食性防錆皮膜を提供することを目的とする。
 本発明は、(A)ハロゲン化アルミニウムを主成分とし、(B)少なくとも1種の他のハロゲン化物を含んでなる電気アルミニウム又はアルミニウム合金溶融塩めっき浴に、(C)周期律表第1族第2~第6周期元素の水素化物及び/又は第13族第2~第6周期元素の水素化物、及びアミンボラン化合物からなる群より選ばれた1種又は2種以上の還元性化合物を添加した後加熱処理してなる電気アルミニウム又はアルミニウム合金溶融塩めっき浴を提供する。
 本発明は、又、(A)ハロゲン化アルミニウムを主成分とし、(B)少なくとも1種の他のハロゲン化物を含む電気アルミニウム又はアルミニウム合金溶融塩めっき浴の前処理方法であって、該めっき浴に、(C)周期律表第1族第2~第6周期元素の水素化物及び/又は第13族第2~第6周期元素の水素化物、及びアミンボラン化合物からなる群より選ばれた1種又は2種以上の還元性化合物を添加した後加熱処理することを特徴とする電気アルミニウム又はアルミニウム合金めっき浴の前処理方法を提供する。
 本発明は、又、前記電気アルミニウム又はアルミニウム合金溶融塩めっき浴を用いる電気めっき方法を提供する。
 本発明のめっき浴は、爆発や発火の危険性がなく、平滑で緻密なAlめっき又はAl合金めっき皮膜を得ることができる。また、その皮膜は、クロムフリーでも高耐食性を有しているため、環境対応用として自動車部品、家電部品等、幅広い用途が期待される。
 本発明の電気アルミニウム又はアルミニウム合金溶融塩めっき浴は、(A)ハロゲン化アルミニウムを主成分とし、(B)少なくとも1種の他のハロゲン化物を含んでなる電気アルミニウム又はアルミニウム合金溶融塩めっき浴に、(C)周期律表第1族第2~第6周期元素の水素化物、周期律表第1族第2~第6周期元素と第13族第2~第6周期元素の水素化物及びアミンボラン化合物からなる群より選ばれた1種又は2種以上の還元性化合物を添加した後加熱処理してなる。
 本発明で用いるハロゲン化アルミニウム(A)は、AlX3で表され、Xはフッ素、塩素、臭素、ヨウ素などのハロゲンであり、塩素もしくは臭素が好ましい。経済性を考慮すると塩素が最も好ましい。
 本発明で用いる少なくとも1種の他のハロゲン化物(B)は、好ましくは、含窒素ヘテロ単環式4級アンモニウムハライドであり、より好ましくはN-アルキルピリジニウムハライド、N-アルキルイミダゾリウムハライド、N,N’-ジアルキルイミダゾリウムハライド、N-アルキルピラゾリウムハライド、N,N’-ジアルキルピラゾリウムハライド、N-アルキルピロリジニウムハライド及びN,N-ジアルキルピロリジニウムハライドである。これらのハロゲン化物は単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。また、2種以上を組み合わせて用いる場合には、ハロゲン原子が異なる2種以上の組み合わせであってもよい。
 N-アルキルピリジニウムハライドは、ピリジウム骨格にアルキル基が置換していてもよく、例えば下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000001
(式中、R1は炭素原子数1~12の直鎖状、分岐鎖状又は環状のアルキル基であり、好ましくは炭素原子数1~5の直鎖又は分岐鎖状のアルキル基であり、R2は水素原子又は炭素原子数1~6の直鎖状、分岐鎖状又は環状のアルキル基であり、好ましくは炭素原子数1~3の直鎖又は分岐鎖状のアルキル基であり、Xはハロゲン原子であり、ハロゲン原子としては反応性を考慮すると臭素原子が最も好ましい。)
 具体的なN-アルキルピリジニウムハライドとしては、例えばN-メチルピリジニウムクロライド、N-エチルピリジニウムクロライド、N-ブチルピリジニウムクロライド、N-ヘキシルピリジニウムクロライド、2-メチル-N-プロピルピリジニウムクロライド、3-メチル-N-エチルピリジニウムクロライド、及びこれらの塩素を臭素やヨウ素に代えたものなどが挙げられる。
 N-アルキルイミダゾリウムハライド及びN,N’-ジアルキルイミダゾリウムハライド類は、例えば下記一般式(II)で表される。
Figure JPOXMLDOC01-appb-C000002
(式中、R3は炭素原子数1~12の直鎖状、分岐鎖状又は環状のアルキル基であり、好ましくは炭素原子数1~5の直鎖又は分岐鎖状のアルキル基であり、R4は水素原子又は炭素原子数1~6の直鎖状、分岐鎖状又は環状のアルキル基であり、好ましくは水素原子又は炭素原子数1~3の直鎖又は分岐鎖状のアルキル基であり、Xはハロゲン原子であり、ハロゲン原子としては反応性を考慮すると臭素原子が最も好ましい。)
 具体的なN-アルキルイミダゾリウムハライド及びN,N’-アルキルイミダゾリウムハライドとしては、例えば1-メチルイミダゾリウムクロライド、1-エチルイミダゾリウムクロライド、1-プロピルイミダゾリウムクロライド、1-オクチルイミダゾリウムクロライド、1-メチル-3-エチルイミダゾリウムクロライド、1,3-ジメチルイミダゾリウムクロライド、1,3-ジエチルイミダゾリウムクロライド、1-メチル-3-プロピルイミダゾリウムクロライド、1-ブチル-3-ブチルイミダゾリウムクロライド、及びこれらの塩素を臭素やヨウ素に代えたものなどが挙げられる。
 N-アルキルピラゾリウムハライド及びN,N’-ジアルキルピラゾリウムハライドは、例えば下記一般式(III)で表される。
Figure JPOXMLDOC01-appb-C000003
(式中、R5は炭素原子数1~12の直鎖状、分岐鎖状又は環状のアルキル基であり、好ましくは炭素原子数1~5の直鎖又は分岐鎖状のアルキル基であり、R6は水素原子又は炭素原子数1~6の直鎖状、分岐鎖状又は環状のアルキル基であり、好ましくは水素原子又は炭素原子数1~3の直鎖又は分岐鎖状のアルキル基であり、Xはハロゲン原子であり、ハロゲン原子としては反応性を考慮すると臭素原子が最も好ましい。)
 具体的なN-アルキルピラゾリウムハライド及びN,N’-アルキルピラゾリウムハライドとしては、例えば1-メチルピラゾリウムクロライド、2-メチルピラゾリウムクロライド、1-プロピルピラゾリウムクロライド、2-プロピルピラゾリウムクロライド、1-ブチルピラゾリウムクロライド、2-ブチルピラゾリウムクロライド、1-ヘキシルピラゾリウムクロライド、2-ベンジルピラゾリウムクロライド、1-メチル-2-エチルピラゾリウムクロライド、1-メチル-2-プロピルピラゾリウムクロライド、1-メチル-2-ブチルピラゾリウムクロライド、1-メチル-2-ヘキシルピラゾリウムクロライド、1-メチル-2-ベンジルピラゾリウムクロライド、1-プロピル-2-メチルピラゾリウムクロライド、1-ブチル-2-メチルピラゾリウムクロライド、1-へキシル-2-メチルピラゾリウムクロライド、1,2-ジメチルピラゾリウムクロライド、1,2-ジエチルピラゾリウムクロライド、及びこれらの塩素を臭素やヨウ素に代えたものなどが挙げられる。
 N-アルキルピロリジニウムハライド及びN,N’-ジアルキルピロリジニウムハライドは、ピロリジニウム骨格にアルキル基が置換していてもよく、例えば下記一般式(IV)で表される。
Figure JPOXMLDOC01-appb-C000004
(式中、R7は水素原子又は炭素原子数1~12の直鎖状、分岐鎖状又は環状のアルキル基であり、好ましくは水素原子又は炭素原子数1~5の直鎖又は分岐鎖状のアルキル基であり、R8は水素原子又は炭素原子数1~6の直鎖状、分岐鎖状又は環状のアルキル基であり、好ましくは水素原子又は炭素原子数1~3の直鎖又は分岐鎖状のアルキル基であるが、ただしR7及びR8がともに水素原子である場合は除かれ、Xはハロゲン原子であり、ハロゲン原子としては反応性を考慮すると臭素原子が最も好ましい。)
 具体的なN-アルキルピロリジニウムハライドとしては、例えばN-メチルピロリジニウムクロライド、N-エチルピロリジニウムクロライド、N-ブチルピロリジニウムクロライド、N-ヘキシルピロリジニウムクロライド、2-メチル-N-プロピルピロリジニウムクロライド、3-メチル-N-エチルピロリジニウムクロライド、N-メチル-N-エチルピロリジニウムクロライド、N-メチル-N-プロピルピロリジニウムクロライド、N-メチル-N-ブチルピロリジニウムクロライド、N-ジエチルピロリジニウムクロライド、N-エチル-N-プロピルピロリジニウムクロライド、N-エチル-N-ブチルピロリジニウムクロライド、及びこれらの塩素を臭素やヨウ素に代えたものなどが挙げられる。
 本発明において、ハロゲン化アルミニウム(A)のモル数と、他のハロゲン化物(B)のモル数との比率は、1:1~3:1の範囲が好ましい。より好ましくは、2:1である。前記モル比をこのような範囲とすることにより、ピリジニウム、イミダゾリウム、ピラゾリウム及びピロリジニウムカチオンの分解と思われる反応を抑制することができ、まためっき浴の粘度の上昇を抑制することができるために、めっき浴の劣化及びめっき不良を防止することができる。
 本発明で使用する還元性化合物(C)は、周期律表第1族第2~第6周期元素の水素化物及び/又は第13族第2~第6周期元素の水素化物、及びアミンボラン化合物である。これらの還元性化合物は単独で使用してもよく、又は2種以上を組み合わせて用いてもよい。周期律表第1族第2~第6周期元素とは、Li、Na、K、Rb及びCsを意味し、これらの元素の中で、好ましくは第2~第3周期元素(すなわち、Li及びNa)である。また、第13族第2~第6周期元素とは、B、Al、Ca、In及びTlを意味し、これらの元素の中で、好ましくは第2~第3周期元素(すなわち、B及びAl)である。アミンボラン化合物とは、水素化ホウ素Naとアミン類の反応生成物である。還元性化合物(C)としては、好ましくはリチウムアルミニウムハイドライド、リチウムハイドライド、リチウムナトリウムハイドライド、ナトリウムハイドライド、水素化ホウ素ナトリウム、ジメチルアミンボラン、ジエチルアミンボラン及びトリメチルアミンボランである。より好ましくは、リチウムアルミニウムハイド及びジメチルアミンボランである。還元性化合物の添加量は、好ましくは0.01g/L~100g/Lであり、より好ましくは0.05g/L~30g/Lであり、さらに好ましくは0.1g/L~10g/Lである。
 本発明の電気アルミニウム又はアルミニウム合金溶融塩めっき浴は、還元性化合物(C)を添加した後加熱処理される。加熱処理は、好ましくは50~100℃の範囲、より好ましくは60~80℃の範囲で加温することを含む。前記加温により、還元性化合物(C)が分解される。分解に際し、H2ガスが生成する。H2ガスは液中から排出してもよいし、また排出しなくてもよい。好ましくは、生成するH2ガスをめっき液中から排出する。H2ガスをめっき液中から排出する方法としては、前記加温を維持して自然排出する方法、超音波をかける方法、乾燥不活性ガスをバブリングする方法などが挙げられる。これらの方法は併用して用いてもよい。不活性ガスとしては、窒素、アルゴンなどが挙げられる。
 加温を維持して自然排出する方法において、加温を維持する時間は、好ましくは0.5~24時間であり、より好ましくは1~8時間である。
 超音波をかける方法において、超音波の周波数は、好ましくは20~60KHzであり、より好ましくは30~40KHzである。超音波をかける時間は、好ましくは10~60分間であり、より好ましくは20~40分間である。
 乾燥不活性ガスをバブリングする方法において、バブリング温度は、好ましくは10~120℃であり、より好ましくは80~100℃である。バブリングする時間は、好ましくは10~60分間であり、より好ましくは20~40分間である。
 本発明の電気アルミニウム又はアルミニウム合金溶融塩めっき浴により、(1)浴の導電性が向上し、かつ、(2)アルミニウムの還元電位が貴な方向にシフトして析出し易くなり、つき回り性の向上も達成される。
 本発明の電気アルミニウム又はアルミニウム合金溶融塩めっき浴においては、さらにめっき浴中のハロゲン化アルミニウム(A)に由来する不純物金属を除去することが好ましい。不純物金属として、鉄、銅などが含まれている。めっき浴中の不純物金属を除去する方法としては、めっき液中にAl線又はAl粉末を浸漬して不純物金属を除去する方法、めっき液中に陰極アルミ板若しくは陽極アルミ板を設置してこれに電流を通電することによって不純物金属を除去する方法などが挙げられる。これにより、鉄、銅などの不純物金属が除去される。これにより、さらにつき回り性が改善され、かつ、緻密なめっき皮膜が得られる。
 めっき液中にAl線又はAl粉末を浸漬して不純物金属を除去する場合、好ましくは10~120℃の温度で、より好ましくは80~100℃の温度で加温する。加温時間は、好ましくは2~96時間であり、より好ましくは24~72時間である。
 めっき液中に陰極アルミ板若しくは陽極アルミ板を設置してこれに電流を通電することによって不純物金属を除去する場合、浴温は、好ましくは50~120℃の温度であり、より好ましくは80~100℃の温度である。陰極電流密度は、好ましくは0.1~10A/dm2であり、より好ましくは1~5A/dm2である。めっき浴への通電量は、好ましくは10AH/L~20AH/Lであり、より好ましくは15~20AH/Lである。不純物金属の除去は、アルミニウム合金溶融塩めっき浴の建浴後、還元性化合物(C)の添加前に行ってもよく、また添加後に行ってもよい。好ましくは、添加前である。
 本発明の電気アルミニウム又はアルミニウム合金溶融塩めっき浴には、さらにZr、Ti 、Mo、W、Mn、Ni、Co、Sn、Zn、Si、Nd及びDyなどの金属の化合物(D)を含有させてもよい。化合物(D)としては、例えばハロゲン化物であり、具体的には四塩化ジルコニウム、四塩化チタン、塩化マンガン、塩化モリブデン、塩化タングステンなどが挙げられる。これらの化合物は、単独で使用してもよく、又は2種以上を組み合わせて用いてもよい。化合物(D)の含有量は、好ましくは0.1~100g/Lであり、より好ましくは0.1~10g/Lである。化合物(D)の含有量をこのような範囲とすることにより、アルミニウム合金めっきを形成する金属の効果が発揮され、また黒色の粉末析出となることもない。例えば、ZrCl4を添加すれば、Al-Zr合金めっきとなり、耐食性が向上する。これに、さらにMnCl2を添加すると、Al-Zr-Mn合金めっきとなり光沢性と外観均一性が増す。
 本発明の電気アルミニウム又はアルミニウム合金溶融塩めっき浴には、さらに有機重合体(E)を含有させてもよい。有機重合体(E)としては、スチレン系ポリマー、脂肪族ジエン系ポリマーなどが挙げられる。これらの有機重合体は、単独で使用してもよく、又は2種以上を組み合わせて用いてもよい。
 スチレン系ポリマーとしては、例えばスチレン、α-メチルスチレン、ビニルトルエン、m-メチルスチレンなどのスチレン系ホモポリマー、これらのコポリマー、あるいはスチレン系モノマーと他の重合性のビニル系モノマーとのコポリマーが挙げられる。前記ビニル系モノマーの例としては、無水マレイン酸、マレイン酸、アクリル酸、メタクリル酸、メチルメタクリレート、グリシジルメタクリレート、イタコン酸、アクリルアミド、アクリルニトリル、マレイミド、ビニルピリジン、ビニルカルバゾール、アクリル酸エステル、メタクリル酸エステル、フマル酸エステル、ビニルエチルエーテル、塩化ビニルなどが挙げられる。これらのうち、炭素数が3~10のα,β-不飽和カルボン酸又はそのアルキル(炭素数1~3)エステルが好ましい。
 脂肪族ジエン系ポリマーとしては、ブタジエン、イソプレン、ペンタジエンなどの重合体などが挙げられる。好ましくは、1,2又は3,4構造の分枝鎖を有する重合体、又はこれらと他の重合性のビニル系モノマーとのコポリマーである。前記ビニル系モノマーとしては、上記スチレン系ポリマーについて記載したものと同様のものが挙げられる。
 有機重合体(E)の重量平均分子量は、好ましくは200~80000の範囲であり、より好ましくは300~5000の範囲である。特に、重量平均分子量が300~5000程度の低中分子量のポリスチレン及びポリ-α-メチルスチレンは、溶融塩溶解性が良く最も好ましい。有機重合体(E)の含有量は、好ましくは0.1~50g/lの範囲であり、より好ましくは1~10g/lの範囲である。有機重合体をこのような範囲で用いると、デンドライド析出を防止し、表面平滑効果を発揮し、めっきやけが発生するのを防止できる。
 本発明の電気アルミニウム又はアルミニウム合金溶融塩めっき浴には、さらに光沢剤(F)を含有させてもよい。光沢剤(F)としては、脂肪族アルデヒド、芳香族アルデヒド、芳香族ケトン、含窒素不飽和複素環化合物、ヒドラジド化合物、S含有複素環化合物、S含有置換基を有する芳香族炭化水素、芳香族カルボン酸及びその誘導体、二重結合を有する脂肪族カルボン酸及びその誘導体、アセチレンアルコール化合物及び三フッ化塩化エチレン樹脂などが挙げられる。これらの光沢剤は、単独で使用してもよく、又は2種以上を組み合わせて用いてもよい。
 脂肪族アルデヒドとしては、例えば炭素数2~12の脂肪族アルデヒドであり、具体的にはトリブロモアセトアルデヒド、メタアルデヒド、2-エチルヘキシルアルデヒド、ラウリルアルデヒドなどが挙げられる。
 芳香族アルデヒドとしては、例えば炭素数7~10の芳香族アルデヒドであり、具体的には0-カルボキシベンズアルデヒド、ベンズアルデヒド、0-クロルベンズアルデヒド、p-トルアルデヒド、アニスアルデヒド、p-ジメチルアミノベンズアルデヒド、テレフタルアルデヒドなどが挙げられる。
 芳香族ケトンとしては、例えば炭素数8~14の芳香族ケトンであり、具体的にはベンザルアセトン、ベンゾフェノン、アセトフェノン、塩化テレフタロイルベンジルなどが挙げられる。
 含窒素不飽和複素環化合物としては、例えば炭素数3~14の窒素複素環化合物であり、具体的にはピリミジン、ピラジン、ピリダジン、s-トリアジン、キノキサリン、フタラジン、1,10-フェナントロリン、1,2,3-ベンゾトリアゾール、アセトグアナミン、塩化シアヌル、イミダゾール-4-アクリル酸などが挙げられる。
 ヒドラジド化合物としては、例えばマレイン酸ヒドラジド、イソニコチン酸ヒドラジド、フタル酸ヒドラジドなどが挙げられる。
 S含有複素環化合物としては、例えば炭素数3~14のS含有複素環化合物であり、具体的にはチオウラシル、チオニコチン酸アミド、s-トリチアン、2-メルカプト-4,6-ジメチルピリミジンなどが挙げられる。
 S含有置換基を有する芳香族炭化水素としては、例えば炭素数7~20のS含有置換基を有する芳香族炭化水素であり、具体的にはチオ安息香酸、チオインジゴ、チオインドキシル、チオキサンテン、チオキサントン、2-チオクマリン、チオクレゾール、チオジフェニルアミン、チオナフトール、チオフェノール、チオベンズアミド、チオベンズアニリド、チオベンズアルデヒド、チオナフテンキノン、チオナフテン、チオアセトアニリドなどが挙げられる。
 芳香族カルボン酸及びその誘導体としては、例えば炭素数7~15の芳香族カルボン酸及びその誘導体であり、具体的には安息香酸、テレフタル酸、安息香酸エチルなどが挙げられる。
 二重結合を有する脂肪族カルボン酸及びその誘導体は、例えば炭素数3~12の二重結合を有する脂肪族カルボン酸及びその誘導体であり、具体的にはアクリル酸、クロトン酸、メタクリル酸、アクリル酸-2-エチルヘキシル、メタクリル酸-2-エチルヘキシルなどが挙げられる。
 アセチレンアルコール化合物としては、例えばプロパギルアルコールなどが挙げられる。
 三フッ化塩化エチレン樹脂としては、例えば平均分子量が500~1300の三フッ化塩化エチレン樹脂などが挙げられる。
 光沢剤の含有量は、好ましくは0.001~0.1モル/lの範囲であり、より好ましくは0.002~0.02モル/lの範囲である。光沢剤をこのような範囲で用いると、平滑効果が得られ、高電流密度でめっきを施した場合でも、黒色スマット状の析出を生じることはない。
 本発明の電気めっき方法は、前記電気アルミニウム又はアルミニウム合金溶融塩めっき浴を用いて行われる。電気めっきは、直流もしくはパルス電流により行うことができるが、特にパルス電流が好ましい。パルス電流を用いる場合、デューティー比(ON/OFF比)は、好ましくは1:2~2:1であり、最も好ましくは1:1である。ON時間を5~20ms及びOFF時間を5~20msとする条件のパルス電流を用いると、電析する粒子が緻密化し、平滑になるので好ましい。浴温は、通常25~120℃の範囲であり、好ましくは50~100℃の範囲である。電流密度は、通常0.1~15A/dm2の範囲であり、好ましくは0.5~5A/dm2の範囲である。尚、本発明の溶融塩めっき浴は、酸素や水分に触れても安全であるが、めっき浴の安定性維持及びめっき性状などの点から、電気めっきは乾燥無酸素雰囲気中(乾燥窒素、乾燥アルゴン、乾燥空気中)で行うのが望ましい。また、電気めっきを実施する場合は、浴を攪拌するか又は/及び被めっき物を揺動することが望ましい。例えば、ジェット噴流や超音波攪拌などを使用すれば、電流密度をさらに高くすることができる。また、本発明の電気めっき方法は、好ましくはバレルめっき装置を用いて行われる。
 次に、実施例および比較例を示して本発明を説明する。
(実施例1)
 AlCl3と1-メチル-3-プロピルイミダゾリウムブロマイドとを2:1のモル比で混合溶融してなる浴に、99.9%のAl線を浸漬して48時間80℃で加温した。その後濾過を行い、ジメチルアミンボランを3g/L添加し、80℃にて1時間加温してめっき浴を調製した。次に、陰極として用いるハルセル銅板(板厚0.5mm)に対し、前処理として、アルカリ脱脂、アルカリ電解洗浄及び酸洗し、水洗後エチルアルコール洗浄し乾燥を行った。前記前処理した銅板を陰極、アルミニウム板(純度99.9%)を陽極として、乾燥窒素ガス雰囲気中、浴温50℃、パルス(デューティー比1:1、ON、OFF時間10ms)にて1Aで20分のAlめっきを行った。尚、めっき浴はスターラーで攪拌した。第1表に、めっき液の導電率、Alめっきの還元電位とハルセル外観からの得られたつき回り性を示す。
(実施例2)
 AlCl3と1-メチル-3-プロピルイミダゾリウムブロマイドとを2:1のモル比で混合溶融してなる浴に、99.9%のAl線を浸漬して48時間80℃で加温した。その後濾過を行い、リチウムアルミニウムハイドライドを0.5g/L添加、80℃にて1時間加温しめっき浴を調製した。次に陰極として用いるハルセル銅板(板厚0.5mm)に対し、前処理として、アルカリ脱脂、アルカリ電解洗浄及び酸洗し、水洗後エチルアルコール洗浄し乾燥を行った。前記前処理した銅板を陰極、アルミニウム板(純度99.9%)を陽極として、乾燥窒素ガス雰囲気中、浴温50℃、パルス(デューティー比1:1、ON、OFF時間10ms)にて1Aで20分のAlめっきを行った。尚、めっき浴はスターラーで攪拌した。第1表に、めっき液の導電率、Alめっきの還元電位とハルセル外観からの得られたつき回り性を示す。
(実施例3)
 AlCl3と1-メチル-3-プロピルイミダゾリウムブロマイドとを2:1のモル比で混合溶融してなる浴に、99.9%のAl線を浸漬して48時間80℃で加温した。この浴に、無水塩化ジルコニウム3g/L、無水塩化マンガン3g/L添加溶解させた。その後濾過を行い、ジメチルアミンボランを3g/L添加、80℃にて1時間加温しめっき浴を調製した。次に陰極として用いるハルセル銅板(板厚0.5mm)に対し、前処理として、アルカリ脱脂、アルカリ電解洗浄及び酸洗し、水洗後エチルアルコール洗浄し乾燥を行った。前記前処理した銅板を陰極、アルミニウム板(純度99.9%)を陽極として、乾燥窒素ガス雰囲気中、浴温50℃、パルス(デューティー比1:1、ON、OFF時間10ms)にて1Aで20分のAlめっきを行った。尚、めっき浴はスターラーで攪拌した。第1表に、めっき液の導電率、ハルセル外観からの得られたつき回り性を示す。
(実施例4)
 AlCl3と1-メチル-3-プロピルイミダゾリウムブロマイドとを2:1のモル比で混合溶融してなる浴に、99.9%のAl線を浸漬して48時間80℃で加温した。この浴に、無水塩化ジルコニウム3g/L、無水塩化マンガン3g/L添加溶解させた。その後濾過を行い、リチウムアルミニウムハイドライドを0.5g/L添加、80℃にて1時間加温しめっき浴を調製した。次に陰極として用いるハルセル銅板(板厚0.5mm)に対し、前処理として、アルカリ脱脂、アルカリ電解洗浄及び酸洗し、水洗後エチルアルコール洗浄し乾燥を行った。前記前処理した銅板を陰極、アルミニウム板(純度99.9%)を陽極として、乾燥窒素ガス雰囲気中、浴温50℃、パルス(デューティー比1:1、ON、OFF時間10ms)にて1Aで20分のAlめっきを行った。尚、めっき浴はスターラーで攪拌した。第1表に、めっき液の導電率、ハルセル外観からの得られたつき回り性を示す。
(比較例1)
 AlCl3と1-メチル-3-プロピルイミダゾリウムブロマイドとを2:1のモル比で混合溶融してなる浴に、99.9%のAl線を浸漬して48時間80℃で加温した。その後濾過を行い、めっき浴を調製した。次に陰極として用いるハルセル銅板に対し、前処理として、アルカリ脱脂、アルカリ電解洗浄及び酸洗し、水洗後エチルアルコール洗浄し乾燥を行った。前記前処理した銅板を陰極、アルミニウム板(純度99.9%)を陽極として、乾燥窒素ガス雰囲気中、浴温50℃、パルス(デューティー比1:1、ON、OFF時間10ms)にてAlめっきを行った。尚、めっき浴はスターラーで攪拌した。第1表に、めっき液の導電率、Alめっきの還元電位とハルセル外観からの得られたつき回り性を示す。
(比較例2)
 AlCl3と1-メチル-3-プロピルイミダゾリウムブロマイドとを2:1のモル比で混合溶融してなる浴に、99.9%のAl線を浸漬して48時間80℃で加温した。この浴に、無水塩化ジルコニウム3g/L、無水塩化マンガン3g/L添加溶解させた。その後濾過を行い、めっき浴を調製した。次に陰極として用いるハルセル銅板に対し、前処理として、アルカリ脱脂、アルカリ電解洗浄及び酸洗し、水洗後エチルアルコール洗浄し乾燥を行った。前記前処理した銅板を陰極、アルミニウム板(純度99.9%)を陽極として、乾燥窒素ガス雰囲気中、浴温50℃、パルス(デューティー比1:1、ON、OFF時間10ms)にてAlめっきを行った。尚、めっき浴はスターラーで攪拌した。第1表に、めっき液の導電率、ハルセル外観からの得られたつき回り性を示す。
(実施例5)
 AlCl3と1-メチル-3-プロピルイミダゾリウムブロマイドとを2:1のモル比で混合溶融してなる浴に、99.9%のAl線を浸漬して48時間80℃で加温した。その後濾過を行い、ジメチルアミンボランを3g/L添加し、80℃にて1時間加温した。さらに、フェナントロリンを0.5g/L添加混合しめっき浴を調製した。次に、陰極として用いるハルセル銅板(板厚0.5mm)に対し、前処理として、アルカリ脱脂、アルカリ電解洗浄及び酸洗し、水洗後エチルアルコール洗浄し乾燥を行った。前記前処理した銅板を陰極、アルミニウム板(純度99.9%)を陽極として、乾燥窒素ガス雰囲気中、浴温50℃、パルス(デューティー比1:1、ON、OFF時間10ms)にて1Aで20分のAlめっきを行った。尚、めっき浴はスターラーで攪拌した。第1表に、めっき液の導電率、Alめっきの還元電位とハルセル外観からの得られたつき回り性を示す。
(実施例6)
 AlCl3と1-メチル-3-プロピルイミダゾリウムブロマイドとを2:1のモル比で混合溶融してなる浴に、99.9%のAl線を浸漬して48時間80℃で加温した。その後濾過を行い、リチウムアルミニウムハイドライドを0.5g/L添加、80℃にて1時間加温した。さらに、ポリスチレン(ピコラスティックA-75)を2.5g/L添加混合しめっき浴を調製した。次に陰極として用いるハルセル銅板(板厚0.5mm)に対し、前処理として、アルカリ脱脂、アルカリ電解洗浄及び酸洗し、水洗後エチルアルコール洗浄し乾燥を行った。前記前処理した銅板を陰極、アルミニウム板(純度99.9%)を陽極として、乾燥窒素ガス雰囲気中、浴温50℃、パルス(デューティー比1:1、ON、OFF時間10ms)にて1Aで20分のAlめっきを行った。尚、めっき浴はスターラーで攪拌した。第1表に、めっき液の導電率、Alめっきの還元電位とハルセル外観からの得られたつき回り性を示す。
第1表
Figure JPOXMLDOC01-appb-I000005

Claims (17)

  1.  (A)ハロゲン化アルミニウムを主成分とし、
     (B)少なくとも1種の他のハロゲン化物を含んでなる電気アルミニウム又はアルミニウム合金溶融塩めっき浴に、
     (C)周期律表第1族第2~第6周期元素の水素化物及び/又は第13族第2~第6周期元素の水素化物、及びアミンボラン化合物からなる群より選ばれた1種又は2種以上の還元性化合物を添加した後加熱処理してなる電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  2.  還元性化合物(C)がリチウムアルミニウムハイドライド、リチウムハイドライド、リチウムナトリウムハイドライド、ナトリウムハイドライド、水素化ホウ素ナトリウム、ジメチルアミンボラン、ジエチルアミンボラン及びトリメチルアミンボランからなる群より選ばれた1種又は2種以上の化合物である、請求項1に記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  3.  還元性化合物(C)がリチウムアルミニウムハイド及び/又はジメチルアミンボランである、請求項2に記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  4.  他のハロゲン化物(B)がN-アルキルピリジニウムハライド、N-アルキルイミダゾリウムハライド、N,N’-ジアルキルイミダゾリウムハライド、N-アルキルピラゾリウムハライド、N,N’-ジアルキルピラゾリウムハライド、N-アルキルピロリジニウムハライド及びN,N-ジアルキルピロリジニウムハライドからなる群より選ばれる1種又は2種以上の化合物である、請求項1~3のいずれか1項に記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  5.  ハロゲン化アルミニウム(A)と他のハロゲン化物(B)とを1:1~3:1のモル比で含む請求項1~4のいずれか1項に記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  6.  加熱処理が、該めっき浴を温度50~100℃に加温して還元性化合物(C)を分解することを含む、請求項1~5のいずれか1項に記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  7.  加熱処理が、還元性化合物(C)を分解し、生成するH2ガスをめっき液中から排出することを含む、請求項6記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  8.  電気アルミニウム又はアルミニウム合金溶融塩めっき液が該めっき液中のハロゲン化アルミニウム(A)に由来する不純物金属を除去したものである、請求項1~7のいずれか1項に記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  9.  不純物金属を除去する方法が、該めっき液中にAl線又はAl粉末を浸漬して不純物金属を除去する方法、又は該めっき液中に陰極アルミ板若しくは陽極アルミ板を設置してこれに電流を通電することによって不純物金属を除去する方法である、請求項8記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  10.  不純物金属が鉄及び/又は銅である、請求項8又は9記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  11.  さらに、Zr、Ti、Mo、W、Mn、Ni、Co、Sn、Zn、Si、Nd及びDyからなる群より選ばれる1種又は2種以上の金属の化合物(D)を0.1~100g/l含有する請求項1~10のいずれか1項に記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  12.  さらに、有機重合体を0.1~50g/l含有する請求項1~11のいずれか1項に記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  13.  さらに、光沢剤を0.001~0.1モル/l含有する請求項1~12のいずれか1項に記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴。
  14.  (A)ハロゲン化アルミニウムを主成分とし、
     (B)少なくとも1種の他のハロゲン化物を含む電気アルミニウム又はアルミニウム合金溶融塩めっき浴の前処理方法であって、
     該めっき浴に、
     (C)周期律表第1族第2~第6周期元素の水素化物及び/又は第13族第2~第6周期元素の水素化物、及びアミンボラン化合物からなる群より選ばれた1種又は2種以上の還元性化合物を添加した後加熱処理することを特徴とする電気アルミニウム又はアルミニウム合金めっき浴の前処理方法。
  15.  請求項1~13のいずれか1項に記載の電気アルミニウム又はアルミニウム合金溶融塩めっき浴を用いることを特徴とする電気めっき方法。
  16.  パルス電流を用いる請求項15に記載の電気めっき方法。
  17.  バレルめっき装置を用いる請求項15又は16に記載の電気めっき方法。
PCT/JP2012/050017 2011-01-05 2012-01-04 つき回り性良好な電気アルミニウム又はアルミニウム合金溶融塩めっき浴、並びにそれを用いた電気めっき方法及びその前処理方法 WO2012093668A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/977,879 US9926638B2 (en) 2011-01-05 2012-01-04 Aluminum or aluminum alloy molten salt electroplating bath having good throwing power, electroplating method using the bath, and pretreatment method of the bath
JP2012551862A JP5914954B2 (ja) 2011-01-05 2012-01-04 つき回り性良好な電気アルミニウム又はアルミニウム合金溶融塩めっき浴、並びにそれを用いた電気めっき方法及びその前処理方法
KR1020137016513A KR20130132498A (ko) 2011-01-05 2012-01-04 스로잉 파워가 양호한 전기 알루미늄 또는 알루미늄 합금 용융염 도금욕, 및 그것을 이용한 전기 도금 방법 및 그 전처리 방법
BR112013016483A BR112013016483B1 (pt) 2011-01-05 2012-01-04 banho de eletrodeposição de sal fundido de alumínio ou liga de alumínio, método para pré-tratar um banho de eletrodeposição de sal fundido de alumínio ou liga de alumínio, e, método para eletrodeposição
CN201280004661.0A CN103298979B (zh) 2011-01-05 2012-01-04 分布力良好的铝或铝合金熔融盐电镀液、用其进行的电镀方法及其前处理方法
EP12732441.6A EP2662478B1 (en) 2011-01-05 2012-01-04 Aluminium or aluminium alloy molten salt electroplating bath having good throwing power, and electroplating method and pretreatment method using same
US15/892,585 US10309025B2 (en) 2011-01-05 2018-02-09 Aluminum or aluminum alloy molten salt electroplating bath having good throwing power, electroplating method using the bath, and pretreatment method of the bath

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011000581 2011-01-05
JP2011-000581 2011-01-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/977,879 A-371-Of-International US9926638B2 (en) 2011-01-05 2012-01-04 Aluminum or aluminum alloy molten salt electroplating bath having good throwing power, electroplating method using the bath, and pretreatment method of the bath
US15/892,585 Continuation US10309025B2 (en) 2011-01-05 2018-02-09 Aluminum or aluminum alloy molten salt electroplating bath having good throwing power, electroplating method using the bath, and pretreatment method of the bath

Publications (1)

Publication Number Publication Date
WO2012093668A1 true WO2012093668A1 (ja) 2012-07-12

Family

ID=46457519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050017 WO2012093668A1 (ja) 2011-01-05 2012-01-04 つき回り性良好な電気アルミニウム又はアルミニウム合金溶融塩めっき浴、並びにそれを用いた電気めっき方法及びその前処理方法

Country Status (7)

Country Link
US (2) US9926638B2 (ja)
EP (1) EP2662478B1 (ja)
JP (1) JP5914954B2 (ja)
KR (1) KR20130132498A (ja)
CN (1) CN103298979B (ja)
BR (1) BR112013016483B1 (ja)
WO (1) WO2012093668A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038389A1 (ja) * 2012-09-10 2014-03-13 住友電気工業株式会社 アルミニウム膜の製造方法
WO2018128153A1 (ja) * 2017-01-05 2018-07-12 Tdk株式会社 MnAl合金の製造方法
JP2019137887A (ja) * 2018-02-08 2019-08-22 株式会社Uacj アルミニウム箔の製造方法および製造装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093668A1 (ja) * 2011-01-05 2012-07-12 ディップソール株式会社 つき回り性良好な電気アルミニウム又はアルミニウム合金溶融塩めっき浴、並びにそれを用いた電気めっき方法及びその前処理方法
US20150101935A1 (en) * 2013-10-14 2015-04-16 United Technologies Corporation Apparatus and method for ionic liquid electroplating
DK3172169T3 (da) * 2014-07-22 2021-10-18 Xerion Advanced Battery Corp Lithierede overgangsmetaloxider
EP3088571B1 (en) 2015-04-28 2021-06-02 The Boeing Company Environmentally friendly aluminum coatings as sacrificial coatings for high strength steel alloys
US11261533B2 (en) 2017-02-10 2022-03-01 Applied Materials, Inc. Aluminum plating at low temperature with high efficiency
US20190100850A1 (en) 2017-10-03 2019-04-04 Xerion Advanced Battery Corporation Electroplating Transitional Metal Oxides
US11142841B2 (en) 2019-09-17 2021-10-12 Consolidated Nuclear Security, LLC Methods for electropolishing and coating aluminum on air and/or moisture sensitive substrates
CN112941577B (zh) * 2021-02-08 2024-04-16 浙江大学 一种含光亮剂的离子液体镀铝液及光亮铝镀层的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832266B1 (ja) * 1969-12-27 1973-10-04
JPS61213389A (ja) * 1985-03-18 1986-09-22 Sumitomo Metal Ind Ltd 溶融塩浴による電気めつき装置
JPS6270592A (ja) 1985-09-20 1987-04-01 Nisshin Steel Co Ltd 電気アルミニウムめつき浴およびそのめつき浴によるめつき方法
JPH05148680A (ja) * 1991-11-22 1993-06-15 Deitsupusoole Kk 電気アルミニウムめつき液の精製方法およびめつき方法
JPH0688282A (ja) * 1992-09-09 1994-03-29 Nippon Steel Corp Al−Cr合金めっき鋼板の製造法
JPH07157891A (ja) * 1993-12-08 1995-06-20 Nippon Steel Corp アルミ−クロム合金めっき鋼板の製造法
JP2006161154A (ja) * 2004-11-09 2006-06-22 Hitachi Metals Ltd 電解アルミニウムめっき液
JP2008195990A (ja) * 2007-02-09 2008-08-28 Dipsol Chem Co Ltd 電気アルミニウムめっき浴及びそれを用いためっき方法
JP2008195989A (ja) * 2007-02-09 2008-08-28 Dipsol Chem Co Ltd 溶融塩電気アルミニウムめっき浴及びそれを用いためっき方法
JP2009173977A (ja) * 2008-01-22 2009-08-06 Dipsol Chem Co Ltd 常温溶融塩浴を用いた電気Al又はAl合金めっき浴及びそれを用いるめっき方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2763605A (en) * 1955-05-23 1956-09-18 Aluminum Co Of America Electrodepositing aluminum
US3448134A (en) * 1961-12-04 1969-06-03 Nat Steel Corp Organic aluminum complexes
JPS4832266A (ja) 1971-08-30 1973-04-27
US3929611A (en) * 1974-07-19 1975-12-30 Ametek Inc Electrodepositing of aluminum
US20040173468A1 (en) * 2003-03-05 2004-09-09 Global Ionix Electrodeposition of aluminum and refractory metals from non-aromatic organic solvents
JP2008013845A (ja) * 2006-06-06 2008-01-24 Nobuyuki Koura 無電解アルミニウムめっき浴及びアルミニウムの無電解めっき方法
CN101210319B (zh) * 2007-12-21 2010-06-02 凌国平 化学镀铝溶液及化学镀铝方法
KR100907334B1 (ko) * 2008-01-04 2009-07-13 성균관대학교산학협력단 알루미늄과 탄소재료 간의 공유결합을 형성하는 방법, 알루미늄과 탄소재료 복합체를 제조하는 방법 및 그 방법에 의하여 제조된 알루미늄과 탄소재료 복합체
CN101545116A (zh) 2008-03-28 2009-09-30 中国科学院金属研究所 一种镁及镁合金表面无机熔融盐电镀铝的方法
WO2012093668A1 (ja) * 2011-01-05 2012-07-12 ディップソール株式会社 つき回り性良好な電気アルミニウム又はアルミニウム合金溶融塩めっき浴、並びにそれを用いた電気めっき方法及びその前処理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832266B1 (ja) * 1969-12-27 1973-10-04
JPS61213389A (ja) * 1985-03-18 1986-09-22 Sumitomo Metal Ind Ltd 溶融塩浴による電気めつき装置
JPS6270592A (ja) 1985-09-20 1987-04-01 Nisshin Steel Co Ltd 電気アルミニウムめつき浴およびそのめつき浴によるめつき方法
JPH05148680A (ja) * 1991-11-22 1993-06-15 Deitsupusoole Kk 電気アルミニウムめつき液の精製方法およびめつき方法
JPH0688282A (ja) * 1992-09-09 1994-03-29 Nippon Steel Corp Al−Cr合金めっき鋼板の製造法
JPH07157891A (ja) * 1993-12-08 1995-06-20 Nippon Steel Corp アルミ−クロム合金めっき鋼板の製造法
JP2006161154A (ja) * 2004-11-09 2006-06-22 Hitachi Metals Ltd 電解アルミニウムめっき液
JP2008195990A (ja) * 2007-02-09 2008-08-28 Dipsol Chem Co Ltd 電気アルミニウムめっき浴及びそれを用いためっき方法
JP2008195989A (ja) * 2007-02-09 2008-08-28 Dipsol Chem Co Ltd 溶融塩電気アルミニウムめっき浴及びそれを用いためっき方法
JP2009173977A (ja) * 2008-01-22 2009-08-06 Dipsol Chem Co Ltd 常温溶融塩浴を用いた電気Al又はAl合金めっき浴及びそれを用いるめっき方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2662478A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038389A1 (ja) * 2012-09-10 2014-03-13 住友電気工業株式会社 アルミニウム膜の製造方法
CN104619890A (zh) * 2012-09-10 2015-05-13 住友电气工业株式会社 铝膜的制造方法
JPWO2014038389A1 (ja) * 2012-09-10 2016-08-08 住友電気工業株式会社 アルミニウム膜の製造方法
US9758887B2 (en) 2012-09-10 2017-09-12 Sumitomo Electric Industries, Ltd. Method for producing aluminum film
WO2018128153A1 (ja) * 2017-01-05 2018-07-12 Tdk株式会社 MnAl合金の製造方法
JPWO2018128153A1 (ja) * 2017-01-05 2019-11-07 Tdk株式会社 MnAl合金の製造方法
JP2019137887A (ja) * 2018-02-08 2019-08-22 株式会社Uacj アルミニウム箔の製造方法および製造装置
JP7042641B2 (ja) 2018-02-08 2022-03-28 株式会社Uacj アルミニウム箔の製造方法および製造装置

Also Published As

Publication number Publication date
JP5914954B2 (ja) 2016-05-11
JPWO2012093668A1 (ja) 2014-06-09
EP2662478B1 (en) 2019-08-14
US20180163316A1 (en) 2018-06-14
BR112013016483A2 (pt) 2016-09-27
KR20130132498A (ko) 2013-12-04
EP2662478A4 (en) 2017-08-09
CN103298979B (zh) 2017-03-08
US10309025B2 (en) 2019-06-04
BR112013016483B1 (pt) 2020-04-07
CN103298979A (zh) 2013-09-11
US20130292255A1 (en) 2013-11-07
US9926638B2 (en) 2018-03-27
EP2662478A1 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5914954B2 (ja) つき回り性良好な電気アルミニウム又はアルミニウム合金溶融塩めっき浴、並びにそれを用いた電気めっき方法及びその前処理方法
JP5270846B2 (ja) 常温溶融塩浴を用いた電気Al−Zr合金めっき浴とそれを用いるめっき方法
US8916039B2 (en) Aluminum or aluminum alloy barrel electroplating method
JP2008195990A (ja) 電気アルミニウムめっき浴及びそれを用いためっき方法
JP5080097B2 (ja) 溶融塩電気アルミニウムめっき浴及びそれを用いためっき方法
US8821707B2 (en) Electric Al or Al alloy plating bath using room temperature molten salt bath and plating method using the same
JP5299814B2 (ja) 常温溶融塩浴を用いた電気Al−Zr−Mn合金めっき浴、そのめっき浴を用いためっき方法及びAl−Zr−Mn合金めっき皮膜
US20120052324A1 (en) Electric Al-Zr-Mn Alloy-Plating Bath Using Room Temperature Molten Salt Bath, Plating Method Using the Same and Al-Zr-Mn Alloy-Plated Film
JP2009173977A (ja) 常温溶融塩浴を用いた電気Al又はAl合金めっき浴及びそれを用いるめっき方法
JP2009197318A5 (ja)
JPH0551785A (ja) 電気アルミニウムめつき浴
US6207036B1 (en) Electrolytic high-speed deposition of aluminum on continuous products
US20170241030A9 (en) Electric Al-Zr-Mn Alloy-Plating Bath Using Room Temperature Molten Salt Bath, Plating Method Using the Same and Al-Zr-Mn Alloy-Plated Film
EP0148122A1 (en) Coating for metallic substrates, method of production and use of the coating
JPH03285094A (ja) Al―Mn合金電気めっき浴
JPH0445298A (ja) 電気アルミニウムめっき浴
JPH02133596A (ja) つき回り性に優れた電気アルミニウムめっき浴およびその浴によるめっき方法
JP2012233216A (ja) 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法
JPH01149988A (ja) 電気ベリリウムめっき浴およびそのめっき浴によるめっき方法
Morimitsu et al. Electrodeposition of Al-Mg Alloys from Lewis Acidic AlCl3-EMIC-MgCl2 Room-Temperature Molten Salts
JPH01246390A (ja) ベリリウムの電気鋳造法
JPH0488187A (ja) 電気Al―希土類元素合金めっき浴およびその浴によるめっき方法
MXPA99009527A (es) Electrolito para la deposicion electrolitica a alta velocidad de aluminio sobre productos continuos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137016513

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13977879

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012551862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301003800

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2012732441

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013016483

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013016483

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130626