WO2012091088A1 - ポリイミド膜形成用塗布液、液晶配向剤、ポリイミド膜、液晶配向膜及び液晶表示素子 - Google Patents

ポリイミド膜形成用塗布液、液晶配向剤、ポリイミド膜、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2012091088A1
WO2012091088A1 PCT/JP2011/080378 JP2011080378W WO2012091088A1 WO 2012091088 A1 WO2012091088 A1 WO 2012091088A1 JP 2011080378 W JP2011080378 W JP 2011080378W WO 2012091088 A1 WO2012091088 A1 WO 2012091088A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polyimide
polyimide film
compound
film
Prior art date
Application number
PCT/JP2011/080378
Other languages
English (en)
French (fr)
Inventor
悟志 南
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201180068575.1A priority Critical patent/CN103415583B/zh
Priority to JP2012551038A priority patent/JP5831712B2/ja
Priority to KR1020137019754A priority patent/KR101856808B1/ko
Publication of WO2012091088A1 publication Critical patent/WO2012091088A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a novel coating liquid for forming a polyimide film and a liquid crystal aligning agent, a polyimide film and a liquid crystal aligning film formed using these, and a liquid crystal display element.
  • a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction.
  • the main liquid crystal alignment films that are industrially used are polyimide precursors such as polyamic acid (also called polyamic acid), polyamic acid esters, and polyimide-based liquid crystal aligning agents composed of polyimide solutions. It is manufactured by applying and forming a film.
  • a surface stretching process is further performed by rubbing after film formation.
  • a method using an anisotropic photochemical reaction by irradiation with polarized ultraviolet rays has been proposed, and in recent years, studies for industrialization have been performed.
  • liquid crystal display elements In order to improve the display characteristics of such liquid crystal display elements, methods such as changing the structure of polyamic acid, polyamic acid ester and polyimide, polyamic acid with different characteristics, blend of polyamic acid ester and polyimide, adding additives, etc. As a result, improvements in liquid crystal alignment and electrical characteristics, control of the pretilt angle, and the like are performed.
  • the method using a diamine having a side chain as a part of the polyimide raw material can control the pretilt angle in accordance with the proportion of the diamine used, so that the desired pretilt angle is obtained. This is relatively easy and is useful as a means for increasing the pretilt angle.
  • Examples of the side chain structure of the diamine that increases the pretilt angle of the liquid crystal include a long-chain alkyl group or a fluoroalkyl group (see, for example, Patent Document 1), a cyclic group, or a combination of a cyclic group and an alkyl group (see, for example, Patent Document 2), A steroid skeleton (see, for example, Patent Document 3) is known.
  • the diamine for increasing the pretilt angle of the liquid crystal has been studied for improving the stability and process dependency of the pretilt angle
  • the side chain structure used here includes a phenyl group.
  • those containing a ring structure such as a cyclohexyl group have been proposed (see, for example, Patent Documents 4 and 5).
  • a diamine having such a ring structure in 3 to 4 side chains has also been proposed (see, for example, Patent Document 6).
  • a solution of a polyamic acid or a solvent-soluble polyimide When applying a solution of a polyamic acid or a solvent-soluble polyimide to a substrate in the process of producing a liquid crystal alignment film, it is generally industrially performed by flexographic printing.
  • N-methyl-2-pyrrolidone and ⁇ -butyrolactone which are solvents with excellent resin solubility (hereinafter also referred to as good solvents)
  • the solvent of the coating solution is used to improve the uniformity of the coating film.
  • Butyl cellosolve which is a solvent having low solubility (hereinafter also referred to as a poor solvent), is mixed.
  • liquid crystal display elements have higher performance, larger area, and power saving of display devices.
  • they can be used in various environments, and the characteristics required for liquid crystal alignment films are severe. It has become a thing.
  • problems such as occurrence of printing failure due to deposition and separation due to a long tact time, and burn-in due to accumulated charge (RDC) are problems. It is difficult to solve both of these simultaneously.
  • polyimide In addition to its liquid crystal alignment film, polyimide is widely used as a protective material and insulating material in the electrical and electronic fields because of its high mechanical strength, heat resistance, and solvent resistance.
  • the diamine component as a raw material for polyimide is also improved, but the desired diamine component cannot be freely used. It is desired that these desired characteristics can be easily improved.
  • JP-A-2-282726 Japanese Patent Laid-Open No. 3-179323 JP-A-4-281427 JP-A-9-278724 International Publication No. 2004/52962 Pamphlet JP 2004-67589 A JP-A-2-37324
  • An object of the present invention is to solve the above-described problems of the prior art, and a polyimide film-forming coating liquid and a liquid crystal aligning agent that can easily obtain a polyimide film having various characteristics improved relatively freely.
  • An object of the present invention is to provide a polyimide film and a liquid crystal alignment film formed using these, and a liquid crystal display element.
  • the polyimide film-forming coating solution of the present invention that solves the above problems is a polyimide precursor obtained by polymerizing at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof and a diamine component, and At least one polymer selected from polyimides obtained by imidizing the polyimide precursor, and a bifunctional compound represented by the following formula [A] in which a Meldrum's acid structure is introduced into each of two amino groups of the diamine compound; It is characterized by containing.
  • Y represents a divalent organic group derived from the diamine compound
  • R 1 and R 2 are each —H, or a benzene ring, cyclohexane ring, hetero ring, fluorine, ether bond, ester bond, amide bond
  • the liquid crystal aligning agent of the present invention is characterized by comprising the above polyimide film forming coating solution.
  • the polyimide film of the present invention is obtained by applying the polyimide film-forming coating solution onto a substrate and baking it.
  • the polyimide film of the present invention is a polyimide precursor obtained by polymerizing at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof and a diamine component, and imidizes the polyimide precursor.
  • At least one polymer selected from the polyimides obtained from the polyimide is crosslinked with a bifunctional compound represented by the following formula [A] in which a Meldrum acid structure is introduced into each of two amino groups of the diamine compound. It is characterized by.
  • Y represents a divalent organic group derived from the diamine compound
  • R 1 and R 2 are each —H, or a benzene ring, cyclohexane ring, hetero ring, fluorine, ether bond, ester bond, amide bond
  • liquid crystal alignment film of the present invention is characterized by comprising the above polyimide film.
  • the liquid crystal display element of the present invention is characterized by comprising the liquid crystal alignment film.
  • the coating liquid for polyimide film formation such as a liquid crystal aligning agent containing the bifunctional compound represented by the said Formula [A] which introduce
  • a polyimide film such as a liquid crystal alignment film having various characteristics improved relatively freely.
  • the bifunctional compound represented by the above formula [A] is obtained by introducing a Meldrum's acid structure into each of the two amino groups of the diamine compound. Since the diamine component for obtaining can be applied, various characteristics of the obtained polyimide film can be easily improved.
  • the polyimide precursor and polyimide which the coating liquid for polyimide film formation of this invention contains are bridge
  • the coating liquid for forming a polyimide film of the present invention contains a bifunctional compound represented by the following formula [A] in which a Meldrum acid structure is introduced into each of two amino groups of a diamine compound.
  • Y represents a divalent organic group derived from the diamine compound
  • R 1 and R 2 are each —H, or a benzene ring, cyclohexane ring, hetero ring, fluorine, ether bond, ester bond, amide bond
  • Y is a divalent organic group derived from a diamine compound that is a raw material of the bifunctional compound represented by the above formula [A] as described above, and its structure is not particularly limited.
  • Specific examples of Y include divalent organic groups represented by the following formulas (Y-1) to (Y-120).
  • Y-1 to (Y-120) divalent organic groups represented by the following formulas (Y-1) to (Y-120).
  • the structure is made from a highly linear diamine compound.
  • the obtained polyimide film is a liquid crystal alignment film for increasing the pretilt angle of the liquid crystal, a long chain alkyl group (for example, an alkyl group having 10 or more carbon atoms) in the side chain, an aromatic ring, an aliphatic ring , A steroid skeleton, or a structure using a diamine compound having a combination of these as a raw material.
  • a long chain alkyl group for example, an alkyl group having 10 or more carbon atoms
  • Examples of such Y include (Y-83), (Y-84), (Y-85), (Y-86), (Y-87), (Y-88), (Y-89), (Y-90), (Y-91), (Y-92), (Y-93), (Y -94), (Y-95), (Y-96), (Y-97), (Y-98), (Y-99), (Y-100), (Y-101), (Y-102 ), (Y-103), (Y-104), (Y-105), (Y-106), (Y-107), or (Y-108). is not.
  • the bifunctional compound represented by the above formula [A] in which a Meldrum acid structure is introduced into each of two amino groups of the diamine compound is, for example, in trimethyl orthoformate, triethyl orthoformate, or a general organic compound.
  • Orthoformate in an organic solvent used in the synthesis eg, ethyl acetate, hexane, toluene, tetrahydrofuran, acetonitrile, methanol, chloroform, 1,4-dioxane, N, N-dimethylformamide, N-methyl-2-pyrrolidone
  • trimethyl or triethyl orthoformate it can be produced by reacting a diamine compound represented by the following formula [B] with Meldrum's acid.
  • a diamine component for obtaining desired properties that has been conventionally studied, that is, a diamine for producing a polyimide precursor or a polyimide by polymerization reaction with a tetracarboxylic acid component.
  • a diamine component for obtaining desired properties can be applied.
  • the reaction temperature and reaction time are not particularly limited, but may be reacted, for example, at 60 to 120 ° C. for about 30 minutes to 2 hours.
  • the bifunctional compound represented by the above formula [A] may be one kind or a combination of two or more kinds.
  • the coating liquid for forming a polyimide film of the present invention includes a polyimide precursor obtained by polymerizing at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof and a diamine component, and the polyimide precursor. It contains at least one polymer selected from polyimides obtained by imidizing the body.
  • this polyimide precursor or polyimide may be one kind, or two or more kinds may be used in combination.
  • the polyimide precursor refers to polyamic acid and polyamic acid ester.
  • the polyimide precursor contained in the coating liquid for forming a polyimide film of the present invention is obtained by polymerizing at least one tetracarboxylic acid component selected from tetracarboxylic acid and its derivatives and a diamine component as described above. Is.
  • diamine component examples include diamine compounds represented by the above formula [B].
  • diamine component currently used when making a polyimide precursor react by making a diamine component and a tetracarboxylic-acid component react can be used.
  • the diamine component that is the raw material of the polyimide precursor may be the same compound as the diamine compound that is a raw material of the bifunctional compound represented by the above formula [A]. It is good also considering a diamine compound which is a raw material of the bifunctional compound represented by the said formula [A] as a different compound.
  • tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof
  • a tetracarboxylic acid component that has been used in the past to obtain a polyimide precursor by reacting a diamine component and a tetracarboxylic acid component is used.
  • the tetracarboxylic acid derivative include tetracarboxylic acid dihalide, tetracarboxylic dianhydride represented by the following formula [C], tetracarboxylic acid diester dichloride, and tetracarboxylic acid diester.
  • a polyamic acid can be obtained by reacting tetracarboxylic acid or a derivative thereof such as tetracarboxylic acid dihalide or tetracarboxylic dianhydride with a diamine component. It is also possible to obtain a polyamic acid ester by reacting a tetracarboxylic acid diester dichloride with a diamine component, or reacting a tetracarboxylic acid diester with a diamine component in the presence of a suitable condensing agent or base. it can.
  • X in the above formula [C] include tetravalent organic groups represented by the following formulas (X-1) to (X-46). From the viewpoint of availability of compounds, X represents (X-1), (X-2), (X-3), (X-4), (X-5), (X-6), (X- 8), (X-16), (X-17), (X-19), (X-21), (X-25), (X-26), (X-27), (X-28) , (X-32) and (X-46) are preferable.
  • a tetracarboxylic dianhydride having an aliphatic and an aliphatic ring structure it is preferable to use a tetracarboxylic dianhydride having an aliphatic and an aliphatic ring structure, and as X, (X-1), (X-2) And (X-25) are more preferred, and (X-1) is more preferred from the viewpoint of reactivity with the diamine component.
  • tetracarboxylic acid diester examples include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,3- Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4 -Cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1-cyclohexyl Acid dialkyl ester, 3,4-dicarboxy-1,2, , 4-Tetrahydro-1-naphthalene succinic acid dialkyl este
  • each of the diamine component and the tetracarboxylic acid component may be one kind, or two or more kinds may be used in combination.
  • a method for synthesizing a polyimide precursor by polymerizing a tetracarboxylic acid component and a diamine component is not particularly limited, and a known synthesis method can be used.
  • the reaction of the diamine component and tetracarboxylic dianhydride includes a method of reacting the diamine component and tetracarboxylic dianhydride in an organic solvent.
  • the organic solvent used in that case will not be specifically limited if the produced
  • the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of tetracarboxylic dianhydride is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyamic acid ester can be obtained by reacting the tetracarboxylic acid diester dichloride with the diamine component as described above, or reacting the tetracarboxylic acid diester with the diamine component in the presence of an appropriate condensing agent or base. it can. Alternatively, it can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxyl group of the polyamic acid using a polymer reaction.
  • tetracarboxylic acid diester dichloride and a diamine component in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1
  • a polyamic acid ester By reacting for 4 to 4 hours, a polyamic acid ester can be synthesized.
  • pyridine triethylamine, 4-dimethylaminopyridine can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0.1 to 1.0 times the molar amount of the diamine or tetracarboxylic acid diester to be reacted.
  • the solvent used in the above reaction can be the same solvent as that used in the synthesis of the polyamic acid shown above.
  • N-methyl-2-pyrrolidone, ⁇ -Butyrolactone is preferred, and these may be used alone or in combination of two or more.
  • the concentration at the time of synthesis is such that in the reaction solution of a tetracarboxylic acid derivative such as tetracarboxylic acid diester dichloride or tetracarboxylic acid diester and a diamine component, from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the total concentration is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • the polyimide contained in the coating solution for forming a polyimide film of the present invention can be obtained by dehydrating and ring-closing the polyimide precursor.
  • the dehydration cyclization rate (imidization rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature when the polyimide precursor is thermally imidized in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has a basicity appropriate for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • the polyimide precursor or polyimide contained in the polyimide film forming coating liquid of the present invention is GPC (Gel Permeation Chromatography) in consideration of the strength of the resulting polyimide film, the workability when forming the polyimide film, and the uniformity of the polyimide film.
  • the weight average molecular weight measured by the method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the coating liquid for polyimide film formation of this invention may contain polymers other than the said polyimide precursor and a polyimide as a polymer component.
  • polymers other than the said polyimide precursor and a polyimide include acrylic polymer, methacrylic polymer, polystyrene, polysiloxane, and polyamide.
  • polyimide precursor obtained by polymerization reaction of at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof and a diamine component, and a polyimide obtained by imidizing this polyimide precursor
  • a polyimide precursor obtained by polymerization reaction of at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof and a diamine component
  • a polyimide obtained by imidizing this polyimide precursor
  • a polyimide film-forming coating solution for forming the alignment film and the like further contains a bifunctional compound represented by the above formula [A] to obtain a polyimide film having various properties improved relatively freely. It becomes a coating liquid for forming a polyimide film.
  • the bifunctional compound represented by the above formula [A] has two Meldrum's acid structures, that is, two structures derived from Meldrum's acid at both ends, and this Meldrum's acid structure is heated (for example, 180 to 250 ° C. or more) is accompanied by the elimination of carbon dioxide and acetone to form ketene (that is, a carbonyl compound having a divalent group> C ⁇ C ⁇ O), and dimerization with ketene alone.
  • the bifunctional compound represented by the above formula [A] does not react with the polyimide precursor or polyimide in the state of the polyimide film-forming coating solution that is not heated to a high temperature (for example, 100 ° C. or less), but is heated.
  • the polyimide film obtained by applying the polyimide film-forming coating solution of the present invention to a substrate and firing is a structure of Y of the bifunctional compound represented by the above formula [A], that is, the formula [A].
  • the structure of Y derived from the diamine compound, which is the raw material of the bifunctional compound represented, is introduced into the polyimide.
  • polyimide films have been widely used as liquid crystal alignment films, protective materials and insulating materials in the electric and electronic fields because of their high mechanical strength, heat resistance, and solvent resistance.
  • Various diamine components have been used as part of the raw materials in order to improve the properties of the above, but there are cases where the desired diamine component cannot be used freely.
  • various diamine components are used as a part of raw materials in order to improve desired characteristics such as improvement of liquid crystal orientation and pretilt angle.
  • the polymerization reactivity between the diamine component and the tetracarboxylic acid component is deteriorated, so the type, combination and amount of the diamine component for obtaining desired properties are limited. May end up. Moreover, it is necessary to examine the polymerization reaction conditions between the diamine component and the tetracarboxylic acid component for each type and combination of diamine components used for obtaining desired characteristics.
  • the polyimide precursor or polyimide and the bifunctional compound represented by the above formula [A], which is a compound for obtaining desired properties are separated as separate compounds.
  • the bifunctional compound represented by the above formula [A], which is a compound for obtaining desired properties, is contained in the polyimide precursor or polyimide at the stage of heating (baking) the polyimide film forming coating solution. It is to be introduced.
  • the polyimide precursor and polyimide contained in the polyimide film forming coating solution do not need to use a diamine component for obtaining desired characteristics as raw materials, the polymerization reactivity between the diamine component and the tetracarboxylic acid component is deteriorated.
  • the coating liquid for forming a polyimide film of the present invention without considering the polymerization reactivity of the diamine component and the tetracarboxylic acid component, the necessity of examining the polymerization reaction conditions, and the solubility of the polyimide precursor and polyimide, Since a diamine compound for obtaining desired characteristics can be used, various characteristics of the obtained polyimide film can be improved relatively freely as compared with the conventional coating liquid for forming a polyimide film.
  • the bifunctional compound represented by the above formula [A] is obtained by introducing a Meldrum's acid structure into each of the two amino groups of the diamine compound.
  • a diamine component for obtaining a desired characteristic which is a diamine component for producing a polyimide precursor or polyimide by polymerization reaction with a tetracarboxylic acid component, can be applied. Therefore, various characteristics of the obtained polyimide film can be easily improved.
  • the polyimide precursor and polyimide which the coating liquid for polyimide film formation of this invention contains are bridge
  • the manufacturing method of the coating liquid for polyimide film formation of this invention is not specifically limited,
  • the compound may be dissolved in a solvent.
  • the solvent of the coating liquid for forming a polyimide film of the present invention is a polyimide precursor obtained by polymerizing at least one tetracarboxylic acid component selected from the tetracarboxylic acid and derivatives thereof and a diamine component, and the polyimide.
  • a diamine compound For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone , N-vinylpyrrolidone, dimethyl sulfoxide, tetramethylurea Pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclo
  • the coating solution for forming a polyimide film of the present invention preferably has an organic solvent content of 70 to 97% by mass from the viewpoint of forming a uniform polyimide film by coating. This content can be appropriately changed depending on the film thickness of a polyimide film such as a target liquid crystal alignment film.
  • the polyimide precursor and polyimide content in the polyimide film forming coating solution of the present invention is preferably 3 to 30% by mass. This content can also be appropriately changed depending on the film thickness of a polyimide film such as a target liquid crystal alignment film.
  • the content of the bifunctional compound represented by the above formula [A] in the polyimide film forming coating liquid of the present invention is 1 to 200 parts by mass with respect to 100 parts by mass of the total amount of the polyimide precursor and polyimide.
  • the amount is 1 to 100 parts by weight, and particularly preferably 1 to 50 parts by weight so that the crosslinking reaction proceeds and the desired film curability is exhibited and the orientation of the liquid crystal is not deteriorated. .
  • the coating liquid for forming a polyimide film of the present invention is an organic material that improves the uniformity of the film thickness and surface smoothness of the polyimide film when the coating liquid for forming a polyimide film of the present invention is applied unless the effects of the present invention are impaired.
  • a solvent also referred to as a poor solvent
  • a compound that improves the adhesion between the polyimide film and the substrate can also be used.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants, and the like.
  • fluorine-based surfactants silicone-based surfactants, nonionic surfactants, and the like.
  • EFTOP EF301 , EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 (manufactured by Sumitomo 3M)
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass) and the like.
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part per 100 parts by mass of the total amount of polymer components contained in the polyimide film forming coating solution. Part by mass.
  • the compound that improves the adhesion between the polyimide film and the substrate include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, N-
  • the amount is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the total amount of the polymer components contained in the polyimide film forming coating solution of the present invention.
  • the amount is preferably 1 to 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the polyimide film-forming coating solution of the present invention contains a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the polyimide film as long as the effects of the present invention are not impaired. It may be added.
  • the coating liquid for forming a polyimide film of the present invention is selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group or an oxetane group, and further a hydroxyl group or an alkoxyl group, unless the effects of the present invention are impaired.
  • a crosslinkable compound having at least one kind of substituent and a crosslinkable compound having a polymerizable unsaturated bond may be mixed.
  • Such a coating liquid for forming a polyimide film of the present invention can be used as a liquid crystal aligning agent for forming a liquid crystal aligning film.
  • the liquid crystal alignment film is a film for aligning liquid crystals in a predetermined direction.
  • a polyimide film can be formed by applying the polyimide film-forming coating solution of the present invention to a substrate and baking it.
  • the polyimide film forming coating liquid of the present invention is used as a liquid crystal aligning agent, it is applied onto a substrate and baked, and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the alignment for vertical alignment applications.
  • a liquid crystal alignment film can be formed without treatment.
  • the substrate is not particularly limited as long as it can be applied with a polyimide film forming coating solution.
  • a liquid crystal alignment film is formed, it is preferably highly transparent.
  • Specific examples include a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate.
  • a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate. In this case, a material that reflects light, such as aluminum, can be used.
  • a high-performance element such as a TFT-type element, an element in which an element such as a transistor is formed between an electrode for driving liquid crystal and a substrate is used.
  • the method for applying the polyimide film-forming coating solution to the substrate is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • a polyimide film forming coating solution is applied onto a substrate, and if necessary, part or all of the solvent is dried and then baked.
  • the firing may be performed at a temperature at which the Meldrum's acid structure of the bifunctional compound represented by the above formula [A] becomes ketene or the like and can react with the polyimide precursor or the carboxyl group of the polyimide. For example, it is carried out at 180 to 250 ° C.
  • the polyimide film thus obtained has a structure in which polyimide is cross-linked by the bifunctional compound represented by the above formula [A], so that it becomes a hard film and has excellent abrasion resistance.
  • the thickness of the polyimide film formed after baking is a liquid crystal alignment film, if it is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be reduced.
  • the thickness is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film by the above-described method and then preparing a liquid crystal cell by a known method.
  • the substrate comprises two substrates arranged to face each other, a liquid crystal layer provided between the substrates, and a polyimide film forming coating solution of the present invention provided between the substrate and the liquid crystal layer.
  • It is a liquid crystal display element provided with the liquid crystal cell which has the said liquid crystal aligning film formed of the liquid crystal aligning agent.
  • various devices such as a twisted nematic (TN) method, a vertical alignment (VA) method, a horizontal alignment (IPS) method, and the like are available. Can be mentioned.
  • the substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
  • a substrate on which a transparent electrode for driving liquid crystal is formed As a specific example, the thing similar to the board
  • liquid crystal alignment film is formed by applying the liquid crystal aligning agent of the present invention on this substrate and baking it, and the details are as described above.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and conventional liquid crystal materials such as MLC-2003, MLC-6608, MLC-6609 manufactured by Merck & Co., Inc. can be used.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers such as beads are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside.
  • the other substrate is bonded and sealed by injecting liquid crystal under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed and then the substrate is bonded and sealed.
  • Etc. can be exemplified.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the liquid crystal display device manufactured as described above is prepared using a bifunctional compound represented by the above formula [A] capable of introducing desired characteristics, and a liquid crystal aligning agent having at least one of a polyimide precursor and polyimide. Therefore, various characteristics can be improved.
  • the molecular weight of the polymer was measured by a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Shodex Co., Ltd., and a column manufactured by Shodex (KD-803, KD-805). was measured as follows.
  • the imidization ratio of polyimide was measured as follows. About 20 mg of polyimide powder was placed in an NMR sample tube, about 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture) was added, and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz by means of NMR measurement.
  • the imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and a peak integrated value of this proton and a proton peak integrated value derived from the NH group of the amic acid that appears near 10.0 ppm.
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • NMP (98 g) and BCS (90 g) are added to the polyimide powder (SPI-1) (12.0 g) obtained above and dissolved by stirring at 80 ° C. for 40 hours to obtain a soluble polyimide (SPI-1) solution. Produced.
  • Examples 35 to 45 To the polyamic acid (PAA-2) solution (10.0 g) prepared above, the compounds described in the following Table 3 prepared in the above synthesis example as the compound represented by the above formula [A] were respectively added to the polyamic acid ( PAA-2) Added to a solid content of the solution (ie, polyamic acid (PAA-2)) to 10 mol%, and stirred at room temperature until a uniform solution was obtained, to form polyimide films of Examples 35 to 45 A coating solution was prepared.
  • PAA-2 polyamic acid
  • Examples 60 to 62 To the polyamic acid (PAA-2) solution (70.0 g) prepared above, the compounds described in Table 5 below, which were prepared in the above synthesis examples as compounds represented by the above formula [A], were added to the polyamic acid ( PAA-2) The solid content of the solution (ie, polyamic acid (PAA-2)) was added so as to have the ratio described in Table 5 below, and stirred at room temperature until a uniform solution was obtained. 62 coating solution for forming a polyimide film was prepared.
  • PAA-2 polyamic acid
  • Example 63 to 76> In the soluble polyimide (SPI-1) solution (10.0 g) prepared above, the compound described in the following Table 6 prepared in the above synthesis example as the compound represented by the above formula [A] was dissolved in each soluble polyimide ( Example 1 was added to the solid content of the SPI-1) solution (that is, soluble polyimide (SPI-1)) at a ratio described in Table 6 below and stirred at room temperature until a uniform solution was obtained. -76 polyimide film forming coating solutions were prepared.
  • Examples 77 to 86 and Comparative Example 1> [Confirmation test of cross-linking effect (stripping test)]
  • the polyimide film-forming coating solutions of Examples 63 to 72 were spin coated (2500 rpm / 30 seconds) on a silicon wafer and baked on a 230 ° C. hot plate for 30 minutes to form a coating film [a1].
  • the film thickness of the obtained coating film [a1] was measured using Surfcorder ET4000M manufactured by Kosaka Laboratory Ltd.
  • the silicon wafer on which the coating film [a1] is formed is set again on the spin coater, NMP is dropped until the entire surface of the silicon wafer is covered, and left for 60 seconds, and then NMP is spin-dried (1500 rpm / 30).
  • the solvent resistance of the coating film can be improved by using the polyimide film forming coating liquid (liquid crystal alignment treatment agent) to which the compound represented by the formula [A] is added. . Therefore, it is estimated that the soluble polyimide was cross-linked by the compound represented by the above formula [A]. Furthermore, it was confirmed that the solubility of the coating film can be controlled relatively freely by appropriately selecting the bifunctional compound represented by the formula [A] to be added.
  • liquid crystal alignment film and liquid crystal cell Using the polyimide film forming coating solution (liquid crystal aligning agent) prepared in each of the above examples, a liquid crystal cell was prepared as follows.
  • a polyimide film-forming coating solution (liquid crystal aligning agent) is spin-coated on a glass substrate or a glass substrate with an ITO transparent electrode, dried on a hot plate at 80 ° C. for 70 seconds, and then subjected to a predetermined baking condition with a film thickness of 100 nm. A coating film was formed.
  • linearly polarized UV light (UV wavelength: 313 nm, irradiation intensity: 8.0 mW / cm ⁇ 2 ) was changed between 0 mJ and 1000 mJ on the coating surface, and the normal line of the plate was changed. This was performed by irradiating at an angle of 40 °.
  • the linearly polarized light UV was prepared by passing a 313 nm band pass filter through the ultraviolet light of a high pressure mercury lamp and then passing it through a 313 nm polarizing plate.
  • the substrates are laminated so that the liquid crystal alignment film faces and the rubbing directions are parallel to each other (anti-parallel liquid crystal cell, Examples 87 to 116), or are laminated so as to be orthogonal (twisted nematic liquid crystal cell, implementation) Examples 155 to 179, Examples 296 to 315, and Examples 316 to 321), or those that have been irradiated with UV light are bonded so that the direction of polarized light is parallel (antiparallel liquid crystal cell for vertical alignment mode, implementation) Examples 180-182, 183-294), the sealing agent was cured to produce empty cells.
  • liquid crystal MLC-2003 (manufactured by Merck) is injected in the antiparallel liquid crystal cell
  • liquid crystal MLC-2003 manufactured by Merck
  • a chiral agent is injected in the twisted nematic liquid crystal cell
  • liquid crystal MLC-6608 manufactured by Merck & Co., Inc.
  • liquid crystal cell evaluation The method of measuring the physical properties and evaluating the characteristics of each liquid crystal cell produced is as follows. In addition, the liquid crystal aligning film produced in each measurement and evaluation, the board
  • Examples 87 to 116 and Comparative Examples 2 to 4 ⁇ Liquid crystal orientation evaluation>
  • the liquid crystal cell created using the polyimide film-forming coating solution prepared in each Example shown in Table 8 was sandwiched between polarizing plates, and the liquid crystal cell was rotated with the backlight irradiated from the rear, and the change in brightness or darkness It was visually observed whether the liquid crystal was aligned with or without flow alignment. At that time, the following criteria were used for evaluation.
  • the liquid crystal cell prepared for the evaluation of the liquid crystal alignment was baked for 30 minutes on a hot plate heated to 230 ° C. using a glass substrate as the substrate and the coating condition of the coating liquid for forming the polyimide film was rubbed.
  • the liquid crystal cell created for measuring the pretilt angle of the twisted nematic liquid crystal cell is a glass plate with an ITO transparent electrode as the substrate, and on a hot plate where the baking condition of the coating film of the polyimide film forming coating liquid is heated to 230 ° C.
  • the liquid crystal cell created for the pretilt angle measurement of the antiparallel liquid crystal cell uses a glass substrate with an ITO transparent electrode as a substrate, and the hot air circulation type in which the baking condition of the coating film of the polyimide film forming coating liquid is heated to 200 ° C.
  • the polyimide film forming coating solution to which the compound represented by the formula [A] was added was used. It was confirmed that the pretilt angle can be remarkably increased. Therefore, by adding the compound represented by the above formula [A], the base polymer, that is, the polyimide precursor contained in the coating liquid for forming the polyimide film or the side chain component that makes the liquid crystal stand in the polyimide is not introduced. However, it was confirmed that the liquid crystal can be aligned vertically.
  • the liquid crystal was orientated by the presence or absence of change in brightness and the presence or absence of fluid orientation, it was observed visually. Thereafter, an AC voltage of 3 V was applied to the liquid crystal cell, and it was visually observed whether the liquid crystal was aligned. At that time, the following criteria were used for evaluation.
  • the liquid crystal cell created for the evaluation of liquid crystal orientation was obtained by baking for 30 minutes in a hot-air circulating oven heated to 200 ° C. using a glass substrate as the substrate and the coating condition of the coating liquid for forming the polyimide film was 200 ° C. It produced after performing the above-mentioned photo-alignment process to the obtained glass substrate with a coating film.
  • Evaluation criteria Good The orientation of the liquid crystal can be confirmed and there is no fluid orientation.
  • Poor The liquid crystal is oriented, but many fluid orientations are observed.
  • liquid crystal cell prepared using the polyimide film-forming coating solution prepared in each Example shown in Tables 12-1 to 12-4 was heated at 120 ° C. for 1 hour, and then the pretilt angle was measured.
  • the pretilt angle was measured by “Axo Scan” from Axo Metrix using the Mueller matrix method.
  • a coating liquid for forming a polyimide film liquid crystal aligning agent
  • a compound represented by the above formula [A] having a photoreactive side chain is added, it is good even when a photo-alignment treatment is performed. It was confirmed that vertical alignment was obtained. It was also confirmed that the polyimide film-forming coating liquid (liquid crystal alignment treatment agent) of the present invention has the ability to align liquid crystals in a slightly tilted state by irradiating polarized ultraviolet rays. It was also confirmed that the pretilt angle can be finely adjusted by controlling the addition amount and the irradiation amount.
  • the coating liquid for forming a polyimide film (liquid crystal alignment treatment agent) of the present invention can be used for a liquid crystal alignment film for a vertical alignment type liquid crystal display element, and also used for a photo alignment method. It can be said that it is also useful.
  • the liquid crystal cell created for the measurement of the voltage holding ratio (VHR) uses a glass substrate with an ITO transparent electrode as a substrate, and is on a hot plate heated to 230 ° C. under a baking condition of a coating liquid for forming a polyimide film. Baked for 30 minutes, and the rubbing conditions were set at a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm.
  • a compound not added with the compound represented by the above formula [A] (Comparative Example 9) was prepared, and the effects were compared. The results are shown in Table 13.
  • the liquid crystal cell created for the estimation measurement of the accumulated charge (RDC) is on a hot plate where a glass substrate with an ITO transparent electrode is used as a substrate and the baking condition of the coating liquid for forming the polyimide film is heated to 230 ° C. Baked for 30 minutes, and the rubbing conditions were set at a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm.
  • a compound not added with the compound represented by the above formula [A] (Comparative Example 10) was prepared, and the effects were compared. The results are shown in Table 14.
  • a liquid crystal cell having a small RDC can be obtained by using a coating solution for forming a polyimide film to which a compound represented by the above formula [A] is added.
  • the ion density of an initial state (23 degreeC) is measured, and it hold
  • the ion density measurement was performed.
  • the ion density measurement was measured when a triangular wave having a voltage of ⁇ 10 V and a frequency of 0.01 Hz was applied to the liquid crystal cell.
  • the measurement temperature was 80 ° C.
  • a 6245 type liquid crystal property evaluation apparatus manufactured by Toyo Technica Co., Ltd. was used for all measurements. The results are shown in Table 15.
  • the twisted nematic liquid crystal cell is the same as that of the above twisted nematic liquid crystal cell (Examples 155 to 179) except that the firing condition of the coating film of the polyimide film forming coating solution was baked for 30 minutes on a hot plate heated to 200 ° C. The same operation was performed. In addition, the same operation was performed for those to which no modifier compound was added, and the effects were compared.
  • the ionic impurities in the liquid crystal cell can be significantly reduced by appropriately selecting the type and amount of the modifying compound as compared with the case where it is not added.
  • Examples 330 to 342 In the polyamic acid (PAA-1) solution (10.0 g) prepared above, the compounds described in the following Table 16 prepared in the above synthesis example as the modifying compound were respectively added to the solid polyamic acid (PAA-1) solution. In order to achieve the ratio shown in Table 16 below with respect to the minute (that is, polyamic acid (PAA-1)), the mixture was stirred at room temperature until a uniform solution was obtained, and the polyimide film-forming coatings of Examples 330 to 342 were applied. A liquid was prepared.
  • PAA-1 polyamic acid
  • Examples 343 to 344 In the polyamic acid (PAA-3) solution (40.0 g) prepared above, the compounds described in the following Table 17 prepared in the above synthesis example as the modifying compound were respectively added to the solid polyamic acid (PAA-3) solution. Addition to the mass (that is, polyamic acid (PAA-3)) so as to be the mass% described in Table 17, and stirring at room temperature until a uniform solution is obtained, the coating for forming a polyimide film of Examples 343 to 344 A liquid was prepared.
  • PAA-3 polyamic acid
  • a coating solution for forming a polyimide film (liquid crystal aligning agent) is spin-coated on a glass substrate, dried on a hot plate at 80 ° C. for 70 seconds, and then baked for 30 minutes in a hot air circulating oven heated to 200 ° C. A coating film having a thickness of 100 nm was formed.
  • linearly polarized UV light (UV wavelength: 313 nm, irradiation intensity: 8.0 mW / cm ⁇ 2 ) was changed between the exposure amount of 0 mJ and 1000 mJ on the surface of the coating film, and irradiated at a tilt of 40 ° with respect to the normal line of the plate.
  • the linearly polarized light UV was prepared by passing a 313 nm band pass filter through the ultraviolet light of a high pressure mercury lamp and then passing it through a 313 nm polarizing plate.
  • the prepared liquid crystal cell is sandwiched between polarizing plates, and the liquid crystal cell is rotated in a state where the backlight is irradiated from the rear, and it is visually observed whether the liquid crystal is aligned with the presence or absence of change in light and darkness or flow alignment. As a result, good orientation was exhibited. Thereafter, an AC voltage of 3 V was applied to the liquid crystal cell, and it was visually observed whether the liquid crystal was aligned. At that time, the following criteria were used for evaluation. The results are shown in Tables 18-1 to 18-4. Evaluation criteria Good: The orientation of the liquid crystal can be confirmed and there is no fluid orientation. Poor: The liquid crystal is oriented, but many fluid orientations are observed.
  • the prepared liquid crystal cell was heated at 120 ° C. for 1 hour, and then the pretilt angle was measured.
  • the pretilt angle was measured by “Axo Scan” from Axo Metrix using the Mueller matrix method. The results are shown in Tables 18-1 to 18-4.
  • the coating liquid for forming a polyimide film (liquid crystal alignment treatment agent) of the present invention can be used for a liquid crystal alignment film for a vertical alignment type liquid crystal display element, and also used for a photo alignment method. It can be said that it is also useful.
  • Examples 448 to 471 In the polyamic acid (PAA-1) solution (10.0 g) prepared above, the compounds described in the following Table 19 prepared in the above synthesis example as the modifying compound were respectively added to the solid polyamic acid (PAA-1) solution. In order to achieve the ratio described in Table 19 below with respect to the fraction (that is, polyamic acid (PAA-1)), the mixture was stirred at room temperature until a uniform solution was obtained, and the polyimide film-forming coatings of Examples 448 to 471 were applied. A liquid was prepared.
  • a coating solution for forming a polyimide film (liquid crystal aligning agent) is spin-coated on a glass substrate, dried on a hot plate at 80 ° C. for 70 seconds, and then baked for 30 minutes in a hot air circulating oven heated to 200 ° C. A coating film having a thickness of 100 nm was formed.
  • linearly polarized UV light (UV wavelength: 313 nm, irradiation intensity: 8.0 mW / cm ⁇ 2 ) was changed from 0 mJ to 1000 mJ on the coating surface, and the substrate was irradiated from directly above.
  • the linearly polarized light UV was prepared by passing a 313 nm band pass filter through the ultraviolet light of a high pressure mercury lamp and then passing it through a 313 nm polarizing plate.
  • the liquid crystal cell that has not been irradiated with light does not exhibit orientation at all, but in the liquid crystal cell that has been irradiated with light, depending on the amount of the modifying compound added and the amount of light irradiated, It was confirmed that the liquid crystal was aligned.
  • the horizontal alignment cell can be easily produced by appropriately selecting the type and amount of the additive.

Abstract

 テトラカルボン酸成分とジアミン成分とを重合反応させ得られるポリイミド前駆体、及びこれをイミド化したポリイミドから選択される少なくとも一方のポリマーと、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入した下記の式[A]で表される二官能化合物とを含有するポリイミド膜形成用塗布液、該塗布液からなる液晶配向剤、該塗布液を基板に塗布し焼成して得られるポリイミド膜、前記ポリマーが下記の式[A]で表される二官能化合物で架橋されたポリイミドからなるポリイミド膜、該ポリイミド膜からなる液晶配向膜、及び該液晶配向膜を具備する液晶表示素子。(式中、Y、R及びRは、請求項1又は4で規定される基)

Description

ポリイミド膜形成用塗布液、液晶配向剤、ポリイミド膜、液晶配向膜及び液晶表示素子
 本発明は、新規のポリイミド膜形成用塗布液及び液晶配向剤、これらを用いて形成したポリイミド膜及び液晶配向膜、並びに液晶表示素子に関する。
 液晶表示素子において、液晶配向膜は液晶を一定の方向に配向させるという役割を担っている。現在、工業的に利用されている主な液晶配向膜は、ポリイミド前駆体であるポリアミド酸(ポリアミック酸ともいわれる。)、ポリアミック酸エステルや、ポリイミドの溶液からなるポリイミド系の液晶配向剤を、基板に塗布し成膜することで作製される。また、基板面に対して液晶を平行配向又は傾斜配向させる場合は、成膜した後、更にラビングによる表面延伸処理が行われている。また、ラビング処理に代わるものとして偏光紫外線照射等による異方性光化学反応を利用する方法も提案されており、近年では工業化に向けた検討が行われている。
 このような液晶表示素子の表示特性の向上のために、ポリアミック酸、ポリアミック酸エステルやポリイミドの構造の変更、特性の異なるポリアミック酸、ポリアミック酸エステルやポリイミドのブレンドや、添加剤を加える等の手法により、液晶配向性や電気特性等の改善や、プレチルト角のコントロール等が行われている。
 ポリイミドの構造によってプレチルト角を制御する技術の中でも、側鎖を有するジアミンをポリイミド原料の一部として用いる方法は、このジアミンの使用割合に応じてプレチルト角が制御できるので、目的のプレチルト角にせしめることが比較的容易であり、プレチルト角を大きくする手段として有用である。液晶のプレチルト角を大きくするジアミンの側鎖構造としては、長鎖のアルキル基又はフルオロアルキル基(例えば特許文献1参照)、環状基又は環状基とアルキル基の組み合わせ(例えば特許文献2参照)、ステロイド骨格(例えば特許文献3参照)などが知られている。
 また、このように液晶のプレチルト角を大きくする為のジアミンは、プレチルト角の安定性やプロセス依存性を改善するための構造検討もされており、ここで用いられる側鎖構造としては、フェニル基やシクロヘキシル基などの環構造を含むものが提案されている(例えば特許文献4,5参照)。更には、このような環構造を3個から4個側鎖に有するジアミンも提案されている(例えば特許文献6参照)。
 近年、液晶表示素子が、大画面の液晶テレビや高精細なモバイル用途(デジタルカメラや携帯電話の表示部分)に広く実用化されるのに伴い、従来に比べて使用される基板の大型化、基板段差の凹凸が大きくなってきている。そのような状況においても、表示特性の点から大型基板や段差に対して、均一に液晶配向膜が塗布されることが求められてきた。
 液晶配向膜の作製の工程において、ポリアミック酸の溶液や溶媒可溶性ポリイミドの溶液を基板に塗布する場合、工業的にはフレキソ印刷などで行うことが一般的である。塗布液の溶媒は、樹脂の溶解性に優れる溶媒(以下、良溶媒ともいう)であるN-メチル-2-ピロリドンやγ-ブチロラクトンなどに加えて、塗膜均一性を高めるために、樹脂の溶解性が低い溶媒(以下、貧溶媒ともいう)であるブチルセロソルブなどが混合されている。しかしながら、貧溶媒は、ポリアミック酸やポリイミドを溶解させる能力に劣る為、多量に混合すると析出が発生する(例えば特許文献7参照)。特に、溶媒可溶性ポリイミドの溶液では、この問題が顕著に表れる。また、前記したような側鎖を有するジアミンを使用して得られるポリイミドは、溶液の塗布均一性が低下する傾向にあるため、貧溶媒の混合量を多くする必要があり、このような溶媒の混合許容量もポリイミドの重要な特性となる。
 また、液晶表示素子の高性能化、大面積化、表示デバイスの省電力化などが進み、それに加え、様々な環境下での使用がされるようになり、液晶配向膜に求められる特性も厳しいものになってきた。特に、液晶配向剤を基板に塗布した際にタクトタイムが長くなることによる析出や分離による印刷不良の発生や、蓄積電荷(RDC)による焼き付きなどの問題が課題となっており、従来の技術ではこの両者を同時に解決することは難しい。
 このように、ポリイミド系液晶配向膜においては、所望の特性を改善するために種々のジアミン成分を原料の一部として用いることが行われるが、他の特性との関係においては所望のジアミン成分を自由に用いることができない場合もある。
 さらに、ポリイミドはその特徴である高い機械的強度、耐熱性、耐溶剤性のために、液晶配向膜以外に、電気・電子分野における保護材料、絶縁材料として広く用いられており、このような材料として用いられる場合にも、同様にポリイミドの原料となるジアミン成分を改良することが行われるが、所望のジアミン成分を自由に用いることができない点も同様である。そして、これら所望の特性の改善は、容易に行なえることが望まれている。
特開平2-282726号公報 特開平3-179323号公報 特開平4-281427号公報 特開平9-278724号公報 国際公開第2004/52962号パンフレット 特開2004-67589号公報 特開平2-37324号公報
 本発明の課題は、上述の従来技術の問題点を解決することにあり、容易に種々の特性を比較的自由に改善したポリイミド膜を得ることができるポリイミド膜形成用塗布液及び液晶配向剤、これらを用いて形成したポリイミド膜及び液晶配向膜、並びに液晶表示素子を提供することにある。
 上記課題を解決する本発明のポリイミド膜形成用塗布液は、テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一方のポリマーと、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入した下記式[A]で表される二官能化合物とを含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000003
(式中、Yは前記ジアミン化合物由来の2価の有機基を表し、R及びRはそれぞれ-H、または、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基であり、Yの一部と連結し環を形成していてもよく、また、R及びRは同一でも異なっていてもよい。)
 本発明の液晶配向剤は、上記ポリイミド膜形成用塗布液からなることを特徴とする。
 また、本発明のポリイミド膜は、上記ポリイミド膜形成用塗布液を基板に塗布し、焼成して得られることを特徴とする。
 そして、本発明のポリイミド膜は、テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一方のポリマーが、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入した下記式[A]で表される二官能化合物で架橋されたポリイミドからなることを特徴とする。
Figure JPOXMLDOC01-appb-C000004
(式中、Yは前記ジアミン化合物由来の2価の有機基を表し、R及びRはそれぞれ-H、または、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基であり、Yの一部と連結し環を形成していてもよく、また、R及びRは同一でも異なっていてもよい。)
 また、本発明の液晶配向膜は、上記ポリイミド膜からなることを特徴とする。
 また、本発明の液晶表示素子は、上記液晶配向膜を具備することを特徴とする。
 本発明によれば、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入した上記式[A]で表される二官能化合物を含有する液晶配向剤等のポリイミド膜形成用塗布液とすることにより、種々の特性を比較的自由に改善した液晶配向膜等のポリイミド膜を得ることができる。そして、上記式[A]で表される二官能化合物は、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入したものであり、このジアミン化合物として、従来検討されていた所望の特性を得るためのジアミン成分を適用することができるため、得られるポリイミド膜の種々の特性を、容易に改善することができる。また、本発明のポリイミド膜形成用塗布液が含有するポリイミド前駆体やポリイミドは、加熱により上記式[A]で表される二官能化合物で架橋されるため、得られるポリイミド膜は、有機溶剤に対する耐性があり、また硬い膜となるという効果も奏する。
 以下、本発明について詳細に説明する。
 本発明のポリイミド膜形成用塗布液は、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入した下記式[A]で表される二官能化合物を含有するものである。
Figure JPOXMLDOC01-appb-C000005
(式中、Yは前記ジアミン化合物由来の2価の有機基を表し、R及びRはそれぞれ-H、または、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基であり、Yの一部と連結し環を形成していてもよく、また、R及びRは同一でも異なっていてもよい。)
 上記式[A]において、Yは上述したように、上記式[A]で表される二官能化合物の原料であるジアミン化合物由来の2価の有機基であり、その構造は特に限定されないが、Yの具体例としては、下記式(Y-1)~(Y-120)で表される2価の有機基などが挙げられる。中でも、得られるポリイミド膜を液晶配向膜として使用する場合、良好な液晶配向性を得るためには、直線性の高いジアミン化合物を原料とする構造であることが好ましく、このようなYとしては、(Y-7)、(Y-10)、(Y-11)、(Y-12)、(Y-13)、(Y-21)、(Y-22)、(Y-23)、(Y-25)、(Y-26)、(Y-27)、(Y-41)、(Y-42)、(Y-43)、(Y-44)、(Y-45)、(Y-46)、(Y-48)、(Y-61)、(Y-63)、(Y-64)、(Y-65)、(Y-66)、(Y-67)、(Y-68)、(Y-69)、(Y-70)、(Y-71)、(Y-78)、(Y-79)、(Y-80)、(Y-81)、(Y-82)や(Y-109)などが挙げられる。また、得られるポリイミド膜を、液晶のプレチルト角を高くするための液晶配向膜とする場合は、側鎖に長鎖アルキル基(例えば炭素数10以上のアルキル基)、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造を有するジアミン化合物を原料とする構造であることが好ましく、このようなYとしては、(Y-83)、(Y-84)、(Y-85)、(Y-86)、(Y-87)、(Y-88)、(Y-89)、(Y-90)、(Y-91)、(Y-92)、(Y-93)、(Y-94)、(Y-95)、(Y-96)、(Y-97)、(Y-98)、(Y-99)、(Y-100)、(Y-101)、(Y-102)、(Y-103)、(Y-104)、(Y-105)、(Y-106)、(Y-107)、又は(Y-108)などが挙げられるが、これに限定されるものではない。また、液晶表示素子の電気特性を向上させたい場合は、(Y-31)、(Y-40)、(Y-64)、(Y-65)、(Y-66)、(Y-67)、(Y-109)、(Y-110)などが挙げられる。また、液晶配向膜に光反応性を付与させたい場合は、(Y-17)、(Y-18)、(Y-111)、(Y-112)、(Y-113)、(Y-114)、(Y-115)、(Y-116)、(Y-117)、(Y-118)、(Y-119)などが挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入した上記式[A]で表される二官能化合物は、例えば、オルトギ酸トリメチル中、または、オルトギ酸トリエチル中、あるいは、一般的な有機合成で用いられる有機溶媒(例えば、酢酸エチル、ヘキサン、トルエン、テトラヒドロフラン、アセトニトリル、メタノール、クロロホルム、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン)中で、オルトギ酸トリメチルやオルトギ酸トリエチルと共に、下記式[B]で表されるジアミン化合物とメルドラム酸を反応させることにより製造することができる。下記式[B]で表されるジアミン化合物として、従来検討されていた所望の特性を得るためのジアミン成分、すなわち、テトラカルボン酸成分と重合反応させてポリイミド前駆体やポリイミドを製造するためのジアミン成分であって所望の特性を得るためのジアミン成分を適用することができる。なお、反応温度や反応時間に特に制限はないが、例えば60~120℃、30分~2時間程度反応させればよい。
Figure JPOXMLDOC01-appb-C000021
(Y、R及びRは、上記式[A]におけるY、R及びRと同じである。)
 勿論、上記式[A]で表される二官能化合物は、1種類でもよく、また、2種類以上を併用してもよい。
 また、本発明のポリイミド膜形成用塗布液は、テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一方のポリマーを含有する。勿論、このポリイミド前駆体やポリイミドは、1種類でもよく、また、2種類以上を併用してもよい。なお、ポリイミド前駆体とは、ポリアミック酸及びポリアミック酸エステルを指す。
 本発明のポリイミド膜形成用塗布液が含有するポリイミド前駆体は、上述したようにテトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるものである。
 ジアミン成分としては、例えば、上記式[B]で表されるジアミン化合物が挙げられる。また、従来ジアミン成分とテトラカルボン酸成分とを反応させてポリイミド前駆体を得る際に用いられているジアミン成分を用いることができる。なお、このポリイミド前駆体の原料であるジアミン成分を、一部または全部が上記式[A]で表される二官能化合物の原料であるジアミン化合物と同一の化合物としてもよく、また、ジアミン成分と上記式[A]で表される二官能化合物の原料であるジアミン化合物とを異なる化合物としてもよい。
 また、テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分として、従来ジアミン成分とテトラカルボン酸成分とを反応させてポリイミド前駆体を得る際に用いられているテトラカルボン酸成分を用いることができる。テトラカルボン酸誘導体としては、テトラカルボン酸ジハライド、下記式[C]で表されるテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリド、テトラカルボン酸ジエステル等が挙げられる。例えば、テトラカルボン酸ジハライド、テトラカルボン酸二無水物など、テトラカルボン酸又はその誘導体と、ジアミン成分とを反応させることで、ポリアミック酸を得ることができる。また、テトラカルボン酸ジエステルジクロリドと、ジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分とを適当な縮合剤や、塩基の存在下等にて反応させることにより、ポリアミック酸エステルを得ることができる。
Figure JPOXMLDOC01-appb-C000022
(Xは4価の有機基である。)
 上記式[C]のXの具体例としては、下記式(X-1)~(X-46)で表される4価の有機基が挙げられる。化合物の入手性の観点から、Xは、(X-1)、(X-2)、(X-3)、(X-4)、(X-5)、(X-6)、(X-8)、(X-16)、(X-17)、(X-19)、(X-21)、(X-25)、(X-26)、(X-27)、(X-28)、(X-32)や(X-46)であることが好ましい。得られるポリイミド膜の透明性を向上させたい場合は、脂肪族及び脂肪族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xとしては、(X-1)、(X-2)、及び(X-25)がより好ましく、ジアミン成分との反応性の観点から、(X-1)がさらに好ましい。
Figure JPOXMLDOC01-appb-C000023
 テトラカルボン酸ジエステルの具体例としては、1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5-テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4-ジカルボキシ-1-シクロヘキシルコハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボンジアルキルエステルなどの脂肪族テトラカルボン酸ジエステルや、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどの芳香族テトラカルボン酸ジアルキルエステルが挙げられる。
 勿論、ジアミン成分やテトラカルボン酸成分はそれぞれ1種類でもよく、また、2種類以上を併用してもよい。
 テトラカルボン酸成分とジアミン成分とを重合反応させてポリイミド前駆体を合成する方法は特に限定されず、公知の合成手法を用いることができる。
 例えば、ジアミン成分とテトラカルボン酸二無水物との反応は、ジアミン成分とテトラカルボン酸二無水物とを有機溶媒中で反応させる方法が挙げられる。その際に用いる有機溶媒は、生成したポリイミド前駆体が溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライムまたは4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
 ジアミン成分とテトラカルボン酸二無水物とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、または有機溶媒に分散、あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分またはテトラカルボン酸二無水物を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸二無水物の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 また、ポリアミック酸エステルは、上記のようにテトラカルボン酸ジエステルジクロリドとジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分を適当な縮合剤、塩基の存在下にて反応させることにより得ることができる。または、上記の方法で予めポリアミック酸を合成し、高分子反応を利用してポリアミック酸のカルボキシル基をエステル化することでも得ることができる。
 具体的には、例えば、テトラカルボン酸ジエステルジクロリドとジアミン成分とを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって、ポリアミック酸エステルを合成することができる。
 塩基としては、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンが使用できるが、反応が穏和に進行するためピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 また、テトラカルボン酸ジエステルとジアミン成分を、縮合剤存在下にて重縮合する場合、塩基として、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)4-メトキシモルホリウムクロリド n-水和物などが使用できる。
 また、上記縮合剤を用いる方法において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量は反応させるジアミンまたはテトラカルボン酸ジエステルに対して0.1~1.0倍モル量であることが好ましい。
 上記の反応に用いる溶媒は、上記にて示したポリアミック酸を合成する際に用いられる溶媒と同様の溶媒で行なうことができるが、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドやテトラカルボン酸ジエステル等のテトラカルボン酸誘導体とジアミン成分の反応溶液中での合計濃度が1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることがよく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
 本発明のポリイミド膜形成用塗布液が含有するポリイミドは、上記ポリイミド前駆体を脱水閉環させることにより得られる。このポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化またはポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミンまたはトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸または無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 なお、ポリイミド前駆体またはポリイミドの反応溶液から、生成したポリイミド前駆体またはポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類または炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。
 本発明のポリイミド膜形成用塗布液が含有するポリイミド前駆体やポリイミドは、得られるポリイミド膜の強度、ポリイミド膜形成時の作業性、ポリイミド膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。
 なお、本発明のポリイミド膜形成用塗布液は、重合体成分として、上記ポリイミド前駆体やポリイミド以外の重合体を含有していてもよい。ポリイミド前駆体やポリイミド以外の重合体としては、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリシロキサンやポリアミドなどが挙げられる。
 このような、テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一方のポリマーと、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入した上記式[A]で表される二官能化合物とを含有することにより、すなわち、例えば従来の液晶配向膜等を形成するためのポリイミド膜形成用塗布液に、さらに、上記式[A]で表される二官能化合物を含有させることにより、種々の特性を比較的自由に改善したポリイミド膜を得ることができるポリイミド膜形成用塗布液となる。
 詳述すると、上記式[A]で表される二官能化合物は、メルドラム酸構造、すなわち、メルドラム酸由来の構造を、両端に2個有しており、このメルドラム酸構造は、加熱される(例えば180~250℃以上。)ことにより、二酸化炭素とアセトンの脱離を伴い、ケテン(すなわち、二価の基である>C=C=Oを持つカルボニル化合物)となり、ケテン単独で二量化したり、ポリイミド前駆体やポリイミドが有するカルボキシル基、水酸基、アミノ基、チオール基、アルデヒド、ケトン、不飽和結合(例えば、炭素-炭素二重結合、炭素-炭素三重結合、イミン(炭素-窒素二重結合)、カルボジイミド、硫黄イリド、リンイリド)、アミド結合やエステル結合、イミド結合のカルボニル基、活性メチレン基等と反応するものである。したがって、上記式[A]で表される二官能化合物は、高温に加熱されていない(たとえば100℃以下。)のポリイミド膜形成用塗布液の状態ではポリイミド前駆体やポリイミドと反応しないが、加熱されることにより、メルドラム酸構造を介してポリイミド前駆体やポリイミドに導入される。なお、上記式[A]で表される二官能化合物は、メルドラム構造を2個有しているため、加熱後は、ポリイミドが上記式[A]で表される二官能化合物により架橋された構造になると推測される。
 よって、本発明のポリイミド膜形成用塗布液を基板に塗布し焼成して得られるポリイミド膜は、上記式[A]で表される二官能化合物が有するYの構造、すなわち、式[A]で表される二官能化合物の原料であるジアミン化合物由来のYの構造が、ポリイミドに導入されたものとなる。
 ここで、従来、ポリイミド膜はその特徴である高い機械的強度、耐熱性、耐溶剤性のために、液晶配向膜や、電気・電子分野における保護材料、絶縁材料として広く用いられており、所望の特性を改善するために種々のジアミン成分を原料の一部として用いることが行われているが、所望のジアミン成分を自由に用いることができない場合もある。例えば、液晶配向膜においては、液晶配向性やプレチルト角の向上等、所望の特性を改善するために種々のジアミン成分を原料の一部として用いることが行われているが、所望の特性を得るために用いるジアミン成分の種類、組み合わせや量によっては、ジアミン成分とテトラカルボン酸成分との重合反応性が悪くなるため、所望の特性を得るためのジアミン成分の種類、組み合わせや量が制限されてしまう場合がある。また、所望の特性を得るために用いるジアミン成分の種類や組み合わせごとに、ジアミン成分とテトラカルボン酸成分との重合反応条件を検討する必要がある。そして、均一なポリイミド膜を形成できるポリイミド膜形成用塗布液とするためには、含有成分が溶媒に溶解した溶液状態とする必要があるが、所望の特性を得るために用いるジアミン成分の種類、組み合わせや量によっては、ポリイミド膜形成用塗布液が含有するポリイミド前駆体やポリイミドの溶解性が悪くなるという問題がある。
 本発明においては、ポリイミド膜形成用塗布液の段階では、ポリイミド前駆体やポリイミドと、所望の特性を得るための化合物である上記式[A]で表される二官能化合物とを別個の化合物として含有するものであり、ポリイミド膜形成用塗布液を加熱(焼成)する段階で、所望の特性を得るための化合物である上記式[A]で表される二官能化合物をポリイミド前駆体やポリイミドに導入するものである。したがって、ポリイミド膜形成用塗布液が含有するポリイミド前駆体やポリイミドは所望の特性を得るためのジアミン成分を原料とする必要がないため、ジアミン成分とテトラカルボン酸成分との重合反応性が悪くなるという問題、所望の特性を得るために用いるジアミン成分の種類や組み合わせごとにジアミン成分とテトラカルボン酸成分との重合反応条件を検討する必要があるという問題や、ポリイミド膜形成用塗布液が含有するポリイミド前駆体やポリイミドの溶解性が悪くなるという問題は生じない。よって、本発明のポリイミド膜形成用塗布液は、ジアミン成分とテトラカルボン酸成分との重合反応性、重合反応条件の検討の必要性や、ポリイミド前駆体やポリイミドの溶解性を考慮することなく、所望の特性を得るためのジアミン化合物を用いることができるため、従来のポリイミド膜形成用塗布液と比較して、得られるポリイミド膜の種々の特性を比較的自由に改善することができる。
 また、上記式[A]で表される二官能化合物は、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入したものであり、このジアミン化合物として、従来検討されていた所望の特性を得るためのジアミン成分、すなわち、テトラカルボン酸成分と重合反応させてポリイミド前駆体やポリイミドを製造するためのジアミン成分であって所望の特性を得るためのジアミン成分を適用することができる。したがって、得られるポリイミド膜の種々の特性を、容易に改善することができる。
 さらに、本発明のポリイミド膜形成用塗布液が含有するポリイミド前駆体やポリイミドは、加熱により上記式[A]で表される二官能化合物で架橋されるため、得られるポリイミド膜は、有機溶剤に対する耐性があり、また硬い膜となる。
 本発明のポリイミド膜形成用塗布液の製造方法は特に限定されず、テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一方のポリマーと、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入した上記式[A]で表される二官能化合物とを、溶媒に溶解させればよい。
 本発明のポリイミド膜形成用塗布液の溶媒は、上記テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一方のポリマーと、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入した上記式[A]で表される二官能化合物とを溶解させることができるものであればよく、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライムおよび4-ヒドロキシ-4-メチル-2-ペンタノンなどの有機溶媒が挙げられる。これらは単独で使用しても、混合して使用してもよい。
 本発明のポリイミド膜形成用塗布液は、塗布により均一なポリイミド膜を形成するという観点から、有機溶媒の含有量が70~97質量%であることが好ましい。この含有量は、目的とする液晶配向膜等のポリイミド膜の膜厚によって適宜変更することができる。
 また、本発明のポリイミド膜形成用塗布液における、ポリイミド前駆体及びポリイミドの含有量は、3~30質量%であることが好ましい。この含有量も、目的とする液晶配向膜等のポリイミド膜の膜厚によって適宜変更することができる。
 本発明のポリイミド膜形成用塗布液における、上記式[A]で表される二官能化合物の含有量は、ポリイミド前駆体及びポリイミドの総量100質量部に対して、1~200質量部であることが好ましく、架橋反応が進行し所望の膜硬化性を発現し、かつ液晶の配向性を低下させないために、より好ましくは1~100質量部であり、特に好ましくは、1~50質量部である。
 本発明のポリイミド膜形成用塗布液は、本発明の効果を損なわない限り、本発明のポリイミド膜形成用塗布液を塗布した際のポリイミド膜の膜厚の均一性や表面平滑性を向上させる有機溶媒(貧溶媒ともいわれる。)または化合物を用いることができる。さらに、ポリイミド膜と基板との密着性を向上させる化合物などを用いることもできる。
 膜厚の均一性や表面平滑性を向上させる貧溶媒の具体例として、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステルまたは乳酸イソアミルエステルなどの低表面張力を有する有機溶媒などが挙げられる。これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような貧溶媒を用いる場合は、ポリイミド膜形成用塗布液に含まれる有機溶媒全体の1~50質量%であることが好ましく、より好ましくは5~30質量%である。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられ、具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ製)、メガファックF171、F173、R-30(大日本インキ製)、フロラードFC430、FC431(住友スリーエム製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子製)などが挙げられる。これらの界面活性剤の使用割合は、ポリイミド膜形成用塗布液に含有される重合体成分の総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 ポリイミド膜と基板との密着性を向上させる化合物の具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどの官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。
 これら基板との密着させる化合物を使用する場合は、本発明のポリイミド膜形成用塗布液に含有される重合体成分総量100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 また、本発明のポリイミド膜形成用塗布液には、本発明の効果が損なわれない範囲であれば、ポリイミド膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
 また、本発明のポリイミド膜形成用塗布液には、本発明の効果を損なわない限り、エポキシ基、イソシアネート基またはオキセタン基を有する架橋性化合物、さらには、ヒドロキシル基またはアルコキシル基からなら群より選ばれる少なくとも1種の置換基を有する架橋性化合物や、重合性不飽和結合を有する架橋性化合物を混合してもよい。
 このような本発明のポリイミド膜形成用塗布液は、液晶配向膜を形成するための液晶配向剤として使用することができる。なお、液晶配向膜とは液晶を所定の方向に配向させるための膜である。
 本発明のポリイミド膜形成用塗布液を、基板に塗布し、焼成することにより、ポリイミド膜を形成することができる。また、本発明のポリイミド膜形成用塗布液を液晶配向剤として用いる場合は、基板上に塗布し、焼成した後、ラビング処理や光照射などで配向処理をして、又は垂直配向用途などでは配向処理無しで液晶配向膜を形成することができる。
 基板としては、ポリイミド膜形成用塗布液を塗布することができるものであれば特に限定されないが、液晶配向膜を形成する場合は透明性の高いものであることが好ましい。具体例としては、ガラス基板、若しくはアクリル基板やポリカーボネート基板などのプラスチック基板などが挙げられる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。そして、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 ポリイミド膜形成用塗布液の基板への塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いてもよい。
 ポリイミド膜形成用塗布液を基板上に塗布し、必要に応じて溶媒の一部または全部を乾燥させた後、焼成する。この焼成は、上記式[A]で表される二官能化合物のメルドラム酸構造がケテン等になりポリイミド前駆体やポリイミドが有するカルボキシル基等と反応することができる温度に加熱すればよい。例えば、ホットプレート、熱風循環炉、赤外線炉などの加熱手段により180~250℃で行い、溶媒を蒸発させると共にメルドラム酸構造をポリイミド前駆体やポリイミドと反応させることにより、ポリイミド前駆体やポリイミドに上記式[A]で表される二官能化合物が導入され、本発明のポリイミド膜を形成することができる。このようにして得られたポリイミド膜は、ポリイミドが上記式[A]で表される二官能化合物により架橋された構造を有するため、硬い膜となり、削れ耐性に優れる。
 焼成後に形成されるポリイミド膜の厚みは、液晶配向膜とする場合、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~200nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射などで処理する。
 本発明の液晶表示素子は、上記した手法により液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。一例を挙げるならば、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明のポリイミド膜形成用塗布液からなる液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する液晶表示素子である。このような本発明の液晶表示素子としては、ツイストネマティック(TN:Twisted Nematic)方式、垂直配向(VA:Vertical Alignment)方式や、水平配向(IPS:In-Plane Switching)方式等、種々のものが挙げられる。
 本発明の液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記ポリイミド膜で記載した基板と同様のものを挙げることができる。
 また、液晶配向膜は、この基板上に本発明の液晶配向剤を塗布した後焼成することにより形成されるものであり、詳しくは上述したとおりである。
 本発明の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来の液晶材料、例えばメルク社製のMLC-2003、MLC-6608、MLC-6609などを用いることができる。
 液晶セル作製方法の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜面が内側になるようにして、もう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。
 以上のようにして作製された液晶表示素子は、所望の特性を導入できる上記式[A]で表される二官能化合物と、ポリイミド前駆体及びポリイミドの少なくとも一方を有する液晶配向剤を用いて作成されるものであるため、種々の特性が改善されたものとすることができる。
 以下に実施例及び比較例を挙げ、本発明を更に詳しく説明するが、本発明の解釈はこれらの実施例に限定されるものではない。
 [上記式[A]で表される二官能化合物の合成]
 <合成例1>
下記式[4]で表される化合物5,5'-(1,4-phenylenebis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000024
 300mL四つ口フラスコに、メルドラム酸[1](14.7g、102mmol)、及びオルトギ酸トリメチル[2](147g)を加え、1時間加熱還流を行った。その後、パラフェニレンジアミン[3](5.0g、46mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[4]を15.8g得た(収率82%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.29(2H, d), 8.56(2H, d), 7.64(4H, s), 1.68(12H, s).
 <合成例2>
下記式[6]で表される化合物5,5'-(1,3-phenylenebis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000025
 300mL四つ口フラスコに、メルドラム酸[1](14.7g、102mmol)、及びオルトギ酸トリメチル[2](147g)を加え、1時間加熱還流を行った。その後、メタフェニレンジアミン[5](5.0g、46mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[6]を14.1g得た(収率72%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.28(2H, s), 8.74(2H, s), 7.98(1H, s), 7.44(3H, s), 1.68(12H, s).
 <合成例3>
下記式[8]で表される化合物5,5'-(pyridine-2,6-diylbis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000026
 300mL四つ口フラスコに、メルドラム酸[1](16.0g、111mmol)、及びオルトギ酸トリメチル[2](160g)を加え、1時間加熱還流を行った。その後、2,6-ジアミノピリジン[7](5.5g、50mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[8]を16.7g得た(収率80%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.42(2H, d), 9.15(2H, d), 7.96(1H, t), 7.52(2H, d), 1.67(12H, s).
 <合成例4>
下記式[10]で表される化合物5,5'-(4,4'-methylenebis(4,1-phenylene)bis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000027
 300mL四つ口フラスコに、メルドラム酸[1](14.7g、102mmol)、及びオルトギ酸トリメチル[2](147g)を加え、1時間加熱還流を行った。その後、4,4’-ジアミノジフェニルメタン[9](5.0g、46mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[10]を14.1g得た(収率72%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.23(2H, d), 8.54(2H, d), 7.50-7.48(4H, m), 7.31-7.29(4H, m), 3.96(2H, m), 1.66(12H, s).
 <合成例5>
下記式[12]で表される化合物5,5'-(4,4'-oxybis(4,1-phenylene)bis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000028
 200mL四つ口フラスコに、メルドラム酸[1](7.92g、54.9mmol)、及びオルトギ酸トリメチル[2](78g)を加え、1時間加熱還流を行った。その後、4,4’-ジアミノジフェニルエーテル[11](5.0g、25.0mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[12]を11.7g得た(収率92%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.30(2H, d), 8.51(2H, d), 7.62(4H, d), 7.08(4H, d),  1.67(12H, s).
 <合成例6>
下記式[14]で表される化合物5,5'-(4,4'-azanediylbis(4,1-phenylene)bis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000029
 200mL四つ口フラスコに、メルドラム酸[1](7.96g、55.2mmol)、及びオルトギ酸トリメチル[2](79g)を加え、1時間加熱還流を行った。その後、4,4’-ジアミノジフェニルアミン[13](5.0g、25.1mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[14]を10.1g得た(収率79%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.29(2H, d), 8.51(2H, d), 7.62(4H, d), 7.08(4H, d), 4.97(1H, s), 1.67(12H, s).
 <合成例7>
下記式[16]で表される化合物5,5'-(4,4'-(methylazanediyl)bis(4,1-phenylene)bis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione) の合成
Figure JPOXMLDOC01-appb-C000030
 500mL四つ口フラスコに、メルドラム酸[1](14.9g、103mmol)、及びオルトギ酸トリメチル[2](100g)を加え、1時間加熱還流を行った。その後、4,4’-ジアミノジフェニルメチルアミン[15](10.0g、46.9mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[16]を21.7g得た(収率86%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.21(2H, d), 8.44(2H, d), 7.45-7.42(4H, m), 7.03-7.01(4H, m), 3.24(3H, s), 1.62(12H, s).
 <合成例8>
下記式[18]で表される化合物5,5'-(4,4'-(pentane-1,5-diylbis(oxy))bis(4,1-phenylene))bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000031
 300mL四つ口フラスコに、メルドラム酸[1](16.6g、115mmol)、及びオルトギ酸トリメチル[2](111g)を加え、1時間加熱還流を行った。その後、化合物[17](15.0g、52.4mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[18]を20.8g得た(収率67%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.23(2H, s), 8.45(2H, s), 7.51-7.47(4H, m), 7.00-6.94(4H, m), 4.01(4H, t), 1.82-1.72(4H, m), 1.67(12H, s), 1.62-1.54(2H, m).
 <合成例9>
下記式[20]で表される化合物1,3-bis(4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)phenethyl)ureaの合成
Figure JPOXMLDOC01-appb-C000032
 200mL四つ口フラスコに、メルドラム酸[1](28.6g、147mmol)、及びオルトギ酸トリメチル[2](200g)を加え、1時間加熱還流を行った。その後、化合物[19](20.0g、67.0mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[20]を40.3g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.17(2H, d), 8.48(2H, d), 7.40(4H, d), 7.21(4H, d), 5.89(2H, t), 3.18-3.14(4H, m), 2.62(4H, t), 1.62(12H, s).
 <合成例10>
下記式[22]で表される化合物5,5'-(6,7,9,10,17,18,20,21-octahydrodibenzo[b,k][1,4,7,10,13,16]hexaoxacyclooctadecine-2,13-diyl)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000033
 200mL四つ口フラスコに、メルドラム酸[1](7.38g、51.2mmol)、及びオルトギ酸トリメチル[2](100g)を加え、1時間加熱還流を行った。その後、化合物[21](10.0g、25.6mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して、化合物[22]を17.9g得た(収率96%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.16(2H, d), 8.50(2H, d), 7.19(2H, d), 7.01-6.98(2H, m), 6.93(2H, m), 4.09-4.08(4H, m), 4.04-4.02(4H, m), 3.79(8H, m), 1.61(12H, s).
 <合成例11>
下記式[24]で表される化合物5-((3-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione の合成
Figure JPOXMLDOC01-appb-C000034
 300mL四つ口フラスコに、メルドラム酸[1](23.6g、164mmol)、及びオルトギ酸トリメチル[2](100g)を加え、1時間加熱還流を行った。その後、3-アミノベンジルアミン[23](10.0g、81.9mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥させ化合物[24]を36.2g得た(収率100%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.21(1H, s), 10.04-9.97(1H, m), 8.55(1H, s), 8.30(1H, d), 7.57(1H, s), 7.48-7.38(2H, m), 7.23(1H, d), 4.65(2H, d), 1.63(6H, s), 1.55(6H, s).
 <合成例12>
下記式[26]で表される化合物5,5'-(4,4'-(propane-1,3-diyl)bis(piperidine-4,1-diyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000035
 200mL四つ口フラスコに、メルドラム酸[1](11.7g、81.0mmol)、及びオルトギ酸トリメチル[2](128g)を加え、1時間加熱還流を行った。その後、1,3-ジ-4-ピペリジルプロパン [25](8.52g、40.5mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥させ化合物[26]を20.2g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):8.09(2H, s), 4.06-3.97(4H, m), 3.56-3.49(2H, m), 3.28-3.25(2H, m), 1.84-1.81(4H, m), 1.61-1.56(12H, m), 1.32-1.23(12H, m).
 <合成例13>
下記式[28]で表される化合物5,5'-(propane-1,3-diylbis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000036
 500mL四つ口フラスコに、メルドラム酸[1](42.8g、297mmol)、及びオルトギ酸トリメチル[2](150g)を加え、1時間加熱還流を行った。その後、1,3-ジアミノプロパン[27](10.0g、135mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[28]を24.8g得た(収率48%)。
 1H-NMR(400MHz, CDCl3, δppm):9.57-9.54(2H, m), 8.16(2H, d), 3.59(4H, q), 2.11(2H, quin), 1.71(12H, s).
 <合成例14>
下記式[30]で表される化合物5,5'-(cyclohexane-1,3-diylbis(methylene))bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000037
 500mL四つ口フラスコに、メルドラム酸[1](44.6g、309mmol)、及びオルトギ酸トリメチル[2](200g)を加え、1時間加熱還流を行った。その後、1,3-ビスアミノメチルシクロヘキサン(cis-/trans-混合物)[29](20.0g、141mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[30] (cis-/trans-混合物)を58.3g得た(収率92%)。
 1H-NMR(400MHz, DMSO-d6, δppm):9.63-9.60(2H, m), 8.11-7.97(2H, m), 3.51-3.12(4H, m),  1.87-0.54(22H, m).
 <合成例15>
下記式[32]で表される化合物3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzoic acidの合成
Figure JPOXMLDOC01-appb-C000038
 200mL四つ口フラスコに、メルドラム酸[1](10.4g、72.3mmol)、及びオルトギ酸トリメチル[2](105g)を加え、1時間加熱還流を行った。その後、3,5-ジアミノ安息香酸[31](5.0g、32.9mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[32]を9.0g得た(収率59%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.34(2H, d), 8.74(2H, d), 7.92(2H, d), 1.69(12H, s).
 <合成例16>
下記式[34]で表される化合物3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)-N-(pyridin-3-ylmethyl)benzamideの合成
Figure JPOXMLDOC01-appb-C000039
 200mL四つ口フラスコに、メルドラム酸[1](6.5g、45.4mmol)、及びオルトギ酸トリメチル[2](66g)を加え、1時間加熱還流を行った。その後、化合物[33](5.0g、20.6mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して化合物[34]を11.3g得た(収率98%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.35(2H, d), 9.27(1H, t), 8.78(2H, d), 8.59(1H, d), 8.49-8.47(1H, m), 8.16-8.15(1H, m), 7.84(2H, d), 7.77-7.74(1H, m), 7.40-7.36(1H, m),  4.55(2H, d), 1.69(12H, s).
 <合成例17>
下記式[36]で表される化合物N-(3-(1H-imidazol-1-yl)propyl)-3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzamideの合成
Figure JPOXMLDOC01-appb-C000040
 200mL四つ口フラスコに、メルドラム酸[1](10.1g、52.1mmol)、及びオルトギ酸トリメチル[2](50g)を加え、1時間加熱還流を行った。その後、化合物[35](5.0g、23.7mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して化合物[36]を13.4g得た(収率100%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.27(2H, s), 8.71-8.65(3H, m), 8.01(1H, t), 7.99(1H, t), 7.75(2H, d), 7.32(1H, t), 7.05(1H, t), 4.07-4.03(2H, m), 3.25-3.18(2H, m), 1.97(2H, t), 1.64(12H, s).
 <合成例18>
下記式[38]で表される化合物3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzyl furan-2-carboxylateの合成
Figure JPOXMLDOC01-appb-C000041
 200mL四つ口フラスコに、メルドラム酸[1](13.7g、94.7mmol)、及びオルトギ酸トリメチル[2](100g)を加え、1時間加熱還流を行った。その後、化合物[37](10.0g、43.1mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[38]を21.1g得た(収率90%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.22(2H, d), 8.67(2H, d), 7.94-7.93(1H, m), 7.87-7.86(1H, m), 7.46-7.45(2H, m), 7.38(1H, dd), 6.68-6.66(1H, m), 5.28(2H, s), 1.63(12H, s).
 <合成例19>
下記式[40]で表される化合物5,5'-(4-(dodecyloxy)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000042
 300mL四つ口フラスコに、メルドラム酸[1](10.8g、75.2mmol)、及びオルトギ酸トリメチル[2](100g)を加え、1時間加熱還流を行った。その後、化合物[39](10.0g、34.2mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[40]を29.7g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.57(1H, d), 11.20(1H, d), 8.90(1H, d), 8.64(1H, d), 8.09(1H, d), 7.31(1H, dd), 7.13(1H, d), 4.06(2H, t), 1.74-1.68(2H, m), 1.63(12H, s), 1.46-1.40(2H, m), 1.25-1.16(16H, m), 0.79(3H, t).
 <合成例20>
下記式[42]で表される化合物5,5'-(4-(octadecyloxy)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000043
 100mL四つ口フラスコに、メルドラム酸[1](4.2g、29.2mmol)、及びオルトギ酸トリメチル[2](42g)を加え、1時間加熱還流を行った。その後、化合物[41](5.0g、13.3mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[42]を6.4g得た(収率71%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.63(1H, d), 11.26(1H, d), 8.99(1H, d), 8.72(1H, d), 8.19(1H, d), 7.40(1H, dd), 7.20(1H, d), 4.13(2H, t), 1.80-1.74(2H, m), 1.68(12H, s), 1.49-1.45(2H, m), 1.25-1.22(28H, m), 0.85(3H, t).
 <合成例21>
下記式[44]で表される化合物5,5'-(4-(4-(trans-4-heptylcyclohexyl)phenoxy)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000044
 100mL四つ口フラスコに、メルドラム酸[1](4.2g、28.9mmol)、及びオルトギ酸トリメチル[2](41g)を加え、1時間加熱還流を行った。その後、化合物[43](5.0g、13.1mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[44]を9.0g得た(収率98%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.64(1H, d), 11.30(1H, d), 9.03(1H, d), 8.76(1H, d), 8.31(1H, d), 7.40(1H, dd), 7.28(2H, d), 7.03(2H, d), 6.97(1H, d), 1.81(2H, d), 1.69(10H, d), 1.44-1.34(1H, m), 1.26-1.78(10H, m), 1.07-1.01(1H, m), 0.86(3H, t).
 <合成例22>
下記式[46]で表される化合物5,5'-(4-(trans-4-(trans-4'-pentylbi(cyclohexan)-4-yl)phenoxy)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000045
 300mL四つ口フラスコに、メルドラム酸[1](9.0g、62.1mmol)、及びオルトギ酸トリメチル[2](120g)を加え、1時間加熱還流を行った。その後、化合物[45](12.3g、28.2mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[46]を20.68g得た(収率98%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.64(1H, d), 11.30(1H, d), 9.03(1H, d), 8.76(1H, d), 8.31(1H, d), 7.39(1H, dd), 7.27(1H, d), 7.02(2H, d), 6.97(2H, d), 1.88-1.03(43H, m), 0.86(3H, t).
 <合成例23>
下記式[48]で表される化合物5,5'-(5-((trans-4-(trans-4'-pentylbi(cyclohexan)-4-yl)phenoxy)methyl)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000046
 500mL四つ口フラスコに、メルドラム酸[1](19.0g、98.6mmol)、及びオルトギ酸トリメチル[2](200g)を加え、1時間加熱還流を行った。その後、化合物[47](20.0g、44.6mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[48]を33.4g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.29(2H, d), 8.74(2H, d), 7.94(1H, s), 7.53(2H, d), 7.12(2H, d), 6.92(2H, d), 5.09(2H, s), 1.81-1.68(20H, m),  1.36-0.84(23H, m).
 <合成例24>
下記式[50]で表される化合物4'-pentylbi(trans-cyclohexan)-4-yl 3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzoateの合成
Figure JPOXMLDOC01-appb-C000047
 500mL四つ口フラスコに、メルドラム酸[1](13.3g、92.0mmol)、及びオルトギ酸トリメチル[2](150g)を加え、1時間加熱還流を行った。その後、化合物[49](15.0g、41.8mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[50]を28.8g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.28(2H, s), 8.67(2H, s), 8.17(1H, t), 7.86(2H, d), 4.79-4.73(1H, m), 2.02(2H, d), 1.74-1.64(18H, m), 1.44-1.32(2H, m), 1.29-0.76(20H, m).
 <合成例25>
下記式[52]で表される化合物N-(2,4-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)phenyl)-4-(trans-4-pentylcyclohexyl)benzamideの合成
Figure JPOXMLDOC01-appb-C000048
 300mL四つ口フラスコに、メルドラム酸[1](8.2g、56.7mmol)、及びオルトギ酸トリメチル[2](80g)を加え、1時間加熱還流を行った。その後、化合物[51](10.0g、25.8mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[52]を16.0g得た(収率92%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.36-11.27(2H, m), 10.38(1H, s), 8.80-8.74(2H, m), 8.09(1H, s), 7.87(2H, d), 7.44(1H, dd), 7.34(2H, d), 2.51-2.46(3H, m), 1.77(2H, d), 1.66(6H, s), 1.59(6H, s), 1.50-1.37(3H, m), 1.29-1.14(8H, m), 0.99(2H, q), 0.82(3H, t).
 <合成例26>
下記式[54]で表される化合物N-(2,4-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)phenyl)-4-(trans-4-Heptylcyclohexyl)benzamideの合成
Figure JPOXMLDOC01-appb-C000049
 300mL四つ口フラスコに、メルドラム酸[1](11.7g、81.0mmol)、及びオルトギ酸トリメチル[2](150g)を加え、1時間加熱還流を行った。その後、化合物[53](15.0g、36.8mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[54]を26.1g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.36-11.27(2H, m), 10.38(1H, s), 8.78(2H, t), 8.10(1H, s), 7.88(2H, d), 7.44(1H, dd), 7.35(3H, d), 2.52(2H, t), 1.78(2H, d), 1.65(6H, s), 1.60(6H, s), 1.50-1.37(2H, m), 1.29-1.12(14H, m), 0.99(2H, q), 0.82(3H, t).
 <合成例27>
下記式[56]で表される化合物5,5'-(4-((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-5-methylhexan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yloxy)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000050
 100mL四つ口フラスコに、メルドラム酸[1](4.1g、29mmol)、及びオルトギ酸トリメチル[2](50g)を加え、1時間加熱還流を行った。その後、化合物[55](10.0g、13mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[56]を9.9g得た(収率99%)。
 <合成例28>
下記式[58]で表される化合物(E)-2,4-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)phenethyl 3-(4-(decyloxy)phenyl)acrylate の合成
Figure JPOXMLDOC01-appb-C000051
 200mL四つ口フラスコに、メルドラム酸[1](7.3g、37mmol)、及びオルトギ酸トリメチル[2](75g)を加え、1時間加熱還流を行った。その後、化合物[57](7.46g、17mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[58]を12.5g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.57(1H, d), 11.29(1H, s), 8.82(1H, dd), 8.23(1H, dd), 8.04(1H, s), 7.57-7.46(5H, m), 6.92(2H, d), 6.35(1H, d), 4.34(2H, t), 3.99(2H, t), 1.74-1.65(15H, m), 1.43-1.21(15H, m), 0.85(3H, t).
 <合成例29>
下記式[60]で表される化合物(E)-3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzyl 3-(4-(decyloxy)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000052
 200mL四つ口フラスコに、メルドラム酸[1](6.3g、33mmol)、及びオルトギ酸トリメチル[2](63g)を加え、1時間加熱還流を行った。その後、化合物[59](6.3g、15mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[60]を10.7g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.25(1H, d), 8.71(1H, d), 7.93(1H, s), 7.67-7.62(3H, m), 7.48(2H, d), 6.91(2H, d), 6.52(1H, d), 5.19(2H, s),
 3.96(2H, t), 3.62-3.60(2H, m), 1.68-1.63(15H, m), 1.38-1.20(15H, m), 0.81(3H, t).
 <合成例30>
下記式[62]で表される5,5'-(((6,7,9,10,17,18,20,21-octahydrodibenzo[b,k][1,4,7,10,13,16]hexaoxacyclooctadecine-2,14-diyl)bis(azanediyl))bis(methanylylidene))bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000053
 200mL四つ口フラスコに、メルドラム酸[1](4.87g、33.8mmol)、及びオルトギ酸トリメチル[2](60g)を加え、1時間加熱還流を行った。その後、化合物[61](6.00g、15.4mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して、化合物[62]を10.4g得た(収率97%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.21(2H, d), 8.54(2H, d), 7.26(2H, d), 7.05(2H, dd), 6.96(2H, d), 4.15-4.06(8H, m), 3.88-3.80(6H, m), 3.17(2H, d), 1.67(12H, s).
 <合成例31>
下記式[64]で表される5,5'-((1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)bis(methanylylidene))bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000054
 500mL四つ口フラスコに、メルドラム酸[1](24.17g、167.7mmol)、及びオルトギ酸トリメチル[2](200g)を加え、1時間加熱還流を行った。その後、化合物[63](20.00g、76.2mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して、化合物[64]を43.2g得た(収率100%)。
 <合成例32>
下記式[66]で表される5,5'-(((((oxybis(ethane-2,1-diyl))bis(oxy))bis(4,1-phenylene))bis(azanediyl))bis(methanylylidene))bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000055
 500mL四つ口フラスコに、メルドラム酸[1](22.00g、153mmol)、及びオルトギ酸トリメチル[2](200g)を加え、1時間加熱還流を行った。その後、化合物[65](20.00g、69.4mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して、化合物[66]を40.2g得た(収率97%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.23(2H, d), 8.44(2H, d), 7.50-7.48(2H, m), 7.01-6.99(4H, m), 4.42-4.12(4H, m), 3.89-3.78(4H, m), 1.67(12H, s).
 <合成例33>
下記式[68]で表される2-(methacryloyloxy)ethyl3,5-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)benzoateの合成
Figure JPOXMLDOC01-appb-C000056
 500mL四つ口フラスコに、メルドラム酸[1](24.18g、168mmol)、及びオルトギ酸トリメチル[2](300g)を加え、1時間加熱還流を行った。その後、化合物[67](20.00g、76.3mmol)を加え、さらに2時間加熱還流を行った。反応終了後、ヘキサンを加えろ過した後、乾燥を行い、化合物[68]を43.7g得た(収率100%)。
 1H-NMR(400MHz, CDCl3, δppm):11.36(2H, d), 8.72(2H, d), 7.80(2H, d), 7.37(1H, t), 6.17(1H, t), 5.64-5.62(1H, m), 4.67-4.65(2H, m), 4.55-4.52(2H, m), 3.79(1H, s), 3.47(1H, s), 3.34(2H, s), 1.97-1.96(3H, m), 1.78-1.76(13H, m).
 <合成例34>
下記式[70]で表される(E)-2,4-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4'-butoxy-[1,1'-biphenyl]-4-yl)acrylateの合成
Figure JPOXMLDOC01-appb-C000057
 100mL四つ口フラスコに、メルドラム酸[1](4.00g、20.4mmol)、及びオルトギ酸トリメチル[2](40g)を加え、1時間加熱還流を行った。その後、化合物[69](4.00g、9.3mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[70]を6.8g得た(収率99%)。
 1H-NMR(400MHz, CDCl3, δppm):11.59(1H, d), 11.29(1H, d), 8.84(1H, d), 8.78(1H, d), 8.23(1H, s), 8.04(1H, s), 7.70-7.64(7H, m), 7.62(1H, d), 7.48(2H, s), 7.03(2H, d), 6.53(1H, d), 4.41(2H, t), 4.01(2H, t), 3.66-3.63(6H,m), 1.68-1.57(10H, m), 1.56(1H, s), 1.44-1.39(1H, m), 0.94(3H, t). 
 <合成例35>
下記式[72]で表される(E)-2,4-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4-cyclohexylphenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000058
 200mL四つ口フラスコに、メルドラム酸[1](4.35g、30mmol)、及びオルトギ酸トリメチル[2](50g)を加え、1時間加熱還流を行った。その後、化合物[71](5.00g、14mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[72]を9.63g得た(収率99%)。
 1H-NMR(400MHz, CDCl3, δppm):11.63(1H, d), 11.30(1H, d), 8.64-8.63(2H, m), 7.60(1H, d), 7.42-7.39(3H, m), 7.29-7.27(2H, m), 7.21-7.15(3H, m), 6.37(1H, d), 4.49-4.46(2H, m), 3.33-3.11(2H, m), 2.59-2.42(1H, m), 1.86-1.45(2H, m), 1.76-1.70(14H, m), 1.42-1.20(6H, m). 
 <合成例36>
下記式[74]で表される(E)-2,4-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4-([trans-1,1'-bi(cyclohexan)]-4-yl)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000059
 200mL四つ口フラスコに、メルドラム酸[1](2.84g、20mmol)、及びオルトギ酸トリメチル[2](40g)を加え、1時間加熱還流を行った。その後、化合物[73](4.00g、9.0mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[74]を6.6g得た(収率99%)。
 1H-NMR(400MHz, CDCl3, δppm):11.63(1H, d), 11.30(1H, d), 8.67-8.60(2H, m), 7.60(1H, d), 7.41-7.39(3H, m), 7.26-7.14(4H, m), 6.36(1H, d), 4.48(2H, t), 3.12(2H, t), 2.52-2.45(1H, m), 1.91-1.70(24H, m), 1.52-1.01(8H, m). 
 <合成例37>
下記式[76]で表される(E)-2,4-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4-(trans-4-pentylcyclohexyl)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000060
 300mL四つ口フラスコに、メルドラム酸[1](13.55g、69.8mmol)、及びオルトギ酸トリメチル[2](140g)を加え、1時間加熱還流を行った。その後、化合物[75](13.79g、31.7mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[76]を22.4g得た(収率95%)。
 1H-NMR(400MHz, CDCl3, δppm):11.63(1H, d), 11.27(1H, d), 8.68-8.57(2H, m), 7.41-7.39(3H, m), 7.26-7.14(4H, m), 6.36(1H, d), 4.48(2H, t), 3.80-3.76(3H, m), 3.48(2H, d), 3.34(1H, s), 3.12(2H, d), 2.47(2H, t), 1.86(6H, d), 1.77-1.68(10H, m), 1.47-1.20(10H,m), 1.06-0.90(5H, m). 
 <合成例38>
下記式[78]で表される(E)-2,4-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4-(trans-4-heptylcyclohexyl)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000061
 100mL四つ口フラスコに、メルドラム酸[1](3.43g、23.8mmol)、及びオルトギ酸トリメチル[2](50g)を加え、1時間加熱還流を行った。その後、化合物[77](5.00g、10.8mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[78]を8.3g得た(収率100%)。
 1H-NMR(400MHz, CDCl3, δppm):11.64(1H, d), 11.28(1H, d), 8.70-8.63(2H, m), 7.61(1H, d), 7.45-7.40(3H, m), 7.27-7.15(3H, m), 6.37(1H, d), 4.46(2H, t), 3.60(2H, d), 3.12(2H, t), 2.34(1H, t), 1.87(4H, d), 1.85-1.75(15H, m), 1.42-1.38(2H, m), 1.33-1.26(10H,m), 1.07-1.02(2H, m), 0.89(3H, t). 
 <合成例39>
下記式[80]で表される(E)-3,5-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)benzyl 3-(4-(trans-4-pentylcyclohexyl)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000062
 300mL四つ口フラスコに、メルドラム酸[1](11.31g、78.5mmol)、及びオルトギ酸トリメチル[2](150g)を加え、1時間加熱還流を行った。その後、化合物[79](15.00g、35.7mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[80]を25.3g得た(収率99%)。
 1H-NMR(400MHz, CDCl3, δppm):11.30(2H, d), 8.66(2H, d), 7.74(1H, d), 7.49(2H, d), 7.26-7.19(4H, m), 7.08(1H, d), 6.49(1H, d), 5.27(2H, s), 2.49(1H, t), 1.93-1.77(18H, m), 1.65-0.87(14H, m). 
 <合成例40>
下記式[82]で表される(E)-3,5-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)benzyl 3-(4-(trans-4'-pentyl-[1,1'-bi(cyclohexan)]-4-yl)phenoxy)acrylateの合成
Figure JPOXMLDOC01-appb-C000063
 200mL四つ口フラスコに、メルドラム酸[1](1.83g、12.7mmol)、及びオルトギ酸トリメチル[2](45g)を加え、1時間加熱還流を行った。その後、化合物[81](3.00g、5.8mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[82]を4.8g得た(収率100%)。
 1H-NMR(400MHz, CDCl3, δppm):11.27(2H, d), 8.64(2H, d), 7.85(1H, d), 7.21(2H, d), 7.14(2H, d), 7.10-7.09(1H, m), 7.00-6.98(2H, m), 5.57(1H, d), 5.19(2H, s), 3.81(1H, s), 3.47-3.46(1H, m), 3.33(4H, s), 1.91-1.72(20H, m), 1.41-0.84(13H, m).
 [ポリアミック酸又はポリイミドの合成及びその溶液の作成]
 下記で用いた略号は以下の通りである。
(テトラカルボン酸二無水物)
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000064
(ジアミン)
p-PDA:p-フェニレンジアミン
DDM:4,4’-ジアミノジフェニルメタン
PCH7AB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロヘキシル)フェノキシ〕ベンゼン
Figure JPOXMLDOC01-appb-C000065
(有機溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
(分子量の測定)
 本実施例において、ポリマー(ポリアミック酸、ポリイミド)の分子量は、(株)Shodex社製常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0mL/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
(イミド化率の測定)
 本実施例において、ポリイミドのイミド化率は次のようにして測定した。
 ポリイミド粉末約20mgをNMRサンプル管に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS混合品)約0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定措置にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。なお、下記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン一個に対する基準プロトンの個数割合である。
イミド化率(%)=(1-α・x/y)×100
 <ポリアミック酸(PAA-1)の合成及びその溶液の作製>
 100mL四口フラスコに、DDM 7.93g(40mmol)、NMP(20g)を加え溶解させた後、約10℃に冷却し、CBDA 7.46g(38mmol)のNMP(67g)スラリー溶液を加え、室温に戻し窒素雰囲気下6時間反応させポリアミック酸(PAA-1)の濃度15質量%の溶液を得た。
 このポリアミック酸(PAA-1)の濃度15質量%の溶液88gを200mL三角フラスコに移し、NMPを87.6g、BCSを43.8gを加えて希釈し、ポリアミック酸(PAA-1)が6質量%、NMPが74質量%、BCSが20質量%のポリアミック酸(PAA-1)溶液を作成した。このポリアミック酸(PAA-1)の数平均分子量は12,081、重量平均分子量は30,449であった。
 <ポリアミック酸(PAA-2)の合成及びその溶液の作製>
 200mL四口フラスコに、p-PDA 8.65g(80mmol)、NMP(49g)を加え溶解させた後、約10℃に冷却し、CBDA 14.1g(72mmol)のNMP(80g)スラリー溶液を加え、室温に戻し窒素雰囲気下6時間反応させポリアミック酸(PAA-2)の濃度15質量%の溶液を得た。
 このポリアミック酸(PAA-2)の濃度15質量%の溶液125gを300mL三角フラスコに移し、NMPを118.5g、BCSを60.9gを加えて希釈し、ポリアミック酸(PAA-2)が6質量%、NMPが74質量%、BCSが20質量%のポリアミック酸(PAA-2)溶液を作成した。このポリアミック酸(PAA-2)の数平均分子量は7,609、重量平均分子量は15,837であった。
 <ポリアミック酸(PAA-3)の合成及びその溶液の作製>
 200mL四口フラスコに、p-PDA 8.05g(74mmol)、PCH7AB 2.13g(5.6mmol)、NMP(118g)を加え溶解させた後、約10℃に冷却し、CBDA 14.1g(72mmol)のNMP(100g)スラリー溶液を加え、室温に戻し窒素雰囲気下6時間反応させポリアミック酸(PAA-3)の濃度10質量%の溶液を得た。
 このポリアミック酸(PAA-3)の濃度10質量%の溶液234gを300mL三角フラスコに移し、NMPを70.8g、BCSを76.2gを加えて希釈し、ポリアミック酸(PAA-3)が6質量%、NMPが74質量%、BCSが20質量%のポリアミック酸(PAA-3)溶液を作成した。このポリアミック酸(PAA-3)の数平均分子量は6,092、重量平均分子量は12,002であった。
 <可溶性ポリイミド(SPI-1)の合成及びその溶液の作製>
 300mL四口フラスコに、BODA(16.9g,68mmol)、p-PDA(6.8g,63mmol)、PCH7AB(10.3g,27mmol)をNMP(100g)中で混合し、40℃で3時間反応させた後、CBDA(4.1g,21mmol)とNMP(52g)を加え、40℃で3時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(130g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(16g)、ピリジン(12g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1.6L)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(SPI-1)を得た。このポリイミドのイミド化率は54%であり、数平均分子量は18,300、重量平均分子量は45,300であった。このポリイミドにおけるカルボキシル基の量は、繰り返し単位に対して0.92個である。
 上記で得たポリイミド粉末(SPI-1)(12.0g)にNMP(98g)、BCS(90g)を加え、80℃にて40時間攪拌して溶解させ、可溶性ポリイミド(SPI-1)溶液を作製した。
 [ポリイミド膜形成用塗布液(液晶配向剤)の調製]
 <実施例1~9>
 上記で作製したポリアミック酸(PAA-1)溶液(10.0g)に、上記式[A]で表される化合物として上記合成例で作成した下記表1に記載される化合物を、それぞれポリアミック酸(PAA-1)溶液の固形分(すなわちポリアミック酸(PAA-1))に対して10mol%となるように加え、均一溶液となるまで、室温(25℃)で撹拌を行い、実施例1~9のポリイミド膜形成用塗布液(機能性ポリマー膜形成用塗布液)を調製した。
Figure JPOXMLDOC01-appb-T000066
 <実施例10~34>
 上記で作成したポリアミック酸(PAA-1)溶液(10.0g)に、上記式[A]で表される化合物として上記合成例で作成した下記表2に記載される化合物を、それぞれポリアミック酸(PAA-1)溶液の固形分(すなわちポリアミック酸(PAA-1))に対して下記表2に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例10~34のポリイミド膜形成用塗布液を調整した。
Figure JPOXMLDOC01-appb-T000067
 <実施例35~45>
 上記で作成したポリアミック酸(PAA-2)溶液(10.0g)に、上記式[A]で表される化合物として上記合成例で作成した下記表3に記載される化合物を、それぞれポリアミック酸(PAA-2)溶液の固形分(すなわちポリアミック酸(PAA-2))に対して10mol%となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例35~45のポリイミド膜形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-T000068
 <実施例46~59>
 上記で作成したポリアミック酸(PAA-3)溶液(40.0g)に、上記式[A]で表される化合物として上記合成例で作成した下記表4に記載される化合物を、それぞれポリアミック酸(PAA-3)溶液の固形分(すなわちポリアミック酸(PAA-3))に対して表4に記載する質量%となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例46~59のポリイミド膜形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-T000069
<実施例60~62>
 上記で作製したポリアミック酸(PAA-2)溶液(70.0g)に、上記式[A]で表される化合物として上記合成例で作成した下記表5に記載される化合物を、それぞれポリアミック酸(PAA-2)溶液の固形分(すなわちポリアミック酸(PAA-2))に対して下記表5に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例60~62のポリイミド膜形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-T000070
 <実施例63~76>
 上記で作成した可溶性ポリイミド(SPI-1)溶液(10.0g)に、上記式[A]で表される化合物として上記合成例で作成した下記表6に記載される化合物を、それぞれ可溶性ポリイミド(SPI-1)溶液の固形分(すなわち可溶性ポリイミド(SPI-1))に対して、下記表6に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例63~76のポリイミド膜形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-T000071
 <実施例77~86及び比較例1>[架橋効果の確認試験(ストリッピングテスト)]
 上記実施例63~72のポリイミド膜形成用塗布液をシリコンウエハにスピンコート(2500rpm/30秒)し、230℃のホットプレート上で30分間焼成を行い、塗膜[a1]を形成させた。得られた塗膜[a1]の膜厚を(株)小坂研究所社製サーフコーダET4000Mを用いて測定した。次に、塗膜[a1]が形成されたシリコンウエハを再度スピンコーターにセットして、NMPをシリコンウエハ全面が覆われるまで滴下し、60秒静置した後、NMPをスピンドライ(1500rpm/30秒)し、100℃のホットプレート上で30秒間焼成を行い、残膜を塗膜[a2]とした。この塗膜[a2]の膜厚を再度測定し、以下の計算式の基づき、残膜率を算出した。なお、比較例1として、上記で作成した可溶性ポリイミド(SPI-1)溶液、すなわち、上記式[A]で表される化合物を含有していない可溶性ポリイミド溶液についても同様の操作を行い、残膜率を算出した。結果を表7に示す。
  残膜率(%)=塗膜[a2]の膜厚/塗膜[a1]の膜厚×100
 この結果、上記式[A]で表される化合物を添加したポリイミド膜形成用塗布液(液晶配向処理剤)を用いることで、塗膜(ポリイミド膜)の溶媒耐性を改善するできることが確認された。したがって、可溶性ポリイミドが上記式[A]で表される化合物により架橋されたものと推測される。さらには、添加する上記式[A]で表される二官能化合物を適切に選択することにより、塗膜の溶解性を比較的自由に制御できることが確認された。
 なお、同様にして実施例1~62及び実施例73~76のポリイミド膜形成用塗布液を用いて塗膜を形成しストリッピングテストを行なったところ、それぞれ上記式[A]で表される化合物を添加していないものと比較して、残膜率が高くなり、上記式[A]で表される化合物を添加したポリイミド膜形成用塗布液を用いることで、ポリイミド膜の溶媒耐性を改善するできることが確認された。
Figure JPOXMLDOC01-appb-T000072
 [液晶配向膜及び液晶セルの作製]
 上記各実施例で調製したポリイミド膜形成用塗布液(液晶配向剤)を用いて、以下のようにして液晶セルを作製した。
 ポリイミド膜形成用塗布液(液晶配向剤)をガラス基板またはITO透明電極付きガラス基板にスピンコートし、80℃のホットプレート上で70秒間乾燥させた後、所定の焼成条件で、膜厚100nmの塗膜を形成させた。
 その後、ラビングによる液晶配向処理については、この塗膜面をロール径120mmのラビング装置でレーヨン布を用いて、所定のラビング条件でラビングし、液晶配向膜付き基板を得た。光による液晶配向処理については、この塗膜面に直線偏光UV光線(UV波長313nm、照射強度8.0mW/cm-2)を露光量0mJ~1000mJの間で変化させ、プレートの法線に対して40°傾け照射することにより行なった。なお、直線偏光UVは高圧水銀ランプの紫外光に313nmのバンドパスフィルターを通した後、313nmの偏光板を通すことで調製した。
 このように液晶配向処理を行なった液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合いラビング方向が互いに平行になるようにして張り合わせる(アンチパラレル液晶セル、実施例87~116)、または、直行するようにして張り合わせる(ツイストネマティック液晶セル、実施例155~179、実施例296~315、実施例316~321)、あるいは、UV照射したものに関しては照射した偏光の方向が平行となるようにして張り合わせ(垂直配向モード用アンチパラレル液晶セル、実施例180~182、183~294)、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、アンチパラレル液晶セルにおいては、液晶MLC-2003(メルク社製)を、ツイストネマティック液晶セルにおいてはカイラル剤入りの液晶MLC-2003(メルク社製)を注入し、垂直配向モード用アンチパラレル液晶セルにおいては液晶MLC-6608(メルク社製)を注入し、注入口を封止して、各々の液晶セルを得た。
 [液晶セルの評価]
 作製した各液晶セルの物性の測定、および特性の評価の方法は以下の通りである。なお、各測定、評価において作成した液晶配向膜や液晶セルの基板、焼成条件及びラビング条件を、合わせて示す。
 <実施例87~116及び比較例2~4><液晶配向性評価>
 表8に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作成した液晶セルを偏光板で挟み、後部からバックライトを照射した状態で、液晶セルを回転させて、明暗の変化や流動配向の有無で液晶が配向しているかを目視にて観察した。その際、下記の基準で評価した。なお、液晶配向性評価用に作成した液晶セルは、基板としてガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を230℃に加熱したホットプレート上で30分間焼成とし、ラビング条件をロール回転数300rpm、ロール進行速度50mm/sec、押し込み量0.15mmとして作製した。また、合わせて、上記式[A]で表される化合物や架橋剤を未添加のもの(比較例2)、及び一般的な市販の架橋剤として、下記架橋剤を添加した塗布液(比較例3または比較例4)を調整し、効果を比較した。結果を表8に示す。
評価基準
 ◎:液晶の配向が確認でき、且つ流動配向がない
 ○:液晶は配向しているが、流動配向が若干観察される
 ×:液晶は配向しているが、流動配向が多く観察される
Figure JPOXMLDOC01-appb-C000073
 この結果、比較例3及び比較例4のように、市販架橋剤を用いた場合、一般に液晶の配向性は阻害されやすい傾向にあるが、本発明の式[A]で表される化合物を添加したポリイミド膜形成用塗布液を用いた場合には、液晶の配向性を阻害することなく、場合によっては、配向性を向上させることもできることが確認された。
Figure JPOXMLDOC01-appb-T000074
 <実施例117~154及び比較例5~6><ラビング耐性評価>
 表9-1~表9-2に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作成した液晶配向膜の表面を、共焦点レーザー顕微鏡にて観察し、下記の基準で評価を行った。なお、基板としてITO透明電極付きガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を230℃に加熱したホットプレート上で30分間焼成とし、ラビング条件をロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量を0.5mmとして作成した。また、合わせて、上記式[A]で表される化合物を未添加のもの(比較例5及び比較例6)を調整し、効果を比較した。結果を表9-1~表9-2に示す。
 ○:削れカスやラビング傷が観察されない。
 △:削れカスやラビング傷が観察される。
 ×:膜が剥離する又は目視でラビング傷が観察される。
 この結果、上記式[A]で表される化合物を添加していない比較例5及び比較例6と比較して、本発明の上記式[A]で表される化合物を添加したポリイミド膜形成用塗布液を用いた場合には、いずれのポリマーを用いても削れ耐性が改善することが確認された。
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
 <実施例155~179及び比較例7><ツイストネマティック液晶セルのプレチルト角測定>
 表10に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製した液晶セルについて、105℃で5分間加熱した後、プレチルト角の測定を行った。プレチルト角はAxo Metrix社の「Axo Scan」にて、ミュラーマトリクス法を用いて測定した。なお、ツイストネマティック液晶セルのプレチルト角測定用に作成した液晶セルは、基板としてITO透明電極付きガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を230℃に加熱したホットプレート上で30分間焼成とし、ラビング条件をロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmとして作製した。また、合わせて、上記式[A]で表される化合物を未添加のもの(比較例7)を調整し、効果を比較した。結果を表10に示す。
 この結果、上記式[A]で表される化合物の種類と添加量を適切に選択することにより、所望のプレチルト角を任意に得ることができることが確認された。
Figure JPOXMLDOC01-appb-T000077
 <実施例180~182及び比較例8><アンチパラレル液晶セルのプレチルト角測定>
 表11に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製した液晶セルについて、120℃で1時間加熱した後、プレチルト角の測定を行った。プレチルト角はAxo Metrix社の「Axo Scan」にて、ミュラーマトリクス法を用いて測定した。なお、アンチパラレル液晶セルのプレチルト角測定用に作成した液晶セルは、基板としてITO透明電極付きガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を200℃に加熱した熱風循環式オーブン内で30分間焼成とし、配向処理を行わず、前述の液晶セル作成を行った。また、合わせて、上記式[A]で表される化合物を未添加のもの(比較例8)を調整し、効果を比較した。結果を表11に示す。
 この結果、上記式[A]で表される化合物を添加していない比較例8と比較して、上記式[A]で表される化合物を添加したポリイミド膜形成用塗布液を用いた場合には、顕著にプレチルト角を大きくすることができることが確認された。したがって、上記式[A]で表される化合物を添加することで、ベースポリマー、すなわち、ポリイミド膜形成用塗布液が含有するポリイミド前駆体やポリイミドに液晶を立たせる側鎖成分を導入していなくても、液晶を垂直に配向させることができることが確認された。
Figure JPOXMLDOC01-appb-T000078
 <実施例183~294><液晶配向性評価及びアンチパラレル液晶セルのプレチルト角測定>
 表12-1~12-4に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製した液晶セルを偏光板で挟み、後部からバックライトを照射した状態で、液晶セルを回転させて、明暗の変化や流動配向の有無で液晶が配向しているかを目視にて観察したところ、良好な配向性を示した。その後、3Vの交流電圧を液晶セルに印加し、液晶が配向しているかを目視にて観察した。その際、下記の基準で評価した。なお、液晶配向性評価用に作成した液晶セルは、基板としてガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を200℃に加熱した熱風循環式オーブンで30分間焼成とし、得られた塗膜付きのガラス基板に前述の光配向処理を行った後に作製した。
評価基準
 良好:液晶の配向が確認でき、且つ流動配向がない
 不良:液晶は配向しているが、流動配向が多く観察される
 また、表12-1~12-4に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作成した液晶セルについて、120℃で1時間加熱した後、プレチルト角の測定を行った。プレチルト角はAxo Metrix社の「Axo Scan」にて、ミュラーマトリクス法を用いて測定した。
 この結果、光反応性側鎖を有する上記式[A]で表される化合物を添加したポリイミド膜形成用塗布液(液晶配向処理剤)を用いることで、光配向処理を行った場合においても良好な垂直配向性が得られることが確認された。また、本発明のポリイミド膜形成用塗布液(液晶配向処理剤)に偏光の紫外線を照射することで、垂直から僅かに傾けた状態で液晶を配向させる能力があることが確認された。さらに、添加量と照射量を制御することにより、プレチルト角を微調整できることも確かめられた。これらのことから、本発明のポリイミド膜形成用塗布液(液晶配向処理剤)は、垂直配向方式の液晶表示素子用の液晶配向膜に利用可能であり、また光配向法で使用する液晶配向膜としても有用であると言える。
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
 <実施例295~315及び比較例9><電圧保持率(VHR)の測定>
 表13に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製した液晶セルについて、初期状態の電圧保持率測定を行なった。電圧保持率の測定は、90℃の温度下で4Vの電圧を60μs間印加し、16.67ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。電圧保持率の測定には東陽テクニカ社製のVHR-1電圧保持率測定装置を使用した。なお、電圧保持率(VHR)の測定用に作成した液晶セルは、基板としてITO透明電極付きガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を230℃に加熱したホットプレート上で30分間焼成とし、ラビング条件をロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmとして作製した。また、合わせて、上記式[A]で表される化合物を未添加のもの(比較例9)を調整し、効果を比較した。結果を表13に示す。
 この結果、上記式[A]で表される化合物を添加したポリイミド膜形成用塗布液を用いることで、未添加時よりも良好な電圧保持率特性を得ることができることが確認された。
Figure JPOXMLDOC01-appb-T000083
 <実施例316~321及び比較例10><蓄積電荷(RDC)の見積もり>
 表14に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製したツイストネマティック液晶セルに、23℃の温度下で直流電圧を0Vから0.1V間隔で1.0Vまで印加し、各電圧でのフリッカー振幅レベルを測定し、検量線を作成した。5分間アースした後、交流電圧3.0V、直流電圧5.0Vを印加し、1時間後のフリッカー振幅レベルを測定し、予め作成した検量線と照らし合わせる事によりRDCを見積もった(フリッカー参照法)。なお、蓄積電荷(RDC)の見積もり測定用に作成した液晶セルは、基板としてITO透明電極付きガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を230℃に加熱したホットプレート上で30分間焼成とし、ラビング条件をロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmとして作製した。また、合わせて、上記式[A]で表される化合物を未添加のもの(比較例10)を調整し、効果を比較した。結果を表14に示す。
 この結果、上記式[A]で表される化合物を添加したポリイミド膜形成用塗布液を用いることで、RDCが小さい液晶セルを得ることができることが確認された。
Figure JPOXMLDOC01-appb-T000084
 <実施例322~329及び比較例11>エージング試験前後のイオン密度の測定
 上記ポリアミック酸(PAA-1)溶液(10.0g)に修飾用化合物として合成例で作製した表15に示す化合物をそれぞれポリアミック酸(PAA-1)溶液の固形分(すなわちポリアミック酸(PAA-1))に対して下記表15に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、ポリイミド膜形成用塗布液を調製した。
 そして、これらポリマー膜形成用塗布液(液晶配向剤)をそれぞれ用いて作製したツイストネマティック液晶セルについて、初期状態(23℃)のイオン密度を測定し、また、60℃で30時間保持(エージング)した後のイオン密度測定を行った。イオン密度測定においては、液晶セルに電圧±10V、周波数0.01Hzの三角波を印加した時のイオン密度を測定した。測定温度は80℃で行った。測定装置は、いずれの測定も東陽テクニカ社製6245型液晶物性評価装置を用いた。結果を表15に示す。
 なお、ツイストネマティック液晶セルは、ポリイミド膜形成用塗布液の塗膜の焼成条件を200℃に加熱したホットプレート上で30分間焼成とした以外は上記ツイストネマティック液晶セル(実施例155~179)と同様の操作を行って作製した。また、合わせて、修飾用化合物を未添加のものについても同様の操作を行って、効果を比較した。
 この結果、修飾用化合物の種類と添加量を適切に選択することにより、未添加の場合と比較して、液晶セル中のイオン性不純物を大幅に低減させられることが確認された。
Figure JPOXMLDOC01-appb-T000085
 <実施例330~342>
 上記で作製したポリアミック酸(PAA-1)溶液(10.0g)に、修飾用化合物として上記合成例で作製した下記表16に記載される化合物を、それぞれポリアミック酸(PAA-1)溶液の固形分(すなわちポリアミック酸(PAA-1))に対して下記表16に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例330~342のポリイミド膜形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-T000086
 <実施例343~344>
 上記で作製したポリアミック酸(PAA-3)溶液(40.0g)に、修飾用化合物として上記合成例で作製した下記表17に記載される化合物を、それぞれポリアミック酸(PAA-3)溶液の固形分(すなわちポリアミック酸(PAA-3))に対して表17に記載する質量%となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例343~344のポリイミド膜形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-T000087
 <実施例345~447><液晶配向性評価及び垂直配向モード用アンチパラレル液晶セルのプレチルト角測定>
 [液晶配向膜及び液晶セルの作製]
 上記各実施例330~344で調製したポリイミド膜形成用塗布液(液晶配向剤)を用いて、以下のようにして液晶セルを作製した。
 ポリイミド膜形成用塗布液(液晶配向剤)をガラス基板にスピンコートし、80℃のホットプレート上で70秒間乾燥させた後、200℃に加熱した熱風循環式オーブンで30分間焼成して、膜厚100nmの塗膜を形成させた。
 その後、この塗膜面に直線偏光UV光線(UV波長313nm、照射強度8.0mW/cm-2)を露光量0mJ~1000mJの間で変化させ、プレートの法線に対して40°傾け照射した。なお、直線偏光UVは高圧水銀ランプの紫外光に313nmのバンドパスフィルターを通した後、313nmの偏光板を通すことで調製した。
 このように液晶配向処理を行なった液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合い照射した偏光の方向が平行となるようにして張り合わせ、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-6608(メルク社製)を注入し、注入口を封止して、各垂直配向モード用アンチパラレル液晶セルを得た。
 そして、作製した上記液晶セルを偏光板で挟み、後部からバックライトを照射した状態で、液晶セルを回転させて、明暗の変化や流動配向の有無で液晶が配向しているかを目視にて観察したところ、良好な配向性を示した。その後、3Vの交流電圧を液晶セルに印加し、液晶が配向しているかを目視にて観察した。その際、下記の基準で評価した。結果を表18-1~18-4に示す。
評価基準
 良好:液晶の配向が確認でき、且つ流動配向がない
 不良:液晶は配向しているが、流動配向が多く観察される
 また、作製した上記液晶セルについて、120℃で1時間加熱した後、プレチルト角の測定を行った。プレチルト角はAxo Metrix社の「Axo Scan」にて、ミュラーマトリクス法を用いて測定した。結果を表18-1~18-4に示す。
 この結果、表18-1~18-4に示すように、光反応性側鎖を有する修飾用化合物を添加したポリイミド膜形成用塗布液(液晶配向処理剤)を用いることで、光配向処理を行った場合においても良好な垂直配向性が得られることが確認された。また、本発明のポリイミド膜形成用塗布液(液晶配向処理剤)に偏光の紫外線を照射することで、垂直から僅かに傾けた状態で液晶を配向させる能力があることが確認された。さらに、添加量と照射量を制御することにより、プレチルト角を微調整できることも確かめられた。これらのことから、本発明のポリイミド膜形成用塗布液(液晶配向処理剤)は、垂直配向方式の液晶表示素子用の液晶配向膜に利用可能であり、また光配向法で使用する液晶配向膜としても有用であると言える。
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
 <実施例448~471>
 上記で作製したポリアミック酸(PAA-1)溶液(10.0g)に、修飾用化合物として上記合成例で作製した下記表19に記載される化合物を、それぞれポリアミック酸(PAA-1)溶液の固形分(すなわちポリアミック酸(PAA-1))に対して下記表19に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例448~471のポリイミド膜形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-T000092
 <実施例472~495><水平配向モード用アンチパラレルセルの液晶配向性評価>
 [液晶配向膜及び液晶セルの作製]
 上記各実施例448~471で調製したポリイミド膜形成用塗布液(液晶配向剤)を用いて、以下のようにして液晶セルを作製した。
 ポリイミド膜形成用塗布液(液晶配向剤)をガラス基板にスピンコートし、80℃のホットプレート上で70秒間乾燥させた後、200℃に加熱した熱風循環式オーブンで30分間焼成して、膜厚100nmの塗膜を形成させた。
 その後、この塗膜面に直線偏光UV光線(UV波長313nm、照射強度8.0mW/cm-2)を露光量0mJ~1000mJの間で変化させ、基板に対して真上から照射した。なお、直線偏光UVは高圧水銀ランプの紫外光に313nmのバンドパスフィルターを通した後、313nmの偏光板を通すことで調製した。
 このように液晶配向処理を行なった液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合い照射した偏光の方向が平行となるようにして張り合わせ、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、水平配向モード用アンチパラレル液晶セルを得た。
 そして、作製した上記水平配向モード用アンチパラレル液晶セルを偏光板で挟み、後部からバックライトを照射した状態で、液晶セルを回転させて、明暗の変化や流動配向の有無で液晶が配向しているかを目視にて観察した。その際、下記の基準で評価した。結果を表20に示す。
評価基準
◎:液晶の配向が確認でき、且つ流動配向がない
○:液晶は配向しているが、流動配向が若干観察される
△:液晶は配向しているが、流動配向が多く観察される
×:液晶がまったく配向していない
 この結果、いずれの液晶セルにおいても光照射を行なっていない液晶セルではまったく配向性を示さないが、光照射を行なった液晶セルにおいては、修飾用化合物の添加量および光照射量に応じて、液晶が配向することが確認された。なお、配向が認められた各液晶セルを130℃で30分アイソトロピック処理した場合においても配向性に顕著な変化は認められなかった。すなわち、添加剤の種類と添加量を適切に選択することで、容易に水平配向性セルの作製が可能であることが確認された。
Figure JPOXMLDOC01-appb-T000093

Claims (6)

  1.  テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一方のポリマーと、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入した下記式[A]で表される二官能化合物とを含有することを特徴とするポリイミド膜形成用塗布液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Yは前記ジアミン化合物由来の2価の有機基を表し、R及びRはそれぞれ-H、または、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基であり、Yの一部と連結し環を形成していてもよく、また、R及びRは同一でも異なっていてもよい。)
  2.  請求項1に記載するポリイミド膜形成用塗布液からなることを特徴とする液晶配向剤。
  3.  請求項1に記載するポリイミド膜形成用塗布液を基板に塗布し、焼成して得られることを特徴とするポリイミド膜。
  4.  テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一方のポリマーが、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入した下記式[A]で表される二官能化合物で架橋されたポリイミドからなることを特徴とするポリイミド膜。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Yは前記ジアミン化合物由来の2価の有機基を表し、R及びRはそれぞれ-H、または、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基であり、Yの一部と連結し環を形成していてもよく、また、R及びRは同一でも異なっていてもよい。)
  5.  請求項3または4に記載するポリイミド膜からなることを特徴とする液晶配向膜。
  6.  請求項5に記載する液晶配向膜を具備することを特徴とする液晶表示素子。
PCT/JP2011/080378 2010-12-28 2011-12-28 ポリイミド膜形成用塗布液、液晶配向剤、ポリイミド膜、液晶配向膜及び液晶表示素子 WO2012091088A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180068575.1A CN103415583B (zh) 2010-12-28 2011-12-28 聚酰亚胺膜形成用涂布液、液晶取向剂、聚酰亚胺膜、液晶取向膜及液晶显示元件
JP2012551038A JP5831712B2 (ja) 2010-12-28 2011-12-28 ポリイミド膜形成用塗布液、液晶配向剤、ポリイミド膜、液晶配向膜及び液晶表示素子
KR1020137019754A KR101856808B1 (ko) 2010-12-28 2011-12-28 폴리이미드막 형성용 도포액, 액정 배향제, 폴리이미드막, 액정 배향막 및 액정 표시 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-294290 2010-12-28
JP2010294290 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091088A1 true WO2012091088A1 (ja) 2012-07-05

Family

ID=46383176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080378 WO2012091088A1 (ja) 2010-12-28 2011-12-28 ポリイミド膜形成用塗布液、液晶配向剤、ポリイミド膜、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP5831712B2 (ja)
KR (1) KR101856808B1 (ja)
CN (1) CN103415583B (ja)
TW (1) TWI519569B (ja)
WO (1) WO2012091088A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085642A (ja) * 2012-10-26 2014-05-12 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法、高分子化合物、化合物
JPWO2013157450A1 (ja) * 2012-04-17 2015-12-21 日産化学工業株式会社 重合体、液晶配向剤、液晶配向膜及び液晶表示素子並びにジアミン
JP2016200798A (ja) * 2015-04-08 2016-12-01 Jsr株式会社 液晶配向剤、液晶配向膜、液晶配向膜の製造方法、液晶素子、液晶素子の製造方法及び化合物
US20220056212A1 (en) * 2020-08-18 2022-02-24 National Tsing Hua University Polyimide Polymer, Polyimide Mixture and Polyimide Film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179261B2 (ja) * 2012-11-07 2017-08-16 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR102151608B1 (ko) * 2013-09-02 2020-09-03 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막, 액정 표시 소자, 위상차 필름 및 그의 제조 방법, 중합체 그리고 화합물
JP6460342B2 (ja) * 2013-11-28 2019-01-30 日産化学株式会社 液晶配向剤及びそれを用いた液晶表示素子
KR102041642B1 (ko) * 2013-12-27 2019-11-06 코오롱인더스트리 주식회사 폴리아믹산 및 이를 이용한 폴리이민-이미드 필름
CN104328667B (zh) * 2014-10-29 2016-06-15 江西先材纳米纤维科技有限公司 高性能聚酰亚胺多曲孔膜、其制备方法及用途
TWI690544B (zh) * 2016-10-28 2020-04-11 奇美實業股份有限公司 軟性基板用組成物、其製造方法及軟性基板
KR102382472B1 (ko) 2018-11-20 2022-04-01 주식회사 엘지화학 가교제 화합물, 이를 포함하는 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1147759A (en) * 1965-06-17 1969-04-10 Sterling Drug Inc Aromatic derivatives and preparation thereof
WO2003016289A1 (en) * 2001-08-17 2003-02-27 Ciba Specialty Chemicals Holding Inc. Triazine derivatives and their use as sunscreens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW448336B (en) * 1996-07-11 2001-08-01 Nissan Chemical Ind Ltd Alignment treating agent for a liquid crystal cell
WO2008062877A1 (fr) * 2006-11-24 2008-05-29 Nissan Chemical Industries, Ltd. Agent de traitement d'orientation de cristaux liquides et élément d'affichage à cristaux liquides produit en utilisant ledit agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1147759A (en) * 1965-06-17 1969-04-10 Sterling Drug Inc Aromatic derivatives and preparation thereof
WO2003016289A1 (en) * 2001-08-17 2003-02-27 Ciba Specialty Chemicals Holding Inc. Triazine derivatives and their use as sunscreens

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GRAF GABRIELE INA ET AL.: "The synthesis of aromatic diazatricycles from phenylenediamine-bis(methylene Meldrum's acid) derivatives", TETRAHEDRON, vol. 58, no. 44, pages 9095 - 9100, XP004390228, DOI: doi:10.1016/S0040-4020(02)01085-2 *
MONTALBAN ANTONIO GARRIDO ET AL.: "'Melen complexes':a new family of schiff base metal chelates derived from di-meldrum's acid derivatives", TETRAHEDRON LETTERS, vol. 51, no. 42, pages 5543 - 5545, XP027285868 *
STRAKOVS A. ET AL.: "Reactions of 2-acil-1,3-cyclanediones with diamines", LATVIJAS KIMIJAS ZURNALS, no. 1-2, pages 106 - 112 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013157450A1 (ja) * 2012-04-17 2015-12-21 日産化学工業株式会社 重合体、液晶配向剤、液晶配向膜及び液晶表示素子並びにジアミン
JP2014085642A (ja) * 2012-10-26 2014-05-12 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法、高分子化合物、化合物
JP2016200798A (ja) * 2015-04-08 2016-12-01 Jsr株式会社 液晶配向剤、液晶配向膜、液晶配向膜の製造方法、液晶素子、液晶素子の製造方法及び化合物
US20220056212A1 (en) * 2020-08-18 2022-02-24 National Tsing Hua University Polyimide Polymer, Polyimide Mixture and Polyimide Film

Also Published As

Publication number Publication date
TWI519569B (zh) 2016-02-01
CN103415583B (zh) 2016-02-24
JPWO2012091088A1 (ja) 2014-06-05
JP5831712B2 (ja) 2015-12-09
KR101856808B1 (ko) 2018-05-10
TW201241046A (en) 2012-10-16
CN103415583A (zh) 2013-11-27
KR20130130033A (ko) 2013-11-29

Similar Documents

Publication Publication Date Title
JP5831712B2 (ja) ポリイミド膜形成用塗布液、液晶配向剤、ポリイミド膜、液晶配向膜及び液晶表示素子
JP5870487B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP5896164B2 (ja) 機能性ポリマー膜形成用塗布液及び機能性ポリマー膜形成方法
JP6593603B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP5975227B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
JP6387957B2 (ja) 光反応性基を有する架橋性化合物を含有する液晶配向剤
JP6460341B2 (ja) 液晶表示素子および液晶表示素子の製造方法
JP6418401B2 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
JP6083388B2 (ja) 液晶配向剤の製造方法
WO2015152174A1 (ja) ポリアミック酸エステル-ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
WO2014034792A1 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
WO2013147083A1 (ja) ポリイミド系の液晶配向処理剤、液晶配向膜、及び液晶表示素子
WO2014133042A1 (ja) 重合体、液晶配向処理剤、液晶配向膜および液晶表示素子
KR102222790B1 (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
KR20150046157A (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
JP7193782B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JPWO2016125871A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180068575.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137019754

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11853769

Country of ref document: EP

Kind code of ref document: A1