WO2012090901A1 - 光モジュールおよび光配線基板 - Google Patents

光モジュールおよび光配線基板 Download PDF

Info

Publication number
WO2012090901A1
WO2012090901A1 PCT/JP2011/080005 JP2011080005W WO2012090901A1 WO 2012090901 A1 WO2012090901 A1 WO 2012090901A1 JP 2011080005 W JP2011080005 W JP 2011080005W WO 2012090901 A1 WO2012090901 A1 WO 2012090901A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
pad
optical waveguide
hole
wiring board
Prior art date
Application number
PCT/JP2011/080005
Other languages
English (en)
French (fr)
Inventor
健司 寺田
公博 山中
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/976,924 priority Critical patent/US9110234B2/en
Priority to JP2012550921A priority patent/JP5595524B2/ja
Publication of WO2012090901A1 publication Critical patent/WO2012090901A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • H05K1/113Via provided in pad; Pad over filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components

Definitions

  • the present invention relates to an optical module and an optical wiring board used for electronic devices (for example, various audiovisual devices, home appliances, communication devices, computer devices and peripheral devices).
  • electronic devices for example, various audiovisual devices, home appliances, communication devices, computer devices and peripheral devices.
  • the optical wiring board includes a wiring board that transmits an electrical signal and an optical waveguide that transmits an optical signal formed on the wiring board.
  • Japanese Patent Laid-Open No. 2000-347051 discloses a substrate (wiring substrate) having electrical wiring, an optical wiring layer (optical waveguide) formed on the substrate, and an optical component mounted on the optical wiring layer. (Optical semiconductor element), a mounting board provided on the optical wiring layer, to which the optical component is soldered, and a via hole penetrating the optical wiring layer in the thickness direction and connecting the pad and the electric wiring (Optical module) is described.
  • the optical component when the optical component is soldered to the pad on the optical wiring layer, since the solder is interposed between the optical component and the pad on the optical wiring layer, the distance between the optical component and the optical wiring layer tends to increase. Therefore, the light emitted from the optical component to the optical wiring layer or the light received from the optical wiring layer by the optical component is easily diffused between the optical component and the optical wiring layer. As a result, the optical signal is likely to be attenuated between the optical component and the optical wiring layer, and the signal transmission characteristics of the mounting substrate are likely to be deteriorated.
  • the present invention provides an optical module and an optical wiring board that meet the demand for improving signal transmission characteristics.
  • An optical module includes a wiring board having an electrode pad on a main surface, an optical waveguide disposed on the main surface of the wiring board, and a main substrate on the opposite side of the optical waveguide from the wiring board.
  • An optical semiconductor device mounted on a surface and emitting or receiving light transmitted to the optical waveguide and having a connection pad on a main surface on the optical waveguide side, and the electrode pad and the connection pad are electrically connected And a conductive member to be connected.
  • the optical waveguide has a through hole that penetrates in the thickness direction and exposes the electrode pad.
  • the connection pad includes a protrusion part at least partially entering the through hole.
  • the conductive member is disposed in the through hole and is connected to the protrusion and the electrode pad.
  • An optical wiring board includes a wiring board having an electrode pad on a main surface, and an optical waveguide disposed on the main surface of the wiring board.
  • the optical waveguide has a through hole that penetrates in the thickness direction and exposes the electrode pad.
  • the connection pad of the optical semiconductor element includes the protrusion part at least partially entering the through hole of the optical waveguide, and the protrusion part is in the through hole. It is connected to the electrode pad of the wiring board through a conductive member arranged on the wiring board. Therefore, the distance between the optical semiconductor element and the optical waveguide can be reduced. As a result, it is possible to increase the optical signal transmission efficiency between the optical semiconductor element and the optical waveguide, and thus to obtain an optical module excellent in signal transmission characteristics.
  • the optical module can be manufactured by mounting the optical semiconductor element.
  • FIG. 1 (a) is sectional drawing which cut
  • FIG.1 (b) is sectional drawing which expanded and showed R1 part of Fig.1 (a).
  • FIG. 2A is a three-dimensional view of the optical semiconductor element of the optical module of FIG.
  • FIG. 2B is a three-dimensional view of the optical waveguide of the optical module of FIG.
  • FIG. 3A is a top view of FIG.
  • FIG. 3B is a three-dimensional view showing a connection structure between electrode pads and connection pads in the optical module of FIG. 4A to 4C are cross-sectional views cut in the thickness direction for explaining the manufacturing process of the optical module shown in FIG.
  • FIG. 2A is a three-dimensional view of the optical semiconductor element of the optical module of FIG.
  • FIG. 2B is a three-dimensional view of the optical waveguide of the optical module of FIG.
  • FIG. 3A is a top view of FIG.
  • FIG. 3B
  • FIG. 4D is an enlarged cross-sectional view illustrating the R2 portion of FIG. 4C, for explaining the manufacturing process of the optical module shown in FIG. 5 (a) and 5 (b) are cross-sectional views cut in the thickness direction for explaining the manufacturing process of the optical module shown in FIG. 1 (a).
  • FIG. 5C is an enlarged cross-sectional view illustrating the R3 portion of FIG. 5B, for explaining the manufacturing process of the optical module shown in FIG. 6 (a) and 6 (c) are cross-sectional views cut in the thickness direction for explaining the manufacturing process of the optical module shown in FIG. 1 (a).
  • FIG. 6B is an enlarged cross-sectional view illustrating the R4 portion of FIG. 6A for explaining the manufacturing process of the optical module shown in FIG.
  • FIGS. 7B and 7C are cross-sectional views showing, on an enlarged scale, the R5 portion of FIG. 7A for explaining the manufacturing process of the optical module shown in FIG. Fig.8 (a) is sectional drawing cut
  • FIG. 8B is an enlarged cross-sectional view illustrating the R6 portion of FIG. 8A for explaining the manufacturing process of the optical module shown in FIG. Fig.9 (a) is sectional drawing which cut
  • FIG. 9B is an enlarged cross-sectional view of a portion R7 in FIG.
  • FIG. 10A is a cross-sectional view taken along line II in FIG. 9B.
  • FIG. 10B is a three-dimensional view of the optical waveguide of the optical module of FIG.
  • FIG. 11A is a top view of FIG.
  • FIG. 11B is a three-dimensional view showing a connection structure between electrode pads and connection pads in the optical module of FIG.
  • FIG. 12A is a cross-sectional view of a portion corresponding to FIG. 1A of an optical module according to another embodiment of the present invention.
  • FIG. 12B is a three-dimensional view showing a connection structure between electrode pads and connection pads in the optical module of FIG.
  • FIG. 12C is a cross-sectional view of a portion corresponding to FIG. 1A of an optical module according to another embodiment of the present invention.
  • FIG. 12D is a three-dimensional view showing a connection structure between electrode pads and connection pads in the optical module of FIG.
  • optical module 1 The optical module 1 shown in FIGS. 1A and 1B is used for electronic devices such as various audiovisual devices, home appliances, communication devices, computer devices or peripheral devices thereof.
  • the optical module 1 includes an optical semiconductor element 2 for inputting / outputting an optical signal, a semiconductor element 3 for performing signal conversion of an electric signal, an optical signal in which the optical semiconductor element 2 and the semiconductor element 3 are flip-chip mounted, An optical wiring board 4 for transmitting an electrical signal; conductive members 5 and 6 for electrically and mechanically connecting the optical semiconductor element 2 or the semiconductor element 3 and the optical wiring board 4; and the optical semiconductor element 2 or the semiconductor element 3 Insulating members 7 and 8 for mechanically connecting the optical wiring board 4 are included.
  • an optical signal is transmitted between the optical semiconductor element 2 and the external module via the optical wiring board 4.
  • the electrical signal is transmitted between the optical semiconductor element 2 and the semiconductor element 3 and between the semiconductor element 3 and the external circuit via the conductive members 5 and 6 and the optical wiring board 4.
  • the optical semiconductor element 2 includes an optical semiconductor substrate 9, and connection pads 10 and dummy pads 11 formed on the main surface of the optical semiconductor substrate 9 on the optical wiring substrate 4 side. It is out.
  • the optical semiconductor substrate 9 functions as, for example, a light emitting element or a light receiving element, and includes a light emitting / receiving unit 12 that emits or receives light.
  • the light emitting element converts an electrical signal (analog signal) supplied from the optical wiring board 4 into an optical signal and supplies (emits light) to the optical wiring board 4.
  • a surface emitting semiconductor laser or the like is used. Can do.
  • the light receiving element converts an optical signal supplied (received) from the optical wiring board 4 into an electrical signal (analog signal) and supplies the electrical signal to the optical wiring board 4.
  • a photodiode or the like is used. it can.
  • the optical semiconductor substrate 9 can be formed of a semiconductor material such as silicon or gallium arsenide.
  • the thickness of the optical semiconductor substrate 9 is set to, for example, 0.1 mm or more and 1 mm or less.
  • connection pad 10 is electrically and mechanically connected to the conductive member 5 and functions as a terminal for electrically connecting the optical semiconductor element 2 to the optical wiring board 4.
  • the connection pad 10 includes a flat pad portion 13 formed on the main surface of the optical semiconductor substrate 9, and a protrusion 14 connected to a part of the main surface of the pad portion 13 opposite to the optical semiconductor substrate 9. Is included.
  • the pad portion 13 of the connection pad 10 can be formed of a conductive material such as copper, gold, aluminum, nickel, or chromium, for example.
  • the pad portion 13 has a cylindrical shape.
  • the planar diameter (diameter) of the pad portion 13 is set to 60 ⁇ m or more and 100 ⁇ m or less, for example.
  • the thickness of the pad part 13 is set to 0.1 ⁇ m or more and 10 ⁇ m or less, for example.
  • the protrusion 14 of the connection pad 10 can be formed of, for example, a conductive material such as copper, gold, nickel, or chromium, and is preferably made of the same material as the pad 13.
  • This protrusion 14 is formed in a conical shape, for example.
  • the planar diameter of the protrusion 14 is set to, for example, 60 ⁇ m or more and 90 ⁇ m or less.
  • the height of the protrusion 14 is set to, for example, 50 ⁇ m or more and 70 ⁇ m or less.
  • the dummy pad 11 is not electrically connected to the optical wiring board 4 and has a function of reducing the inclination of the optical semiconductor element 2 due to the connection pad 10.
  • the dummy pad 11 can be formed of, for example, the same conductive material as the pad portion 13. Further, the dummy pad 11 has a columnar shape, for example.
  • the diameter of the plane of the dummy pad 11 is set to, for example, 60 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the dummy pad 11 is set to, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the semiconductor element 3 includes a semiconductor substrate 15 and connection pads 16 formed on the main surface of the semiconductor substrate 6 on the optical wiring substrate 4 side.
  • the semiconductor substrate 15 converts an electrical signal between a digital signal and an analog signal.
  • an IC or LSI can be used for the semiconductor substrate 15 and can be formed of a semiconductor material such as silicon.
  • the thickness of the semiconductor substrate 15 is set to, for example, 0.1 mm or more and 1 mm or less.
  • connection pad 16 is electrically and mechanically connected to the conductive member 6 and functions as a terminal for electrically connecting the semiconductor element 3 to the optical wiring board 4.
  • the connection pad 16 has the same configuration as the connection pad 10 of the optical semiconductor element.
  • the optical wiring board 4 includes a wiring board 17 and an optical waveguide 18 formed on the wiring board 17 and on which the optical semiconductor element 2 and the semiconductor element 3 are mounted.
  • the wiring board 17 transmits grounding power, power supply power, or an electrical signal while increasing the rigidity of the optical wiring board 4.
  • the wiring substrate 17 includes a core substrate 19 and a pair of wiring layers 20 formed on the upper and lower surfaces of the core substrate 19.
  • the core substrate 19 increases the rigidity of the wiring substrate 17 and electrically connects the pair of wiring layers 20.
  • the core substrate 19 includes a resin substrate 21, a cylindrical through-hole conductor 22 that penetrates the resin substrate 21 in the thickness direction, and an insulator 23 filled in a region surrounded by the through-hole conductor 22. Yes.
  • the resin substrate 21 increases the rigidity of the core substrate 19.
  • the resin substrate 21 includes, for example, a glass cloth and an epoxy resin that covers the glass cloth.
  • the resin substrate 21 has a thickness of, for example, 0.1 mm to 3.0 mm.
  • the through-hole conductor 22 electrically connects the pair of wiring layers 20.
  • the through-hole conductor 22 can be formed of a conductive material such as copper, silver, gold, aluminum, nickel, or chromium.
  • the insulator 23 can be formed of a resin material such as an epoxy resin.
  • the wiring layer 20 increases the electric wiring density of the wiring board 17.
  • the wiring layer 20 includes a plurality of insulating layers 24 stacked on the core substrate 19, a plurality of conductive layers 25 formed on the core substrate 19 or on the insulating layer 24, and the insulating layer 24 in the thickness direction. And a plurality of via conductors 26 connected to the conductive layer 25.
  • the conductive layer 25 and the via conductor 26 are electrically connected to each other, and constitute an electrical wiring including a ground wiring, a power supply wiring, and / or a signal wiring.
  • the insulating layer 24 supports the conductive layer 25 and suppresses a short circuit between the conductive layers 25.
  • the insulating layer 24 can be formed of a resin material such as an epoxy resin or a polyimide resin.
  • the thickness of the insulating layer 24 is set to, for example, 10 ⁇ m or more and 50 ⁇ m or less.
  • the insulating layer 24 preferably contains an inorganic insulating filler made of an inorganic insulating material such as silicon oxide.
  • the conductive layer 25 transmits grounding power, power supply power, or an electrical signal.
  • the conductive layer 25 can be formed of a conductive material such as copper, silver, gold, aluminum, nickel, or chromium.
  • the thickness of the conductive layer 25 is set to 3 ⁇ m or more and 20 ⁇ m or less, for example.
  • the conductive layer 25 disposed on the main surface of the wiring substrate 17 on the optical waveguide 18 side is an elongated wiring conductor 27 and flat plate electrodes connected to both ends of the wiring conductor. Pads 28 and 29 are included.
  • the wiring conductor 27 and the electrode pads 28 and 29 are used to transmit an electric signal between the optical semiconductor element 2 and the semiconductor element 3.
  • a plurality of sets of wiring conductors 27 and electrode pads 28 and 29 are formed so as to be parallel to each other in the planar direction.
  • the wiring conductor 27 transmits an electric signal between the electrode pads 28 and 29 connected to both ends.
  • the width of the wiring conductor 27 is set to, for example, 5 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the wiring conductor 27 is set to 3 ⁇ m or more and 20 ⁇ m or less, for example.
  • the wiring conductor 27 has a longitudinal direction (X direction) from the optical semiconductor element 2 toward the semiconductor element 3, and a plurality of wiring conductors 27 are formed so that the longitudinal directions are parallel to each other.
  • the electrode pads 28 and 29 function as terminals that are electrically and mechanically connected to the conductive members 5 and 6.
  • the electrode pad 28 is connected to the connection pad 10 of the optical semiconductor element 2 through the conductive member 5.
  • the electrode pad 29 is connected to the connection pad 16 of the semiconductor element 3 through the conductive member 6.
  • a plurality of electrode pads 28 are formed so as to be arranged along a direction (Y direction) orthogonal to the longitudinal direction of the wiring conductor 27.
  • a plurality of electrode pads 29 are formed so as to be arranged along a direction (Y direction) orthogonal to the longitudinal direction of the wiring conductor 27.
  • the electrode pads 28 and 29 include a flat land portion 30 connected to the end portion of the wiring conductor 27 and a raised portion 31 connected to a part of the main surface of the land portion 30 on the optical waveguide 18 side. Yes.
  • the land portion 30 is interposed between the insulating layer 24 and the optical waveguide 18, and a region of the main surface on the optical waveguide side where the raised portion 31 is not connected is in contact with the optical waveguide 18. Yes.
  • the land portion 30 has, for example, a cylindrical shape. Further, the diameter and thickness of the plane in the land portion 30 are larger than the diameter and thickness of the plane in the raised portion 31.
  • the diameter of the plane of the land portion 30 is set to, for example, 60 ⁇ m or more and 100 ⁇ m or less, and is set to, for example, 0.6 to 0.9 times the diameter of the plane of the raised portion 31.
  • the thickness of the land portion 30 is set to, for example, 10 ⁇ m or more and 20 ⁇ m or less, and is set to, for example, 0.6 times or more and 0.9 times or less of the thickness of the raised portion 31.
  • the raised portion 31 protrudes from the land portion 30 toward a through hole P of the optical waveguide 18 described later, and a part of the main surface is exposed in the through hole P. Further, the protruding portion 31 is a part of the main surface on the optical waveguide 18 side, and a region that is not exposed in the through hole P is in contact with the optical waveguide 18, and the planar diameter is larger than the through hole P. .
  • the raised portion 31 has, for example, a cylindrical shape.
  • the diameter of the flat surface of the raised portion 31 is set to, for example, 50 ⁇ m or more and 90 ⁇ m or less, and is set to be 0.6 times or more and 0.9 times or less than the diameter of the through hole P. Further, the thickness of the raised portion 31 is set to, for example, 5 ⁇ m or more and 15 ⁇ m or less.
  • the via conductor 26 electrically connects the conductive layers 25 separated from each other in the thickness direction via the insulating layer 24.
  • the via conductor 26 can be formed of, for example, a conductive material such as copper, gold, nickel, or chromium.
  • the via conductor 26 is formed in a columnar shape that becomes narrower toward the core substrate 19, and has a circular plane.
  • the planar diameter of the via conductor 26 is set to, for example, 25 ⁇ m to 100 ⁇ m, and the height of the via conductor 26 is set to, for example, 10 ⁇ m to 50 ⁇ m.
  • the optical waveguide 18 has a function of transmitting an optical signal.
  • the optical waveguide 18 includes a flat clad layer 32 formed on the wiring board 17 and an elongated core surrounded by the clad layer 32.
  • a notch C that is recessed in the thickness direction from the main surface of the optical waveguide 18 on the side of the optical semiconductor element 2 immediately below the layer 33 and the light receiving and emitting part 12 of the optical semiconductor element 2, and the notch C
  • a through hole P that penetrates the optical waveguide 18 in the thickness direction and exposes the electrode pads 28 and 29 of the wiring board 17.
  • the notch C may penetrate the optical waveguide 18 in the thickness direction and reach the wiring board 17.
  • the clad layer 32 has a function as a protective member of the core layer 33 and a function of confining an optical signal in the core layer 33.
  • the clad layer 32 is made of, for example, an epoxy resin, an acrylic resin, a polysilanol resin, a polysilane resin, a polyimide resin, a silicone resin, a polystyrene resin, a polycarbonate resin, a polyamide resin, a polyester resin, a phenol resin, or a polyquinoline resin.
  • the transmittance of the cladding layer 32 is set to, for example, 80% or more and 100% or less.
  • the refractive index of the cladding layer 32 is set to 1.4 or more and 1.6 or less, for example.
  • the thickness of the cladding layer 32 is set to 45 ⁇ m or more and 85 ⁇ m or less, for example.
  • the transmittance is measured by a method according to ISO13468-1: 1996, and the refractive index is measured by a method according to ISO489: 1999.
  • the core layer 33 has a refractive index higher than that of the cladding layer 32 and has a function of transmitting an optical signal by totally reflecting the optical signal at the interface with the cladding layer 32.
  • the core layer 31 can be formed of a light transmissive material similar to that of the cladding layer.
  • the light transmittance of the core layer 33 is set to 95% or more and 100% or less, for example.
  • the refractive index of the core layer 33 is set to 1.4 to 1.6, for example, and is set to 1.0001 times to 1.1 times the refractive index of the cladding layer 32, for example.
  • the core layer 33 has, for example, a rectangular parallelepiped shape.
  • the width of the core layer 33 is set to, for example, 10 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the core layer 33 is set to 10 ⁇ m or more and 50 ⁇ m or less.
  • a plurality of core layers 33 are formed so that their longitudinal directions are parallel to each other in the planar direction. Located on the extension line. The core layer 33 may be positioned between the extended lines of the wiring conductor 27 in plan view.
  • the notch C has a vertical cross section perpendicular to the longitudinal direction (X direction) of the core layer 33, and an inclined surface formed by inclining the vertical cross section about the width direction (Y direction) of the core layer 33 as a rotation axis. , And is formed in an elongated shape along the width direction of the core layer 33.
  • the vertical cross section includes the end faces of the plurality of core layers 33 through which the optical signal passes, and the height of the vertical cross section (length in the Z direction) is set to 20 ⁇ m or more and 150 ⁇ m or less.
  • the inclined surface is formed immediately below the light emitting / receiving unit 12 of the optical semiconductor element 2, and the inclination angle of the inclined surface with respect to the lower surface of the cladding layer 32 is set to 40 ° or more and 50 ° or less, for example.
  • the optical path changing member 34 is made of a metal film formed on the inclined surface of the notch C, and has a function of changing the transmission direction of the optical signal. Specifically, when the optical semiconductor element 2 is a light emitting element, the optical path changing member 34 reflects the optical signal transmitted from the light emitting portion of the light emitting element toward the inclined surface, thereby transmitting the optical signal transmission direction. Can be converted from the thickness direction (Z direction) to the longitudinal direction (X direction), and an optical signal can be transmitted to the core layer 33.
  • the optical path changing member 34 reflects the optical signal transmitted from the core layer 33 toward the inclined surface, thereby changing the transmission direction of the optical signal in the longitudinal direction (X Direction) to thickness direction (Z direction), and an optical signal can be transmitted to the light receiving portion of the light receiving element.
  • the optical path changing member 34 can be formed of a metal material such as gold.
  • the thickness from the inclined surface of the optical path conversion member 34 is set to, for example, 1000 mm or more and 5000 mm or less.
  • the through hole P is formed in, for example, a cylindrical shape.
  • the diameter of the plane of the through hole P is set to, for example, 50 ⁇ m or more and 90 ⁇ m or less.
  • a plurality of through holes P are formed so as to expose the electrode pads 28 and 29 one by one.
  • the conductive members 5 and 6 are disposed in the through hole P and function as conductive adhesive members. Specifically, the conductive member 5 electrically and mechanically connects the connection pad 10 of the optical semiconductor element 2 and the electrode pad 28 of the wiring board 17. The conductive member 6 electrically and mechanically connects the connection pad 16 of the semiconductor element 3 and the electrode pad 29 of the wiring board 17.
  • the conductive members 5 and 6 can be formed of a metal material having a melting point lower than that of the connection pads 10 and 13 and the electrode pads 28 and 29 in order to secure the bonding function. A solder containing indium or bismuth can be used. As shown in FIG. 3B, the conductive members 5 and 6 have a drum shape in which the central portion in the thickness direction is constricted, and a gap S is formed between the inner wall of the through hole P.
  • the insulating members 7 and 8 are filled between the optical semiconductor element 2 or the semiconductor element 3 and the optical waveguide 18 and function as an insulating adhesive member (underfill). Specifically, the insulating member 7 is filled between the optical semiconductor element 2 and the optical waveguide 18, and improves the insulating property between the connection pads 10 of the optical semiconductor element 2 and the optical semiconductor element 2 and the optical waveguide. The waveguide 18 is mechanically connected. The insulating member 8 is filled between the semiconductor element 3 and the optical waveguide 18, and mechanically connects the semiconductor element 3 and the optical waveguide 18 while improving the insulation between the connection pads 16 of the semiconductor element 3. Connected to.
  • the insulating member 7 is filled and sealed in the cutout portion C of the optical waveguide 18 and has a function of preventing deformation of the cutout portion C and peeling of the optical path conversion member 34 (metal film).
  • the insulating member 7 can be formed of a translucent material in order to secure an optical path between the optical semiconductor element 2 and the optical waveguide 18.
  • a resin material such as an epoxy resin or an acrylic resin can be used, and the transmissivity of the translucent material is set to 95% or more and 100% or less, for example.
  • the insulating member 8 can be formed of a resin material such as an epoxy resin or an acrylic resin, and is preferably formed of the same resin material as that of the insulating member 7.
  • only the insulating member 8 filled between the semiconductor element 3 and the optical waveguide 18 may contain an inorganic insulating filler made of silicon oxide or the like.
  • connection pads 10 of the optical semiconductor element 2 protrude toward the electrode pads 28 of the wiring board 17.
  • the projection 14 is provided with at least a part thereof in the through hole P penetrating the optical waveguide 18 in the thickness direction.
  • the conductive member 5 is disposed in the through hole P and connected to the protrusion 14 of the connection pad 10 and the electrode pad 28.
  • connection pad 10 of the optical semiconductor element 2 and the electrode pad 28 of the wiring substrate 17 can be electrically connected via the conductive member 5 disposed in the through hole P, the main surface of the optical waveguide
  • the distance between the semiconductor element 2 and the optical waveguide 18 can be reduced as compared with the case where the optical semiconductor element and the wiring substrate are electrically connected by forming a conductive member thereon. Therefore, light diffusion can be reduced between the light emitting / receiving unit 12 of the optical semiconductor element 2 and the optical path changing member 34 of the optical waveguide 18. Therefore, it is possible to increase the optical signal transmission efficiency between the optical semiconductor element 2 and the optical waveguide 18 and thus to obtain the optical module 1 having excellent signal transmission characteristics.
  • the through-conductor is increased in length and becomes susceptible to disconnection.
  • the protruding portion 14 of the connection pad 10 is inserted into the through hole P, and the electrode pad 28 is interposed through the conductive member 5 functioning as a conductive adhesive member in the through hole P. And mechanically connected. Therefore, it is possible to obtain the optical module 1 that is superior in the reliability of electrical connection between the optical semiconductor element 2 and the wiring board 17 as compared with the case where the through conductor is formed in the optical waveguide described above.
  • the conductive member 5 is disposed in the through-hole P, the insulation between the adjacent conductive members 5 can be enhanced by the optical waveguide 18, thereby reducing the short circuit between the conductive members 5. Can do.
  • a short circuit between the conductive members 5 can be reduced without providing a solder resist layer on the optical waveguide 18, the optical semiconductor element 2 and the optical waveguide 18 can be brought close to each other.
  • connection pad 10 of the optical semiconductor element 2 is a part of the main surface of the pad portion 13 on the optical waveguide 18 side, and the region where the protrusion 14 is not connected is the cladding layer of the optical waveguide 18. 32.
  • the optical semiconductor element 2 and the optical waveguide 18 are brought close to each other, and the optical semiconductor element 2 is inclined with respect to the optical waveguide 18. This can be reduced. Therefore, the transmission efficiency of the optical signal between the optical semiconductor element 2 and the optical waveguide 18 can be increased.
  • the dummy pad 11 of the optical semiconductor element 2 is in contact with the cladding layer 32 of the optical waveguide 18.
  • the inclination of the optical semiconductor element 2 with respect to the optical waveguide 18 can be easily adjusted.
  • the thickness of the dummy pad 11 is preferably the same as the thickness of the pad portion 13 of the connection pad 10. As a result, since the thicknesses of the dummy pad 11 and the pad portion 13 that are in contact with the main surface of the optical waveguide 18 are equal, it is possible to reduce the inclination of the optical semiconductor element 2 with respect to the optical waveguide 18. In this case, the thickness of the dummy pad 11 is set to, for example, 0.9 times to 1.1 times the thickness of the pad portion 13.
  • the electrode pad 28 includes a raised portion 31 protruding from the land portion 30 toward the through hole P and connected to the conductive member 5. As a result, the distance between the electrode pad 28 and the connection pad 10 can be shortened by the raised portion 31, and the connection strength between the electrode pad 28 and the conductive member 5 can be increased.
  • the raised portion 31 is disposed in the layer region (first cladding layer) of the cladding layer 32 disposed below the core layer 33, and the thickness of the electrode pad 28 is smaller than the thickness of the first cladding layer. It is desirable. As a result, deformation of the core layer 33 can be reduced.
  • the mounting structure of the semiconductor element 3 has the same structure as the mounting structure of the optical semiconductor element 2 described above.
  • the optical module 1 described above exhibits a desired function as follows when the optical semiconductor substrate 9 is a light emitting element.
  • a digital signal (electric signal) is transmitted from an external circuit to the semiconductor element 3 through the conductive layer 25 and the via conductor 26, and the digital signal is converted into an analog signal (electric signal) by the semiconductor element 3.
  • the analog signal is transmitted from the semiconductor element 3 to the optical semiconductor element 2 via the wiring conductor 27, and the analog signal is converted into an optical signal by the optical semiconductor element 2.
  • this optical signal is transmitted from the optical semiconductor element 2 to the external module via the optical path changing member 34 and the core layer 33. In this way, the optical module 1 converts the digital signal (electrical signal) transmitted from the external circuit into an optical signal and transmits it to the external module.
  • the optical module 1 when the optical semiconductor substrate 9 is a light receiving element, the optical module 1 exhibits a desired function by transmitting each signal in the opposite direction to the case where the optical semiconductor substrate 9 is a light emitting element.
  • the optical semiconductor element 2 and the semiconductor element 3 are produced. Specifically, for example, it is performed as follows.
  • the pad portion 13 and the dummy pad 11 are formed on the optical semiconductor substrate 9 by electrolytic plating, vapor deposition, CVD, sputtering, or the like.
  • the protruding portion 14 is formed on the pad portion 13 by wire bonding, and the connection pad 10 including the protruding portion 14 and the pad portion 13 is formed.
  • the optical semiconductor element 2 can be manufactured as described above.
  • the semiconductor element 3 can be manufactured by the same method as the optical semiconductor element 2.
  • the core substrate 19 is produced. Specifically, for example, it is performed as follows.
  • an uncured resin sheet is laminated and heated and pressed to be cured, thereby producing a substrate.
  • the uncured state is an A-stage or B-stage according to ISO 472: 1999.
  • a through hole penetrating the substrate in the thickness direction is formed by, for example, drilling or laser processing.
  • a cylindrical through-hole conductor 22 is formed by depositing a conductive material on the inner wall of the through-hole, for example, by electroless plating or electrolytic plating.
  • a conductive material layer is formed by depositing a conductive material on the upper and lower surfaces of the base.
  • the insulator 11 is formed by filling a resin material in a region surrounded by the through-hole conductor 22.
  • the conductive layer material layer is patterned by a conventionally known photolithography, etching, or the like to form the conductive layer 25.
  • the core substrate 19 can be manufactured as described above.
  • a pair of wiring layers 20 are formed on both sides of the core substrate 19 to produce the wiring substrate 17. Specifically, for example, it is performed as follows.
  • an uncured resin is disposed on the core substrate 19, and the insulating layer 24 is formed on the core substrate 19 by further heating and curing the resin while heating and fluidly adhering the resin.
  • a via hole is formed in the insulating layer 24 by, for example, laser processing, and at least a part of the conductive layer 25 is exposed in the via hole.
  • the via conductor 13 is formed in the via hole and the conductive layer 25 is formed on the insulating layer 24 by, for example, a semi-additive method using an electroless plating method and an electrolytic plating method, a subtractive method, or a full additive method. . By repeating this process, the wiring layer 20 can be formed.
  • the wiring conductor 27 and the land portion 30 are formed by patterning. Further, after the land portion 30 is formed, as shown in FIG. 4D, the land portion 30 is formed on the land portion 30 by, for example, a semi-additive method, a subtractive method, or a full additive method using an electroless plating method and an electrolytic plating method. A raised portion 31 is formed on the surface. By making the planar diameter and thickness of the raised portion 31 smaller than that of the land portion 30, the raised portion 31 can be easily formed on the land portion 30.
  • the wiring board 17 can be manufactured as described above.
  • the clad layer 32 and the core layer 33 are formed on the wiring board 17. Specifically, for example, it is performed as follows.
  • an uncured first clad layer precursor is applied onto the wiring substrate 17, and the first clad layer precursor is exposed and developed.
  • a flat first clad layer is formed on the wiring board 17.
  • an uncured core layer precursor is applied onto the first clad layer, and exposed and developed using a mask, thereby partially forming the elongated core layer 33 on the first clad layer.
  • an uncured second clad layer precursor is applied on the first clad layer so as to surround the core layer 33, and the second clad layer precursor is exposed and developed, whereby the first clad layer is exposed.
  • a second cladding layer is formed on the core layer 33.
  • the clad layer 32 is constituted by the first clad layer and the second clad layer.
  • the core layer 33 can be formed while reducing deformation.
  • the clad layer 32 and the core layer 33 can be formed.
  • a through hole P penetrating the cladding layer 32 and the core layer 33 is formed, and the conductive members 5 and 6 are formed in the through hole P as shown in FIG. Form. Specifically, for example, it is performed as follows.
  • through holes P are formed through the cladding layer 32 and the core layer 33 in the thickness direction to expose a part of the main surface of the raised portion 31 by laser processing.
  • flux is applied onto the electrode pads 28 and 29 exposed in the through hole P, and then solder balls are inserted into the through holes P.
  • the surface exposed in the through holes P of the electrode pads 28 and 29 is covered with the conductive members 5 and 6 by heating and melting (reflowing) the solder balls, as shown in FIG.
  • the conductive members 5 and 6 are connected to the electrode pads 28 and 29. Due to this heating and melting, the conductive members 5 and 6 become cylindrical, and a recess is formed in the through hole P above the conductive members 5 and 6.
  • the cylindrical conductive members 5 and 6 have convex curved surfaces that protrude toward the recesses.
  • the fine through hole P can be formed.
  • the optical waveguide 18 is arranged between the adjacent solder balls to reduce the short circuit between the solder balls due to the decrease in the viscosity due to the flux or the melting due to the heating. can do.
  • the solder balls inserted into the through holes P are heated and melted to connect the conductive members 5 and 6 to the electrode pads 28 and 29. Therefore, if the through hole has a high aspect ratio, the plating solution enters. Compared to the difficult electroplating method, the gap between the conductive members 5 and 6 and the electrode pads 28 and 29 can be reduced.
  • the solder ball is inserted into the through hole P without exposing the optical waveguide 18 to the inner wall of the through hole P without plating or the like, the efficiency of the insertion can be increased.
  • the conductive members 5 and 6 and the electrode are disposed when the conductive members 5 and 6 are disposed in the through hole P.
  • the generation of a gap between the pads 28 and 29 can be reduced, and the connection reliability between the conductive members 5 and 6 and the electrode pads 28 and 29 can be improved.
  • the notch C is formed in the clad layer 32 and the core layer 33, and the optical path conversion member 34 is formed on the inclined surface of the notch C, thereby providing an optical waveguide. 18 is formed, and the optical wiring board 4 is manufactured. Specifically, for example, it is performed as follows.
  • a notch C is formed by making a cut from the surface of the cladding layer 32 toward the wiring substrate 17 using, for example, a dicing blade whose tip is set in a desired shape.
  • the optical path changing member 34 is formed by, for example, vapor deposition or sputtering.
  • the optical waveguide 18 can be formed on the wiring board 17 to produce the optical wiring board 4.
  • optical semiconductor element and semiconductor element mounting (7) As shown in FIG. 7A, the optical semiconductor element 2 and the semiconductor element 3 are mounted on the optical waveguide 18 of the optical wiring board 4, and the connection pads 10 and 16 and the electrodes are interposed via the conductive members 5 and 6. After the pads 28 and 29 are connected, the insulating members 7 and 8 are formed between the optical wiring board 4 and the optical semiconductor element 2 and the semiconductor element 3 as shown in FIG.
  • the optical module 1 is manufactured by mounting the optical semiconductor element 2 and the semiconductor element 3 on the wiring board 4. Specifically, for example, the following is performed.
  • the protrusions 14 of the connection pads 10 and 16 are inserted into the through holes P, and at least a part of the protrusions 14 is embedded in the conductive members 5 and 6,
  • the optical semiconductor element 2 and the semiconductor element 3 are mounted on the optical waveguide 18.
  • the conductive members 5, 6 and the connection pads 10, 16 are coated by heating and melting the conductive members 5, 6 while covering the surface of the protrusion 14 with surface tension. Connect. By this heating and melting, the conductive members 5 and 6 become drum-shaped and a gap S is formed.
  • an insulating member precursor containing an uncured resin is injected between the optical wiring board 4 and the optical semiconductor element 2 and the semiconductor element 3, and the uncured resin is heated. Then, the insulating members 7 and 8 are formed.
  • the protrusion 14 is inserted into the through hole P and connected to the conductive member 5, the displacement of the conductive member 5 during heating and melting is reduced, and the light receiving and emitting portions 12 of the optical semiconductor element 2 The positional relationship between the optical waveguide 18 and the optical path changing member 34 can be kept good. Further, since the projecting portion 14 is inserted and fixed into the conductive member 5 in the through hole P, the conductive member 5 and the projecting portion are caused by flowing on the surface of the projecting portion 14 due to surface tension when the conductive member 5 is heated and melted. The adhesion area with the part 14 increases. Therefore, the connection pad 10 and the conductive member 5 can be firmly connected, and as a result, the reliability of electrical connection between the optical semiconductor element 2 and the optical wiring board 4 can be enhanced.
  • the protruding portions 14 of the connection pads 10 and 16 are embedded in the conductive members 5 and 6, the protruding portions 14 can break through the oxide film of the conductive members 5 and 6, and the protruding portions can be used without using flux. 14 and the conductive members 5 and 6 can be connected. In addition, after apply
  • the optical waveguide 18 is disposed between the adjacent conductive members 5 and 6, and the conductive members 5 and 6 are short-circuited due to heat melting. Can be reduced.
  • the projecting portions 14 are embedded in the conductive members 5 and 6 having convex curved surfaces protruding toward the depressions, the projecting portions 14 can be easily embedded in the conductive members 5 and 6.
  • the optical semiconductor element 2 and the semiconductor element 3 are mounted on the optical wiring board 4 while the connection pads 10 and 16 and the electrode pads 28 and 29 are connected via the conductive members 5 and 6, and the optical module. 1 can be produced.
  • Optical module In the second embodiment, unlike the first embodiment, as shown in FIGS. 9 to 11, a plurality of electrode pads 28A are exposed in the through hole PA, and the conductive member 5 is provided in each of the plurality of electrode pads 28A. A connection pad 10A is connected to each of the conductive members 5A.
  • the through hole PA can be easily processed and the surface of the electrode pad 28A exposed in the through hole PA is enlarged. Therefore, the connection reliability between the electrode pad 28A and the conductive member 5A can be improved.
  • the electrode pad 28A is formed only from the pad portion without providing a raised portion as compared with the first embodiment.
  • the connection reliability between the electrode pad 28A and the conductive member 5A can be secured.
  • the entire main surface of the electrode pad 28A is exposed in the through hole PA.
  • the connection area between the electrode pad 28A and the conductive member 5A can be further increased.
  • the through hole PA has an elongated shape along the arrangement direction (Y direction) of the electrode pads 28A.
  • the width of the through hole PA is preferably equal to the width of the electrode pad 28A.
  • the width of the through hole PA is set to be 0.9 to 1.1 times the width of the electrode pad 28A.
  • each of the plurality of conductive members 5A is surrounded by the insulating member 7A in the through hole PA. As a result, a short circuit between the conductive members 5A can be reduced in the through hole PA.
  • the second embodiment is such that the pad portion 13A of the connection pad 10A enters the through hole PA as shown in FIG. 9B.
  • the optical semiconductor element 2A and the optical waveguide 18A can be brought closer to each other.
  • the optical semiconductor element 2A does not have a dummy pad, the main surface on the optical waveguide 18A side of the optical semiconductor substrate 9A has no dummy pad, and the main surface is in contact with the optical waveguide 18A.
  • the optical semiconductor element 2A and the optical waveguide 18A can be brought closer to each other, and the inclination of the optical semiconductor element 2A with respect to the optical waveguide 18A can be reduced.
  • the semiconductor element 3A is mounted on the optical wiring board 4A in the same manner as the optical semiconductor element 2A.
  • optical module manufacturing method Next, a method for manufacturing the optical module 1A of the second embodiment described above will be described. In addition, description is abbreviate
  • step (4) of the first embodiment described above when the first cladding layer precursor, the core layer precursor and the second cladding layer precursor are exposed and developed, patterning is performed using a mask, A through hole PA is formed by penetrating through the portions corresponding to the through holes PA of the first cladding layer, the core layer, and the second cladding layer. As a result, the elongated through hole PA can be easily formed.
  • solder balls are arranged on the electrode pads 28A and 28A in the step (5) of the first embodiment described above, a flux is selectively applied on the electrode pads 28A and 28A by a transfer method, Solder balls are placed on the electrode pads 28A and 28A.
  • the flux can be reduced between the adjacent electrode pads 28A and between the adjacent electrode pads 29A, and the contact between adjacent solder balls caused by the flux can be reduced.
  • the conductive members 5A and 6A heated and melted in the step (5) have a hemispherical shape having a flat surface at the connection portions with the electrode pads 28A and 28A.
  • the pad portion 13A and the protruding portion 14A of the connection pads 10A and 16A are inserted into the through hole PA, and at least a part of the protruding portion 14A is a conductive member.
  • the conductive members 5A and 6A are connected to the connection pads 10A and 16A by heating and melting the conductive members 5A and 6A.
  • the insulating member precursor is injected into the through-hole PA from the opening on the side surface of the optical waveguide 18A of the through-hole PA, and each of the conductive members 5A and 6A is thermally cured after being surrounded by the conductive members 5A and 6A. Surrounding insulating members 7A and 8A are formed.
  • the insulating member precursor when the insulating member precursor is injected into the through hole PA in the step (7) described above, the insulating member precursor is injected into the cutout portion CA in the same manner as the through hole PA.
  • the insulating member 7A can be formed in the notch CA.
  • the optical module 1A can be manufactured as described above.
  • the configuration in which the optical semiconductor element has the optical semiconductor substrate and the connection pad has been described as an example.
  • the optical semiconductor element the optical semiconductor substrate is disposed on the ceramic substrate. You may use what was installed.
  • the configuration in which the optical semiconductor element has the dummy pad is described as an example.
  • the optical semiconductor element may not have the dummy pad.
  • the optical semiconductor element is supported by inserting the protruding portion into the through hole and embedding in the conductive member, and thus the inclination of the optical semiconductor element is reduced.
  • the configuration using the resin substrate as the wiring substrate has been described as an example.
  • the wiring substrate a metal core substrate or a ceramic substrate in which a metal plate is coated with a resin is used. It doesn't matter.
  • the optical path conversion member is made of a metal film
  • the optical path may be changed by means other than the metal film.
  • the conductive member after mounting the optical semiconductor element on the optical wiring board has been described as an example of a drum shape.
  • FIGS. As shown in b), the conductive member 5B is filled in the through-hole PB and has a cylindrical shape, and the gap may not be formed.
  • the conductive member 5B can be formed by adjusting the size of the solder ball in the step (5) described above. Note that a part of the conductive member 5B may protrude from the through hole P and be interposed between the pad portion 13B and the cladding layer 32B.
  • the raised portion 31B may be disposed in the through-hole PB.
  • the raised portion 31B is not formed in the above-described step (3), but is formed by using electroless plating or electrolytic plating after forming the through hole PB in the above-described step (5). Can do.
  • the thickness of the raised portion 31B can be increased and the thickness of the electrode pad 28B can be made larger than that of the first cladding layer without affecting the deformation of the core layer 33B.
  • the insulating member 7C is shown. You may distribute
  • the insulating member 7C is formed by embedding the protrusion 14C in the conductive member 5C, and then forming the insulating member 7C so that a part thereof is disposed in the through hole PC, and then heating and melting the conductive member 5C. It can be formed by connecting to the protrusion 14C.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 本発明の一形態にかかる光モジュールは、主面に電極パッドを有する配線基板と、配線基板の主面上に配された光導波路と、光導波路の配線基板と反対側の主面上に実装され、光導波路に伝送される光を発光または受光するとともに、光導波路側の主面に接続パッドを有する光半導体素子と、電極パッドと接続パッドとを電気的に接続する導電部材とを備えている。光導波路には、厚み方向に貫通して電極パッドを露出する貫通孔が形成されている。接続パッドは、少なくとも一部が貫通孔内に入り込んだ突起部を具備している。導電部材は、貫通孔内に配されているとともに、突起部および電極パッドに接続している。

Description

光モジュールおよび光配線基板
 本発明は、電子機器(たとえば各種オーディオビジュアル機器、家電機器、通信機器、コンピュータ機器およびその周辺機器)等に使用される光モジュールおよび光配線基板に関するものである。
 近年、光配線基板に光半導体素子を実装した光モジュールが電子機器に用いられることがある。この光配線基板は、電気信号を伝送する配線基板と、この配線基板上に形成された光信号を伝送する光導波路とを含むものである。
 例えば、特開2000-347051号公報には、電気配線を有する基板(配線基板)と、この基板上に形成された光配線層(光導波路)と、この光配線層上に実装された光部品(光半導体素子)と、光配線層上に設けられ、光部品がハンダ付けされるパッドと、光配線層を厚み方向に貫通し、パッドと電気配線とを接続するビアホールとを備えた実装基板(光モジュール)が記載されている。
 ところで、光配線層上のパッドに光部品をハンダ付けすると、光部品と光配線層上のパッドとの間にハンダが介されるため、光部品と光配線層との距離が大きくなりやすい。それ故、光部品が光配線層に発光する光、または光部品が光配線層から受光する光が、光部品と光配線層との間で拡散しやすくなる。その結果、光部品と光配線層との間で光信号が減衰しやすくなり、ひいては実装基板の信号伝送特性が低下しやすい。
 本発明は、信号伝送特性を向上させる要求に応える光モジュールおよび光配線基板を提供するものである。
 本発明の一形態にかかる光モジュールは、主面に電極パッドを有する配線基板と、該配線基板の前記主面上に配された光導波路と、該光導波路の前記配線基板と反対側の主面上に実装され、前記光導波路に伝送される光を発光または受光するとともに、前記光導波路側の主面に接続パッドを有する光半導体素子と、前記電極パッドと前記接続パッドとを電気的に接続する導電部材とを備えている。前記光導波路には、厚み方向に貫通して前記電極パッドを露出する貫通孔が形成されている。前記接続パッドは、少なくとも一部が前記貫通孔内に入り込んだ突起部を具備している。前記導電部材は、前記貫通孔内に配されているとともに、前記突起部および前記電極パッドに接続している。
 本発明の一形態にかかる光配線基板は、主面に電極パッドを有する配線基板と、該配線基板の前記主面上に配された光導波路とを備えている。前記光導波路には、厚み方向に貫通して前記電極パッドを露出する貫通孔が形成されている。
 本発明の一形態にかかる光モジュールによれば、光半導体素子の接続パッドが、光導波路の貫通孔内に少なくとも一部が入り込んだ突起部を具備しており、該突起部が、貫通孔内に配された導電部材を介して配線基板の電極パッドに接続されている。したがって、光半導体素子と光導波路との距離を低減することができる。その結果、光半導体素子と光導波路との間における光信号の伝送効率を高め、ひいては信号伝送特性に優れた光モジュールを得ることができる。
 また、本発明の一形態にかかる光配線基板によれば、上記光半導体素子を実装することによって上記光モジュールを作製することができる。
図1(a)は、本発明の第1実施形態にかかる光モジュールを厚み方向に切断した断面図である。図1(b)は、図1(a)のR1部分を拡大して示した断面図である。 図2(a)は、図1(a)の光モジュールの光半導体素子の立体図である。図2(b)は、図1(a)の光モジュールの光導波路の立体図である。 図3(a)は、図2(b)の上面図である。図3(b)は、図1(a)の光モジュールにおける電極パッドと接続パッドとの接続構造を示す立体図である。 図4(a)ないし(c)は、図1(a)に示す光モジュールの製造工程を説明する厚み方向に切断した断面図である。図4(d)は、図1(a)に示す光モジュールの製造工程を説明する、図4(c)のR2部分を拡大して示した断面図である。 図5(a)および(b)は、図1(a)に示す光モジュールの製造工程を説明する厚み方向に切断した断面図である。図5(c)は、図1(a)に示す光モジュールの製造工程を説明する、図5(b)のR3部分を拡大して示した断面図である。 図6(a)および(c)は、図1(a)に示す光モジュールの製造工程を説明する厚み方向に切断した断面図である。図6(b)は、図1(a)に示す光モジュールの製造工程を説明する、図6(a)のR4部分を拡大して示した断面図である。 図7(a)は、図1(a)に示す光モジュールの製造工程を説明する厚み方向に切断した断面図である。図7(b)および(c)は、図1(a)に示す光モジュールの製造工程を説明する、図7(a)のR5部分を拡大して示した断面図である。 図8(a)は、図1(a)に示す光モジュールの製造工程を説明する厚み方向に切断した断面図である。図8(b)は、図1(a)に示す光モジュールの製造工程を説明する、図8(a)のR6部分を拡大して示した断面図である。 図9(a)は、本発明の第2実施形態にかかる光モジュールを厚み方向に切断した断面図である。図9(b)は、図9(a)のR7部分を拡大して示した断面図である。 図10(a)は、図9(b)をI-I線に沿った切断した断面図である。図10(b)は、図9(a)の光モジュールの光導波路の立体図である。 図11(a)は、図10(b)の上面図である。図11(b)は、図9(a)の光モジュールにおける電極パッドと接続パッドとの接続構造を示す立体図である。 図12(a)は、本発明の他の一実施形態にかかる光モジュールの図1(a)に対応する部分の断面図である。図12(b)は、図12(a)の光モジュールにおける電極パッドと接続パッドとの接続構造を示す立体図である。図12(c)は、本発明の他の一実施形態にかかる光モジュールの図1(a)に対応する部分の断面図である。図12(d)は、図12(c)の光モジュールにおける電極パッドと接続パッドとの接続構造を示す立体図である。
 (第1実施形態)
  以下に、本発明の第1実施形態に係る光配線基板を含む光モジュールを、図1から図8に基づいて詳細に説明する。
 (光モジュール)
  図1(a)および(b)に示した光モジュール1は、例えば各種オーディオビジュアル機器、家電機器、通信機器、コンピュータ装置またはその周辺機器などの電子機器に使用されるものである。
 この光モジュール1は、光信号の入出力を行う光半導体素子2と、電気信号の信号変換を行う半導体素子3と、該光半導体素子2および半導体素子3がフリップチップ実装された、光信号および電気信号を伝送する光配線基板4と、光半導体素子2または半導体素子3と光配線基板4とを電気的および機械的に接続する導電部材5、6と、光半導体素子2または半導体素子3と光配線基板4とを機械的に接続する絶縁部材7、8とを含んでいる。
 この光モジュール1において、光信号は、光配線基板4を介して光半導体素子2と外部モジュールとの間で伝送される。また、電気信号は、導電部材5、6および光配線基板4を介して光半導体素子2と半導体素子3との間および半導体素子3と外部回路との間で伝送される。
 (光半導体素子)
  光半導体素子2は、図2(a)に示すように、光半導体基板9と、該光半導体基板9の光配線基板4側の主面に形成された接続パッド10およびダミーパッド11とを含んでいる。
 光半導体基板9は、例えば発光素子または受光素子として機能するものであり、発光または受光する受発光部12を含んでいる。発光素子は、光配線基板4から供給された電気信号(アナログ信号)を光信号に変換して光配線基板4に供給(発光)するものであって、例えば面発光型半導体レーザー等を用いることができる。また、受光素子は、光配線基板4から供給(受光)された光信号を電気信号(アナログ信号)に変換して光配線基板4に供給するものであって、例えばフォトダイオード等を用いることができる。
 この光半導体基板9は、例えばシリコンまたはガリウム砒素等の半導体材料により形成することができる。光半導体基板9の厚みは、例えば0.1mm以上1mm以下に設定されている。
 接続パッド10は、導電部材5に電気的および機械的に接続されており、光半導体素子2を光配線基板4に電気的に接続するための端子として機能するものである。この接続パッド10は、光半導体基板9の主面に形成された平板状のパッド部13と、該パッド部13の光半導体基板9と反対側の主面の一部に接続した突起部14とを含んでいる。
 接続パッド10のパッド部13は、例えば銅、金、アルミニウム、ニッケルまたはクロムの導電材料により形成することができる。このパッド部13は、例えば円柱状である。パッド部13の平面の径(直径)は、例えば60μm以上100μm以下に設定されている。パッド部13の厚みは、例えば0.1μm以上10μm以下に設定されている。
 接続パッド10の突起部14は、例えば銅、金、ニッケルまたはクロムの導電材料により形成することができ、なかでもパッド部13と同一材料からなることが望ましい。この突起部14は、例えば円錐状に形成されている。突起部14の平面の径は、例えば60μm以上90μm以下に設定されている。突起部14高さは、例えば50μm以上70μm以下に設定されている。
 ダミーパッド11は、光配線基板4には電気的に接続されておらず、接続パッド10による光半導体素子2の傾きを低減する機能を有するものである。このダミーパッド11は、例えばパッド部13と同様の導電材料により形成することができる。また、ダミーパッド11は、例えば円柱状である。ダミーパッド11の平面の径は、例えば60μm以上100μm以下に設定されている。ダミーパッド11の厚みは、例えば0.1μm以上10μm以下に設定されている。
 (半導体素子)
  半導体素子3は、半導体基板15と、該半導体基板6の光配線基板4側の主面に形成された接続パッド16とを含んでいる。
 半導体基板15は、電気信号のデジタル信号とアナログ信号を変換するものである。この半導体基板15は、例えばICまたはLSI等を用いることができ、例えばシリコン等の半導体材料により形成することができる。半導体基板15の厚みは、例えば0.1mm以上1mm以下に設定されている。
 接続パッド16は、導電部材6に電気的および機械的に接続されており、半導体素子3を光配線基板4に電気的に接続するための端子として機能するものである。この接続パッド16は、光半導体素子の接続パッド10と同様の構成を有している。
 (光配線基板)
  光配線基板4は、配線基板17と、該配線基板17上に形成され、光半導体素子2および半導体素子3が実装される光導波路18とを含んでいる。
 (配線基板)
  配線基板17は、光配線基板4の剛性を高めつつ接地用電力、電源電力または電気信号を伝送するものである。この配線基板17は、コア基板19と、該コア基板19の上下面に形成された一対の配線層20とを含んでいる。
 コア基板19は、配線基板17の剛性を高めるとともに、一対の配線層20を電気的に接続するものである。このコア基板19は、樹脂基板21と、該樹脂基板21を厚み方向に貫通する筒状のスルーホール導体22と、スルーホール導体22に取り囲まれた領域に充填された絶縁体23とを備えている。
 樹脂基板21は、コア基板19の剛性を高めるものである。この樹脂基板21は、例えばガラスクロスとこのガラスクロスを被覆するエポキシ樹脂とを含んでいる。樹脂基板21の厚みは、例えば0.1mm以上3.0mm以下に形成されている。
 スルーホール導体22は、一対の配線層20を電気的に接続するものである。このスルーホール導体22は、例えば銅、銀、金、アルミニウム、ニッケルまたはクロム等の導電材料により形成することができる。
 絶縁体23は、例えばエポキシ樹脂等の樹脂材料により形成することができる。
 配線層20は、配線基板17の電気配線密度を高めるものである。この配線層20は、コア基板19上に複数積層された絶縁層24と、コア基板19上または絶縁層24上に形成された複数の導電層25と、絶縁層24を厚み方向に貫通して導電層25に接続された複数のビア導体26とを含んでいる。導電層25およびビア導体26は、互いに電気的に接続されており、接地用配線、電力供給用配線および/または信号用配線を含む電気配線を構成している。
 絶縁層24は、導電層25を支持するとともに導電層25同士の短絡を抑制するものである。この絶縁層24は、例えばエポキシ樹脂またはポリイミド樹脂等の樹脂材料により形成することができる。絶縁層24の厚みは、例えば10μm以上50μm以下に設定されている。この絶縁層24は、酸化ケイ素等の無機絶縁材料からなる無機絶縁フィラーを含有していることが望ましい。
 導電層25は、接地用電力、電源電力または電気信号を伝送するものである。この導電層25は、例えば銅、銀、金、アルミニウム、ニッケルまたはクロム等の導電材料により形成することができる。導電層25の厚みは、例えば3μm以上20μm以下に設定されている。
 複数の導電層25のうち、配線基板17の光導波路18側の主面に配された導電層25は、細長形状の配線導体27と、該配線導体の両端部に接続された平板状の電極パッド28、29とを含んでいる。配線導体27および電極パッド28、29は、光半導体素子2と半導体素子3との間で電気信号を伝送するものである。また、配線導体27および電極パッド28、29は、図2(b)および図3(a)に示すように、平面方向にて互いに平行となるように複数組形成されている。配線導体27および電極パッド28、29がこのように配置されることにより、光半導体素子2と半導体素子3とを効率良く電気的に接続することができる。
 配線導体27は、両端部に接続された電極パッド28、29の間で電気信号を伝送するものである。配線導体27の幅は、例えば5μm以上30μm以下に設定されている。配線導体27の厚みは、例えば3μm以上20μm以下に設定されている。また、配線導体27は、光半導体素子2から半導体素子3に向かう長手方向(X方向)を有しており、該長手方向が互いに平行になるように複数形成されている。
 電極パッド28、29は、導電部材5、6に電気的および機械的に接続される端子として機能するものである。電極パッド28は、導電部材5を介して光半導体素子2の接続パッド10と接続されている。電極パッド29は、導電部材6を介して半導体素子3の接続パッド16と接続されている。
 ここで、電極パッド28は、配線導体27の長手方向に直交する方向(Y方向)に沿って配列するように複数形成されている。電極パッド29も、電極パッド28と同様に、配線導体27の長手方向に直交する方向(Y方向)に沿って配列するように複数形成されている。電極パッド28、29がこのように配列されることによって、電極パッド28、29を接続する配線導体の長さを低減することができる。
 また、電極パッド28、29は、配線導体27の端部に接続した平板状のランド部30と、ランド部30の光導波路18側の主面の一部に接続した隆起部31とを含んでいる。
 ランド部30は、絶縁層24と光導波路18との間に介されており、光導波路側の主面の一部であって隆起部31が接続されていない領域が光導波路18に当接している。このランド部30は、例えば円柱状である。また、ランド部30における平面の径および厚みは、隆起部31における平面の径および厚みよりも大きい。ランド部30の平面の径は、例えば60μm以上100μm以下に設定され、隆起部31の平面の径の例えば0.6倍以上0.9倍以下に設定されている。また、ランド部30の厚みは、例えば10μm以上20μm以下に設定され、隆起部31の厚みの例えば0.6倍以上0.9倍以下に設定されている。
 また、隆起部31は、ランド部30から後述する光導波路18の貫通孔Pに向かって突出し、該貫通孔P内に主面の一部が露出している。また、隆起部31は、光導波路18側の主面の一部であって貫通孔P内に露出していない領域が光導波路18に当接しており、平面の径が貫通孔Pよりも大きい。この隆起部31は、例えば円柱状である。隆起部31の平面の径は、例えば50μm以上90μm以下に設定され、貫通孔Pの平面の径の0.6倍以上0.9倍以下に設定されている。また、隆起部31の厚みは、例えば5μm以上15μm以下に設定されている。
 ビア導体26は、絶縁層24を介して厚み方向に互いに離間した導電層25同士を電気的に接続するものである。このビア導体26は、例えば銅、金、ニッケルまたはクロムの導電材料により形成することができる。このビア導体26は、コア基板19に向って幅狭となる柱状に形成されており、平面が円形状である。ビア導体26の平面の径は、例えば25μm以上100μm以下に設定されており、ビア導体26の高さは、例えば10μm以上50μm以下に設定されている。
 (光導波路)
  光導波路18は、光信号を伝送する機能を有するものである。この光導波路18は、図2(b)および図3(a)に示すように、配線基板17上に形成された平板状のクラッド層32と、該クラッド層32に取り囲まれた細長形状のコア層33と、光半導体素子2の受発光部12の直下にて、光導波路18の光半導体素子2側の主面から厚み方向に沿って窪んで成る切り欠き部Cと、該切欠き部Cに形成された光路変換部材34と、光導波路18を厚み方向に貫通して配線基板17の電極パッド28、29を露出する貫通孔Pとを含んでいる。なお、切欠き部Cは、光導波路18を厚み方向に貫通して配線基板17に達していても構わない。
 クラッド層32は、コア層33の保護部材としての機能やコア層33内に光信号を閉じ込める機能を有するものである。このクラッド層32は、例えばエポキシ樹脂、アクリル樹脂、ポリシラノール樹脂、ポリシラン樹脂、ポリイミド樹脂、シリコーン系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、フェノール系樹脂、ポリキノリン系樹脂、ポリキノキサリン系樹脂、ポリベンゾオキサゾール系樹脂、ポリベンゾチアゾール系樹脂またはポリベンゾイミダゾール系樹脂等の透光性材料により形成することができる。クラッド層32の透過率は、例えば80%以上100%以下に設定されている。クラッド層32の屈折率は、例えば1.4以上1.6以下に設定されている。また、クラッド層32の厚みは、例えば45μm以上85μm以下に設定されている。なお、透過率はISO13468‐1:1996に準ずる方法により測定され、屈折率はISO489:1999に準ずる方法により測定される。
 コア層33は、屈折率がクラッド層32よりも高く、クラッド層32との界面で光信号を全反射させることによって、光信号を伝送する機能を有するものである。このコア層31は、クラッド層と同様の透光性材料により形成することができる。コア層33の光透過率は、例えば95%以上100%以下に設定されている。コア層33の屈折率は、例えば1.4以上1.6以下に設定され、例えばクラッド層32の屈折率の1.0001倍以上1.1倍以下に設定されている。
 また、コア層33は、例えば直方体状である。コア層33の幅は、例えば10μm以上50μm以下に設定されている。コア層33の厚みは、10μm以上50μm以下に設定されている。また、コア層33は、図2(b)および図3(a)に示すように、平面方向にて長手方向が互いに平行になるように複数形成されており、平面視にて配線導体27の延長線上に位置している。なお、コア層33は、平面視にて配線導体27の延長線同士の間に位置していても構わない。
 切り欠き部Cは、コア層33の長手方向(X方向)に対して垂直な垂直断面と、コア層33の幅方向(Y方向)を回転軸として該垂直断面を傾斜させて成る傾斜面と、により囲まれた空間であって、コア層33の幅方向に沿った細長形状に形成されている。垂直断面は、光信号が通過する複数のコア層33の端面を含み、垂直断面の高さ(Z方向の長さ)が20μm以上150μm以下に設定されている。また、傾斜面は、光半導体素子2の受発光部12の直下に形成されており、傾斜面のクラッド層32下面に対する傾斜角が例えば40°以上50°以下に設定されている。
 光路変換部材34は、切り欠き部Cの傾斜面に形成された金属膜からなり、光信号の伝送方向を変換する機能を有している。具体的には、光半導体素子2が発光素子である場合、光路変換部材34は、該発光素子の発光部から傾斜面に向って伝送された光信号を反射することにより、光信号の伝送方向を厚み方向(Z方向)から長手方向(X方向)に変換し、光信号をコア層33へ伝送することができる。また、例えば光半導体素子2が受光素子である場合、光路変換部材34は、コア層33から傾斜面に向って伝送された光信号を反射することにより、光信号の伝送方向を長手方向(X方向)から厚み方向(Z方向)に変換し、光信号を受光素子の受光部へ伝送することができる。光路変換部材34は、例えば金等の金属材料により形成することができる。光路変換部材34の傾斜面からの厚みは、例えば1000Å以上5000Å以下に設定されている。
 貫通孔Pは、例えば円柱状に形成されている。貫通孔Pの平面の径は、例えば50μm以上90μm以下に設定されている。また、貫通孔Pは、電極パッド28、29を1つずつ露出するように複数形成されている。
 (導電部材)
  導電部材5、6は、貫通孔P内に配されており、導電性接着部材として機能するものである。具体的には、導電部材5は、光半導体素子2の接続パッド10と配線基板17の電極パッド28とを電気的および機械的に接続している。また、導電部材6は、半導体素子3の接続パッド16と配線基板17の電極パッド29とを電気的および機械的に接続している。この導電部材5、6は、接着機能を担保するため、接続パッド10、13および電極パッド28、29よりも低融点の金属材料により形成することができ、この低融点金属材料としては、例えばスズ、インジウムまたはビスマスを含むはんだを用いることができる。この導電部材5、6は、図3(b)に示すように厚み方向における中央部が括れた鼓状であり、貫通孔Pの内壁との間に空隙Sが形成されている。
 (絶縁部材)
  絶縁部材7、8は、光半導体素子2または半導体素子3と光導波路18との間に充填されており、絶縁性接着部材(アンダーフィル)として機能するものである。具体的には、絶縁部材7は、光半導体素子2と光導波路18との間に充填されており、光半導体素子2の接続パッド10同士の間の絶縁性を高めつつ光半導体素子2と光導波路18とを機械的に接続している。また、絶縁部材8は、半導体素子3と光導波路18との間に充填されており、半導体素子3の接続パッド16同士の間の絶縁性を高めつつ半導体素子3と光導波路18とを機械的に接続している。
 また、絶縁部材7は、光導波路18の切欠き部Cに充填されて封止しており、切欠き部Cの変形および光路変換部材34(金属膜)の剥離を防止する機能を有する。この絶縁部材7は、光半導体素子2と光導波路18との間の光路を確保するため、透光性材料により形成することができる。この透光性材料としては、例えばエポキシ樹脂、アクリル樹脂等の樹脂材料を用いることができ、透光性材料の透過率は、例えば95%以上100%以下に設定されている。また、絶縁部材8は、例えばエポキシ樹脂、アクリル樹脂等の樹脂材料により形成することができ、なかでも、絶縁部材7と同一の樹脂材料により形成することが望ましい。なお、絶縁部材7、8のうち、半導体素子3と光導波路18との間に充填された絶縁部材8のみが酸化ケイ素等からなる無機絶縁フィラーを含んでいても構わない。
 (実装構造)
  次に、本実施形態の光モジュール1における、光配線基板4に対する光半導体素子2の実装構造について、詳細に説明する。
 本実施形態の光モジュール1においては、図1(b)および図3(b)に示すように、光半導体素子2の接続パッド10が、配線基板17の電極パッド28に向かって突出しているとともに光導波路18を厚み方向に貫通する貫通孔P内に少なくとも一部が入り込んだ突起部14を具備している。さらに、導電部材5が、貫通孔P内に配されているとともに接続パッド10の突起部14および電極パッド28に接続している。
 その結果、貫通孔P内に配された導電部材5を介して光半導体素子2の接続パッド10と配線基板17の電極パッド28とを電気的に接続することができるため、光導波路の主面上に導電部材を形成して光半導体素子と配線基板とを電気的に接続した場合と比較して、半導体素子2と光導波路18との距離を低減して近接させることができる。したがって、光半導体素子2の受発光部12と光導波路18の光路変換部材34との間で光の拡散を低減することができる。それ故、光半導体素子2と光導波路18との間における光信号の伝送効率を高め、ひいては信号伝送特性に優れた光モジュール1を得ることができる。
 ところで、光導波路の主面上に導電部材を形成した場合には、該導電部材と配線基板とを電気的に接続するため光導波路を貫通する貫通導体をめっき等で形成する必要があるが、光導波路は光信号伝送特性を担保するため絶縁層よりも厚みが大きくなりやすいことから、該貫通導体はアスペクト比が増大して細長くなり断線が生じやすくなる。
 一方、本実施形態の光モジュール1においては、接続パッド10の突起部14を貫通孔P内に挿入し、貫通孔P内にて導電性接着部材として機能する導電部材5を介して電極パッド28と機械的に接続している。それ故、上述した光導波路に貫通導体を形成した場合と比較して、光半導体素子2と配線基板17との電気的接続信頼性に優れた光モジュール1を得ることができる。
 さらに、導電部材5が貫通孔P内に配されているため、光導波路18によって隣接する導電部材5同士の間の絶縁性を高めことができるため、該導電部材5同士の短絡を低減することができる。また、光導波路18上にソルダーレジスト層を設けずに該導電部材5同士の短絡を低減することができるため、光半導体素子2と光導波路18とを近接させることができる。
 また、本実施形態において、光半導体素子2の接続パッド10は、パッド部13の光導波路18側の主面の一部であって突起部14が接続されていない領域が光導波路18のクラッド層32に当接している。その結果、パッド部13とクラッド層32との間に導電部材等の介在物がないため、光半導体素子2と光導波路18とを近接させるとともに、光導波路18に対して光半導体素子2が傾くことを低減することができる。したがって、光半導体素子2と光導波路18との間における光信号の伝送効率を高めることができる。
 また、本実施形態において、光半導体素子2のダミーパッド11は、光導波路18のクラッド層32に当接している。その結果、ダミーパッド11とクラッド層32との間に導電部材等の介在物がないため、光導波路18に対する光半導体素子2の傾きを容易に調整することができる。
 このダミーパッド11の厚みは、接続パッド10のパッド部13の厚みと同じであることが望ましい。その結果、光導波路18の主面に当接するダミーパッド11およびパッド部13の厚みが等しいことから、光導波路18に対して光半導体素子2が傾くことを低減することができる。この場合、ダミーパッド11の厚みは、パッド部13の厚みの例えば0.9倍以上1.1倍以下に設定されている。
 また、本実施形態において、電極パッド28は、ランド部30から貫通孔Pに向かって突出し、導電部材5と接続した隆起部31を具備している。その結果、隆起部31によって電極パッド28と接続パッド10との距離を短くし、電極パッド28と導電部材5との接続強度を高めることができる。
 この隆起部31は、コア層33の下方に配されたクラッド層32の層領域(第1クラッド層)内に配されており、電極パッド28の厚みは、第1クラッド層の厚みよりも小さいことが望ましい。その結果、コア層33の変形を低減することができる。
 なお、本実施形態において、半導体素子3の実装構造は、上述した光半導体素子2の実装構造と同様の構造を有する。
 かくして、上述した光モジュール1は、光半導体基板9が発光素子である場合、以下のように所望の機能を発揮する。まず、デジタル信号(電気信号)を外部回路から導電層25およびビア導体26を介して半導体素子3に伝送し、デジタル信号を半導体素子3でアナログ信号(電気信号)に変換する。次に、このアナログ信号を半導体素子3から配線導体27を介して光半導体素子2に伝送し、アナログ信号を光半導体素子2で光信号に変換する。次に、この光信号を光半導体素子2から光路変換部材34およびコア層33を介して外部モジュールに伝送する。このようにして、光モジュール1は、外部回路から伝送されたデジタル信号(電気信号)を光信号に変換して、外部モジュールに伝送する。
 また、光モジュール1は、光半導体基板9が受光素子である場合には、光半導体基板9が発光素子である場合と反対方向に各信号を伝送することにより、所望の機能を発揮する。
 (光モジュールの作製)
  次に、上述した第1実施形態の光モジュール1の製造方法を、図4から図8に基づいて説明する。
 (光半導体素子および半導体素子の作製)
  (1)図4(a)に示すように、光半導体素子2および半導体素子3を作製する。具体的には、例えば以下のように行う。
 まず、電解めっき法、蒸着法、CVD法またはスパッタリング法等によって、光半導体基板9上にパッド部13およびダミーパッド11を形成する。次に、ワイヤーボンディングによって、パッド部13上に突起部14を形成し、該突起部14およびパッド部13からなる接続パッド10を形成する。
 以上のようにして、光半導体素子2を作製することができる。また、半導体素子3は、光半導体素子2と同様の方法で作製することができる。
 (配線基板の作製)
  (2)図4(b)に示すように、コア基板19を作製する。具体的には、例えば以下のように行う。
 まず、例えば未硬化の樹脂シートを積層し、加熱加圧して硬化させることにより、基体を作製する。なお、未硬化は、ISO472:1999に準ずるA‐ステージまたはB‐ステージの状態である。次に、例えばドリル加工またはレーザー加工等によって、基体を厚み方向に貫通したスルーホールを形成する。次に、例えば無電解めっき法および電解めっき法等によって、スルーホールの内壁に導電材料を被着させて、筒状のスルーホール導体22を形成する。また、基体の上面および下面に導電材料を被着させて、導電材料層を形成する。次に、スルーホール導体22に取り囲まれた領域に、樹脂材料を充填して絶縁体11を形成する。次に、導電材料を絶縁体11の露出部に被着させた後、従来周知のフォトリソグラフィー、エッチング等によって、導電層材料層をパターニングして導電層25を形成する。
 以上のようにして、コア基板19を作製することができる。
 (3)図4(c)に示すように、コア基板19の両側に一対の配線層20を形成し、配線基板17を作製する。具体的には、例えば以下のように行う。
 まず、未硬化の樹脂をコア基板19上に配置し、樹脂を加熱して流動密着させつつ、更に加熱して樹脂を硬化させることにより、コア基板19上に絶縁層24を形成する。次に、例えばレーザー加工によって、絶縁層24にビア孔を形成し、ビア孔内に導電層25の少なくとも一部を露出させる。次に、例えば無電解めっき法および電解めっき法を用いたセミアディティブ法、サブトラクティブ法またはフルアディティブ法等によって、ビア孔にビア導体13を形成するとともに絶縁層24上に導電層25を形成する。かかる工程を繰り返すことにより、配線層20を形成することができる。
 ここで、最外層となる絶縁層24上に導電層25を形成する際に、パターニングによって配線導体27およびランド部30を形成する。さらに、ランド部30を形成した後、図4(d)に示すように、例えば無電解めっき法および電解めっき法を用いたセミアディティブ法、サブトラクティブ法またはフルアディティブ法等によって、ランド部30上に隆起部31を形成する。この隆起部31の平面の径および厚みをランド部30よりも小さくすることによって、隆起部31をランド部30上に容易に形成することができる。
 以上のようにして、配線基板17を作製することができる。
 (光導波路の形成)
  (4)図5(a)に示すように、配線基板17上にクラッド層32およびコア層33を形成する。具体的には、例えば以下のように行う。
 まず、スピンコーター、バーコーター、ロールコーターまたはスプレーコーター等を用いて、未硬化の第1クラッド層前駆体を配線基板17上に塗布し、該第1クラッド層前駆体を露光して現像することによって、配線基板17上に平板状の第1クラッド層を形成する。次に、未硬化のコア層前駆体を第1クラッド層上に塗布し、マスクを用いて露光して現像することによって、第1クラッド層上に細長形状のコア層33を部分的に形成する。次に、コア層33を取り囲むように未硬化の第2クラッド層前駆体を第1クラッド層上に塗布し、該第2クラッド層前駆体を露光して現像することによって、第1クラッド層上およびコア層33上に第2クラッド層を形成する。この第1クラッド層および第2クラッド層によって、クラッド層32は構成される。
 ここで、電極パッド28よりも厚みが大きくなるように第1クラッド層を形成することにより、変形を低減しつつコア層33を形成することができる。
 以上のようにして、クラッド層32およびコア層33を形成することができる。
 (5)図5(b)に示すように、クラッド層32およびコア層33を貫通する貫通孔Pを形成し、図6(a)に示すように、貫通孔P内に導電部材5、6を形成する。具体的には、例えば以下のように行う。
 まず、図5(c)に示すように、レーザー加工によって、クラッド層32およびコア層33を厚み方向に貫通して隆起部31の主面の一部を露出する貫通孔Pを形成する。次に、貫通孔P内に露出した電極パッド28、29上にフラックスを塗布した後、はんだボールを貫通孔P内に挿入する。次に、はんだボールを加熱溶融(リフロー)させることによって、図6(b)に示すように、電極パッド28、29の貫通孔P内に露出した表面を導電部材5、6で被覆しつつ、導電部材5、6と電極パッド28、29と接続させる。この加熱溶融によって導電部材5、6が円柱状となり、貫通孔P内にて導電部材5、6の上方に窪みが形成される。この円柱状の導電部材5、6は、窪みに向かって突出する凸曲面を有している。
 このようにレーザー加工で貫通孔Pを形成することによって、微細な貫通孔Pを形成することができる。
 また、貫通孔P内にはんだボールを挿入しているため、隣接するはんだボール同士の間に光導波路18が配され、フラックスによる粘度の低下や加熱による溶融に起因したはんだボール同士の短絡を低減することができる。
 また、貫通孔P内に挿入されたはんだボールを加熱溶融することによって、導電部材5、6と電極パッド28、29とを接続しているため、貫通孔のアスペクト比が高いとめっき液が入りにくい電気めっき法と比較して、導電部材5、6と電極パッド28、29との間の空隙を低減することができる。
 また、貫通孔P内壁にめっき等の処理をせず光導波路18が露出した状態ではんだボールを貫通孔P内に挿入しているため、該挿入の効率を高めることができる。
 また、貫通孔Pの下方に配された隆起部31によって、貫通孔Pの高さを小さくできるため、貫通孔P内に導電部材5、6を配置する際に、導電部材5、6と電極パッド28、29との間に隙間が生じることを低減でき、導電部材5、6と電極パッド28、29との接続信頼性を高めることができる。
 なお、貫通孔P内に挿入されるはんだボールは、一部が貫通孔P内からはみ出していても構わない。
 (6)図6(c)に示すように、クラッド層32およびコア層33に切り欠き部Cを形成し、該切り欠き部Cの傾斜面に光路変換部材34を形成することにより、光導波路18を形成し、光配線基板4を作製する。具体的には、例えば以下のように行う。
 まず、例えば先端部が所望の形状に設定されたダイシングブレードを用いて、クラッド層32表面から配線基板17に向かって切り込みを入れることにより、切り欠き部Cを形成する。次に、例えば、蒸着法またはスパッタリング法等によって、光路変換部材34を形成する。
 このように、導電部材5、6を形成した後に光路変換部材34を形成することによって、光路変換部材34のフラックスによる汚染を低減できる。
 以上のようにして、配線基板17上に光導波路18を形成し、光配線基板4を作製することができる。
 (光半導体素子および半導体素子の実装)
  (7)図7(a)に示すように、光配線基板4の光導波路18上に光半導体素子2および半導体素子3を搭載し、導電部材5、6を介して接続パッド10、16と電極パッド28、29とを接続させた後、図8(a)に示すように、光配線基板4と光半導体素子2および半導体素子3との間に絶縁部材7、8を形成することによって、光配線基板4に光半導体素子2および半導体素子3を実装して光モジュール1を作製する。具体的には例えば以下のように行う。
 まず、図7(b)に示すように、接続パッド10、16の突起部14を貫通孔P内に挿入し、該突起部14の少なくとも一部を導電部材5、6に埋入させつつ、光導波路18上に光半導体素子2および半導体素子3を搭載する。次に、図7(c)に示すように、導電部材5、6を加熱溶融することによって、表面張力で突起部14の表面を被覆させつつ、導電部材5、6と接続パッド10、16とを接続させる。この加熱溶融によって、導電部材5、6が鼓状になるとともに、空隙Sが形成される。次に、図8(b)に示すように、光配線基板4と光半導体素子2および半導体素子3との間に未硬化樹脂を含む絶縁部材前駆体を注入し、該未硬化樹脂を加熱して硬化させることによって、絶縁部材7、8を形成する。
 このように、突起部14を貫通孔P内に挿入して導電部材5と接続しているため、導電部材5の加熱溶融時における位置ずれを低減し、光半導体素子2の受発光部12と光導波路18の光路変換部材34との位置関係を良好に保つことが出来る。また、突起部14は貫通孔P内の導電部材5に差し込まれて固定されるため、導電部材5が加熱溶融の際に表面張力によって突起部14の表面を流れることによって、導電部材5と突起部14との接着面積が増加する。それ故、接続パッド10と導電部材5とを強固に接続し、ひいては光半導体素子2と光配線基板4との電気的接続信頼性を高めることができる。
 また、接続パッド10、16の突起部14を導電部材5、6に埋入しているため、突起部14で導電部材5、6の酸化膜を突き破ることができ、フラックスを用いることなく突起部14と導電部材5、6とを接続することができる。なお、突起部14にフラックスを塗布した後、導電部材5、6に埋入させても構わない。
 また、貫通孔P内に導電部材5、6が配されているため、隣接する導電部材5、6同士の間に光導波路18が配され、加熱溶融に起因した導電部材5、6同士の短絡を低減することができる。
 また、窪みに向かって突出する凸曲面を有する導電部材5、6に突起部14を埋入させているため、突起部14を容易に導電部材5、6に埋入させることができる。
 以上のようにして、導電部材5、6を介して接続パッド10、16と電極パッド28、29とを接続させつつ、光配線基板4に光半導体素子2および半導体素子3を実装して光モジュール1を作製することができる。
 (第2実施形態)
  次に、本発明の第2実施形態に係る光モジュールを、図9ないし図11に基づいて詳細に説明する。なお、上述した第1実施形態と同様の構成に関しては、記載を省略する。
 (光モジュール)
  第2実施形態は第1実施形態と異なり、図9ないし図11に示すように、貫通孔PA内に複数の電極パッド28Aが露出しており、該複数の電極パッド28Aそれぞれに導電部材5が接続されており、該導電部材5Aそれぞれに接続パッド10Aが接続されている。その結果、第1実施形態と比較して、貫通孔PAを微細加工する必要性が低いため、貫通孔PAを容易に加工できるとともに、貫通孔PA内に露出する電極パッド28Aの表面を大きくすることができ、電極パッド28Aと導電部材5Aとの接続信頼性を高めることができる。また、このように貫通孔PA内に露出する電極パッド28Aの表面を大きくすることができるため、第1実施形態と比較して、電極パッド28Aに隆起部を設けずパッド部のみから形成しても、電極パッド28Aと導電部材5Aとの接続信頼性を担保できる。
 さらに、図10(b)および図11(a)に示すように、貫通孔PA内に電極パッド28Aの一主面全体が露出している。その結果、電極パッド28Aと導電部材5Aとの接続面積をより大きくすることができる。
 また、貫通孔PAは、電極パッド28Aの配列方向(Y方向)に沿った細長形状である。その結果、貫通孔PA内への配線導体27Aの露出を低減し、該配線導体27Aに対する導電部材5Aの流動に起因した導電部材5Aの高さばらつきを低減することができる。この貫通孔PAの幅は、電極パッド28Aの幅と等しいことが望ましく、例えば電極パッド28Aの幅の0.9倍以上1.1倍以下に設定されている。
 また、図9(b)および図10(a)に示すように、貫通孔PA内において、複数の導電部材5Aそれぞれは絶縁部材7Aによって取り囲まれている。その結果、貫通孔PA内において、導電部材5A同士の短絡を低減することができる。
 一方、第2実施形態は第1実施形態と異なり、図9(b)に示すように、接続パッド10Aのパッド部13Aが貫通孔PA内に入りこんでいる。その結果、光半導体素子2Aと光導波路18Aとをさらに近接させることができる。
 さらに、光半導体素子2Aは、ダミーパッドを有しておらず、光半導体基板9Aの光導波路18A側の主面には、ダミーパッドが無く、該主面が光導波路18Aと当接している。その結果、光半導体素子2Aと光導波路18Aとをさらに近接させることができるとともに、光半導体素子2Aの光導波路18Aに対する傾きを低減することができる。
 なお、半導体素子3Aは、光半導体素子2Aと同様に光配線基板4Aに実装されている。
 (光モジュールの製造方法)
  次に、上述した第2実施形態の光モジュール1Aの製造方法を説明する。なお、上述した第1実施形態と同様の方法に関しては、記載を省略する。
 上述した第1実施形態の(4)の工程にて、第1クラッド層前駆体、コア層前駆体および第2クラッド層前駆体を露光して現像する際に、マスクを用いてパターニングを行い、第1クラッド層、コア層および第2クラッド層それぞれの貫通孔PAに対応する部位を貫通していくことによって、貫通孔PAを形成する。その結果、細長形状の貫通孔PAを容易に形成することができる。
 また、上述した第1実施形態の(5)の工程にて、電極パッド28A、28A上にはんだボールを配置する際に、転写法によって電極パッド28A、28A上に選択的にフラックスを塗布し、はんだボールを電極パッド28A、28A上に載置する。その結果、隣接する電極パッド28A間、および隣接する電極パッド29A間にてフラックスを低減し、該フラックスに起因にした隣接するはんだボール同士の接触を低減できる。また、(5)の工程で加熱溶融された導電部材5A、6Aは、電極パッド28A、28Aとの接続部に平面を有する半球状となる。
 また、上述した第1実施形態の(7)の工程にて、接続パッド10A、16Aのパッド部13Aおよび突起部14Aを貫通孔PA内に挿入し、該突起部14Aの少なくとも一部を導電部材5A、6Aに埋入させる。次に、導電部材5A、6Aを加熱溶融することによって、導電部材5A、6Aと接続パッド10A、16Aとを接続させる。次に、貫通孔PAの光導波路18A側面の開口から貫通孔PA内に絶縁部材前駆体を注入して導電部材5A、6Aそれぞれを取り囲ませた後に熱硬化させて、導電部材5A、6Aそれぞれを取り囲む絶縁部材7A、8Aを形成する。
 ここで、上述した(7)の工程における貫通孔PA内への絶縁部材前駆体の注入する際に、該貫通孔PAと同様の方法で切欠き部CA内に絶縁部材前駆体を注入することによって、切欠き部CA内に絶縁部材7Aを形成することができる。
 以上のようにして、光モジュール1Aを作製することができる。
 本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良、組み合わせ等が可能である。
 例えば、上述した本発明の第1および第2実施形態は、光半導体素子が光半導体基板と接続パッドとを有する構成を例に説明したが、光半導体素子として、セラミック基板上に光半導体基板を搭載したものを用いても構わない。
 また、上述した本発明の第1実施形態は、光半導体素子がダミーパッドを有する構成を例に説明したが、光半導体素子がダミーパッドを有していなくても構わない。この場合、突起部が貫通孔内に挿入されて導電部材に埋入することによって光半導体素子が支持されており、ひいては光半導体素子の傾きが低減されている。
 また、上述した本発明の第1および第2実施形態は、配線層にて絶縁層を2層積層した構成を例に説明したが、絶縁層は何層積層しても構わない。
 また、上述した本発明の第1および第2実施形態は、絶縁層として樹脂層を用いた構成を例に説明したが、絶縁層としてセラミック層を用いても構わない。
 また、上述した本発明の第1および第2実施形態は、配線基板として樹脂基板を用いた構成を例に説明したが、配線基板として、金属板を樹脂で被覆したメタルコア基板やセラミック基板を用いても構わない。
 また、上述した本発明の第1および第2実施形態は、光路変換部材が金属膜からなる構成を例に説明したが、金属膜以外の手段で光路変換するものであっても構わない。
 また、上述した本発明の第1および第2実施形態は、光配線基板に光半導体素子を実装した後の導電部材が鼓状である構成を例に説明したが、図12(a)および(b)に示すように、該導電部材5Bが貫通孔PB内に充填されて円柱状であり、空隙が形成されていなくても構わない。この導電部材5Bは、上述した(5)の工程にてはんだボールの大きさを調整することによって、形成することができる。なお、導電部材5Bは、一部が貫通孔Pからはみ出してパッド部13Bとクラッド層32Bとの間に介されていても構わない。
 また、上述した本発明の第1実施形態は、隆起部の主面の一部が該貫通孔内に露出した構成を例に説明したが、図12(a)および(b)に示すように、隆起部31Bは貫通孔内PBに配されていても構わない。この場合、電極パッド28Bと導電部材5Bとの接続部が貫通孔PB内に配されて固定されるため、電極パッド28Bと導電部材5Bとの接続強度を高めることができる。この隆起部31Bは、上述した(3)の工程では形成せずに、上述した(5)の工程にて、貫通孔PBを形成した後に、無電解めっきまたは電解めっき等を用いて形成することができる。この場合、コア層33Bの変形に影響を与えずに、隆起部31Bの厚みを大きくし、電極パッド28Bの厚みを第1クラッド層よりも大きくできる。
 また、上述した本発明の第1実施形態は、絶縁部材が貫通孔内に配されていない構成を例に説明したが、図12(c)および(d)に示すように、絶縁部材7Cが貫通孔PC内に配されていても構わない。この絶縁部材7Cは、突起部14Cを導電部材5Cに埋入させた後、貫通孔PC内に一部が配されるように絶縁部材7Cを形成してから、導電部材5Cを加熱溶融して突起部14Cと接続させることによって、形成することができる。
 1              光モジュール
 2              光半導体素子
 3              半導体素子
 4              光配線基板
 5、6            導電部材
 7、8            絶縁部材
 9              光半導体基板
 10             接続パッド
 11             ダミーパッド
 12             受発光部
 13             パッド部
 14             突起部
 15             半導体基板
 16             接続パッド
 17             配線基板
 18             光導波路
 19             コア基板
 20             配線層
 21             樹脂基板
 22             スルーホール導体 
 23             絶縁体
 24             絶縁層
 25             導電層
 26             ビア導体
 27             配線導体
 28、29          電極パッド
 30             ランド部
 31             隆起部
 32             クラッド層
 33             コア層
 34             光路変換部材
 C              切り欠き部
 P              貫通孔
 S              空隙

Claims (14)

  1.  主面に電極パッドを有する配線基板と、
    該配線基板の前記主面上に配された光導波路と、
    該光導波路の前記配線基板と反対側の主面上に実装され、前記光導波路に伝送される光を発光または受光するとともに、前記光導波路側の主面に接続パッドを有する光半導体素子と、
    前記電極パッドと前記接続パッドとを電気的に接続する導電部材と
    を備え、
    前記光導波路には、厚み方向に貫通して前記電極パッドを露出する貫通孔が形成されており、
    前記接続パッドは、少なくとも一部が前記貫通孔内に入り込んだ突起部を具備し、
    前記導電部材は、前記貫通孔内に配されているとともに、前記突起部および前記電極パッドに接続していることを特徴とする光モジュール。
  2.  請求項1に記載の光モジュールにおいて、
    前記接続パッドは、前記光導波路側の主面の一部に前記突起部が接続されたパッド部をさらに具備し、
    該パッド部は、前記光導波路側の主面の他の一部が前記光導波路に当接していることを特徴とする光モジュール。
  3.  請求項2に記載の光モジュールにおいて、
    前記光半導体素子は、前記光導波路側の主面にダミーパッドをさらに有し、
    該ダミーパッドは、前記光導波路に当接していることを特徴とする光モジュール。
  4.  請求項3に記載の光モジュールにおいて、
    前記ダミーパッドの厚みは、前記接続パッドの前記パッド部の厚みと同じであることを特徴とする光モジュール。
  5.  請求項4に記載の光モジュールにおいて、
    前記ダミーパッドの厚みは、前記接続パッドの前記パッド部の厚みの0.9倍以上1.1倍以下であることを特徴とする光モジュール。
  6.  請求項1に記載の光モジュールにおいて、
    前記電極パッドは、前記光導波路の前記配線基板側の主面に一部が当接したランド部と、該ランド部の前記光導波路側の主面の他の一部に接続するとともに、前記貫通孔に向かって突出して前記導電部材に接続した隆起部とを具備することを特徴とする光モジュール。
  7.  請求項1に記載の光モジュールにおいて、
    前記電極パッドは、前記配線基板の同じ主面に複数配されており、
    該複数の電極パッドは、1つの前記貫通孔内に露出しており、
    該1つの貫通孔内には、前記複数の電極パッドそれぞれに接続した複数の前記導電部材が配されており、
    前記光半導体素子は、前記複数の導電部材それぞれに接続した複数の前記接続パッドを有していることを特徴とする光モジュール。
  8.  請求項7に記載の光モジュールにおいて、
    前記複数の電極パッドは、一方向に沿って配列されており、
    前記1つの貫通孔は、前記一方向に沿った細長い形状であることを特徴とする光モジュール。
  9.  請求項7に記載の光モジュールにおいて、
    前記1つの貫通孔内には、前記複数の導電部材それぞれを取り囲む絶縁部材が配されていることを特徴とする光モジュール。
  10.  請求項1に記載の光モジュールにおいて、
    前記接続パッドは、前記光導波路側の主面の一部に突起部が接続されたパッド部をさらに具備し、
    該パッド部は、前記貫通孔内に入り込んでいることを特徴とする光モジュール。
  11.  主面に電極パッドを有する配線基板と、
    該配線基板の前記主面上に配された光導波路と
    を備え、
    前記光導波路には、厚み方向に貫通して前記電極パッドを露出する貫通孔が形成されていることを特徴とする光配線基板。
  12.  請求項11に記載の光配線基板において、
    前記電極パッドは、前記光導波路の前記配線基板側の主面に一部が当接したランド部と、該ランド部の前記光導波路側の主面の他の一部に接続するとともに、前記貫通孔に向かって突出した隆起部とを具備することを特徴とする光配線基板。
  13.  請求項11に記載の光配線基板において、
    前記電極パッドは、前記配線基板の同じ主面に複数配されており、
    該複数の電極パッドは、1つの前記貫通孔内に露出していることを特徴とする光配線基板。
  14.  請求項13に記載の光配線基板において、
    前記複数の電極パッドは、一方向に沿って配列されており、
    前記1つの貫通孔は、前記一方向に沿った細長い形状であることを特徴とする光配線基板。
PCT/JP2011/080005 2010-12-28 2011-12-26 光モジュールおよび光配線基板 WO2012090901A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/976,924 US9110234B2 (en) 2010-12-28 2011-12-26 Optical module and optical wiring board
JP2012550921A JP5595524B2 (ja) 2010-12-28 2011-12-26 光モジュールおよび光配線基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-291439 2010-12-28
JP2010291439 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090901A1 true WO2012090901A1 (ja) 2012-07-05

Family

ID=46383005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080005 WO2012090901A1 (ja) 2010-12-28 2011-12-26 光モジュールおよび光配線基板

Country Status (3)

Country Link
US (1) US9110234B2 (ja)
JP (1) JP5595524B2 (ja)
WO (1) WO2012090901A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140131871A1 (en) * 2012-11-13 2014-05-15 Delta Electronics, Inc. Interconnection structure and fabrication thereof
JP2014135459A (ja) * 2013-01-12 2014-07-24 Kyocera Corp 光モジュール用基板および光モジュール
JP2014240933A (ja) * 2013-06-12 2014-12-25 新光電気工業株式会社 光電気混載基板、及び光モジュール
JP2015200785A (ja) * 2014-04-08 2015-11-12 新光電気工業株式会社 光導波路装置及びその製造方法
US9275982B2 (en) 2012-11-13 2016-03-01 Delta Electronics, Inc. Method of forming interconnection structure of package structure
WO2016175124A1 (ja) * 2015-04-27 2016-11-03 京セラ株式会社 光伝送基板および光伝送モジュール
CN108885304A (zh) * 2016-03-22 2018-11-23 日东电工株式会社 光波导层叠体及其制造方法
JP2019029389A (ja) * 2017-07-26 2019-02-21 京セラ株式会社 光回路基板
WO2023063313A1 (ja) * 2021-10-14 2023-04-20 パナソニックIpマネジメント株式会社 光電気複合基板およびその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2892081B1 (en) * 2012-08-30 2021-03-10 Kyocera Corporation Light receiving/emitting element and sensor device using same
JP6115067B2 (ja) * 2012-10-05 2017-04-19 富士通株式会社 光モジュール
US20150109674A1 (en) * 2013-10-23 2015-04-23 Ronald Steven Cok Imprinted micro-louver structure
JP6168602B2 (ja) * 2013-10-31 2017-07-26 日東電工株式会社 光電気混載モジュール
WO2017131092A1 (ja) * 2016-01-27 2017-08-03 京セラ株式会社 配線基板、光半導体素子パッケージおよび光半導体装置
JP6783648B2 (ja) * 2016-12-26 2020-11-11 新光電気工業株式会社 配線基板、半導体装置
US10359565B2 (en) 2017-02-07 2019-07-23 Nokia Of America Corporation Optoelectronic circuit having one or more double-sided substrates
JP6941460B2 (ja) * 2017-03-31 2021-09-29 日東電工株式会社 光電気混載基板および光電気混載基板アセンブリ
US20210126425A1 (en) * 2019-10-24 2021-04-29 Advanced Semiconductor Engineering, Inc. Optoelectronic package and manufacturing method thereof
DE102020119181A1 (de) * 2019-10-29 2021-04-29 Taiwan Semiconductor Manufacturing Co., Ltd. Halbleiterpackages und verfahren zu deren herstellung
JP2023008205A (ja) * 2021-07-05 2023-01-19 イビデン株式会社 配線基板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174657A (ja) * 1999-12-21 2001-06-29 Toppan Printing Co Ltd 光配線層、光・電気配線基板及び実装基板
JP2003161853A (ja) * 2001-11-26 2003-06-06 Nec Toppan Circuit Solutions Inc 光導波路の製造方法及び光電気配線基板の製造方法
JP2006171642A (ja) * 2004-12-20 2006-06-29 Sony Corp 光導波シート、光電子装置およびそれらの製造方法
JP2007199657A (ja) * 2005-12-28 2007-08-09 Kyocera Corp 光配線モジュール
WO2007139155A1 (ja) * 2006-05-30 2007-12-06 Sumitomo Bakelite Co., Ltd. 光素子実装用基板、光回路基板及び光素子実装基板
JP2008112030A (ja) * 2006-10-31 2008-05-15 Sumitomo Bakelite Co Ltd 接着剤付き光回路基板、光素子実装用部品及び光素子実装部品
JP2008158474A (ja) * 2006-11-29 2008-07-10 Sumitomo Bakelite Co Ltd 光素子実装用部品及び光素子実装部品
JP2009145867A (ja) * 2007-11-22 2009-07-02 Sumitomo Bakelite Co Ltd 光導波路、光導波路モジュールおよび光素子実装基板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996746A (ja) * 1995-09-29 1997-04-08 Fujitsu Ltd アクティブ光回路シートまたはアクティブ光回路基板
JP2000347051A (ja) 1999-03-30 2000-12-15 Toppan Printing Co Ltd 光・電気配線基板及びその製造方法並びに実装基板
TW460717B (en) 1999-03-30 2001-10-21 Toppan Printing Co Ltd Optical wiring layer, optoelectric wiring substrate mounted substrate, and methods for manufacturing the same
JP6197319B2 (ja) * 2013-03-21 2017-09-20 富士通株式会社 半導体素子の実装方法
JP6308727B2 (ja) * 2013-06-13 2018-04-11 キヤノン株式会社 電子デバイスの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174657A (ja) * 1999-12-21 2001-06-29 Toppan Printing Co Ltd 光配線層、光・電気配線基板及び実装基板
JP2003161853A (ja) * 2001-11-26 2003-06-06 Nec Toppan Circuit Solutions Inc 光導波路の製造方法及び光電気配線基板の製造方法
JP2006171642A (ja) * 2004-12-20 2006-06-29 Sony Corp 光導波シート、光電子装置およびそれらの製造方法
JP2007199657A (ja) * 2005-12-28 2007-08-09 Kyocera Corp 光配線モジュール
WO2007139155A1 (ja) * 2006-05-30 2007-12-06 Sumitomo Bakelite Co., Ltd. 光素子実装用基板、光回路基板及び光素子実装基板
JP2008112030A (ja) * 2006-10-31 2008-05-15 Sumitomo Bakelite Co Ltd 接着剤付き光回路基板、光素子実装用部品及び光素子実装部品
JP2008158474A (ja) * 2006-11-29 2008-07-10 Sumitomo Bakelite Co Ltd 光素子実装用部品及び光素子実装部品
JP2009145867A (ja) * 2007-11-22 2009-07-02 Sumitomo Bakelite Co Ltd 光導波路、光導波路モジュールおよび光素子実装基板

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10424508B2 (en) 2012-11-13 2019-09-24 Delta Electronics, Inc. Interconnection structure having a via structure and fabrication thereof
US9159699B2 (en) * 2012-11-13 2015-10-13 Delta Electronics, Inc. Interconnection structure having a via structure
US9275982B2 (en) 2012-11-13 2016-03-01 Delta Electronics, Inc. Method of forming interconnection structure of package structure
US20140131871A1 (en) * 2012-11-13 2014-05-15 Delta Electronics, Inc. Interconnection structure and fabrication thereof
JP2014135459A (ja) * 2013-01-12 2014-07-24 Kyocera Corp 光モジュール用基板および光モジュール
JP2014240933A (ja) * 2013-06-12 2014-12-25 新光電気工業株式会社 光電気混載基板、及び光モジュール
JP2015200785A (ja) * 2014-04-08 2015-11-12 新光電気工業株式会社 光導波路装置及びその製造方法
WO2016175124A1 (ja) * 2015-04-27 2016-11-03 京セラ株式会社 光伝送基板および光伝送モジュール
JPWO2016175124A1 (ja) * 2015-04-27 2017-11-30 京セラ株式会社 光伝送基板および光伝送モジュール
CN108885304A (zh) * 2016-03-22 2018-11-23 日东电工株式会社 光波导层叠体及其制造方法
CN108885304B (zh) * 2016-03-22 2020-05-26 日东电工株式会社 光波导层叠体及其制造方法
JP2019029389A (ja) * 2017-07-26 2019-02-21 京セラ株式会社 光回路基板
WO2023063313A1 (ja) * 2021-10-14 2023-04-20 パナソニックIpマネジメント株式会社 光電気複合基板およびその製造方法

Also Published As

Publication number Publication date
JP5595524B2 (ja) 2014-09-24
JPWO2012090901A1 (ja) 2014-06-05
US9110234B2 (en) 2015-08-18
US20130272648A1 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP5595524B2 (ja) 光モジュールおよび光配線基板
JP4769022B2 (ja) 配線基板およびその製造方法
TWI415529B (zh) Wiring board and manufacturing method thereof
US8644656B2 (en) Optical waveguide laminated wiring board
TWI573229B (zh) 配線基板
US10714416B2 (en) Semiconductor package having a circuit pattern
US20120014641A1 (en) Optical-electrical wiring board and optical module
JP2011064813A (ja) 光素子搭載基板、光電気混載基板および電子機器
KR20000035210A (ko) 반도체 장치, 반도체 장치용 접속용 기판, 및 접속용기판의 제조 방법
KR20120108952A (ko) 회로 기판의 제조 방법 및 전자 장치의 제조 방법
JP5659042B2 (ja) キャパシタ内蔵光電気混載パッケージ
US20120032335A1 (en) Electronic component and method for manufacturing the same
US10211119B2 (en) Electronic component built-in substrate and electronic device
JP5868274B2 (ja) 配線基板およびそれを用いた電子装置
JP5267426B2 (ja) 光素子搭載基板、光電気混載基板および電子機器
JP5705565B2 (ja) 実装構造体
CN107924847B (zh) 安装结构以及模块
JP5300700B2 (ja) 光配線基板
JP2011170251A (ja) 光素子搭載基板、光電気混載基板および電子機器
CN116093062A (zh) 布线基板
JP6582665B2 (ja) 多層配線構造、多層配線基板及び多層配線構造の製造方法
CN116095949A (zh) 布线基板
TW202339135A (zh) 半導體封裝
JP5539244B2 (ja) キャパシタ内蔵光電気混載パッケージ
JP2011176099A (ja) 配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550921

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13976924

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854209

Country of ref document: EP

Kind code of ref document: A1