WO2012089081A1 - 一种纳米粒子/聚酰胺复合材料、制备方法及其应用 - Google Patents

一种纳米粒子/聚酰胺复合材料、制备方法及其应用 Download PDF

Info

Publication number
WO2012089081A1
WO2012089081A1 PCT/CN2011/084661 CN2011084661W WO2012089081A1 WO 2012089081 A1 WO2012089081 A1 WO 2012089081A1 CN 2011084661 W CN2011084661 W CN 2011084661W WO 2012089081 A1 WO2012089081 A1 WO 2012089081A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticle
magnetic
nylon
weight
group
Prior art date
Application number
PCT/CN2011/084661
Other languages
English (en)
French (fr)
Inventor
夏厚胜
杨桂生
Original Assignee
上海杰事杰新材料(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海杰事杰新材料(集团)股份有限公司 filed Critical 上海杰事杰新材料(集团)股份有限公司
Priority to US13/977,409 priority Critical patent/US9355765B2/en
Priority to KR1020137020122A priority patent/KR101582132B1/ko
Priority to JP2013546577A priority patent/JP2014501309A/ja
Priority to EP11852381.0A priority patent/EP2660268B1/en
Publication of WO2012089081A1 publication Critical patent/WO2012089081A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/20Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by expressing the material, e.g. through sieves and fragmenting the extruded length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • C08G69/18Anionic polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/783Organic host/matrix, e.g. lipid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • Y10S977/897Polymerization

Definitions

  • Nanoparticle/polyamide composite material preparation method and application thereof
  • the invention belongs to the technical field of polymer composite materials, and relates to a nano particle/polyamide composite material, a preparation method thereof and application thereof. Background technique
  • Nanomaterials refer to materials with at least one dimension in the three-dimensional range (1-100 nm) in three-dimensional space. Nano-size effects often make such materials exhibit different melting, magnetic, optical, thermal, and conductive properties than bulk materials. Therefore, it can have broad application prospects in the fields of optoelectronic materials, ceramic materials, sensors, semiconductor materials, catalytic materials, medical treatment and the like. However, nanomaterials are often prepared in harsh conditions and costly. Therefore, the preparation of nanocomposites using nanomaterials as additives is an effective means to reduce costs and promote the application of nanomaterials.
  • Polyamide is an important class of engineering plastics with good overall properties including mechanical properties, heat resistance, abrasion resistance, chemical resistance and self-lubricating properties, low friction coefficient and easy processing.
  • polyamides such as nylon 6, nylon 4, nylon 12, nylon 6/12; such materials have a large number of polar amide bonds, which are very suitable as a matrix material and other inorganic materials to prepare composite materials, especially suitable as nano The matrix of the composite.
  • nanoparticles to polyamides often imparts properties that the polyamide does not otherwise possess, such as reinforcement, toughening, abrasion resistance, high temperature resistance, improved processability, functionalization, and the like.
  • the obtained magnetic nanoparticle/polyamide composite has a relatively low density and is easily processed into a product having high dimensional accuracy and complex shape, overcoming the original ferrite magnet and rare earth magnet.
  • Alnico magnets are hard and brittle, and have poor workability, and cannot be made into defects of complicated and fine-shaped products.
  • the blending method refers to mixing nanometer particles and polyamide polymer by solution blending, emulsion blending, melt blending, and mechanical blending.
  • the advantage of the blending method is that it is simple and economical.
  • the synthesis of nanoparticles and materials is carried out step by step, and the morphology and size of the nanoparticles can be controlled.
  • the size of the nanoparticles is small, and the viscosity of the polyamide is high, which is not easily mixed and dispersed, which generally reduces the mechanical properties of the nanoparticle/polyamide composite.
  • the sol-gel method is a common method for synthesizing nanomaterials.
  • the precursor of the synthesized nanomaterial is dissolved in a solvent, the precursor is hydrolyzed or alcoholyzed to form a sol, and then gelled by solvent evaporation or heating to form a gel.
  • Nanoparticles When the nanoparticle/polyamide composite is prepared by the sol-gel method, the precursor of the synthesized nanoparticle is first introduced into the polyamide matrix material, and then directly hydrolyzed and gelled by the precursor in the polyamide matrix. Hook-dispersed nanoparticle/polyamide composites.
  • the method is characterized in that it can be carried out under mild reaction conditions, and the two-phase dispersion is more hooked than the blending method.
  • the disadvantage is that during the gel drying process, the volatilization of solvent, small molecules and water may cause the material to shrink and brittle.
  • the nanoparticle precursor is difficult to introduce into the polymer matrix in a large amount, so the performance improvement of the material is limited. .
  • the in-situ polymerization method directly disperses the nanoparticles in the monomer of the synthetic polyamide, and then initiates polymerization of the monomer under certain conditions to form a nanoparticle/polyamide composite.
  • the method is an effective method for synthesizing nano-particle/polyamide composite material, and has the advantages that the nano-particle filler is completely independent and controllable, and the polymer matrix has a wide selection range.
  • it is prepared by in-situ polymerization.
  • nanoparticle/polyamide composites For example, Liu Andong et al.
  • the lactam exhibits strong polarity due to the amide bond in the cyclic structure, and can be used as a solvent to disperse inorganic nanomaterials (such as montmorillonite, nano-silica, nano-hydroxyapatite).
  • inorganic nanomaterials such as montmorillonite, nano-silica, nano-hydroxyapatite.
  • a variety of water-soluble inorganic salts such as AgN0 3 , ZnCl 2 , FeCl 3 , NaOH
  • oil-soluble metals or semi-metallic organic compounds such as carbonyl iron, tetraethyl orthosilicate
  • a water-soluble inorganic salt or an oil-soluble metal or a semi-metal organic compound is dissolved in a lactam solvent, and then the nano material can be synthesized by an appropriate method.
  • a lactam solvent for example, Gao et al. synthesized superparamagnetic ferroferric oxide with a particle size of less than 20 nm by using carbonyl iron and ferric chloride respectively in the solvent of butylactam
  • nanoparticle/lactam mixture obtained by using the lactam as a solvent to synthesize the nanomaterial is directly separated into a polyamide polymer without separation, it will be an effective method for preparing the nanoparticle/polyamide composite. means. Summary of the invention
  • nanoparticle/polyamide composite material in which the nanoparticle is difficult to be dispersed in the polyamide matrix so that the nanoparticle efficiency cannot be fully exerted and the mechanical properties of the composite material are insufficient.
  • the nanoparticles have good dispersibility in the polyamide matrix, stable physical properties, strong interaction between the nanoparticles and the polyamide matrix, and high mechanical properties of the composite.
  • the sol-gel method and the in-situ synthesis method have the defects that the nanoparticles are difficult to be uniformly dispersed, and the production cost is high, which is not suitable for large-scale production;
  • Another disadvantage of the present invention is to provide a method for preparing a nanoparticle/polyamide composite material, which is a cumbersome process for synthesizing a nanomaterial as a solvent and has a large energy consumption.
  • a third object of the present invention is to provide a nanoparticle/polyamide composite material for use as a structural material, a functional polymer material, and a polymer masterbatch.
  • the present invention provides a nanoparticle/polyamide composite comprising 0.01 to 99 parts by weight of inorganic nanoparticles and 1 to 99.99 parts by weight of a polyamide matrix.
  • the inorganic nanoparticles are preferably from 0.5 to 60 parts by weight.
  • the polyamide matrix is preferably 40 to 99.5 parts by weight.
  • the polyamide is a polymer or homopolymer formed by polymerizing a lactam as a monomer; further selected from the group consisting of nylon 4, nylon 6, nylon 7, nylon 8, nylon 9, nylon 10, nylon 11, nylon 12, nylon 4 /6, nylon 4/12, nylon 6/10, nylon 6/12 or nylon 4/6/12, preferably nylon 6/12, nylon 6 or nylon 12.
  • the lactam structure is:
  • caprolactam Selected from butyrolactam, valerolactam, caprolactam, enantholactam, capryllactam, caprolactam, caprolactam, undecanolactam or laurolactam, preferably butyrolactam, caprolactam or laurolactam, More preferred is caprolactam.
  • the inorganic nanoparticles are one or more selected from the group consisting of hydroxides, oxides, sulfides, metals or inorganic salts.
  • the hydroxide refers to an inorganic compound which is insoluble or slightly soluble in water formed by one or more metal elements and hydroxide, and is further selected from the group consisting of Ni(OH) 2 , Mg(OH) 2 , Al(OH). And one or more substances of 3 Nd(OH) 3 Y(OH) 3 magnesium aluminum hydrotalcite or zinc aluminum hydrotalcite, preferably Mg(OH) 2 or Nd(OH) 3 .
  • the oxide refers to an insoluble or slightly water-soluble inorganic compound formed by one or more metal elements or metalloid elements and oxygen, and is further selected from the group consisting of Ag 2 0, ZnO, Cu 2 0, Fe 3 0 4 .
  • One or more substances of Si0 2 , MgAl 2 0 4 or CaTi0 3 are preferably Ag 2 0, ZnO, Cu 2 0 or Fe 3 0 4 .
  • the sulfide is selected from the group consisting of a metal or metalloid element combined with sulfur, selenium, tellurium, arsenic or antimony to form an insoluble or sparingly soluble inorganic compound, further selected from the group consisting of CuS, ZnS, CdS, CdSe, CdTe, WSe. 2 , one or more substances of CuTe, CoAs 2 or GaAs, preferably ZnS, CdS, CdSe or CdTe.
  • the metal is selected from the group consisting of one or more metal elements of the periodic table IIIA, IVA, hydrazine, hydrazine or a ring group, and is insoluble or slightly soluble in water, further selected from the group consisting of Fe, Ni, An alloy or mixture of one or more of Cu, Ag, Pd, Pt, Au or Ru is preferably a Cu, Ag, Au, Pd or Cu-Ag alloy.
  • the inorganic salt refers to an inorganic compound which is insoluble or slightly soluble in water formed by a metal element cation and a carbonate, a sulfate, a silicate or a halogen anion, and is further selected from the group consisting of CaCO 3 , MgCO 3 , BaS 0 4 , CaSi 0 3 , One or more substances of AgCl, AgBr or CaF 2 are preferably MgCO 3 , BaSO 4 or AgCl.
  • the inorganic nanoparticles are magnetic particles.
  • the chemical composition of the magnetic particles is selected from one of Fe 3 0 4 , Ni 3 0 4 , Co 3 0 4 or Mn 3 0 4 .
  • the present invention also provides a process for the preparation of the above nanoparticle/polyamide composite, which comprises a hydrolysis polymerization method or an anionic polymerization method.
  • the preparation of the nanoparticle/polyamide composite by the hydrolysis polymerization method comprises the following steps: adding a mixture of nanoparticles/lactam to the reactor, the lactam is 100 parts by weight, the nanoparticles are 0.01 to 99 parts by weight, and then added 0.1-20 parts by weight of deionized water, 0.01-5 parts by weight of catalyst and 0.001-1 part by weight of molecular weight regulator, stirred and mixed at 80-100 ° C; the reactor is heated to 120-300 ° C, pressure Constantly in the range of 0.1-3.0 MPa, hydrolysis reaction 0.5-48h; open the reactor to pressure to standard atmospheric pressure; vacuum at 180-300 ° C, stirring for 0.1-10h ; unloading, stripping, cooling, pelletizing, Nanoparticle/polyamide composite.
  • the catalyst is a substance capable of ionizing H+, and is further selected from the group consisting of hydrochloric acid, sulfuric acid, formic acid, acetic acid, aminovaleric acid or aminocaproic acid, preferably aminocaproic acid.
  • the molecular weight modifier refers to a monofunctional blocking agent capable of adjusting the molecular weight of the polyamide, and is further selected from an organic monobasic acid or an organic monoamine, preferably acetic acid, caproic acid or hexylamine, more preferably hexanoic acid.
  • the anionic polymerization method for preparing a nanoparticle/polyamide composite comprises the following steps:
  • the lactam is 100 parts by weight, the nanoparticles are 0.01-99 parts by weight, and the vacuum is taken at 80-200 ° C for 0.1-20 h ; 0.01-10 parts by weight of the catalyst is added, 100-180 ° C vacuum removal of water for 0.1-10 h, according to one of the following three methods to obtain a nanoparticle / polyamide composite:
  • the reaction extrusion operation is: a twin-screw inlet is added to the mixture containing the nanoparticles, the lactam, the catalyst and the activator at a rate of 0.1-100 g/min; and the screw speed of the twin-screw extruder is controlled to be 50-500 rpm.
  • the temperature is 80-150 °C in Zone I, 120-200 °C in Zone II, 200-240 °C in Zone III, 200-280 °C in Zone IV, 220-280 °C in Zone V, 220-280 °C in Zone VI. , Zone VII 220-250 ° C; extruded material from the outlet after cooling and pelletizing.
  • the catalyst is a substance capable of causing a lactam to form an anion active center, and is selected from the group consisting of an alkali metal, an alkali metal hydroxide or an alkali metal organic salt, and further selected from the group consisting of Na, K, NaOH, KOH, NaOCH 3 , NaOC 2 H 5 . , KOC 2 H 5 , sodium butyrolactam, sodium caprolactam, potassium caprolactam or sodium phenoxide, preferably NaOH, NaOC 2 3 ⁇ 4 or sodium caprolactam.
  • the activator is a substance capable of lowering the polymerization temperature of the lactam anion, and is further selected from the group consisting of acid chloride, maleic anhydride, isocyanate, N-acyl caprolactam, carbonate or carboxylate, preferably toluene-2,4-diisocyanate (TDI). Or N-acetyl caprolactam.
  • the preparation method of the nanoparticle/lactam mixture includes a precipitation method, a sol-gel method or a high temperature pyrolysis method.
  • the precipitating method for synthesizing the nanoparticle/lactam mixture comprises the steps of: adding 0.01-100 parts by weight of the precursor and 100 parts by weight of the lactam to the reactor, and stirring at 80-150 ° C for 0.1-2 h to prepare the precursor.
  • the solution is fully dissolved or dispersed in a molten lactam solvent, and 0.05-50 parts by weight of a precipitating agent is added under stirring to sufficiently carry out a precipitation reaction at a reaction temperature of 80-250 ° C and a reaction time of 0.1 to 200 h to obtain a nanoparticle/lactam. mixture.
  • the lactam solvent has a purity of ⁇ 60% and a moisture content of ⁇ 20%.
  • the precursor is selected from the group consisting of a metal cation and a soluble inorganic salt formed by halogen, nitrate, nitrite, sulfate, sulfite or carbonate anion, and further selected from MgCl 2 -6H 2 0, Nd(N0 3 ) 3 -6H 2 0 ⁇ ( ⁇ 0 3 ) 3 ⁇ 6 ⁇ 2 0, A1C1 3 '9H 2 0, Al 2 (S0 4 ) 3 ' 18H 2 0, ZnCl 2 , AgN0 3 , CuS0 4 '5H 2 0, FeCl 2 43 ⁇ 40, FeCl 3 '6H 2 0, Cd(N0 3 ) 2 -2H 2 0 BaCl 2 or PdCl 2 ; or an organic compound selected from a metal or a metalloid, further selected from the group consisting of zinc acetate, iron carbonyl, iron acetylacetonate, Iron oleate, butyl titanate or eth
  • the precipitating agent is selected from the group consisting of an alkali metal, an alkali metal hydroxide, an alkali metal organic salt, ammonia, a compound capable of thermally interpreting ammonia release, a soluble inorganic salt formed by a metal element and a halogen element, a metal element and a chalcogen element.
  • the alkali metal is further selected from the group consisting of Li, Na or K
  • the alkali metal hydroxide is further selected from the group consisting of NaOH or KOH
  • the alkali metal organic salt is further selected from the group consisting of sodium methoxide, sodium ethoxide, sodium phenolate, potassium oleate, sodium lactam or potassium caprolactam
  • ammonia and a compound capable of thermally interpreting ammonia are further selected from the group consisting of ammonia, ammonia, urea, Ammonium carbonate or ammonium hydrogencarbonate, preferably ammonia water
  • the soluble inorganic salt formed by the metal element and the halogen element is further selected from the group consisting of NaCl, KC1, MgCl 2 , CaCl 2 , A1
  • the sol-gel method for synthesizing a nanoparticle/lactam mixture comprises the steps of: adding 0.01-100 parts by weight of a hydrolyzable precursor and 100 parts by weight of a lactam to a reactor, and stirring at 80-150 ° C. -2h, the precursor is fully dissolved or dispersed in the molten lactam solvent, and 0.01-50 parts by weight of water is added to carry out hydrolysis reaction to obtain a sol, the hydrolysis reaction temperature is 80-250 ° C, and the hydrolysis reaction time is 0.01-48 h ; The gelation reaction obtains a mixture of nanoparticles/lactam, the gelation reaction temperature is 80-270 ° C, and the gelation reaction time is 0.01-96 h.
  • the hydrolyzable precursor is selected from the group consisting of a metal cation and a hydrolyzable inorganic salt or metal organic compound composed of a halogen, a nitrate, a sulfate or an acetate anion, wherein: a metal cation and a halogen, a nitrate, a sulfate or an acetate anion
  • the hydrolyzable inorganic salt of the composition is further selected from the group consisting of FeCl 2 '4H 2 0, FeCl 3 , FeCl 3 '6H 2 0, Fe(N0 3 ) 3 '6H 2 0, Fe 2 (S0 4 ) 3 , A1C1 3 , A1C1 3 '6H 2 0, CuS0 4 '5H 2 0, CuCl 2 , CuCl 2 '2H 2 0, TiCl 3 , TiCl 4 or Zn(OAc) 2 '2H 2 0, preferably FeCl 3 _6H
  • the lactam solvent has a purity of ⁇ 60% and a water content of ⁇ 30%.
  • 0.05-50 parts by weight of a reducing agent is further added after the hydrolysis reaction.
  • the high temperature pyrolysis synthesis of the nanoparticle/lactam mixture comprises the following steps: 0.01-100 parts by weight of the pyrolyzable precursor and 100 parts by weight of the lactam are added to the reactor, and stirred at 80-150 ° C. -2h, the precursor is sufficiently dissolved or dispersed in the molten lactam solvent, and the reaction is pyrolyzed at 100 to 270 ° C for 0.1 to 20 hours to obtain a mixture of nanoparticles/lactam.
  • the lactam solvent has a purity of ⁇ 90% and a water content of ⁇ 1%, preferably a chemically pure grade or higher.
  • the pyrolyzable precursor has a water content of ⁇ 10%, preferably water ⁇ 0.1%; and is selected from a soluble inorganic salt capable of thermal decomposition at not higher than 280 ° C or a metal organic substance capable of thermal decomposition at not higher than 280 ° C.
  • the soluble inorganic salt which is thermally decomposable at not higher than 280 ° C is further selected from AgN0 3 , FeCl 3 , Zn(OAc) 2 or TiCl 4 ; and the metal organic substance capable of thermal decomposition at not higher than 280 ° C further It is selected from the group consisting of oleate, levulinate or carbonyl salt, preferably iron oleate, zinc acetylacetonate or iron carbonyl (Fe(CO) 5 ).
  • the anion donor is selected from the group consisting of a thermal decomposition at a temperature of ⁇ 280 ° C and a compound capable of producing an anion required for synthesizing a nanomaterial, further selected from the group consisting of trioctylphosphine oxide (0 2 - required to provide a synthetic oxide) or two Tetramethylthiuram sulfide (providing the S 2 - required to synthesize sulfide).
  • 0.05-50 parts by weight of a reducing agent is further added in a pyrolysis reaction at 100 to 270 °C.
  • the reducing agent is selected from the group consisting of ascorbic acid, potassium borohydride, sodium borohydride, hydrazine, hydrazine hydrate, hydroxylamine or aldehyde-containing organic matter; wherein: the aldehyde-containing organic substance is further selected from the group consisting of formaldehyde, acetaldehyde, glyoxal, benzaldehyde or glucose.
  • the sol-gel method or the high temperature pyrolysis method 0.01 to 20 parts by weight of the stabilizer or 0.1 to 80 parts by weight of the insoluble inorganic substance is further added after the lactam is added.
  • the stabilizer is selected from the group consisting of an anionic surfactant, a cationic surfactant, an amphoteric surfactant or a nonionic surfactant which modulates the morphology of the synthesized nanomaterial; wherein: the anionic surfactant is further selected from the group consisting of dodecylsulfonic acid Sodium, sodium alkylbenzene sulfonate or sodium oleate; cationic surfactant further selected from tetrapropylammonium hydroxide, tetrapropylammonium bromide, tetra Propyl ammonium chloride, cetyltrimethylammonium bromide, cetyltrimethylammonium chloride or dodecyltrimethylammonium bromide; the amphoteric surfactant is further selected from dodecyl Ethoxysulfobetaine, octadecyldihydroxyethylamine oxide or octadecylamide prop
  • the insoluble inorganic substance refers to a substance as a carrier or attachment point of a synthetic nano material, and is further selected from activated carbon, graphene, carbon fiber, carbon nanotube, molecular sieve, smectite clay, diatomaceous earth, glass fiber or glass micro. ball.
  • the method of synthesizing a nanoparticle/lactam mixture suitable for use as a solvent also includes a combination of a precipitation method, a sol-gel method, or a high temperature pyrolysis method.
  • a method for preparing a nanoparticle/polyamide composite comprising the steps of:
  • Magnetic precursor/polymer monomer solution to remove water and impurities The solution prepared in the step (1) is subjected to a vacuum treatment at 100 to 200 ° C under vacuum for 10 to 30 minutes to remove a small amount of water contained in the raw material. Low boiling point impurities;
  • the magnetic precursor/polymer monomer solution reaction system obtained in the step (2) is passed through a nitrogen gas to a standard atmospheric pressure, and 0.5 to 10 parts by weight of the alkali is rapidly added. The temperature is raised to 100 ⁇ 200 ° C, and the vacuum treatment is carried out under vacuum for 0.5 ⁇ 3 h to obtain a magnetic particle/polymer monomer magnetic fluid;
  • Magnetic particle/polymer monomer magnetic fluid in-situ polymerization The magnetic particle/polymer monomer magnetic fluid is cooled to 100-180 ° C, 0.2 ⁇ 1.0 parts by weight of polymerization activator is added, and the mixture is quickly stirred and mixed. Polymerization reaction at 120 ⁇ 200 °C for 0.2-2h;
  • the material prepared in the step (4) is pulverized and extracted with water for 4 to 16 hours to remove unpolymerized polymer monomers, oligomers, and soluble inorganic salts, and sufficiently dried at 60 to 80 ° C to obtain Magnetic composite polymer material.
  • the magnetic precursor is selected from one or more of a divalent soluble salt or a trivalent soluble salt of a magnetic metal Fe, Co, Ni or Mn, further selected from FeCl 2 /Fe 2 (S0 4 ) 3 , FeCl 2 4H 2 0 /FeCl 3 '6H 2 0 or MnCl 2 /MnCl 3 ; preferably FeCl 2 4H 2 0/FeCl 3 .6H 2 0 ; divalent metal ion and trivalent metal in magnetic precursor
  • the molar ratio of ions is from 0.3 to 1.0, preferably 0.67.
  • the amount of the magnetic precursor added determines the particle size, the mass percentage and the saturation magnetization of the magnetic particles in the magnetic composite polymer material; the more the amount of the magnetic precursor, the larger the particle diameter of the magnetic particles Large, the higher the mass fraction, the greater the saturation magnetization of the composite.
  • the polymer monomer refers to a raw material corresponding to a synthetic polymer, and the polymer monomer corresponding to nylon 6 is caprolactam, and the polymer monomer corresponding to nylon 4 is ⁇ -pyrrolidone or nylon 4/6. A mixture of alpha-pyrrolidone and caprolactam.
  • the base is selected from one of an alkali metal, an alkali metal hydroxide or an alkali metal alkoxide, and is further selected from one of Na, K, NaOH, KOH, NaOC 2 H 5 or KOC 2 H 5 .
  • the polymerization activator is selected from the group consisting of one or more of an acid chloride, an acid anhydride, an isocyanate or an acyl caprolactam, and is further selected from the group consisting of benzoyl chloride, maleic anhydride, toluene-2,4-diisocyanate or acetylcaprolactam. .
  • the present invention also provides an application of the above nanoparticle/polyamide composite as a structural material, a functional polymer material or a high molecular weight masterbatch.
  • the method of using the nanoparticle/polyamide composite as a structural material is as follows:
  • Breaking nanoparticle/polyamide composites (mainly for bulk materials such as cast composites), 0-100 ° C water Boiled from 0 to 100 h, filtered and dried at 50-200 ° C for 0-48 h to obtain a purified nanoparticle/polyamide composite, which was injection molded or spun into a product.
  • the injection molding conditions are as follows: melting temperature 220-300 ° C, injection pressure 750-1250 bar, holding time l-120 s, mold temperature 20-100 ° C.
  • the spinning conditions are: a melting temperature of 180-250 ° C, a spinning head temperature of 240-280 ° C, a pressure of 3.0-3.5 MPa, and an outlet air-cooling temperature of 5-100 ° C.
  • the method for using the nanoparticle/polyamide composite as a functional polymer material is as follows:
  • Nanoparticle/polyamide composite material is crushed (mainly for bulk materials, such as cast composite materials), boiled at 0-100 ° C for 0-100 h, filtered and dried at 50-200 ° C for 0-48 h to obtain purified.
  • Nanoparticle/polyamide composite material which is made into functional polymer material by injection molding or spinning.
  • the injection molding conditions are as follows: melting temperature 220-300 ° C, injection pressure 750-1250 bar, holding time l-120 s, mold temperature 20-100 ° C.
  • the spinning conditions are: a melting temperature of 180-250 ° C, a spinning head temperature of 240-280 ° C, a pressure of 3.0-3.5 MPa, and an outlet air-cooling temperature of 5-100 ° C.
  • Functional polymers refer to a class of materials with special functions (such as light, electricity, magnetism) and polyamide composites.
  • the processing method is consistent with the structural materials; but it can be applied to special fields.
  • nano-Fe 3 0 4 /polyamide composites can be applied to magnetic separation and electromagnetic shielding; nano-silver/polyamide composites can be applied to conductive and antibacterial materials.
  • the method for using the nanoparticle/polyamide composite as a polymer masterbatch is as follows:
  • the nanoparticle/polyamide composite material is crushed (mainly for bulk materials, such as cast composite materials), boiled at 0-100 ° C for 0-100 h, filtered and dried at 50-200 ° C for 0-48 h to obtain a polymer. Masterbatch.
  • a novel method for preparing a nanocomposite comprising the steps of:
  • 1-100 parts by weight of the polymer masterbatch prepared above is melt-blended with 100 parts by weight of a thermoplastic or elastomer at 150-280 ° C to prepare a new nanocomposite to improve mechanical properties, color or introduce new functions. .
  • the thermoplastic is selected from the group consisting of polyamide, polyester, polyolefin or polycarbonate, wherein: the polyamide is further selected from nylon 6 or nylon 66; the polyester is further selected from PET, PPT or PBT; the polyolefin is further selected from PE , PP or ethylene-propylene copolymer.
  • the elastomer is selected from the group consisting of ethylene propylene rubber or butadiene-styrene-butadiene copolymer.
  • the present invention provides a magnetic composite polymer material comprising magnetic particles and a high molecular polymer having a saturation magnetization of 0.5 to 10 emu/g, a magnetic particle content of 0.5 to 15% by weight, and a particle diameter of 20 to 200 nm.
  • the chemical composition of the magnetic particles is selected from one of Fe 3 0 4 , Ni 3 0 4 , Co 3 0 4 or Mn 3 0 4 .
  • the high molecular polymer is selected from a mixture of one or more of a homopolymer or a copolymer formed by a ring opening polymerization of a lactam or an ⁇ -pyrrolidone monomer, and is further selected from nylon 6, nylon 4 or nylon 4/. One or more mixtures of 6.
  • the invention also provides a preparation method of the above magnetic composite polymer material, the method comprising the following steps:
  • Magnetic precursor/polymer monomer solution to remove water and impurities The solution prepared in the step (1) is subjected to a vacuum treatment at 100 to 200 ° C under vacuum for 10 to 30 minutes to remove a small amount of water contained in the raw material. Low boiling point impurities;
  • Step (3) Preparation of Magnetic Particle/Polymer Monomer Magnetic Fluid: Reverse the Magnetic Precursor/Polymer Monomer Solution Obtained in Step (2) According to the system, nitrogen gas is introduced to the standard atmospheric pressure, 0.5 ⁇ 10 parts by weight of alkali is rapidly added, the temperature is raised to 100 ⁇ 200 °C, and the vacuum condition is refluxed for 0.5 ⁇ 3 hours to obtain magnetic particles/polymer monomer magnetic fluid;
  • Magnetic particle/polymer monomer magnetic fluid in-situ polymerization The magnetic particle/polymer monomer magnetic fluid is cooled to 100-180 ° C, 0.2 ⁇ 1.0 parts by weight of polymerization activator is added, and the mixture is quickly stirred and mixed. Polymerization reaction at 120 ⁇ 200 °C for 0.2-2h;
  • the material prepared in the step (4) is pulverized and extracted with water for 4 to 16 hours to remove unpolymerized polymer monomers, oligomers, and soluble inorganic salts, and sufficiently dried at 60 to 80 ° C to obtain Magnetic composite polymer material.
  • the magnetic precursor is selected from one or more of a divalent soluble salt or a trivalent soluble salt of a magnetic metal Fe, Co, Ni or Mn, and is further selected from the group consisting of FeCl 2 /Fe 2 ( S0 4 ) 3 , FeCl 2 4H 2 0 /FeCl 3 '6H 2 0 or MnCl 2 /MnCl 3 ; considering the cost, the solubility of the metal salt and the saturation magnetization of the composite, the best precursor for the experimental screening It is FeCl 2 4H 2 0/FeCl 3 .6H 2 0; the molar ratio of the divalent metal ion to the trivalent metal ion in the magnetic precursor is 0.3 to 1.0, preferably 0.67.
  • the amount of the magnetic precursor added determines the particle size, the mass percentage and the saturation magnetization of the magnetic particles in the magnetic composite polymer material; the more the amount of the magnetic precursor, the larger the particle diameter of the magnetic particles Large, the higher the mass fraction, the greater the saturation magnetization of the composite.
  • the polymer monomer refers to a raw material corresponding to a synthetic polymer, and the polymer monomer corresponding to nylon 6 is caprolactam, and the polymer monomer corresponding to nylon 4 is ⁇ -pyrrolidone or nylon 4/6. A mixture of alpha-pyrrolidone and caprolactam.
  • the base is selected from one of an alkali metal, an alkali metal hydroxide or an alkali metal alkoxide, and is further selected from one of Na, K, NaOH, KOH, NaOC 2 H 5 or KOC 2 3 ⁇ 4.
  • the polymerization activator is selected from the group consisting of one or more of an acid chloride, an acid anhydride, an isocyanate or an acyl caprolactam, and is further selected from the group consisting of benzoyl chloride, maleic anhydride, toluene-2,4-diisocyanate (TDI) or Acetyl caprolactam.
  • the present invention has the following advantages and beneficial effects:
  • the nanoparticle/polyamide composite material of the invention not only has the unique function of the nano material, but also maintains the advantages of good mechanical properties of the polymer matrix and easy processing and molding.
  • the nanoparticles have good dispersibility in the polyamide matrix and stable physical properties, and the interaction between the nanoparticles and the polymer matrix is strong.
  • the raw material used in the synthesis method of the invention has low cost, simple production equipment and green environmental protection, and is suitable for large-scale industrial production.
  • the preparation method of the nanoparticle/polyamide composite material of the invention has wide application range, and the type and performance of the composite material can be modulated by controlling the type of the nanoparticle material, the lactam component and the reaction conditions.
  • the nanoparticle/polyamide composite prepared by the invention can be used as a structural material, a functional material and a polymer masterbatch, and can be directly applied or added to other polymer materials to be made into various products, and is widely used in electronics and electrical. , instrumentation, communication, culture, education, health care and daily life. DRAWINGS
  • Fig. 1 is a view showing the X-ray diffraction pattern of the nano-Ag/nylon 6 composite synthesized by the method of Example 14.
  • Figure 2 is a schematic diagram showing the transmission electron microscopy (TEM) of the synthesized nano-Ag/nylon 6 composite after cryo-sectioning by the method of Example 14.
  • TEM transmission electron microscopy
  • Figure 3 is a schematic view showing the transmission electron microscope (TEM) of the synthesized Fe 3 0 4 /nylon 6 composite material after frozen ultrathin sectioning by the method of Example 17.
  • Figure 4 is a graph showing the magnetization curve measured by the vibrating sample magnetometer (VSM) of the composite Fe 3 0 4 /nylon 6 composite material by the method of Example 17. detailed description
  • the nano Mg(OH) 2 /caprolactam mixture obtained in the previous step was added to 50 g of deionized water and lg aminocaproic acid, 0.08 g of a molecular weight regulator, caproic acid, and mechanically stirred and mixed at 80 ° C.
  • Nano-Mg(OH) 2 /nylon 6 composite material was obtained after unloading, pulling, cooling and pelletizing.
  • Nano-Mg (OH) 2 / PA6 hook composite material are dispersed Mg (OH) 2 with a thickness of about 10nm, 80nm rules about the major axis of hexagonal tabular nanoparticles, flame retardant composites results For the V-0 level.
  • the nano Mg(OH) 2 /caprolactam mixture obtained in the previous step was added with 5 g of deionized water and 10 g of aminocaproic acid, and 0.08 g of a molecular weight regulator, caproic acid, and mechanically stirred and mixed at 80 ° C.
  • Nano-Mg(OH) 2 /nylon 6 composite material was obtained after unloading, pulling, cooling and pelletizing.
  • Nd(NO 3 ) 3 , 6H 2 O and 100g of caprolactam were added to the reactor, the purity of caprolactam was ⁇ 60%, and the water content was ⁇ 20%.
  • Nd(N0 3 ) 3 63 ⁇ 40 was sufficiently dissolved in the molten caprolactam solvent.
  • 3 g of NaOH was quickly added under stirring, and reacted at 200 ° C for 24 hours to obtain a nano Nd(H) 3 /caprolactam mixture.
  • the nano Nd(OH) 3 /caprolactam mixture prepared in the previous step was dehydrated in water at 150 ° C for 30 min, and Ig NaOH was added at 150 ° C for 30 min. After cooling to 120 ° C, 0.5 g of toluene-2,4-di was added.
  • the isocyanate (TDI) was quickly mixed in 30 s and then transferred into a nitrogen-protected mold and polymerized at 170 ° C for 0.5 h. After the completion of the polymerization reaction, the mold is released to room temperature, and the cast nano-Nd(OH) 3 /nylon 6 composite material can be directly obtained.
  • the yield of the nylon 6 is 90%, and the average length of the rod-shaped Nd(OH) 3 nanoparticles is uniformly dispersed. It is about 50 nm and has a diameter of about 9 nm.
  • the nano-Nd(OH) 3 /nylon 6 composite was crushed, boiled at 100 ° C for 48 h, filtered and dried at 120 ° C for 24 h to obtain a purified nanoparticle/polyamide composite, which was injection molded into structural parts.
  • the injection molding conditions are: melting temperature 235 ° C, injection pressure 1000 bar, holding time 10 s, mold temperature 50 ° C.
  • the tensile strength and notched impact strength of the injection molded spline test according to the American ASTM standard were 80.2 and 9.5 kJ/m 2 , respectively (tensile and impact properties were tested according to ASTM-D638 and D6110 standards, respectively).
  • the nano ZnO/caprolactam mixture obtained in the previous step was evacuated at 150 ° C for 1 h to sufficiently remove water and remove low-boiling impurities.
  • the nano-ZnO/(caprolactam + laurolactam) prepared in the previous step was dehydrated in water at 150 ° C for 30 min, and lg NaOH 15 was added (TC was continuously vacuumed for 30 min, cooled to 120 ° C and then added with lg toluene-2,4-di Isocyanate (TDI), quickly mixed in 30s, transferred to a nitrogen-protected mold, and polymerized at 170 ° C for 0.5 h. After the polymerization was completed, the mold was released to room temperature to obtain a nano-ZnO/nylon 6/12 composite.
  • the polyamide matrix in the nanocomposite is a copolymer of caprolactam and laurolactam, and the ZnO nanoparticles are about 15 nm in diameter and are dispersed in a nylon 6/12 polymer matrix.
  • the granular nano-Fe 2 O 3 /nylon 6 composite obtained by reactive extrusion was boiled at 80 ° C for 12 h to remove monomers and by-products, and dried at 100 ° C for 24 h to obtain nano Fe 2 O 3 /nylon 6 composite.
  • the color of the nano-Fe 2 0 3 /nylon 6 composite material as a color masterbatch color is full, the color is full, the color is stable, and the color masterbatch does not affect the mechanical properties of the material, the tensile strength and the notched impact strength are still It can be maintained at 69.5 and 11.2 kJ/m 2 (test results according to ASTM-D638 and D6110, respectively).
  • the nano-SiO 2 /caprolactam mixture obtained in the previous step was evacuated at 150 ° C for 1 h to sufficiently remove water and remove low-boiling impurities.
  • the cast-type nano-SiO 2 /nylon 6 composite material can be directly applied to structural parts, and is suitable for use in stressed and wear-resistant parts. It is especially suitable for industrial trolley rollers and luggage rolls, and the wear resistance of the products is better than that of ordinary casting. Type nylon 6 is increased by 30%.
  • nano Ti0 2 /caprolactam mixture prepared in the previous step was added with 50 g of deionized water and 10 g of aminocaproic acid and O. lg hexanoic acid, and mechanically stirred and mixed at 80 ° C.
  • Nano-Ti0 2 /nylon 6 composite material was obtained after unloading, pulling, cooling and dicing.
  • the yield of nylon 6 was 70%
  • the Ti0 2 was anatase.
  • the ore crystal form has a crystal grain diameter of about 5 nm.
  • nano-Ti0 2 /nylon 6 composite was boiled at 80 ° C for 24 h to remove the monomers, oligomers and by-products, and dried at 120 ° C for 24 h to obtain a refined nano Ti0 2 /nylon 6 composite.
  • the refined nano Ti0 2 /nylon 6 composite material is injection molded into structural parts.
  • the injection molding conditions are: melting temperature 235 ° C, injection pressure 1000 bar, holding time 10 s, mold temperature 50 ° C.
  • the tensile strength and notched impact strength of the injection molded spline test according to the American ASTM standard were 60.8 and 6.4 kJ/m 2 , respectively (tensile and impact properties were tested according to ASTM-D638 and D6110 standards, respectively).
  • the composite material has strong UV absorption properties, especially for 200-500 nm wavelength light; it exhibits good light aging resistance, 50 ° C, humidity 60, 300 nm wavelength in the UV accelerated aging chamber. Accelerated aging for 30 days, the surface color of the product did not become significantly deeper.
  • the nano ZnS/caprolactam mixture obtained in the previous step was evacuated at 150 ° C for 1 hour to sufficiently remove water and remove low-boiling impurities.
  • the nano CdTe/caprolactam mixture obtained in the previous step was evacuated at 150 ° C for 1 h to sufficiently remove water and remove low boiling impurities.
  • the nano AgCl/caprolactam mixture obtained in the previous step was evacuated at 150 ° C for 1 h to sufficiently remove water and remove low-boiling impurities.
  • the nano Ag/caprolactam mixture prepared in the previous step was evacuated at 150 ° C for 30 min to remove low-boiling by-products. Add Ig NaOH and continue to vacuum at 150 ° C for 30 min, after cooling to 140 ° C, add 0.5 g of toluene-2,4-diisocyanate (TDI), mix quickly in 30s and then transfer to a nitrogen-protected mold at 170 ° C polymerization reaction for 0.5 h. After the completion of the polymerization reaction, the mold was released to room temperature, and the cast nano-Ag/nylon 6 composite material was directly obtained, and the yield of nylon 6 was 95%.
  • TDI toluene-2,4-diisocyanate
  • XRD X-ray diffraction pattern
  • TEM 2 is a photograph taken by a transmission electron microscope (TEM) after the ultra-thin section of the nano-Ag/nylon 6 composite material synthesized by the method of the present embodiment, and the observation results show that the Ag nanoparticles having an average particle diameter of about 6 nm are highly uniformly dispersed. In the nylon 6 matrix.
  • TEM transmission electron microscope
  • the cast-type nano-Ag/nylon 6 composite material was pulverized and extracted with water at 100 ° C for 12 hours to remove unpolymerized polymer monomers, oligomers, and soluble inorganic salts, and then sufficiently dried at 100 ° C. A refined granular nano-Ag/nylon 6 composite material was obtained.
  • the composite material can be melt-spun to form an antibacterial or antistatic fiber.
  • the spinning conditions are: a melting temperature of 240 ° C, a spinning head temperature of 275 ° C, a pressure of 3.0 MPa, and an outlet air-cooling temperature of 20 ° C.
  • the obtained nano-Ag/nylon 6 antibacterial functional fiber has a diameter of 20 ⁇ m, and the antibacterial rate is >99.9% according to the AATCC-100 standard; after boiling at 80 ° C for 8 h, 80 ° C for 16 h, the sample remains antibacterial after 10 cycles of circulation. The rate is >99.0%.
  • the cast-type nano-Ag/nylon 6 composite material was pulverized and extracted at 80 ° C for 12 h, and the unpolymerized polymer monomer, oligomer, and soluble inorganic salt were removed, and then dried at 120 ° C. A high quality granular nano-Ag/nylon 6 composite was obtained.
  • the nano Ag glass microsphere/caprolactam mixture obtained in the previous step was evacuated at 150 ° C for 1 h to sufficiently remove water and remove low boiling point impurities.
  • the cast type nano-Ag glass microspheres/nylon 6 composite material was pulverized and extracted with water for 12 hours to remove unpolymerized polymer monomers, oligomers, soluble inorganic salts, and then dried sufficiently at 120 ° C. , to obtain high quality granular nano-Ag/nylon 6 composite.
  • the nano Pd/caprolactam mixture obtained in the previous step was evacuated at 150 ° C for 1 h to sufficiently remove water and remove low boiling impurities.
  • the Pd/nylon 6 composite material has a yield of 95.5% for nylon 6, and an average particle diameter of 6 nm for nano-Pd, which is uniformly dispersed in the nylon 6 matrix.
  • the cast type nano Pd/nylon 6 composite material was pulverized and extracted with water for 12 hours to remove unpolymerized polymer monomers, oligomers, and soluble inorganic salts, and then sufficiently dried at 120 ° C to obtain high quality.
  • Granular nano Pd/nylon 6 composite was pulverized and extracted with water for 12 hours to remove unpolymerized polymer monomers, oligomers, and soluble inorganic salts.
  • Nano-Pd/nylon 6 composite catalyst was applied to the model reaction of hydrogenation of cinnamaldehyde to phenylpropanal.
  • the reaction temperature was 50 ° C
  • the partial pressure of hydrogen was 0.2 MPa
  • the amount of catalyst added was 2%
  • the conversion was 90%, and the product was selected to be 98% phenylpropanal.
  • the fibrous nano Pd/nylon 6 composite catalyst is easy to separate and can be recycled; after 10 uses, the catalytic conversion rate can be maintained above 80%, and the selectivity is not lower than 90%.
  • 100 g of caprolactam, 3.2 g of FeCl 2 43 ⁇ 40 and 6.5 g of FeCl 6H 2 0 were weighed into the flask, vacuumed, deoxygenated three times with nitrogen, and then warmed to the melting point of caprolactam at 80 ° C for 30 min to make FeCl 2 '4H 2 0 and FeCl 3 '6H 2 0 were sufficiently dissolved in caprolactam to form a dark brown solution.
  • FeCl 2 -4H 2 0 and FeCl 3 _63 ⁇ 40/caprolactam solution remove water and remove impurities.
  • the solution prepared in the step (1) was refluxed at 150 ° C in an evacuated air condenser tube for 20 minutes to remove a small amount of water and low-boiling impurities contained in the raw material.
  • Step (2) Preparation of Fe 3 0 4 magnetic nanoparticles / caprolactam magnetic fluid.
  • Step (2) fully dehydrated FeCl 2 43 ⁇ 40 and FeCl 3 63 ⁇ 40 / caprolactam solution, pass nitrogen to standard atmospheric pressure, cool to 90 ° C, add 5g NaOH powder, quickly seal, vacuum and warm to 150 ° C The air condenser was refluxed for 1.5 h to obtain a nano Fe 3 0 4 /caprolactam mixture.
  • the material prepared in the step (4) is pulverized and extracted with water for 12 hours to remove unpolymerized polymer monomers, oligomers, and soluble inorganic salts, and then sufficiently dried at 120 ° C to obtain high-quality nanometers.
  • Fe 3 0 4 / nylon 6 composite material, the purified composite material can be used in medical and health, food packaging and other fields.
  • nylon 6 Based on the amount of unpolymerized monomers and oligomers extracted, the yield of nylon 6 was calculated to be 98%.
  • 3 is a photograph taken by transmission electron microscopy (TEM) of a composite Fe 3 0 4 /nylon 6 composite material synthesized by the method of the present embodiment, and the observation results show that Fe 3 0 4 particles having an average particle diameter of about lOnm. The hooks are dispersed in the nylon 6 matrix.
  • 4 is a magnetization curve measured by a vibrating sample magnetometer (VSM) of a composite Fe 3 0 4 /nylon 6 composite material according to the method of the present embodiment.
  • VSM vibrating sample magnetometer
  • the magnetization curve coincides with the demagnetization curve to indicate that the composite material has superparamagnetism; the saturation magnetization is 0.8emu/g, in addition, the composite material is magnetically stable for a long time in an air atmosphere lower than 80 ° C; the polymer matrix nylon 6 has a number average molecular weight of about 100,000, and is suitable for applications such as electromagnetic shielding and magnetic separation.
  • the nano Ag/caprolactam mixture obtained in the previous step was evacuated at 150 ° C for 1 h to sufficiently remove water and remove low boiling impurities.
  • the nano Fe 3 0 4 /caprolactam mixture prepared in the previous step was vacuumed at 150 ° C for 1 h to sufficiently remove water and remove low-boiling impurities.
  • the nano-Cu//caprolactam mixture obtained in the previous step was evacuated at 150 ° C for 1 hour to sufficiently remove water and remove low-boiling impurities.
  • MnCl 2 and B MnCl 3 / caprolactam solution remove water and remove impurities.
  • the solution prepared in the step (1) was subjected to vacuum treatment at 160 ° C for 30 minutes to remove a small amount of water and low-boiling impurities contained in the raw material.
  • step (3) Preparation of Mn 3 0 4 magnetic particles / caprolactam magnetic fluid.
  • the MnCl 2 and B MnCl 3 /caprolactam solution is fully dehydrated, nitrogen gas is introduced to the standard atmospheric pressure, 7.5 g of NaOH powder is added, and the mixture is rapidly sealed, and the temperature is raised to 160 ° C. After empty treatment for 2.5 h, a magnetic particle of Mn 3 0 4 / caprolactam magnetic fluid was obtained.
  • the material prepared in the step (4) is pulverized and extracted with water for 14 hours to remove the unpolymerized polymer monomer, the oligomer, and the soluble inorganic salt, and then sufficiently dried at 80 ° C to obtain Mn 3 0. 4 magnetic particle / nylon 6 composite polymer material, polymer matrix nylon 6 yield was 92%.
  • the purified composite material can be applied to fields requiring high purity, such as medical magnetic polymers, and is advantageous for subsequent processing.
  • the magnetic particles in the obtained composite material have a particle diameter of about 60 to 170 nm, a content of 11.2% by weight, a saturation magnetization of the composite material of 1.2 emu/g, and a magnetic stability for a long time in an air atmosphere of less than 80 ° C;
  • the molecular matrix nylon 6 has a number average molecular weight of about 60,000.
  • FeCl 2 -4H 2 0 and FeCl 3 , 6H 2 0/a-pyrrolidone solutions remove water and remove impurities.
  • the solution prepared in the step (1) was subjected to vacuum treatment at 200 ° C for 30 minutes to remove a small amount of water and low-boiling impurities contained in the raw material.
  • Step (2) Preparation of Fe 3 0 4 magnetic particles/a-pyrrolidone magnetic fluid.
  • Step (2) fully dehydrated FeCl 2 4H 2 0 and FeCl 3 , 63 ⁇ 40/a-pyrrolidone solution, pass nitrogen to standard atmospheric pressure, cool down to 80 ° C, add 8g KOH powder, quickly seal, heat up to 200 °C, vacuum treatment for 3h, to obtain Fe 3 0 4 magnetic particles / a-pyrrolidone magnetic fluid.
  • the magnetic particles of the obtained nano Fe 3 0 4 /nylon 4 magnetic composite polymer material have a particle diameter of about 100-160 nm, a content of 8.0 wt%, and a saturation magnetization of the composite material of 6.5 emu/g and less than 80°.
  • the magnetic properties of C are stable for a long time in the air atmosphere; the molecular matrix nylon 4 has a number average molecular weight of about 40,000.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyamides (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

明 书 一种纳米粒子 /聚酰胺复合材料、 制备方法及其应用 技术领域
本发明属于高分子复合材料技术领域, 涉及一种纳米粒子 /聚酰胺复合材料、 制备方法及 其应用。 背景技术
纳米材料是指在三维空间中至少有一维处于纳米尺度范围 (1-lOOnm)的物质, 纳米尺寸效 应常常使这类材料表现出与大块材料不同的熔点、 磁性、 光学、 导热、 导电特性, 因此可 以在光电材料、 陶瓷材料、 传感器、 半导体材料、 催化材料、 医疗等领域上有广阔的应 用前景。 但是, 纳米材料通常制备条件苛刻、 成本高, 因此将纳米材料作为添加物制备纳 米复合材料是降低成本、 推广应用纳米材料的有效手段。 聚酰胺是一类重要的工程塑料, 具有良好的综合性能, 包括力学性能、 耐热性、 耐磨损性、 耐化学药品性和自润滑性, 且摩 擦系数低, 易于加工。 聚酰胺的品种繁多, 有尼龙 6、 尼龙 4、 尼龙 12、 尼龙 6/12; 这类材 料中有大量极性酰胺键, 非常适合作为基体材料与其它无机材料复合制备复合材料, 尤其适 合作为纳米复合材料的基体。 研究表明, 添加纳米粒子到聚酰胺常常赋予聚酰胺原本不具备 的性能, 如增强、 增韧、 耐磨、 耐高温和改善加工性能、 功能化等。 例如, 将磁性纳米粒子 与聚酰胺复合, 获得的磁性纳米粒子 /聚酰胺复合材料相对密度小, 且易加工成尺寸精度高和 复杂形状的制品, 克服了原有铁氧体磁铁、稀土类磁铁和铝镍钴合金磁铁硬而脆、加工性差, 无法制成复杂、 精细形状制品的缺陷。
目前制备纳米粒子 /聚酰胺复合材料的常用方法有共混法、 溶胶-凝胶法、 原位合成法。 共混法是指将纳米粒子与聚酰胺高分子通过溶液共混、 乳液共混、 熔融共混、 机械共混 等方式混合。 共混法的优点是简便、 经济, 纳米粒子与材料的合成分步进行, 可控制纳米粒 子的形态、 尺寸。 但是纳米粒子尺寸小, 而聚酰胺的粘度较高, 不易被混入并均勾分散, 通 常会明显降低纳米粒子 /聚酰胺复合材料的机械性能。 为了改善纳米粒子与聚酰胺复合材料的 相容性, 通常采用表面改性, 以促进纳米粒子的均勾分散和增强无机 /有机界面作用力。 表面 改性过程不仅耗时耗力, 而且也很难达到理想效果。
溶胶-凝胶法是合成纳米材料的常用方法, 通常是将合成纳米材料的前驱体溶解于某种溶 剂, 前驱体水解或醇解形成溶胶, 然后经溶剂挥发或加热等处理凝胶化, 生成纳米粒子。 采 用溶胶-凝胶法制备纳米粒子 /聚酰胺复合材料时,首先将合成纳米粒子的前驱体引入到聚酰胺 基体材料中, 然后通过前驱体在聚酰胺基体内水解和凝胶化处理, 直接生成均勾分散的纳米 粒子 /聚酰胺复合材料。该法特点在于可在温和的反应条件下进行,两相分散相比共混法均勾。 但其不足之处是凝胶干燥过程中, 溶剂、 小分子、 水的挥发可能导致材料收缩脆裂, 另外, 纳米粒子前驱体很难大量引入到高分子基体, 因此对材料的性能改善程度有限。
原位聚合法是直接将纳米粒子分散在合成聚酰胺的单体,后在一定条件下引发单体聚合, 形成纳米粒子 /聚酰胺复合材料。该方法是一种合成纳米粒子 /聚酰胺复合材料的有效手段, 具 有纳米粒子填料完全独立可控、 高分子基体选择范围广的优点。 目前, 使用原位聚合法制备 纳米粒子 /聚酰胺复合材料的文献报道较多, 例如刘安栋等人将纳米级钠基蒙脱土均勾分散在 尼龙 6单体己内酰胺,通过阴离子开环聚合制备了蒙脱土 /尼龙 6复合材料 [具体可见: LiuA., Xie T., Yang G. "Synthesis of exfoliated monomer casting polyamide 6/Na+-montmorillonite nanocomposites by anionic ring opening polymerization." Macromol. Chem. Phys., 2006(207):701-707] o 但是原位聚合法仍难以达到纳米粒子在聚酰胺基体的理想分散, 而且作 为原料的纳米粒子生产成本通常较高、 稳定性较差, 给纳米粒子 /聚酰胺复合材料的工业化生 产带来很大困难。
内酰胺由于环状结构中含酰胺键而表现出强极性, 除能作为溶剂很好的分散无机纳米材 料 (如蒙脱土、 纳米二氧化硅、 纳米羟基磷灰石) 夕卜, 还对多种水溶性无机盐 (如 AgN03、 ZnCl2 、 FeCl3、 NaOH) 和油溶性金属或半金属有机化合物 (如羰基铁、 正硅酸乙酯) 有很 强的溶解能力。 因此, 将水溶性无机盐或油溶性金属或半金属有机化合物溶解于内酰胺溶剂, 然后利用适当的方法可以合成纳米材料。 例如, Gao等人在丁内酰胺为溶剂中分别以羰基铁 和三氯化铁合成了粒径小于 20nm的超顺磁四氧化三铁 [具体可见文献: One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals, Chem. Mater., Vol. 16, No. 8, 2004; Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe304, Angew. Chem. Int. Ed. 2005, 44, 123 -126]。 到目前为止文献或专利报道多局 限于以内酰胺为溶剂合成纳米材料, 并且为得到纯的纳米材料粉体、 通常需要洗涤、 分离、 干燥等的繁琐后处理过程, 因此大大增加了合成纳米材料的成本和造成环境污染、 能耗增加 的问题。 如果将内酰胺作溶剂合成纳米材料过程中得到的纳米粒子 /内酰胺混合物不经分离, 而将内酰胺直接聚合成聚酰胺高分子, 那么将是一种制备纳米粒子 /聚酰胺复合材料的有效手 段。 发明内容
针对纳米粒子很难在聚酰胺基体中均勾分散从而不能充分发挥纳米粒子功效, 影响复合 材料的机械性能的不足, 本发明的目的是提供一种纳米粒子 /聚酰胺复合材料, 该复合材料中 纳米粒子在聚酰胺基体中分散性好、 物性稳定, 纳米粒子与聚酰胺基体界面作用力强, 复合 材料机械性能高。
针对现有制备纳米粒子 /聚酰胺复合材料技术中共混法、溶胶-凝胶法、原位合成法中存在 纳米粒子难均勾分散、 生产成本高不适宜大规模生产的缺陷; 尤其针对内酰胺作为溶剂合成 纳米材料的后处理过程工艺繁琐、 污染能耗大的不足, 本发明的另一个目的是提供一种纳米 粒子 /聚酰胺复合材料的制备方法。
本发明的第三个目的是提供一种纳米粒子 /聚酰胺复合材料用作结构材料、 功能高分子材 料、 高分子母料的应用。
本发明的技术方案如下:
本发明提供了一种纳米粒子 /聚酰胺复合材料, 该复合材料包括 0.01~99重量份的无机纳 米粒子和 1~99.99重量份的聚酰胺基体。
所述的无机纳米粒子优选为 0.5~60重量份。
所述的聚酰胺基体优选为 40~99.5重量份。
所述的聚酰胺为内酰胺作为单体聚合形成的聚合物或均聚物;进一步选自尼龙 4、尼龙 6、 尼龙 7、 尼龙 8、 尼龙 9、 尼龙 10、 尼龙 11、 尼龙 12、 尼龙 4/6、 尼龙 4/12、 尼龙 6/10、 尼龙 6/12或尼龙 4/6/12, 优选尼龙 6/12、 尼龙 6或尼龙 12。
所述的内酰胺结构通式为:
Figure imgf000005_0001
选自丁内酰胺、 戊内酰胺、 己内酰胺、 庚内酰胺、 辛内酰胺、 壬内酰胺、 癸内酰胺、 十 一内酰胺或十二内酰胺, 优选丁内酰胺、 己内酰胺或十二内酰胺, 更优选己内酰胺。
所述的无机纳米粒子选自氢氧化物、 氧化物、 硫化物、 金属或无机盐中的一种或一种以 上的物质。
所述的氢氧化物是指一种及一种以上金属元素与氢氧根形成的不溶或微溶于水的无 机化合物, 进一步选自 Ni(OH)2、 Mg(OH)2、 Al(OH)3 Nd(OH)3 Y(OH)3 镁铝水滑石或锌 铝水滑石中的一种或一种以上的物质, 优选 Mg(OH)2或 Nd(OH)3
所述的氧化物是指一种及一种以上金属元素或类金属元素与氧形成的不溶或微溶于水的 无机化合物, 进一步选自 Ag20、 ZnO、 Cu20、 Fe304、 Si02、 MgAl204或 CaTi03中的一种或 一种以上的物质, 优选 Ag20、 ZnO、 Cu20或 Fe304
所述的硫化物选自金属或类金属元素与硫、 硒、 碲、 砷或锑结合而成的不溶或微溶于水 的无机化合物, 进一步选自 CuS、 ZnS、 CdS、 CdSe、 CdTe、 WSe2、 CuTe、 CoAs2或 GaAs 中的一种或一种以上的物质, 优选 ZnS、 CdS、 CdSe或 CdTe。
所述的金属选自元素周期表 IIIA、 IVA、 Ι Β、 Π Β或環族中的一种或一种以上的金属元 素组成的不溶或微溶于水的物质, 进一步选自 Fe、 Ni、 Cu、 Ag、 Pd、 Pt、 Au或 Ru中的一 种或一种以上的物质组成的合金或混合物, 优选 Cu、 Ag、 Au、 Pd或 Cu-Ag合金。
所述的无机盐是指金属元素阳离子与碳酸根、 硫酸根、 硅酸根或卤族阴离子形成的不溶 或微溶于水的无机化合物, 进一步选自 CaC03、 MgC03、 BaS04、 CaSi03、 AgCl、 AgBr或 CaF2中的一种或一种以上的物质, 优选 MgC03、 BaS04或 AgCl。
所述的无机纳米粒子为磁性粒子。
所述的磁性粒子的化学成分选自 Fe304、 Ni304、 Co304或 Mn304中的一种。
本发明还提供了一种上述纳米粒子 /聚酰胺复合材料的制备方法, 该方法包括水解聚合法 或阴离子聚合法。
所述的水解聚合法制备纳米粒子 /聚酰胺复合材料,包括以下步骤: 将纳米粒子 /内酰胺的 混合物加入到反应器, 内酰胺为 100重量份, 纳米粒子为 0.01~99重量份, 然后加入 0.1-20 重量份去离子水、 0.01-5重量份催化剂和 0.001-1重量份分子量调节剂, 在 80-100°C下搅拌混 合均勾; 密封反应器后升温到 120-300°C, 压力恒定在 0.1-3.0MPa, 水解反应 0.5-48h; 打开 反应器泄压至标准大气压; 在 180-300°C、 搅拌条件下抽真空 0.1-10h; 卸料、 拉条、 冷却、 切粒, 得到纳米粒子 /聚酰胺复合材料。
所述的催化剂为能电离出 H+的物质, 进一步选自盐酸、 硫酸、 甲酸、 乙酸、 氨基戊酸或 氨基己酸, 优选氨基己酸。
所述的分子量调节剂是指能调节聚酰胺分子量的单官能度封端剂, 进一步选自有机一元 酸或有机一元胺, 优选乙酸、 己酸或己胺, 更优选己酸。 所述的阴离子聚合法制备纳米粒子 /聚酰胺复合材料, 包括以下步骤:
将纳米粒子 /内酰胺的混合物加入到反应器, 内酰胺为 100重量份, 纳米粒子为 0.01~99 重量份, 在 80-200°C抽真空 0.1-20h; 加入 0.01-10重量份催化剂, 在 100-180°C抽真空除水 0.1-10h, 按照以下三种方法中的一种聚合得到纳米粒子 /聚酰胺复合材料:
( 1 ) 转移至预热的模具, 在 180-300°C恒温 0.1-12h, 聚合得到纳米粒子 /聚酰胺复合材 料;
或: (2) 降温到 80-180°C, 加入 0.01-10重量份活化剂, 混合均勾转入预热的模具, 在 120-200°C恒温 0.1-12h, 聚合得到纳米粒子 /聚酰胺复合材料;
或: (3 ) 降温至 80-160°C, 加入 0.01-10重量份活化剂, 混合均勾后转入双螺杆挤出机 进行反应挤出, 得到纳米粒子 /聚酰胺复合材料。
所述的反应挤出操作为: 双螺杆入口以 0.1-lOOOOg/min的速度加入含纳米粒子、 内酰胺、 催化剂和活化剂的混合物; 控制双螺杆挤出机螺杆转速为 50-500 转 /min, 温度为 I区 80-150°C, II区 120-200°C, III区 200-240°C, IV区 200-280°C, V区 220-280°C, VI区 220-280°C, VII区 220-250°C; 从出口挤出物料经冷却后切粒。
所述的催化剂是能促使内酰胺形成阴离子活性中心的物质, 选自碱金属、 碱金属氢氧化 物或碱金属有机盐, 进一步选自 Na、 K、 NaOH、 KOH、 NaOCH3、 NaOC2H5、 KOC2H5、 丁 内酰胺钠、 己内酰胺钠、 己内酰胺钾或苯酚钠, 优选 NaOH、 NaOC2¾或己内酰胺钠。
所述的活化剂是能降低内酰胺阴离子聚合温度的物质, 进一步选自酰氯、 马来酸酐、 异 氰酸酯、 N-酰基己内酰胺、碳酸酯或羧酸酯, 优选甲苯 -2,4-二异氰酸酯 (TDI)或 N-乙酰基己内 酰胺。
所述的纳米粒子 /内酰胺混合物的制备方法包括沉淀法、 溶胶-凝胶法或高温热解法。 所述的沉淀法合成纳米粒子 /内酰胺的混合物包括以下步骤: 将 0.01-100重量份前驱体和 100重量份内酰胺加入到反应器, 在 80-150°C下搅拌 0.1-2h使前驱体充分溶解或分散于熔融 的内酰胺溶剂, 在搅拌条件下加入 0.05-50 重量份沉淀剂充分进行沉淀反应, 反应温度为 80-250 °C , 反应时间为 0.1~200h, 得到纳米粒子 /内酰胺的混合物。
所述的内酰胺溶剂纯度≥60%, 水分≤20%。
所述的前驱体选自金属阳离子与卤素、 硝酸根、 亚硝酸根、 硫酸根、 亚硫酸根或碳酸根 阴离子形成的可溶性无机盐, 进一步选自 MgCl2-6H20、 Nd(N03)3-6H20 Υ(Ν03)3·6Η20、 A1C13'9H20、 Al2 (S04)3' 18H20、 ZnCl2、 AgN03、 CuS04'5H20、 FeCl24¾0、 FeCl3'6H20、 Cd(N03)2-2H20 BaCl2或 PdCl2 ; 或选自含金属或类金属的有机化合物, 进一步选自乙酸锌、 羰基铁、 乙酰丙酮铁、 油酸铁、 钛酸丁酯或正硅酸乙酯。
所述的沉淀剂选自碱金属、 碱金属氢氧化物、 碱金属有机盐、 氨和能热解释放氨的化合 物、 金属元素与卤族元素形成的可溶性无机盐、 金属元素与硫族元素形成的可溶性无机盐、 金属元素与碳酸根形成的可溶性无机盐或金属元素与硫酸根形成的可溶性无机盐; 其中: 碱 金属进一步选自选自 Li、 Na或 K; 碱金属氢氧化物进一步选自 NaOH或 KOH; 碱金属有机 盐进一步选自甲醇钠、 乙醇钠、 苯酚钠、 油酸钾、 内酰胺钠或己内酰胺钾; 氨和能热解释放 氨的化合物进一步选自氨气、 氨水、 尿素、 碳酸铵或碳酸氢铵, 优选氨水; 金属元素与卤族 元素形成的可溶性无机盐进一步选自 NaCl、 KC1、 MgCl2、 CaCl2、 A1C13-6H20 FeCl2-4H20 或 FeCl3,6H20,优选 NaCl或 KC1;金属元素与硫族元素形成的可溶性无机盐进一步选自 Na2S、 K2S Na2S-9H20 Na2Se或 NaHTe;金属元素与碳酸根形成的可溶性无机盐进一步选自 Na2C03 或 K2C03 ; 金属元素与硫酸根形成的可溶性无机盐进一步选自 Na2S04或 K2S04。 所述的沉淀法合成纳米粒子 /内酰胺的混合物过程中,在加入沉淀剂后进一步添加 0.05-50 重量份的还原剂。
所述的溶胶-凝胶法合成纳米粒子 /内酰胺的混合物包括以下步骤: 将 0.01-100 重量份可 水解前驱体和 100重量份内酰胺加入到反应器, 在 80-150°C下搅拌 0.1-2h, 使前驱体充分溶 解或分散于熔融内酰胺溶剂,加入 0.01-50重量份水进行水解反应得到溶胶,水解反应温度为 80-250 °C , 水解反应时间为 0.01~48h; 溶胶经过凝胶化反应得到纳米粒子 /内酰胺的混合物, 凝胶化反应温度为 80~270°C, 凝胶化反应时间为 0.01~96h。
所述的可水解前驱体选自金属阳离子与卤素、 硝酸根、 硫酸根或乙酸根阴离子组成的可 水解的无机盐或金属有机物, 其中: 金属阳离子与卤素、 硝酸根、 硫酸根或乙酸根阴离子组 成的可水解的无机盐进一步选自 FeCl2'4H20、 FeCl3、 FeCl3'6H20、 Fe(N03)3'6H20、 Fe2(S04)3、 A1C13、 A1C13'6H20、 CuS04'5H20、 CuCl2、 CuCl2'2H20、 TiCl3、 TiCl4或 Zn(OAc)2'2H20, 优 选 FeCl3_6H20或 A1C13 ; 金属有机物进一步选自二乙基氯化铝、 异丙醇铝、 二乙基锌、 正硅 酸乙酯、 钛酸丁酯或钛酸乙酯, 优选正硅酸乙酯或钛酸丁酯。
所述的内酰胺溶剂纯度≥60%, 水分 <30%。
所述的溶胶-凝胶法合成纳米粒子 /内酰胺的混合物过程中, 在水解反应后进一步添加 0.05-50重量份的还原剂。
所述的高温热解法合成纳米粒子 /内酰胺的混合物包括以下步骤: 将 0.01-100重量份可热 解前驱体和 100重量份内酰胺加入到反应器, 在 80-150°C下搅拌 0.1-2h, 使前驱体充分溶解 或分散于熔融的内酰胺溶剂,在 100~270°C热解反应 0.1~20h,得到纳米粒子 /内酰胺的混合物。
所述的内酰胺溶剂纯度≥90%, 水分 <1%, 优选化学纯级别以上的原料。
所述的可热解前驱体水分 <10%, 优选水分 <0.1%; 选自在不高于 280°C能热分解的可溶 无机盐或在不高于 280°C能热分解的金属有机物; 其中: 在不高于 280°C能热分解的可溶无机 盐进一步选自 AgN03、 FeCl3、 Zn(OAc)2或 TiCl4 ; 在不高于 280°C能热分解的金属有机物进 一步选自油酸盐、 乙酰丙盐或羰基盐, 优选油酸铁、 乙酰丙酮锌或羰基铁 (Fe(CO)5)。
所述的高温热解法合成纳米粒子 /内酰胺的混合物过程中, 加入内酰胺后进一步添加 0.05-50重量份阴离子供体。
所述的阴离子供体选自温度≤280°C热分解,并能产生合成纳米材料所需阴离子的化合物, 进一步选自三辛基氧化磷 (提供合成氧化物所需的 02— ) 或二硫化四甲基秋兰姆 (提供合成硫 化物所需的 S2-)。
所述的高温热解法合成纳米粒子 /内酰胺的混合物过程中, 在 100~270°C热解反应前进一 步添加 0.05-50重量份的还原剂。
所述的还原剂选自抗坏血酸、 硼氢化钾、 硼氢化钠、 肼、 水合肼、 羟胺或含醛基有机物; 其中: 含醛基有机物进一步选自甲醛、 乙醛、 乙二醛、 苯甲醛或葡萄糖。
所述的沉淀法、溶胶-凝胶法或高温热解法合成纳米粒子 /内酰胺的混合物过程中,加入内 酰胺后进一步添加 0.01-20重量份稳定剂或 0.1-80重量份不溶无机物。
所述的稳定剂选自调节合成纳米材料形貌的阴离子表面活性剂、 阳离子表面活性剂、 两 性表面活性剂或非离子表面活性剂; 其中: 阴离子表面活性剂进一步选自十二烷基磺酸钠、 烷基苯磺酸钠或油酸钠; 阳离子表面活性剂进一步选自四丙基氢氧化铵、 四丙基溴化铵、 四 丙基氯化铵、 十六烷基三甲基溴化铵、 十六烷基三甲基氯化铵或十二烷基三甲基溴化铵; 两 性表面活性剂进一步选自十二烷基乙氧基磺基甜菜碱、 十八烷基二羟乙基氧化胺或十八酰胺 丙基氧化胺; 非离子表面活性剂进一步选自三嵌段共聚物 (P123, PEO-PPO-PEO)、 聚乙二醇、 聚乙烯吡啶、 丙三醇或 2-巯基丙酸。
所述的不溶无机物是指作为合成纳米材料载体或附着点的物质, 进一步选自活性碳、 石 墨烯、 碳纤维、 纳米碳管、 分子筛、 蒙皂族粘土、 硅藻土、 玻璃纤维或玻璃微球。
内酰胺作为溶剂适用的合成纳米粒子 /内酰胺的混合物的方法还包括沉淀法、溶胶-凝胶法 或高温热解法的配合使用。
一种纳米粒子 /聚酰胺复合材料的制备方法, 该方法包括以下步骤:
(1)磁性前驱体 /高分子单体溶液的制备:将 100重量份高分子单体和磁性前驱体混合均勾, 在密闭条件下抽真空, 通氮气循环 1~4次除氧, 逐渐升温至 80~120°C并维持 10~60min, 使 磁性前驱体充分溶解在高分子单体中, 形成深褐色溶液;
(2)磁性前驱体 /高分子单体溶液除水除杂质: 将步骤 (1)制备的溶液在 100~200°C, 真空条 件, 回流处理 10~30min, 除去原料中所含的少量水和低沸点杂质;
(3)磁性粒子 /高分子单体磁性流体的制备:将步骤 (2)所得的磁性前驱体 /高分子单体溶液反 应体系, 通入氮气至标准大气压, 迅速加入 0.5~10重量份碱, 升温至 100~200°C, 真空条件 下回流处理 0.5~3h, 得到磁性粒子 /高分子单体磁性流体;
(4)磁性粒子 /高分子单体磁性流体原位聚合: 将磁性粒子 /高分子单体磁性流体降温至 100~180°C , 加入 0.2~1.0 重量份聚合活化剂, 迅速搅拌混合均勾, 在 120~200°C聚合反应 0.2-2h;
(5)将步骤 (4)制备的材料, 粉碎后用水抽提 4~16h, 除去未聚合高分子单体、 低聚物、 可 溶无机盐, 将其在 60~80°C充分干燥, 得到磁性复合高分子材料。
所述的磁性前驱体选自磁性金属 Fe、 Co、 Ni或 Mn的二价可溶盐或三价可溶盐中的一种 或一种以上的混合物, 进一步选自 FeCl2/Fe2(S04)3、 FeCl24H20 /FeCl3'6H20或 MnCl2/MnCl3 ; 优选为 FeCl24H20/FeCl3.6H20 ; 磁性前驱体中二价金属离子与三价金属离子的摩尔比为 0.3-1.0, 优选为 0.67。
所述的步骤 (1)中, 加入磁性前驱体的量决定磁性复合高分子材料中磁性粒子粒径、 质量 百分含量和饱和磁化强度; 磁性前驱体的量越多, 磁性粒子的粒径越大, 质量分数越高, 复 合材料饱和磁化强度越大。
所述的高分子单体是指合成高分子聚合物对应的原料, 如尼龙 6对应的高分子单体是己 内酰胺、 尼龙 4对应的高分子单体是 α-吡咯烷酮或尼龙 4/6对应的是 α-吡咯烷酮与己内酰胺 的混合物。
所述的碱选自碱金属、碱金属氢氧化物或碱金属醇盐中的一种,进一步选自 Na、K、NaOH、 KOH、 NaOC2H5或 KOC2H5中的一种。
所述的聚合活化剂选自酰氯、 酸酐、 异氰酸酯或酰基己内酰胺中的一种或一种以上的混 合物, 进一步选自苯甲酰氯、 马来酸酐、 甲苯 -2,4-二异氰酸酯或乙酰基己内酰胺。
本发明还提供了一种上述纳米粒子 /聚酰胺复合材料用作结构材料、 功能高分子材料或高 分子母料的应用。
所述的纳米粒子 /聚酰胺复合材料用作结构材料的方法如下:
将纳米粒子 /聚酰胺复合材料破碎 (主要针对大块物料, 如浇注型复合材料), 0-100°C水 煮 0-100h, 过滤后在 50-200°C干燥 0-48h, 得到纯化的纳米粒子 /聚酰胺复合材料, 经注塑或 纺丝制成产品。
所述的注塑条件为: 熔融温度 220-300°C, 注射压力 750-1250bar, 保压时间 l-120s, 模 具温度 20-100°C。
所述的纺丝条件为: 熔融温度为 180-250°C, 纺丝头温度 240-280°C, 压力 3.0-3.5MPa, 出口风冷温度 5-100°C。
所述的纳米粒子 /聚酰胺复合材料用作功能高分子材料的方法如下:
将纳米粒子 /聚酰胺复合材料破碎 (主要针对大块物料, 如浇注型复合材料), 0-100°C水 煮 0-100h, 过滤后在 50-200°C干燥 0-48h, 得到纯化的纳米粒子 /聚酰胺复合材料, 经注塑或 纺丝制成功能高分子材料。
所述的注塑条件为: 熔融温度 220-300°C, 注射压力 750-1250bar, 保压时间 l-120s, 模 具温度 20-100°C。
所述的纺丝条件为: 熔融温度为 180-250°C, 纺丝头温度 240-280°C, 压力 3.0-3.5MPa, 出口风冷温度 5-100°C。
功能高分子是指有特殊功能 (如光、 电、 磁) 的纳米粒子与聚酰胺复合的一类材料, 加 工方法与结构材料一致; 但是可以应用于特殊领域。 例如纳米 Fe304/聚酰胺复合材料可以应 用于磁性分离、 电磁屏蔽; 纳米银 /聚酰胺复合材料可以应用于导电、 抗菌材料。
所述的纳米粒子 /聚酰胺复合材料用作高分子母料的方法如下:
将纳米粒子 /聚酰胺复合材料破碎 (主要针对大块物料, 如浇注型复合材料), 0-100°C水 煮 0-100h, 过滤后在 50-200°C干燥 0-48h, 得到高分子母料。
一种新的纳米复合材料的制备方法, 该方法包括以下步骤:
将 1-100重量份上述制备的高分子母料与 100重量份热塑性塑料或弹性体, 150-280°C熔 融共混, 制备新的纳米复合材料, 以改善机械性能、 颜色或引入新的功能。
所述的热塑性塑料选自聚酰胺、 聚酯、 聚烯烃或聚碳酸酯, 其中: 聚酰胺进一步选自尼 龙 6或尼龙 66; 聚酯进一步选自 PET、 PPT或 PBT; 聚烯烃进一步选自 PE、 PP或乙丙共聚 物。
所述的弹性体选自乙丙橡胶或丁二烯 -苯乙烯-丁二烯共聚物。
本发明提供了一种磁性复合高分子材料, 该材料包括磁性粒子和高分子聚合物, 饱和磁 化强度为 0.5~10emu/g, 磁性粒子含量为 0.5~15wt%, 粒径为 20~200nm。
所述的磁性粒子的化学成分选自 Fe304、 Ni304、 Co304或 Mn304中的一种。
所述的高分子聚合物选自己内酰胺或 α-吡咯烷酮单体阴离子开环聚合形成的均聚物或共 聚物中的一种或几种的混合物, 进一步选自尼龙 6、尼龙 4或尼龙 4/6中的一种或一种以上的 混合物。
本发明还提供了一种上述磁性复合高分子材料的制备方法, 该方法包括以下步骤:
(1)磁性前驱体 /高分子单体溶液的制备:将 100重量份高分子单体和磁性前驱体混合均勾, 在密闭条件下抽真空, 通氮气循环 1~4次除氧, 逐渐升温至 80~120°C并维持 10~60min, 使 磁性前驱体充分溶解在高分子单体中, 形成深褐色溶液;
(2)磁性前驱体 /高分子单体溶液除水除杂质: 将步骤 (1)制备的溶液在 100~200°C, 真空条 件, 回流处理 10~30min, 除去原料中所含的少量水和低沸点杂质;
(3)磁性粒子 /高分子单体磁性流体的制备:将步骤 (2)所得的磁性前驱体 /高分子单体溶液反 应体系, 通入氮气至标准大气压, 迅速加入 0.5~10重量份碱, 升温至 100~200°C, 真空条件 下回流处理 0.5~3h, 得到磁性粒子 /高分子单体磁性流体;
(4)磁性粒子 /高分子单体磁性流体原位聚合: 将磁性粒子 /高分子单体磁性流体降温至 100~180°C , 加入 0.2~1.0 重量份聚合活化剂, 迅速搅拌混合均勾, 在 120~200°C聚合反应 0.2-2h;
(5)将步骤 (4)制备的材料, 粉碎后用水抽提 4~16h, 除去未聚合高分子单体、 低聚物、 可 溶无机盐, 将其在 60~80°C充分干燥, 得到磁性复合高分子材料。
所述的磁性前驱体选自磁性金属 Fe、 Co、 Ni或 Mn的二价可溶盐或三价可溶盐等中的一 种或一种以上的混合物,进一步选自 FeCl2/Fe2(S04)3、FeCl24H20 /FeCl3'6H20或 MnCl2/MnCl3 ; 综合考虑成本、 金属盐的溶解性和复合材料的饱和磁化强度等因素, 实验筛选的最佳前驱体 是 FeCl24H20/FeCl3.6H20; 磁性前驱体中二价金属离子与三价金属离子的摩尔比为 0.3~1.0, 优选为 0.67。
所述的步骤 (1)中, 加入磁性前驱体的量决定磁性复合高分子材料中磁性粒子粒径、 质量 百分含量和饱和磁化强度; 磁性前驱体的量越多, 磁性粒子的粒径越大, 质量分数越高, 复 合材料饱和磁化强度越大。
所述的高分子单体是指合成高分子聚合物对应的原料, 如尼龙 6对应的高分子单体是己 内酰胺、 尼龙 4对应的高分子单体是 α-吡咯烷酮或尼龙 4/6对应的是 α-吡咯烷酮与己内酰胺 的混合物。
所述的碱选自碱金属、碱金属氢氧化物或碱金属醇盐中的一种,进一步选自 Na、K、NaOH、 KOH、 NaOC2H5或 KOC2¾等中的一种。
所述的聚合活化剂选自酰氯、 酸酐、 异氰酸酯或酰基己内酰胺中的一种或一种以上的混 合物, 进一步选自苯甲酰氯、 马来酸酐、 甲苯 -2,4-二异氰酸酯 (TDI)或乙酰基己内酰胺。
本发明同现有技术相比, 具有如下优点和有益效果:
1、 本发明纳米粒子 /聚酰胺复合材料, 既具有纳米材料的独特功能, 同时保持了高分子 基体机械性能好、 易加工成型等优点。 本发明纳米粒子 /聚酰胺复合材料, 纳米粒子在聚酰胺 基体中分散性好、 物性稳定, 纳米粒子与高分子基体界面作用力强。
2、 本发明合成方法所用原料成本低、 生产设备简单、 路线绿色环保, 适合大规模工业化 生产。
3、 本发明纳米粒子 /聚酰胺复合材料的制备方法适用范围广, 可以通过控制合成纳米粒 子原料的种类、 内酰胺成份、 反应条件, 来对复合材料的种类和性能进行调变。
4、 本发明制备的纳米粒子 /聚酰胺复合材料, 可以作为结构材料、 功能材料和高分子母 料, 可以直接应用或添加到其它高分子材料中制成各种产品, 广泛应用于电子、 电气、 仪器 仪表、 通讯、 文教、 医疗卫生及日常生活等各种领域。 附图说明
图 1表示实施例 14方法合成纳米 Ag/尼龙 6复合材料的 X-射线衍射图。
图 2表示实施例 14方法合成纳米 Ag/尼龙 6复合材料经冷冻超薄切片后的透射电子显微 镜 (TEM) 示意图。
图 3表示实施例 17方法合成纳米 Fe304/尼龙 6复合材料经冷冻超薄切片后的透射电子显 微镜 (TEM)示意图。 图 4表示实施例 17方法合成纳米 Fe304/尼龙 6复合材料用振动样品磁力计 (VSM)测得的 磁化曲线示意图。 具体实施方式
以下结合附图所示实施例对本发明作进一步的说明。
实施例 1
纳米 Mg(OH)2/尼龙 6复合材料的制备
1.利用沉淀法制备纳米 Mg(OH)2/己内酰胺混合物
取 1000g MgCl2_6H2O和 1000g己内酰胺加入到反应器, 己内酰胺纯度≥60%,水分≤20%, 在 100 °C下搅拌 30min,使氯化镁充分溶解在熔融己内酰胺溶剂。在搅拌条件下迅速加入 400g NaOH, 后在 100°C恒温 2h得到纳米 Mg(OH)2/己内酰胺混合物。
2.纳米 Mg(OH)2/己内酰胺混合物水解聚合。
(1)将上一步制得的纳米 Mg(OH)2/己内酰胺混合物, 加入 50g去离子水和 lg氨基己酸、 0.08g分子量调节剂己酸, 在 80°C下机械搅拌混合均勾。
(2)密封反应器后升温到 240°C, 水汽生成压力恒定在 2.0MPa, 水解反应 16h。
(3)打开反应器泄压至标准大气压; 在 260°C、 搅拌条件下抽真空 5h。
(4)卸料、 拉条、 冷却、 切粒后得到纳米 Mg(OH)2/尼龙 6复合材料。
(5)进一步水煮除单体、低聚物以及副产物 NaCl、 充分干燥后得到精制纳米 Mg(OH)2/PA6 复合材料, 测算的尼龙 6产率为 70%, 重均分子量 Mw=30000。 纳米 Mg(OH)2/PA6复合材料 中均勾分散的 Mg(OH)2由厚度约为 10nm, 长径约为 80nm的规则六边形片状纳米颗粒组成, 复合材料的阻燃性能测试结果为 V-0级。
实施例 2
纳米 Mg(OH)2/尼龙 6复合材料的制备
1.利用沉淀法制备纳米 Mg(OH)2/己内酰胺混合物
取 1000g MgCl2_6H2O和 1000g己内酰胺加入到反应器, 己内酰胺纯度≥60%,水分≤20%, 在 80 °C下搅拌 30min,使氯化镁充分溶解在熔融己内酰胺溶剂。在搅拌条件下迅速加入 400g NaOH, 后在 100°C恒温 2h得到纳米 Mg(OH)2/己内酰胺混合物。
2.纳米 Mg(OH)2/己内酰胺混合物水解聚合。
(1)将上一步制得的纳米 Mg(OH)2/己内酰胺混合物, 加入 5g去离子水和 10g氨基己酸、 0.08g分子量调节剂己酸, 在 80°C下机械搅拌混合均勾。
(2)密封反应器后升温到 240°C, 水汽生成压力恒定在 1.2MPa, 水解反应 12h。
(3)打开反应器泄压至标准大气压; 在 260°C、 搅拌条件下抽真空 5h。
(4)卸料、 拉条、 冷却、 切粒后得到纳米 Mg(OH)2/尼龙 6复合材料。
(5)进一步水煮除单体、低聚物以及副产物 NaCl、 充分干燥后得到精制纳米 Mg(OH)2/PA6 复合材料, 测算的尼龙 6产率为 80%, 重均分子量 Mw=30000。 纳米 Mg(OH)2/PA6复合材料 中均勾分散的 Mg(OH)2由厚度约为 10nm, 长径约为 75nm的规则六边形片状纳米颗粒组成。 实施例 3
纳米 Nd(OH)3/尼龙 6复合材料的制备
1.利用沉淀法制备纳米 Nd(OH)3/己内酰胺混合物
取 10.9g Nd(NO3)3,6H2O和 100g己内酰胺加入到反应器,己内酰胺纯度≥60%,水分≤20%, 在 150 °C下搅拌 30min, 使 Nd(N03)3 6¾0充分溶解在熔融己内酰胺溶剂。 在搅拌条件下迅 速加入 3g NaOH, 在 200°C 反应 24h, 得到纳米 Nd( H)3/己内酰胺混合物。
2. 纳米 Nd(OH)3/己内酰胺混合物阴离子开环聚合。
上一步制得的纳米 Nd(OH)3/己内酰胺混合物在 150°C真空除水 30min, 加入 IgNaOH在 150°C继续抽真空 30min, 降温到 120°C后加入 0.5 g甲苯 -2,4-二异氰酸酯 (TDI), 30s内迅速混 合均勾后转入氮气保护的模具中, 在 170°C聚合反应 0.5h。 聚合反应完成后, 降至室温脱模, 可以直接得到浇注型纳米 Nd(OH)3/尼龙 6复合材料, 尼龙 6产率为 90%, 均勾分散的棒状 Nd(OH)3纳米粒子平均长度约为 50nm, 直径约为 9nm。
3. 纳米 Nd(OH)3/尼龙 6复合材料的应用
纳米 Nd(OH)3/尼龙 6复合材料经破碎, 100°C水煮 48h, 过滤后在 120°C干燥 24h, 得到 纯化的纳米粒子 /聚酰胺复合材料, 经注塑制成结构部件。 注塑条件为: 熔融温度 235°C, 注 射压力 1000bar, 保压时间 10s, 模具温度 50°C。 按照美国 ASTM标准注塑出样条测试的拉 伸强度和缺口冲击强度分别为 80.2和 9.5 kJ/m2 (拉伸和冲击性能分别根据 ASTM-D638和 D6110标准测试)。
实施例 4
纳米 ZnO/尼龙 6复合材料的制备
1. 利用沉淀法制备纳米 ZnO /己内酰胺混合物
取 3.4g ZnCl2禾 B 100g己内酰胺加入到反应器,己内酰胺纯度≥60%,水分≤20%,在 80 °C 下搅拌 30min, 使 ZnCl2充分溶解于熔融己内酰胺溶剂。 在搅拌条件下迅速加入 2g NaOH, 在 100°C反应 2h, 得到的纳米氧化锌 /己内酰胺混合物。
2.纳米 ZnO/己内酰胺混合物阴离子聚合。
(1)将上一步制得的纳米 ZnO/己内酰胺混合物在 150°C抽真空 lh充分除水和除低沸点杂 质。
(2)加入 lg己内酰胺钠, 在 150°C抽真空除水 10min, 促进产生阴离子活性种。
(3)转移至预热的模具,在密封模具内 200°C恒温 8h,聚合得到纳米 ZnO/尼龙 6复合材料, 尼龙 6产率为 85%, 均勾分散的纳米 ZnO平均粒径约为 10nm。
实施例 5
纳米 ZnO/尼龙 6/12复合材料的制备
1. 利用沉淀法制备纳米 ZnO / (己内酰胺 +十二内酰胺) 混合物
取 3.41g ZnCl2和由 80g己内酰胺和 20g十二内酰胺组成的混合内酰胺加入到反应器, 混 合内酰胺中己内酰胺和十二内酰胺纯度≥60%, 水分≤20%, 在 120°C下搅拌 lh使 ZnCl2充分 溶解于熔融混合内酰胺溶剂。 在搅拌条件加入 2g NaOH, 在 160°C反应 2h, 得到纳米氧化锌 / (己内酰胺 +十二内酰胺) 混合物。
2.纳米 ZnO/ (己内酰胺 +十二内酰胺) 混合物阴离子聚合。
将上一步制得的纳米 ZnO/ (己内酰胺 +十二内酰胺) 在 150°C真空除水 30min, 加入 lgNaOH15(TC继续抽真空 30min, 降温到 120 °C后加入 lg甲苯 -2,4-二异氰酸酯 (TDI), 30s内 迅速混合均勾后转入氮气保护的模具中, 在 170°C聚合反应 0.5h。 聚合反应完成后, 降至室 温脱模,得到纳米 ZnO/尼龙 6/12复合材料。该纳米复合材料中聚酰胺基体为己内酰胺和十二 内酰胺的共聚物, ZnO纳米粒子直径约为 15nm均勾分散在尼龙 6/12高分子基体。
实施例 6 纳米 Fe203/尼龙 6复合材料的制备及应用
1. 利用溶胶-凝胶法制备纳米 Fe203/己内酰胺混合物
取 82.5g FeCl3'6H20和 1000g己内酰胺加入到反应器, 己内酰胺纯度≥95%, 水分≤1%, 在 80 V下搅拌 30min使 FeCl3 ·6Η20充分溶解于熔融己内酰胺溶剂,加入 50g去离子水, 在 100°C水 解反应 24h, 抽真空除水后转入 180°C凝胶化反应 8h, 得到纳米 Fe203/己内酰胺混合物。
2. 阴离子聚合反应挤出制备纳米 Fe203/尼龙 6复合材料
(1)将上一步制得的纳米 Fe203/己内酰胺的混合物在 100°C抽真空 2h充分除水和除低沸点 杂质。
(2)加入 10g NaOH, 在 160°C抽真空除水 2h, 促进产生己内酰胺钠阴离子活性种。
(3)降温至 80°C, 加入 50g甲苯 -2,4-二异氰酸酯 (TDI), 混合均勾, 将混合物以 20g/min的 速度加入双螺杆挤出机进行反应挤出制备纳米 Fe203/尼龙 6复合材料。 反应挤出机螺杆温度 为 I区 80°C, II区 160°C, III区 200°C, IV区 250°C, V区 250°C, VI区 250°C, VII区 220°C, 螺杆转速为 300转 /min。
(4)反应挤出得到的颗粒状纳米 Fe203/尼龙 6复合材料, 纳米 Fe203为低结晶度赤铁矿, 平均粒径为 4nm; 尼龙 6的产率为 95%, 重均分子量为 Mw=100000。
3. 纳米 Fe203/尼龙 6复合材料产品作为色母料的应用
(1)反应挤出得到的颗粒状纳米 Fe203/尼龙 6复合材料经 80°C水煮 12h除单体和副产物、 100°C干燥 24h, 得到纳米 Fe203/尼龙 6复合材料产品。 该纳米 Fe203/尼龙 6复合材料产品由 4.8重量份的纳米 Fe203 和 95.2重量份的尼龙 6基体组成,外观为赤红色颗粒,熔融指数 MI=13
(2)取 10g纳米 Fe203/尼龙 6复合材料产品与 1000g市售尼龙 6 (牌号: DSMK222-KGV4/A) 充分混料, 加入双螺杆挤出机熔融共混后得到大红色粒料, 直接成型成红色尼龙 6制件。双螺 杆挤出机各段温度为螺杆温度为 I区 220°C, II区 235 °C, III区 235 °C, IV区 240°C, V区 240°C, VI区 240°C, VII区 220°C, 螺杆转速为 500转 /min。 纳米 Fe203/尼龙 6复合材料产品作为色母料配 色的制件颜色均勾、 色度饱满、 颜色稳定, 并且加入色母料不影响材料的机械性能, 拉伸强 度和缺口冲击强度仍能保持在 69.5和 11.2 kJ/m2 (分别根据 ASTM-D638和 D6110标准测试结 果)。
实施例 7
纳米 Si02/尼龙 6复合材料的制备及应用
1.利用溶胶-凝胶法合成纳米 Si02/己内酰胺的混合物
取 6 g 正硅酸乙酯和 100g己内酰胺加入到反应器, 己内酰胺纯度≥60%, 水分 <30%; 在 150 °C下搅拌 30min使正硅酸乙酯溶解于熔融己内酰胺溶剂,加入 2g去离子水,在 120°C 水解反应 5h, 抽真空除水后转入 200°C凝胶化反应 24h, 得到纳米 Si02/己内酰胺的混合物, 其中纳米 Si02粒径为 23nm。
2.纳米 Si02/己内酰胺混合物阴离子聚合
(1)将上一步制得的纳米 Si02//己内酰胺混合物, 在 150°C抽真空 lh充分除水和除低沸点 杂质。
(2) 加入 0.8g乙醇钠, 在 100°C抽真空除水 10min, 促进产生阴离子活性种。
(3) 降温到 120°C, 加入 O. lg甲苯 -2,4-二异氰酸酯 CTDI), 迅速混合均勾转入预热的模具、 在 150°C恒温 lh, 脱模后得到浇注型纳米 Si02/尼龙 6复合材料, 尼龙 6产率为 98%, 均勾分散的 纳米 Si02平均粒径约为 30nm。 3. 纳米 Si02/尼龙 6复合材料的应用
浇注型纳米 Si02/尼龙 6复合材料可以直接应用于结构件, 适合应用于受力、 耐磨部件, 尤其适合应用于工业推车滚轮、 行李箱滚, 制得产品的耐磨性比普通浇注型尼龙 6提高 30%。 实施例 8
纳米 Ti02/尼龙 6复合材料的制备及应用
1. 利用高温热解法合成纳米 Ti02/己内酰胺的混合物
取 10g四氯化钛 (水分 <10%)、 14g三辛基氧化磷 (阴离子 02·供体) 和 1000g己内酰胺加 入到反应器, 己内酰胺纯度≥99.5%, 水分 <0.01%, 在 80°C下搅拌 30min使四氯化钛和三辛基 氧化磷溶解于熔融己内酰胺溶剂。 升温至 270°C, 热解反应 2h, 得到纳米 Ti02/己内酰胺的混 合物。
2.纳米 Ti02/己内酰胺混合物水解聚合。
(1)向上一步制得的纳米 Ti02/己内酰胺混合物加入 50g去离子水和 10g氨基己酸、 O. lg己 酸, 在 80°C下机械搅拌混合均勾。
(2)密封反应器后升温到 240°C, 水汽生成压力恒定在 2.0MPa, 水解反应 16h。
(3)打开反应器泄压至标准大气压; 在 260°C、 搅拌条件下抽真空 5h。
(4)卸料、拉条、冷却、切粒后得到纳米 Ti02/尼龙 6复合材料,测算的尼龙 6产率为 70%, 重均分子量 Mw=20000, 均勾分散的 Ti02为锐钛矿晶型, 晶粒直径约为 5nm。
3. 纳米 Ti02/尼龙 6复合材料的应用
(1)纳米 Ti02/尼龙 6复合材料在 80°C水煮 24h除单体、低聚物以及副产物, 120°C干燥 24h 后得到精制纳米 Ti02/尼龙 6复合材料。
(2)精制纳米 Ti02/尼龙 6复合材料经注塑制成结构部件。 注塑条件为: 熔融温度 235 °C, 注射压力 1000bar, 保压时间 10s, 模具温度 50°C。 按照美国 ASTM标准注塑出样条测试的 拉伸强度和缺口冲击强度分别为 60.8和 6.4kJ/m2 (拉伸和冲击性能分别根据 ASTM-D638和 D6110标准测试)。另外复合材料有很强的紫外吸收性能, 尤其对 200-500nm波长的光有很强 的吸收性能; 表现出很好的耐光老化性, 在紫外加速老化箱中 50°C、 湿度 60、 300nm波长加 速老化 30天, 制品表面颜色未明显变深。
实施例 9
纳米 ZnS/尼龙 6复合材料的制备
1. 利用沉淀法制备纳米 ZnS/己内酰胺混合物
取 10g ZnCl2和 100g己内酰胺加入到反应器, 己内酰胺纯度≥80%, 水分≤20%, 在 100 °C下 搅拌 30min使 ZnCl2充分溶解于熔融己内酰胺溶剂。在搅拌条件下迅速加入 12g Na2S-9H20, 在 150°C 反应 12h, 得到纳米 ZnS/己内酰胺的混合, 纳米 ZnS为球形颗粒, 粒径约为 20nm。
2.纳米 ZnS/己内酰胺混合物阴离子聚合
(1)将上一步制得的纳米 ZnS/己内酰胺混合物在 150°C抽真空 lh充分除水和除低沸点杂 质。
(2)加入 lg己内酰胺钠, 在 150°C抽真空除水 10min, 促进产生阴离子活性种。
(3)降温到 120°C, 加入 O. lg甲苯 -2,4-二异氰酸酯 (TDI), 迅速混合均勾转入预热的模具、 在 150°C恒温 lh, 脱模后得到浇注型纳米 ZnS/尼龙 6复合材料, 尼龙 6产率为 96%, 均勾分 散的纳米 ZnS平均粒径约为 25nm。
实施例 10 纳米 CdTe/尼龙 6复合材料的制备
1. 利用沉淀法合成纳米 CdTe/己内酰胺混合物
取 0.82 g Cd(N03)2-2H20 0.54g 2-巯基丙酸 (稳定剂)和 100g己内酰胺加入到反应器, 己内 酰胺纯度≥90%, 水分≤1%, 在 80°C下搅拌 30min使 Cd(N03)2,2¾0和 2-巯基丙酸充分溶解于熔 融己内酰胺溶剂。, 在氮气保护下迅速加入 0.5g NaHTe, 后在 90°C 恒温 4h, 得到纳米 CdTe/ 己内酰胺混合物。
2. 纳米 CdTe/己内酰胺混合物阴离子聚合
(1)将上一步制得的纳米 CdTe/己内酰胺混合物在 150°C抽真空 lh充分除水和除低沸点 杂质。
(2)加入 lg己内酰胺钠, 在 150°C抽真空除水 10min, 促进产生阴离子活性种。
(3)降温到 120°C, 加入 O. lg甲苯 -2,4-二异氰酸酯 (TDI), 迅速混合均勾转入预热的模具、 在 150°C恒温 lh, 脱模后得到浇注型纳米 CdTe/尼龙 6复合材料, 尼龙 6产率为 92%, 均勾 分散的纳米 CdTe平均粒径约为 12nm。
实施例 11
纳米 MgC03/尼龙 12复合材料的制备
1.利用沉淀法合成纳米 MgC03/己内酰胺混合物
取 20.3g MgCl2-6H20 和 100g十二内酰胺加入到反应器, 十二内酰胺纯度≥80%, 水分 <10%, 在 120 °C下搅拌 30min使氯化镁充分溶解于熔融十二内酰胺溶剂。在搅拌条件下迅速 加入 15g Na2C03, 在 120°C反应 24h, 得到纳米 MgC03/十二内酰胺混合物, 纳米 MgC03 为片状结构, 厚度约为 5nm, 长径约为 60nm。
2. 纳米 MgC03/十二内酰胺混合物阴离子聚合
(1)将上一步制得的纳米 MgC03/十二内酰胺混合物在 120°C抽真空 lh充分除水和除低沸 点杂质。
(2)加入 lg己内酰胺钠, 在 150°C抽真空除水 10min, 促进产生阴离子活性种。
(3)降温到 120°C,加入 O.lg N-乙酰基己内酰胺,迅速混合均勾转入预热的模具、在 150°C 恒温 lh, 脱模后得到浇注型纳米 MgC03/尼龙 6复合材料, 尼龙 12产率为 89%。
实施例 12
纳米 BaS04/尼龙 6复合材料的制备
1. 利用沉淀法合成纳米 BaS04/己内酰胺混合物
取 5.6g BaCl2和 100g熔融己内酰胺加入到反应器, 己内酰胺纯度≥80%, 水分≤20%, 在 100 °C下搅拌 30min使 BaCl2充分溶解于熔融己内酰胺溶剂。 在搅拌条件下迅速加入 3g Na2S04, 在 100°C反应 24h, 得到纳米 BaS04/己内酰胺混合物。
2. 纳米 BaS04/己内酰胺混合物阴离子聚合
(1) 将上一步制得的纳米 BaS04/己内酰胺混合物在 120°C抽真空 lh充分除水和除低沸点 杂质。
(2)加入 lg己内酰胺钠, 在 150°C抽真空除水 10min, 促进产生阴离子活性种。
(3)降温到 120°C, 加入 O. lg甲苯 -2,4-二异氰酸酯 (TDI), 迅速混合均勾转入预热的模具、 在 150°C恒温 lh, 脱模后得到浇注型纳米 BaS04/尼龙 6复合材料, 尼龙 6产率为 99.5%。 实施例 13
纳米 AgCl/尼龙 6复合材料的制备 1.利用沉淀法合成纳米 AgCl/己内酰胺混合物
取 2.1 g AgN03和 100g己内酰胺加入到反应器,己内酰胺纯度≥80%,水分≤20%,在 100°C 下搅拌 30min使硝酸银充分溶解于熔融己内酰胺溶剂。在搅拌条件下迅速加入 1.5g NaCl, 在 100°C反应 24h, 得到纳米 AgCl/己内酰胺混合物。
2. 纳米 AgCl/己内酰胺混合物阴离子聚合
(1)将上一步制得的纳米 AgCl/己内酰胺混合物在 150°C抽真空 lh充分除水和除低沸点杂 质。
(2)加入 lg己内酰胺钠, 在 150°C抽真空除水 10min, 促进产生阴离子活性种。
(3)降温到 120°C, 加入 O. lg甲苯 -2,4-二异氰酸酯 (TDI), 迅速混合均勾转入预热的模具、 在 150°C恒温 lh, 脱模后得到浇注型纳米 AgCl/尼龙 6复合材料, 尼龙 6产率为 99.8%, 粒径 为 4nm的 AgCl均勾分散在尼龙 6基体。
实施例 14
纳米 Ag/尼龙 6复合材料的制备及应用
1.利用沉淀法合成纳米 Ag/己内酰胺混合物
取 4.24g AgN03 和 100g熔融己内酰胺加入到反应器, 己内酰胺纯度≥60%, 水分≤20%, 在 100°C下搅拌 30min使 AgN03充分溶解于熔融己内酰胺溶剂。 在搅拌条件下迅速加入 lg NaOH和 2ml羟胺, 在 100°C 反应 2h, 得到纳米 Ag/己内酰胺混合物。
2. 纳米 Ag/己内酰胺混合物阴离子聚合
将上一步制得的纳米 Ag/己内酰胺混合物在 150°C抽真空 30min, 除去低沸点副产物除。 加入 IgNaOH在 150°C继续抽真空 30min,降温到 140°C后加入 0.5g甲苯 -2,4-二异氰酸酯 (TDI), 30s内迅速混合均勾后转入氮气保护的模具中, 在 170°C聚合反应 0.5h。 聚合反应完成后, 降 至室温脱模, 可以直接得到浇注型纳米 Ag/尼龙 6复合材料, 尼龙 6产率为 95%。
图 1是本实施例方法合成纳米 Ag/尼龙 6复合材料的 X-射线衍射图 (XRD), 二倍衍射 角 2Θ=20.1°和 24.0°处的衍射峰与 α晶型尼龙 6一致; 2Θ=38.2。、 44.3。、 64.5。和 77.5°处的衍 射峰与立方晶型的银相吻合; 表明复合材料由 Ag和尼龙 6组成。 图 2 是本实施例方法合成 纳米 Ag/尼龙 6复合材料经冷冻超薄切片后的用透射电子显微镜 (TEM)拍摄的图片,观测结果 表明平均粒径约 6nm的 Ag纳米粒子非常均勾的分散在尼龙 6基体。
3. 纳米 Ag/尼龙 6复合材料作为功能高分子的应用
(1)将浇注型纳米 Ag/尼龙 6复合材料粉碎后 100°C水抽提 12h, 除去未聚合高分子单体、 低聚物、 可溶无机盐, 后将其在 100°C充分干燥, 得到精制颗粒状纳米 Ag/尼龙 6复合材料。
(2)该复合材料可以经熔融纺丝制成抗菌、 抗静电纤维。 纺丝条件为: 熔融温度为 240°C, 纺丝头温度 275 °C, 压力 3.0MPa, 出口风冷温度 20°C。 所得纳米 Ag/尼龙 6抗菌功能纤维的 直径为 20 μηι,根据 AATCC-100标准测试抗菌率为 >99.9%;经过 80°C水煮 8h, 80°C干燥 16h, 循环 10次后样品仍保持抗菌率>99.0%。
4. 纳米 Ag/尼龙 6复合材料作为抗菌母料的应用
(1)将浇注型纳米 Ag/尼龙 6复合材料粉碎后 80°C水抽提 12h, 除去未聚合高分子单体、 低聚物、可溶无机盐,后将其在 120°C充分干燥,得到高品质颗粒状纳米 Ag/尼龙 6复合材料。
(2) 20g本实施例生产的颗粒状纳米 Ag/尼龙 6复合材料与与 2000g工业级尼龙 6 (牌号: DSMK222-KGV4/A) 熔融共混, 加工温度为 220-240°C, 螺杆转速为 500转 /min。 塑料制品 按照 《JIS Z 2801-2010抗菌加工制品一抗菌性能试验方法》 测试, 结果显示对大肠杆菌和 金色葡萄球菌的抗菌活性达到最高级别 (大于 5 ), 抗菌率 >99.9%。
实施例 15
镀纳米 Ag玻璃微球 /尼龙 6复合材料的制备及应用
1. 利用沉淀法合成镀纳米 Ag玻璃微球 /己内酰胺混合物
取 17.0g AgNO3、 10g玻璃微球 (平均直径约 15um ) 和己内酰胺加入到反应器, 己内 酰胺纯度≥80%, 水分≤20%, 在 100 °C下搅拌 lh使玻璃微球和 AgN03充分分散 /溶解于熔融己 内酰胺溶剂。 在搅拌条件下迅速加入 4g NaOH和 8g葡萄糖, 在 100°C 反应 12h, 得到镀纳米 Ag玻璃微球 /己内酰胺混合物。
1. 镀纳米 Ag玻璃微球 /己内酰胺混合物阴离子聚合
(1)将上一步制得的纳米 Ag玻璃微球 /己内酰胺混合物在 150°C抽真空 lh充分除水和除低 沸点杂质。
(2)加入 lg己内酰胺钠, 在 150°C抽真空除水 10min, 促进产生阴离子活性种。
(3)降温到 120°C, 加入 O. lg甲苯 -2,4-二异氰酸酯 (TDI), 迅速混合均勾转入预热的模具、 在 150°C恒温 2h, 脱模后得到浇注型镀纳米 Ag玻璃微球 /尼龙 6复合材料, 尼龙 6产率为 91.5%, 玻璃微球表面纳米银层平均厚度为 20nm, 镀银玻璃微球均勾分散在尼龙 6基体。
3. 镀纳米 Ag玻璃微球 /尼龙 6复合材料作为导电 /电磁屏蔽功能高分子的应用
(1)将浇注型镀纳米 Ag玻璃微球 /尼龙 6复合材料粉碎后用水抽提 12h, 除去未聚合高分 子单体、 低聚物、 可溶无机盐, 后将其在 120°C充分干燥, 得到高品质颗粒状纳米 Ag/尼龙 6 复合材料。
(2)颗粒状镀纳米 Ag玻璃微球 /尼龙 6复合材料, 注塑成长度为 110mm, 宽度为 50mm厚 2mm的长方形试样。 按照 GB3048.3-2007半导电橡塑材料体积电阻率试验, 测得复合材料体 积电阻为 1.5x l03Q*cm。 另外, 测得镀纳米 Ag 玻璃微球 /尼龙 6 复合材料的电磁屏蔽效能 SE=40dB。
实施例 16
纳米 Pd /尼龙 6复合材料的制备及应用
1.利用沉淀法制备纳米 Pd /己内酰胺混合物
取 5.0g PdCl2和 100g熔融己内酰胺加入到反应器, 己内酰胺纯度≥80%, 水分≤20%, 在 100 °C下搅拌 30min使 PdCl2充分溶解于熔融己内酰胺溶剂。在搅拌条件下迅速加入 1 g NaOH, 在 100°C 反应 2h, 后加入 2g KBH4继续反应 2h, 得到纳米 Pd /己内酰胺混合物。
2. 纳米 Pd /己内酰胺混合物阴离子聚合
(1)将上一步制得的纳米 Pd /己内酰胺混合物在 150°C抽真空 lh充分除水和除低沸点杂质。
(2)加入 lg己内酰胺钠, 在 150°C抽真空除水 10min, 促进产生阴离子活性种。
(3)降温到 120°C, 加入 O. lg甲苯 -2,4-二异氰酸酯 (TDI), 迅速混合均勾转入预热的模具、 在 150°C恒温 lh, 脱模后得到浇注型纳米 Pd/尼龙 6复合材料, 尼龙 6产率为 95.5%, 纳米 Pd的平均粒径为 6nm, 均勾分散在尼龙 6基体。
3. 纳米 Pd/尼龙 6复合材料作为催化剂的应用
(1)将浇注型纳米 Pd/尼龙 6复合材料粉碎后用水抽提 12h, 除去未聚合高分子单体、 低聚 物、 可溶无机盐, 后将其在 120°C充分干燥, 得到高品质颗粒状纳米 Pd/尼龙 6复合材料。
(2)将颗粒状纳米 Pd/尼龙 6复合材料, 熔融纺丝成直径为 50μηι的纤维, 得到纳米 Pd/尼 龙 6复合催化剂。 (3)纳米 Pd/尼龙 6复合催化剂应用于肉桂醛加氢制苯丙醛模型反应, 反应温度为 50°C, 氢气分压为 0.2MPa, 催化剂添加量为 2%, 12h结束反应, 肉桂醛的转化率为 90%, 对产物苯 丙醛选择为 98%。 另外, 纤维状纳米 Pd/尼龙 6复合催化剂, 分离方便, 可以循环利用; 使 用 10次后仍能使催化转化率保持在 80%以上, 选择性不低于 90%。
实施例 17
纳米 Fe304/尼龙 6复合材料的制备
(1)将 250ml三口烧瓶固定在加热套内, 在三口分别配上温度计、 空气冷凝管、 通氮气接 头, 冷凝管上方接抽真空装置接头, 保证整套装置良好的气密性。 称量加入 100g己内酰胺, 3.2g FeCl24¾0和 6.5g FeCl 6H20至烧瓶中, 抽真空、 通氮气除氧 3次, 后升温至己内酰胺 的熔点 80°C, 并维持 30 min, 使 FeCl2'4H20和 FeCl3'6H20充分溶解在己内酰胺中, 形成深 褐色溶液。
(2) FeCl2-4H20 和 FeCl3_6¾0/己内酰胺溶液除水、 除杂质。 将步骤 (1) 制备的溶液在 150°C , 抽真空空气冷凝管回流处理 20min, 除去原料中所含的少量水和低沸点杂质。
(3)制备 Fe304纳米磁性粒子 /己内酰胺磁性流体。 将步骤 (2)充分除水后的 FeCl24¾0和 FeCl3 6¾0/己内酰胺溶液, 通入氮气至标准大气压, 降温至 90°C, 加入 5g NaOH粉末后迅 速密封, 抽真空并升温至 150°C, 空气冷凝管回流处理 1.5h, 得到纳米 Fe304 /己内酰胺混合 物。
(4)纳米 Fe304 /己内酰胺混合物原位阴离子开环聚合。 将体系通入氮气至标准大气压, 150°C加入 0.5g甲苯 -2,4-二异氰酸酯 (TDI), 30s内迅速混合均勾后转入氮气保护的模具中,在 170°C聚合反应 0.5h。 聚合反应完成后, 降至室温脱模, 可以直接得到纳米 Fe304/尼龙 6复合 材料结构部件, 应用于各种领域。
(5)将步骤 (4)制备的材料, 粉碎后用水抽提 12h, 除去未聚合高分子单体、 低聚物、 可溶 无机盐, 后将其在 120°C充分干燥, 得到高品质纳米 Fe304 /尼龙 6复合材料, 提纯后的复合 材料可以应用于医疗卫生、 食品包装等领域。
根据提取未聚合单体和低聚物的量, 计算得到尼龙 6产率为 98%。 图 3是本实施例方法 合成纳米 Fe304/尼龙 6复合材料经冷冻超薄切片后的用透射电子显微镜 (TEM)拍摄的图片, 观测结果表明平均粒径约 lOnm的 Fe304粒子均勾分散在尼龙 6基体。 图 4 是本实施例方法 合成纳米 Fe304/尼龙 6复合材料用振动样品磁力计 (VSM)测得的磁化曲线, 磁化曲线与退磁 曲线重合表明复合材料具有超顺磁性; 饱和磁化强度为 0.8emu/g, 另外复合材料在低于 80°C 的空气氛围中磁性长时间稳定; 高分子基体尼龙 6数均分子量约 100000, 适合应用于电磁屏 蔽、 磁性分离等领域。
实施例 18
纳米 Ag/尼龙 6复合材料的制备
1. 利用高温热解法制备纳米 Ag/己内酰胺混合物
取 4.24g AgN03和 100g己内酰胺加入到反应器,己内酰胺溶剂纯度≥99.5%,水分≤0.01%, 在 80 °C下搅拌 30min使 AgN03充分溶解于熔融己内酰胺溶剂, 迅速加入 5g葡萄糖, 升温 至 200°C热解反应 12h, 得到纳米 Ag/己内酰胺混合物。
2. 纳米 Ag/己内酰胺混合物阴离子聚合
(1)将上一步制得的纳米 Ag/己内酰胺混合物在 150°C抽真空 lh充分除水和除低沸点杂质。
(2) 加入 lg己内酰胺钠, 在 150°C抽真空除水 10min, 促进产生阴离子活性种。 (3) 降温到 120°C, 加入 O. lg甲苯 -2,4-二异氰酸酯 (TDI), 迅速混合均勾转入预热的模具、 在 180°C恒温 lh, 脱模后得到浇注型纳米 Ag/尼龙 6复合材料, 尼龙 6产率为 91.6%, 粒径为 3nm的 Ag均勾分散在尼龙 6基体。
实施例 19
纳米 Fe304/尼龙 6复合材料的制备
1. 利用溶胶-凝胶法制备纳米 Fe304/己内酰胺的混合物
取 2.7 g FeCl3_6H20和 100g己内酰胺加入到反应器, 己内酰胺纯度≥60%, 水分 <30%; 在 120 °C下搅拌 30min使 FeCl3_6¾0溶解于熔融己内酰胺溶剂, 加入 2g去离子水, 在 120 °。水解反应 24h,抽真空除水后加入 5g硼氢化钾,转入 200°C凝胶化反应 5h,得到纳米 Fe304/ 己内酰胺的混合物。
2. 纳米 Fe304/己内酰胺混合物阴离子聚合
(1)将上一步制得的纳米 Fe304/己内酰胺混合物, 在 150°C抽真空 lh充分除水和除低沸点 杂质。
(2) 加入 0.8g乙醇钠, 在 100°C抽真空除水 30min, 促进产生阴离子活性种。
(3) 降温到 120°C, 加入 O. lg甲苯 -2,4-二异氰酸酯 (TDI), 迅速混合均勾转入预热的模具、 在 150°C恒温 lh, 脱模后得到浇注型纳米 Fe304/尼龙 6复合材料, 尼龙 6产率为 92.5%, 均 勾分散的纳米 Fe304平均粒径约为 40nm。
实施例 20
1. 利用沉淀法合成纳米 Cu/己内酰胺的混合物
6.242g CuS04-5H20 5g十六烷基三甲基溴化铵和 100g己内酰胺加入到反应器, 己内酰 胺溶剂纯度≥80%, 水分≤20%, 在 100°C下搅拌 30min使 CuS(V5H20和十六烷基三甲基溴化 铵充分溶解在熔融的己内酰胺溶剂中。 在搅拌条件下迅速加入 Ig NaOH, 在 120°C 恒温 2h, 后加入 4g抗坏血酸 120°C继续反应 2h, 得到纳米 Cu/己内酰胺的混合物。
2. 纳米 Cu/己内酰胺混合物阴离子聚合
(1)将上一步制得的纳米 Cu//己内酰胺混合物, 在 150°C抽真空 lh充分除水和除低沸点杂 质。
(2) 加入 1.6g乙醇钠, 在 100°C抽真空除水 30min, 促进产生阴离子活性种。
(3) 降温到 120°C, 加入 O. lg甲苯 -2,4-二异氰酸酯 (TDI), 迅速混合均勾转入预热的模具、 在 150°C恒温 lh, 脱模后得到浇注型纳米 Cu/尼龙 6复合材料, 尼龙 6产率为 82.5%, 纳米 Cu为 500x l0 nm的线状物, 均勾分散在尼龙 6基体。
实施例 21
Mn304/饶注尼龙 6磁性复合高分子材料的制备
(1)将 250ml三口烧瓶固定在加热套内, 在三口分别配上温度计、 空气冷凝管、 通氮气接 头, 冷凝管上方接抽真空装置接头, 保证整套装置良好的气密性。 称量加入 100g己内酰胺, 6.3g MnCl2禾 B 12.6g MnCl3至烧瓶中,抽真空、通氮气除氧 3次,后升温至 120°C,并维持 30min, 使 MnCl2和 MnCl3充分溶解在己内酰胺中。
(2) MnCl2禾 B MnCl3/己内酰胺溶液除水、 除杂质。 将步骤 (1) 制备的溶液在 160°C, 真空 处理 30min, 除去原料中所含的少量水和低沸点杂质。
(3)制备 Mn304磁性粒子 /己内酰胺磁性流体。 将步骤 (2)充分除水后 MnCl2禾 B MnCl3/己内 酰胺溶液, 通入氮气至标准大气压, 加入 7.5g NaOH粉末后迅速密封, 升温至 160°C, 抽真 空处理 2.5h, 得到 Mn304磁性粒子 /己内酰胺磁性流体。
(4) Mn304磁性粒子 /己内酰胺磁性流体原位聚合。 将体系通入氮气至标准大气压, 150°C 加入 0.8g甲苯 -2,4-二异氰酸酯 (TDI), 30s内迅速混合均勾后转入氮气保护的模具中,在 170°C 聚合反应 1.5h。 聚合反应完成后, 降至室温脱模, 可以直接得到 Mn304/饶注尼龙 6磁性复合 工程塑料部件, 应用于各种领域。
(5)将步骤 (4)制备的材料, 粉碎后用水抽提 14h, 除去未聚合高分子单体、 低聚物、 可溶 无机盐, 后将其在 80°C充分干燥, 得到 Mn304磁性粒子 /尼龙 6复合高分子材料, 高分子基 体尼龙 6产率为 92%。 提纯后的复合材料可以应用于对纯度要求较高的领域, 如医用磁性高 分子, 并有利于后续加工成型。
所得复合材料中磁性粒子的粒径约为 60~170nm, 含量为 11.2wt%, 复合材料的饱和磁化 强度为 1.2emu/g, 且在低于 80°C的空气氛围中磁性长时间稳定; 高分子基体尼龙 6数均分子 量约 60000。
实施例 22
纳米 Fe304/尼龙 4磁性复合高分子材料的制备
(1)将 250ml三口烧瓶固定在加热套内, 在三口分别配上温度计、 空气冷凝管、 通氮气接 头,冷凝管上方接抽真空装置接头,保证整套装置良好的气密性。称量加入 lOOg a-吡咯烷酮, 6.4g FeCl24H20和 13.0g FeCl3_6H2O至烧瓶中, 抽真空、 通氮气除氧 3次, 后升温至 120°C, 并维持 30 min, 使 FeCl2,4H20和 FeCl3,6¾0充分溶解在 α-吡咯烷酮中, 形成深褐色溶液。
(2) FeCl2-4H20 和 FeCl3,6H20/a-吡咯烷酮溶液除水、 除杂质。 将步骤 (1) 制备的溶液在 200 °C , 真空处理 30min, 除去原料中所含的少量水和低沸点杂质。
(3)制备 Fe304磁性粒子 /a-吡咯烷酮磁性流体。 将步骤 (2)充分除水后的 FeCl24H20 和 FeCl3,6¾0/a-吡咯烷酮溶液, 通入氮气至标准大气压, 降温至 80°C, 加入 8g KOH粉末后迅 速密封, 升温至 200°C, 抽真空处理 3h, 得到 Fe304磁性粒子 /a-吡咯烷酮磁性流体。
(4) Fe304磁性粒子 /a-吡咯烷酮磁性流体原位聚合。 将体系通入氮气至标准大气压, 降至 120°C后加入 l .Og乙酰基己内酰胺, 混合均勾后在此温度下反应 lh。
(5)将步骤 (4)制备的材料, 聚合产物粉碎用水抽提 8h, 除去未聚合 a-吡咯烷酮、 低聚物、 可溶无机盐, 后将其在 80°C充分干燥, 得到 Fe304磁性粒子 /尼龙 4复合高分子材料, 尼龙 4 产率为 70%。
所得纳米 Fe304/尼龙 4磁性复合高分子材料中磁性粒子的粒径约为 100~160nm, 含量为 8.0wt%,复合材料的饱和磁化强度为 6.5emu/g,且在低于 80°C的空气氛围中磁性长时间稳定; 高分子基体尼龙 4数均分子量约 40000。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。 熟悉 本领域技术的人员显然可以容易地对这些实施例做出各种修改, 并把在此说明的一般原理应 用到其他实施例中而不必经过创造性的劳动。 因此, 本发明不限于这里的实施例, 本领域技 术人员根据本发明的揭示, 不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范 围之内。

Claims

权 利 要 求 书
1. 一种纳米粒子 /聚酰胺复合材料, 其特征在于: 该复合材料包括 0.01~99重量份的无机 纳米粒子和 1~99.99重量份的聚酰胺基体。
2. 根据权利要求 1所述的纳米粒子 /聚酰胺复合材料, 其特征在于: 所述的无机纳米粒子 为 0.5~60重量份; 所述的聚酰胺基体为 40~99.5重量份。
3. 根据权利要求 1所述的纳米粒子 /聚酰胺复合材料, 其特征在于: 所述的聚酰胺为内酰 胺作为单体聚合形成的聚合物或均聚物; 进一步选自尼龙 4、 尼龙 6、 尼龙 7、 尼龙 8、 尼龙 9、 尼龙 10、 尼龙 11、 尼龙 12、 尼龙 4/6、 尼龙 4/12、 尼龙 6/10、 尼龙 6/12或尼龙 4/6/12, 优选尼龙 6/12、 尼龙 6或尼龙 12。
4. 根据权利要求 3所述的纳米粒子 /聚酰胺复合材料, 其特征在于: 所述的内酰胺结构通 式为-
Figure imgf000021_0001
选自丁内酰胺、 戊内酰胺、 己内酰胺、 庚内酰胺、 辛内酰胺、 壬内酰胺、 癸内酰胺、 十 一内酰胺或十二内酰胺, 优选丁内酰胺、 己内酰胺或十二内酰胺, 更优选己内酰胺。
5. 根据权利要求 1所述的纳米粒子 /聚酰胺复合材料, 其特征在于: 所述的无机纳米粒子 选自氢氧化物、 氧化物、 硫化物、 金属或无机盐中的一种或一种以上的物质; 其中: 所述的 氢氧化物是指一种及一种以上金属元素与氢氧根形成的不溶或微溶于水的无机化合物,进 一步选自 Ni(OH)2、 Mg(OH)2、 Al(OH)3 Nd(OH)3 Y(OH)3 镁铝水滑石或锌铝水滑石中的 一种或一种以上的物质, 优选 Mg(OH)2或 Nd(OH)3 ; 所述的氧化物是指一种及一种以上金属 元素或类金属元素与氧形成的不溶或微溶于水的无机化合物,进一步选自 Ag20、ZnO、CU20、 Fe304、 Si02、 MgAl204或 CaTi03中的一种或一种以上的物质, 优选 Ag20、 ZnO、 Cu20或 Fe304 ; 所述的硫化物选自金属或类金属元素与硫、 硒、 碲、 砷或锑结合而成的不溶或微溶 于水的无机化合物, 进一步选自 CuS、 ZnS、 CdS、 CdSe、 CdTe、 WSe2、 CuTe、 CoAs2或 GaAs中的一种或一种以上的物质, 优选 ZnS、 CdS、 CdSe或 CdTe; 所述的金属选自元素周 期表 IIIA、 IVA、 Ι Β、 Π Β或環族中的一种或一种以上的金属元素组成的不溶或微溶于水的 物质, 进一步选自 Fe、 Ni、 Cu、 Ag、 Pd、 Pt、 Au或 Ru中的一种或一种以上的物质组成的 合金或混合物, 优选 Cu、 Ag、 Au、 Pd或 Cu-Ag合金; 所述的无机盐是指金属元素阳离子与 碳酸根、 硫酸根、 硅酸根或卤族阴离子形成的不溶或微溶于水的无机化合物, 进一步选自 CaC03、 MgC03、 BaS04、 CaSi03、 AgCl、 AgBr或 CaF2中的一种或一种以上的物质, 优选 MgC03、 BaS04或 AgCl。
6. 根据权利要求 1所述的纳米粒子 /聚酰胺复合材料, 其特征在于: 所述的无机纳米粒子 为磁性粒子。
7. 根据权利要求 6所述的纳米粒子 /聚酰胺复合材料, 其特征在于: 所述的磁性粒子的化 学成分选自 Fe304、 Ni304、 C03O4或 Mn304中的一种。
8. 权利要求 1至 5任一所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 该方 法包括水解聚合法或阴离子聚合法。
9. 根据权利要求 8所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的水 解聚合法制备纳米粒子 /聚酰胺复合材料,包括以下步骤: 将纳米粒子 /内酰胺的混合物加入到 反应器, 内酰胺为 100重量份, 纳米粒子为 0.01~99重量份, 然后加入 0.1-20重量份去离子 水、 0.01-5重量份催化剂和 0.001-1重量份分子量调节剂, 在 80-100°C下搅拌混合均勾; 密封 反应器后升温到 120-300°C, 压力恒定在 0.1-3.0MPa, 水解反应 0.5-48h; 打开反应器泄压至 标准大气压; 在 180-300°C、 搅拌条件下抽真空 0.1-10h; 卸料、 拉条、 冷却、 切粒, 得到纳 米粒子 /聚酰胺复合材料。
10. 根据权利要求 9所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 催化剂为能电离出 H+的物质, 进一步选自盐酸、 硫酸、 甲酸、 乙酸、 氨基戊酸或氨基己酸, 优选氨基己酸; 所述的分子量调节剂是指能调节聚酰胺分子量的单官能度封端剂, 进一步选 自有机一元酸或有机一元胺, 优选乙酸、 己酸或己胺, 更优选己酸。
11. 根据权利要求 8所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 阴离子聚合法制备纳米粒子 /聚酰胺复合材料,包括以下步骤: 将纳米粒子 /内酰胺的混合物加 入到反应器, 内酰胺为 100重量份, 纳米粒子为 0.01~99重量份, 在 80-200°C抽真空 0.1-20h; 加入 0.01-10重量份催化剂, 在 100-180°C抽真空除水 0.1-10h, 按照以下三种方法中的一种聚 合得到纳米粒子 /聚酰胺复合材料:
( 1 ) 转移至预热的模具, 在 180-300°C恒温 0.1-12h, 聚合得到纳米粒子 /聚酰胺复合材 料;
或: (2) 降温到 80-180°C, 加入 0.01-10重量份活化剂, 混合均勾转入预热的模具, 在 120-200°C恒温 0.1-12h, 聚合得到纳米粒子 /聚酰胺复合材料;
或: (3 ) 降温至 80-160°C, 加入 0.01-10重量份活化剂, 混合均勾后转入双螺杆挤出机 进行反应挤出, 得到纳米粒子 /聚酰胺复合材料。
12. 根据权利要求 11所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 反应挤出操作为: 双螺杆入口以 0.1-lOOOOg/min的速度加入含纳米粒子、 内酰胺、 催化剂和 活化剂的混合物; 控制双螺杆挤出机螺杆转速为 50-500转 /min, 温度为 I区 80-150°C, II区 120-200 °C, III区 200-240°C, IV区 200-280°C, V区 220-280°C, VI区 220-280°C, VII区 220-250°C; 从出口挤出物料经冷却后切粒。
13. 根据权利要求 11所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 催化剂是能促使内酰胺形成阴离子活性中心的物质, 选自碱金属、 碱金属氢氧化物或碱金属 有机盐, 进一步选自 Na、 K、 NaOH、 KOH、 NaOCH3、 NaOC2H5、 KOC2H5、 丁内酰胺钠、 己内酰胺钠、 己内酰胺钾或苯酚钠, 优选 NaOH、 NaOC2¾或己内酰胺钠; 所述的活化剂是 能降低内酰胺阴离子聚合温度的物质, 进一步选自酰氯、 马来酸酐、 异氰酸酯、 N-酰基己内 酰胺、 碳酸酯或羧酸酯, 优选甲苯 -2,4-二异氰酸酯或 N-乙酰基己内酰胺。
14. 根据权利要求 9或 11所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所 述的纳米粒子 /内酰胺混合物的制备方法包括沉淀法、 溶胶-凝胶法或高温热解法。
15. 根据权利要求 14所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 沉淀法合成纳米粒子 /内酰胺的混合物包括以下步骤: 将 0.01-100重量份前驱体和 100重量份 内酰胺加入到反应器, 在 80-150°C下搅拌 0.1-2h使前驱体充分溶解或分散于熔融的内酰胺溶 剂, 在搅拌条件下加入 0.05-50重量份沉淀剂充分进行沉淀反应, 反应温度为 80~250°C, 反 应时间为 0.1~200h, 得到纳米粒子 /内酰胺的混合物。
16. 根据权利要求 14所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 内酰胺溶剂纯度≥60%, 水分≤20%。
17. 根据权利要求 14所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 前驱体选自金属阳离子与卤素、 硝酸根、 亚硝酸根、 硫酸根、 亚硫酸根或碳酸根阴离子形成 的可溶性无机盐, 进一步选自 MgCl2'6H20、 Nd(N03)3'6H20、 Υ(Ν03)3·6Η20、 A1C13'9H20、 Al2 (S04)3- 18H20、 ZnCl2、 AgN03、 CuS04-5H20、 FeCl24H20、 FeCl3-6H20、 Cd(N03)2-2H20、 BaCl2或 PdCl2 ; 或选自含金属或类金属的有机化合物, 进一步选自乙酸锌、 羰基铁、 乙酰丙 酮铁、 油酸铁、 钛酸丁酯或正硅酸乙酯。
18. 根据权利要求 14所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 沉淀剂选自碱金属、 碱金属氢氧化物、 碱金属有机盐、 氨和能热解释放氨的化合物、 金属元 素与卤族元素形成的可溶性无机盐、 金属元素与硫族元素形成的可溶性无机盐、 金属元素与 碳酸根形成的可溶性无机盐或金属元素与硫酸根形成的可溶性无机盐; 其中: 碱金属进一步 选自选自 Li、 Na或 K; 碱金属氢氧化物进一步选自 NaOH或 KOH; 碱金属有机盐进一步选 自甲醇钠、 乙醇钠、 苯酚钠、 油酸钾、 内酰胺钠或己内酰胺钾; 氨和能热解释放氨的化合物 进一步选自氨气、 氨水、 尿素、 碳酸铵或碳酸氢铵, 优选氨水; 金属元素与卤族元素形成的 可溶性无机盐进一步选自 NaCl、 KC1、 MgCl2、 CaCl2、 A1C13-6H20 FeCl2-4H20或 FeCl3'6H20, 优选 NaCl 或 KC1; 金属元素与硫族元素形成的可溶性无机盐进一步选自 Na2S、 K2S、 Na2S-9H20 Na2Se或 NaHTe; 金属元素与碳酸根形成的可溶性无机盐进一步选自 Na2C03或 K2C03; 金属元素与硫酸根形成的可溶性无机盐进一步选自 Na2S04或 K2S04
19. 根据权利要求 15至 18任一所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在 于:所述的沉淀法合成纳米粒子 /内酰胺的混合物过程中,在加入沉淀剂后进一步添加 0.05-50 重量份的还原剂。
20. 根据权利要求 14所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 溶胶-凝胶法合成纳米粒子 /内酰胺的混合物包括以下步骤: 将 0.01-100 重量份可水解前驱体 和 100重量份内酰胺加入到反应器, 在 80-150°C下搅拌 0.1-2h, 使前驱体充分溶解或分散于 熔融内酰胺溶剂, 加入 0.01-50重量份水进行水解反应得到溶胶, 水解反应温度为 80~250°C, 水解反应时间为 0.01~48h; 溶胶经过凝胶化反应得到纳米粒子 /内酰胺的混合物, 凝胶化反应 温度为 80~270°C, 凝胶化反应时间为 0.01~96h。
21. 根据权利要求 20所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 可水解前驱体选自金属阳离子与卤素、 硝酸根、 硫酸根或乙酸根阴离子组成的可水解的无机 盐或金属有机物, 其中: 金属阳离子与卤素、 硝酸根、 硫酸根或乙酸根阴离子组成的可水解 的无机盐进一步选自 FeCl2'4H20、 FeCl3、 FeCl3'6H20、 Fe(N03)3'6H20、 Fe2(S04)3、 A1C13、 A1C13'6H20、 CuS04'5H20、 CuCl2、 CuCl2'2H20、 TiCl3、 TiCl4或 Zn(OAc)2'2H20,优选 FeCl3'6H20 或 A1C13 ; 金属有机物进一步选自二乙基氯化铝、 异丙醇铝、 二乙基锌、 正硅酸乙酯、 钛酸丁 酯或钛酸乙酯, 优选正硅酸乙酯或钛酸丁酯。
22. 根据权利要求 20所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 内酰胺溶剂纯度≥60%, 水分 <30%。
23. 根据权利要求 20至 22任一所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在 于: 所述的溶胶-凝胶法合成纳米粒子 /内酰胺的混合物过程中, 在水解反应后进一步添加 0.05-50重量份的还原剂。
24. 根据权利要求 14所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 高温热解法合成纳米粒子 /内酰胺的混合物包括以下步骤: 将 0.01-100重量份可热解前驱体和 100重量份内酰胺加入到反应器, 在 80-150°C下搅拌 0.1-2h, 使前驱体充分溶解或分散于熔 融的内酰胺溶剂, 在 100~270°C热解反应 0.1~20h, 得到纳米粒子 /内酰胺的混合物。
25. 根据权利要求 24所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 内酰胺溶剂纯度≥90%, 水分 <1%。
26. 根据权利要求 24所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 可热解前驱体水分 <10%, 优选水分 <0.1%; 选自在不高于 280°C能热分解的可溶无机盐或在 不高于 280°C能热分解的金属有机物; 其中: 在不高于 280°C能热分解的可溶无机盐进一步选 自 AgN03、 FeCl3、 Zn(PAc)2或 TiCl4 ; 在不高于 280°C能热分解的金属有机物进一步选自油 酸盐、 乙酰丙盐或羰基盐, 优选油酸铁、 乙酰丙酮锌或羰基铁。
27. 根据权利要求 24至 26任一所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在 于: 所述的高温热解法合成纳米粒子 /内酰胺的混合物过程中, 加入内酰胺后进一步添加 0.05-50重量份阴离子供体。
28. 根据权利要求 27所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 阴离子供体选自温度≤280°C热分解, 并能产生合成纳米材料所需阴离子的化合物, 进一步选 自三辛基氧化磷或二硫化四甲基秋兰姆。
29. 根据权利要求 24至 28任一所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在 于: 所述的高温热解法合成纳米粒子 /内酰胺的混合物过程中, 在 100~270°C热解反应前进一 步添加 0.05-50重量份的还原剂。
30. 根据权利要求 19、 23或 29所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在 于: 所述的还原剂选自抗坏血酸、 硼氢化钾、 硼氢化钠、 肼、 水合肼、 羟胺或含醛基有机物; 其中: 含醛基有机物进一步选自甲醛、 乙醛、 乙二醛、 苯甲醛或葡萄糖。
31. 根据权利要求 15至 30任一所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在 于: 所述的沉淀法、溶胶-凝胶法或高温热解法合成纳米粒子 /内酰胺的混合物过程中, 加入内 酰胺后进一步添加 0.01-20重量份稳定剂或 0.1-80重量份不溶无机物。
32. 根据权利要求 31所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 稳定剂选自调节合成纳米材料形貌的阴离子表面活性剂、 阳离子表面活性剂、 两性表面活性 剂或非离子表面活性剂; 其中: 阴离子表面活性剂进一步选自十二烷基磺酸钠、 烷基苯磺酸 钠或油酸钠; 阳离子表面活性剂进一步选自四丙基氢氧化铵、 四丙基溴化铵、 四丙基氯化铵、 十六烷基三甲基溴化铵、 十六烷基三甲基氯化铵或十二烷基三甲基溴化铵; 两性表面活性剂 进一步选自十二烷基乙氧基磺基甜菜碱、 十八烷基二羟乙基氧化胺或十八酰胺丙基氧化胺; 非离子表面活性剂进一步选自三嵌段共聚物、聚乙二醇、聚乙烯吡啶、丙三醇或 2-巯基丙酸。
33. 根据权利要求 31所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 所述的 不溶无机物是指作为合成纳米材料载体或附着点的物质, 进一步选自活性碳、 石墨烯、 碳纤 维、 纳米碳管、 分子筛、 蒙皂族粘土、 硅藻土、 玻璃纤维或玻璃微球。
34. 权利要求 6或 7所述的纳米粒子 /聚酰胺复合材料的制备方法, 其特征在于: 该方法 包括以下步骤:
(1)磁性前驱体 /高分子单体溶液的制备:将 100重量份高分子单体和磁性前驱体混合均勾, 在密闭条件下抽真空, 通氮气循环 1~4次除氧, 逐渐升温至 80~120°C并维持 10~60min, 使 磁性前驱体充分溶解在高分子单体中, 形成深褐色溶液;
(2)磁性前驱体 /高分子单体溶液除水除杂质: 将步骤 (1)制备的溶液在 100~200°C, 真空条 件, 回流处理 10~30min, 除去原料中所含的少量水和低沸点杂质;
(3)磁性粒子 /高分子单体磁性流体的制备:将步骤 (2)所得的磁性前驱体 /高分子单体溶液反 应体系, 通入氮气至标准大气压, 迅速加入 0.5~10重量份碱, 升温至 100~200°C, 真空条件 下回流处理 0.5~3h, 得到磁性粒子 /高分子单体磁性流体;
(4)磁性粒子 /高分子单体磁性流体原位聚合: 将磁性粒子 /高分子单体磁性流体降温至 100~180°C , 加入 0.2~1.0 重量份聚合活化剂, 迅速搅拌混合均勾, 在 120~200°C聚合反应 0.2-2h;
(5)将步骤 (4)制备的材料, 粉碎后用水抽提 4~16h, 除去未聚合高分子单体、 低聚物、 可 溶无机盐, 将其在 60~80°C充分干燥, 得到磁性复合高分子材料。
35. 根据权利要求 34所述的磁性复合高分子材料的制备方法, 其特征在于: 所述的磁性 前驱体选自磁性金属 Fe、 Co、 Ni或 Mn的二价可溶盐或三价可溶盐中的一种或一种以上的混 合物, 进一步选自 FeCl2/Fe2(S04)3、 FeCl2-4H20 /FeCl3-6H20 或 MnCl2/MnCl3; 优选为 FeCl2-4H20/FeCl3-6H20; 磁性前驱体中二价金属离子与三价金属离子的摩尔比为 0.3~1.0, 优 选为 0.67。
36. 根据权利要求 34所述的磁性复合高分子材料的制备方法, 其特征在于: 所述的步骤 (1)中, 加入磁性前驱体的量决定磁性复合高分子材料中磁性粒子粒径、 质量百分含量和饱和 磁化强度; 磁性前驱体的量越多, 磁性粒子的粒径越大, 质量分数越高, 复合材料饱和磁化 强度越大。
37. 根据权利要求 34所述的磁性复合高分子材料的制备方法, 其特征在于: 所述的高分 子单体是指合成高分子聚合物对应的原料, 如尼龙 6对应的高分子单体是己内酰胺、 尼龙 4 对应的高分子单体是 α-吡咯烷酮或尼龙 4/6对应的是 α-吡咯烷酮与己内酰胺的混合物。
38. 根据权利要求 34所述的磁性复合高分子材料的制备方法, 其特征在于: 所述的碱选 自碱金属、碱金属氢氧化物或碱金属醇盐中的一种,进一步选自 Na、 K、NaOH、 KOH、NaOC2H5 或 KOC2H5中的一种。
39. 根据权利要求 34所述的磁性复合高分子材料的制备方法, 其特征在于: 所述的聚合 活化剂选自酰氯、 酸酐、 异氰酸酯或酰基己内酰胺中的一种或一种以上的混合物, 进一步选 自苯甲酰氯、 马来酸酐、 甲苯 -2,4-二异氰酸酯或乙酰基己内酰胺。
40. 权利要求 1至 7任一所述的纳米粒子 /聚酰胺复合材料用作结构材料、 功能高分子材 料或高分子母料的应用。
41. 根据权利要求 40所述的应用, 其特征在于: 所述的纳米粒子 /聚酰胺复合材料用作结 构材料的方法如下:
将纳米粒子 /聚酰胺复合材料破碎, 0-100°C水煮 0-100h, 过滤后在 50-200°C干燥 0-48h, 得到纯化的纳米粒子 /聚酰胺复合材料, 经注塑或纺丝制成产品。
42. 根据权利要求 41所述的应用,其特征在于:所述的注塑条件为:熔融温度 220-300°C, 注射压力 750-1250bar, 保压时间 l-120s, 模具温度 20-100°C; 所述的纺丝条件为: 熔融温度 为 180-250°C, 纺丝头温度 240-280°C, 压力 3.0-3.5MPa, 出口风冷温度 5-10(TC。
43. 根据权利要求 40所述的应用, 其特征在于: 所述的纳米粒子 /聚酰胺复合材料用作功 能高分子材料的方法如下:
将纳米粒子 /聚酰胺复合材料破碎, 0-100°C水煮 0-100h, 过滤后在 50-200°C干燥 0-48h, 得到纯化的纳米粒子 /聚酰胺复合材料, 经注塑或纺丝制成功能高分子材料。
44. 根据权利要求 43所述的应用,其特征在于:所述的注塑条件为:熔融温度 220-300°C, 注射压力 750-1250bar, 保压时间 l-120s, 模具温度 20-100°C; 所述的纺丝条件为: 熔融温度 为 180-250°C, 纺丝头温度 240-280°C, 压力 3.0-3.5MPa, 出口风冷温度 5-10(TC。
45. 根据权利要求 40所述的应用, 其特征在于: 所述的纳米粒子 /聚酰胺复合材料用作高 分子母料的方法如下:
将纳米粒子 /聚酰胺复合材料破碎, 0-100°C水煮 0-100h, 过滤后在 50-200°C干燥 0-48h, 得到高分子母料。
46. 一种新的纳米复合材料的制备方法, 其特征在于: 该方法包括以下步骤:
将 1-100重量份根据权利要求 45所述的制备的高分子母料与 100重量份热塑性塑料或弹 性体, 150-280°C熔融共混, 制备新的纳米复合材料。
47. 根据权利要求 46所述的新的纳米复合材料的制备方法, 其特征在于: 所述的热塑性 塑料选自聚酰胺、 聚酯、 聚烯烃或聚碳酸酯, 其中: 聚酰胺进一步选自尼龙 6或尼龙 66; 聚 酯进一步选自 PET、 PPT或 PBT; 聚烯烃进一步选自 PE、 PP或乙丙共聚物; 所述的弹性体 选自乙丙橡胶或丁二烯-苯乙烯-丁二烯共聚物。
48. 一种磁性复合高分子材料, 其特征在于: 该材料包括磁性粒子和高分子聚合物, 饱 和磁化强度为 0.5~10emu/g, 磁性粒子含量为 0.5~15wt%, 粒径为 20~200nm。
49. 根据权利要求 48所述的磁性复合高分子材料, 其特征在于: 所述的磁性粒子的化学 成分选自 Fe304、 Ni304、 C03O4或 Mn304中的一种。
50. 根据权利要求 48所述的磁性复合高分子材料, 其特征在于: 所述的高分子聚合物选 自己内酰胺或 α-吡咯烷酮单体阴离子开环聚合形成的均聚物或共聚物中的一种或一种以上的 混合物, 进一步选自尼龙 6、 尼龙 4或尼龙 4/6中的一种或一种以上的混合物。
51. 权利要求 48至 50任一所述的磁性复合高分子材料的制备方法, 其特征在于: 该方 法包括以下步骤:
(1)磁性前驱体 /高分子单体溶液的制备:将 100重量份高分子单体和磁性前驱体混合均勾, 在密闭条件下抽真空, 通氮气循环 1~4次除氧, 逐渐升温至 80~120°C并维持 10~60min, 使 磁性前驱体充分溶解在高分子单体中, 形成深褐色溶液;
(2)磁性前驱体 /高分子单体溶液除水除杂质: 将步骤 (1)制备的溶液在 100~200°C, 真空条 件, 回流处理 10~30min, 除去原料中所含的少量水和低沸点杂质;
(3)磁性粒子 /高分子单体磁性流体的制备:将步骤 (2)所得的磁性前驱体 /高分子单体溶液反 应体系, 通入氮气至标准大气压, 迅速加入 0.5~10重量份碱, 升温至 100~200°C, 真空条件 下回流处理 0.5~3h, 得到磁性粒子 /高分子单体磁性流体;
(4)磁性粒子 /高分子单体磁性流体原位聚合: 将磁性粒子 /高分子单体磁性流体降温至 100~180°C , 加入 0.2~1.0 重量份聚合活化剂, 迅速搅拌混合均勾, 在 120~200°C聚合反应 0.2-2h;
(5)将步骤 (4)制备的材料, 粉碎后用水抽提 4~16h, 除去未聚合高分子单体、 低聚物、 可 溶无机盐, 将其在 60~80°C充分干燥, 得到磁性复合高分子材料。
52. 根据权利要求 51所述的磁性复合高分子材料的制备方法, 其特征在于: 所述的磁性 前驱体选自磁性金属 Fe、 Co、 Ni或 Mn的二价可溶盐或三价可溶盐中的一种或一种以上的混 合物, 进一步选自 FeCl2/Fe2(S04)3、 FeCl2-4H20 /FeCl3-6H20 或 MnCl2/MnCl3; 优选为 FeCl2-4H20/FeCl3-6H20; 磁性前驱体中二价金属离子与三价金属离子的摩尔比为 0.3~1.0, 优 选为 0.67。
53. 根据权利要求 51所述的磁性复合高分子材料的制备方法, 其特征在于: 所述的步骤 (1)中, 加入磁性前驱体的量决定磁性复合高分子材料中磁性粒子粒径、 质量百分含量和饱和 磁化强度; 磁性前驱体的量越多, 磁性粒子的粒径越大, 质量分数越高, 复合材料饱和磁化 强度越大。
54. 根据权利要求 51所述的磁性复合高分子材料的制备方法, 其特征在于: 所述的高分 子单体是指合成高分子聚合物对应的原料, 如尼龙 6对应的高分子单体是己内酰胺、 尼龙 4 对应的高分子单体是 α-吡咯烷酮或尼龙 4/6对应的是 α-吡咯烷酮与己内酰胺的混合物。
55. 根据权利要求 51所述的磁性复合高分子材料的制备方法, 其特征在于: 所述的碱选 自碱金属、碱金属氢氧化物或碱金属醇盐中的一种,进一步选自 Na、 K、NaOH、 KOH、NaOC2H5 或 KOC2H5中的一种。
56. 根据权利要求 51所述的磁性复合高分子材料的制备方法, 其特征在于: 所述的聚合 活化剂选自酰氯、 酸酐、 异氰酸酯或酰基己内酰胺中的一种或一种以上的混合物, 进一步选 自苯甲酰氯、 马来酸酐、 甲苯 -2,4-二异氰酸酯或乙酰基己内酰胺。
PCT/CN2011/084661 2010-12-28 2011-12-26 一种纳米粒子/聚酰胺复合材料、制备方法及其应用 WO2012089081A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/977,409 US9355765B2 (en) 2010-12-28 2011-12-26 Nano particle/polyamide composite material, preparation method therefor, and use thereof
KR1020137020122A KR101582132B1 (ko) 2010-12-28 2011-12-26 나노 입자/폴리아미드 복합 재료, 그 제조방법 및 그 용도
JP2013546577A JP2014501309A (ja) 2010-12-28 2011-12-26 ナノ粒子/ポリアミド複合材料、調製方法及びその応用
EP11852381.0A EP2660268B1 (en) 2010-12-28 2011-12-26 Nano particle/polyamide composite material, preparation method therefor, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010609499 2010-12-28
CN201010609499.8 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012089081A1 true WO2012089081A1 (zh) 2012-07-05

Family

ID=46382307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084661 WO2012089081A1 (zh) 2010-12-28 2011-12-26 一种纳米粒子/聚酰胺复合材料、制备方法及其应用

Country Status (6)

Country Link
US (1) US9355765B2 (zh)
EP (1) EP2660268B1 (zh)
JP (1) JP2014501309A (zh)
KR (1) KR101582132B1 (zh)
CN (1) CN102585493B (zh)
WO (1) WO2012089081A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102922811A (zh) * 2012-11-22 2013-02-13 吴江江旭纺织有限公司 一种复合涂层法制备远红外纺织品的方法
CN102926223A (zh) * 2012-11-22 2013-02-13 吴江江旭纺织有限公司 一种远红外纺织品的制备方法
WO2014022226A1 (en) * 2012-08-01 2014-02-06 Graham Packaging Company, L.P. In-situ polymerized polymer-platinum group metal nanoparticle blends and oxygen scavenging containers made therefrom
CN104060343A (zh) * 2013-03-19 2014-09-24 浙江美丝邦化纤有限公司 细旦及超细旦锦纶6纤维及其制造方法
US20140374079A1 (en) * 2013-06-21 2014-12-25 Lockheed Martin Corporation Conformable and adhesive solid compositions formed from metal nanoparticles and methods for their production and use
CN104562266A (zh) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 一种含有超细金属颗粒的聚合物复合纤维的制备方法及其制备的聚合物复合纤维
CN108795537A (zh) * 2018-08-03 2018-11-13 苏州大学 一种表面修饰的润滑油用纳米铜的制备方法
CN108822539A (zh) * 2018-07-10 2018-11-16 芜湖市元奎新材料科技有限公司 环保阻燃尼龙复合材料及其制备方法
CN109046352A (zh) * 2018-07-13 2018-12-21 陶春梅 一种催化制备肿瘤血管阻断剂药物中间体的方法
CN109686526A (zh) * 2019-02-22 2019-04-26 株洲伟大科技发展有限责任公司 一种强磁场条件下稳定的磁性流体及其制备方法
CN109929263A (zh) * 2017-12-15 2019-06-25 南京机器人研究院有限公司 新型碳纤维复合材料
CN109930230A (zh) * 2017-12-19 2019-06-25 凯赛(乌苏)生物材料有限公司 一种共聚酰胺工业丝及其制备方法
CN110506753A (zh) * 2019-07-30 2019-11-29 黄山永瑞生物科技有限公司 一种改性纳米银抗菌复合材料的制备方法
CN114196195A (zh) * 2021-12-23 2022-03-18 苏州宝丽迪材料科技股份有限公司 一种pa6吸波母粒的制备方法及其产品
CN114613564A (zh) * 2022-03-23 2022-06-10 南通成泰磁材科技有限公司 一种高磁导率铁氧体磁性材料及其制备方法

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652386B2 (en) 2010-09-16 2014-02-18 Georgia Tech Research Corporation Alignment of carbon nanotubes comprising magnetically sensitive metal oxides in nanofluids
EP2660268B1 (en) * 2010-12-28 2019-08-07 Shanghai Genius Advanced Material (Group) Co. Ltd Nano particle/polyamide composite material, preparation method therefor, and use thereof
CN102936410B (zh) * 2012-11-23 2015-12-09 杭州千石科技有限公司 一种原位聚合制备聚酰胺基导热复合材料的方法
CN103160053B (zh) * 2012-12-07 2015-09-09 河南城建学院 一种聚丙烯腈电磁屏蔽纳米复合材料的制备方法
CN103073930A (zh) * 2013-01-30 2013-05-01 同济大学 一种烷基化功能石墨烯的制备方法及其应用
CN103215689B (zh) * 2013-05-09 2015-02-18 苏州大学 一种石墨烯改性尼龙6纤维的制备方法
CN103333333B (zh) * 2013-07-15 2015-06-03 河南大学 一种纳米铜—聚酰胺复合材料的制备方法
US9334386B2 (en) * 2013-09-04 2016-05-10 Alfaisal University Antimicrobial polymer-graphene-silver nanocomposite
CN103450674B (zh) * 2013-09-11 2016-01-20 上海大学 一种高导热尼龙6/石墨烯纳米复合材料及其制备方法
CN103756303B (zh) * 2013-12-20 2016-03-09 安徽孟凌精密电子有限公司 一种尼龙垫圈用具有耐高温的玻纤增强尼龙pa12树脂组合物料
CN103756302B (zh) * 2013-12-20 2015-09-23 安徽孟凌精密电子有限公司 一种尼龙垫圈用纳米荧光材料组合物料
KR101637632B1 (ko) * 2013-12-24 2016-07-07 현대자동차주식회사 나일론 복합체 및 이의 제조방법
US9312046B2 (en) 2014-02-12 2016-04-12 South Dakota Board Of Regents Composite materials with magnetically aligned carbon nanoparticles having enhanced electrical properties and methods of preparation
CN103868967B (zh) * 2014-03-25 2016-03-30 江南大学 镀镍尼龙6纳米纤维膜无酶葡萄糖传感器及其制备方法
CA2981481C (en) 2014-04-25 2023-09-12 South Dakota Board Of Regents High capacity electrodes
CN103980608B (zh) * 2014-04-30 2015-07-08 中国科学院化学研究所 一种可用于3d打印的聚丙烯纳米复合材料及其制备方法和应用
WO2015165361A1 (zh) * 2014-04-30 2015-11-05 中国科学院化学研究所 一种可用于3d打印的尼龙粉体组合物及其制备方法和应用
CN103980401B (zh) * 2014-04-30 2016-02-24 中国科学院化学研究所 一种可用于3d打印的纳米粒子/聚丙烯无规共聚物复合树脂及其制备方法和应用
CN104061379B (zh) * 2014-06-26 2017-05-24 五行科技股份有限公司 一种聚氨酯柔性管材及其制备方法
FR3025800B1 (fr) * 2014-09-12 2016-12-09 Univ Claude Bernard Lyon Composition aqueuse de particules de zno suspendues
CN104329510B (zh) * 2014-10-22 2016-06-22 长虹塑料集团英派瑞塑料股份有限公司 一种马鞍型线夹及其制备方法
CN105585708B (zh) * 2014-10-24 2018-07-03 广东新会美达锦纶股份有限公司 纳米增强粒子增强的尼龙复合材料及其制备方法和应用
CN104650863B (zh) * 2015-02-09 2017-01-04 中国计量学院 一种碳纳米粒子-离子凝胶复合材料的制备方法
CN106142381A (zh) * 2015-04-01 2016-11-23 合肥杰事杰新材料股份有限公司 一种石墨烯/尼龙纳米复合材料及其反应挤出制备方法
CN104927816B (zh) * 2015-05-11 2017-09-22 大庆市天曼石油化工有限公司 一种有机调剖剂及其制备方法与用途
EP3294791B1 (de) * 2015-05-12 2019-10-02 Basf Se Caprolactam formulierungen
CN106478939A (zh) * 2015-08-27 2017-03-08 合肥杰事杰新材料股份有限公司 一种石墨烯/尼龙/弹性体的纳米复合材料及其制备方法
CN105295029B (zh) * 2015-12-04 2018-10-30 黄淮学院 一种纳米氧化锌—聚酰胺复合材料及其制备方法
US9902854B2 (en) 2015-12-14 2018-02-27 Hyundai Motor Company Polyamide composite resin composition for fuel filler pipe
CN106893311A (zh) * 2015-12-18 2017-06-27 上海杰事杰新材料(集团)股份有限公司 一种磁性纳米高分子复合材料及其制备方法
JP6965242B2 (ja) * 2016-05-24 2021-11-10 Jsr株式会社 複合粒子、被覆粒子、複合粒子の製造方法、リガンド含有固相担体および試料中の標的物質を検出または分離する方法
CN106540691A (zh) * 2016-09-30 2017-03-29 天津宝兴威科技有限公司 一种纳米银催化剂的制备方法
CN108236967B (zh) * 2016-12-26 2020-07-07 南京理工大学 CdS-U复合可见光催化剂
CN106866957B (zh) * 2017-03-09 2019-06-07 长乐力恒锦纶科技有限公司 一种纳米铜离子差异化锦纶切片的制备方法
US11474110B2 (en) 2017-03-15 2022-10-18 King Fahd University Of Petroleum And Minerals Method for detecting methimazole by surface-enhanced raman scattering
JP6911440B2 (ja) * 2017-03-24 2021-07-28 宇部興産株式会社 ポリアミド複合材料の製造方法
CN107313125B (zh) * 2017-06-27 2018-10-23 江苏苏能新材料科技有限公司 一种磁性聚酰胺超细纤维及其反应挤出原位聚合制备方法
WO2019020685A1 (en) 2017-07-26 2019-01-31 Ineos Styrolution Group Gmbh SCRATCH-RESISTANT STYRENE COPOLYMER COMPOSITION CONTAINING NANOPARTICLES OF INORGANIC METALLIC COMPOUND
WO2019020688A1 (en) 2017-07-26 2019-01-31 Ineos Styrolution Group Gmbh STYRENE COPOLYMER COMPOSITION HAVING ENHANCED RESIDUAL GLOSS
CN107722612B (zh) * 2017-09-15 2020-07-24 中广核俊尔新材料有限公司 石墨烯复合尼龙粉末材料及其制备方法和在3d打印中的应用
CN109749420A (zh) * 2017-11-03 2019-05-14 丹阳博亚新材料技术服务有限公司 一种镍钴合金微粒导热材料
KR102287634B1 (ko) * 2017-11-08 2021-08-10 한화솔루션 주식회사 음이온 개환 중합에 의한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드
KR101952932B1 (ko) * 2017-11-29 2019-02-27 울산과학기술원 나노 물질을 포함하는 탄소 섬유-고분자 수지 복합재의 제조 방법
CN108154960B (zh) * 2017-12-28 2024-01-23 扬州曙光电缆股份有限公司 一种阻燃耐火防干扰海工本安仪表电缆
US10468674B2 (en) 2018-01-09 2019-11-05 South Dakota Board Of Regents Layered high capacity electrodes
CN110387598B (zh) * 2018-04-17 2022-06-14 南通纺织丝绸产业技术研究院 一种抗菌防紫外多功能化学纤维
WO2019144567A1 (zh) * 2018-01-29 2019-08-01 南通纺织丝绸产业技术研究院 一种抗菌防紫外多功能化学纤维
CN108579746B (zh) * 2018-04-19 2021-06-25 福建农林大学 一种氧化锌/氧化银复合光催化剂的制备方法及其应用
CN108504087A (zh) * 2018-05-10 2018-09-07 重庆新康意安得达尔新材料有限公司 一种高分子磁性复合材料及其制备工艺
CN110511375A (zh) * 2018-05-22 2019-11-29 上海杰事杰新材料(集团)股份有限公司 一种抗静电聚酰胺复合材料及其制备方法
WO2019235496A1 (ja) * 2018-06-05 2019-12-12 帝人株式会社 複合粒子及びその製造方法
TWI818996B (zh) * 2018-06-05 2023-10-21 日商東洋紡Mc股份有限公司 吸附片、及吸附元件
CN108892935A (zh) * 2018-06-22 2018-11-27 东莞市宝理新材料科技有限公司 一种耐高温和防静电性能好的复合材料及其制备方法
KR102519449B1 (ko) * 2018-07-23 2023-04-13 주식회사 에스아이티 탄소나노튜브 펠릿을 이용하여 제조된 핸드폰 케이스
KR102136601B1 (ko) * 2018-07-23 2020-07-24 주식회사 에스아이티 탄소나노튜브 펠릿 제조방법 및 그 제조방법에 의해 제조된 탄소나노튜브 펠릿
CN109183177A (zh) * 2018-08-08 2019-01-11 内蒙古石墨烯材料研究院 一种高强高模的对位芳纶纤维及制备方法和应用
CN109402763B (zh) * 2018-09-12 2021-05-21 恒天中纤纺化无锡有限公司 一种凉感锦纶6短纤维及其制备方法
CN109402574B (zh) * 2018-12-03 2020-09-04 暨南大学 一种分散型自组装vo2纳米颗粒及其制备方法
CN109851824B (zh) * 2018-12-25 2021-12-17 中国纺织科学研究院有限公司 连续生产聚酰胺功能母粒的方法及该聚酰胺功能母粒
CN109550373A (zh) * 2019-01-29 2019-04-02 艾易西(中国)环保科技有限公司 一种除碱材料及其制备方法
CN109796754A (zh) * 2019-02-15 2019-05-24 安庆市虹泰新材料有限责任公司 聚酰胺纳米复合材料的制备方法及聚酰胺纳米复合材料
CN110105752A (zh) * 2019-03-20 2019-08-09 广东龙道新材料有限公司 一种泡沫改性尼龙复合材料及其制备方法
CN110453302A (zh) * 2019-04-19 2019-11-15 陕西金瑞烯科技发展有限公司 一种石墨烯锦纶纤维的制备方法
CN112011176A (zh) * 2019-05-29 2020-12-01 北京服装学院 一种磁性聚酰胺及其制备方法以及利用其得到的磁性纤维
CN110437477B (zh) * 2019-06-26 2022-03-15 圣华盾防护科技股份有限公司 一种抗菌抗静电石墨烯聚酯纺丝用色母粒及其制备方法
CN110437479B (zh) * 2019-06-26 2022-03-15 圣华盾防护科技股份有限公司 一种抗菌抗静电石墨烯丙纶纺丝用色母粒及其制备方法
CN110437478B (zh) * 2019-06-26 2022-04-19 圣华盾防护科技股份有限公司 一种抗菌抗静电石墨烯锦纶纺丝用色母粒及其制备方法
CN110935394B (zh) * 2019-11-05 2021-07-30 南京清大迈特新材料有限公司 一种微纳粉体精细加工方法及装置
US11345615B2 (en) * 2019-11-13 2022-05-31 King Fahd University Of Petroleum And Minerals Activated carbon-iron/cerium oxide nanocomposite suitable for dye removal
CN111057258A (zh) * 2019-12-02 2020-04-24 苏州市新广益电子有限公司 一种pbt改性的导热薄膜及其生产工艺
CN113045748B (zh) * 2019-12-28 2022-10-28 合肥杰事杰新材料股份有限公司 一种改性空心玻璃微球、含有改性空心玻璃微球的浇铸尼龙6组合物及其制备方法
CN111748865B (zh) * 2019-12-31 2022-12-09 泉州铮蓥化纤有限公司 一种具有耐折耐磨复合功能的锦纶单丝及其制备方法
CN111234434B (zh) * 2020-03-23 2022-08-30 德红柜智能科技(厦门)有限公司 一种抗菌塑料与使用该抗菌塑料的门柜
CN111334153B (zh) * 2020-04-13 2021-06-15 黑龙江省淞沐地坪科技有限公司 一种导热导电型改性聚氨酯超疏水复合涂料及其制法
TWI732556B (zh) * 2020-05-18 2021-07-01 張文禮 奈米前處理長效功能性複合材料及其織物
CN111978717A (zh) * 2020-07-15 2020-11-24 宁波墨西科技有限公司 一种高光且具备电磁屏蔽功能的as/pa9t复合材料及其制备方法
CN112725923A (zh) * 2020-12-31 2021-04-30 百事基材料(青岛)股份有限公司 含银杏、玫瑰花、山茶花、红石榴、葛根的锦纶大生物纤维及其制备方法
CN112812548B (zh) * 2020-12-31 2022-07-22 河北晨升塑胶制品有限公司 一种耐高温、低温冲击的尼龙材料及制备方法
CN113181916A (zh) * 2021-03-24 2021-07-30 常州大学 一种片状铜-钴纳米复合材料的制备方法及其应用方法
CN113150541B (zh) * 2021-04-02 2022-06-21 浙江工业大学 一种高强度高导热尼龙复合材料及其制备方法
CN113649587A (zh) * 2021-07-14 2021-11-16 上海涂固安高科技有限公司 一种包含金属纳米颗粒的无机/聚合物复合纳米颗粒及应用
CN113527876B (zh) * 2021-07-20 2023-07-18 西安特种设备检验检测院 电梯导靴靴衬用高分子/陶瓷复合材料、制备方法和应用
CN115961364A (zh) * 2021-10-08 2023-04-14 铨程国际股份有限公司 超高分子纤维制造方法及系统
CN114031902A (zh) * 2021-11-24 2022-02-11 江西伟普科技有限公司 一种磁性化合物塑料合金材料及其制备方法
CN114479065B (zh) * 2022-02-23 2024-01-26 广东墨睿科技有限公司 阻燃复合材料及其制备方法、电子设备
CN114703562B (zh) * 2022-03-09 2023-07-21 杭州惠丰化纤有限公司 一种超细抗静电涤棉复合丝及其制备方法与抗静电面料
CN114656724B (zh) * 2022-03-30 2023-09-26 金发科技股份有限公司 一种导电母粒、电磁屏蔽增强聚酰胺组合物及其应用
WO2023203212A1 (en) 2022-04-21 2023-10-26 Solvay Specialty Polymers Usa, Llc Smart device component comprising a polyamide composition with low water uptake
CN115260486A (zh) * 2022-08-02 2022-11-01 河北科技大学 原位聚合尼龙基母料及其制备方法
CN115232302B (zh) * 2022-08-30 2024-01-05 杭州聚合顺新材料股份有限公司 简便快速制备尼龙66纳米复合材料的方法
CN115572479B (zh) * 2022-11-03 2023-06-16 贵州省材料产业技术研究院 一种无机纳米粒子增强聚酰胺12粉末及其制备方法
CN115537967A (zh) * 2022-11-09 2022-12-30 东华大学 一种磁性可调聚合物/铁氧体杂化纤维及其制备方法
CN115926453B (zh) * 2023-01-13 2024-05-17 深圳科立尔科技有限公司 一种具有抗静电作用的尼龙母粒及其制备方法
CN116832856A (zh) * 2023-07-10 2023-10-03 昆明贵研催化剂有限责任公司 一种柴油机用硫捕集催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422901A (zh) * 2002-12-12 2003-06-11 湘潭大学 尼龙6/无机粒子纳米复合材料直接制备方法
CN1549283A (zh) * 2003-05-15 2004-11-24 中国科学院化学研究所 一种高结晶度的水分散性磁性纳米微粒的制备方法
CN1844242A (zh) * 2006-04-28 2006-10-11 湘潭大学 尼龙6/环氧树脂/二氧化硅纳米复合材料的原位聚合制备方法
CN101225227A (zh) * 2008-01-31 2008-07-23 上海交通大学 超支化聚酰胺胺与金属纳米复合物及制备方法和应用
CN101245212A (zh) * 2008-03-12 2008-08-20 株洲时代新材料科技股份有限公司 一种原位聚合法制备耐电晕漆包线漆的方法
CN101864167A (zh) * 2007-11-13 2010-10-20 中国科学院金属研究所 一种磁性铁氧化物-树状聚酰胺核壳纳米复合物及其制备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE622933A (zh) * 1961-09-27 1900-01-01
US5932309A (en) * 1995-09-28 1999-08-03 Alliedsignal Inc. Colored articles and compositions and methods for their fabrication
DE19621308A1 (de) * 1996-05-28 1997-12-04 Bayer Ag Polyamidformmassen enthaltend nanodisperse Füllstoffe, sowie Folien oder Hohlkörper enthaltend eine entsprechende Polyamidschicht
JP3587970B2 (ja) * 1997-12-26 2004-11-10 日本ポリペンコ株式会社 モノマーキャストナイロン成形品
DE19859298A1 (de) * 1998-12-22 2000-06-29 Bayer Ag Nanoskaligen Maghämit oder Magnetit enthaltende Polyamid-Formmassen
FR2787797B1 (fr) * 1998-12-23 2006-01-06 Rhodianyl Procede de fabrication de polyamide
JP3657794B2 (ja) * 1998-12-28 2005-06-08 日本ポリペンコ株式会社 充填剤を含有するε−カプロラクタム重合体成形体及びその製造法
BR9917441A (pt) * 1999-08-13 2002-05-14 Solutia Inc Métodos para a preparação de composições de nanocompósito de poliamida por polimerização in situ
JP2005068311A (ja) * 2003-08-26 2005-03-17 Dainippon Ink & Chem Inc 有機ポリマーと金属化合物との複合体の製造方法および複合体
CN100395288C (zh) * 2004-12-27 2008-06-18 上海杰事杰新材料股份有限公司 一种尼龙/粘土纳米复合材料燃油箱及其制备方法
CN100532456C (zh) * 2004-12-29 2009-08-26 上海杰事杰新材料股份有限公司 一种尼龙/层状硅酸盐粘土纳米复合材料的制备方法
JP2008537978A (ja) * 2005-03-25 2008-10-02 シーマ ナノ テック イスラエル リミティド ナノ−金属粒子含有ポリマー複合材、その製造方法およびその使用
US8198355B2 (en) * 2006-06-15 2012-06-12 E. I. Du Pont De Nemours And Company Nanocomposite compositions of polyamides and sepiolite-type clays
CA2661530A1 (en) * 2006-08-25 2008-02-28 Sachtleben Chemie Gmbh Titanium dioxide-containing composite
CN100412126C (zh) * 2006-09-05 2008-08-20 武汉理工大学 一类类流体无机纳米粒子与聚合物的复合材料及制备
CN101161705B (zh) * 2006-10-13 2010-05-12 中国科学院化学研究所 功能性聚合物纳米复合材料及其制备方法和用途
WO2008084013A2 (en) * 2007-01-11 2008-07-17 Basf Se Polyamide nanocomposite
CN101012312A (zh) * 2007-02-08 2007-08-08 上海交通大学 多功能高分子-无机复合微球的制备方法
CN101215416A (zh) * 2007-12-26 2008-07-09 华东理工大学 纳米二氧化硅/聚己内酰胺复合树脂的制备方法
EP2660268B1 (en) * 2010-12-28 2019-08-07 Shanghai Genius Advanced Material (Group) Co. Ltd Nano particle/polyamide composite material, preparation method therefor, and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422901A (zh) * 2002-12-12 2003-06-11 湘潭大学 尼龙6/无机粒子纳米复合材料直接制备方法
CN1549283A (zh) * 2003-05-15 2004-11-24 中国科学院化学研究所 一种高结晶度的水分散性磁性纳米微粒的制备方法
CN1844242A (zh) * 2006-04-28 2006-10-11 湘潭大学 尼龙6/环氧树脂/二氧化硅纳米复合材料的原位聚合制备方法
CN101864167A (zh) * 2007-11-13 2010-10-20 中国科学院金属研究所 一种磁性铁氧化物-树状聚酰胺核壳纳米复合物及其制备
CN101225227A (zh) * 2008-01-31 2008-07-23 上海交通大学 超支化聚酰胺胺与金属纳米复合物及制备方法和应用
CN101245212A (zh) * 2008-03-12 2008-08-20 株洲时代新材料科技股份有限公司 一种原位聚合法制备耐电晕漆包线漆的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals", CHEM. MATER., vol. 16, no. 8, 2004
"Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe304", ANGEW. CHEM. INT. ED., vol. 44, 2005, pages 123 - 126
LIU A.; XIE T.; YANG G.: "Synthesis of exfoliated monomer casting polyamide 6/Na+-montmorillonite nanocomposites by anionic ring opening polymerization", MACROMOL. CHEM. PHYS., 2006, pages 701 - 707, XP055132000, DOI: doi:10.1002/macp.200500556

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014022226A1 (en) * 2012-08-01 2014-02-06 Graham Packaging Company, L.P. In-situ polymerized polymer-platinum group metal nanoparticle blends and oxygen scavenging containers made therefrom
US8802207B2 (en) 2012-08-01 2014-08-12 Graham Packaging Company, L.P. In-situ polymerized polymer-platinum group metal nanoparticle blends and oxygen scavenging containers made therefrom
CN102926223A (zh) * 2012-11-22 2013-02-13 吴江江旭纺织有限公司 一种远红外纺织品的制备方法
CN102922811A (zh) * 2012-11-22 2013-02-13 吴江江旭纺织有限公司 一种复合涂层法制备远红外纺织品的方法
CN104060343A (zh) * 2013-03-19 2014-09-24 浙江美丝邦化纤有限公司 细旦及超细旦锦纶6纤维及其制造方法
US20140374079A1 (en) * 2013-06-21 2014-12-25 Lockheed Martin Corporation Conformable and adhesive solid compositions formed from metal nanoparticles and methods for their production and use
CN104562266A (zh) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 一种含有超细金属颗粒的聚合物复合纤维的制备方法及其制备的聚合物复合纤维
CN109929263A (zh) * 2017-12-15 2019-06-25 南京机器人研究院有限公司 新型碳纤维复合材料
CN109930230A (zh) * 2017-12-19 2019-06-25 凯赛(乌苏)生物材料有限公司 一种共聚酰胺工业丝及其制备方法
CN108822539A (zh) * 2018-07-10 2018-11-16 芜湖市元奎新材料科技有限公司 环保阻燃尼龙复合材料及其制备方法
CN109046352A (zh) * 2018-07-13 2018-12-21 陶春梅 一种催化制备肿瘤血管阻断剂药物中间体的方法
CN108795537A (zh) * 2018-08-03 2018-11-13 苏州大学 一种表面修饰的润滑油用纳米铜的制备方法
CN109686526A (zh) * 2019-02-22 2019-04-26 株洲伟大科技发展有限责任公司 一种强磁场条件下稳定的磁性流体及其制备方法
CN110506753A (zh) * 2019-07-30 2019-11-29 黄山永瑞生物科技有限公司 一种改性纳米银抗菌复合材料的制备方法
CN110506753B (zh) * 2019-07-30 2021-11-12 黄山永瑞生物科技有限公司 一种改性纳米银抗菌复合材料的制备方法
CN114196195A (zh) * 2021-12-23 2022-03-18 苏州宝丽迪材料科技股份有限公司 一种pa6吸波母粒的制备方法及其产品
CN114196195B (zh) * 2021-12-23 2023-07-28 苏州宝丽迪材料科技股份有限公司 一种pa6吸波母粒的制备方法及其产品
CN114613564A (zh) * 2022-03-23 2022-06-10 南通成泰磁材科技有限公司 一种高磁导率铁氧体磁性材料及其制备方法
CN114613564B (zh) * 2022-03-23 2023-02-10 南通成泰磁材科技有限公司 一种高磁导率铁氧体磁性材料及其制备方法

Also Published As

Publication number Publication date
CN102585493A (zh) 2012-07-18
KR101582132B1 (ko) 2016-01-04
US9355765B2 (en) 2016-05-31
CN102585493B (zh) 2015-04-01
EP2660268A1 (en) 2013-11-06
JP2014501309A (ja) 2014-01-20
KR20130108453A (ko) 2013-10-02
EP2660268A4 (en) 2014-09-03
EP2660268B1 (en) 2019-08-07
US20140048738A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2012089081A1 (zh) 一种纳米粒子/聚酰胺复合材料、制备方法及其应用
US9764964B2 (en) Application of lactam as solvent in nanomaterial preparation
Guo et al. Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach
Yu et al. Shape and Phase Control of ZnS Nanocrystals: Template Fabrication of Wurtzite ZnS Single‐Crystal Nanosheets and ZnO Flake‐like Dendrites from a Lamellar Molecular Precursor ZnS·(NH2CH2CH2NH2) 0.5
CN102850576B (zh) 以壳聚糖支架组装的纳米复合支架及其制备方法和应用
JP2014501309A5 (zh)
Jyoti et al. ‘Synthesis and properties of amorphous nanosilica from rice husk and its composites
Vodnik et al. Anisotropic silver nanoparticles as filler for the formation of hybrid nanocomposites
CN106884309B (zh) 一种纤维杂化颗粒及聚合物基复合材料
CN112125344A (zh) 一种单分散纳米铁氧化物分散体的制备方法
Kim et al. Magnetic carbon nanotubes: synthesis, characterization, and anisotropic electrical properties
JP4816516B2 (ja) ロッド状酸化亜鉛の製造方法、ロッド状酸化亜鉛及び樹脂複合材
Tsai et al. Preparation and characterization of epoxy/layered double hydroxides nanocomposites
WO2024060821A1 (zh) 原位内生掺杂的纳米多孔复合粉体材料及其制备方法与用途
WO2024055754A1 (zh) 一种原位内生掺杂的钛氧基复合粉体材料及其制备方法与用途
CN113354942B (zh) 一种聚合物粉体及其制备方法
ChiáTsang Thermoreversible organogels formed in a polyol system for the preparation of Sn nanoparticles encapsulated in carbon
CN108284232B (zh) 一种银纳米粒子的制备方法
Wu et al. Preparation and Characterization of CuO nanoparticles with different size and morphology
Duan et al. Research on Preparation and Properties of Nylon 66/MMT/MWCNT Nanocomposites by In Situ Polymerization
Zhao et al. Modifying the Surface Properties of Iron Oxide Nanoparticles with Organic–Inorganic Shells
CN116948391A (zh) 一种高浓度PA6/微纳结构Cu2O母粒及其制备方法
Pan et al. Characterization of Poly (Vinyl Alcohol)/Silver Nanocomposites Prepared by Heat Treatment Method
Anbarasan et al. Synthesis and Characterizations of Al (OH) 3 and Mg (OH) 2 in the Presence of Poly (vinyl Alcohol)
Rossi Bottom-up Synthesis of Polymer Nanocomposites: Absorption of Nanoparticulate to Emulsion PMMA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137020122

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011852381

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13977409

Country of ref document: US