WO2012088697A1 - 石墨烯衍生物-碳纳米管复合材料及其制备方法 - Google Patents

石墨烯衍生物-碳纳米管复合材料及其制备方法 Download PDF

Info

Publication number
WO2012088697A1
WO2012088697A1 PCT/CN2010/080531 CN2010080531W WO2012088697A1 WO 2012088697 A1 WO2012088697 A1 WO 2012088697A1 CN 2010080531 W CN2010080531 W CN 2010080531W WO 2012088697 A1 WO2012088697 A1 WO 2012088697A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
carbon nanotube
graphene oxide
nanotube composite
derivative
Prior art date
Application number
PCT/CN2010/080531
Other languages
English (en)
French (fr)
Inventor
周明杰
吴凤
王要兵
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to PCT/CN2010/080531 priority Critical patent/WO2012088697A1/zh
Priority to CN201080069677.0A priority patent/CN103153843B/zh
Priority to US13/990,113 priority patent/US20130252499A1/en
Priority to JP2013546556A priority patent/JP5775603B2/ja
Priority to EP10861263.1A priority patent/EP2660192B1/en
Publication of WO2012088697A1 publication Critical patent/WO2012088697A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]

Definitions

  • the invention relates to a nano carbon composite material, in particular to a graphene derivative-carbon nanotube composite material and a preparation method thereof.
  • Single-layer graphite is considered to be an ideal material due to its large specific surface area, excellent electrical conductivity, thermal conductivity, and low coefficient of thermal expansion.
  • its high conductivity properties, large specific surface properties and its two-dimensional nanoscale structural properties of monolayers can be used as electrode materials in supercapacitors and lithium ion batteries.
  • Carbon nanotubes were discovered in carbon fibers produced by the arc method in 1991 (S. Iijima, Nature 354, 56 (1991)). It is a tubular carbon molecule, and each carbon atom on the tube adopts Sp 2 hybridization, and is combined with carbon-carbon bonds to form a honeycomb structure composed of hexagons as a skeleton of carbon nanotubes; carbon nano
  • the length-to-diameter ratio of the tube is generally above 1000:1, the strength is 100 times higher than that of the same volume of steel, and the weight is only 1/6 to 1/7 of the latter; the hardness is comparable to that of diamond, but it has good flexibility.
  • the ideal high-strength fiber material is thus called 'super fiber'.
  • Fujitsu Research Institute uses chemical vapor deposition growth method at 510 °C At the temperature of the multi-walled carbon nanotubes which are formed in a vertical direction with respect to the bottom plate, a composite structure formed of several layers to several tens of layers of graphite self-organization is formed. This is the first non-atomic structure bonded structure in which a one-dimensional carbon nanotube is vertically joined to a two-dimensional graphene.
  • a graphene derivative - a carbon nanotube composite material comprising a mass ratio of 1 to 5:1 Graphene derivative and carbon nanotube, the graphene derivative - the graphene derivative and the carbon nanotube in the carbon nanotube composite material interpenetrate and entangle each other to form a connected network structure.
  • the graphene derivative is a fluorinated graphene oxide or a nitrogen-doped graphene oxide.
  • the carbon nanotubes have a diameter of 5 to 200 nanometers and a length of 0.1 to 100. Micron hollow tubular carbon material.
  • a graphene derivative-carbon nanotube composite material preparation method comprising the following steps:
  • Step 1 adding the graphene derivative and the carbon nanotube to the alcohol dispersant, and ultrasonically dispersing for 120 to 150 minutes to form a stable suspension;
  • Step 2 The suspension is filtered, and the solid is dried and cooled to room temperature to obtain a graphene derivative-carbon nanotube composite.
  • the mass ratio of the graphene derivative to the carbon nanotube in the first step is 1 to 5:1.
  • the alcohol dispersant in step one is one of ethanol, ethylene glycol, and isopropanol.
  • the drying temperature in the second step is 50 to 80 ° C and the drying time is 48 to 56 hours.
  • the graphene derivative in step one is a fluorinated graphene oxide or a nitrogen-doped graphene oxide.
  • the fluorinated graphene oxide is prepared by the following method:
  • the graphene oxide and the mixed gas composed of N 2 and F 2 are reacted at a temperature of 20 to 200 ° C for 0.5 to 24 hours to obtain the fluorinated graphene oxide.
  • the nitrogen-doped graphene oxide is prepared by the following method:
  • the graphene oxide is heated to a temperature of 500 to 800 ° C at a rate of 10 ° C / min in an ammonia atmosphere, and the heat preservation 2 After cooling to room temperature, nitrogen-doped graphene oxide was obtained.
  • the graphene derivative and the carbon nanotube composite form a hybrid interpenetrating structure, avoiding agglomeration and lamination of the graphene derivative, and better making the graphene derivative and the carbon nanotube structurally and functionally.
  • the complementary design enhances the electrical conductivity of the composite.
  • FIG. 1 is a flow chart showing a method for preparing a graphene derivative-carbon nanotube composite material according to an embodiment
  • FIG. 2 is a scanning electron micrograph of a carbon nanotube according to an embodiment
  • Figure 3 is a scanning electron micrograph of a fluorinated graphene oxide of an embodiment
  • Figure 5 is a scanning electron micrograph of nitrogen-doped graphene oxide of an embodiment
  • FIG. 6 is a scanning electron micrograph of a nitrogen-doped graphene oxide-carbon nanotube composite of an embodiment.
  • the graphene derivative-carbon nanotube composite of one embodiment comprises a graphene derivative and a carbon nanotube having a mass ratio of 1 to 5:1.
  • the two-dimensional structure of the monolayer of the graphene derivative is prone to agglomeration and lamination, curling or high wrinkling during drying of the water that loses the interlayer, and eventually the utilization of the specific surface area is greatly reduced.
  • carbon nanotubes and graphene derivatives have many similarities in structure and properties, they can be inserted into layers of graphene derivatives through carbon nanotubes, or functional groups on carbon nanotubes and functional groups on graphene derivatives. Reacting with each other to graft carbon nanotubes on the surface of the graphene derivative, so that the graphene layer and the layer are separated from each other, so as to increase the specific surface area of the graphene derivative after drying, and avoid agglomeration and stacking of the graphene derivative.
  • the layer which in turn increases the specific capacitance of the supercapacitor.
  • the graphene derivative may be a fluorinated graphene oxide or a nitrogen-doped graphene.
  • the carbon nanotubes can be hollow tubular carbon materials having a diameter of 5 to 200 nm and a length of 0.1 to 100 ⁇ m.
  • the discharge capacity of fluorinated graphite oxide is much higher than that of graphite oxide, and the discharge capacity and energy density at a discharge current density of 0.5 mA/cm 2 (1M LiClO 4 -PC ) are 675 mA h/g, respectively. 1420W h/Kg.
  • the graphene oxide is doped with a nitrogen atom, the N-doped graphene oxide can not only improve its stability, but also enhance the electrical conductivity, and also exhibit a significant biological n-type effect.
  • a method for preparing a graphene derivative-carbon nanotube composite material includes the following steps:
  • Step S110 providing or preparing a graphene derivative and a carbon nanotube.
  • the graphene derivative may be a fluorinated graphene oxide or a nitrogen-doped graphene oxide.
  • Fluorinated graphite oxide can be prepared by a conventional method. Preferably, it can be prepared by the following method:
  • step S111 graphite oxide is prepared using graphite.
  • step S112 the graphene oxide and the mixed gas composed of N 2 and F 2 are reacted at a temperature of 20 to 200 ° C for 0.5 to 24 hours to obtain the fluorinated graphene oxide.
  • the graphene oxide obtained in S111 is placed in a reactor, and a mixed gas of N 2 and F 2 is introduced (the volume fraction of F 2 is 5% to 30%), and the heating is maintained at a temperature of 20 to 200 ° C, and the reaction is 0.5. ⁇ 24 h, the graphene oxide is reacted with F 2 , and the F portion is substituted with O to obtain a fluorinated graphene oxide.
  • the volume fraction of F 2 in the mixed gas is 10%
  • the reaction temperature is 100 ° C
  • the reaction time is 1 h.
  • Nitrogen-doped graphene oxide can be prepared by a conventional method. Preferably, it can be prepared by the following method:
  • Step S111' using graphite to prepare graphene oxide.
  • the process of this step is substantially the same as step S111.
  • Step S112' the graphene oxide obtained in step S111' is heated to a temperature of 10 ° C / min in an ammonia atmosphere to The mixture was kept at 500 to 800 ° C for 2 hours, and cooled to room temperature to obtain nitrogen-doped graphene oxide.
  • the graphene oxide sample is placed in a heating furnace and is passed with high-purity ammonia gas, and the flow rate of the ammonia gas is controlled at 80 ml/min, and ammonia gas is introduced. 5 ⁇ 10 minutes, the air in the tube furnace is discharged, then the furnace is heated and heated at a heating rate of 10 °C /min to a reaction temperature of 500 °C ⁇ 800 °C, keeping 2 Hours. After completion of the reaction, it was cooled to room temperature in an ammonia atmosphere to obtain nitrogen-doped graphene oxide.
  • Carbon nanotubes can be prepared by conventional methods.
  • a hollow tubular carbon material having a diameter of 5 to 200 nm and a length of 0.1 to 100 ⁇ m is preferred.
  • Step S120, step S110 The obtained graphene derivative and carbon nanotubes are added to an alcohol dispersant and ultrasonically dispersed to form a stable suspension.
  • the graphene derivative and the carbon nanotube are added to the alcohol dispersant in a ratio of 1 to 5:1, and the ultrasonic dispersion is 120 to 150 minutes. , so that the two are evenly dispersed to form a stable suspension.
  • the alcohol dispersant is preferably one of ethanol, ethylene glycol and isopropyl alcohol.
  • Step S130 filtering the suspension, drying the solid matter, and cooling to room temperature to obtain a graphene derivative - Carbon nanotube composites.
  • the solid matter is placed in a vacuum drying oven and dried at 50 to 80 ° C for 48 to 56 hours, and cooled to room temperature to form a graphene derivative-carbon nanotube composite material.
  • Fluorine or nitrogen-doped graphene oxide can be conveniently prepared by graphene oxide to improve the stability of graphene oxide.
  • the oxygen atom is replaced, and the doping of fluorine or nitrogen can significantly increase the capacity of the electrode material.
  • the graphene derivative - The supercapacitor prepared by carbon nanotube composite has a charging specific capacity of 99 F /g ⁇ 112 F/g and a specific discharge capacity of 96 F /g ⁇ 110 F/g. The charge-discharge efficiency is 97% ⁇ 99.5%.
  • the graphene derivative is combined with the carbon nanotube to form a hybrid interpenetrating structure, avoiding agglomeration and lamination of the graphene derivative, and better achieving the structural and functional design of the graphene derivative and the carbon nanotube. Complementary.
  • the dried graphene oxide is charged into the reactor and passed through a dry nitrogen gas for 4 hours, and then fluorine gas and graphene oxide are introduced into the reactor.
  • the fluorinated graphene oxide can be obtained by reacting at ° C for 1 h.
  • the fluorine gas accounts for 10% of the volume of the mixed gas.
  • FIG. 2 a scanning electron microscope (SEM) photograph of the carbon nanotube of Example 1 is shown.
  • SEM scanning electron microscope
  • FIG. 4 SEM photograph of the fluorinated graphene oxide of Example 1 is shown.
  • FIG. 4 an SEM photograph of the fluorinated graphene oxide-carbon nanotube composite of Example 1 is shown.
  • Figure 2 ⁇ 4 It can be seen that a single carbon nanotube or a fluorinated graphene oxide has agglomeration phenomenon, but fluorinated graphene oxide - The fluorinated graphene oxide in the carbon nanotube composite material is uniformly separated by the carbon nanotubes, and no lamination or agglomeration occurs.
  • the graphene oxide is placed in the middle of the heating furnace tube and is supplied with high-purity ammonia gas.
  • the flow rate of the ammonia gas is controlled by the gas flow rate, and the flow rate of the ammonia gas is controlled at 80 ml/min, and the ammonia gas is introduced. Minute, the air in the tube furnace is discharged, and then the furnace is heated and heated at a heating rate of 10 °C /min to a reaction temperature of 800 °C, keeping 2 Hours. After completion of the reaction, the mixture was cooled to room temperature in an ammonia atmosphere, and then the nitrogen-doped graphene oxide after the reaction was taken out from the heating furnace.
  • FIG. 5 an SEM photograph of the nitrogen-doped graphene oxide of Example 2 is shown. As can be seen from Fig. 5, the nitrogen-doped graphene oxide was agglomerated and wrinkled.
  • FIG. 6 a SEM photograph of the nitrogen-doped graphene oxide-carbon nanotube composite of Example 2 is shown. As can be seen from FIG. 6, the nitrogen-doped graphene oxide in the nitrogen-doped graphene oxide-carbon nanotube composite material is uniformly separated by the carbon nanotubes without lamination or agglomeration.
  • the carbon nanotubes have a diameter of 100 nm and a length of 50 ⁇ m, and the ultrasonic dispersion is 150 min to uniformly disperse the two to form a stable suspension. Filtered and dried under vacuum at 60 °C for 50 h After that, a nitrogen-doped graphene oxide-carbon nanotube composite material is obtained.
  • the graphene derivative-carbon nanotube composite material obtained in each of Examples 1 to 4 was used as an electrode material of a supercapacitor, and the charge/discharge specific capacity and charge and discharge efficiency of the obtained supercapacitor are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

石墨烯衍生物-碳纳米管复合材料及其制备方法
【技术领域】
本发明涉及一种纳米碳复合材料,特别是涉及一种石墨烯衍生物 - 碳纳米管复合材料及其制备方法。
【背景技术】
英国曼彻斯特大学的安德烈 • K • 海姆 (Andre K. Geim) 等在 2004 年制备出石墨烯材料,由于其独特的结构和光电性质受到了人们广泛的重视。单层石墨由于其大的比表面积,优良的导电、导热性能和低的热膨胀系数而被认为是理想的材料。如: 1 ,高强度,杨氏摩尔量, (1,100 GPa) ,断裂强度: (125GPa) ; 2 ,高热导率, (5,000 W/mK) ; 3 ,高导电性、载流子传输率, (200,000 cm2/V*s) ; 4 ,高的比表面积, ( 理论计算值: 2,630 m2 /g) 。尤其是其高导电性质,大的比表面性质和其单分子层二维的纳米尺度的结构性质,可在超级电容器和锂离子电池中用作电极材料。
碳纳米管是在 1991 年从电弧法生产的碳纤维中发现的 (S. Iijima , Nature 354 , 56(1991)) 。它是一种管状碳分子,管上每个碳原子采取 Sp2 杂化,相互之间以碳 - 碳键结合起来,形成由六边形组成的蜂窝状结构作为碳纳米管的骨架;碳纳米管的长径比一般在 1000 : 1 以上,强度比同体积钢的强度高 100 倍,重量却只有后者的 1/6 到 1/7 ;硬度与金刚石相当,却拥有良好的柔韧性,是理想的高强度纤维材料,因而被称'超级纤维'。
在纳米碳复合结构体方面,大多研究集中在金属颗粒、有机分子与碳纳米管或石墨烯的结合方面。相当于一维、零维碳材料的掺杂研究。碳类材料之间形成的复合体,主要集中在生长碳纳米管过程中,同时产生的其他碳同素异形体。研究较广泛的有 1998 年发现的零维与一维的复合结构体--纳米豆荚 (Smith, g.W. et al. Nature 396 , 323(1998)) 。直到 2008 年 3 月,富士通研究所在第 34 届富勒烯纳米管综合研讨会上,发表了其在自组织形成接合碳纳米管与石墨烯的新型纳米碳复合结构体方面获得的成功。富士通研究所利用化学气相沉积成长法,在 510 ℃ 的温度下,在相对于底板呈垂直方向整齐生成的多壁碳纳米管上,形成了由几层到几十层的石墨自组织形成的复合结构体。这是首次实现一维结构的碳纳米管与二维结构的石墨烯垂直接合的非原子结构的接合结构体。
然而,传统的石墨烯 - 碳纳米管复合材料的导电性能还需进一步的提高。
【发明内容】
基于此,有必要提供一种导电性能较好的石墨烯衍生物 - 碳纳米管复合材料及其制备方法。
一种石墨烯衍生物 - 碳纳米管复合材料,包括质量比为 1~5:1 的石墨烯衍生物和碳纳米管,所述石墨烯衍生物 - 碳纳米管复合材料中的石墨烯衍生物和碳纳米管相互穿插、缠绕形成连通的网络结构。
在优选的实施例中,所述石墨烯衍生物为氟化氧化石墨烯或掺杂氮的氧化石墨烯。
在优选的实施例中,所述碳纳米管为直径为 5~200 纳米、长度为 0.1~100 微米的中空管状碳材料。
一种石墨烯衍生物 - 碳纳米管复合材料的制备方法,包括如下步骤:
步骤一、将石墨烯衍生物和碳纳米管加入到醇类分散剂中,超声分散120~150分钟,形成稳定的悬浮液;
步骤二、将所述悬浮液过滤,将固体物干燥,冷却至室温,得到石墨烯衍生物 - 碳纳米管复合材料。
在优选的实施例中,步骤一中所述石墨烯衍生物和碳纳米管的质量比为 1~5:1 。
在优选的实施例中,步骤一中所述醇类分散剂为乙醇、乙二醇和异丙醇中的一种。
在优选的实施例中,步骤二中所述干燥的温度为 50~80℃,干燥时间为48~56 小时。
在优选的实施例中,步骤一中所述石墨烯衍生物为氟化氧化石墨烯或掺杂氮的氧化石墨烯。
在优选的实施例中,所述氟化氧化石墨烯通过如下方法制备:
使用石墨制备氧化石墨烯;
将所述氧化石墨烯与由 N2 和 F2 组成的混合气体在 20~200℃的温度下,反应0.5~24h ,制得所述氟化氧化石墨烯。
在优选的实施例中,所述掺杂氮的氧化石墨烯通过如下方法制备:
使用石墨制备氧化石墨烯;
将所述氧化石墨烯在氨气的气氛下,以 10 ℃ / 分的速度升温至 500~800℃,保温2 小时,冷却至室温,得到掺杂氮的氧化石墨烯。
上述复合材料中,石墨烯衍生物与碳纳米管复合形成混杂穿插的结构,避免石墨烯衍生物的团聚和叠层的同时,更好的使得石墨烯衍生物和碳纳米管在结构上和功能设计上的互补,提高了复合材料的导电性能。
【附图说明】
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其它目的、特征和优势将更加清晰。在全部附图中相同的附图标记指示相同的部分。并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。
图 1 为一实施方式的石墨烯衍生物 - 碳纳米管复合材料的制备方法的流程图;
图 2 为一实施方式的碳纳米管的扫描电子显微镜照片;
图 3 为一实施方式的氟化氧化石墨烯的扫描电子显微镜照片;
图 4 为一实施方式的氟化氧化石墨烯 - 碳纳米管复合材料的扫描电子显微镜照片;
图 5 为一实施方式的掺杂氮的氧化石墨烯的扫描电子显微镜照片;
图 6 为一实施方式的掺杂氮的氧化石墨烯-碳纳米管复合材料的扫描电子显微镜照片。
【具体实施方式】
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施的限制。
一实施例的石墨烯衍生物-碳纳米管复合材料,包括质量比为1~5:1的石墨烯衍生物和碳纳米管。该石墨烯衍生物-碳纳米管复合材料中的石墨烯衍生物和碳纳米管相互穿插、缠绕形成连通的网络结构。
石墨烯衍生物的单分子层的二维结构在干燥失去层间的水过程中很容易发生团聚以及层叠,卷曲或者高度皱折,最终导致其比表面积的利用率大大降低。由于碳纳米管和石墨烯衍生物在结构和性能上有很多相似之处,因此可通过碳纳米管插入到石墨烯衍生物层间,或者碳纳米管上的官能团与石墨烯衍生物上的官能团相互发生反应,使碳纳米管接枝在石墨烯衍生物表面,使得石墨烯层与层之间相互分离开,以达到提高石墨烯衍生物干燥后的比表面积,避免石墨烯衍生物团聚和叠层,进而增大超级电容器的比电容的目的。
石墨烯衍生物可为氟化氧化石墨烯或掺杂氮的石墨烯。碳纳米管可为直径为 5~200 纳米、长度为 0.1~100 微米的中空管状碳材料。作为电极材料,氟化氧化石墨的放电容量较氧化石墨有很大提高,其放电电流密度为 0.5mA/cm2 (1M LiClO4-PC ) 时的放电容量、能量密度分别达 675mA h/g 、 1420W h/Kg 。当氧化石墨烯被氮原子掺杂之后生成的 N 掺杂的氧化石墨烯,不仅可提高其稳定性,在电导性能方面也得到了增强,而且还出现了明显生物 n 型效应。
请参阅图 1 ,一实施例的石墨烯衍生物 - 碳纳米管复合材料的制备方法包括如下步骤:
步骤 S110 ,提供或制备石墨烯衍生物和碳纳米管。
石墨烯衍生物可为氟化氧化石墨烯或掺杂氮的氧化石墨烯。
氟化氧化石墨可以采用传统的方法制备得到。优选的,可以采用如下方法制备:
步骤S111,使用石墨制备氧化石墨烯。
( a )、将石墨、过硫酸钾和五氧化二磷按照质量比 2~10 : 1 : 1 加入到 80~120℃的浓硫酸中,搅拌均匀后自然冷却,洗涤至中性后干燥,得到混合物。该石墨优选为鳞片状石墨。
( b )、将所述混合物和高锰酸钾加入到浓硫酸中,保持混合溶液的温度在 15~20℃,然后在25~35℃下油浴1~3 小时,加入去离子水并加入双氧水溶液反应,抽滤、收集固体。
( c )、固体用稀盐酸洗涤,干燥,得到氧化石墨。
( d )、将氧化石墨加入到去离子水中,超声 1 小时,得到均匀分散的氧化石墨烯胶体溶液,过滤,收集固体,真空干燥,得到氧化石墨烯。
步骤 S112 ,将氧化石墨烯与由 N2 和 F2 组成的混合气体在 20~200℃的温度下,反应0.5~24h ,制得所述氟化氧化石墨烯。
优选的,将 S111 得到的氧化石墨烯放入反应器中,通入 N2 和 F2 混合气体( F2 的体积分数为 5%~30% ),加热维持温度为 20~200℃,反应0.5~24 h ,使得氧化石墨烯与 F2 反应, F 部分取代 O ,得到氟化氧化石墨烯。
在更为优选的实施例中,混合气体中,F2 的体积分数为10%,反应温度为100℃,反应时间为1 h。
掺杂氮的氧化石墨烯可以采用传统的方法制备得到。优选的,可以采用如下方法制备:
步骤 S111' ,使用石墨制备氧化石墨烯。该步骤的过程与步骤 S111 大致相同。
步骤 S112' ,将步骤 S111' 得到的氧化石墨烯在氨气的气氛下,以 10 ℃ / 分的速度升温至 500~800℃,保温2 小时,冷却至室温,得到掺杂氮的氧化石墨烯。
优选的,将氧化石墨烯样品放到加热炉中并通以高纯度的氨气,控制氨气的流量在 80ml/min ,通入氨气 5~10 分钟,将管式炉中的空气排出,然后对炉子进行加热,以 10 ℃ /min 的加热速率升温至反应温度 500 ℃ ~800℃,保持2 个小时。反应完毕后,在氨气气氛中冷却到室温,得到掺杂氮的氧化石墨烯。
碳纳米管可以采用传统的方法制备得到。优选为直径为5~200纳米、长度为0.1~100微米的中空管状碳材料。
步骤 S120 ,将步骤 S110 得到的石墨烯衍生物和碳纳米管加入到醇类分散剂中,超声分散,形成稳定的悬浮液。
优选的,将石墨烯衍生物和碳纳米管以 1~5:1 的比例加入醇类分散剂中,超声分散 120~150min ,使二者均匀分散,形成稳定的悬浮液。
醇类分散剂优选为乙醇、乙二醇和异丙醇中的一种。
步骤 S130 ,将所述悬浮液过滤,将固体物干燥,冷却至室温,得到石墨烯衍生物 - 碳纳米管复合材料。
优选的,将固体物放置在真空干燥箱中以50~80℃干燥48~56小时,冷却至室温,形成石墨烯衍生物-碳纳米管复合材料。
上述制备方法具有如下优点:
( 1 )可通过氧化石墨烯较方便的制备出氟或氮掺杂的氧化石墨烯,提高氧化石墨烯的稳定性。
( 2 )氧原子被取代掉,掺杂氟或氮可明显的提高电极材料的容量。所述石墨烯衍生物 - 碳纳米管复合材料制备的超级电容器的充电比容量为 99 F /g~112 F/g ,放电比容量为 96 F /g~110 F/g ,充放电效率为 97%~99.5% 。
( 3 )将石墨烯衍生物与碳纳米管复合形成混杂穿插的结构,避免石墨烯衍生物的团聚和叠层的同时,更好的达到使得石墨烯衍生物和碳纳米管在结构上和功能设计上的互补。
以下以具体实施例来说明。以下所有试剂为分析纯。
实施例 1
( 1 )提供纯度为 99.5% 的天然鳞片石墨。
( 2 )通过改进的 Hummers 法制备氧化石墨。其具体步骤为将 20g 50 目石墨粉、 10 g 过硫酸钾和 10 g 五氧化二磷加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6 h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230 mL 的浓硫酸中,再加入 60 g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 35 ℃ 的油浴中保持 2 h 后,缓慢加入 920 mL 去离子水。 15 min 后,再加入 2.8 L 去离子水 ( 其中含有 50 mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5 L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨。
( 3 )将 20 g 氧化石墨放入烧杯中加入 200 mL 去离子水,超声 1 h ,得棕黄色均一透明溶液,成为均匀分散的氧化石墨烯胶体溶液,在进行过滤,在 60 ℃ 真空干燥 48h ,可得到氧化石墨烯。
( 4 )将干燥好了的氧化石墨烯装入反应器中通入干燥的氮气 4h ,然后通入氟气与氧化石墨烯在 100 ℃ 下反应 1 h ,即可以得到氟化氧化石墨烯。其中氟气占混合气体的体积分数为 10% 。
( 5)将100 mg氟化氧化石墨烯和100mg的碳纳米管加入到500 mL乙醇中,碳纳米管为直径为5纳米、长度为0.1微米,超声分散120 min使其两者均匀分散形成稳定悬浮液。过滤,经50℃真空干燥48 h后即得到氟化氧化石墨烯-碳纳米管复合材料。
请参阅图 2 ,所示为实施例 1 的碳纳米管的扫描电子显微镜( SEM )照片。请参阅图 3 ,所示为实施例 1 的氟化氧化石墨烯的 SEM 照片。请参阅图 4 ,所示为实施例 1 的氟化氧化石墨烯 - 碳纳米管复合材料的 SEM 照片。由图 2~4 可知,单个的碳纳米管或氟化氧化石墨烯均存在团聚的现象,但是氟化氧化石墨烯 - 碳纳米管复合材料中的氟化氧化石墨烯被碳纳米管很均匀的隔离开,没有发生叠层或者团聚的现象。
实施例 2
( 1 )提供纯度为 99.5% 的天然鳞片石墨。
( 2 )通过改进的 Hummers 法制备氧化石墨。其具体步骤为将 20g 50 目石墨粉、 10 g 过硫酸钾和 10 g 五氧化二磷加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6 h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230 mL 的浓硫酸中,再加入 60 g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 35 ℃ 的油浴中保持 2 h 后,缓慢加入 920 mL 去离子水。 15 min 后,再加入 2.8 L 去离子水 ( 其中含有 50 mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5 L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨。
( 3 )将 20 g 氧化石墨放入烧杯中加入 200 mL 去离子水,超声 1 h ,得棕黄色均一透明溶液,成为均匀分散的氧化石墨烯胶体溶液,在进行过滤,在 60 ℃ 真空干燥 48h ,可得到氧化石墨烯。
( 4 )将氧化石墨烯放到加热炉管子的中间并通以高纯度的氨气,氨气的流量由气体流量记来控制,控制氨气的流量在 80ml/min ,通入氨气 10 分钟,将管式炉中的空气排出,然后对加热炉进行加热,以 10 ℃ /min 的加热速率升温至反应温度 800 ℃ ,保持 2 个小时。反应完毕后,在氨气气氛中冷却到室温,然后将反应后的掺杂氮的氧化石墨烯从加热炉中取出。
( 5 )将 200 mg 掺杂氮的氧化石墨烯和 100mg 的碳纳米管加入到 500 mL 乙二醇中,碳纳米管为直径为 200 纳米、长度为 100 微米,超声分散 150 min 使其两者均匀分散形成稳定悬浮液。过滤,经 50 ℃ 真空干燥 48 h 后即得到掺杂氮的氧化石墨烯 - 碳纳米管复合材料。
请参阅图5,所示为实施例2的掺杂氮的氧化石墨烯的SEM照片。由图5可知,掺杂氮的氧化石墨烯发生了团聚,出现了褶皱状。请参阅图6,所示为实施例2的掺杂氮的氧化石墨烯-碳纳米管复合材料的SEM照片。由图6可知,掺杂氮的氧化石墨烯-碳纳米管复合材料中的掺杂氮的氧化石墨烯被碳纳米管很均匀的隔离开,没有发生叠层或者团聚的现象。
实施例 3
参照实施例 1 制得氟化氧化石墨烯;
将 300 mg 氟化氧化石墨烯和 100mg 的碳纳米管加入到 500 mL 乙醇中,碳纳米管为直径为 50 纳米、长度为 30 微米,超声分散 120 min 使其两者均匀分散形成稳定悬浮液。过滤,经 80 ℃ 真空干燥 56 h 后即得到石墨烯衍生物 / 碳纳米管复合材料。
实施例 4
参照实施例 2 制得掺杂氮的氧化石墨烯;
将 500 mg 掺杂氮的氧化石墨烯和 100mg 的碳纳米管加入到 500 mL 乙二醇中,碳纳米管为直径为 100 纳米、长度为 50 微米,超声分散 150 min 使其两者均匀分散形成稳定悬浮液。过滤,经 60 ℃ 真空干燥 50 h 后即得到掺杂氮的氧化石墨烯 - 碳纳米管复合材料。
将实施例1~4得到的石墨烯衍生物-碳纳米管复合材料分别作为超级电容器的电极材料,所得的超级电容器的充放电比容量及充放电效率如表1所示。
表 1 超级电容器充放电比容量及充放电效率
实施例 充电比容量( F/g ) 放电比容量( F/g ) 充放电效率
实施例 1 110.48 108.32 98.04%
实施例 2 99.56 96.69 97.12%
实施例 3 106.63 103.98 97.51%
实施例 4 103.54 101.29 95.83%
由表 1 可知,上述实施例的石墨烯衍生物 - 碳纳米管复合材料制作的超级电容器的充、放电容量较大,充放电效率较高。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种石墨烯衍生物-碳纳米管复合材料,其特征在于,包括质量比为1~5:1的石墨烯衍生物和碳纳米管,所述石墨烯衍生物-碳纳米管复合材料中的石墨烯衍生物和碳纳米管相互穿插、缠绕形成连通的网络结构。
  2. 根据权利要求1所述的石墨烯衍生物-碳纳米管复合材料,其特征在于:所述石墨烯衍生物为氟化氧化石墨烯或掺杂氮的氧化石墨烯。
  3. 根据权利要求1所述的石墨烯衍生物-碳纳米管复合材料,其特征在于:所述碳纳米管为直径为5~200纳米、长度为0.1~100微米的中空管状碳材料。
  4. 一种石墨烯衍生物 - 碳纳米管复合材料的制备方法,其特征在于,包括如下步骤:
    步骤一、将石墨烯衍生物和碳纳米管加入到醇类分散剂中,超声分散 120~150 分钟,形成稳定的悬浮液;
    步骤二、将所述悬浮液过滤,将固体物干燥,冷却至室温,得到石墨烯衍生物-碳纳米管复合材料。
  5. 根据权利要求1所述的石墨烯衍生物-碳纳米管复合材料的制备方法,其特征在于:步骤一中所述石墨烯衍生物和碳纳米管的质量比为1~5:1。
  6. 根据权利要求1所述的石墨烯衍生物-碳纳米管复合材料的制备方法,其特征在于:步骤一中所述醇类分散剂为乙醇、乙二醇和异丙醇中的一种。
  7. 根据权利要求1所述的石墨烯衍生物-碳纳米管复合材料的制备方法,其特征在于:步骤二中所述干燥的温度为50~80℃,干燥时间为48~56小时。
  8. 根据权利要求1所述的石墨烯衍生物-碳纳米管复合材料的制备方法,其特征在于:步骤一中所述石墨烯衍生物为氟化氧化石墨烯或掺杂氮的氧化石墨烯。
  9. 根据权利要求 8 所述的石墨烯衍生物 - 碳纳米管复合材料的制备方法,其特征在于:所述氟化氧化石墨烯通过如下方法制备:
    使用石墨制备氧化石墨烯;
    将所述氧化石墨烯与由N2和F2组成的混合气体在20~200℃的温度下,反应0.5~24h,制得所述氟化氧化石墨烯。
  10. 根据权利要求 8 所述的石墨烯衍生物 - 碳纳米管复合材料的制备方法,其特征在于,所述掺杂氮的氧化石墨烯通过如下方法制备:
    使用石墨制备氧化石墨烯;
    将所述氧化石墨烯在氨气的气氛下,以10℃/分的速度升温至500~800℃,保温2小时,冷却至室温,得到掺杂氮的氧化石墨烯。
PCT/CN2010/080531 2010-12-30 2010-12-30 石墨烯衍生物-碳纳米管复合材料及其制备方法 WO2012088697A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2010/080531 WO2012088697A1 (zh) 2010-12-30 2010-12-30 石墨烯衍生物-碳纳米管复合材料及其制备方法
CN201080069677.0A CN103153843B (zh) 2010-12-30 2010-12-30 石墨烯衍生物-碳纳米管复合材料及其制备方法
US13/990,113 US20130252499A1 (en) 2010-12-30 2010-12-30 Graphene derivative-carbon nanotube composite material and preparation methods thereof
JP2013546556A JP5775603B2 (ja) 2010-12-30 2010-12-30 グラフェン誘導体−カーボンナノチューブ複合材料と、その作製方法
EP10861263.1A EP2660192B1 (en) 2010-12-30 2010-12-30 Graphene derivative-carbon nanotube composite material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/080531 WO2012088697A1 (zh) 2010-12-30 2010-12-30 石墨烯衍生物-碳纳米管复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2012088697A1 true WO2012088697A1 (zh) 2012-07-05

Family

ID=46382214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080531 WO2012088697A1 (zh) 2010-12-30 2010-12-30 石墨烯衍生物-碳纳米管复合材料及其制备方法

Country Status (5)

Country Link
US (1) US20130252499A1 (zh)
EP (1) EP2660192B1 (zh)
JP (1) JP5775603B2 (zh)
CN (1) CN103153843B (zh)
WO (1) WO2012088697A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926272A (zh) * 2012-10-09 2013-02-13 重庆大学 一种生物医用氧化石墨烯纸的制备方法
JP2014114205A (ja) * 2012-11-14 2014-06-26 Toshiba Corp 炭素材料とその製造方法およびそれを用いた電気化学セルと減酸素装置と冷蔵庫
WO2014185418A1 (ja) * 2013-05-15 2014-11-20 住友電気工業株式会社 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
WO2015069226A1 (en) * 2013-11-05 2015-05-14 The Regents Of The University Of California Graphene oxide and carbon nanotube ink and methods for producing the same
CN104627977A (zh) * 2013-11-07 2015-05-20 中国科学院苏州纳米技术与纳米仿生研究所 一种氧化石墨烯增强的复合纳米碳纸及其制备方法
WO2015072370A1 (ja) * 2013-11-13 2015-05-21 本田技研工業株式会社 炭素繊維膜
US20160164074A1 (en) * 2013-05-23 2016-06-09 Toray Industries, Inc. Method for producing polyanionic positive electrode active material composite particles, and polyanionic positive electrode active material precursor-graphite oxide composite granulated bodies
JP2016172685A (ja) * 2015-03-17 2016-09-29 シャープ株式会社 アンモニア処理をした多孔質炭素材料及びそのホルムアルデヒド吸着への応用
CN106970116A (zh) * 2017-03-20 2017-07-21 中国石油大学(华东) 一种对丙酮敏感的多面体状四氧化三钴‑三维多孔石墨烯凝胶复合材料膜
CN108421082A (zh) * 2018-04-23 2018-08-21 闫金银 具有抑菌抗瘢痕双重作用的氧化石墨烯伤口敷料的制备方法
CN113594404A (zh) * 2021-07-29 2021-11-02 贵州梅岭电源有限公司 一种新型一体化氟化碳正极的制备方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015126464A2 (en) * 2013-10-11 2015-08-27 The Regents Of The University Of California Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for ultrathin planar supercapacitors
JP6213971B2 (ja) * 2014-02-28 2017-10-18 国立研究開発法人物質・材料研究機構 グラフェン/CNT複合体電極装備Liイオン・スーパーキャパシター及びその製造方法
JP6289995B2 (ja) 2014-05-13 2018-03-07 株式会社東芝 負極、負極の製造方法、及び非水電解質電池
CN105244476A (zh) * 2014-06-11 2016-01-13 中国科学院苏州纳米技术与纳米仿生研究所 氮掺杂石墨烯包覆纳米硫正极复合材料、其制法及应用
WO2016141414A1 (en) * 2015-03-11 2016-09-15 The University Of Sydney Electrocatalysts and electrochemical cells
TWI594796B (zh) * 2015-05-08 2017-08-11 Taiwan Carbon Nano Tech Corp A method for manufacturing a three-dimensional mesh material with a catalyst function
CN108137415B (zh) * 2015-09-23 2021-07-20 纳米技术仪器公司 一体化的高度取向的卤化石墨烯的整体式膜
WO2017110295A1 (ja) * 2015-12-24 2017-06-29 国立研究開発法人物質・材料研究機構 二次元物質と繊維状物質の複合材料の製造方法
CN105551823A (zh) * 2016-02-02 2016-05-04 深圳市贝特瑞新能源材料股份有限公司 一种碳-碳复合电极材料、制备方法及用途
KR102024897B1 (ko) * 2016-06-08 2019-09-24 주식회사 엘지화학 카본 나이트라이드와 그래핀 옥사이드의 자기조립 복합체 및 그 제조방법, 이를 적용한 양극 및 이를 포함하는 리튬-황 전지
CN106602012B (zh) * 2016-12-13 2020-05-26 上海交通大学 一种柔性薄膜电极及其制备方法和应用
CN106783217B (zh) * 2017-01-16 2018-07-13 天津大学 高效率制备氮掺杂石墨烯碳纳米管薄膜的方法
CN107311659A (zh) * 2017-06-22 2017-11-03 李若明 一种石墨膜/石墨烯复合薄膜的制备方法
CN109686897B (zh) * 2017-10-18 2020-08-11 清华大学 锂硫电池隔膜
CN109686898B (zh) * 2017-10-18 2020-08-11 清华大学 锂硫电池隔膜
CN109686906B (zh) * 2017-10-18 2020-08-11 清华大学 锂硫电池
JP2019157283A (ja) * 2018-03-07 2019-09-19 日本ゼオン株式会社 不織布およびその製造方法
JP7139627B2 (ja) * 2018-03-07 2022-09-21 日本ゼオン株式会社 不織布およびその製造方法
CN110247028A (zh) * 2018-03-09 2019-09-17 广州墨羲科技有限公司 一种纳米线/三维石墨烯复合材料
CN110713177A (zh) * 2018-07-11 2020-01-21 南开大学 碳纳米管/石墨烯体相复合材料、其制备方法及用途
CN109082329B (zh) * 2018-07-23 2021-04-20 江苏大学 一种三元纳米自润滑复合材料及其制备方法
US11264228B2 (en) 2018-10-09 2022-03-01 Savannah River Nuclear Solutions, Llc Method of making a carbon filament for thermal ionization
CN109370227B (zh) * 2018-10-24 2021-03-09 明朔(北京)电子科技有限公司 一种导热硅脂
CN110699038B (zh) * 2019-09-17 2022-06-10 沈阳航空航天大学 一种宽玻璃化转变温域的磁性多孔复合材料制备方法
CN111659401B (zh) * 2020-06-30 2022-11-29 齐鲁工业大学 一种三维多孔碳纳米管石墨烯复合膜及其制备方法
CN114624798B (zh) * 2020-12-14 2023-05-16 清华大学 光吸收体及其制备方法
CN114621621A (zh) * 2020-12-14 2022-06-14 清华大学 光吸收体预制液及其制备方法
KR102438675B1 (ko) * 2022-03-08 2022-09-01 한국지질자원연구원 2차원 물질을 이용한 반죽 형태의 원료, 이의 제조방법 및 이를 이용하여 제조한 전자 소재
CN114836645B (zh) * 2022-04-06 2022-11-01 西北工业大学 一种可设计构型的碳纳米管-石墨烯混杂多孔预制体的制备方法
CN114927354B (zh) * 2022-05-25 2023-08-22 南京航空航天大学 一种氮掺杂二氧化锰/石墨烯碳纳米管电极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206124A1 (en) * 2007-02-22 2008-08-28 Jang Bor Z Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
CN101575095A (zh) * 2009-05-26 2009-11-11 北京大学 石墨烯的制备方法
CN101712452A (zh) * 2009-11-20 2010-05-26 哈尔滨工程大学 纳米石墨片、碳纳米管和过渡金属氧化物复合材料及制法
CN101734650A (zh) * 2009-12-23 2010-06-16 沈阳建筑大学 一种石墨烯-碳纳米管混杂复合材料的制备方法
CN101811690A (zh) * 2009-02-24 2010-08-25 国家纳米科学中心 一种用碳纳米管与石墨烯形成碳复合结构体的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296877A (ja) * 1986-06-16 1987-12-24 Ibiden Co Ltd 改質された表面を有する炭素若しくは黒鉛質から成る細胞又は微生物の固定化担体
JPH06212110A (ja) * 1993-01-20 1994-08-02 Mitsubishi Pencil Co Ltd 改質炭素を含む記録材料
JPH08250117A (ja) * 1995-03-09 1996-09-27 Shin Kobe Electric Mach Co Ltd リチウム二次電池負極用炭素材料及びその製造方法
JP4380282B2 (ja) * 2003-09-26 2009-12-09 富士ゼロックス株式会社 カーボンナノチューブ複合構造体の製造方法
US7449133B2 (en) * 2006-06-13 2008-11-11 Unidym, Inc. Graphene film as transparent and electrically conducting material
JP4062346B2 (ja) * 2006-08-17 2008-03-19 富士ゼロックス株式会社 カーボンナノチューブ膜およびその製造方法、並びにそれを用いたキャパシタ
JP2010521782A (ja) * 2007-03-14 2010-06-24 カリフォルニア・インスティテュート・オブ・テクノロジー 高放電率電池
US7875219B2 (en) * 2007-10-04 2011-01-25 Nanotek Instruments, Inc. Process for producing nano-scaled graphene platelet nanocomposite electrodes for supercapacitors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206124A1 (en) * 2007-02-22 2008-08-28 Jang Bor Z Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
CN101811690A (zh) * 2009-02-24 2010-08-25 国家纳米科学中心 一种用碳纳米管与石墨烯形成碳复合结构体的方法
CN101575095A (zh) * 2009-05-26 2009-11-11 北京大学 石墨烯的制备方法
CN101712452A (zh) * 2009-11-20 2010-05-26 哈尔滨工程大学 纳米石墨片、碳纳米管和过渡金属氧化物复合材料及制法
CN101734650A (zh) * 2009-12-23 2010-06-16 沈阳建筑大学 一种石墨烯-碳纳米管混杂复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. LIJIMA, NATURE, vol. 354, 1991, pages 56
SMITH, G.W. ET AL., NATURE, vol. 396, 1998, pages 323

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926272A (zh) * 2012-10-09 2013-02-13 重庆大学 一种生物医用氧化石墨烯纸的制备方法
JP2014114205A (ja) * 2012-11-14 2014-06-26 Toshiba Corp 炭素材料とその製造方法およびそれを用いた電気化学セルと減酸素装置と冷蔵庫
US9972446B2 (en) 2013-05-15 2018-05-15 Meidensha Corporation Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
WO2014185418A1 (ja) * 2013-05-15 2014-11-20 住友電気工業株式会社 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
JP2014225508A (ja) * 2013-05-15 2014-12-04 住友電気工業株式会社 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法
CN105393321A (zh) * 2013-05-15 2016-03-09 住友电气工业株式会社 蓄电装置用电极、蓄电装置以及蓄电装置用电极的制造方法
EP2998974A4 (en) * 2013-05-15 2017-01-25 Sumitomo Electric Industries, Ltd. Electrode for power storage device, power storage device, and production method for electrode for power storage device
US10505179B2 (en) * 2013-05-23 2019-12-10 Toray Industries, Inc. Method for producing polyanionic positive electrode active material composite particles, and polyanionic positive electrode active material precursor-graphite oxide composite granulated bodies
US20160164074A1 (en) * 2013-05-23 2016-06-09 Toray Industries, Inc. Method for producing polyanionic positive electrode active material composite particles, and polyanionic positive electrode active material precursor-graphite oxide composite granulated bodies
WO2015069226A1 (en) * 2013-11-05 2015-05-14 The Regents Of The University Of California Graphene oxide and carbon nanotube ink and methods for producing the same
CN105829276A (zh) * 2013-11-05 2016-08-03 加利福尼亚大学董事会 氧化石墨烯和碳纳米管墨及其制备方法
US10163583B2 (en) 2013-11-05 2018-12-25 The Regents Of The University Of California Graphene oxide and carbon nanotube ink and methods for producing the same
CN104627977A (zh) * 2013-11-07 2015-05-20 中国科学院苏州纳米技术与纳米仿生研究所 一种氧化石墨烯增强的复合纳米碳纸及其制备方法
JPWO2015072370A1 (ja) * 2013-11-13 2017-03-16 本田技研工業株式会社 炭素繊維膜
JP6077134B2 (ja) * 2013-11-13 2017-02-08 本田技研工業株式会社 炭素繊維膜
US10020123B2 (en) 2013-11-13 2018-07-10 Honda Motor Co., Ltd. Carbon fiber membrane
WO2015072370A1 (ja) * 2013-11-13 2015-05-21 本田技研工業株式会社 炭素繊維膜
JP2016172685A (ja) * 2015-03-17 2016-09-29 シャープ株式会社 アンモニア処理をした多孔質炭素材料及びそのホルムアルデヒド吸着への応用
CN106970116A (zh) * 2017-03-20 2017-07-21 中国石油大学(华东) 一种对丙酮敏感的多面体状四氧化三钴‑三维多孔石墨烯凝胶复合材料膜
CN106970116B (zh) * 2017-03-20 2019-09-10 中国石油大学(华东) 一种对丙酮敏感的多面体状四氧化三钴-三维多孔石墨烯凝胶复合材料膜
CN108421082A (zh) * 2018-04-23 2018-08-21 闫金银 具有抑菌抗瘢痕双重作用的氧化石墨烯伤口敷料的制备方法
CN113594404A (zh) * 2021-07-29 2021-11-02 贵州梅岭电源有限公司 一种新型一体化氟化碳正极的制备方法
CN113594404B (zh) * 2021-07-29 2022-06-24 贵州梅岭电源有限公司 一种一体化氟化碳正极的制备方法

Also Published As

Publication number Publication date
JP2014505650A (ja) 2014-03-06
EP2660192A1 (en) 2013-11-06
JP5775603B2 (ja) 2015-09-09
EP2660192A4 (en) 2016-12-07
CN103153843B (zh) 2014-04-02
US20130252499A1 (en) 2013-09-26
EP2660192B1 (en) 2017-12-20
CN103153843A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2012088697A1 (zh) 石墨烯衍生物-碳纳米管复合材料及其制备方法
CN111799464B (zh) 一种MXene/石墨烯复合纳米片及其制备方法和应用、电极极片及其应用
Wang et al. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries
Li et al. Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
Jiang et al. Flexible and multi-form solid-state supercapacitors based on polyaniline/graphene oxide/CNT composite films and fibers
KR101813893B1 (ko) 구겨진 형상의 실리콘-탄소나노튜브-그래핀 복합체 제조방법, 이에 따라 제조된 복합체 및 복합체를 포함하는 이차전지
US8308994B1 (en) Nano-carbon hybrid structures
WO2018004099A1 (ko) 이종 접합구조를 가지는 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조 방법
CN105948033A (zh) 湿法微波剥离制备石墨烯的方法
CN102530913A (zh) 石墨烯-碳纳米管复合材料的制备方法
JP5253943B2 (ja) 導電性材料およびその製造方法
Han et al. Flexible ethylene-vinyl acetate copolymer/fluorographene composite films with excellent thermal conductive and electrical insulation properties for thermal management
WO2019100949A1 (zh) 一种制备碳纳米管的方法及装置及制备的碳纳米管
KR102332301B1 (ko) 실리콘-탄소 고분자 복합체 및 기계화학적 결합법을 이용한 이의 제조방법
KR20110101668A (ko) 유기 용매에서의 분산성이 우수한 그라핀 화합물의 제조방법
WO2022178916A1 (zh) 一种以醇类溶剂为碳源的碳纳米管及其制备方法
Badawi et al. A review of wearable supercapacitors fabricated from highly flexible conductive fiber materials
Lv et al. High-yield bamboo-shaped carbon nanotubes from cresol for electrochemical application
CN116014106A (zh) 一种碳/二硫化钨插层复合材料的制备方法及应用
KR20150117869A (ko) 설탕 흑연미세분말, 설탕 그래핀 제조 방법
KR102018288B1 (ko) 염료를 이용한 그래핀의 제조 방법
KR20230027747A (ko) 보론 나이트라이드 나노튜브의 제조 방법
KR101398294B1 (ko) 전기 방사를 이용한 탄소나노튜브 섬유의 제조방법 및 이를 이용한 유기 태양전지의 제조방법
CN104599856A (zh) 一种单壁碳纳米管垂直阵列-碳纳米洋葱复合材料制备方法及其在超级电容器中的应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069677.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13990113

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013546556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010861263

Country of ref document: EP