WO2012089085A1 - 一种类石墨烯掺杂锂离子电池正极材料的制备方法 - Google Patents

一种类石墨烯掺杂锂离子电池正极材料的制备方法 Download PDF

Info

Publication number
WO2012089085A1
WO2012089085A1 PCT/CN2011/084676 CN2011084676W WO2012089085A1 WO 2012089085 A1 WO2012089085 A1 WO 2012089085A1 CN 2011084676 W CN2011084676 W CN 2011084676W WO 2012089085 A1 WO2012089085 A1 WO 2012089085A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
lithium ion
graphene
cathode material
preparing
Prior art date
Application number
PCT/CN2011/084676
Other languages
English (en)
French (fr)
Inventor
刘剑洪
贵大勇
张黔玲
何传新
朱才镇
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to EP11852829.8A priority Critical patent/EP2660904B1/en
Priority to JP2013545038A priority patent/JP5732545B2/ja
Priority to PCT/CN2011/084676 priority patent/WO2012089085A1/zh
Publication of WO2012089085A1 publication Critical patent/WO2012089085A1/zh
Priority to US13/924,674 priority patent/US9123953B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of chemical batteries, and in particular to a method for preparing a cathode material of a graphene-doped lithium ion battery.
  • Lithium-ion battery is a new generation of green high-energy battery, which has the advantages of light weight, high volumetric energy, high working voltage and no environmental pollution. It is a modern communication, IT and portable electronic products (such as mobile phones, notebook computers, video cameras, etc.).
  • the ideal chemical power source is also the preferred power source for electric vehicles in the future, with broad application prospects and huge economic benefits.
  • the positive electrode material is a key material for the manufacture of lithium ion secondary batteries and is a major factor in determining the performance and price of lithium ion batteries. Therefore, the research and development of cathode materials for lithium-ion batteries has always been a frontier and hot topic, and has been highly valued by many advanced countries in the world.
  • cathode materials for lithium ion batteries mainly focus on lithium-transition metal composite oxide cathode materials, including LiCoO 2 , LiFePO 4 , LiNiO 2 , LiV 3 O 8 and LiMn 2 O 4 and their derivatives.
  • LiCoO 2 has high voltage, high specific energy and good cycleability, and has been successfully used in small lithium ion batteries
  • LiFePO 4 has a high theoretical capacity (170 mA.h/g), Excellent cycle performance, good thermal stability, abundant resources, low price and environmental friendliness
  • LiNiO 2 has low discharge rate, no environmental pollution, low electrolyte requirements
  • LiV 3 O 8 has higher specific capacity and has no Poisonous and inexpensive
  • LiMn 2 O 4 has good stability, no pollution, high working voltage, low cost and easy synthesis.
  • these materials have a common disadvantage, that is, the intrinsic electronic conductivity of the battery positive electrode material itself is very low, which seriously affects the high-current electrochemical performance and practical application of the material.
  • the object of the present invention is to provide a method for preparing a graphene-doped lithium ion battery cathode material.
  • the invention aims to solve the problem that the conductivity of the cathode material of the lithium ion battery in the prior art is not high.
  • a method for preparing a graphene-doped lithium ion battery cathode material comprising the steps of:
  • liquid acrylonitrile oligomer solution (LPAN) is stirred at 80 to 300 ° C for 8-72 hours to form a microcyclic cyclized LPAN solution;
  • the microcircularized LPAN forms a graphene-like structure and is uniformly distributed in the cathode material of the lithium ion battery, thereby obtaining a graphene-doped lithium ion battery cathode material.
  • the method for preparing a graphene-doped lithium ion battery cathode material wherein the solute used in the liquid acrylonitrile oligomer solution is a liquid acrylonitrile oligomer, and the relative molecular weight is 106 ⁇ 100000;
  • the solvent used is one or a combination of water, methanol or ethanol, and the concentration of the liquid acrylonitrile oligomer is 0.1 to 100%.
  • liquid acrylonitrile oligomer is also a copolymer of acrylonitrile and other ethylenic monomers, and the other vinyl monomers are styrene.
  • the method for preparing a cathode material of a graphene-doped lithium ion battery wherein the cathode material of the lithium ion battery is one of LiCoO 2 , LiFePO 4 , LiNiO 2 , LiV 3 O 8 , and LiMn 2 O 4 , And a composite oxide thereof consisting of LiCo x Fe 1-x O 2 , LiCo x Ni 1-x O 2 , LiCo x Ni 1-(x+y) Mn y O 2 , LiNi x Mn 1-x O 2 , wherein x , y , x+y ⁇ 1 .
  • the method for preparing a cathode material of a graphene-doped lithium ion battery wherein the cathode material of the lithium ion battery is a precursor of LiCoO 2 , LiFePO 4 , LiNiO 2 , LiV 3 O 8 , LiMn 2 O 4 and a precursor thereof Doped derivatives.
  • the method for preparing a cathode material of a graphene-doped lithium ion battery wherein the cathode material of the lithium ion battery is added in a mass ratio, the liquid acrylonitrile oligomer solution: the cathode material of the lithium ion battery is 0.01 ⁇ 0.8:1.
  • the method for preparing a graphene-doped lithium ion battery cathode material wherein the mixing is uniform, in a manner of stirring or ball milling.
  • the method for preparing a graphene-doped lithium ion battery cathode material wherein the inert atmosphere is nitrogen or argon.
  • the invention provides a method for preparing a graphene-doped lithium ion battery cathode material, and the graphene-doped lithium ion battery cathode material obtained by the method not only has high conductivity and specific capacity, but also has cycle performance. A substantial increase.
  • the present invention provides a method for preparing a graphene-doped lithium ion battery cathode material.
  • the invention provides a method for preparing a graphene-doped lithium ion battery cathode material, comprising the following steps:
  • micro-cyclized LPAN forms a graphene-like structure, uniformly distributed in the cathode material of lithium ion battery, thereby obtaining a graphene-doped lithium ion battery anode material.
  • the liquid acrylonitrile oligomer used in the preparation method of the invention has a relative molecular weight of 106 ⁇ 100000, preferably 1600-25000; the solvent used in the above liquid acrylonitrile oligomer solution may be one or a combination of water, methanol or ethanol, and the concentration of the liquid acrylonitrile oligomer is 0.1 to 100%, preferably It is 10-90%.
  • the liquid acrylonitrile oligomer used in the preparation method of the present invention may be a homopolymer of acrylonitrile, or a copolymer of acrylonitrile and other ethylenic monomers, and other vinyl monomers may be styrene or methyl.
  • the lithium ion battery positive electrode material powder described in the preparation method of the present invention is one of LiCoO 2 , LiFePO 4 , LiNiO 2 , LiV 3 O 8 , LiMn 2 O 4 , and a composite oxide thereof LiCo x Fe 1- 1- x O 2 , LiCo x Ni 1-x O 2 , LiCo x Ni 1-(x+y) Mn y O 2 , LiNi x Mn 1-x O 2 , wherein x , y , x+y ⁇ 1 .
  • the lithium ion battery positive electrode material powder may also be a precursor of LiCoO 2 , LiFePO 4 , LiNiO 2 , LiV 3 O 8 , LiMn 2 O 4 and doped derivatives thereof.
  • the method for preparing the lithium ion battery cathode material according to the step (2) of the preparation method is: according to the mass ratio, the liquid acrylonitrile oligomer solution: the lithium ion battery cathode material is 0.01 ⁇ 0.8:1, preferably 0.3-0.5:1.
  • the manner of uniform mixing may be stirring or ball milling. Since the micro-cyclized LPAN contains a large number of functional groups, the LPAN after mixing or stirring is very uniformly mixed with the battery positive electrode material, and some LPAN functional groups are coordinated with the battery material. Complexation, can achieve compatibility at the molecular level.
  • the inert atmosphere used in the calcination during the preparation of the present invention may be nitrogen or argon.
  • the ratio of the adhesive is equal to 85:10:5 (mass percentage) to make a positive electrode film, using lithium plate as the negative electrode, Cellgard 2300 porous film as the separator, and 1 mol ⁇ L -1 of LiPF 6 /
  • the EC+DMC (volume ratio 1:1) mixed solution was used as an electrolyte to assemble a button cell.
  • the electrochemical performance test was carried out on a Land BS9300 (Wuhan Jinnuo Electronics) program-controlled fully automatic electrochemical tester. When the current density is 0.1 C, the discharge specific capacity is 167 mAh/g, and the discharge specific capacity is maintained at 97% after 100 cycles.
  • the adhesive is equal to the ratio of 85:10:5 (mass percentage) to make a positive electrode film, using lithium plate as the negative electrode, Cellgard 2300 porous film as the separator, and 1 mol ⁇ L -1 of LiPF 6 /
  • the EC+DMC (volume ratio 1:1) mixed solution was used as an electrolyte to assemble a button cell.
  • Electrochemical performance tests were carried out on a Land BS9300 (Wuhan Jinnuo Electronics) program-controlled fully automated electrochemical tester. When the current density is 1C, the discharge specific capacity is 161mAh/g, and the discharge specific capacity remains at 96% after 100 cycles.
  • the adhesive is equal to the ratio of 85:10:5 (mass percentage) to make a positive electrode film, using lithium plate as the negative electrode, Cellgard 2300 porous film as the separator, and 1 mol ⁇ L -1 LiPF 6 /EC+DMC (volume ratio 1:1)
  • the mixed solution is used as an electrolyte to assemble a button cell.
  • Electrochemical performance tests were carried out on a Land BS9300 (Wuhan Jinnuo Electronics) program-controlled fully automated electrochemical tester. When the current density is 1C, the discharge specific capacity is 220mAh/g, and the discharge specific capacity remains at 95% after 100 cycles.
  • the adhesive is equal to the ratio of 85:10:5 (mass percentage) to make a positive electrode film, using lithium plate as the negative electrode, Cellgard 2300 porous film as the separator, and 1 mol ⁇ L -1 of LiPF 6 /
  • the EC+DMC (volume ratio 1:1) mixed solution was used as an electrolyte to assemble a button cell.
  • the electrochemical performance test was carried out on a Land BS9300 (Wuhan Jinnuo Electronics) program-controlled fully automatic electrochemical tester. When the current density is 1C, the discharge specific capacity is 140 mAh/g, and the discharge specific capacity is maintained at 96% after 100 cycles.
  • the adhesive is equal to the ratio of 80:10:10 (mass percentage) to make a positive electrode film, using lithium flake as the negative electrode, Cellgard 2300 porous film as the separator, and 1 mol ⁇ L -1 LiPF 6 /EC+DMC (volume ratio 1:1)
  • the mixed solution is used as an electrolyte to assemble a button cell.
  • Electrochemical performance tests were carried out on a Land BS9300 (Wuhan Jinnuo Electronics) program-controlled fully automated electrochemical tester. When the current density is 1C, the discharge specific capacity is 260mAh/g, and the discharge specific capacity remains at 95% after 100 cycles.
  • the adhesive is equal to the ratio of 80:10:10 (mass percentage) to form a positive electrode film, using lithium plate as the negative electrode, Cellgard 2300 porous film as the separator, and 1 mol ⁇ L -1 of LiPF 6 /
  • the EC+DMC (volume ratio of 1:1) mixed solution was used as an electrolyte to assemble a button cell.
  • Electrochemical performance tests were carried out on a Land BS9300 (Wuhan Jinnuo Electronics) program-controlled fully automated electrochemical tester. When the current density is 1C, the discharge specific capacity is 153mAh/g, and the discharge specific capacity remains at 98% after 100 cycles.
  • acetylene black the ratio of the adhesive equal to 85:10:5 (mass percentage) is mixed to form a positive electrode film, using a lithium plate as a negative electrode, a Cellgard 2300 porous film as a separator, and 1 mol ⁇ L -1 of LiPF 6 /
  • the EC+DMC (volume ratio 1:1) mixed solution was used as an electrolyte to assemble a button cell.
  • the electrochemical performance test was carried out on a Land BS9300 (Wuhan Jinnuo Electronics) program-controlled fully automatic electrochemical tester. When the current density is 0.1 C, the discharge specific capacity is 167 mAh/g, and the discharge specific capacity is maintained at 97% after 100 cycles.
  • acetylene black the ratio of the adhesive equal to 85:10:5 (mass percentage) is mixed to form a positive electrode film, using a lithium plate as a negative electrode, a Cellgard 2300 porous film as a separator, and 1 mol ⁇ L -1 of LiPF 6 /
  • the EC+DMC (volume ratio 1:1) mixed solution was used as an electrolyte to assemble a button cell.
  • the electrochemical performance test was carried out on a Land BS9300 (Wuhan Jinnuo Electronics) program-controlled fully automatic electrochemical tester. When the current density is 0.1 C, the discharge specific capacity is 167 mAh/g, and the discharge specific capacity is maintained at 97% after 100 cycles.
  • acetylene black the ratio of the adhesive equal to 85:10:5 (mass percentage) is mixed to form a positive electrode film, using a lithium plate as a negative electrode, a Cellgard 2300 porous film as a separator, and 1 mol ⁇ L -1 of LiPF 6 /
  • the EC+DMC (volume ratio 1:1) mixed solution was used as an electrolyte to assemble a button cell.
  • the electrochemical performance test was carried out on a Land BS9300 (Wuhan Jinnuo Electronics) program-controlled fully automatic electrochemical tester. When the current density is 0.1 C, the discharge specific capacity is 167 mAh/g, and the discharge specific capacity is maintained at 97% after 100 cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种类石墨烯掺杂锂离子电池正极材料的制备方法,包括以下步骤:将液态丙烯腈低聚物溶液在80~300℃下搅拌8-72小时,形成微环化的LPAN溶液;将一定量的锂离子电池正极材料粉末加入到微环化的LPAN溶液中,混合均匀;研磨后,室温干燥;在惰性气氛保护下,500~1800℃煅烧6-24小时,微环化的LPAN形成类石墨烯结构,均匀分布在锂离子电池正极材料中,从而获得类石墨烯掺杂的锂离子电池正极材料。通过该方法获得的类石墨烯掺杂的锂离子电池正极材料不仅具有高的导电率和比容量,并且循环性能获得大幅提高。

Description

一种类石墨烯掺杂锂离子电池正极材料的制备方法
技术领域
本发明涉及化学电池领域,尤其涉及 一种类石墨烯掺杂锂离子电池正极材料的制备方法 。
背景技术
锂离子电池是新一代的绿色高能电池,具有重量轻、体积比能量高、工作电压高、无环境污染等优点,是现代通讯、IT和便携式电子产品(如移动电话、笔记本电脑、摄像机等)的理想化学电源,也是未来电动汽车优选的动力电源,具有广阔的应用前景和巨大的经济效益。
正极材料是制造锂离子二次电池的关键材料,是决定锂离子电池性能和价格的主要因素。因此,锂离子电池正极材料的研究与开发一直都是前沿和热点课题,受到世界许多先进国家的高度重视。
目前锂离子电池正极材料的研究开发主要集中在锂-过渡金属复合氧化物正极材料方面,主要包括 LiCoO2 、 LiFePO4 、 LiNiO2 、 LiV3O8 和 LiMn2O4 以及它们的衍生物。这些正极材料各有自己的优点,如: LiCoO2 电压高,比能量高,循环性好,已经成功用在小型锂离子电池上; LiFePO4 具有较高的理论容量( 170mA.h/g )、优良的循环性能、良好的热稳定性、资源丰富、价格低廉、环境友好; LiNiO2 的放电率低,没有环境污染,对电解质要求低; LiV3O8 具有更高的比容量,且具有无毒、价廉; LiMn2O4 稳定性好,无污染,工作电压高,成本低廉,易合成。但这些材料都有一个共同的缺点,就是电池正极材料本身的本征电子导电率很低,这严重影响了该材料的大电流电化学性能和实际应用。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的 在于提供 一种类石墨烯掺杂锂离子电池正极材料的制备方法 ,旨在解决现有技术中锂离子电池正极材料的电导率不高的问题。
本发明的技术方案如下:
一种类石墨烯掺杂锂离子电池正极材料的制备方法,其中,包括以下步骤:
将液态丙烯腈低聚物溶液(LPAN)在80 ~ 300℃下搅拌8-72小时,形成微环化的LPAN溶液;
将一定量的锂离子电池正极材料粉末加入到微环化的LPAN溶液中,混合均匀;
研磨后,室温干燥;
在惰性气氛保护下,500 ~ 1800 ℃煅烧6-24小时,微环化的LPAN形成类石墨烯结构,均匀分布在锂离子电池正极材料中,从而获得类石墨烯掺杂的锂离子电池正极材料。
所述的类石墨烯掺杂锂离子电池正极材料的制备方法,其中,所述液态丙烯腈低聚物溶液所用的溶质为液态丙烯腈低聚物,其相对分子量为106 ~ 100000;所用的溶剂为水、甲醇或乙醇中的一种或两种组合,液态丙烯腈低聚物的浓度为0.1~100%。
所述的类石墨烯掺杂锂离子电池正极材料的制备方法,其中,所述液态丙烯腈低聚物是丙烯腈的均聚物。
所述的类石墨烯掺杂锂离子电池正极材料的制备方法,其中,所述液态丙烯腈低聚物还可以是丙烯腈与其它烯类单体的共聚物,其它烯类单体是苯乙烯、甲基丙烯酸甲酯、甲基丙烯酸羟乙酯、丙烯酸、亚甲基丁二酸。
所述的 类石墨烯掺杂锂离子电池正极材料的制备方法 ,其中, 所述锂离子电池正极材料为 LiCoO2 、 LiFePO4 、 LiNiO2 、 LiV3O8 、 LiMn2O4 中的一种,以及它们组成的复合氧化物 LiCoxFe1-xO2 、 LiCoxNi1-xO2 、 LiCoxNi1-(x+y)MnyO 2 、 LiNixMn1-xO2 ,其中 x 、 y 、 x+y < 1 。
所述的 类石墨烯掺杂锂离子电池正极材料的制备方法 ,其中, 所述锂离子电池正极材料为 LiCoO2 、 LiFePO4 、 LiNiO2 、 LiV3O8 、 LiMn2O4 的前驱体以及它们的掺杂衍生物。
所述的类石墨烯掺杂锂离子电池正极材料的制备方法,其中,所述锂离子电池正极材料的加入量为,按质量比,液态丙烯腈低聚物溶液:锂离子电池正极材料为0.01 ~ 0.8:1。
所述的类石墨烯掺杂锂离子电池正极材料的制备方法,其中,所述混合均匀的过程,其方式为搅拌或球磨。
所述的类石墨烯掺杂锂离子电池正极材料的制备方法,其中,所述惰性气氛为氮气或氩气。
本发明所提供的一种类石墨烯掺杂锂离子电池正极材料的制备方法,通过该方法获得的类石墨烯掺杂的锂离子电池正极材料不仅具有高的导电率和比容量,并且循环性能获得大幅提高。
具体实施方式
本发明提供一种类石墨烯掺杂锂离子电池正极材料的制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明所提供的一种类石墨烯掺杂锂离子电池正极材料的制备方法,包括以下步骤:
(1)将液态丙烯腈低聚物(LPAN)溶液在80 ~ 300℃下搅拌8-72小时,形成微环化的LPAN溶液;
(2)将一定量的锂离子电池正极材料粉末加入到微环化的LPAN溶液中,混合均匀;
(3)研磨后,室温干燥;
(4)在惰性气氛保护下,500 ~ 1800℃煅烧6-24小时,优选在600-1100℃下煅烧,微环化的LPAN形成类石墨烯结构,均匀分布在锂离子电池正极材料中,从而获得类石墨烯掺杂的锂离子电池正极材料。
本发明制备方法中所用的液态丙烯腈低聚物,相对分子量为106 ~ 100000,优选为1600-25000;上述液态丙烯腈低聚物溶液所用的溶剂可以为水、甲醇或乙醇中的一种或两种组合,液态丙烯腈低聚物的浓度为0.1~100%,优选为10-90%。
本发明制备方法中所用的液态丙烯腈低聚物,可以是丙烯腈的均聚物,还可以是丙烯腈与其它烯类单体的共聚物,其他烯类单体可以为苯乙烯、甲基丙烯酸甲酯、甲基丙烯酸羟乙酯、丙烯酸、亚甲基丁二酸等。
本发明制备方法中所述的锂离子电池正极材料粉末为 LiCoO2 、 LiFePO4 、 LiNiO2 、 LiV3O8 、 LiMn2O4 中的一种, 以及它们组成的复合氧化物 LiCoxFe1-xO2 、 LiCoxNi1-xO2 、 LiCoxNi1-(x+y)MnyO 2 、 LiNixMn1-xO2 ,其中 x 、 y 、 x+y < 1 。
所述 锂离子电池正极材料粉末还可以是 LiCoO2 、 LiFePO4 、 LiNiO2 、 LiV3O8 、 LiMn2O4 的前驱体以及它们的掺杂衍生物。
本发明制备方法步骤(2)所述锂离子电池正极材料的加入量为,按质量比,液态丙烯腈低聚物溶液:锂离子电池正极材料为0.01 ~ 0.8:1,优选为0.3-0.5:1。所述混合均匀的方式可以为搅拌或球磨,由于微环化的LPAN含有大量功能基团,使得研磨后或者搅拌后的LPAN与电池正极材料混合非常均匀,部分LPAN功能基团与电池材料配位络合,能达到分子水平的相容。
本发明制备过程中煅烧时所用的惰性气氛可以为氮气或氩气。
下面通过实施例,进一步阐明本发明的突出特点和显著进步,仅在于说明本发明而决不限制本发明。
实施例1
将5g 10%LPAN(分子量1600)溶液(质量百分比)在120℃下加热20小时,形成微环化的LPAN溶液, 然后加入10g LiFePO4粉末, 采用行星式球磨机,球料比为15:1,400r/min球8 h,出料后,室温干燥。在氩气保护下,750℃煅烧18 h, 得到类石墨烯掺杂的LiFePO4粉状正极材料。 按活性物质:乙炔黑:胶粘剂等于85:10:5的比例(质量百分比)混合制成正极膜,以锂片作为负极,以Cellgard 2300多孔膜作为隔膜, 以1mol · L-1 的 LiPF6/EC+DMC (体积比1:1)混合溶液作电解液,组装成扣式电池。在Land BS9300(武汉金诺电子)程控全自动电化学测试仪上进行电化学性能测试。在电流密度为0.1C时,其放电比容量为167mAh/g,循环100次后其放电比容量仍保持在97%。
实施例2
将5g 10%LPAN(分子量1600)溶液(质量百分比)在120℃下加热20小时,形成微环化的LPAN溶液, 然后加入 2.342g Li2CO3 、 11.386g FeC2O4·2H2O 和 7.278g NH4H2PO4 , 采用行星式球磨机,球料比为 15:1 , 400 r/min 球磨 8 h ,出料后,室温干燥。 在氩气保护下, 750 ℃ 煅烧 18 h ,得到类石墨烯掺杂的 LiFePO4 粉状正极材料。 按活性物质:乙炔黑:胶粘剂等于 85 : 10 : 5 的比例(质量百分比)混合制成正极膜,以锂片作为负极,以 Cellgard 2300 多孔膜作为隔膜,以 1mol·L-1 的 LiPF6/EC+DMC ( 体积比 1:1 ) 混合溶液作电解液,组装成扣式电池。 在 Land BS9300 ( 武汉金诺电子)程控全自动电化学测试仪上进行电化学性能测试。 在电流密度为 1C 时,其放电比容量为 161mAh/g , 循环 100 次后其放电比容量仍保持在 96% 。
实施例3
将5g 10%LPAN(分子量3000)溶液(质量百分比)在120℃下加热20小时,形成微环化的LPAN溶液, 然后加入 10g LiCoO2 粉末,采用行星式球磨机,球料比为 15:1 , 400r/min 球磨 8 h ,出料后,室温干燥。 在氩气保护下, 750 ℃ 煅烧 8 h ,得到类石墨烯掺杂的 LiCoO2 粉状正极材料。 按活性物质:乙炔黑:胶粘剂等于 85 : 10 : 5 的比例(质量百分比)混合制成正极膜,以锂片作为负极,以 Cellgard 2300 多孔膜作为隔膜,以 1 mol·L-1 的 LiPF6/EC+DMC ( 体积比 1:1 ) 混合溶液作电解液,组装成扣式电池。 在 Land BS9300 ( 武汉金诺电子)程控全自动电化学测试仪上进行电化学性能测试。在电流密度为 1C 时,其放电比容量为 220mAh/g ,循环 100 次后其放电比容量仍保持在 95% 。
实施例4
将5g 10%LPAN(分子量3000)溶液(质量百分比)在120℃下加热20小时,形成微环化的LPAN溶液, 然后加入 10g LiMn2O4 粉末,采用行星式球磨机,球料比为 15:1 , 400r/min 球磨 8 h ,出料后,室温干燥。在氩气保护下, 750 ℃ 煅烧 8 h ,得到类石墨烯掺杂的 LiMn2O4 粉末正极材料。 按活性物质:乙炔黑:胶粘剂等于 85 : 10 : 5 的比例(质量百分比)混合制成正极膜,以锂片作为负极,以 Cellgard 2300 多孔膜作为隔膜,以 1mol·L-1 的 LiPF6/EC+DMC ( 体积比 1:1 ) 混合溶液作电解液,组装成扣式电池。 在Land BS9300(武汉金诺电子)程控全自动电化学测试仪上进行电化学性能测试。在电流密度为1C时,其放电比容量为140mAh/g,循环100次后其放电比容量仍保持在96%。
实施例5
将3g 10%LPAN(分子量3000)溶液(质量百分比)在120℃下加热30小时,形成微环化的LPAN溶液, 然后加入 10g LiV2.95Ag0.05O8 粉末,采用行星式球磨机,球料比为 15:1 , 400r/min 球磨 8 h ,出料后,室温干燥。 在氩气保护下, 600 ℃ 煅烧 8 h ,得到类石墨烯掺杂的 LiV2.95Ag0.05O8 粉末正极材料。 按活性物质:乙炔黑:胶粘剂等于 80 : 10 : 10 的比例(质量百分比)混合制成正极膜,以锂片作为负极,以 Cellgard 2300 多孔膜作为隔膜,以 1 mol·L-1 的 LiPF6/EC+DMC ( 体积比 1:1 ) 混合溶液作电解液,组装成扣式电池。 在 Land BS9300 ( 武汉金诺电子)程控全自动电化学测试仪上进行电化学性能测试。在电流密度为 1C 时,其放电比容量为 260mAh/g ,循环 100 次后其放电比容量仍保持在 95% 。
实施例6
将3g 10%LPAN(分子量10000)溶液(质量百分比)在120℃下加热16小时,形成微环化的LPAN溶液, 然后加入 10g LiMn1/3Co1/3Ni1/3O 4 粉末,采用行星式球磨机,球料比为 15:1 , 400r/min 球磨 8 h ,出料后,室温干燥。 在氩气保护下, 650 ℃ 煅烧 6 h ,得到类石墨烯掺杂的 LiMn1/3Co1/3Ni1/3O 4 粉末正极材料。 在氩气保护下, 650 ℃ 煅烧 6 h ,得到类石墨烯掺杂的 LiMn1/3Co1/3Ni1/3O 4 粉末正极材料。 按活性物质:乙炔黑:胶粘剂等于 80 : 10 : 10 的比例(质量百分比)混合制成正极膜,以锂片作为负极,以 Cellgard 2300 多孔膜作为隔膜,以 1mol·L-1 的 LiPF6/EC+DMC ( 体积比 1 : 1 ) 混合溶液作电解液,组装成扣式电池。 在 Land BS9300 ( 武汉金诺电子)程控全自动电化学测试仪上进行电化学性能测试。在电流密度为 1C 时,其放电比容量为 153mAh/g ,循环 100 次后其放电比容量仍保持在 98% 。
实施例7
将3g 90%LPAN(分子量25000)溶液(质量百分比)在120℃下加热20小时,形成微环化的LPAN溶液,然后加入10g LiFePO4粉末,采用行星式球磨机,球料比为15:1,400r/min球8 h,出料后,室温干燥。 在氩气保护下,1100℃煅烧8 h,得到类石墨掺杂的LiFePO4粉状正极材料。按活性物质:乙炔黑:胶粘剂等于85:10:5的比例(质量百分比)混合制成正极膜,以锂片作为负极,以Cellgard 2300多孔膜作为隔膜,以1mol · L-1 的LiPF6/EC+DMC(体积比1:1)混合溶液作电解液,组装成扣式电池。 在Land BS9300(武汉金诺电子)程控全自动电化学测试仪上进行电化学性能测试。在电流密度为0.1C时,其放电比容量为167mAh/g,循环100次后其放电比容量仍保持在97%。
实施例8
将4g 60%LPAN(分子量15000)溶液(质量百分比)在120℃下加热20小时,形成微环化的LPAN溶液,然后加入10g LiFePO4粉末,采用行星式球磨机,球料比为15:1,400r/min球8 h,出料后,室温干燥。 在氩气保护下,900℃煅烧10 h,得到类石墨掺杂的LiFePO4粉状正极材料。按活性物质:乙炔黑:胶粘剂等于85:10:5的比例(质量百分比)混合制成正极膜,以锂片作为负极,以Cellgard 2300多孔膜作为隔膜,以1mol · L-1 的LiPF6/EC+DMC(体积比1:1)混合溶液作电解液,组装成扣式电池。 在Land BS9300(武汉金诺电子)程控全自动电化学测试仪上进行电化学性能测试。在电流密度为0.1C时,其放电比容量为167mAh/g,循环100次后其放电比容量仍保持在97%。
实施例9
将4g 30%LPAN(分子量5000)溶液(质量百分比)在120℃下加热20小时,形成微环化的LPAN溶液,然后加入10g LiFePO4粉末,采用行星式球磨机,球料比为15:1,400r/min球8 h,出料后,室温干燥。 在氩气保护下,700℃煅烧10 h,得到类石墨掺杂的LiFePO4粉状正极材料。按活性物质:乙炔黑:胶粘剂等于85:10:5的比例(质量百分比)混合制成正极膜,以锂片作为负极,以Cellgard 2300多孔膜作为隔膜,以1mol · L-1 的LiPF6/EC+DMC(体积比1:1)混合溶液作电解液,组装成扣式电池。 在Land BS9300(武汉金诺电子)程控全自动电化学测试仪上进行电化学性能测试。在电流密度为0.1C时,其放电比容量为167mAh/g,循环100次后其放电比容量仍保持在97%。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

  1. 一种类石墨烯掺杂锂离子电池正极材料的制备方法,其特征在于,包括以下步骤:
    将液态丙烯腈低聚物溶液在80 ~ 300 ℃下搅拌8-72小时,形成微环化的LPAN溶液;
    将一定量的锂离子电池正极材料粉末加入到微环化的LPAN溶液中,混合均匀;
    研磨后,室温干燥;
    在惰性气氛保护下,500~ 1800 ℃煅烧6-24小时,微环化的LPAN形成类石墨烯结构,均匀分布在锂离子电池正极材料中,从而获得类石墨烯掺杂的锂离子电池正极材料。
  2. 根据权利要求1所述的类石墨烯掺杂锂离子电池正极材料的制备方法,其特征在于,所述液态丙烯腈低聚物溶液所用的溶质为液态丙烯腈低聚物,其相对分子量为
    106~ 100000;所用的溶剂为水、甲醇或乙醇中的一种或两种组合,液态丙烯腈低聚物的浓度为0.1~100%。
  3. 根据权利要求2所述的类石墨烯掺杂锂离子电池正极材料的制备方法,其特征在于,所述液态丙烯腈低聚物是丙烯腈的均聚物。
  4. 根据权利要求2所述的类石墨烯掺杂锂离子电池正极材料的制备方法,其特征在于,所述液态丙烯腈低聚物是丙烯腈与其它烯类单体的共聚物,其它烯类单体是苯乙烯、甲基丙烯酸甲酯、甲基丙烯酸羟乙酯、丙烯酸、亚甲基丁二酸。
  5. 根据权利要求 1 所述的 类石墨烯掺杂锂离子电池正极材料的制备方法 ,其特征在于, 所述锂离子电池正极材料粉末为 LiCoO2 、 LiFePO4 、 LiNiO2 、 LiV3O8 、 LiMn2O4 中的一种,以及它们组成的复合氧化物 LiCoxFe1-xO2 、 LiCoxNi1-xO2 、 LiCoxNi1-(x+y)MnyO 2 、 LiNixMn1-xO2 ,其中 x 、 y 、 x+y < 1 。
  6. 根据权利要求 1 所述的 类石墨烯掺杂锂离子电池正极材料的制备方法 ,其特征在于, 所述锂离子电池正极材料粉末为 LiCoO2 、 LiFePO4 、 LiNiO2 、 LiV3O8 、 LiMn2O4 的前驱体以及它们的掺杂衍生物。
  7. 根据权利要求 1 所述的 类石墨烯掺杂锂离子电池正极材料的制备方法 ,其特征在于, 所述锂离子电池正极材料的加入量为,按质量比,液态丙烯腈低聚物溶液:锂离子电池正极材料粉末为 0.01 ~ 0.8:1 。
  8. 根据权利要求 1 所述的 类石墨烯掺杂锂离子电池正极材料的制备方法 ,其特征在于, 所述混合均匀的过程,其方式为搅拌或球磨。
  9. 根据权利要求 1 所述的 类石墨烯掺杂锂离子电池正极材料的制备方法 ,其特征在于, 所述惰性气氛为氮气或氩气。
PCT/CN2011/084676 2010-12-31 2011-12-26 一种类石墨烯掺杂锂离子电池正极材料的制备方法 WO2012089085A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11852829.8A EP2660904B1 (en) 2010-12-31 2011-12-26 Method for preparing graphene-like doped positive electrode material of lithium-ion battery
JP2013545038A JP5732545B2 (ja) 2010-12-31 2011-12-26 グラフェン類似構造物質を含有したリチウムイオン電池の正極活物質の製造方法
PCT/CN2011/084676 WO2012089085A1 (zh) 2010-12-31 2011-12-26 一种类石墨烯掺杂锂离子电池正极材料的制备方法
US13/924,674 US9123953B2 (en) 2010-12-31 2013-06-24 Method for modifying positive electrode materials for lithium-ion batteries

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201010618690.9 2010-12-31
CN2010106186909A CN102074692B (zh) 2010-12-31 2010-12-31 一种类石墨烯掺杂锂离子电池正极材料的制备方法
PCT/CN2011/084676 WO2012089085A1 (zh) 2010-12-31 2011-12-26 一种类石墨烯掺杂锂离子电池正极材料的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/924,674 Continuation-In-Part US9123953B2 (en) 2010-12-31 2013-06-24 Method for modifying positive electrode materials for lithium-ion batteries

Publications (1)

Publication Number Publication Date
WO2012089085A1 true WO2012089085A1 (zh) 2012-07-05

Family

ID=44033123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084676 WO2012089085A1 (zh) 2010-12-31 2011-12-26 一种类石墨烯掺杂锂离子电池正极材料的制备方法

Country Status (5)

Country Link
US (1) US9123953B2 (zh)
EP (1) EP2660904B1 (zh)
JP (1) JP5732545B2 (zh)
CN (1) CN102074692B (zh)
WO (1) WO2012089085A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9734522B2 (en) 2014-03-03 2017-08-15 Wal-Mart Stores, Inc. Mobile solution for purchase orders

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074692B (zh) * 2010-12-31 2013-10-30 深圳大学 一种类石墨烯掺杂锂离子电池正极材料的制备方法
CN102263239B (zh) * 2011-06-21 2016-02-10 深圳市本征方程石墨烯技术股份有限公司 一种类石墨烯包覆掺杂锰酸锂复合正极材料及其制备方法
CN103515581A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 LiV3O8/石墨烯复合材料及其制备方法和应用
CN104276566B (zh) * 2014-09-09 2016-09-14 深圳市本征方程石墨烯技术股份有限公司 一种石墨烯及其制备方法
CN105118998A (zh) * 2015-04-29 2015-12-02 宁波职业技术学院 一种石墨烯导电剂
CN110190273A (zh) * 2019-07-10 2019-08-30 深圳市本征方程石墨烯技术股份有限公司 一种石墨烯掺杂的锰酸锂正极材料及其制备方法
CN110311128A (zh) * 2019-07-10 2019-10-08 深圳市本征方程石墨烯技术股份有限公司 一种石墨烯掺杂的钴酸锂正极材料及其制备方法
CN114824246A (zh) * 2021-01-28 2022-07-29 北京理工大学 一种LiMO2正极材料及其化学包覆改性方法和应用
CN112993245A (zh) * 2021-02-23 2021-06-18 云南航开科技有限公司 长循环寿命磷酸铁锂复合材料、正极材料及其制备方法
CN116495715B (zh) * 2023-06-26 2023-10-31 深圳市本征方程石墨烯技术股份有限公司 一种磷酸铁锂正极材料及其制备方法和应用
CN117293394A (zh) * 2023-11-24 2023-12-26 深圳市本征方程石墨烯技术股份有限公司 一种电解液及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220909A (ja) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp 正極活物質及びこれを用いた正極、並びにこの正極を用いたリチウムイオン電池及びリチウムポリマー電池
CN101431151A (zh) * 2007-11-06 2009-05-13 索尼株式会社 正极和锂离子二次电池
CN101521276A (zh) * 2009-03-30 2009-09-02 深圳大学 一种锂离子电池正极材料包覆碳的制备方法
CN101924204A (zh) * 2010-01-21 2010-12-22 浙江大学 含氮导电膜包覆LiFePO4材料的制备方法
CN102074692A (zh) * 2010-12-31 2011-05-25 深圳大学 一种类石墨烯掺杂锂离子电池正极材料的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187524B2 (ja) * 2002-01-31 2008-11-26 日本化学工業株式会社 リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2006073259A (ja) * 2004-08-31 2006-03-16 Toyota Central Res & Dev Lab Inc 正極活物質及び水系リチウム二次電池
JP4819342B2 (ja) * 2004-11-08 2011-11-24 エレクセル株式会社 リチウム電池用正極及びこれを用いたリチウム電池
JP5731732B2 (ja) * 2007-10-17 2015-06-10 日立化成株式会社 リチウムイオン二次電池用炭素被覆黒鉛負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
CA2638410A1 (en) * 2008-07-28 2010-01-28 Hydro-Quebec Composite electrode material
KR101316413B1 (ko) * 2009-03-12 2013-10-08 더 스와치 그룹 리서치 앤 디벨롭먼트 엘티디 희생 나노입자를 포함하는 전기 전도성 나노복합체 물질 및 이에 의해 생산된 개방 다공성 나노복합체
EP2228855B1 (en) * 2009-03-12 2014-02-26 Belenos Clean Power Holding AG Open porous electrically conductive nanocomposite material
CN101752561B (zh) * 2009-12-11 2012-08-22 宁波艾能锂电材料科技股份有限公司 石墨烯改性磷酸铁锂正极活性材料及其制备方法以及锂离子二次电池
CN101894942B (zh) * 2010-08-10 2013-09-04 成都中科来方能源科技有限公司 LiFePO4/ N复合电极材料及其制备方法
US20120088151A1 (en) * 2010-10-08 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Positive-electrode active material and power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220909A (ja) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp 正極活物質及びこれを用いた正極、並びにこの正極を用いたリチウムイオン電池及びリチウムポリマー電池
CN101431151A (zh) * 2007-11-06 2009-05-13 索尼株式会社 正极和锂离子二次电池
CN101521276A (zh) * 2009-03-30 2009-09-02 深圳大学 一种锂离子电池正极材料包覆碳的制备方法
CN101924204A (zh) * 2010-01-21 2010-12-22 浙江大学 含氮导电膜包覆LiFePO4材料的制备方法
CN102074692A (zh) * 2010-12-31 2011-05-25 深圳大学 一种类石墨烯掺杂锂离子电池正极材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9734522B2 (en) 2014-03-03 2017-08-15 Wal-Mart Stores, Inc. Mobile solution for purchase orders

Also Published As

Publication number Publication date
US20130277620A1 (en) 2013-10-24
EP2660904A1 (en) 2013-11-06
EP2660904A4 (en) 2016-11-30
US9123953B2 (en) 2015-09-01
JP5732545B2 (ja) 2015-06-10
CN102074692B (zh) 2013-10-30
CN102074692A (zh) 2011-05-25
EP2660904B1 (en) 2021-04-21
JP2014504436A (ja) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2012089085A1 (zh) 一种类石墨烯掺杂锂离子电池正极材料的制备方法
CN103700820B (zh) 一种长寿命锂离子硒电池
US20180366720A1 (en) Positive active material and lithium-ion secondary battery
CN108987808B (zh) 一种高电压锂离子电池非水电解液及锂离子电池
CN112151764A (zh) 一种电极极片及其制备方法和应用
JP2014504436A5 (zh)
TW200926479A (en) Electrolytic solution and lithium battery employing the same
CN110504489B (zh) 一种5v高电压镍锰酸锂正极用锂离子电池电解液
CN114552125B (zh) 一种无损补锂复合隔膜及其制备方法和应用
CN112751075A (zh) 一种锂离子电池及其制备方法
CN112110448A (zh) 一种氮掺杂碳与纳米硅复合负极材料及其制备方法
WO2023138577A1 (zh) 正极补锂添加剂及其制备方法和应用
CN108365220B (zh) 锂源材料及其制备方法和在锂离子电池中的应用
CN114039097A (zh) 一种锂离子电池
CN111883765A (zh) 锂电池正极活性材料及其制备方法和锂电池
CN115566170A (zh) 一种高能量密度快充锂离子电池负极材料的制备方法
CN104319370A (zh) 一种锂离子电池三元正极材料LiNixCoyMnzO2的制备方法
CN111180682A (zh) 一种石墨型氮化碳修饰锂离子电池正极材料
WO2022089509A1 (zh) 锂离子电池
CN115692677A (zh) 一种高功率低膨胀硅氧金属氧化物复合材料及其制备方法
WO2023050044A1 (zh) 一种电化学装置和电子装置
CN115528296A (zh) 一种二次电池
CN115000511A (zh) 一种电化学装置和电子装置
CN101359748B (zh) 一种锂离子二次电池及其制备方法
CN110980672A (zh) 一种锂离子电池负极活性材料、其制备方法和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011852829

Country of ref document: EP