WO2012091064A1 - 内燃エンジンの始動制御方法及び始動制御装置 - Google Patents

内燃エンジンの始動制御方法及び始動制御装置 Download PDF

Info

Publication number
WO2012091064A1
WO2012091064A1 PCT/JP2011/080330 JP2011080330W WO2012091064A1 WO 2012091064 A1 WO2012091064 A1 WO 2012091064A1 JP 2011080330 W JP2011080330 W JP 2011080330W WO 2012091064 A1 WO2012091064 A1 WO 2012091064A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle
engine
internal combustion
combustion engine
speed
Prior art date
Application number
PCT/JP2011/080330
Other languages
English (en)
French (fr)
Inventor
肇 安田
佐藤 健一
高橋 秀明
裕賢 村木
糸山 浩之
徹 柴田
進 島崎
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2012091064A1 publication Critical patent/WO2012091064A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This invention relates to control at the start of an internal combustion engine.
  • JP2007-278073A issued by the Japan Patent Office in 2007 discloses engine control for this purpose.
  • the control includes control of the opening degree of the intake throttle of the internal combustion engine, control of the fuel injection amount, and control of the ignition timing for the injected fuel.
  • the conventional technology prevents the increase in hydrocarbons (HC) in the exhaust gas by suppressing the engine speed after the engine speed reaches the target idle speed and stabilizing the air-fuel ratio at the stoichiometric air-fuel ratio. is doing.
  • the throttle is closed when cranking of the internal combustion engine is started, and the throttle is started to open when the internal combustion engine is completely exploded.
  • the rotation speed of the internal combustion engine at the time of start-up pulsates greatly and draws a large waveform of vertical movement. If the throttle starts to open when the engine rotational speed reaches a predetermined complete explosion speed as in the prior art, the development of the suction negative pressure is delayed due to the subsequent decrease in the rotational speed. A delay in the development of the suction negative pressure leads to a deterioration of the exhaust composition and an increase in fuel consumption.
  • an object of the present invention is to satisfy both the promotion of the development of the intake negative pressure at the start of the internal combustion engine and the securing of the intake air amount necessary for maintaining the idle rotation speed, and the early reduction of the intake negative pressure and the engine rotation speed. It is to stabilize to an appropriate state at the time of idling.
  • the present invention provides a starting control method for a spark ignition type internal combustion engine that includes a combustion chamber and a throttle that adjusts the amount of intake air to the combustion chamber and starts by cranking.
  • the start control method detects the start of cranking of the internal combustion engine, closes the throttle simultaneously with the start of cranking, and sets the engine rotational speed to the target idle after the rotational speed of the internal combustion engine reaches a predetermined target idle rotational speed.
  • the throttle starts to open so that the intake air amount necessary to maintain the rotation speed is supplied to the combustion chamber, and the engine rotation speed reaches the predetermined target idle rotation speed.
  • the ignition timing is retarded so that the engine speed does not increase, and the throttle opening is gradually increased after starting to open from the closed state.
  • FIG. 1 is a schematic configuration diagram of a control apparatus for an internal combustion engine to which the present invention is applied.
  • FIG. 2 is a flowchart illustrating a routine for setting a complete explosion flag and a target arrival flag, which is executed by an engine controller according to the prior art.
  • FIG. 3 is a flowchart for explaining a control routine for ignition timing and throttle opening executed by an engine controller according to the prior art.
  • FIG. 4 is a flowchart illustrating a target equivalence ratio calculation routine executed by an engine controller according to the prior art.
  • FIG. FIG. 5 is a flowchart for explaining a fuel injection pulse width calculation routine executed by an engine controller according to the prior art.
  • FIG. 6A-6C are timing charts illustrating the concept of the present invention in comparison with the prior art.
  • FIG. 6A-6C are timing charts illustrating the concept of the present invention in comparison with the prior art.
  • FIG. 6A-6C are timing charts illustrating the concept of the present invention in comparison with the prior art.
  • FIG. 7A-7C are timing charts for explaining the concept of the throttle opening start timing setting based on the number of strokes according to the present invention.
  • FIG. 8A-8D are timing charts for explaining the relationship between the setting of various flags and the change in throttle opening according to the present invention.
  • FIG. 9 is a flow chart for explaining the ignition timing control routine executed by the engine controller according to the present invention.
  • FIG. 10 is a flowchart for explaining a flag setting routine executed by the engine controller according to the present invention.
  • FIG. 11 is a flowchart for explaining a throttle opening control routine executed by the engine controller according to the present invention.
  • FIG. 12A-12C are flowcharts showing an example of throttle control not according to the present invention at the time of starting the internal combustion engine.
  • FIG. 12A-12C are flowcharts showing an example of throttle control not according to the present invention at the time of starting the internal combustion engine.
  • FIG. 13A to 13C are timing charts showing changes in the throttle opening, the suction negative pressure, and the engine speed, which are brought about by the throttle control at the start of the internal combustion engine executed by the engine controller according to the present invention.
  • FIG. 14 is a timing chart showing variations regarding throttle control at the start of the internal combustion engine executed by the engine controller according to the present invention.
  • the vehicle internal combustion engine 1 stores the air adjusted by the throttle 23 in the intake collector 2 and then sucks it into the combustion chamber 5 of each cylinder via the intake manifold 3 and the intake valve 15.
  • the internal combustion engine 1 is a multi-cylinder spark ignition type reciprocating engine.
  • a fuel injector 21 is provided in the intake port 4 of each cylinder.
  • the fuel injector 21 intermittently injects fuel into the intake port 4 at a predetermined timing.
  • the fuel injected into the intake port 4 is mixed with intake air to form an air-fuel mixture.
  • the air-fuel mixture is confined in the combustion chamber 5 by closing the intake valve 15.
  • the air-fuel mixture confined in the combustion chamber 5 of each cylinder is compressed by the rise of the piston 6 provided in each cylinder, and is ignited and burned by the spark plug 14.
  • the gas pressure due to combustion pushes down the piston 6 and causes the piston 6 to reciprocate.
  • the reciprocating motion of the piston 6 is converted into the rotational motion of the crankshaft 7.
  • the combusted gas is discharged to the exhaust passage 8 as exhaust through the exhaust valve 16.
  • the exhaust passage 8 includes an exhaust manifold connected to each cylinder.
  • the exhaust manifold is provided with a first catalyst 9 as a startup catalyst.
  • the exhaust passage 8 reaches under the floor of the vehicle.
  • a second catalyst 10 is provided in the exhaust passage 8 in the lower floor portion.
  • the first catalyst 9 and the second catalyst 10 are each composed of a three-way catalyst, for example.
  • the three-way catalyst can efficiently remove HC, carbon monoxide (CO) and nitrogen oxide (NOx) contained in the exhaust gas simultaneously when the air-fuel ratio is in a narrow range centered on the stoichiometric air-fuel ratio.
  • the operation of the internal combustion engine 1 is controlled by the engine controller 31. Specifically, the engine controller 31 controls the intake air amount of the throttle 23, the fuel injection amount of the fuel injector 21, and the ignition timing of the spark plug 14.
  • the engine controller 31 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the engine controller 31 with a plurality of microcomputers.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the engine controller 31 includes an air flow meter 32 for detecting the intake air amount, a crank angle sensor for detecting the reference rotational position and unit angle rotation of the internal combustion engine 1, and an oxygen concentration in the exhaust gas.
  • An oxygen sensor 35 provided upstream of the first catalyst 9 in the exhaust passage 8 to be detected, an accelerator pedal depression amount sensor 42 for detecting the depression amount of the accelerator pedal 41 of the vehicle, and a starter for the vehicle driver to instruct the cranking of the internal combustion engine 1 Signals corresponding to detection values are input from the switch 36 and a water temperature sensor 37 that detects the engine coolant temperature.
  • the crank angle sensor includes a position sensor 33 that detects the rotation of the unit angle of the internal combustion engine 1 and a phase sensor 34 that detects the reference rotational position of the internal combustion engine 1.
  • the engine controller 31 determines the basic fuel injection amount of the fuel injector 21 based on the input signals from these sensors, and forms in the combustion chamber 5 based on the input signals from the oxygen sensor 35 provided upstream of the first catalyst 9.
  • the air-fuel ratio of the air-fuel mixture is feedback controlled.
  • the catalysts 9 and 10 are activated early and the oxygen sensor 35 is also activated early to realize air-fuel ratio feedback control early. Therefore, the oxygen sensor 35 is heated by the heater immediately after starting.
  • the engine controller 31 determines activation of the oxygen sensor 35 from the input signal from the oxygen sensor 35. The engine controller 31 starts air-fuel ratio feedback control when the oxygen sensor 35 is activated.
  • Catalysts 9 and 10 are not limited to three-way catalysts.
  • a vehicle that operates at a lean air-fuel ratio by supplying an air-fuel mixture that is leaner than the stoichiometric air-fuel ratio to the combustion chamber 5 in a low-load operation region in order to improve fuel efficiency after the engine is warmed up.
  • the second catalyst 10 is composed of a NOx trap catalyst, and the NOx trap catalyst has a three-way catalyst function.
  • the present invention can also be applied to a vehicle using such a catalyst.
  • the control of the intake air amount of the throttle 23 is performed by the control of the throttle motor 24 that drives the throttle 23.
  • the driver's required torque is input as the depression amount of the accelerator pedal 41.
  • the engine controller 31 determines a target torque based on the depression amount of the accelerator pedal.
  • the engine controller 31 calculates the target intake air amount for realizing the target torque, and outputs a signal corresponding to the target intake air amount to the throttle motor 24, thereby controlling the opening degree of the throttle 23.
  • the internal combustion engine 1 continuously changes the rotational phase difference between the variable valve lift mechanism 26 configured by a multi-node link that continuously changes the valve lift amount of the intake valve 15 and the crankshaft 7 and the intake valve camshaft 25. And a variable valve timing mechanism 27 that advances or retards the opening / closing timing of the intake valve 15.
  • the engine controller 31 performs the following control when the internal combustion engine 1 is started. (1) After the cranking, when the engine rotational speed reaches the target rotational speed during idling, the ignition timing is stepped from a starting ignition timing to a predetermined ignition timing, for example, an ignition timing for promoting catalyst warm-up, Or at least a change speed that is fast enough to prevent the engine speed from jumping; (2) The engine speed is set so that the amount of intake air necessary to maintain the engine speed at the target speed at idling is supplied to the combustion chamber 5 at the timing when the engine speed reaches the target idle speed. The throttle 23 starts to open a predetermined period before the timing at which the target idle rotation speed is reached.
  • the warming of the first catalyst 9 is promoted by the above control. Further, the engine speed increases after the engine speed reaches the target idle speed, and the increase of HC in the exhaust gas is prevented by stabilizing the air-fuel ratio at the stoichiometric air-fuel ratio.
  • FIG. With reference to 2-5, the control of the ignition timing, the throttle opening, and the fuel injection amount at the start of the internal combustion engine 1 according to the above-described prior art will be described, and then the control unique to the present invention will be described.
  • FIG. Reference numeral 2 represents a routine for setting a complete explosion flag and a target idle rotation arrival flag.
  • the engine controller 31 executes this routine at regular intervals, for example, every 100 milliseconds with the ignition switch provided in the vehicle turned on. It is assumed that the engine controller 31 is started when the ignition switch is switched from OFF to ON, and is always in an operating state while the ignition switch is ON.
  • step S1 the engine controller 31 reads the engine speed Ne.
  • the engine speed Ne is calculated based on an input signal from a crank angle sensor constituted by a position sensor 33 and a phase sensor 34.
  • step S2 the engine controller 31 determines a complete explosion flag.
  • the complete explosion speed N0 is a value for determining whether or not the internal combustion engine 1 has completely exploded, and is set to, for example, 1000 revolutions / minute (rpm). If the engine speed Ne has not reached the complete explosion speed N0, the engine controller 31 immediately ends the routine.
  • the engine controller 31 sets the complete explosion flag to 1 in step S4.
  • step S5 the engine controller 31 starts a timer.
  • the timer measures the elapsed time from the timing when the engine rotational speed Ne reaches the complete explosion rotational speed N0, and the timer value TIME is reset to zero as the timer starts.
  • the engine controller 31 ends the routine.
  • step S4 when the complete explosion flag is set to 1 in step S4, the determination in step S2 is affirmed in the next transition routine execution, and as a result, the processing in steps S6-S8 is performed.
  • step S6 the engine controller 31 compares the timer value TIME with the predetermined value DT.
  • the predetermined value DT means a time interval from the timing when the engine speed Ne reaches the complete explosion speed N0 to the timing when the target idle speed NSET is reached.
  • the predetermined value DT is set in advance by experiment or simulation.
  • step S6 Since the timer value TIME immediately after starting the timer is less than the predetermined value DT, the determination in step S6 is negative. In that case, the engine controller 31 increases the timer value TIME under a predetermined increment in step S7.
  • the predetermined increment is a value corresponding to the execution cycle of the routine.
  • the timer value TIME increases with each routine execution.
  • the timer value TIME becomes equal to or greater than the predetermined value DT, and the determination in step S6 changes from negative to positive.
  • the engine controller 31 sets a target idle rotation arrival flag indicating that the target idle rotation speed NSET has been reached to 1 in step S8.
  • the target idle rotation arrival flag is a flag that is initially set to zero when the ignition switch is switched from OFF to ON. After the process of step S7 or S8, the engine controller 31 ends the routine.
  • step S6 it is determined that the engine rotational speed has reached the target idle rotational speed NSET when a time corresponding to the predetermined value DT has elapsed after the internal combustion engine 1 has completely exploded.
  • the engine rotational speed Ne detected by the crank angle sensor it is of course possible to directly compare the engine rotational speed Ne detected by the crank angle sensor with the target idle rotational speed NSET.
  • FIG. Reference numeral 3 denotes a control routine for ignition timing and throttle opening.
  • the engine controller 31 executes this routine when the ignition switch is ON. Subsequent to the second routine, the routine is executed at regular intervals, for example, every 100 milliseconds.
  • step S21 the engine controller 31 determines whether or not the current routine execution timing is immediately after the ignition switch is switched from OFF to ON.
  • step S21 the engine controller 31 takes in the cooling water temperature TW of the internal combustion engine 1 detected by the water temperature sensor 37 as the starting water temperature TWINT in step S22.
  • the engine controller 31 calculates the first ignition timing ADV1 according to the starting water temperature TWINT.
  • the first ignition timing ADV1 is an ignition timing that is optimal for starting the engine, and is calculated here as a value that is greatly advanced from the ignition timing during normal operation.
  • step S23 the engine controller 31 sets the ignition timing command value ADV equal to the calculated first ignition timing ADV1.
  • step S24 an initial value is entered in the throttle target opening tTVO.
  • the initial value is, for example, zero.
  • step S21 determines whether or not the complete explosion flag is 1 in step S25. If the complete explosion flag is not 1, the engine controller 31 sets the ignition timing command value ADV equal to the previous value in step S27. In this way, the ignition timing command value ADV is maintained at the first ignition timing ADV1 until it is determined that the internal combustion engine 1 has completely exploded.
  • step S27 the engine controller 31 sets an initial value of zero to the throttle target opening degree tTVO in step S24 and ends the routine.
  • the ignition timing command value ADV is maintained at the first ignition timing ADV1, and the throttle target opening tTVO is maintained at zero.
  • the engine controller 31 determines whether or not the target idle rotation arrival flag is 1 in step S26. If the target idle rotation arrival flag is not 1, the engine controller 31 sets the ignition timing command value ADV equal to the previous value in step S28. Therefore, even after it is determined that the internal combustion engine 1 has completely exploded, the ignition timing command value ADV is not changed until the timer value TIME reaches the predetermined value DT, in other words, until the engine speed Ne reaches the target idle speed NEST. A value equal to the first ignition timing ADV1 is maintained.
  • step S28 the engine controller 31 calculates the throttle target opening degree tTVO by the following equation (1) in step S29.
  • tTVO tTVO (previous) + ⁇ TVO (1)
  • ⁇ TVO constant value
  • tTVO (previous) previous value of tTVO.
  • TTVO (previous) in the formula (1) is the previous value of the throttle target opening, and the initial value is zero.
  • the predetermined increment ⁇ TVO in the equation (1) is a value that defines the amount of increase in the throttle target opening per predetermined time.
  • the predetermined increment ⁇ TVO is determined so that the throttle target opening degree tTVO reaches the target idle opening degree TVO1 at the timing when the engine speed Ne reaches the target idle speed NSET.
  • the target idle opening TVO1 is a throttle opening corresponding to the minimum intake air amount necessary for the internal combustion engine 1 to generate a torque capable of maintaining the target idle rotational speed NSET.
  • the value of the target idle opening TVO1 is set in advance by experiment or simulation.
  • the engine controller 31 After setting the throttle target opening tTVO in step S29, the engine controller 31 compares the throttle target opening tTVO with the target idle opening TVO1 in step S30.
  • the throttle target opening tTVO does not exceed the target idle opening TVO1 immediately after the determination in step S26 has turned negative for the first time, that is, immediately after the engine speed Ne has reached the target idle speed NEST. In that case, the engine controller 31 ends the routine without performing any further processing.
  • the throttle target opening degree tTVO is increased by a predetermined increment ⁇ TVO every time the routine is executed by executing the process of step S29.
  • the engine controller 31 maintains the throttle target opening tTVO at TVO1 in step S31.
  • the engine controller 31 ends the routine. In the subsequent routine execution, therefore, even if the routine execution is repeated, the throttle target opening degree tTVO is not increased and is maintained at the target idle opening degree TVO1.
  • the engine controller 31 calculates the second ignition timing ADV2 in step S32 according to the cooling water temperature TW of the internal combustion engine 1 detected by the water temperature sensor 37.
  • the second ignition timing ADV2 can be set to, for example, an ignition timing for promoting warm-up of the first catalyst 9 when the internal combustion engine 1 is cold started.
  • the ignition timing on the retard side can be temporarily set. In this way, the second ignition timing ADV2 is calculated as a value retarded from the first ignition timing ADV1.
  • the engine controller 31 sets the ignition timing command value ADV equal to the second ignition timing ADV2.
  • the ignition timing command value ADV is switched stepwise from the first ignition timing ADV1 to the second ignition timing ADV2.
  • step S34 the engine controller 31 maintains the throttle target opening tTVO at the same value as the previous time, that is, TVO1. After the process of step S34, the engine controller 31 ends the routine.
  • the ignition timing command value ADV is switched stepwise to the second ignition timing ADV2.
  • the throttle target opening degree tTVO is maintained at the target idle opening degree TVO1.
  • the ignition timing command value ADV is switched to ADV2 all at once in a stepwise manner, but it is also possible to switch the ignition timing command value ADV at a predetermined change speed within a range in which the engine tilt speed can be prevented from rising.
  • FIG. 4 shows a routine for calculating the target equivalent ratio TFBYA executed by the engine controller 31.
  • the equivalence ratio corresponds to the reciprocal of the air-fuel ratio.
  • the engine controller 31 executes this routine at regular intervals, for example, every 100 milliseconds with the ignition switch turned on. It is assumed that the engine controller 31 is started when the ignition switch is switched from OFF to ON, and is always in an operating state while the ignition switch is ON.
  • step S41 the engine controller 31 determines whether or not the current routine execution timing corresponds to immediately after the ignition switch is switched from OFF to ON.
  • the engine controller 31 calculates an initial value KAS0 of the starting increase correction coefficient in step S42 based on the starting water temperature TWINT that the water temperature sensor 37 appears.
  • the initial value KAS0 of the starting increase correction coefficient is a value that increases as the starting water temperature TWINT decreases.
  • step S43 the engine controller 31 sets the startup increase correction coefficient KAS equal to the initial value KAS0. After the process of step S43, the engine controller 31 performs the process of step S50.
  • step S41 determines whether or not the target idle rotation arrival flag is 1 in step S44.
  • the target idle rotation arrival flag is reset to zero when the ignition switch is turned ON. 2 is a flag set to 1 in step S8.
  • the target idle rotation arrival flag is 1, it means that the engine rotation speed Ne has reached the target idle rotation speed NSET.
  • step S44 determines whether the determination in step S44 is negative. If the determination in step S44 is negative, the engine controller 31 sets the starting increase correction coefficient KAS to the same value as in the previous time in step S45. In this routine, the start-time increase correction coefficient KAS is maintained at the initial value KAS0 until the determination in step S44 becomes affirmative. After the process of step S45, the engine controller 31 performs the process of step S50.
  • step S44 determines in step S46 whether the start-time increase correction coefficient KAS is zero.
  • the starting increase correction coefficient KAS is set to the initial value KAS0 in step S43.
  • the startup increase correction coefficient KAS is set to the initial value KAS0, so the startup increase correction coefficient KAS does not match zero.
  • the engine controller 31 sets the start-time increase correction coefficient KAS by the following equation (2) in step S47.
  • the predetermined reduction rate ⁇ t is a value that determines a decrease per predetermined time of the starting increase correction coefficient KAS, and this value is zero when the starting increase correction coefficient KAS is zero when the suction negative pressure converges to a constant value. As such, it is determined in advance by adaptation.
  • the initial value of KAS (previous), which is the previous value of the starting increase correction coefficient, is KAS0.
  • step S48 the starting increase correction coefficient KAS is compared with zero. If the starting increase correction coefficient KAS becomes a negative value, the process proceeds to step S49, and the starting increase correction coefficient KAS is reset to zero. After the process of step S49, the engine controller 31 performs the process of step S50.
  • step S48 if it is determined in step S48 that the start-time increase correction coefficient KAS is not less than zero, the engine controller 31 performs the process in step S50 without resetting the start-time increase correction coefficient KAS.
  • step S50 the engine controller 31 calculates the water temperature increase correction coefficient KTW based on the cooling water temperature Tw of the internal combustion engine 1 with reference to a map stored in advance in the ROM.
  • the water temperature increase correction coefficient KTW is a value that increases as the cooling water temperature Tw decreases.
  • the engine controller 31 calculates the target equivalent ratio TFBYA by the following equation (3) using the water temperature increase correction coefficient KTW and the start-time increase correction coefficient KAS.
  • the target equivalence ratio TFBYA becomes a value exceeding 1.0 by adding the start-time increase correction coefficient KAS.
  • the start-up increase correction coefficient KAS takes into account the fuel wall flow rate during cold start. As a result, the target equivalent ratio TFBYA becomes a value exceeding 1.0.
  • These corrections are corrections for setting the air-fuel mixture supplied to the combustion chamber 5 to the stoichiometric air-fuel ratio.
  • FIG. Reference numeral 5 denotes a fuel injection pulse width Ti calculation routine executed by the engine controller 31.
  • the engine controller 31 executes this routine at regular intervals, for example, every 100 milliseconds with the ignition switch turned on.
  • FIG. 2 complete explosion flag and target idle rotation arrival flag setting routine
  • FIG. The ignition timing 3 and the throttle opening control routine are executed sequentially.
  • FIG. No. 4 target equivalent ratio TFBYA calculation routine and FIG. 5 is a routine for calculating the fuel injection pulse width Ti of FIG. It is executed in parallel with and independently of routines 2 and 3.
  • the fuel injection pulse width Ti is a value representative of the fuel injection amount of the fuel injector 21.
  • step S61 the engine controller 31 calculates the start-time fuel injection pulse width Ti1 by the following equation (4).
  • Ti1 TST ⁇ KNST ⁇ KTST (4)
  • TST starting basic injection pulse width
  • KNST rotational speed correction coefficient
  • KTST time correction factor
  • step S62 the engine controller 31 determines whether a signal from the air flow meter 32 is input. If no signal is input from the air flow meter 32, the engine controller 31 sets the starting fuel injection pulse width Ti1 to the final fuel injection pulse width Ti in step S65. After the process of step S65, the engine controller 31 ends the routine.
  • step S63 If the signal from the air flow meter 32 is input, the engine controller 31 determines in step S63 that the FIG.
  • the normal fuel injection pulse width Ti2 is calculated by the following equation (5) using the target equivalent ratio TFBYA obtained in the calculation routine of the target equivalent ratio TFBYA of 4.
  • Ti2 (Tp ⁇ TFBYA + Kathos) ⁇ ( ⁇ + ⁇ m ⁇ 1) + Ts (5)
  • Tp basic injection pulse width
  • TFBYA target equivalent ratio
  • Kathos transient correction amount
  • air-fuel ratio feedback correction coefficient
  • ⁇ m air-fuel ratio learning value
  • Ts invalid injection pulse width.
  • the transient correction amount Kathos is a known correction amount that is basically calculated based on the engine load, the engine rotation speed, and the temperature of the fuel adhering portion in consideration of the fuel wall flow rate that travels along the wall surface of the intake port 4.
  • the fuel that travels along the wall surface of the intake port 4 of the fuel injection amount arrives at the combustion chamber 5 with a delay. Therefore, this amount is compensated by increasing the fuel injection amount.
  • the basic injection pulse width Tp is calculated by the following equation (6).
  • Tp K ⁇ Qa / Ne (6)
  • Qa the amount of intake air detected by the air flow meter 32.
  • the constant K in Equation (6) is set so that the air-fuel ratio of the air-fuel mixture becomes the stoichiometric air-fuel ratio. While the starting increase correction coefficient KAS is a positive value exceeding zero, the fuel injection amount from the fuel injector 21, that is, the fuel injection pulse width Ti is corrected to be increased.
  • step S64 to S66 the engine controller 31 compares the starting fuel injection pulse width Ti1 with the normal fuel injection pulse width Ti2, sets the larger value as the final fuel injection pulse width Ti, and then ends the routine. .
  • the fuel injection pulse width Ti is moved to the output register, and when the fuel injector 21 in each cylinder reaches a predetermined fuel injection timing, fuel is injected into the intake port 4 over a period defined by the fuel injection pulse width Ti.
  • Fig. Referring to 6A-6C, when the internal combustion engine 1 is stopped, the throttle 23 is at the default opening, and the suction negative pressure is equal to the atmospheric pressure. As soon as the starter switch 36 is turned on, that is, simultaneously with the start of cranking, the throttle 23 is driven to the fully closed position by the throttle motor 24.
  • the fully closed position is an idiomatic term. Actually, a slight amount for preventing the valve body from being caught between the passage and the passage between the throttle 23 and the intake pipe wall around the throttle 23. A predetermined gap is set. Therefore, even if the throttle 23 is in the fully closed position, air is sucked into the combustion chamber 5 through this gap.
  • the timing for opening the throttle 23 is after the actual suction negative pressure becomes a suction negative pressure large enough to promote the vaporization of fuel.
  • This timing is the timing at which the engine rotational speed reaches the target idle rotational speed, and the ignition timing is stepped from the starting ignition timing on the advance side, or at least a predetermined change speed that can prevent the engine rotational speed from rising.
  • the intake air amount necessary to maintain the engine speed at the target idle speed can be supplied to the combustion chamber 5.
  • this timing is too late to obtain the amount of air necessary to maintain the target idle speed, or conversely, it is too early and the suction negative pressure becomes insufficient and the vaporization promoting action is reduced.
  • the timing must be such that nothing happens.
  • this timing is set as the timing at which the suction negative pressure reaches a predetermined value.
  • 6C shows an open demand suction negative pressure threshold value.
  • the opening demand suction negative pressure threshold value is determined in advance by adaptation. In the prior art, it is assumed that the complete explosion flag changes to 1 in step S25 and the open demand suction negative pressure threshold is reached, and the target throttle opening tTVO is increased in step S29 each time the routine is executed thereafter.
  • FIG. 6B at time t21 when the suction negative pressure first reaches the opening demand suction negative pressure threshold, FIG. As shown by the broken line 6A, the throttle 23 starts to open.
  • the actual suction negative pressure decreases toward the atmospheric pressure due to pulsation immediately after time t21.
  • a decrease in the negative suction pressure means an increase in pressure toward the atmospheric pressure.
  • the throttle 23 is opened at the time t21, the subsequent increase in the suction negative pressure is inhibited, and the suction negative pressure is reduced to FIG.
  • the undulation will occur in the vicinity of the open request suction negative pressure threshold. If the suction negative pressure does not further increase beyond the opening demand suction negative pressure threshold, the fuel vaporization is not sufficiently promoted, and an increase in HC that frequently occurs during cold start cannot be suppressed.
  • the actual intake negative pressure develops smoothly thereafter, and the time when the intake air amount necessary to maintain the engine speed at the target idle speed can be supplied, that is, After the cranking starts, the throttle 23 starts to be opened at the time t22 when the actual suction negative pressure reaches the opening request suction negative pressure threshold value for the second time.
  • FIG. in the example of 6B when the throttle 23 starts to be opened from the time t22 when the opening demand suction negative pressure threshold is reached the second time after the cranking starts, FIG.
  • the actual suction negative pressure increases smoothly, and there is no case where the intake air amount necessary to maintain the target idle rotation speed cannot be obtained thereafter.
  • time t22 which is the opening start timing of the throttle 23 in the fully closed position
  • the engine control device counts the number of engine revolutions or the number of strokes from the start of cranking. Then, the actual intake negative pressure develops smoothly and the number of intake times required to maintain the target idle speed is obtained, that is, the actual intake negative pressure becomes the second required intake negative pressure threshold value. It is determined whether or not the opening start timing of the throttle 23 in the fully closed position is reached based on whether or not a predetermined number corresponding to the arrival timing has been reached.
  • the number of strokes is a unit corresponding to a crank angle of 180 ° in a 4-cylinder and 8-cylinder engine, and a crank angle of 120 ° in a 6-cylinder engine.
  • the horizontal axis in the figure is the number of strokes. This is because the stroke is synchronized with the pulsation of the suction negative pressure, which is preferable for the convenience of explanation.
  • the suction negative pressure is located at the top of the pulsation peak of the suction negative pressure at the stroke positions with numbers.
  • the stroke interval corresponds to 1/2 rotation for a 4-cylinder and 8-cylinder engine and 1/3 rotation for a 6-cylinder engine.
  • the engine controller 31 counts the number of strokes from the start of cranking, and opens the throttle 23 when the number of strokes reaches a predetermined number 6.
  • a predetermined number the timing at which the actual suction negative pressure develops smoothly and the amount of intake air necessary for maintaining the target idle rotation speed is obtained, that is, the timing at which the suction negative pressure reaches the opening demand suction negative pressure threshold for the second time.
  • the number of strokes corresponding to is obtained in advance by experiments or simulations.
  • the predetermined number 6 is an example of the predetermined number on the premise of 4 cylinders or 8 cylinders. However, the predetermined number is not limited to six.
  • the engine controller 31 uses a suction negative pressure development start permission flag, a throttle throttle flag, and a throttle control flag.
  • the suction negative pressure development start permission flag shown in 8A is a flag that is reset to zero when it is better not to perform the throttle control according to the present invention for any reason. Normally, the suction negative pressure development start permission flag is initially set to 1 at the time t0 when the ignition key switch is turned on or at the same time when the starter switch 36 is turned on. A suction negative pressure development start permission flag of 1 means that the throttle control according to the present invention is permitted.
  • FIG. The throttle throttle flag shown in 8C is a flag for setting the throttle 23 to the fully closed position immediately after the start of cranking.
  • the throttle throttle flag is initialized to 1 at the same time that the suction negative pressure development start permission flag is initialized to 1.
  • the throttle control flag shown in 8D is a flag for opening the throttle 23.
  • the engine controller 31 measures the number of strokes from the start of cranking, and switches the throttle throttle flag from 1 to zero at time t22 when the measured number of strokes reaches a predetermined number 6, while changing the throttle control flag from the initial value of zero to one. Switch to.
  • the number of strokes corresponds to the number of output fluctuation peaks of the crank angle sensor.
  • the engine controller 31 obtains the number of strokes by counting the number of output fluctuation peaks from the output signal of the crank angle sensor.
  • the engine controller 31 sets the time when the throttle opening reaches the predetermined opening TV01, that is, FIG. In 8B, at time t2 when the throttle opening becomes the predetermined opening TV01, the suction negative pressure development start permission flag and the throttle control flag are respectively switched from 1 to zero.
  • FIG. A throttle control routine executed by the engine controller 31 using the above flags will be described with reference to 9-11.
  • the engine controller 31 has the above-described FIG. The routines 2, 4, and 5 are executed in parallel.
  • FIG. 2 following the routine execution of FIG. 3 instead of FIG. 9 ignition timing control routine, FIG. 10 flag setting routine, FIG. 11 throttle control routines.
  • FIG. 9 is the ignition timing command value calculation routine shown in FIG. This corresponds to the routine 3 in which steps S24, S30, S31, and S34 related to throttle control are deleted.
  • the engine controller 31 controls only the ignition timing of the spark plug 14, and the FIG.
  • the throttle 23 is controlled by routines 11 and 12.
  • FIG. 9 the ignition timing is switched stepwise, but instead of stepwise switching, the ignition timing may be retarded at a sufficiently fast change speed that can prevent the engine speed from rising.
  • FIG. 9 The flag setting routine of FIG. 9 is executed subsequent to the ignition timing calculation routine.
  • step S111 the engine controller 31 determines whether or not the current routine execution timing is immediately after the ignition switch is switched from OFF to ON. If the determination is positive, the engine controller 31 sets the suction negative pressure development start permission flag to 1, the throttle throttle flag to 1, and the throttle control flag to zero in step S112, and then ends the routine. .
  • This process is shown in FIG. This corresponds to the processing at time t0 of 8A-8D.
  • step S111 determines whether the number of strokes from the start of cranking is a predetermined number 6 or more.
  • the engine controller 31 ends the routine without doing anything. If the number of strokes is equal to or greater than the predetermined number 6, the engine controller 31 sets the throttle throttle flag to zero and the throttle control flag to 1 in step S114. This process is shown in FIG. This corresponds to the processing at time t22 of 8A-8D.
  • the engine controller 31 determines whether or not the target throttle opening tTVO has reached the target idle opening TVO1.
  • step S116 the engine controller 31 switches both the suction negative pressure development start permission flag and the throttle control flag to zero in step S116.
  • the throttle throttle flag remains zero. This process is shown in FIG. This corresponds to the processing at time t2 of 8A-8D. After the process of step S116, the engine controller 31 ends the routine.
  • FIG. The throttle control routine of FIG. This is executed following the ten flag setting routine.
  • step S131 the engine controller 31 determines whether or not the suction negative pressure development start permission flag is 1. If the suction negative pressure development start permission flag is 1, the engine controller 31 determines whether or not the normal start mode is set in step S132.
  • the normal start mode means that the internal combustion engine 1 is started at a high temperature. This is the case when the driver performs a start operation immediately after the operation of the internal combustion engine 1 is stopped, or when the internal combustion engine 1 is started in a state of being warmed up due to the remaining heat of the previous operation, such as restart from an idle stop. . In this case, no negative suction pressure development is required. Since this embodiment is intended for a cold start of the internal combustion engine 1 that requires the development of a suction negative pressure, the normal start is performed in step S133 without performing the control according to the present invention in the normal start mode.
  • step S133 the engine controller 31 performs normal control in step S133.
  • the normal control means start control applied in a case where the internal combustion engine 1 does not require warm-up. After the process of step S133, the engine controller 31 ends the routine.
  • step S132 When performing a cold start of the internal combustion engine 1, the determination in step S132 is negative.
  • the engine controller 31 determines whether or not the throttle throttle flag is 1 in step S134. If the throttle throttle flag is 1, the engine controller 31 controls the throttle target opening tTVO to zero, that is, the throttle 23 to the fully closed position in step S135. After the process of step S135, the engine controller 31 ends the routine.
  • step S136 determines the throttle control flag in step S136. If the throttle control flag is not 1, the engine controller 31 immediately ends the routine. If the throttle control flag is 1, the throttle target opening degree tTVO is calculated by the above-described equation (1) in step S137. After the process of step S137, the engine controller 31 ends the routine.
  • FIG. 10 flag setting routine and FIG. 11 is executed by executing the throttle control routine of FIG.
  • the actual suction negative pressure develops smoothly and the intake air amount necessary for maintaining the target idle rotation speed is obtained, that is, the actual suction negative pressure is the second required suction negative.
  • the time t22 corresponding to the timing at which the pressure threshold value is reached can be accurately determined, and the throttle 23 can be opened. As a result, the actual suction negative pressure decreases smoothly after time t22.
  • the engine speed pulsates greatly.
  • the number of strokes from the start of cranking is counted based on the output fluctuation of the crank angle sensor, and the timing for starting to open the throttle 23 is determined based on the number of counts.
  • the output of the crank angle sensor is not used to determine the engine speed itself, but is used to detect the peak of the engine speed due to the pulsation of the internal combustion engine. Therefore, the timing at which the throttle 23 starts to be opened can be determined with higher accuracy than in the case where it is determined depending on the value of the engine speed itself.
  • the number of strokes is counted based on the main force variation of the crank angle sensor.
  • the number of strokes and the number of engine revolutions can be counted by other sensors.
  • Japanese Patent No. 3586975 issued on November 10, 2004 by the Japan Patent Office detects the negative suction pressure using a pressure sensor and opens the throttle when the measured negative suction pressure reaches a predetermined pressure. Is disclosed.
  • the suction negative pressure during cranking varies greatly both in the actual suction negative pressure and the detected value of the suction negative pressure. Relying on the value of the suction negative pressure detected by the pressure sensor as the basis for determining the throttle opening start timing is therefore likely to cause a problem in accuracy.
  • the suction negative pressure during cranking pulsates greatly.
  • the engine controller 31 counts the peak of the suction negative pressure from the output fluctuation of the pressure sensor 38, not the value of the suction negative pressure detected by the pressure sensor 38 provided in the intake collector 2, thereby cranking the internal combustion engine 1. Count the number of strokes and rotations from the start. If the opening start timing of the throttle 23 is determined based on the count number thus obtained, the opening start timing of the throttle 23 can be accurately determined.
  • FIG. Referring to 12A-12C when the throttle 23 is opened stepwise at time t21 when the suction negative pressure first reaches the opening demand suction negative pressure threshold, the suction negative pressure greatly oscillates for a while after that. Is not stable. That is, the vibration of the suction negative pressure after opening the throttle 23 is not only unstable because it is at the start, but also because the negative pressure before opening the throttle 23 is very developed. It was newly found out that this was caused by the influence of how the throttle 23 was opened. Due to the influence of the suction negative pressure vibration, the engine speed greatly oscillates around the target idle speed NSET. As a result, it takes time until the suction negative pressure and the engine rotation speed are stabilized in an appropriate state during idling.
  • step S137 the target throttle opening tTVO is increased by ⁇ TVO every time the routine is executed.
  • FIG. When the target throttle opening degree tTVO reaches the target idle opening degree TVO1 in step S115 of 10, the execution of the subsequent step S137 is stopped by resetting the throttle control flag to zero.
  • the target throttle opening tTVO is the timing at which the actual intake negative pressure develops smoothly and the intake air amount necessary for maintaining the target idle rotation speed is obtained, that is, the actual intake From time t22 when the negative pressure reaches the opening demand suction negative pressure threshold value for the second time, the routine increases by a predetermined increment ⁇ TVO every time the routine is executed.
  • the throttle opening gradually increases from the initial opening TVOini to the target idle opening TVO1.
  • the intake air amount necessary to maintain the engine rotational speed at the target idle rotational speed is supplied to the combustion chamber 5 after the rotational speed of the internal combustion engine 1 reaches the predetermined target idle rotational speed.
  • the opening of the throttle 23 is started before the engine speed reaches the target idle speed.
  • the ignition timing is retarded so that the engine rotation speed does not increase, and the opening of the throttle 23 is started from the closed state.
  • the air intake air amount necessary for maintaining the engine rotation speed at the target idle rotation speed is gradually increased until the opening degree for supplying the combustion chamber 5 is reached.
  • the value of the predetermined increment ⁇ TVO of the throttle opening is set in advance by adaptation.
  • FIG. 14 variations of the throttle control according to the present invention will be described.
  • the target throttle opening tTVO is increased by a predetermined increment ⁇ TVO every time the routine is executed from time t22.
  • the present invention brings about a favorable effect for improving the cold start performance of the internal combustion engine. Therefore, a particularly favorable effect can be obtained in application to a vehicle engine used in various starting environments.

Abstract

 内燃エンジン(1)は吸入空気量を調整するスロットル(23)を備え、クランキングにより始動する。スタータスイッチ36がクランキング開始を検出し、クランク角センサ(33,34)がエンジンの回転数を検出する。コントローラ(31)はクランキング開始とともにスロットル(23)を閉鎖位置に駆動する。コントローラ(31)はクランキング開始からの内燃エンジン(1)のストローク数または回転数をカウントする。カウント数が所定数に達すると、スロットル(23)を閉鎖位置から予め定めた目標アイドル開度に向けて徐々に開動することで、吸入負圧と吸入空気量とを早期に適正状態に安定させる。

Description

内燃エンジンの始動制御方法及び始動制御装置
 この発明は、内燃エンジンの始動時の制御に関する。
 火花点火式内燃エンジンをクランキングにより始動する際には、燃料消費を抑制し、好ましい排気組成を得るために、完爆後のエンジンの吹き上がりを抑制して、エンジン回転速度を早期に目標アイドル回転速度へと制御することが望ましい。
 日本国特許庁が2007年に発行したJP2007-278073Aはこのためのエンジン制御を開示している。制御は具体的には、内燃エンジンの吸気スロットルの開度の制御、燃料噴射量の制御、及び噴射された燃料への点火タイミングの制御からなる。
 従来技術はこの制御を通じて、エンジン回転速度が目標アイドル回転速度に到達した後の吹け上がりを抑制するとともに、空燃比を理論空燃比で安定させることで排気中の炭化水素(HC)の増加を防止している。
 内燃エンジンの始動時においては、燃料の気化を促進してHCの排出を抑制するために、吸入負圧を早期に発達させることが望ましい。そのため、従来技術においては、内燃エンジンのクランキング開始とともにスロットルを閉じ、内燃エンジンが完爆した時点でスロットルを開き始めている。
 しかしながら、始動時の内燃エンジンの回転速度は大きく脈動し、上下動の大きな波形を描く。従来技術のように、エンジン回転速度が所定の完爆速度に達した時点でスロットルを開き始めると、その後の回転速度の低下により吸入負圧の発達に遅れが生じてしまう。吸入負圧の発達の遅れは排気組成の悪化や燃料消費の増加を招く。
 一方、スロットルの開き始めのタイミングが遅いと、アイドル回転速度の維持に必要な吸入空気量を確保できなくなり、始動不良を生じかねない。
 この発明の目的は、したがって、内燃エンジンの始動時の吸入負圧の発達促進と、アイドル回転速度維持に必要な吸入空気量の確保とをともに満足させるとともに、吸入負圧とエンジン回転速度を早期にアイドル時の適正状態に安定させることである。
 以上の目的を達成するために、この発明は燃焼室と、燃焼室への吸入空気量を調整するスロットルとを備え、クランキングにより始動する火花点火式内燃エンジンの始動制御方法を提供する。始動制御方法は、内燃エンジンのクランキング開始を検出し、クランキング開始と同時にスロットルを閉鎖し、内燃エンジンの回転速度が所定の目標アイドル回転速度に達したときより以降、エンジン回転速度を目標アイドル回転速度に維持するのに必要な吸入空気量を燃焼室に供給するように、エンジン回転速度が目標アイドル回転速度に達する以前にスロットルの開動を開始し、エンジン回転速度が所定の目標アイドル回転速度に達したとき、エンジン回転速度が吹け上がることがないように点火タイミングを遅角させ、スロットルの開度を、閉鎖状態から開動を開始した後、漸増させること、を含む。
 この発明の詳細並びに他の特徴や利点は、明細書の以下の記載の中で説明されるとともに、添付された図面に示される。
FIG.1はこの発明を適用する内燃エンジンの制御装置の概略構成図である。 FIG.2は従来技術によるエンジンコントローラが実行する完爆フラグと目標到達フラグの設定ルーチンを説明するフローチャートである。 FIG.3は従来技術によるエンジンコントローラが実行する点火タイミングとスロットル開度の制御ルーチンを説明するフローチャートである。 FIG.4は従来技術によるエンジンコントローラが実行する目標当量比の算出ルーチンを説明するフローチャートである。 FIG.5は従来技術によるエンジンコントローラが実行する燃料噴射パルス幅の算出ルーチンを説明するフローチャートである。 FIGS.6A-6Cはこの発明コンセプトを従来技術と対比しつつ説明するタイミングチャートである。 FIGS.7A-7Cはこの発明による、ストローク数に基づくスロットル開動開始タイミング設定のコンセプトを説明するタイミングチャートである。 FIGS.8A-8Dはこの発明による各種フラグの設定とスロットル開度変化との関係を説明するタイミングチャートである。 FIG.9はこの発明によるエンジンコントローラが実行する点火タイミングの制御ルーチンを説明するフローチャートである。 FIG.10はこの発明によるエンジンコントローラが実行するフラグ設定ルーチンを説明するフローチャートである。 FIG.11はこの発明によるエンジンコントローラが実行するスロットル開度の制御ルーチンを説明するフローチャートである。 FIGS.12A-12Cは内燃エンジンの始動時のこの発明によらないスロットル制御の一例を示すフローチャートである。 FIGS.13A-13Cはこの発明によるエンジンコントローラが実行する内燃エンジンの始動時のスロットル制御がもたらす、スロットル開度、吸入負圧、及びエンジン回転速度の変化を示すタイミングチャートである。 FIG.14は、この発明によるエンジンコントローラが実行する内燃エンジンの始動時のスロットル制御に関するバリエーションを示すタイミングチャートである。
 図面のFIG.1を参照すると、車両用の内燃エンジン1はスロットル23で調量した空気を吸気コレクタ2に蓄えた後、吸気マニホールド3及び吸気バルブ15を介して各気筒の燃焼室5に吸入する。内燃エンジン1は多気筒火花点火式の往復動型エンジンで構成される。
 各気筒の吸気ポート4には燃料インジェクタ21が設けられる。燃料インジェクタ21は所定のタイミングで燃料を吸気ポート4内に向けて間欠的に噴射供給する。吸気ポート4に噴射された燃料は、吸入空気と混合して混合気を形成する。混合気は吸気バルブ15を閉じることで燃焼室5内に閉じこめられる。各気筒の燃焼室5内に閉じこめられた混合気は、各気筒に備えるピストン6の上昇によって圧縮され、点火プラグ14により着火して燃焼する。
 燃焼によるガス圧はピストン6を押し下げ、ピストン6に往復運動をもたらす。ピストン6の往復運動はクランクシャフト7の回転運動へと変換される。燃焼後のガスは排気バルブ16を介して排気として排気通路8へ排出される。
 排気通路8は各気筒に接続された排気マニホールドを備える。排気マニホールドにはスタートアップ触媒としての第1触媒9が設けられる。排気通路8は車両の床下に至る。床下部分の排気通路8には第2触媒10が設けられる。
 第1触媒9と第2触媒10は、例えばいずれも三元触媒で構成される。三元触媒は空燃比が理論空燃比を中心とした狭い範囲にある場合に、排気に含まれるHC、一酸化炭素(CO)及び窒素酸化物(NOx)を同時に効率よく除去できる。
 内燃エンジン1の運転はエンジンコントローラ31によって制御される。具体的にはエンジンコントローラ31はスロットル23の吸入空気量、燃料インジェクタ21の燃料噴射量、及び点火プラグ14の点火タイミングを制御する。
 エンジンコントローラ31は中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/O インタフェース)を備えたマイクロコンピュータで構成される。エンジンコントローラ31を複数のマイクロコンピュータで構成することも可能である。
 上記の制御のために、エンジンコントローラ31には、吸入空気量を検出するエアフローメータ32、内燃エンジン1の基準回転位置と単位角度の回転とを検出するクランク角センサ、排気中の酸素濃度を検出する排気通路8の第1触媒9の上流に設けた酸素センサ35、車両のアクセルペダル41の踏み込み量を検出するアクセルペダル踏み込み量センサ42,車両のドライバが内燃エンジン1のクランキングを指示するスタータスイッチ36、及びエンジン冷却水温を検出する水温センサ37から、それぞれ検出値に相当する信号が入力される。クランク角センサは、内燃エンジン1の単位角度の回転を検出するポジションセンサ33と、内燃エンジン1の基準回転位置を検出するフェーズセンサ34からなる。
 エンジンコントローラ31はこれらのセンサからの入力信号に基づいて燃料インジェクタ21の基本燃料噴射量を定めるとともに、第1触媒9の上流に設けた酸素センサ35からの入力信号に基づいて燃焼室5に形成される混合気の空燃比をフィードバック制御する。
 内燃エンジン1の冷間始動時には触媒9,10を早期に活性化するとともに、酸素センサ35をも早期に活性化して空燃比のフィードバック制御を早期に実現することが望ましい。そのため、酸素センサ35は始動直後からヒータによって加熱される。エンジンコントローラ31は酸素センサ35からの入力信号から、酸素センサ35の活性化を判定する。エンジンコントローラ31は酸素センサ35が活性化すると空燃比のフィードバック制御を開始する。
 触媒9と10は三元触媒に限定されない。例えば、エンジンの暖機完了後の燃費向上のため、低負荷運転領域において理論空燃比よりもリーンな混合気を燃焼室5に供給してリーン空燃比で運転を行う車両がある。こうした車両では、リーン空燃比のもとで多く発生するNOxを吸収する必要がある。そこで、第2触媒10をNOxトラップ触媒で構成し、NOxトラップ触媒に三元触媒機能を持たせている。こうした触媒を使用する車両にもこの発明は適用可能である。
 スロットル23の吸入空気量の制御は、スロットル23を駆動するスロットルモータ24の制御によって行われる。ドライバの要求トルクはアクセルペダル41の踏み込み量として入力される。エンジンコントローラ31はアクセルペダルの踏み込み量に基づき目標トルクを定める。エンジンコントローラ31は目標トルクを実現するための目標吸入空気量を計算し、目標吸入空気量に対応する信号をスロットルモータ24に出力することで、スロットル23の開度を制御する。
 内燃エンジン1は、吸気バルブ15のバルブリフト量を連続的に変化させる多節リンクで構成される可変バルブリフト機構26と、クランクシャフト7と吸気バルブ用カムシャフト25との回転位相差を連続的に可変制御して、吸気バルブ15の開閉タイミングを進角または遅角させる可変バルブタイミング機構27とを備える。
 エンジンコントローラ31は内燃エンジン1の始動時に下記の制御を行なう。
(1) クランキング後にエンジン回転速度がアイドル時の目標回転速度に到達したタイミングで点火タイミングを始動用の点火タイミングから所定の点火タイミング、例えば触媒暖機促進用の点火タイミングへとステップ的に、もしくは少なくともエンジン回転速度の吹け上がりを防止できる十分な速さの変化速度で、遅角し;
(2) エンジン回転速度が目標アイドル回転速度に到達したタイミングでエンジン回転速度をアイドル時の目標回転速度に保持させるに必要な吸入空気量が燃焼室5に供給されるように、エンジン回転速度が目標アイドル回転速度に到達するタイミングよりも所定期間前にスロットル23を開き始める。
 以上の制御により、第1触媒9の暖気が促進される。また、エンジン回転速度が目標アイドル回転速度に到達した後の吹け上がりが抑制されるとともに、空燃比を理論空燃比で安定させることで排気中のHCの増加防止が図られる。
 このためにエンジンコントローラ31が実行する制御ルーチンを次に説明する。なお、最初にFIGS.2-5を参照して、前記従来技術による、内燃エンジン1の始動時における点火タイミング、スロットル開度、及び燃料噴射量の制御を説明し、その後にこの発明に固有の制御を説明する。
 FIG.2は完爆フラグと目標アイドル回転到達フラグの設定ルーチンを示す。エンジンコントローラ31は、車両が備えるイグニッションスイッチがONの状態でこのルーチンを一定間隔、例えば100ミリ秒ごと、に実行する。なお、エンジンコントローラ31はイグニッションスイッチがOFFからONに切り換わることで起動し、イグニッションスイッチがONの間は常に稼働状態にあるものとする。
 ステップS1で、エンジンコントローラ31はエンジン回転速度Neを読み込む。エンジン回転速度Neはポジションセンサ33とフェーズセンサ34とで構成されたクランク角センサからの入力信号に基づいて算出される。
 ステップS2で、エンジンコントローラ31は完爆フラグを判定する。完爆フラグは内燃エンジン1が完爆しているかどうかを示すフラグであり、イグニッションスイッチがOFFよりONに切り換わると同時にゼロに初期設定される。このため、最初のルーチン実行時には完爆フラグ=0である。完爆フラグ=0の場合には、エンジンコントローラ31はステップS3で、エンジン回転速度Neと完爆回転速度N0を比較する。完爆回転速度N0は内燃エンジン1が完爆したかどうかを判定するための値であり、例えば1000回転/分(rpm)とする。エンジン回転速度Neが完爆回転速度N0に到達していなければ、エンジンコントローラ31は直ちにルーチンを終了する。
 一方、エンジン回転速度Neが完爆回転速度N0に到達している場合には、すなわち、Ne≧N0の場合には、エンジンコントローラ31はステップS4で完爆フラグを1にセットする。
 次のステップS5で、エンジンコントローラ31はタイマを起動する。タイマはエンジン回転速度Neが完爆回転速度N0に到達したタイミングからの経過時間を計測するもので、タイマの起動とともにタイマ値TIMEがゼロにリセットされる。ステップS5の処理の後、エンジンコントローラ31はルーチンを終了する。
 このようにして、ステップS4で完爆フラグが1にセットされると、次回移行のルーチン実行では、ステップS2の判定が肯定的に転じ、その結果ステップS6-S8の処理が行なわれる。
 ステップS6で、エンジンコントローラ31はタイマ値TIMEを所定値DTと比較する。所定値DTは、エンジン回転速度Neが完爆回転速度N0に到達したタイミングから目標アイドル回転速度NSETに到達するタイミングまでの時間間隔を意味する。所定値DTは実験もしくはシミュレーションにより予め設定される。
 タイマを起動した直後のタイマ値TIMEは所定値DT未満であるので、ステップS6の判定は否定的となる。その場合には、エンジンコントローラ31はステップS7でタイマ値TIMEを所定のインクリメントのもとで増量する。所定のインクリメントはルーチンの実行周期に対応した値とする。
 このようにして、タイマ値TIMEはルーチン実行のつど増大する。その結果、タイマ値TIMEが所定値DT以上となり、ステップS6の判定が否定的から肯定的に転じる。その場合に、エンジンコントローラ31はステップS8で目標アイドル回転速度NSETに到達したことを示す目標アイドル回転到達フラグを1にセットする。なお、目標アイドル回転到達フラグはイグニッションスイッチのOFFからONへの切り換わりに伴ってゼロに初期設定されるフラグである。ステップS7またはS8の処理の後、エンジンコントローラ31はルーチンを終了する。
 以上のように、エンジンコントローラ31はイグニッションスイッチがOFFからONに転じた直後から、完爆フラグと目標アイドル回転到達フラグの設定ルーチンを一定周期で繰り返し実行することで、内燃エンジン1の完爆と目標アイドル回転速度への到達とを判定し、対応するフラグを設定する。なお、ステップS6では、内燃エンジン1が完爆してから所定値DT相当の時間が経過することで、エンジン回転速度が目標アイドル回転速度NSETに到達したと判定している。しかしながら、この判定に関しては、クランク角センサが検出するエンジン回転速度Neを目標アイドル回転速度NSETと直接比較することももちろん可能である。
 FIG.3は点火タイミング及びスロットル開度の制御ルーチンを示す。エンジンコントローラ31は、イグニッションスイッチがONの状態でこのルーチンをFIG.2のルーチンに引き続いて一定間隔、例えば100ミリ秒ごと、に実行する。
 ステップS21で、エンジンコントローラ31は今回のルーチン実行タイミングが、イグニッションスイッチがOFFからONへ切り換わった直後であるかどうかを判定する。
 ステップS21の判定が肯定的な場合は、エンジンコントローラ31はステップS22で、水温センサ37が検出する内燃エンジン1の冷却水温TWを始動時水温TWINTとして取り込む。エンジンコントローラ31は始動時水温TWINTに応じて第1点火タイミングADV1を算出する。第1点火タイミングADV1はエンジン始動に最適な点火タイミングであり、ここでは通常運転時の点火タイミングより大幅に進角した値として算出される。
 ステップS23で、エンジンコントローラ31は点火タイミング指令値ADVを算出した第1点火タイミングADV1に等しく設定する。
 ステップS24ではスロットル目標開度tTVOに初期値を入れる。初期値は例えばゼロとする。ステップS24の処理の後、エンジンコントローラ31はルーチンを終了する。
 一方、ステップS21の判定が否定的な場合は、エンジンコントローラ31は、ステップS25で完爆フラグが1であるかどうかを判定する。完爆フラグが1でない場合は、エンジンコントローラ31は、ステップS27で点火タイミング指令値ADVを前回値に等しく設定する。このようにして、内燃エンジン1が完爆したと判定されるまで、点火タイミング指令値ADVは第1点火タイミングADV1に維持される。
 ステップS27の処理の後、エンジンコントローラ31は、ステップS24でスロットル目標開度tTVOに初期値のゼロを入れてルーチンを終了する。
 このようにして、内燃エンジン1のクランキング開始後、完爆に至るまでの期間においては、点火タイミング指令値ADVは第1点火タイミングADV1に維持され、スロットル目標開度tTVOはゼロに維持される。
 一方、ステップS25の判定において、完爆フラグが1の場合は、エンジンコントローラ31はステップS26で目標アイドル回転到達フラグが1であるかどうかを判定する。目標アイドル回転到達フラグが1でない場合は、エンジンコントローラ31はステップS28で点火タイミング指令値ADVを前回値に等しく設定する。したがって、内燃エンジン1が完爆したと判定された後も、タイマ値TIMEが所定値DTに達するまで、言い換えればエンジン回転速度Neが目標アイドル回転速度NESTに達するまでは、点火タイミング指令値ADVは第1点火タイミングADV1に等しい値に維持される。
 ステップS28の処理の後、エンジンコントローラ31はステップS29でスロットル目標開度tTVOを次式(1)により算出する。
 tTVO=tTVO(前回)+ΔTVO (1)
 ただし、ΔTVO=一定値;
     tTVO(前回)=tTVOの前回値。
 式(1)のtTVO(前回)はスロットル目標開度の前回値であり、初期値はゼロである。
 式(1)の所定増分ΔTVOはスロットル目標開度の所定時間当たりの増量分を定めた値である。所定増分ΔTVOは、エンジン回転速度Neが目標アイドル回転速度NSETに到達するタイミングで、スロットル目標開度tTVOが目標アイドル開度TVO1に到達するように定められる。ここで、目標アイドル開度TVO1は内燃エンジン1が目標アイドル回転速度NSETを維持可能なトルクを発生させるのに必要な最低の吸入空気量に対応するスロットル開度である。目標アイドル開度TVO1の値は実験もしくはシミュレーションにより予め設定される。
 ステップS29でスロットル目標開度tTVOを設定した後、エンジンコントローラ31はステップS30でスロットル目標開度tTVOと目標アイドル開度TVO1を比較する。
 ステップS26の判定が初めて否定的に転じた状態、すなわちエンジン回転速度Neが目標アイドル回転速度NESTに到達した直後は、スロットル目標開度tTVOは目標アイドル開度TVO1を超えていない。その場合には、エンジンコントローラ31はそれ以上の処理を行なうことなくルーチンを終了する。
 次回以降のルーチン実行においては、ステップS29の処理の実行により、ルーチン実行ごとにスロットル目標開度tTVOが所定増分ΔTVOずつ増加する。その結果、スロットル目標開度tTVOが目標アイドル開度TVO1を超過し、ステップS30の判定が肯定的に転じると、エンジンコントローラ31はステップS31でスロットル目標開度tTVOをTVO1に維持する。ステップS31の処理の後、エンジンコントローラ31はルーチンを終了する。以後のルーチン実行においては、したがって、ルーチンの実行を重ねてもスロットル目標開度tTVOは増量されずに目標アイドル開度TVO1に維持される。
 一方、ステップS26の判定において、目標アイドル回転到達フラグが1になると、エンジンコントローラ31はステップS32で、水温センサ37が検出する内燃エンジン1の冷却水温TWに応じて第2点火タイミングADV2を算出する。第2点火タイミングADV2は例えば内燃エンジン1の冷間始動時における第1触媒9の暖機促進用の点火タイミングに設定することができる。あるいは、吸入空気量を急に増大させることでエンジン回転速度がオーバーシュート気味になるのを抑制するために、一時的に遅角側の点火タイミングを設定することもできる。このようにして、第2点火タイミングADV2は第1点火タイミングADV1より遅角した値として算出される。
 次のステップS33でエンジンコントローラ31は点火タイミング指令値ADVを第2点火タイミングADV2に等しく設定する。
 以上の処理の結果、エンジン回転速度Neが目標アイドル回転速度NSETに到達すると同時に、点火タイミング指令値ADVは第1点火タイミングADV1から第2点火タイミングADV2へとステップ的に切り換えられる。
 ステップS34で、エンジンコントローラ31はスロットル目標開度tTVOを前回と同じ値、すなわちTVO1に維持する。ステップS34の処理の後、エンジンコントローラ31はルーチンを終了する。
 このようにして、エンジン回転速度Neが目標アイドル回転速度NSETに到達した後は、点火タイミング指令値ADVが第2点火タイミングADV2へとステップ的に切り換えられる。一方、スロットル目標開度tTVOは目標アイドル開度TVO1に維持される。ここでは、点火タイミング指令値ADVをステップ的に一気にADV2へと切り換えているが、エンジン傾転速度が吹け上がるのを防止できる範囲の所定の変化速度で切り換えるようにすることもできる。
 FIG.4はエンジンコントローラ31が実行する目標当量比TFBYAの算出ルーチンを示す。当量比は空燃比の逆数に相当する。エンジンコントローラ31は、イグニッションスイッチがONの状態でこのルーチンを一定間隔、例えば100ミリ秒ごと、に実行する。なお、エンジンコントローラ31はイグニッションスイッチがOFFからONに切り換わることで起動し、イグニッションスイッチがONの間は常に稼働状態にあるものとする。
 ステップS41で、エンジンコントローラ31は今回のルーチン実行タイミングが、イグニッションスイッチがOFFからONへ切り換わった直後に相当するかどうかを判定する。
 判定が肯定的な場合には、エンジンコントローラ31はステップS42で始動時増量補正係数の初期値KAS0を、水温センサ37が現出する始動時水温TWINTに基づき算出する。始動時増量補正係数の初期値KAS0は始動時水温TWINTが低くなるほど大きくなる値である。
 次のステップS43で、エンジンコントローラ31は始動時増量補正係数KASを初期値KAS0に等しく設定する。ステップS43の処理の後、エンジンコントローラ31はステップS50の処理を行なう。
 一方、ステップS41の判定が否定的な場合には、前回以前のルーチン実行において、イグニッションスイッチが既にONに切り換わっていることを意味する。この場合には、エンジンコントローラ31はステップS44で、目標アイドル回転到達フラグが1であるかどうかを判定する。目標アイドル回転到達フラグは前述のように、イグニッションスイッチがONに切り換わる際にゼロにリセットされ、FIG.2のステップS8で1に設定されるフラグである。目標アイドル回転到達フラグが1である場合には、エンジン回転速度Neが目標アイドル回転速度NSETに達していることを意味する。
 さて、ステップS44の判定が否定的な場合は、エンジンコントローラ31はステップS45で、始動時増量補正係数KASを前回と同じ値に設定する。このルーチンにおいては、ステップS44の判定が肯定に転じるまで始動時増量補正係数KASは初期値KAS0に維持される。ステップS45の処理の後、エンジンコントローラ31はステップS50の処理を行なう。
 一方、ステップS44の判定が肯定に転じると、エンジンコントローラ31はステップS46で始動時増量補正係数KASがゼロかどうかを判定する。前述のように内燃エンジン1の始動直後にステップS43で始動時増量補正係数KASが初期値KAS0に設定される。エンジン回転速度Neが目標アイドル回転速度NSETに達した直後には、始動時増量補正係数KASが初期値KAS0に設定されているので、始動時増量補正係数KASがゼロと一致することはない。
 この場合には、エンジンコントローラ31はステップS47で、始動時増量補正係数KASを次式(2)により設定する。
 KAS=KAS(前回)-Δt×KAS(前回) (2)
 ただし、Δt=所定減率、
     KAS(前回)=前回ルーチン実行時の始動時増量補正係数KASの値。
 ここで、所定減率Δtは始動時増量補正係数KASの所定時間当たりの減少分を定める値であり、この値は吸入負圧が一定値に収束するタイミングで始動時増量補正係数KASがゼロとなるように、適合により予め定めておく。始動時増量補正係数の前回値であるKAS(前回)の初期値はKAS0である。
 目標回転到達フラグが1に達した後に、エンジンコントローラ31はステップS46とS47の処理を繰り返し行ない、その結果、始動時増量補正係数KASは徐々に小さくなってゆく。そこで、ステップS48で始動時増量補正係数KASとゼロを比較し、始動時増量補正係数KASが負の値になったときにはステップS49に進んで始動時増量補正係数KASを0にリセットする。ステップS49の処理の後、エンジンコントローラ31はステップS50の処理を行なう。
 一方、ステップS48の判定において、始動時増量補正係数KASがゼロ以上の値である場合には、エンジンコントローラ31は始動時増量補正係数KASを再設定することなく、ステップS50の処理を行なう。
 ステップS50でエンジンコントローラ31は水温増量補正係数KTWをあらかじめROMに格納されたマップを参照して内燃エンジン1の冷却水温Twに基づき計算する。水温増量補正係数KTWは冷却水温Twが低くなるほど大きくなる値である。
 次のステップS51でエンジンコントローラ31は水温増量補正係数KTWと始動時増量補正係数KASとを用いて次式(3)により目標当量比TFBYAを算出する。
 TFBYA=1+KTW+KAS (3)
 目標当量比TFBYAは1.0を中心とする値である。内燃エンジン1の暖機完了後であれば、TFBYA=1(KTW=0、KAS=0)となる。TFBYA=1は理論空燃比の混合気に相当する。内燃エンジン1の冷間始動時には、始動時増量補正係数KASが加算されることで目標当量比TFBYAは1.0を超える値となる。始動時増量補正係数KASは冷間始動時の燃料壁流量を考慮したものである。結果として、目標当量比TFBYAは1.0を超える値になる。これらの補正は燃焼室5に供給される混合気を理論空燃比とするための補正である。
 FIG.5はエンジンコントローラ31が実行する燃料噴射パルス幅Tiの算出ルーチンを示す。エンジンコントローラ31は、イグニッションスイッチがONの状態でこのルーチンを一定間隔、例えば100ミリ秒ごと、に実行する。前述のように、FIG.2の完爆フラグと目標アイドル回転到達フラグの設定ルーチンとFIG.3の点火タイミングとスロットル開度の制御ルーチンとはシークエンシャルに実行される。一方、FIG.4の目標当量比TFBYAの算出ルーチンとFIG.5の燃料噴射パルス幅Tiの算出ルーチンは、FIGS.2と3のルーチンと並行かつ独立して実行される。燃料噴射パルス幅Tiは燃料インジェクタ21の燃料噴射量を代表する値である。
 ステップS61で、エンジンコントローラ31は始動時燃料噴射パルス幅Ti1を次式(4)により算出する。
 Ti1=TST×KNST×KTST (4)
 ただし、TST=始動時基本噴射パルス幅;
     KNST=回転速度補正係数;
     KTST=時間補正係数。
 始動時基本噴射パルス幅TST、回転速度補正係数KNST、時間補正係数KTSTの求め方は公知であるので、詳細な説明は省略する。
 ステップS62で、エンジンコントローラ31はエアフローメータ32からの信号が入力しているかどうかを判定する。エアフローメータ32からの信号が入力していなければ、エンジンコントローラ31はステップS65で最終の燃料噴射パルス幅Tiに始動時燃料噴射パルス幅Ti1を設定する。ステップS65の処理の後、エンジンコントローラ31はルーチンを終了する。
 エアフローメータ32からの信号が入力している場合は、エンジンコントローラ31はステップS63で、直前に実行されたFIG.4の目標当量比TFBYAの算出ルーチンで得た目標当量比TFBYAを用いて次式(5)により通常時の燃料噴射パルス幅Ti2を算出する。
 Ti2=(Tp×TFBYA+Kathos)×(α+αm-1)+Ts (5)
 ただし、Tp=基本噴射パルス幅;
     TFBYA=目標当量比;
     Kathos=過渡補正量;
     α=空燃比フィードバック補正係数;
     αm=空燃比学習値;
     Ts=無効噴射パルス幅。
 過渡補正量Kathosは吸気ポート4の壁面を伝う燃料壁流量を考慮し、基本的にエンジン負荷、エンジン回転速度及び燃料付着部の温度に基づいて算出される公知の補正量である。内燃エンジン1の始動時には燃料噴射量のうち吸気ポート4の壁面を伝う燃料が遅れて燃焼室5に到達するため、その分を燃料噴射量の増量によって補う。
 空燃比フィードバック補正係数α、空燃比学習値αm、無効噴射パルス幅Tsの概念と計算方法は公知である。
 基本噴射パルス幅Tpは次式(6)で算出する。
 Tp=K×Qa/Ne (6)
 ただし、Qa=エアフローメータ32が検出する吸入空気量。
 式(6)の定数Kは、混合気の空燃比が理論空燃比となるように設定されている。始動時増量補正係数KASがゼロを超える正の値である間は、燃料インジェクタ21からの燃料噴射量、すなわち燃料噴射パルス幅Tiは増量補正されることとなる。
 ステップS64-S66で、エンジンコントローラ31は始動時燃料噴射パルス幅Ti1と通常時燃料噴射パルス幅Ti2を比較し、値の大きい方を最終の燃料噴射パルス幅Tiに設定した後、ルーチンを終了する。
 燃料噴射パルス幅Tiは出力レジスタに移され、各気筒において燃料インジェクタ21が所定の燃料噴射タイミングになると、燃料噴射パルス幅Tiに規定された期間に渡って吸気ポート4に燃料を噴射する。
 以上説明した、内燃エンジン1の始動時における点火タイミング、スロットル開度、及び燃料噴射量の制御に関して、日本国特許庁が2007年10月25日に公開した前記従来技術JP2007-278073Aの内容をここに引用により合体する。
 次に内燃エンジン1の始動時に適用されるこの発明に固有のスロットル制御について説明する。
 FIGS.6A-6Cを参照すると、内燃エンジン1の停止状態ではスロットル23はデフォルト開度にあり、吸入負圧は大気圧に等しい。スタータスイッチ36がONになると同時に、すなわちクランキング開始と同時に、スロットル23はスロットルモータ24により全閉位置へと駆動される。ここで、全閉位置は慣用的用語であって、実際には、スロットル23とスロットル23周囲の吸気管壁面との間に、弁体が通路との間で噛み込むのを防止するための僅かな所定の隙間が設定されている。そのため、スロットル23が全閉位置にあってもこの隙間を介して空気は燃焼室5へ吸い込まれる。
 クランキングによる内燃エンジン1のポンピング作用により各気筒の燃焼室5に空気が吸い込まれるので、吸入負圧は脈動しつつ、大気圧から低下して行く。スロットル23を開くタイミングは、実際の吸入負圧が燃料の気化を促進するのに十分な大きさの吸入負圧となった後である。このタイミングは、エンジン回転速度が目標アイドル回転速度に到達したタイミングで、点火タイミングを進角側の始動用点火タイミングからステップ的に、もしくは少なくともエンジン回転速度が吹け上がるのを防止できる所定の変化速度で、遅角させたときに、エンジン回転速度を目標アイドル回転速度に維持するのに必要な吸入空気量を燃焼室5に供給することができるタイミングである。そして、このタイミングは、遅過ぎて目標アイドル回転速度を維持するのに必要な空気量が得られなくなったり、逆に早過ぎて吸入負圧が不十分となって気化促進作用が低下したりすることがないようなタイミングでなければならない。従来技術ではこのタイミングを吸入負圧が所定の値になったタイミングとして設定しており、所定の値はFIG.6Cには開要求吸入負圧しきい値として示される。開要求吸入負圧しきい値はあらかじめ適合によって定められる。前記従来技術ではステップS25で完爆フラグが1に転じることで開要求吸入負圧しきい値に達すると仮定し、以後のルーチン実行の都度ステップS29で目標スロットル開度tTVOを増大させている。
 前記従来技術においては、したがって、FIG.6Bに示すように吸入負圧が最初に開要求吸入負圧しきい値に到達した時刻t21で、FIG.6Aの破線に示すようにスロットル23が開き始める。
 しかしながら、時刻t21の直後より実吸入負圧は、脈動により大気圧に向けて減少を示す。ここで、吸入負圧の減少は大気圧に向けての圧力上昇を意味する。時刻t21でスロットル23を開くと、その後の吸入負圧の増大が阻害され、吸入負圧はFIG.6Cの破線に示すように開要求吸入負圧しきい値の付近で波打つこととなってしまう。吸入負圧が開要求吸入負圧しきい値よりさらに増大しないと、燃料の気化が十分に促進されず、冷間始動時に多く発生するHCの増加を抑制できない。
 この発明によるエンジン制御装置は、その後も実吸入負圧が順調に発展し、しかも、エンジン回転速度を目標アイドル回転速度に維持するのに必要な吸入空気量を供給することが可能な時刻、すなわちクランキング開始後、実吸入負圧が2度目に開要求吸入負圧しきい値に到達する時刻t22のタイミングでスロットル23を開き始める。このように、例えばFIG.6Bの例においてクランキング開始後2度目に開要求吸入負圧しきい値に到達する時刻t22から、スロットル23を開き始めると、FIG.6Cの実線に示すように、実吸入負圧は順調に増大し、その後も目標アイドル回転速度を維持するのに必要な吸入空気量が得られなくなるようなことがない。
 次に全閉位置のスロットル23の開動開始タイミングとなる時刻t22の判定方法を説明する。
 この発明によるエンジン制御装置は、クランキング開始からのエンジン回転数またはストローク数をカウントする。そして、カウント数が、実吸入負圧が順調に発達し、目標アイドル回転速度の維持に必要な吸入空気量が得られるタイミング、すなわち実吸入負圧が2度目に開要求吸入負圧しきい値に到達するタイミング相当の所定数に達したかどうかで、全閉位置のスロットル23の開動開始タイミングとなったかどうかを判定する。
 FIGS.7A-7Cを参照すると、ここではクランキング開始からのストローク数を用いて、実吸入負圧が順調に発達し、目標アイドル回転速度の維持に必要な吸入空気量が得られるタイミング、すなわち実吸入負圧が2度目に開要求吸入負圧しきい値に到達するタイミング、に相当する時刻t22を判定している。ストローク数は4気筒、8気筒エンジンではクランク角180°に相当し、6気筒エンジンではクランク角120°に相当する単位である。つまり、4気筒、8気筒エンジンではストローク数の2分の1がエンジン回転数に相当し、6気筒エンジンではクランク角120°ではストローク数の3分の1がエンジン回転数に相当する。ストローク数と回転数は常に一定関係にあるので、エンジン回転数とストローク数は相互に代用可能な等価の関係にある。
 この実施例では、図の横軸をストローク数としている。これは、ストロークが吸入負圧の脈動と同期しており、説明の都合上好ましいからである。数字の付されたストローク位置で、吸入負圧は吸入負圧の脈動の山の頂きに位置する。ストローク間隔は、4気筒、8気筒エンジンでは2分の1回転に、6気筒エンジンでは3分の1回転に相当する。
 エンジンコントローラ31は、クランキング開始からのストローク数をカウントし、ストローク数が所定数6に達した時点で、スロットル23を開く。所定数として、実吸入負圧が順調に発達し、目標アイドル回転速度の維持に必要な吸入空気量が得られるタイミング、すなわち吸入負圧が2度目に開要求吸入負圧しきい値に到達するタイミング、に相当するストローク数を、実験もしくはシミュレーションによりあらかじめ求めておく。所定数6は4気筒または8気筒を前提とした所定数の例である。ただし、所定数は6に限定されない。
 FIGS.8A-8Dを参照すると、この実施形態において、エンジンコントローラ31は吸入負圧発達始動許可フラグ、スロットル絞りフラグ、スロットル制御フラグを使用する。
 このうち、FIG.8Aに示す吸入負圧発達始動許可フラグは、何らの理由でこの発明によるスロットル制御を行わないほうが良い場合に、ゼロにリセットされるフラグである。通常は、イグニッションキースイッチがONになる時刻t0、あるいはスタータスイッチ36がオンになると同時、に吸入負圧発達始動許可フラグは1に初期設定される。吸入負圧発達始動許可フラグが1であることは、この発明によるスロットル制御を許可することを意味する。
 FIG.8Cに示すスロットル絞りフラグは、クランクキング開始直後にスロットル23を全閉位置にするためのフラグである。スロットル絞りフラグは、吸入負圧発達始動許可フラグを1に初期設定するのと同時に1に初期設定される。
 FIG.8Dに示すスロットル制御フラグは、スロットル23を開動するためのフラグである。エンジンコントローラ31はクランキング開始からのストローク数を計測し、計測したストローク数が所定数6に達した時刻t22でスロットル絞りフラグを1からゼロに切り換える一方、スロットル制御フラグを初期値のゼロから1に切り換える。ストローク数は、クランク角センサの出力変動のピークの数に相当する。エンジンコントローラ31はクランク角センサの出力信号から、出力変動のピークの数をカウントすることで、ストローク数を得る。
 また、エンジンコントローラ31はスロットル開度が所定開度TV01となる時刻、すなわちFIG.8Bにおいてはスロットル開度が所定開度TV01となる時刻t2に、吸入負圧発達始動許可フラグとスロットル制御フラグをそれぞれ1からゼロに切り換える。
 次に、FIGS.9-11を参照して、以上のフラグを用いてエンジンコントローラ31が実行するスロットル制御ルーチンを説明する。エンジンコントローラ31は、イグニッションスイッチがONの状態で前記従来技術のFIGS.2,4,5のルーチンを並行して実行する。また、FIG.2のルーチン実行に引き続き、FIG.3のルーチンに代えてFIG.9の点火タイミングの制御ルーチンと、FIG.10のフラグ設定ルーチンと、FIG.11のスロットル制御ルーチンとを実行する。
 FIG.9に示す点火タイミング指令値の計算ルーチンは、前記従来技術のFIG.3のルーチンから、スロットル制御に関するステップS24,S30,S31,及びS34を削除したものに相当する。エンジンコントローラ31はこのルーチンにおいては、点火プラグ14の点火タイミングのみを制御し、FIGS.11と12のルーチンでスロットル23の制御を行なう。なお、FIG.9のルーチンも、点火タイミングをステップ的に切り換えているが、ステップ的に切り換える代わりに、エンジン回転速度の吹け上がりを防止できる十分な速さの変化速度で遅角させても良い。
 FIG.10のフラグ設定ルーチンは、FIG.9の点火タイミング算出ルーチンに引き続いて実行される。
 FIG.10を参照すると、ステップS111で、エンジンコントローラ31は今回のルーチン実行タイミングが、イグニッションスイッチがOFFからONへ切り換わった直後であるかどうかを判定する。判定が肯定的な場合に、エンジンコントローラ31はステップS112で、吸入負圧発達始動許可フラグを1に、スロットル絞りフラグを1に、スロットル制御フラグをゼロに、それぞれ設定した後、ルーチンを終了する。この処理がFIGS.8A-8Dの時刻t0における処理に相当する。
 ステップS111の判定が否定的な場合は、エンジンコントローラ31はステップS113で、クランキング開始からのストローク数が所定数6以上であるかどうかを判定する。
 ストローク数が所定数6未満の場合には、エンジンコントローラ31は何もおこなわずにルーチンを終了する。ストローク数が所定数6以上の場合には、エンジンコントローラ31はステップS114で、スロットル絞りフラグをゼロに、スロットル制御フラグを1に、それぞれ設定する。この処理がFIGS.8A-8Dの時刻t22における処理に相当する。
 次のステップS115で、エンジンコントローラ31は目標スロットル開度tTVOが目標アイドル開度TVO1に達したかどうかを判定する。
 判定が否定的な場合は、エンジンコントローラ31は直ちにルーチンを終了する。
 判定が肯定的な場合は、エンジンコントローラ31はステップS116で吸入負圧発達始動許可フラグとスロットル制御フラグをともにゼロに切り換える。スロットル絞りフラグはゼロの状態を維持する。この処理が、FIGS.8A-8Dの時刻t2における処理に相当する。ステップS116の処理の後、エンジンコントローラ31はルーチンを終了する。
 FIG.11のスロットル制御ルーチンはFIG.10のフラグ設定ルーチンに引き続いて実行される。
 FIG.11を参照すると、ステップS131で、エンジンコントローラ31は吸入負圧発達始動許可フラグが1かどうかを判定する。吸入負圧発達始動許可フラグが1である場合は、エンジンコントローラ31は、ステップS132で通常始動モードであるかどうかを判定する。
 通常始動モードは内燃エンジン1が高温状態で始動することを意味する。内燃エンジン1の運転停止直後にドライバが始動操作を行った場合や、アイドルストップからの再始動など、前回の運転の余熱により暖機された状態で内燃エンジン1の始動が行なわれる場合がこれに当たる。この場合には吸入負圧発達を必要としない。この実施形態では吸入負圧発達を必要とする内燃エンジン1の冷間始動を対象としているため、通常始動モードではこの発明による制御を行なわずに、ステップS133で通常始動を行なう。
 また、ステップS131で吸入負圧発達始動許可フラグが1でない場合も、エンジンコントローラ31は、ステップS133で通常制御を行なう。通常制御は内燃エンジン1が暖機を必要としないケースで適用される始動制御を意味する。ステップS133の処理の後、エンジンコントローラ31はルーチンを終了する。
 内燃エンジン1の冷間始動を行なう場合は、ステップS132の判定は否定的となる。
 その場合には、エンジンコントローラ31はステップS134で、スロットル絞りフラグが1かどうかを判定する。スロットル絞りフラグが1である場合には、エンジンコントローラ31はステップS135でスロットル目標開度tTVOをゼロ、すなわちスロットル23を全閉位置に制御する。ステップS135の処理の後、エンジンコントローラ31はルーチンを終了する。
 一方、スロットル絞りフラグが1でない場合は、エンジンコントローラ31はステップS136でスロットル制御フラグを判定する。スロットル制御フラグが1でない場合には、エンジンコントローラ31は直ちにルーチンを終了する。スロットル制御フラグが1である場合にはステップS137でスロットル目標開度tTVOを前述の式(1)で計算する。ステップS137の処理の後、エンジンコントローラ31はルーチンを終了する。
 FIG.10のフラグ設定ルーチンとFIG.11のスロットル制御ルーチンの実行により、FIG.8A-8Dの実線に示すように、実吸入負圧が順調に発達し、目標アイドル回転速度の維持に必要な吸入空気量が得られるタイミング、すなわち実吸入負圧が2度目に開要求吸入負圧しきい値に到達するタイミンク、に相当する時刻t22を精度良く判定して、スロットル23を開き始めることができる。その結果、実吸入負圧は時刻t22以降、順調に低下する。
 したがって、燃料の気化促進のための吸入負圧の確保と、内燃エンジン1の完爆に適した吸入空気量の確保とを両立することができ、始動時の吸入負圧制御のロバスト性を向上させることができる。
 内燃エンジン1の始動時にはFIG.7Bに示すようにエンジン回転速度が大きく脈動する。この実施形態においては、クランク角センサの出力変動に基づきクランキング開始からのストローク数をカウントし、カウント数によりスロットル23を開き始めるタイミングを決定している。この制御において、クランク角センサの出力は、エンジン回転速度それ自体を求めるために用いられるのではなく、内燃エンジンの脈動によるエンジン回転速度のピークを検出するために用いられる。したがって、スロットル23を開き始めるタイミングを、エンジン回転速度それ自体の値に依存して決定する場合と比べて、より高い精度で決定することができる。
 以上説明した実施形態では、クランク角センサの主力変動に基づきストローク数をカウントしている。しかしながら、他のセンサによってもストローク数やエンジン回転数をカウント可能である。圧力センサ38を用いて内燃エンジン1の吸気圧を検出するケースを、次に説明する。
 日本国特許庁が2004年11月10日に発行した特許第3586975号は、圧力センサを用いて吸入負圧を検出し、測定した吸入負圧が所定圧に達した時点で基づきスロットルを開く制御を開示している。しかしながら、クランキング時の吸入負圧は、実吸入負圧も吸入負圧の検出値もともに変動が大きい。スロットルの開動開始タイミングの判定根拠を、圧力センサが検出する吸入負圧の値に依存することは、したがって、精度上の問題を生みやすい。
 一方、クランキング時の吸入負圧は大きく脈動する。エンジンコントローラ31は吸気コレクタ2に設けた圧力センサ38が検出する吸入負圧の値それ自体ではなく、圧力センサ38の出力変動から吸入負圧のピークをカウントすることで、内燃エンジン1のクランキング開始からのストローク数や回転数をカウントする。このようにして得られたカウント数に基づきスロットル23の開動開始のタイミングを判定すれば、スロットル23の開動開始タイミングを精度良く決定することができる。
 以上のように、クランク角センサの出力変動に代えて、圧力センサ38の出力変動に基づきストローク数やエンジン回転数をカウントすることが可能である。
 次にFIGS.12A-12Cを参照すると、吸入負圧が最初に開要求吸入負圧しきい値に到達した時刻t21で、スロットル23をステップ的に開くと、以後しばらくの期間に渡って吸入負圧が大きく振動して安定しない。つまり、スロットル23を開いた後の吸入負圧の振動は、単に始動時だから不安定になって生じているのみならず、スロットル23を開く前の負圧が非常に発達しているために、スロットル23の開き方の影響を受けて生じている、ということが新たに分かった。この吸入負圧の振動の影響でエンジン回転速度も目標アイドル回転速度NSETを中心に大きく振動する。その結果、吸入負圧とエンジン回転速度がアイドル時の適正な状態に安定するまで時間を要することになる。
 そこで、この発明においては、時刻t22にスロットル23を開き始めた後、FIG.11のステップS137において、目標スロットル開度tTVOをルーチン実行ごとにΔTVOずつ増大させている。また、FIG.10のステップS115で目標スロットル開度tTVOが目標アイドル開度TVO1に達すると、スロットル制御フラグをゼロにリセットすることで、以後のステップS137の実行を停止している。
 FIGS.13A-13Cを参照すると、これらの処理の結果、目標スロットル開度tTVOは、実吸入負圧が順調に発達し、目標アイドル回転速度の維持に必要な吸入空気量が得られるタイミング、すなわち実吸入負圧が2度目に開要求吸入負圧しきい値に到達する時刻t22からルーチン実行ごとに所定増分ΔTVOずつ増大し、結果として初期開度TVOiniから目標アイドル開度TVO1へとスロットル開度は漸増する。以上を整理すると、内燃エンジン1の回転速度が所定の目標アイドル回転速度に達したときより以降、エンジン回転速度を目標アイドル回転速度に維持するのに必要な吸入空気量を燃焼室5に供給するように、エンジン回転速度が目標アイドル回転速度に達する以前にスロットル23の開動を開始する。そして、エンジン回転速度が所定の目標アイドル回転速度に達したとき、エンジン回転速度が吹け上がることがないように点火タイミングを遅角させ、スロットル23の開度を、閉鎖状態から開動を開始した後、エンジン回転速度を目標アイドル回転速度に維持するのに必要気吸入空気量を燃焼室5に供給する開度に達するまで漸増させる。スロットル開度の所定増分ΔTVOの値は、適合により予め設定される。このように、時刻t22からルーチン実行ごとに所定増分ΔTVOずつスロットル開度を増大させることで、吸入負圧とエンジン回転速度の過渡的振動が抑制され、これらをアイドル時の適正な状態へと早期に安定させることができる。
 FIG.14を参照して、この発明によるスロットル制御のバリエーションを説明する。
 以上説明した実施形態では、目標スロットル開度tTVOを時刻t22からルーチン実行ごとに所定増分ΔTVOずつ増大させている。しかしながら、毎回のルーチン実行においてスロットル開度を増大させる代わりに、数度のルーチン実行ごとに、より大きな増分のもとで目標スロットル開度tTVOを増大させることも可能である。
 以上の説明に関して2010年12月27日を出願日とする日本国における特願2010-290197号、の内容をここに引用により合体する。
 以上、この発明をいくつかの特定の実施例を通じて説明してきたが、この発明は上記の各実施例に限定されるものではない。当業者にとっては、クレームの技術範囲でこれらの実施例にさまざまな修正あるいは変更を加えることが可能である。
 以上のように、この発明は内燃エンジンの冷間始動性能の向上に好ましい効果をもたらす。そのため、多様な始動環境で使用される車両用エンジンへの適用において特に好ましい効果が得られる。
 この発明の実施例が包含する排他的性質あるいは特長は以下のようにクレームされる。

Claims (6)

  1.  燃焼室(5)と、燃焼室(5)への吸入空気量を調整するスロットル(23)とを備え、クランキングにより始動する火花点火式内燃エンジン(1)の始動制御方法において:
     内燃エンジン(1)のクランキング開始を検出し;
     クランキング開始と同時にスロットル(23)を閉鎖し;
     内燃エンジン(1)の回転速度が所定の目標アイドル回転速度に達したときより以降、エンジン回転速度を目標アイドル回転速度に維持するのに必要な吸入空気量を燃焼室(5)に供給するように、エンジン回転速度が目標アイドル回転速度に達する以前にスロットル(23)の開動を開始し;
     エンジン回転速度が所定の目標アイドル回転速度に達したとき、エンジン回転速度が吹け上がることがないように点火タイミングを遅角させ;
     スロットル(23)の開度を、閉鎖状態から開動を開始した後、漸増させる;
     内燃エンジン(1)の始動制御方法。
  2.  スロットル(23)の開度が、エンジン回転速度を目標アイドル回転速度に維持するのに必要な吸入空気量を燃焼室(5)に供給する開度に達すると、スロットル(23)の開動を停止する、請求項1の内燃エンジン(1)の始動制御方法。
  3.  内燃エンジン(1)のクランキング開始からのストローク数または回転数をカウントし、カウント数が所定数に達した時点で、エンジン回転速度が目標アイドル回転速度に達する以前のスロットルの開動を開始するタイミングと判定する、請求項1または2の内燃エンジン(1)の始動制御方法。
  4.  燃焼室(5)と、燃焼室(5)への吸入空気量を調整するスロットル(23)とを備え、クランキングにより始動する内燃エンジン(1)の始動制御装置において:
     内燃エンジン(1)のクランキング開始を検出するセンサ(36)と;
     次のようにプログラムされたプログラマブルコントローラ(31):
     クランキング開始と同時にスロットルを閉鎖し;
     内燃エンジンの回転速度が所定の目標アイドル回転速度に達したときより以降、エンジン回転速度を目標アイドル回転速度に維持するのに必要な吸入空気量を燃焼室(5)に供給するように、エンジン回転速度が目標アイドル回転速度に達する以前にスロットル(23)の開動を開始し;
     エンジンの回転速度が所定の目標アイドル回転速度に達したとき、エンジン回転速度が吹け上がることがないように点火タイミングを遅角させ;
     スロットル(23)の開度を、閉鎖状態から開動を開始した後、漸増させる;
     とを備える内燃エンジン(1)の始動制御装置。
  5.  内燃エンジン(1)の回転速度を検出するクランク角センサ(33,34)をさらに備え、コントローラ(31)はクランク角センサ(33,34)の出力信号の脈動に基づきストローク数及び回転数の一方をカウントし、カウント数が所定数に達した場合にスロットル(23)の開動を開始するタイミングになったことを判定する、ようさらにプログラムされる、請求項4の内燃エンジン(1)の始動制御装置。
  6.  内燃エンジン(1)の吸入負圧を検出する圧力センサ(38)を更に備え、コントローラ(31)は圧力センサ(38)の出力信号の脈動に基づきストローク数及び回転数の一方をカウントし、カウント数が所定数に達した場合にとスロットル(23)の開動を開始するタイミングになったことを判定する、ようさらにプログラムされる、請求項4の内燃エンジン(1)の始動制御装置。
PCT/JP2011/080330 2010-12-27 2011-12-27 内燃エンジンの始動制御方法及び始動制御装置 WO2012091064A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010290197 2010-12-27
JP2010-290197 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012091064A1 true WO2012091064A1 (ja) 2012-07-05

Family

ID=46383154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080330 WO2012091064A1 (ja) 2010-12-27 2011-12-27 内燃エンジンの始動制御方法及び始動制御装置

Country Status (1)

Country Link
WO (1) WO2012091064A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168952A (ja) * 1986-01-20 1987-07-25 Nippon Denso Co Ltd 内燃機関の制御装置
JPH08232645A (ja) * 1994-12-28 1996-09-10 Mazda Motor Corp エンジンの排気ガス浄化装置及び排気ガス浄化方法
JPH1018885A (ja) * 1996-07-01 1998-01-20 Toyota Motor Corp 内燃機関のアイドル回転数制御装置
JP2007278073A (ja) * 2006-04-03 2007-10-25 Nissan Motor Co Ltd エンジンの制御方法及び制御装置
JP2009002314A (ja) * 2007-06-25 2009-01-08 Denso Corp 内燃機関の始動制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168952A (ja) * 1986-01-20 1987-07-25 Nippon Denso Co Ltd 内燃機関の制御装置
JPH08232645A (ja) * 1994-12-28 1996-09-10 Mazda Motor Corp エンジンの排気ガス浄化装置及び排気ガス浄化方法
JPH1018885A (ja) * 1996-07-01 1998-01-20 Toyota Motor Corp 内燃機関のアイドル回転数制御装置
JP2007278073A (ja) * 2006-04-03 2007-10-25 Nissan Motor Co Ltd エンジンの制御方法及び制御装置
JP2009002314A (ja) * 2007-06-25 2009-01-08 Denso Corp 内燃機関の始動制御装置

Similar Documents

Publication Publication Date Title
JP5673692B2 (ja) 内燃エンジンの始動制御方法及び始動制御装置
JP5590151B2 (ja) 内燃エンジンの始動制御方法及び始動制御装置
JP3677954B2 (ja) 内燃機関の制御装置
JP2002130015A (ja) 筒内噴射式内燃機関の燃料噴射制御装置
JP2010138722A (ja) 内燃機関の停止時に点火を停止する時期を制御する装置
JP3856100B2 (ja) 内燃機関の燃料噴射制御装置
JP2004197700A (ja) エンジンの燃料噴射制御装置
JP2008002435A (ja) エンジンの制御方法及び制御装置
JP2005188419A (ja) エンジンの始動装置
JP4286873B2 (ja) 内燃機関の吸気制御装置
JP2007278074A (ja) エンジンの制御方法及び制御装置
JP4270246B2 (ja) エンジンの始動制御装置及び始動制御方法
JP2007278073A (ja) エンジンの制御方法及び制御装置
JP2004028031A (ja) 直噴火花点火式エンジンの制御装置及び制御方法
WO2012091064A1 (ja) 内燃エンジンの始動制御方法及び始動制御装置
JP4872656B2 (ja) エンジンの制御方法及び制御装置
JP4872654B2 (ja) エンジンの制御方法及び制御装置
JP2009180145A (ja) 内燃機関の空燃比制御装置
JP2008025536A (ja) エンジンの制御方法及び制御装置
JP7283450B2 (ja) エンジン装置
JP3680505B2 (ja) 直噴火花点火式内燃機関の燃料噴射制御装置
JP4147932B2 (ja) エンジンの点火時期制御装置
JP4872657B2 (ja) エンジンの制御方法及び制御装置
JP2008025537A (ja) エンジンの制御方法及び制御装置
JP4872655B2 (ja) エンジンの制御方法及び制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP