WO2012086723A1 - 耐久性に優れた耐汚染塗料組成物 - Google Patents

耐久性に優れた耐汚染塗料組成物 Download PDF

Info

Publication number
WO2012086723A1
WO2012086723A1 PCT/JP2011/079720 JP2011079720W WO2012086723A1 WO 2012086723 A1 WO2012086723 A1 WO 2012086723A1 JP 2011079720 W JP2011079720 W JP 2011079720W WO 2012086723 A1 WO2012086723 A1 WO 2012086723A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
component
acid
silsesquioxane compound
Prior art date
Application number
PCT/JP2011/079720
Other languages
English (en)
French (fr)
Inventor
松田 英樹
彰典 永井
武司 内田
眞弘 林
裕也 三好
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to JP2012549858A priority Critical patent/JP5916627B2/ja
Publication of WO2012086723A1 publication Critical patent/WO2012086723A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • C09D133/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1693Antifouling paints; Underwater paints as part of a multilayer system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a stain-resistant coating composition that can form a coating film having excellent stain resistance retention over time mainly against rainwater and the like, particularly a stain-resistant coating composition suitable for forming a top coating film on a coated metal plate,
  • the present invention relates to a method for forming a coating film excellent in rainwater stain resistance using a stain-resistant coating composition, and a coated metal plate on which a cured coating film is formed from the stain-resistant coating composition.
  • outdoor base materials for example, buildings, display objects, guard fences, appliances, machines, etc.
  • outdoor paints excellent in weather resistance for the purpose of decoration or protection.
  • paints used outdoors include polyurethane resin-containing paints, fluororesin-containing paints, silicon resin-containing paints, acrylic resin-containing paints, polyester-containing paints, and the like, but these paints are exposed outdoors.
  • the surface of the coated material is easily soiled by the influence of dust, iron powder, rain (acid rain), sunlight, and the like, and the appearance of the coating film is deteriorated.
  • the applicant of the present invention is an organic solvent-based coating composition (1) containing a hydroxyl group-containing fluororesin and an amino resin crosslinking agent as a reaction-curable organic resin, or a hydroxyl group-containing fluororesin and / or a hydroxyl group-containing composition.
  • Paint obtained by blending tetraalkylsilicate and / or condensate thereof with organic solvent-based paint composition (2) containing acrylic resin and (blocked) polyisocyanate compound crosslinking agent as reaction-curable organic resin A top coating composition excellent in stain resistance, characterized in that the contact angle with water on the surface of the coating film after acid treatment is 70 degrees or less, was proposed (see Patent Document 1, International Publication WO94) No. 06870).
  • the top coating composition of Patent Document 1 has insufficient resistance to contamination against rainwater, such as rain streak stains, when used outdoors, and is resistant to rainwater, etc. even in the initial stage of outdoor use. Contamination was not sufficient.
  • thermosetting resin composition comprising an amino resin, (C) an alkoxysilane compound, and (D) a curing catalyst has been proposed (see Patent Document 2).
  • the antifouling property against long-term rain streak contamination of the coating film obtained from this thermosetting resin composition is good when it is a glossy coating film, but a matting agent or the like is added.
  • the coating film has a gloss less than semi-gloss (60 ° gloss is about 50 or less), the stain resistance and corrosion resistance are insufficient.
  • the present invention relates to a stain-resistant paint composition capable of forming a coating film excellent in stain resistance and corrosion resistance retention against rainwater and the like, and in particular, a stain-resistant paint suitable for forming a top coat film of a glossy coated metal plate having a semi-gloss or less. It is to provide a composition.
  • the present inventors have developed a specific organosilicate in a resin binder containing a polyester resin component containing a specific hydroxyl group-containing polyester resin and a crosslinking agent component. And / or a condensate component thereof, and a coating composition containing a silsesquioxane compound component containing two or more reactive groups per molecule (especially a gloss less than semi-gloss (60 ° gloss is 50 It was found that a coating film excellent in stain resistance retention against rainwater and the like can be formed, and the present invention has been completed.
  • the present invention includes the following inventions: Item 1, (A) A polyester resin component containing 50 to 100% by mass of a hydroxyl group-containing polyester resin (A1) having a number average molecular weight of 5000 to 30000 and a hydroxyl value of 5 to 100 mgKOH / g as a solid content, A polyester resin component in which the polyester resin (A1) is a hydroxyl group-containing polyester resin obtained by the reaction of (a1) a polybasic acid component and (a2) an alcohol component; (B) a crosslinking agent component that is a melamine resin and / or a polyisocyanate compound, (C) Organosilicate represented by the following general formula and / or its condensate component general formula: (R 1 ) n —Si— (OR 2 ) 4-n [Wherein, R 1 is an alkyl group having 1 to 18 carbon atoms or a phenyl group which may be substituted with an epoxy group or a mercapto group, R 2 is an an epoxy
  • component (D) a coating composition containing a silsesquioxane compound component containing an average of 2 or more reactive groups per molecule, Based on the total solid content of component (A) and component (B), The content of the component (C) is 1 to 20% by mass, The content of component (D) is 1 to 20% by mass An antifouling paint composition characterized by the above.
  • Item 2 In the hydroxyl group-containing polyester resin (A1), the total content of the alicyclic polybasic acid (a1-1) in the polybasic acid component (a1) is based on the total amount of the polybasic acid component (a1). Item 2.
  • the reactive group of the silsesquioxane compound is at least one selected from the group consisting of a hydroxyl group, an amino group, an epoxy group, a glycidyl group, a (meth) acryloyloxy group, and a mercapto group.
  • the antifouling paint composition as described.
  • Item 4 The contamination resistance according to any one of Items 1 to 3, wherein the silsesquioxane compound is a reactive group-containing silsesquioxane compound obtained by condensing a trialkoxysilane compound having a reactive group. Paint composition.
  • the silsesquioxane compound is synthesized by synthesizing a silsesquioxane compound having a first functional group by condensing a trialkoxysilane compound having a first functional group.
  • the stain-resistant paint composition according to any one of Items 1 to 4, which is a reactive group-containing silsesquioxane compound obtained by reaction.
  • Item 6 a silsesquioxane compound, wherein a trialkoxysilane compound having a first functional group reacts with a reactive group and the first functional group to form a chemical bond with the trialkoxysilane compound.
  • a reactive group-containing silyl obtained by reacting a compound having a functional group of 2 or a compound capable of reacting with the first functional group to form a reactive group, and further condensing the obtained compound Item 6.
  • the antifouling paint composition according to any one of Items 1 to 5, which is a sesquioxane compound.
  • Item 7 The antifouling paint composition according to Item 1, wherein in the silsesquioxane compound component, the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed is 80% by mass or more.
  • Item 8 Based on the total solid content of the polyester resin component (A) and the melamine resin component (B), the polyester resin component (A) is 50 to 90% by mass and the melamine resin component (B) is 10 to 50% by mass. Item 8. The antifouling paint composition according to any one of Items 1 to 7 which is contained.
  • Item 9 The contamination-resistant paint composition according to any one of Items 1 to 8, further comprising a fluorine atom-containing resin component (E).
  • Item 10 The antifouling paint composition according to any one of Items 1 to 9, further comprising a matting agent (F).
  • Item 11 A step of forming a primer coating with a chromium-free primer coating on one or both surfaces of a metal plate, and at least one of the primer coatings, A method for forming a coating film, comprising the step of forming a top coating film with a stain-resistant coating composition.
  • a coated metal sheet comprising a step of forming a top coating film with a stain-resistant coating composition.
  • the antifouling coating composition of the present invention comprises a resin binder containing a polyester resin component containing a specific hydroxyl group-containing polyester resin and a crosslinking agent (melamine resin and / or polyisocyanate compound) component, a specific organosilicate and / or Or it is the coating composition containing the condensate component and the silsesquioxane compound component containing an average of 2 or more reactive groups per molecule.
  • this coating composition it is possible to form a coating film having excellent stain resistance retention against rainwater or the like, particularly in a coating film having a gloss less than semi-gloss (60 ° gloss is about 50 or less).
  • the coating film with the stain resistant coating composition of the present invention can form a coating film having excellent anti-staining property against rainwater etc., particularly when the coating film is semi-glossy or glossy. Although it is not clear, I think as follows.
  • the coating film In order to improve the stain resistance of the coating film, it is effective from the viewpoint that the coating film is hard and does not infiltrate and fix the contaminants. This corresponds to a high glass transition temperature and a high cross-linking density of the entire coating layer bulk.
  • the antifouling component in the antifouling paint composition of the present invention is an organosilicate and / or condensate component thereof, and a silsesquioxane compound component containing an average of two or more reactive groups per molecule, A silsesquioxane compound and a silicate compound are used in combination.
  • the coating composition of the present invention contains a silsesquioxane compound as a stain resistance-imparting component, in addition to a silicate compound, further containing a reactive group and having a rigid (hard) segment from its molecular structure.
  • a silsesquioxane compound as a stain resistance-imparting component, in addition to a silicate compound, further containing a reactive group and having a rigid (hard) segment from its molecular structure.
  • this silsesquioxane compound is localized in the coating surface layer portion (as the coating film surface layer, the concentration of the silsesquioxane compound in the coating film is higher)
  • the coating film surface layer part is sufficiently harder, and the bulk part other than the coating film surface layer part is soft.
  • the coating film since both the silsesquioxane compound component and the silicate component are present on the surface of the coating film in a uniform, dense, and well-distributed state, the coating has excellent contamination resistance and workability (corrosion resistance of the processed part). It is believed that a film will be obtained.
  • a glossy film with a gloss less than semi-gloss with a matting agent, etc. has a more irregular surface shape, better water wetting, and is exposed to more severe conditions regarding hydrolysis resistance. For this reason, when a conventional polyester paint system is used, deterioration of the painted surface (choking, etc.) is accelerated, and it tends to have an unpleasant appearance.
  • the coating film obtained by the anti-stain coating composition of the present invention has a very excellent anti-staining property because the synergistic action of the silsesquioxane compound component and the silicate compound is sufficiently exhibited. It is considered that excellent appearance and stain resistance retention can be exhibited as compared with polyester paint.
  • the antifouling paint composition of the present invention comprises the following polyester resin component (A), crosslinker component (B), organosilicate and / or its condensate component (C), and silsesquioxane compound component It is a coating composition containing (D).
  • the polyester resin component (A) comprises the following hydroxyl group-containing polyester resin (A1) in a solid content of 50 to 50% based on the total solid content of the polyester resin component (A). Contains 100% by mass.
  • the hydroxyl-containing polyester resin (A1) which is an essential component of the polyester resin component (A), is usually an esterification reaction or ester with the following polybasic acid component (a1) and alcohol component (a2). It can be produced by an exchange reaction.
  • the polybasic acid component (a1) a compound usually used as a polybasic acid component in the production of the polyester resin can be used.
  • the polybasic acid component (a1) for example, an alicyclic polybasic acid (a1-1), an aliphatic polybasic acid (a1-2), an aromatic polybasic acid (a1-3), etc. should be used. Can do.
  • the alicyclic polybasic acid (a1-1) is generally a compound having one or more alicyclic structures (for example, 4 to 6 membered ring) and two or more carboxyl groups in one molecule, the compound An acid anhydride of the compound is an esterified product of the compound.
  • Examples of the alicyclic polybasic acid (a1-1) include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid.
  • Alicyclics such as acid, 3-methyl-1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid
  • Polyhydric carboxylic acids; anhydrides of these alicyclic polyvalent carboxylic acids; lower alkyl esterified products of these alicyclic polyvalent carboxylic acids herein, “lower alkyl” in this specification means, for example, the number of carbon atoms
  • the alicyclic polybasic acid (a1-1) can be used alone or in combination of two or more.
  • 1,2-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic anhydride, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4-Cyclohexene-1,2-dicarboxylic acid and 4-cyclohexene-1,2-dicarboxylic anhydride can be preferably used.
  • 1,2-cyclohexanedicarboxylic acid and 1,2-cyclohexanedicarboxylic acid anhydride can be particularly preferably used from the viewpoint of hydrolysis resistance.
  • the total content of the alicyclic polybasic acid (a1-1) is selected from the viewpoints of hydrolysis resistance and stain resistance of the polybasic acid component (a1). Based on the total amount, it is preferably in the range of 50 to 100 mol%, particularly 70 to 100 mol%, more particularly 80 to 100 mol%.
  • the aliphatic polybasic acid (a1-2) is generally an aliphatic compound having two or more carboxyl groups in one molecule, an acid anhydride of the aliphatic compound, and an esterified product of the aliphatic compound,
  • aliphatic polycarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, octadecanedioic acid, citric acid;
  • Examples include anhydrides of aliphatic polyvalent carboxylic acids; lower alkyl esterified products of these aliphatic polyvalent carboxylic acids.
  • the aliphatic polybasic acid (a1-2) can be used alone or in combination of two or more.
  • a dicarboxylic acid having an alkyl chain having 4 to 18 carbon atoms examples include adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassic acid, and octadecanedioic acid.
  • adipic acid can be preferably used.
  • the aromatic polybasic acid (a1-3) is generally an aromatic compound having two or more carboxyl groups in one molecule, an acid anhydride of the aromatic compound, an esterified product of the aromatic compound, and the like.
  • aromatic polyvalent carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, trimellitic acid, and pyromellitic acid
  • Carboxylic anhydrides lower alkyl esterified products of these aromatic polycarboxylic acids.
  • the aromatic polybasic acid (a1-3) can be used alone or in combination of two or more.
  • examples of the acid component include coconut oil fatty acid, cottonseed oil fatty acid, hemp seed oil fatty acid, rice bran oil fatty acid, fish oil fatty acid, tall oil fatty acid, soybean oil fatty acid, linseed oil fatty acid, tung oil fatty acid, rapeseed Fatty acids such as oil fatty acids, castor oil fatty acids, dehydrated castor oil fatty acids, safflower oil fatty acids; lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p-tert-butylbenzoic acid Examples thereof include monocarboxylic acids such as acid, cyclohexane acid, and 10-phenyloctadecanoic acid; hydroxycarboxylic acids such as lactic acid, citric acid, 3-hydroxybutanoic acid, and 3-hydroxy-4-ethoxybenzoic acid
  • Fatty acid (a3) is a monovalent carboxylic acid of a linear hydrocarbon, such as coconut oil fatty acid, cottonseed oil fatty acid, hemp seed oil fatty acid, rice bran oil fatty acid, fish oil fatty acid, tall oil fatty acid, soybean oil fatty acid, linseed oil fatty acid Fatty acids such as paulownia oil fatty acid, rapeseed oil fatty acid, castor oil fatty acid, dehydrated castor oil fatty acid, safflower oil fatty acid; lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, etc. it can.
  • the said fatty acid can be used individually or in combination of 2 or more types.
  • the iodine value is a numerical value serving as an index representing the degree of unsaturation of the compound, and is represented by the number of g of iodine absorbed by 100 g of the sample.
  • the measurement can be performed according to the standard of JIS K 5421.
  • coconut oil fatty acid lauric acid, myristic acid, palmitic acid, stearic acid, especially coconut oil fatty acid can be suitably used as the fatty acid (a3).
  • the alcohol component (a2) a polyhydric alcohol having two or more hydroxyl groups in one molecule can be suitably used.
  • the polyhydric alcohol include alicyclic diol (a2-1), aliphatic diol (a2-2), and aromatic diol (a2-3).
  • the alicyclic diol (a2-1) is generally a compound having one or more alicyclic structures (for example, 4 to 6 membered rings) and two hydroxyl groups in one molecule.
  • Examples of the alicyclic diol (a2-1) include dihydric alcohols such as 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F, and the like.
  • Examples include polylactone diols to which a lactone compound such as ⁇ -caprolactone is added, and these can be used alone or in combination of two or more.
  • the aliphatic diol (a2-2) is generally an aliphatic compound having two hydroxyl groups in one molecule.
  • Examples of the aliphatic diol (a2-2) include ethylene glycol, propylene glycol, diethylene glycol, trimethylene glycol, tetraethylene glycol, triethylene glycol, dipropylene glycol, 1,4-butanediol, and 1,3-butane.
  • the aromatic diol (a2-3) is generally an aromatic compound having two hydroxyl groups in one molecule.
  • Examples of the aromatic diol (a2-3) include ester diol compounds such as bis (hydroxyethyl) terephthalate; alkylene oxide adducts of bisphenol A, and these are used alone or in combination of two or more. be able to.
  • polyhydric alcohols other than the alicyclic diol (a2-1), aliphatic diol (a2-2), and aromatic diol (a2-3) include polyglycols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol.
  • Ether diol compounds glycerin, trimethylolethane, trimethylolpropane, diglycerin, triglycerin, 1,2,6-hexanetriol, pentaerythritol, dipentaerythritol, tris (2-hydroxyethyl) isocyanurate, sorbitol, mannitol And trihydric or higher alcohols such as polylactone polyol compounds obtained by adding a lactone compound such as ⁇ -caprolactone to these trihydric or higher alcohols.
  • trivalent or higher alcohols can be suitably used from the viewpoint of increasing the molecular weight and improving the reactivity of the modification reaction with the fatty acid (a3) when the fatty acid (a3) is used.
  • trihydric or higher polyhydric alcohol examples include glycerin, trimethylolethane, trimethylolpropane, diglycerin, triglycerin, 1,2,6-hexanetriol, pentaerythritol, dipentaerythritol, sorbitol, mannitol and the like.
  • trimethylolpropane is particularly preferable.
  • the total content of the trihydric or higher polyhydric alcohol in the alcohol component (a2) is 10 to 70 mol%, particularly 20%, based on the total amount of the alcohol component (a2). It is preferably in the range of ⁇ 65 mol%, more preferably in the range of 30 ⁇ 60 mol%.
  • Examples of the alcohol component (a2) other than the polyhydric alcohol include monoalcohols such as methanol, ethanol, propyl alcohol, butyl alcohol, stearyl alcohol, and 2-phenoxyethanol; propylene oxide, butylene oxide, and synthetic highly branched saturated fatty acids.
  • An alcohol compound obtained by reacting a monoepoxy compound with an acid such as glycidyl ester (trade name “Cardura E10” manufactured by HEXION Specialty Chemicals) and the like can be used as necessary.
  • the production of the hydroxyl group-containing polyester resin (A1) is not particularly limited, and can be performed according to a usual method.
  • the acid component having the polybasic acid component (a1) as an essential component and the alcohol component (a2) are reacted in a nitrogen stream at 150 to 250 ° C. for 5 to 10 hours to produce an esterification reaction or a transesterification reaction. Can be manufactured.
  • the acid component and alcohol component (a2) may be added at once, or may be added in several portions. Moreover, after synthesize
  • a catalyst may be used to promote the reaction.
  • known catalysts such as dibutyltin oxide, antimony trioxide, zinc acetate, manganese acetate, cobalt acetate, calcium acetate, lead acetate, tetrabutyl titanate, and tetraisopropyl titanate can be used.
  • the hydroxyl group-containing polyester resin (A1) can be modified with a fatty acid, a monoepoxy compound, a polyisocyanate compound or the like during the preparation of the resin, or after the esterification reaction or the transesterification reaction.
  • fatty acid examples include coconut oil fatty acid, cottonseed oil fatty acid, hemp seed oil fatty acid, rice bran oil fatty acid, fish oil fatty acid, tall oil fatty acid, soybean oil fatty acid, linseed oil fatty acid, tung oil fatty acid, rapeseed oil fatty acid, castor oil fatty acid, dehydrated castor An oil fatty acid, safflower oil fatty acid, etc. can be mentioned.
  • a glycidyl ester of a synthetic highly branched saturated fatty acid (trade name “Cardura E10” manufactured by HEXION Specialty Chemicals) can be suitably used.
  • polyisocyanate compound examples include aliphatic diisocyanate compounds such as lysine diisocyanate, hexamethylene diisocyanate, and trimethylhexane diisocyanate; hydrogenated xylylene diisocyanate, isophorone diisocyanate, methylcyclohexane-2,4-diisocyanate, methylcyclohexane-2,6 Alicyclic diisocyanate compounds such as diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), 1,3- (isocyanatomethyl) cyclohexane; aromatic diisocyanate compounds such as tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate; lysine Organic polyisocyanate such as triisocyanate or higher polyisocyanate such as triisocyanate As such, or an adduct of each of these organic polyisocyanate
  • the number average molecular weight of the hydroxyl group-containing polyester resin (A1) is from 5,000 to 30,000, particularly from 7,000 to 25,000, more particularly from 10,000 to 20,000, from the viewpoints of the processability and smoothness of the resulting coating film. It is preferable to have
  • the number average molecular weight and the weight average molecular weight are values obtained by converting the number average molecular weight and the weight average molecular weight measured using a gel permeation chromatograph (GPC) based on the molecular weight of standard polystyrene. is there.
  • GPC gel permeation chromatograph
  • HLC8120GPC trade name, manufactured by Tosoh Corporation
  • TSK-gel G4000 HXL “TSK-gel G3000 HXL ”
  • Four TSK-gel G2500H XL ”and“ TSK-gel G2000 HXL ” (trade names, all manufactured by Tosoh Corporation) were used.
  • Mobile phase tetrahydrofuran, measurement temperature 40 ° C., flow rate 1 mL / min, detector RI Can be measured under the following conditions.
  • the hydroxyl value of the hydroxyl group-containing polyester resin (A1) is from 5 to 100 mgKOH / g, particularly from 10 to 90 mgKOH / g, more particularly from 40 to 80 mgKOH / g, from the viewpoint of curability of the resulting coating film. It is preferable to have a valence.
  • the acid value of the hydroxyl group-containing polyester resin (A1) is preferably in the range of 30 mgKOH / g or less, more preferably 20 mgKOH / g or less, from the viewpoints of processability and water resistance.
  • Adjustment of the number average molecular weight, the hydroxyl value, and the acid value of the hydroxyl group-containing polyester resin (A1) is, for example, an acid component (polybasic acid component (a1) having the polybasic acid component (a1) as an essential component and as necessary.
  • the equivalent ratio (COOH / OH) of the carboxyl group in the acid component containing the polybasic acid component (a1) as an essential component to the hydroxyl group in the alcohol component (a2) is generally 0.5 to 0.98. It is preferable to be within the range.
  • the hydroxyl group-containing polyester resin (A1) preferably has a glass transition temperature in the range of 0 to 50 ° C., preferably 10 to 40 ° C., from the viewpoint of the hardness and workability of the resulting coating film.
  • the glass transition temperature (Tg) is a value (glass transition temperature) measured by differential thermal analysis (DSC).
  • the hydroxyl group-containing polyester resin (A1) is an oil in the range of 3 to 30%, preferably 5 to 20%, from the viewpoint of the weather resistance of the resulting coating film. It is preferred to have a length.
  • the oil length is a mass% of the fatty acid component (a3) with respect to the total amount of the acid component and the alcohol component (a2) having the polybasic acid component (a1) and the fatty acid (a3) as essential components as essential components. .
  • polyester resin component (A) a polyester resin (A2) other than the hydroxyl group-containing polyester resin (A1) can also be included.
  • the polyester resin (A2) is a polyester resin obtained by an esterification reaction or transesterification reaction of an acid component and an alcohol component (a2) having the polybasic acid component (a1) as an essential component by a conventional method.
  • the acid component and alcohol component (a2) having the component (a1) as essential components those exemplified for the hydroxyl group-containing polyester resin (A1), and the method exemplified for the hydroxyl group-containing polyester resin (A1) Similarly, it can be manufactured.
  • the solid content of the hydroxyl group-containing polyester resin (A1) is 50 to 100% by mass from the viewpoint of stain resistance of the resulting coating film. It is. It is preferably in the range of 60 to 100% by mass, more preferably 70 to 100% by mass.
  • crosslinking agent component (B) is a melamine resin and / or a polyisocyanate compound.
  • Melamine resin (also referred to as methylolated melamine resin) is a resin obtained by the reaction of melamine and aldehyde, and includes both partially methylolated melamine resin and fully methylolated melamine resin.
  • the melamine resin preferably has a number average molecular weight in the range of 800 to 8000, more preferably 1000 to 5000, from the viewpoint of the finish of the obtained coating film and the stain resistance.
  • aldehyde examples include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde and the like, and formaldehyde is particularly preferable.
  • a methylolated melamine resin obtained by partially or completely etherifying a methylol group with an appropriate alcohol can also be used.
  • alcohols that can be used for etherification include methyl alcohol, ethyl alcohol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, 2-ethyl-1-butanol, 2-ethyl- Examples include 1-hexanol.
  • Butyl etherified melamine resin partially or fully etherified with: methyl-butyl mixed etherified melamine in which the methylol group of the partially or fully methylolated melamine resin is partially or fully etherified with both methyl alcohol and butyl alcohol Resins can be preferably used.
  • butyl etherified melamine resin and methyl-butyl mixed etherified melamine resin are preferable, and butyl etherified melamine resin is more preferable, from the viewpoints of finish and stain resistance of the resulting coating film.
  • a melamine resin a butyl etherified melamine resin as a solid content with respect to the total solid content of the melamine resin. 30 to 100% by mass, particularly 50 to 100% by mass, more preferably 70 to 100% by mass.
  • Butyl etherified melamine resin is less polar than methyl etherified melamine resin, methyl-butyl mixed etherified melamine resin and the like, and has good compatibility with polyester resin (A) as a base resin. Therefore, the coating film obtained from the antifouling coating composition containing a butyl etherified melamine resin has excellent cross-linking uniformity.
  • butyl etherified melamine resin is less likely to be localized on the surface layer in the coating film than methyl etherified melamine resin and methyl-butyl mixed etherified melamine resin. Therefore, the coating film obtained from the stain-resistant coating composition containing a butyl etherified melamine resin has excellent weather resistance.
  • the melamine resins described above can be used alone or in combination of two or more.
  • butyl etherified melamine resins include, for example, Uban 20SE, Uban 225 (all of which are manufactured by Mitsui Chemicals, Inc.), Super Becamine J820-60, Super Becamine L-117-60, Super Becamine L -109-65, Super Becamine 47-508-60, Super Becamine L-118-60, Super Becamine G821-60 (all of which are manufactured by DIC Corporation).
  • methyl etherified melamine resin examples include Sumimar M-100, Sumimar M-40S, Sumimar M-55 (all trade names, manufactured by Sumitomo Chemical Co., Ltd.), Cymel 300, Cymel 303, Cymel 325, Cymel 327, Cymel 350, Cymel 370, Cymel 730, Cymel 736, Cymel 738 (all are made by Nihon Cytec Industries, Ltd., trade name), Melan 522, Melan 523 (all are made by Hitachi Chemical Co., Ltd.) , Nicarak MS17, Nicarak MS15, Nicarak MS001, Nicarak MX430, Nicarak MX650 (all are Sanwa Chemical Co., Ltd., trade name), Resimin 740, Resimin 741, Resimin 747 (all are Monsanto Co., trade name) Etc. Kill.
  • methyl-butyl mixed etherified melamine resins examples include Cymel 232, Cymel 235, Cymel 202, Cymel 238, Cymel 254, Cymel 266, Cymel 272, Cymel 1130, Cymel XV-514, Cymel XV805 (all of which are Nihon Cytec Industrie).
  • Sumimar M66B Suditomo Chemical Co., trade name
  • Resimin 753, Resimin 755 all of which are manufactured by Monsanto
  • a curing catalyst can be used as necessary to accelerate the curing reaction between the polyester resin component (A) and the melamine resin.
  • a curing catalyst for promoting the curing reaction for example, a sulfonic acid compound or a neutralized product of a sulfonic acid compound can be used.
  • Examples of the sulfonic acid compound include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, and the like.
  • Examples of the neutralizing agent in the neutralized product of the sulfonic acid compound include basic compounds such as primary amine, secondary amine, tertiary amine, ammonia, caustic soda, and caustic potash.
  • Polyisocyanate compound is a compound having two or more isocyanate groups in one molecule.
  • aliphatic diisocyanate compounds such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate; hydrogenated xylylene diisocyanate, isophorone diisocyanate
  • Cycloaliphatic diisocyanate compounds such as tolylene diisocyanate, aromatic diisocyanate compounds such as 4,4'-diphenylmethane diisocyanate; triphenylmethane-4,4 ', 4 "-triisocyanate, 1,3,5-triisocyanatobenzene 3,4,6-triisocyanatotoluene, 4,4'-dimethyldiphenylmethane-2,2 ', 5,5'-tetraisocyanate
  • Organic polyisocyanate itself such as a polyisocyanate compound having a net group, or an adduct of each of these organic
  • a block polyisocyanate compound can be used as the polyisocyanate compound.
  • the blocked polyisocyanate compound is a compound in which free isocyanate groups of the polyisocyanate compound are blocked with a blocking agent.
  • the blocking agent examples include phenols such as phenol, cresol and xylenol; ⁇ -caprolactam; lactones such as ⁇ -valerolactam and ⁇ -butyrolactam; methanol, ethanol, n-, i- or t-butyl alcohol, ethylene Alcohols such as glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, and benzyl alcohol; oximes such as formamidoxime, acetaldoxime, acetoxime, methyl ethyl ketoxime, diacetyl monooxime, benzophenone oxime, cyclohexane oxime System: Active methyle such as dimethyl malonate, diethyl malonate, ethyl acetoacetate, acetylacetone It can be suitably used blocking agent such systems.
  • polyisocyanate compounds and block polyisocyanate compounds can be used alone or in combination of two or more.
  • a curing catalyst can be used to improve the curability of the polyisocyanate compound and the block polyisocyanate compound.
  • the curing catalyst include tin octylate, dibutyltin di (2-ethylhexanoate), dioctyltin di (2-ethylhexanoate), dibutyltin dilaurate, dibutyltin oxide, dioctyltin oxide, and 2-ethyl.
  • An organometallic catalyst such as lead hexanoate can be suitably used.
  • the ratio of the polyester resin component (A) and the crosslinking agent component (B) is based on the total solid content of the polyester resin component (A) and the crosslinking agent component (B).
  • the solid content of the polyester resin component (A) is preferably 50 to 90% by mass, particularly 60 to 80% by mass, from the viewpoints of curability and workability. It is preferable from the viewpoint of curability and workability that the solid content of the crosslinking agent component (B) is 10 to 50% by mass, particularly 20 to 40% by mass.
  • the ratio of the melamine resin and the polyisocyanate compound (melamine resin / polyisocyanate compound)
  • the fractional mass ratio is preferably in the range of 70/30 to 99/1, particularly 80/20 to 95/5, from the viewpoint of contamination resistance and the like.
  • (C) Organosilicate and / or its condensate component (C) component of the present invention, General formula: (R 1 ) n —Si— (OR 2 ) 4-n [Wherein, R 1 is an alkyl group having 1 to 18 carbon atoms or a phenyl group which may be substituted with an epoxy group or a mercapto group, R 2 is an alkyl group having 1 to 6 carbon atoms, and n is 0 or 1. ] It is the organosilicate represented by these, and / or its condensate.
  • Component (C) contained in the coating composition of the present invention is used for the coating film to exhibit a hydrophilic effect on the surface of the substrate efficiently after coating. From the viewpoint of this effect, the above organosilicate is used. The condensate is more preferred.
  • R 1 in the above general formula examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, pentyl, hexyl, heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl, undecyl, dodecyl, Tetradecyl, hexadecyl, octadecyl, glycidyl, methylglycidyl (2-methylglycidyl)-, mercaptomethyl, 2-mercaptoethyl, 2-mercaptopropyl, 3-mercaptopropyl, 4-mercaptobutyl, phenyl, p-mercaptophenyl groups, etc. Can be mentioned.
  • organosilicate of component (C) include tetrafunctional silanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraisobutoxysilane; methyltrimethoxysilane, methyl Triethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltri-n-butoxysilane, methyltriisobutoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, phenyltriisopropoxysilane, phenyltri n-butoxysilane, phenyltriisobutoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane,
  • Organosilicate condensate can be produced by a conventional method.
  • Commercially available products include, for example, MKC silicate MS51, MS56, MS57, MS56S, MS56SB5, MS58B15, MS58B30, ES40, EMS31, BTS (all are trade names manufactured by Mitsubishi Chemical Corporation), methyl silicate 51, ethyl silicate 40, ethyl silicate 40T, ethyl silicate 48 (all of which are manufactured by Colcoat Co., Ltd., trade names), KR500, KR9218, X-41-1805, X-41-1810, X-41-1818, X-41- 1053, X-41-1056 (all are trade names manufactured by Shin-Etsu Chemical Co., Ltd.).
  • organosilicate condensates can be obtained by single hydrolysis or by partial hydrolysis condensation using a combination of two or more.
  • the organosilicate condensate is a branched or linear condensate, and the degree of condensation is preferably 2 to 100, preferably 2 to 20.
  • the compound corresponding to the silsesquioxane compound component (D) described later does not correspond to the component (C).
  • the (C) component organosilicate or organosilicate condensate may be used alone or in combination of two or more.
  • the organosilicate represented by the above general formula and / or its condensate it has a methoxy group and an alkoxy group having 2 to 6 carbon atoms as an OR 2 group, and a methoxy group / an alkoxy group having 2 to 6 carbon atoms; It is preferable that the ratio of the number is in the range of 95/5 to 30/70 from the viewpoint of pot life after the preparation of the paint.
  • the solid content of the component (C) is 1 to 20% by mass based on the total solid content of the component (A) and the component (B).
  • the amount is preferably 1 to 10% by mass, more preferably 3 to 7% by mass.
  • silsesquioxane Compound Component The silsesquioxane compound of the coating composition of the present invention is a silsesquioxane compound containing an average of 2 or more reactive groups per molecule.
  • the reactive group is preferably at least one selected from the group consisting of a hydroxyl group, an amino group, an epoxy group, a glycidyl group, a (meth) acryloyloxy group, and a mercapto group. From the viewpoint of reactivity with the crosslinking agent component, a hydroxyl group is preferable. And at least one selected from the group consisting of epoxies is preferred, with hydroxyl groups being particularly preferred.
  • the (meth) acryloyloxy group means an acryloyloxy group and a methacryloyloxy group.
  • the “silsesquioxane compound” generally has a structure obtained by hydrolytic condensation of a trialkoxysilane compound.
  • the “silsesquioxane compound” refers to a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolytically condensed (also referred to as a silsesquioxane compound having a cage structure). )), It may also include a ladder structure in which Si—OH groups remain, an incomplete cage structure, and a random condensate silsesquioxane compound.
  • the silsesquioxane compound of the present invention preferably has a degree of condensation of about 7 to 20.
  • a silsesquioxane compound can be used individually by 1 type or in combination of 2 or more types.
  • the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably. Is preferably 100% by mass from the viewpoint of liquid stability.
  • Examples of the structure of the three oxygen atoms bonded to the Si atom include the following T0 structure, T1 structure, T2 structure, and T3 structure: A T0 structure in which all three oxygen atoms bonded to Si atoms are not bonded to other Si atoms; A T1 structure in which one of three oxygen atoms bonded to a Si atom is bonded to another Si atom; A T2 structure in which two of the three oxygen atoms bonded to Si atoms are bonded to other Si atoms; A T3 structure in which all three oxygen atoms bonded to Si atoms are bonded to other Si atoms.
  • the ratio of the silsesquioxane compound having a structure in which all of the Si—OH groups are hydrolyzed and condensed means that “the Si atom constituting the silsesquioxane compound component (D) is bonded to the Si atom. In other words, the ratio is a structure in which all three oxygen atoms are bonded to other Si atoms (T3 structure).
  • the reactive group content of the silsesquioxane compound is an average of 2 or more per molecule, and from the viewpoint of the crosslinking density of the resulting coating film, It is preferably in the range of 25 to 300 mol%, particularly 25 to 100 mol%, more particularly 50 to 100 mol%, based on the total amount of Si atoms.
  • the hydroxyl value of the silsesquioxane compound is 100 mgKOH / g from the viewpoint of the crosslinking density of the resulting coating film and compatibility with other components. g or more, preferably 100 to 600 mgKOH / g, more preferably 150 to 400 mgKOH / g.
  • the silsesquioxane compound has an epoxy group as a reactive group
  • the silsesquioxane compound has an epoxy value of 0.5 to 10 mmol / g, particularly 1 to It is preferably 6 mmol / g.
  • the silsesquioxane compound of the coating composition of the present invention is not particularly limited as long as it is a silsesquioxane compound containing an average of 2 or more reactive groups per molecule, but specifically, Examples thereof include silsesquioxane compounds synthesized by the following method.
  • a reactive group-containing silsesquioxane compound obtained by condensing a trialkoxysilane compound having a desired reactive group.
  • a trialkoxysilane compound having a first functional group is condensed to synthesize a silsesquioxane compound having a first functional group, and further reacted with a desired reactive group and the first functional group to Reaction obtained by reacting a compound having a second functional group capable of forming a chemical bond with a silsesquioxane compound or a compound capable of reacting with the first functional group to form a desired reactive group -Containing silsesquioxane compounds.
  • a reactive group-containing silsesquioxane compound obtained by reacting a compound capable of reacting with the first functional group to form a desired reactive group, and further condensing the obtained compound is a compound having a second functional group capable of forming a chemical bond with the trialkoxysilane compound by reacting with a desired reactive group and the first functional group on a trialkoxysilane compound having a first functional group.
  • a conventionally known compound can be used as a trialkoxysilane compound having a reactive group.
  • Specific examples thereof include, for example, 3-aminopropyltrimethyl Methoxysilane, 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltri Amino group-containing trialkoxysilane compounds such as methoxysilane; glycidyl such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; Epoxy group-containing trialkoxy (Meth) acryloyloxy
  • alkoxy group of the alkoxysilane compound is not particularly limited, but those having a methoxy group or an ethoxy group can be preferably used.
  • the above method 1 can be suitably used when the reactive group of the silsesquioxane compound is an amino group, an epoxy group, a glycidyl group, a (meth) acryloyloxy group, or a mercapto group.
  • the reactive group of the silsesquioxane compound is an amino group, an epoxy group, a glycidyl group, a (meth) acryloyloxy group, or a mercapto group.
  • it is an epoxy group, it can be suitably used.
  • the above method 2 can be suitably used when the desired reactive group of the silsesquioxane compound is a hydroxyl group, an epoxy group or an amino group.
  • the desired reactive group of the silsesquioxane compound is a hydroxyl group, an epoxy group or an amino group.
  • it can be synthesized by the above method 1. Since it is difficult, it can be used particularly suitably.
  • the above method 2 is also used. Can be used.
  • examples of the first functional group of the trialkoxysilane compound include an amino group, an epoxy group, a glycidyl group, a (meth) acryloyloxy group, and a mercapto group. Can be mentioned.
  • alkoxy group of the alkoxysilane compound is not particularly limited, but those having a methoxy group or an ethoxy group can be preferably used.
  • trialkoxysilane compound having such a functional group a conventionally known compound can be used, and specific examples thereof include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- Amino group-containing trialkoxysilane compounds such as 2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane; 3 Glycidyl or epoxy group-containing trialkoxysilane compounds such as glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloxypropyl Trimethoxysilane (Meth) acryl
  • the trialkoxysilane compounds can be used alone or in combination of two or more.
  • Examples of the second functional group that can react with the first functional group of the trialkoxysilane compound include an amino group, an epoxy group, a carboxyl group, a (meth) acryloyloxy group, and a mercapto group.
  • a conventionally known compound can be used as the compound having such a second functional group and a (desired) reactive group.
  • a conventionally known compound include, for example, monoethanolamine, diethanolamine, methylisopropanolamine. Glycidol, hydroxyacetic acid, malic acid, dimethylolpropionic acid, dimethylolbutanoic acid, hydroxyethyl acrylate, hydroxypropyl acrylate, mercaptoethanol and the like.
  • a compound that can react with the first functional group of the trialkoxysilane compound to generate a (desired) reactive group for example, when the first functional group is an epoxy group, a carboxyl group-containing compound, Examples include amino group-containing compounds. Further, when the first functional group is an amino group, an epoxy group-containing compound, a lactone compound, a cyclic carbonate compound, and the like can be given. Moreover, these compounds may further contain a hydroxyl group which is a reactive group.
  • the compound include carboxyl group-containing compounds such as acetic acid, propanoic acid, butanoic acid, 2-ethylhexanoic acid, glycolic acid, malic acid, dimethylolpropionic acid, and dimethylolbutanoic acid. it can.
  • amino group-containing compounds include dimethylamine, diethylamine, dipropylamine, dibutylamine, butoxypropylamine, monoethanolamine, diethanolamine, and methylisopropanolamine.
  • Examples of the epoxy group-containing compound include glycidol and allyl glycidyl ether.
  • lactone compound examples include ⁇ -butyrolactone and ⁇ -caprolactone.
  • cyclic carbonate compound examples include ethylene carbonate, propylene carbonate, butylene carbonate, glycerin carbonate and the like.
  • the above method 3 can be suitably used when the desired reactive group of the silsesquioxane compound is a hydroxyl group, an epoxy group or an amino group.
  • the desired reactive group of the silsesquioxane compound is a hydroxyl group, an epoxy group or an amino group.
  • it can be synthesized by the above method 1. Since it is difficult, it can be used particularly suitably.
  • the silsesquioxane compound can be synthesized by the above-mentioned method 2.
  • the first functional group is a functional group capable of reacting with a solvent or a catalyst during the condensation reaction
  • the first functional group is used.
  • the trialkoxysilane compound having a group is difficult to undergo a condensation reaction as it is, the above method 3 can be suitably used.
  • the isocyanate group reacts with water during the hydrolysis reaction. Moreover, since an isocyanate group reacts with the hydroxyl group of alcohol, there is a restriction that an alcohol solvent cannot be used as a reaction solvent. In order to eliminate such a problem, the third method can be suitably used.
  • the silsesquioxane compound that can be synthesized by the second method is synthesized by the third method.
  • a trialkoxysilane compound having a hydroxyl group is produced in the synthesis reaction step, it has a hydroxyl group. Since trialkoxysilane compounds can react with hydroxyl groups and alkoxysilyl groups, there may be problems with their storage properties, and the synthesis reaction is not interrupted in the presence of a trialkoxysilane compound having a hydroxyl group, and the condensation reaction is performed all at once. It is preferable to complete it.
  • examples of the first functional group of the trialkoxysilane compound include an amino group, an epoxy group, a glycidyl group, a (meth) acryloyloxy group, a mercapto group, An isocyanate group etc. can be mentioned.
  • alkoxy group of the alkoxysilane compound is not particularly limited, but those having a methoxy group or an ethoxy group can be preferably used.
  • trialkoxysilane compound having such a functional group a conventionally known compound can be used, and specific examples thereof include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- Amino group-containing trialkoxysilane compounds such as 2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane; 3 Glycidyl or epoxy group-containing trialkoxysilane compounds such as glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-isocyanatopropyltri Methoxysila Isocyanate
  • Examples of the second functional group that can react with the first functional group of the trialkoxysilane compound include an amino group, an epoxy group, a carboxyl group, a (meth) acryloyloxy group, a mercapto group, and a hydroxyl group.
  • a conventionally known compound can be used, and specific examples thereof include, for example, monoethanolamine, diethanolamine, methylisopropanolamine, glycidol, hydroxy Examples include acetic acid, malic acid, dimethylolpropionic acid, dimethylolbutanoic acid, hydroxyethyl acrylate, hydroxypropyl acrylate, mercaptoethanol, ethylene glycol, and trimethylolpropane.
  • a compound that can react with the first functional group of the trialkoxysilane compound to generate a (desired) reactive group for example, when the first functional group is an epoxy group, a carboxyl group-containing compound, Examples include amino group-containing compounds. Moreover, when a 1st functional group is an amino group, an epoxy group containing compound, lactones, a cyclic carbonate compound, etc. can be mentioned. Moreover, these compounds may further contain a hydroxyl group which is a reactive group.
  • the compound include, for example, carboxyl group-containing compounds such as acetic acid, propanoic acid, butanoic acid, 2-ethylhexanoic acid, glycolic acid, malic acid, dimethylolpropionic acid, and dimethylolbutanoic acid. it can.
  • carboxyl group-containing compounds such as acetic acid, propanoic acid, butanoic acid, 2-ethylhexanoic acid, glycolic acid, malic acid, dimethylolpropionic acid, and dimethylolbutanoic acid. it can.
  • amino group-containing compounds include dimethylamine, diethylamine, dipropylamine, dibutylamine, butoxypropylamine, monoethanolamine, diethanolamine, and methylisopropanolamine.
  • Examples of the epoxy group-containing compound include glycidol and allyl glycidyl ether.
  • lactone compound examples include ⁇ -butyrolactone and ⁇ -caprolactone.
  • cyclic carbonate compound examples include ethylene carbonate, propylene carbonate, butylene carbonate, glycerin carbonate and the like.
  • silsesquioxane compound obtained by the above method 1 examples include a silsesquioxane compound obtained by hydrolytic condensation of a trialkoxysilane compound containing a reactive group.
  • the trialkoxysilane compound specifically includes 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- ( 3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like.
  • trialkoxysilane compounds containing reactive groups In addition to trialkoxysilane compounds containing reactive groups, the concentration of reactive groups and compatibility with other components are adjusted so that trialkoxysilane compounds without reactive groups and (crosslinking) reactions are not affected.
  • a trialkoxysilane compound having a functional group can also be used in combination.
  • silane compounds include methyltrimethoxysilane, propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, and phenyltrimethoxysilane.
  • the reactive group is an epoxy group
  • 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane and the like can be used in combination.
  • synthesis is performed by subjecting the trialkoxysilane compound to a hydrolytic condensation reaction in the presence of a catalyst. Can do.
  • a basic catalyst can be suitably used as the catalyst.
  • the basic catalyst include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, and benzyl.
  • alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide
  • tetramethylammonium hydroxide tetraethylammonium hydroxide
  • tetrabutylammonium hydroxide benzyl
  • ammonium hydroxide salts such as trimethylammonium hydroxide
  • ammonium fluoride salts such as tetrabutylammonium fluoride.
  • the amount of the catalyst used is not particularly limited, but from the viewpoint of production cost, catalyst removability and productivity (reaction rate), 0.0001 to 1.0 mol per mol of the silane compound, In particular, the range is preferably 0.0005 to 0.1 mol.
  • the amount ratio of the silane compound and water is not limited, but the amount of water used is 0.1 to 100 mol, particularly 0.5 to 3 mol, relative to 1 mol of the silane compound.
  • the molar range is preferred.
  • the amount of water is less than 0.1 mol with respect to 1 mol of the silane compound, the reaction rate becomes slow, and the yield of the desired silsesquioxane compound may be lowered.
  • the amount is more than 100 moles, since the molecular weight is easily increased, the production rate of the silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed may be reduced.
  • the basic catalyst is used as an aqueous solution
  • the water to be used can be used as water used for the hydrolysis condensation reaction, or water can be added separately.
  • an organic solvent can be used from the viewpoint of preventing gelation and adjusting the viscosity during the reaction.
  • an organic solvent a polar organic solvent and a nonpolar organic solvent can be used alone or in combination.
  • polar organic solvent examples include lower alcohols such as methanol, ethanol and 2-propanol, ketones such as acetone and methyl isobutyl ketone, and ethers such as tetrahydrofuran.
  • lower alcohols such as methanol, ethanol and 2-propanol
  • ketones such as acetone and methyl isobutyl ketone
  • ethers such as tetrahydrofuran.
  • acetone and tetrahydrofuran can be suitably used because they have a low boiling point, and the reaction system becomes uniform and the reactivity can be improved.
  • nonpolar organic solvent a hydrocarbon solvent is preferable, and an organic solvent having a boiling point higher than that of water such as toluene or xylene can be suitably used.
  • an organic solvent azeotroped with water such as toluene can be preferably used because water can be efficiently removed from the reaction system.
  • the reaction temperature in the hydrolytic condensation reaction can be 0 to 200 ° C., preferably 10 to 200 ° C., more preferably 10 to 120 ° C.
  • the reaction time in the hydrolysis-condensation reaction is usually about 1 to 12 hours.
  • the condensation reaction proceeds with hydrolysis, and all (100%) of the alkoxide of the silane compound is hydrolyzed to hydroxyl groups (OH groups), and further all of the OH groups (preferably 80% or more, More preferably, 90% or more, particularly preferably 100%) is subjected to a condensation reaction from the viewpoint of liquid stability of the reaction product.
  • OH groups hydroxyl groups
  • the solvent, alcohol generated by the reaction, catalyst, and the like can be removed by a known method.
  • the catalyst can be separated by various methods such as washing with water, separation with a column, and separation with a solid adsorbent.
  • the silsesquioxane compound obtained by the above method 1 can be produced by the method shown in the above specific example.
  • silsesquioxane compound having a structure a ladder structure in which Si—OH groups remain, an incomplete cage structure, and / or a random condensate silsesquioxane compound may be included.
  • the resulting silsesquioxane compound may contain these ladder structures, incomplete cage structures and / or random condensates.
  • silsesquioxane compound obtained by the above method 2 specifically, for example, when the desired reactive group is a hydroxyl group, for example, a hydrolysis and condensation of a trialkoxysilane compound having an epoxy group as the first functional group
  • the compound that can react with the first functional group to generate a hydroxyl group with the silsesquioxane compound include a silsesquioxane compound obtained by reacting a compound having a carboxyl group. Since the carboxyl group generates a hydroxyl group which is a reactive group by reaction with an epoxy group, this synthesis method can be suitably used.
  • trialkoxysilane compound having the first functional group used in this specific example specifically, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- ( 3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like.
  • trialkoxysilane compound having the first functional group in addition to the trialkoxysilane compound having the first functional group, the trialkoxysilane compound having no functional group, (crosslinking) reaction, second reaction, and the like for adjusting the concentration of the reactive group and the compatibility with other components.
  • a trialkoxysilane compound having a functional group that does not affect the reaction with the functional group can also be used in combination.
  • silane compounds include methyltrimethoxysilane, propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, and phenyltrimethoxysilane.
  • the reactive group is a hydroxyl group
  • 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane and the like can be used in combination.
  • the second functional group capable of reacting with the epoxy group which is the first functional group in the above method 2 a carboxyl group can be exemplified, and the compound having the second functional group is a hydroxyl group which is a reactive group. May further be contained.
  • the compound having the second functional group include acetic acid, propanoic acid, butanoic acid, 2-ethylhexanoic acid, glycolic acid, malic acid, dimethylolpropionic acid, and dimethylolbutanoic acid. be able to.
  • reaction conditions for the addition reaction between the epoxy group that is the first functional group and the carboxyl group that is the second functional group in the method 2 are not particularly limited.
  • the reaction can be carried out in the presence of a catalyst.
  • the catalyst include tertiary amines such as triethylamine and benzyldimethylamine; quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium bromide and tetrabutylammonium bromide; acetates such as diethylamine and formic acid.
  • tertiary amines such as triethylamine and benzyldimethylamine
  • quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium bromide and tetrabutylammonium bromide
  • acetates such as diethylamine and formic acid.
  • Secondary amine salts such as salts; Alkali metal and alkaline earth metal hydroxides such as sodium hydroxide and calcium hydroxide; Alkali metal and alkaline earth metal salts such as sodium acetate and calcium acetate; Imidazoles; Examples thereof include cyclic nitrogen-containing compounds such as diazabicycloundecene and phosphorus compounds such as triphenylphosphine and tributylphosphine.
  • the amount of the catalyst used is not particularly limited, and can be used, for example, within a range of 0.01 to 5% by mass with respect to the total amount of reaction raw materials.
  • the solvent at the time is not particularly limited. Specifically, for example, during the reaction of condensing the trialkoxysilane compound having the first functional group to synthesize the silsesquioxane compound having the first functional group.
  • the organic solvent used can be used.
  • the above reaction can be carried out at a reaction temperature of 0 to 200 ° C., preferably 100 to 200 ° C.
  • this reaction can be performed under a pressurized condition as necessary.
  • the pressure during the pressure reaction can be, for example, in the range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa.
  • the reaction time may be adjusted depending on the reaction temperature, the catalyst used, etc., but can usually be carried out in 3 to 100 hours.
  • the reactive group-containing silsesquioxane compound obtained by the method 3 specifically, when the desired reactive group is a hydroxyl group, for example, a trialkoxysilane compound having an amino group as the first functional group And a reactive group-containing silsesquioxane compound obtained by reacting a cyclic carbonate compound as a compound capable of reacting with the first functional group to form a hydroxyl group, and further condensing the obtained compound.
  • a cyclic carbonate compound as a compound capable of reacting with the first functional group to form a hydroxyl group
  • trialkoxysilane compound having an amino group as the first functional group 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane can be preferably used.
  • cyclic carbonate compound examples include ethylene carbonate, propylene carbonate, butylene carbonate, glycerin carbonate, and the like. These cyclic carbonate compounds are known to react with amino groups to form urethane bonds and hydroxyl groups.
  • the reaction conditions of the trialkoxysilane compound for performing the condensation reaction in Method 3 are not particularly limited. Specifically, a trialkoxysilane compound having a first functional group and a second functional group capable of reacting with a desired reactive group and the first functional group to form a chemical bond with the trialkoxysilane compound. It can be carried out by mixing and heating a compound having a group or a compound capable of reacting with the first functional group to form a desired reactive group.
  • the solvent is not particularly limited. Specifically, for example, in the method 2, a silsesquioxy having a first functional group by condensing a trialkoxysilane compound having a first functional group.
  • the organic solvent used in the reaction for synthesizing the sun compound can be used.
  • the above reaction can be carried out at a reaction temperature of 0 to 200 ° C., preferably 60 to 200 ° C., more preferably 80 to 150 ° C.
  • this reaction can be performed under a pressurized condition as necessary.
  • the pressure during the pressure reaction can be, for example, in the range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa.
  • the reaction time may be adjusted depending on the reaction temperature, the catalyst used, etc., but it can usually be carried out in 5 to 100 hours.
  • the silsesquioxane compound component (D) of the coating composition of the present invention may be a compound having a single composition or a mixture of compounds having different compositions.
  • the number average molecular weight of the silsesquioxane compound in the coating composition of the present invention is preferably in the range of 500 to 100,000, particularly 800 to 20,000, from the viewpoint of liquid stability and compatibility.
  • the production method of the silsesquioxane compound of the present invention can be a production method conventionally used for production of a general silsesquioxane compound, and is particularly limited to the above methods 1, 2, and 3. Is not to be done.
  • the resulting product contains a silsesquioxy having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed.
  • a silsesquioxane compound having a ladder structure in which Si—OH groups remain, an incomplete cage structure, and / or a random condensate may be contained.
  • the oxan compounds may contain these ladder structures, incomplete cage structures, and / or random condensates.
  • the content of the reactive group-containing silsesquioxane compound as the component (D) is from the viewpoint of improving the stain resistance such as rain-stain stain resistance of the resulting coating film and water resistance.
  • the solid content is 1 to 20% by mass based on the total solid content of the components (A) and (B).
  • the content is preferably 2 to 15% by mass, more preferably 3 to 10% by mass.
  • the content of the compound varies depending on the concentration of the reactive group contained in the silsesquioxane compound, and is not limited thereto.
  • component (D) When the amount of component (D) is within the above range, the synergistic effect of combining component (C) and component (D) is sufficiently exerted, and the initial stain resistance and stain resistance of the resulting coating film are improved. It is also suitable from the viewpoint of improving the holding properties and the mechanical strength and durability of the resulting coating film.
  • the antifouling paint composition of the present invention may further contain a fluorine atom-containing resin component (E) for the purpose of further improving the antifouling property.
  • fluorine atom-containing resin a known fluorine resin can be used.
  • fluorine atom-containing resin in particular, the following fluorine atom-containing non-aqueous dispersion type resin can be preferably used.
  • Fluorine atom-containing non-aqueous dispersion which is a preferred example of the component (E) of the present invention, can also be referred to as a fluorine atom-containing non-aqueous dispersion. .
  • a non-aqueous dispersion resin (E1) in which polymer particles are dispersed in an organic solvent liquid containing a fluorine atom-containing dispersion stabilizer and an organic solvent containing a dispersion stabilizer
  • examples thereof include a non-aqueous dispersion type resin (E2) in which polymer particles containing a fluoroalkyl group-containing (meth) acrylate as a constituent component are dispersed in the liquid.
  • non-aqueous dispersion type resin a polymerizable unsaturated monomer is copolymerized in a mixed solution of a fluorine atom-containing dispersion stabilizer (E1a) and an organic solvent (E1b) to be insoluble in the mixed solution.
  • a non-aqueous dispersion type resin that can be prepared by forming polymer particles (E1c) is exemplified.
  • the non-aqueous dispersion type resin (E1) is a non-aqueous dispersion type resin including a dispersion medium, polymer particles (dispersion particles) and a dispersion stabilizer, and the dispersion stabilizer is a dispersion stabilizer containing a fluorine atom.
  • the non-aqueous dispersion resin (E1) is a non-aqueous dispersion in which polymer particles are dispersed in an organic solvent liquid containing a fluorine atom-containing dispersion stabilizer, and the fluorine atom-containing dispersion stabilizer (E1a)
  • a non-aqueous dispersion in which polymer particles (E1c) insoluble in the organic solvent (E1b) contained therein are dispersed may be used.
  • (meth) acrylate refers to acrylate or methacrylate.
  • the dispersion stabilizer (E1a) contains a fluorine atom and is a dispersion stabilizer for stably dispersing the polymer particles (E1c) in the organic solvent (E1b).
  • the dispersion stabilizer (E1a) is preferably one that is mutually soluble with the organic solvent (E1b) and is not compatible with the polymer particles (E1c).
  • the dispersion stabilizer (E1a) for example, a polymer obtained by copolymerizing a polymerizable unsaturated monomer containing a fluoroalkyl group-containing (meth) acrylate (F-acrylate) and / or a fluoroolefin is applied. be able to. If necessary, the polymer can contain one or more functional groups selected from a hydroxyl group, a carboxyl group, an epoxy group, a silanol group, an alkoxysilyl group and the like per molecule.
  • fluoroalkyl group-containing (meth) acrylate examples include, for example, General formula CH 2 ⁇ C (R) —COO— (CH 2 ) n —Rf [R is a hydrogen atom or a methyl group, n is an integer of 1 to 10, and Rf is a linear or branched fluoroalkyl group having 1 to 21 carbon atoms]
  • Rf is a linear or branched fluoroalkyl group having 1 to 21 carbon atoms
  • the compound shown by can be mention
  • the “fluoroalkyl group” is a group in which part or all of hydrogen of a linear or branched hydrocarbon group having 1 to 21 carbon atoms is substituted with a fluorine atom.
  • F-acrylates include perfluoromethyl methyl acrylate, perfluoromethyl methyl methacrylate, perfluorobutyl ethyl acrylate, perfluorobutyl ethyl methacrylate, perfluoroisononyl ethyl acrylate, perfluoroisononyl ethyl methacrylate, perfluorooctyl ethyl.
  • fluoroolefin examples include tetrafluoroethylene, hexafluoroethylene, chlorotrifluoroethylene, vinyl fluoride, vinylidene fluoride, and trifluoroethylene.
  • the polymerizable unsaturated monomer for obtaining the dispersion stabilizer (E1a) one or more selected from the above-mentioned F-acrylates and the above-mentioned fluoroolefins can be used.
  • the dispersion stabilizer (E1a) is a polymer of one or more selected from the group consisting of F-acrylate and fluoroolefin, or one or two selected from the group consisting of F-acrylate and fluoroolefin It can be prepared by polymerizing the above and other polymerizable unsaturated monomers.
  • Other polymerizable unsaturated monomers are not particularly limited as long as they are radical polymerizable unsaturated monomers. For example, the following polymerizable unsaturated monomers can be mentioned.
  • Acrylic acid or ester compound of methacrylic acid (i): methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, butyl acrylate, methacrylic acid butyl, isobornyl acrylate, isobornyl methacrylate, hexyl acrylate, hexyl methacrylate, octyl acrylate, octyl methacrylate, lauryl acrylate, C 1 ⁇ 20 alkyl esters of acrylic acid or methacrylic acid lauryl methacrylate, acrylic acid cyclohexyl, C 3 ⁇ 20 cycloalkyl esters of acrylic acid or methacrylic acid cyclohexyl methacrylate; allyl acrylate, and acrylic acid and allyl methacrylate C
  • Glycidyl group-containing unsaturated monomer (ii) glycidyl acrylate, glycidyl methacrylate and the like.
  • hydroxyalkyl vinyl ethers such as hydroxybutyl vinyl ether
  • hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate C 2 ⁇ 8 hydroxyalkyl esters of acrylic acid or methacrylic acid such as hydroxyethyl methacrylate: hydroxyl group-containing unsaturated monomer (iii) Alcohol, methallyl alcohol; etc.
  • Unsaturated monomer (vii) having two or more polymerizable unsaturated bonds ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate and the like.
  • the dispersion stabilizer (E1a) In a polymerization reaction for preparing the dispersion stabilizer (E1a), both in a system obtained by copolymerizing F-acrylate and / or fluoroolefin and other polymerizable unsaturated monomer (F-acrylate and / or fluoro).
  • the ratio of the olefin and the other two components of the polymerizable unsaturated monomer can be arbitrarily selected.
  • the F-acrylate and / or fluoroolefin is in the range of 100 to 1% by mass, particularly 30 to 5% by mass, based on the total solid content of the two components.
  • the other polymerizable unsaturated monomer is preferably in the range of 0 to 99% by mass, particularly 70 to 95% by mass as the solid content.
  • One or two or more polymerization reactions selected from the group consisting of F-acrylates and fluoroolefins, or copolymerization reactions of these with other polymerizable unsaturated monomers can be carried out in the presence of a radical polymerization initiator.
  • a radical polymerization initiator include azo compounds such as 2,2-azoisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauryl peroxide, tert-butyl peroxide.
  • peroxides such as octoate.
  • initiators are used in an amount of 0.2 to 10 mass as solids with respect to the total solid content of F-acrylate and / or fluoroolefin and other polymerizable unsaturated monomer used as required. %, Particularly in the range of 0.5 to 5% by mass.
  • dispersion stabilizer (E1a) in the polymerization reaction for preparing the dispersion stabilizer (E1a), as other polymerizable unsaturated monomer, (ii) glycidyl group-containing unsaturated monomer, (iii) hydroxyl group-containing unsaturated monomer, (iv) alkoxysilyl group-containing Dispersion stability having functional groups such as glycidyl group, hydroxyl group, alkoxysilyl group, carboxyl group, isocyanate group by using unsaturated monomer, (v) unsaturated carboxylic acid, (vi) isocyanate group-containing unsaturated monomer, etc. An agent can be obtained.
  • the dispersion stabilizer having a hydroxyl group is three-dimensionally reacted with the crosslinking agent component (B) and the organosilicate and / or its condensate component (C) together with the polymer particles (E1c) having a hydroxyl group.
  • a crosslinked cured coating film can be formed.
  • dispersion stabilizer (E1a) those having an average of 0.1 or more polymerizable unsaturated bonds in one molecule can be suitably used. If the dispersion stabilizer (E1a) has a polymerizable unsaturated bond, a covalent bond can be formed with the polymer particles (E1c), so that the storage stability and mechanical stability of the dispersion liquid are increased. It is preferable because the stain resistance is improved.
  • a polymerizable unsaturated monomer containing another functional group that reacts with the functional group is added to the functional group present in the dispersion stabilizer.
  • the method of making it react can be mentioned.
  • a dispersion stabilizer (E1a) containing a carboxyl group with a glycidyl group-containing polymerizable unsaturated monomer (for example, glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, etc.)
  • the dispersion stabilizer is polymerizable unsaturated. Bonds can be introduced.
  • the dispersion stabilizer (E1a) containing a glycidyl group may be reacted with a carboxyl group-containing polymerizable monomer (for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, etc.).
  • a polymerizable monomer for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, etc.
  • a polymerizable unsaturated bond can be introduced into the stabilizer.
  • examples of such a combination of functional groups include an acid anhydride group and a hydroxyl group, an acid anhydride group and a mercaptan group, and an isocyanate group and a hydroxyl group.
  • a resin containing a fluorine atom (a fluororesin, for example, a resin obtained by copolymerizing F-acrylate and / or fluoroolefin and other polymerizable unsaturated monomer), or A dispersion stabilizer having a polymerizable unsaturated bond introduced into a fluororesin can be preferably used.
  • a fluororesin include commercially available fluororesins such as Lumiflon LF800 (Asahi Glass Co., Ltd.).
  • the molecular weight of the dispersion stabilizer (E1a) is not particularly limited, but the number average molecular weight is preferably in the range of 1000 to 60000, particularly 2000 to 30000.
  • organic solvent (E1b) examples include fluoroalkyl group-containing (meth) acrylates and / or fluoroolefins used for preparing the dispersion stabilizer (E1a) and polymer particles (E1c), and other polymerizable unsaturated compounds.
  • a polymerizable unsaturated monomer such as a monomer can be dissolved, but one that does not substantially dissolve the polymer particles (E1c) obtained from the polymerizable unsaturated monomer can be used.
  • the dispersion stabilizer (E1a) and the polymer particles (E1c) to be used are arbitrarily selected depending on the composition, molecular weight and other characteristic values.
  • aliphatic hydrocarbons such as hexane, heptane, and octane
  • benzene Aromatic hydrocarbons such as xylene, toluene, cyclohexane
  • ester compounds such as methyl acetate, ethyl acetate, isobutyl acetate, acyl acetate, ethylene glycol monomethyl ether, 2-ethylhexyl acetate, diethylene glycol monomethyl ether
  • cellosolve butyl cellosolve, isopropyl ether Ether compounds such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether
  • ethyl alcohol isopropyl alcohol, n-butyl alcohol, i-butyl alcohol, oct
  • an organic solvent mainly composed of an aliphatic hydrocarbon organic solvent and an organic solvent such as an aromatic hydrocarbon, alcohol, ether compound, ester compound or ketone compound as appropriate.
  • organic solvent such as mineral spirits obtained by fractional distillation of crude oil (for example, those specified in JIS K 2201-4).
  • the non-aqueous dispersion type resin (E1) is, for example, insoluble in the mixed solution by copolymerizing a polymerizable unsaturated monomer in a mixed solution of the fluorine atom-containing dispersion stabilizer (E1a) and the organic solvent (E1b). It can be prepared by forming polymer particles (E1c).
  • the polymerizable unsaturated monomer for obtaining the polymer particles (E1c) is not particularly limited as long as it is a radical polymerizable unsaturated monomer.
  • the F-acrylate can be used as a polymerizable unsaturated monomer
  • the polymerization reaction of the polymerizable unsaturated monomer for obtaining the polymer particles (E1c) is preferably performed in the presence of a radical polymerization initiator.
  • a radical polymerization initiator examples include azo compounds such as 2,2-azoisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauryl peroxide, tert- Examples thereof include peroxides such as butyl peroctoate.
  • the amount of these initiators used is preferably in the range of 0.2 to 10% by mass, particularly 0.5 to 5% by mass, based on the total amount of polymerizable unsaturated monomers.
  • the polymer particles (E1c) include, as polymerizable unsaturated monomers, the glycidyl group-containing unsaturated monomer (ii), the hydroxyl group-containing unsaturated monomer (iii), the alkoxysilyl group-containing unsaturated monomer (iv), and the unsaturated carboxylic acid.
  • an acid (v), an isocyanate group-containing unsaturated monomer (vi), or the like polymer particles (E1c) having a functional group such as a glycidyl group, a hydroxyl group, an alkoxysilyl group, a carboxyl group, or an isocyanate group are obtained. Can do.
  • the polymer particles having a hydroxyl group react with the crosslinking stabilizer component (B) and the organosilicate and / or its condensate component (C) together with the dispersion stabilizer (E1a) having a hydroxyl group in three dimensions.
  • a crosslinked cured coating film can be formed.
  • the number average molecular weight of the polymer particles (E1c) is preferably 10,000 or more, particularly preferably 20,000 or more, from the viewpoint of contamination resistance.
  • polymer particles (E1c) polymer particles crosslinked in the particles can be suitably used from the viewpoint of improving the stain resistance.
  • a carboxyl group-containing polymerizable unsaturated monomer for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, etc.
  • a glycidyl group-containing polymerizable unsaturated monomer for example, glycidyl acrylate, glycidyl methacrylate, Allyl glycidyl ether, etc.
  • the polymer particles crosslinked in the particle are prepared by addition reaction of the carboxyl group and glycidyl group of each polymerizable unsaturated monomer. be able to.
  • Examples of such combinations of functional groups include combinations of an acid anhydride group and a hydroxyl group, an acid anhydride group and a mercaptan group, an isocyanate group and a hydroxyl group, in addition to a carboxyl group and a glycidyl group.
  • the ratio of the dispersion stabilizer (E1a) to the polymer particles (E1c) can be arbitrarily selected.
  • the dispersion stabilizer (E1a) is 3 to 70% by mass, particularly 5 to 60% by mass, based on the total solid content of both components.
  • polymer particles (E1c) are preferably in the range of 97 to 30% by mass, particularly 95 to 40% by mass.
  • the total concentration of the dispersion stabilizer (E1a) and the polymer particles (E1c) is 30 to 70 based on the total amount of the dispersion stabilizer (E1a), the organic solvent (E1b), and the polymer particles (E1c). It is preferably in the range of 40% by mass, especially 40-60% by mass.
  • the polymerization reaction of the polymerizable unsaturated monomer for obtaining the polymer particles (E1c) in the organic solvent (E1b) containing the dispersion stabilizer (E1a) is generally about 1 to 15 at a temperature of about 60 to 160 ° C. Can be done in time.
  • the non-aqueous dispersion (E1) thus obtained is extremely excellent in dispersion stability.
  • the average particle diameter of the non-aqueous dispersion (E1) is preferably in the range of 20 to 500 nm, particularly 50 to 400 nm, and more particularly 100 to 300 nm from the viewpoint of stain resistance.
  • the average particle size is a value obtained by diluting a sample with xylene using a submicron particle size distribution measuring apparatus “COULTER N4 type” (manufactured by Beckman Coulter, Inc.) and measuring at 20 ° C. .
  • the non-aqueous dispersion resin (E2) is a non-aqueous dispersion resin in which polymer particles containing a fluoroalkyl group-containing (meth) acrylate as a constituent component are dispersed in an organic solvent liquid containing a dispersion stabilizer.
  • Specific examples of the non-aqueous dispersion type resin (E2) include a fluoroalkyl group-containing (meth) acrylate and other polymerizable unsaturated monomers in a mixed solution of the dispersion stabilizer (E2a) and the organic solvent (E2b).
  • a non-aqueous dispersion type resin that can be prepared by forming polymer particles (E2c) insoluble in the mixed solution are examples of the non-aqueous dispersion type resin (E2) include a fluoroalkyl group-containing (meth) acrylate and other polymerizable unsaturated monomers in a mixed solution of the dispersion stabilizer (E2a) and the organic solvent (E
  • the non-aqueous dispersion type resin (E2) is a non-aqueous dispersion in which polymer particles (E2c) insoluble in the dispersion stabilizer and the organic solvent are dispersed in the organic solvent (E2b) containing the dispersion stabilizer (E2a).
  • the polymer particles (E2c) may be non-aqueous dispersion resins made of a copolymer of a fluoroalkyl group-containing (meth) acrylate and another polymerizable unsaturated monomer.
  • the dispersion stabilizer (E2a) is used to stably disperse the polymer particles (E2c) in the organic solvent (E2b).
  • the dispersion stabilizer (E2a) dissolves in the organic solvent (E2b), and the polymer particles (E2c) Those incompatible with each other are preferred.
  • acrylic resin vinyl resin, polyester resin, alkyd resin, urethane resin, fluorine-containing resin and the like can be mentioned.
  • these resins can contain one or more functional groups selected from a hydroxyl group, a carboxyl group, an epoxy group, a silanol group, an alkoxysilane group and the like per molecule.
  • dispersion stabilizer (E2a) those having an average of 0.1 or more polymerizable unsaturated bonds per molecule can be suitably used.
  • a method for introducing a polymerizable unsaturated bond for example, a glycidyl group-containing polymerizable unsaturated monomer (for example, glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether) is added to a dispersion stabilizer containing a carboxyl group.
  • a carboxyl group-containing polymerizable unsaturated monomer for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, etc.
  • a carboxyl group-containing polymerizable unsaturated monomer for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, etc.
  • the method of making it react can be mentioned.
  • combinations of such functional groups may include acid anhydride groups and hydroxyl groups, acid anhydride groups and mercaptan groups, and combinations of isocyanate groups and hydroxyl groups.
  • a polymerizable unsaturated bond is introduced into the dispersion stabilizer (E2a)
  • a covalent bond can be formed with the polymer particles (E2c). It is preferable because the mechanical stability, stain resistance and the like can be improved.
  • the molecular weight of the dispersion stabilizer (E2a) is not particularly limited, but the number average molecular weight is preferably in the range of 1000 to 60000, particularly 2000 to 30000.
  • Organic solvent (E2b) dissolves polymerizable unsaturated monomers such as fluoroalkyl group-containing (meth) acrylates and other polymerizable unsaturated monomers for preparing dispersion stabilizer (E2a) and polymer particles (E2c). However, those which do not substantially dissolve the polymer particles (E2c) obtained from the polymerizable unsaturated monomer can be used.
  • polymerizable unsaturated monomers such as fluoroalkyl group-containing (meth) acrylates and other polymerizable unsaturated monomers for preparing dispersion stabilizer (E2a) and polymer particles (E2c).
  • those which do not substantially dissolve the polymer particles (E2c) obtained from the polymerizable unsaturated monomer can be used.
  • the organic solvent (E2b) is exemplified as the organic solvent (E1b), for example, as the organic solvent (E2b) is arbitrarily selected depending on the composition and molecular weight of the dispersion stabilizer (E2a) and polymer particles (E2c) to be used. The same can be used as well.
  • an aliphatic hydrocarbon organic solvent as a main component and an organic solvent such as an aromatic hydrocarbon, an alcohol, an ether compound, an ester compound or a ketone compound as appropriate.
  • examples of such a preferable organic solvent include mineral spirits obtained by fractional distillation of crude oil (for example, those specified in JIS K 2201-4).
  • the non-aqueous dispersion resin (E2) is a mixture of a fluoroalkyl group-containing (meth) acrylate and another polymerizable unsaturated monomer in a mixed solution of a dispersion stabilizer (E2a) and an organic solvent (E2b). It can adjust by making it polymerize and forming a polymer particle (E2c) insoluble in this liquid mixture.
  • fluoroalkyl group-containing (meth) acrylate (F-acrylate) for obtaining the polymer particles (E2c) include: General formula CH 2 ⁇ C (R) —COO— (CH 2 ) n —Rf [R is a hydrogen atom or a methyl group, n is an integer of 1 to 10, and Rf is a linear or branched fluoroalkyl group having 1 to 21 carbon atoms])
  • Rf is a linear or branched fluoroalkyl group having 1 to 21 carbon atoms
  • the compound shown by can be mention
  • the “fluoroalkyl group” is a group in which part or all of hydrogen of a linear or branched hydrocarbon group having 1 to 21 carbon atoms is substituted with a fluorine atom.
  • those exemplified for the dispersion stabilizer (E1a) can be used in the same manner.
  • any radically polymerizable unsaturated monomer other than the F-acrylate can be used without any particular limitation.
  • Saturated monomer (iii), alkoxysilyl group-containing unsaturated monomer (iv), unsaturated carboxylic acid (v), isocyanate group-containing unsaturated monomer (vi), unsaturated monomer having two or more polymerizable unsaturated bonds (vii) ), Vinyl aromatic compounds (viii), and other polymerizable unsaturated monomers (iv) other than (i) to (viii) can be used in the same manner.
  • the ratio of F-acrylate to other polymerizable unsaturated monomers can be arbitrarily selected. From the viewpoint of stain resistance, the ratio of the F-acrylate and the other polymerizable unsaturated monomers can be selected based on the total amount of the two components. It is preferable that the acrylate is 90 to 1% by mass, particularly 30 to 5% by mass, and the other polymerizable unsaturated monomer is 10 to 99% by mass, particularly 70 to 95% by mass.
  • the copolymerization reaction of F-acrylate and other polymerizable unsaturated monomer is preferably carried out in the presence of a radical polymerization initiator.
  • a radical polymerization initiator for example, 2,2-azoisobutyronitrile, 2,2′-azobis (2, Azo initiators such as 4-dimethylvaleronitrile) and peroxide initiators such as benzoyl peroxide, lauryl peroxide, tert-butyl peroctoate, etc.
  • the amount of these initiators used is F-acrylate. Is preferably within the range of 0.2 to 10% by weight, particularly 0.5 to 5% by weight, based on the total amount of the polymerizable unsaturated monomer and other polymerizable monomers.
  • the polymer particles (E2c) include, as polymerizable unsaturated monomers, the glycidyl group-containing unsaturated monomer (ii), the hydroxyl group-containing unsaturated monomer (iii), the alkoxysilyl group-containing unsaturated monomer (iv), and the unsaturated carboxylic acid.
  • an acid (v), an isocyanate group-containing unsaturated monomer (vi), or the like polymer particles having a functional group such as a glycidyl group, a hydroxyl group, an alkoxysilyl group, a carboxyl group, or an isocyanate group can be obtained.
  • the polymer particles having a hydroxyl group react with the crosslinking agent component (B) and the organosilicate and / or its condensate component (C) together with the dispersion stabilizer (E2a) having a hydroxyl group in three dimensions.
  • a crosslinked cured coating film can be formed.
  • the number average molecular weight of the polymer particles (E2c) is preferably 10,000 or more, particularly preferably 20,000 or more, from the viewpoint of contamination resistance.
  • polymer particles (E2c) polymer particles crosslinked in the particles can be preferably used from the viewpoint of improving the stain resistance.
  • intraparticle crosslinked polymer particles for example, a method in which a combination of polymerizable unsaturated monomers having functional groups that react with each other is used as a component of the polymerizable unsaturated monomer, the polymerizable unsaturated bond is changed.
  • the method etc. which use the unsaturated monomer (vii) which has 2 or more as a structural component of a polymerizable unsaturated monomer can be mention
  • a carboxyl group-containing polymerizable unsaturated monomer for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, etc.
  • a glycidyl group-containing polymerizable unsaturated monomer for example, glycidyl acrylate, glycidyl methacrylate, Allyl glycidyl ether, etc.
  • the polymer particles crosslinked in the particle are prepared by addition reaction of the carboxyl group and glycidyl group of each polymerizable unsaturated monomer. be able to.
  • Examples of such combinations of functional groups include combinations of an acid anhydride group and a hydroxyl group, an acid anhydride group and a mercaptan group, an isocyanate group and a hydroxyl group, in addition to a carboxyl group and a glycidyl group.
  • the ratio between the dispersion stabilizer (E2a) and the polymer particles (E2c) can be arbitrarily selected. From the viewpoint of storage stability and stain resistance of the non-aqueous dispersion (E2). Therefore, based on the total amount of the two components, the dispersion stabilizer (E2a) is 3 to 70% by mass, particularly 5 to 60% by mass, and the polymer particles (E2c) are 97 to 30% by mass, particularly 95 to 40%. It is preferable to be within the range of mass%.
  • the total concentration of the dispersion stabilizer (E2a) and the polymer particles (E2c) is 30 to 70 based on the total amount of the dispersion stabilizer (E2a), the organic solvent (E2b), and the polymer particles (E2c). It is preferably in the range of 40% by mass, especially 40-60% by mass.
  • the polymerization reaction of F-acrylate and other polymerizable unsaturated monomers for obtaining the polymer particles (E2c) is generally about 60 to 160 ° C. For about 1 to 20 hours.
  • the non-aqueous dispersion (E2) thus obtained is extremely excellent in dispersion stability.
  • the average particle size of the non-aqueous dispersion resin (E2) is preferably in the range of 20 to 500 nm, particularly 50 to 400 nm, and more particularly 100 to 300 nm from the viewpoint of stain resistance.
  • a non-aqueous dispersion (E2) in which polymer particles containing a fluoroalkyl group-containing (meth) acrylate as a constituent component are dispersed in a solvent liquid can be used.
  • the amount of the component (E) is preferably 5 as the solid content based on the total solid content of the component (A) and the component (B). It is in the range of -30% by mass, more preferably 10-30% by mass, and still more preferably 15-25% by mass.
  • hydrolytic accelerators such as acidic surfactants and boric acid compounds, colored pigments, extender pigments such as silica fine particles, organic resin powders, inorganic aggregates, pigment dispersants, UV absorbers, UV stabilizers
  • paint additives such as antifoaming agents and surface conditioners and solvents can be used.
  • the acidic surfactant or boric acid-containing compound has an action of promoting hydrolysis of the organosilicate and / or its condensate component (C).
  • Hydrolysis accelerators such as acidic surfactants and boric acid-containing compounds, when used in combination, can shorten the pot life of the coating composition of the present invention, but can be used from the viewpoint of improving stain resistance.
  • surfactant exhibiting acidity examples include phosphoric acid ester salt compounds such as polyoxyethylene phosphoric acid ester and alkyl phosphoric acid ester salt; for example, alkyl or alkyl benzene sulfonic acid salt such as sodium lauryl sulfonate and sodium dodecylbenzene sulfonate.
  • phosphoric acid ester salt compounds such as polyoxyethylene phosphoric acid ester and alkyl phosphoric acid ester salt
  • alkyl or alkyl benzene sulfonic acid salt such as sodium lauryl sulfonate and sodium dodecylbenzene sulfonate.
  • Sulfonate compounds such as alkyl naphthalene sulfonates such as sodium isopropyl naphthalene sulfonate, alkyl diphenyl ether sulfonates; sulfate ester salts such as alkyl or alkyl benzene sulfates, (poly) oxyethylene alkyl phenyl ether sulfates; Examples thereof include carboxylate-based surfactants such as alkylsulfosuccinates.
  • boric acid compounds include trialkyl borate such as trimethyl borate, triethyl borate, tributyl borate; boric acid and the like.
  • the blending amount of these hydrolysis accelerators is 30% by mass or less, particularly 0.5 to 20% by mass, more particularly 1 to 10% by mass, based on the total amount of the component (A) and the component (B). Preferably there is.
  • the extender pigment examples include silica fine particles, talc, mica powder, and barita.
  • the amount of the extender is 0.1 to 20% by mass, particularly 0.5 to 15% by mass, more particularly 1 to 10% by mass, based on the total amount of the component (A) and the component (B). preferable.
  • a matting agent (F) can be used for the purpose of adjusting the gloss so that the obtained coating film has a finished appearance such as matte or semi-gloss.
  • the matting agent (F) is used for reducing the gloss of the resulting coating film, and may be either an organic matting agent or an inorganic matting agent. Moreover, these can be used individually or in combination of 2 or more types.
  • the stain resistant paint composition of the present invention can form a paint film having excellent finish of stain resistance and corrosion resistance, in particular, in a paint film having a finished appearance with reduced gloss such as matte and semi-gloss. .
  • Examples of the organic matting agent include organic resin fine particles that are not completely melted by baking at the time of forming the coating film.
  • the organic resin fine particles usually have an average particle diameter in the range of 3 to 80 ⁇ m, preferably 5 to 60 ⁇ m, from the viewpoint of coating film appearance, coating workability, and the like.
  • Examples of organic matting agents include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyamides, acrylic resins, polyurethanes, phenol resins, silicone resins, polypropylene, and polyamides such as nylon 11 and nylon 12. be able to.
  • inorganic matting agents examples include silica, mica, alumina, talc, clay, calcium carbonate, barium sulfate and the like.
  • the above matting agent (F) can be used alone or in combination of two or more.
  • the blending amount of the matting agent (F) is preferably 0.1 to 30% by mass, particularly 0.5 to 20% by mass, based on the total amount of the components (A) and (B).
  • the antifouling coating composition of the present invention can be produced by uniformly mixing the above components (A) to (D) and, if necessary, the above other components.
  • the pigment component is prepared by previously mixing and dispersing a part of the resin component (A) and / or a pigment dispersant to prepare a pigment paste, and mixing the pigment paste with the remaining components. it can.
  • the coating composition of the present invention may be a one-pack type paint, but the two-component mixture is prepared immediately before use by separating the organosilicate and / or its condensate as component (C) from other components. It can also be a mold paint.
  • the paint composition of the present invention is preferably a two-component paint from the viewpoint of storage properties.
  • the paint composition is adjusted to a desired viscosity by adding an organic solvent or the like as necessary, and then air spray, electrostatic air spray, roll coater, Using a flow coater, dipping type coating machine, brush, bar coater, applicator, etc., the coating film thickness after drying is usually 0.5 to 300 ⁇ m, preferably 5 to 50 ⁇ m, and usually 80 to Examples include a method of curing by heating at a temperature of 300 ° C. for about 5 seconds to 1 hour. As the coating method, spray coating or roll coater coating is preferable among the above methods.
  • the coating film forming method of the present invention comprises forming a primer coating film with a chromium-free primer coating which does not contain a chromium-containing rust-preventing component on one or both surfaces of a metal plate. It is a coating film forming method characterized by forming a top coating film with the antifouling paint composition of the present invention on at least one surface of a film.
  • the method for forming a coating film according to the present invention includes a step of forming a primer coating film on one or both surfaces of a metal plate with a primer coating using a chromium-free primer coating, and at least one of the formed primer coating films. Furthermore, it is a coating film forming method characterized by including the process of forming a top coat film with the said contamination
  • the present invention also provides a method for producing a coated metal plate including the steps of the method for forming a coating film and a coated metal plate obtained by the method for forming a coating film or the method for producing a coated metal plate.
  • Examples of the metal plate to be coated in the coating film forming method of the present invention include cold rolled steel plate, hot dip galvanized steel plate, electrogalvanized steel plate, alloy galvanized steel plate (iron-zinc, aluminum-zinc, nickel-zinc, etc. Alloy galvanized steel plate), aluminum plate, stainless steel plate, copper plate, copper plated steel plate, tin plated steel plate and the like.
  • the primer When painting on metals, the primer can be applied as it is if the metal surface, which is the material to be coated, is not contaminated with oil or other contaminants, but in order to improve the adhesion and corrosion resistance with the coating film. It is desirable to apply a known metal surface treatment. These known surface treatment methods include phosphate surface treatment, chromate surface treatment, zirconium surface treatment and the like.
  • a chromium-free primer coating characterized by not containing a chromium-containing rust preventive component is used from the viewpoint of environmental protection. If the said primer is a chromium free primer coating, the well-known primer used in the coloring color steel plate coating field
  • the chrome-free primer coating is appropriately selected depending on the type of material to be coated and the type of metal surface treatment. Epoxy-based and polyester-based primer coatings and their modified primer coatings are particularly suitable, and workability is particularly required. In this case, a polyester primer paint is suitable.
  • a specific means for forming the primer coating film there is exemplified a means for applying a primer coating and then heating and curing as necessary.
  • the primer coating is applied by a known coating method such as roll coating or spray coating so that the primer coating thickness is 1 to 30 ⁇ m, preferably 2 to 20 ⁇ m.
  • the atmospheric temperature is 80 to 300 ° C. For 5 seconds to 1 hour to cure. In the case of pre-coating, it is preferable to cure by heating for 15 to 120 seconds under the condition that the maximum material reaching temperature is 140 to 250 ° C.
  • the layer structure of the primer coating is not particularly limited.
  • the primer coating may be a single layer or a second primer coating (intermediate coating) formed on the first primer coating. It may be a layer.
  • the primer film has two layers, the first primer film has an anticorrosion function, and the second primer film (intermediate film) has processability and chipping resistance.
  • the primer coating can also have different functions.
  • a top coating film is formed by using the antifouling paint composition of the present invention on at least one of the primer coating films formed on one side or both sides of the metal plate. . That is, the top coat film is formed so as to overlap on at least one side of the formed primer coat film.
  • “on at least one of the primer coatings” refers to the top of the primer coating formed on one side when the primer coating is formed on one side of the metal plate, When a primer coating is formed on both sides of the upper surface, it is formed on or on the primer coating formed on one side of the metal plate among the primer coatings formed on both sides. It points on the applied primer coating.
  • a means for coating the antifouling paint composition of the present invention and then heating and curing as necessary is exemplified.
  • the coating method include curtain coating, roll coater coating, dip coating, and spray coating.
  • the film thickness is usually applied so that the coating thickness after drying is in the range of 5 to 50 ⁇ m, preferably 8 to 25 ⁇ m.
  • the coating method is not limited, but curtain coating and roll coater coating are preferred from the economical viewpoint of pre-coated steel sheet coating.
  • a bottom feed method (so-called natural reverse coating or natural coating) using two rolls is preferable from the viewpoint of practicality.
  • a top feed or bottom feed method using three rolls can be performed in order to achieve the best uniformity of the coating surface.
  • the curing condition of the top coating film by the coating composition of the present invention is usually about 15 seconds to 30 minutes at the maximum material reaching temperature of 120 to 260 ° C. In the field of pre-coating, which is applied by coil coating or the like, it is usually performed at a material reaching maximum temperature of 160 to 260 ° C. for a baking time of 15 to 90 seconds.
  • the obtained resin had a number average molecular weight of 15000, a hydroxyl value of 75 mgKOH / g, an oil length of 14.7%, and an iodine value of 5>.
  • Production Examples 2-3 Solutions of each of the hydroxyl group-containing polyester resins (A1-2) to (A1-3) having a solid content of 65% were obtained in the same manner as in Production Example 1 with the formulation shown in Table 1 below.
  • the composition ratio of each component in Table 1 is a molar ratio.
  • the number average molecular weight by GPC of the silsesquioxane compound (D1) was 2000, and the hydroxyl value of the silsesquioxane compound (D1) was 190 mgKOH / g.
  • the silsesquioxane compound (D1) is a silsesquioxane compound containing an average of 7 reactive groups (hydroxyl groups) per molecule.
  • Production Example 5 A separable flask equipped with a reflux condenser, a thermometer, and a stirrer was charged with 144 parts of 3-aminopropyltriethoxysilane and 56 parts of ⁇ -butyrolactone, and reacted at 100 ° C. for 24 hours under a nitrogen stream. P2) 200 parts were obtained. The reaction rate determined from the residual rate of ⁇ -butyrolactone by 1H-NMR was 100%.
  • the number average molecular weight by GPC of the silsesquioxane compound (D2) was 2300, and the hydroxyl value of the silsesquioxane compound (D2) was 286 mgKOH / g.
  • silsesquioxane compound (D2) is It was confirmed that all of the organic groups directly bonded to the silicon atom are silsesquioxane compounds having a number average molecular weight of 2300, which are organic groups represented by the following formula (3).
  • the silsesquioxane compound (D2) is a silsesquioxane compound containing an average of 12 reactive groups (hydroxyl groups) per molecule.
  • the solution was diluted with 100 parts of propylene glycol monomethyl ether to obtain a 50% non-volatile solution of a silsesquioxane compound (D3) (containing an epoxy group as a reactive group).
  • the epoxy value of the silsesquioxane compound (D3) was 4.0 mmol / g.
  • the silsesquioxane compound (D3) is a silsesquioxane compound containing an average of 6 reactive groups (epoxy groups) per molecule.
  • Production Example 7 In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, 200 parts of a 50% nonvolatile solution of silsesquioxane compound (D3) (containing an epoxy group as a reactive group) (obtained in Production Example 6), 30 parts of glycolic acid and 2 parts of tetrabutylammonium bromide were charged, reacted at 100 ° C. for 24 hours, diluted with 32 parts of propylene glycol monomethyl ether, and 262 parts of a 50% nonvolatile solution of silsesquioxane compound (D4).
  • D3 50% nonvolatile solution of silsesquioxane compound (D3) (containing an epoxy group as a reactive group) (obtained in Production Example 6)
  • 30 parts of glycolic acid and 2 parts of tetrabutylammonium bromide were charged, reacted at 100 ° C. for 24 hours, diluted with 32 parts of propylene glycol
  • the epoxy value of the silsesquioxane compound (D4) is 0.06 mmol / g, and the reaction rate is estimated to be 98% or more.
  • the hydroxyl value was 345 mgKOH / g.
  • the number average molecular weight was 2500.
  • the silsesquioxane compound (D4) is represented by the following formula (5) in which 60 mol% or more of the organic groups directly bonded to the Si atom are represented by the following formula (5). It was confirmed that the remaining organic group was a silsesquioxane compound having a number average molecular weight of 2500 having an organic group represented by the above formula (2).
  • the silsesquioxane compound (D4) is a silsesquioxane compound containing an average of 15 reactive groups (hydroxyl groups) per molecule.
  • the silsesquioxane compound (D5) is a silsesquioxane compound containing an average of 8 reactive groups (epoxy groups) per molecule.
  • Production Example 9 In a separable flask equipped with a reflux condenser, a thermometer, and a stirrer, 200 parts of a 50% non-volatile solution of the silsesquioxane compound (D5) obtained in Production Example 8, 30 parts of dimethylolpropionic acid and tetrabutylammonium bromide 2 parts were charged and reacted at 100 ° C. for 24 hours, and then diluted with 32 parts of propylene glycol monomethyl ether to obtain 262 parts of a 50% non-volatile solution of silsesquioxane compound (D6).
  • the epoxy value of the silsesquioxane compound (D6) is 2.90 mmol / g, and the reaction rate is estimated to be 98% or more.
  • the hydroxyl value was 286 mgKOH / g.
  • the silsesquioxane compound (D6) is represented by the following formula (6) in which 35 mol% or more of the organic groups directly bonded to the Si atom are represented by the following formula (6). It was confirmed that the remaining organic group was a silsesquioxane compound having a number average molecular weight of 3000 having an organic group represented by the above formula (4).
  • the silsesquioxane compound (D6) is a silsesquioxane compound containing an average of 24 reactive groups (15 hydroxyl groups and 9 epoxy groups) per molecule.
  • Production Example 10 A four-necked flask equipped with a reflux condenser, a thermometer, a stirrer, and a nitrogen inlet tube was charged with 100 parts of propylene glycol monomethyl ether and heated to 100 ° C. under a nitrogen stream. 42 parts of methyl methacrylate, 40 parts of 2-hydroxyethyl methacrylate, 10 parts of butyl methacrylate, 3 parts of acrylic acid and 5 parts of V-59 (azo polymerization initiator, trade name, manufactured by Wako Pure Chemical Industries, Ltd.) After mixing and dissolving, the mixture was added dropwise to the flask over 2 hours. Furthermore, by reacting at 100 ° C. for 2 hours, 200 parts of a 50% nonvolatile solution of acrylic resin (P3) was obtained. The acid value of the acrylic resin (P3) was 23 mgKOH / g.
  • the epoxy value of the acrylic resin-modified silsesquioxane compound (D7) was 0.03 mmol / g, and the hydroxyl value was 262 mgKOH / g.
  • the reaction rate is estimated to be 98% or more.
  • the number average molecular weight was 7000.
  • the acrylic resin-modified silsesquioxane compound (D7) is a silsesquioxane compound containing an average of 33 reactive groups (hydroxyl groups) per molecule.
  • Production Example 11 In a separable flask equipped with a reflux condenser, a thermometer, and a stirrer, 500 parts of 2-propanol, 1.5 parts of tetrabutylammonium fluoride trihydrate and 17 parts of deionized water were sufficiently dissolved. 33 parts of the reaction product (P2) synthesized in Production Example 5 (containing 100% by mass of a hydroxyl group-containing triethoxysilane compound) and 124 parts of n-propyltrimethoxysilane were dissolved in 100 parts of 2-propanol, and the dissolved product was added to a flask. And then allowed to react at 20 ° C. for 24 hours. Concentration by vacuum distillation to a concentration of 50% gave 200 parts of a 50% nonvolatile solution of silsesquioxane compound (D8).
  • the silsesquioxane compound (D8) is directly attached to the Si atom. 16 mol% of the organic groups bonded to the organic group represented by the above formula (3) and the remaining 84% of the organic group represented by the following formula (7) (n-propyl group). It was confirmed to be a silsesquioxane compound having a number average molecular weight of 1300.
  • silsesquioxane compound (D8) is a silsesquioxane compound containing an average of one reactive group (hydroxyl group) per molecule, and is a silsesquioxane compound for a comparative example.
  • the obtained non-aqueous dispersion (E1) had an average particle diameter of 180 nm, a glass transition temperature of the particle component of 18 ° C., and a hydroxyl value of 120 mgKOH / g.
  • Antifouling paint composition No. 21 to 25 are coating compositions for comparative examples.
  • KP color 8620 primer manufactured by Kansai Paint Co., Ltd., polyester for pre-coated steel sheet
  • a molten 55% aluminum-zinc plated steel sheet galvalume steel sheet having a thickness of 0.35 mm subjected to chemical conversion treatment Primer
  • the dry film thickness was 5 ⁇ m
  • heated so that the maximum material arrival temperature was 220 ° C. was baked for 40 seconds to obtain a primer-coated steel sheet.
  • each of the anti-stain coating compositions obtained as described above is applied with a bar coater so that the dry film thickness is about 15 ⁇ m, so that the maximum material temperature reaches 230 ° C.
  • Each coated steel sheet was obtained by heating and baking for 50 seconds. The following performance test was done about each obtained coated steel plate.
  • test results are also shown in Table 2 and Table 3.
  • the quantity of each component in Table 2 and Table 3 is solid content mass.
  • the white pigment, titanium dioxide was dispersed.
  • a mixed solvent of cyclohexanone / swazol 1500 manufactured by Maruzen Petroleum Co., Ltd., aromatic high-boiling solvent
  • 60/40 mass ratio
  • Hydroxyl-containing polyester resin Arachid 7018, trade name, manufactured by Arakawa Chemical Industries, Ltd., number average molecular weight 18000, hydroxyl value 6-12 mgKOH / g, acid value 5 mgKOH / g>, glass transition temperature 50 ° C. (DSC ), A hydroxyl group-containing oil-free polyester resin whose acid components are three components of terephthalic acid, isophthalic acid and sebacic acid.
  • Super Becamine J820-60 Trade name “Super Becamine J-820-60”, manufactured by DIC Corporation, n-butyl etherified melamine resin solution.
  • Cymel 303 Low molecular weight methylated melamine resin manufactured by Nippon Cytec Industries Co., Ltd. The content of hexakis (methoxymethyl) melamine is 60% by weight or more.
  • Sumidur BL3175 a methyl ethyl ketone oxime block compound of trimethylolpropane adduct type hexamethylene diisocyanate manufactured by Sumika Bayer Urethane Co., Ltd.
  • MS56S Trade name “MKC silicate MS56S” manufactured by Mitsubishi Chemical Corporation, methyl esterified silicate which is a condensate of tetramethoxysilane.
  • MS58B30 manufactured by Mitsubishi Chemical Corporation, trade name “MKC silicate MS58B30”, methyl / butyl mixed esterified silicate which is a condensate of tetraalkoxysilane, and the ratio of methyl / butyl number is 70/30.
  • Lumiflon LF800 manufactured by Asahi Glass Co., Ltd., trade name, fluororesin (fluoroethylene / vinyl ether alternating copolymer), hydroxyl value 38 mgKOH / g, acid value 2 mgKOH / g, number average molecular weight 8100, resin mass solid content 60%.
  • Thyroid 161W manufactured by GRACE GMBH, trade name, organically treated silica fine powder, oil absorption 170 ml / 100 g.
  • Nacure 5225 Isopropanol solution of neutralized secondary amine of dodecylbenzenesulfonic acid, manufactured by King Industries, USA.
  • the degree of neutralization of dodecylbenzenesulfonic acid / amine is about 1.1 (molar ratio).
  • the active ingredient is about 33% by weight, of which dodecylbenzenesulfonic acid / amine (mass ratio) is about 8/25.
  • the numerical values in Table 2 are parts by mass of solid content of dodecylbenzenesulfonic acid.
  • 60 ° gloss according to the 60 ° specular gloss specified in JIS K-5400 ⁇ 7.6 (1990), the 60 ° specular reflectance was measured.
  • Outdoor exposure test An outdoor exposure test specimen (100 x 300 mm) is mounted on the installation stand that models the eaves so that the coating film faces the north side, and exposed on the roof of Kansai Paint Co., Ltd. in Kanzaki-cho, Amagasaki City. The test was conducted, and the stain resistance and rain-stain stain resistance (rain-stained stains) were evaluated according to the following criteria. Contamination resistance was measured by using a multi-light source spectrocolorimeter MSC-5N manufactured by Suga Test Instruments Co., Ltd. based on JIS Z8370. Rain resistance stain resistance was judged visually.
  • Contamination resistance evaluated according to the following criteria by ⁇ E before and after the outdoor exposure test: A: ⁇ E is less than 3, B: ⁇ E is 3 or more and less than 5 C: ⁇ E is 5 or more.
  • Rain-stain stain resistance Rain-strip traces after outdoor exposure tests were evaluated according to the following criteria: S: Rain traces are not seen, A: A slight trace of rain streak is observed, but it can be easily wiped off with gauze soaked with water. B: There are considerable traces of rain streaks, and it cannot be wiped off completely with gauze soaked with water. C: Rain traces remain dark and can hardly be wiped off with gauze soaked with water.
  • Scratch resistance Using a coin scratch tester (manufactured by Kayaku Giken Kogyo Co., Ltd.) at a room temperature of 20 ° C., keep the edge of the 10-yen copper coin at a 45 ° angle on the surface of each test coating plate, 3 kg The degree of scratching was evaluated according to the following criteria when a 10-yen copper coin was pulled about 30 mm at a speed of 10 mm / second while being pressed with a load of S: There is no metal base on the scratched part, A: A slight metal base is seen on the scratched part. B: There is a considerable metal base on the scratched part, C: The coating is hardly left on the scratched part, and the metal base is clearly seen.
  • Stain resistant coating composition it is important that the workability of the object to be coated and the stain resistance, rain-stain stain resistance and scratch resistance of the resulting coating film are all high. Therefore, comprehensive evaluation was performed according to the following criteria.
  • S Evaluation of workability, stain resistance, rain-stain stain resistance and scratch resistance is all S or A, and at least one is S.
  • A Processability, stain resistance, rain-stain stain resistance and scratch resistance are all evaluated as A.
  • B Processability, stain resistance, rain-stain stain resistance, and scratch resistance evaluation are all S, A, or B, and at least one is B.
  • C Processability, stain resistance, rain-stain stain resistance, and At least one of the evaluations of scratch resistance is C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 本発明は、雨水等に対する耐汚染性及び耐食性の保持性に優れた塗膜を形成できる耐汚染塗料組成物、特に、半艶以下の光沢の塗装金属板の上塗塗膜形成に適した耐汚染塗料組成物を提供することを課題とする。 斯かる課題を解決する発明として、特定の水酸基含有ポリエステル樹脂を含有するポリエステル樹脂成分と、メラミン樹脂及び/又はポリイソシアネート化合物である架橋剤成分とを含有する樹脂バインダーに、特定のオルガノシリケート及び/又はその縮合物成分、及び1分子あたり平均2個以上の反応性基を含有するシルセスキオキサン化合物成分を含有する耐汚染塗料組成物、該塗料組成物を用いた塗膜形成方法、並びに該塗料組成物が塗装された塗装金属板を提供する。

Description

耐久性に優れた耐汚染塗料組成物
 本発明は、主に雨水等に対する経時における耐汚染性の保持性に優れた塗膜を形成できる耐汚染塗料組成物、特に塗装金属板の上塗塗膜形成に適した耐汚染塗料組成物、該耐汚染塗料組成物を用いた耐雨水汚染性に優れた塗膜の形成方法、及び該耐汚染塗料組成物による硬化塗膜が形成された塗装金属板に関する。
 従来、屋外の基材(例えば建造物、表示物、ガードフェンス、器具、機械等)には、装飾又は保護を目的として耐候性に優れた屋外用塗料が塗装されている。屋外用として使用されている塗料としてはポリウレタン樹脂含有塗料、フッ素樹脂含有塗料、シリコン樹脂含有塗料、アクリル樹脂含有塗料、ポリエステル含有塗料などが例示されるが、これらの塗装物は屋外に曝されることにより、砂塵、鉄粉、雨(酸性雨)、太陽光線等の影響によって塗装物表面が汚れ易くなり、塗膜外観が低下するという欠点がある。
 本出願人は、この問題点を解決するため、水酸基含有フッ素樹脂及びアミノ樹脂架橋剤を反応硬化形有機樹脂として含有する有機溶剤系塗料組成物(1)又は水酸基含有フッ素樹脂および/または水酸基含有アクリル樹脂と(ブロック化)ポリイソシアネート化合物架橋剤とを反応硬化形有機樹脂として含有する有機溶剤系塗料組成物(2)に対して、テトラアルキルシリケート及び/又はその縮合物を配合してなる塗料組成物であって、酸処理後の塗膜表面の水に対する接触角が70度以下であることを特徴とする耐汚れ性に優れた上塗塗料組成物を提案した(特許文献1参照 国際公開WO94/06870号公報)。
 しかしながら、特許文献1の上塗塗料組成物は、屋外使用において、雨筋汚れ等、雨水等に対する耐汚染性の保持性が不十分であり、また、屋外使用における初期段階においても、雨水等に対する耐汚染性は十分でなかった。
 また、雨筋汚染に対する耐汚染性、加工性、塗膜外観に優れたプレコート鋼板用塗料組成物として、(A)5~300のヒドロキシル価、数平均分子量500~20000のポリオール樹脂、(B)アミノ樹脂、(C)アルコキシシラン化合物、(D)硬化触媒からなる熱硬化性樹脂組成物が提案されている(特許文献2参照)。しかしながら、この熱硬化性樹脂組成物から得られる塗膜の経時における長期の雨筋汚染に対する耐汚染性は、光沢のある塗膜とした場合は良好であるが、艶消し剤等を添加して半艶以下の光沢(60°光沢が50程度以下)の塗膜とした場合の耐汚染性、耐食性の保持性は不十分であった。
国際公開WO94/06870号公報 特開平10-67945号公報
 本発明は雨水等に対する耐汚染性及び耐食性の保持性に優れた塗膜を形成できる耐汚染塗料組成物、特に、半艶以下の光沢の塗装金属板の上塗塗膜形成に適した耐汚染塗料組成物を提供することである。
 本発明者らは、従来の上記問題点を解決すべく鋭意研究を重ねた結果、特定の水酸基含有ポリエステル樹脂を含有するポリエステル樹脂成分と架橋剤成分とを含有する樹脂バインダに、特定のオルガノシリケート及び/又はその縮合物成分、及び1分子あたり2個以上の反応性基を含有するシルセスキオキサン化合物成分を含有する塗料組成物が、(特に、半艶以下の光沢(60°光沢が50程度以下)の塗膜において、)雨水等に対する耐汚染性の保持性に優れた塗膜を形成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の発明を包含する:
 項1、(A)数平均分子量5000~30000、水酸基価5~100mgKOH/gである水酸基含有ポリエステル樹脂(A1)を固形分として50~100質量%含有するポリエステル樹脂成分であって、該水酸基含有ポリエステル樹脂(A1)が
(a1)多塩基酸成分及び
(a2)アルコール成分の反応によって得られる水酸基含有ポリエステル樹脂である、ポリエステル樹脂成分、
(B)メラミン樹脂及び/又はポリイソシアネート化合物である架橋剤成分、
(C)下記一般式で表されるオルガノシリケート及び/又はその縮合物成分
一般式:(R-Si-(OR )4-n
[式中、Rはエポキシ基又はメルカプト基で置換されていてもよい炭素数1~18のアルキル基又はフェニル基であり、Rは炭素数が1~6のアルキル基であり、nは0又は1である。]及び
(D)1分子あたり平均2個以上の反応性基を含有するシルセスキオキサン化合物成分
を含有する塗料組成物であって、
 (A)成分及び(B)成分の固形分総量を基準にして、固形分として、
(C)成分の含有量が、1~20質量%であり、
(D)成分の含有量が、1~20質量%
であることを特徴とする耐汚染塗料組成物。
 項2、水酸基含有ポリエステル樹脂(A1)において、多塩基酸成分(a1)中の脂環族多塩基酸(a1-1)の合計含有量が、多塩基酸成分(a1)の総量を基準として、50~100mol%の範囲内である項1に記載の耐汚染塗料組成物。
 項3、シルセスキオキサン化合物の反応性基が、水酸基、アミノ基、エポキシ基、グリシジル基、(メタ)アクリロイルオキシ基及びメルカプト基からなる群から選ばれる少なくとも1種である項1又は2に記載の耐汚染塗料組成物。
 項4、シルセスキオキサン化合物が、反応性基を有するトリアルコキシシラン化合物を縮合して得られる反応性基含有シルセスキオキサン化合物である項1~3のいずれか1項に記載の耐汚染塗料組成物。
 項5、シルセスキオキサン化合物が、第1の官能基を有するトリアルコキシシラン化合物を縮合して第1の官能基を有するシルセスキオキサン化合物を合成し、更に、反応性基及び前記第1の官能基と反応して前記シルセスキオキサン化合物と化学結合を形成しうる第2の官能基を有する化合物、又は、前記第1の官能基と反応して反応性基を生成し得る化合物を反応させて得られる反応性基含有シルセスキオキサン化合物である項1~4のいずれか1項に記載の耐汚染塗料組成物。
 項6、シルセスキオキサン化合物が、第1の官能基を有するトリアルコキシシラン化合物に、反応性基及び前記第1の官能基と反応して前記トリアルコキシシラン化合物と化学結合を形成しうる第2の官能基を有する化合物、又は、前記第1の官能基と反応して反応性基を生成し得る化合物を反応させ、更に、得られた該化合物を縮合して得られる反応性基含有シルセスキオキサン化合物である項1~5のいずれか1項に記載の耐汚染塗料組成物。
 項7、シルセスキオキサン化合物成分において、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が80質量%以上である、項1に記載の耐汚染塗料組成物。
 項8、ポリエステル樹脂成分(A)及びメラミン樹脂成分(B)の固形分総量を基準にして、ポリエステル樹脂成分(A)を50~90質量%、メラミン樹脂成分(B)を10~50質量%含有する項1~7のいずれか1項に記載の耐汚染塗料組成物。
 項9、さらに、フッ素原子含有樹脂成分(E)を含有する項1~8のいずれか1項に記載の耐汚染塗料組成物。
 項10、さらに、艶消し剤(F)を含有する項1~9のいずれか1項に記載の耐汚染塗料組成物。
 項11、金属板上の片面又は両面上に、クロムフリープライマー塗料によるプライマー塗膜を形成する工程し、及び
プライマー塗膜の少なくとも一方の上に、項1~10のいずれか1項に記載の耐汚染塗料組成物による上塗塗膜を形成する工程
を含むことを特徴とする塗膜形成方法。
 項12、金属板上の片面又は両面上に、クロムフリープライマー塗料によるプライマー塗膜を形成する工程、及び
プライマー塗膜の少なくとも一方の片面上に、項1~10のいずれか1項に記載の耐汚染塗料組成物による上塗塗膜を形成する工程
を含むことを特徴とする塗装金属板。
 項13、項11または12に記載の方法により得られる、塗装金属板。
 本発明の耐汚染塗料組成物は、特定の水酸基含有ポリエステル樹脂を含有するポリエステル樹脂成分と架橋剤(メラミン樹脂及び/又はポリイソシアネート化合物)成分とを含有する樹脂バインダに、特定のオルガノシリケート及び/又はその縮合物成分、及び1分子あたり平均2個以上の反応性基を含有するシルセスキオキサン化合物成分を含有する塗料組成物である。本塗料組成物により、特に、半艶以下の光沢(60°光沢が50程度以下)の塗膜において、雨水等に対する耐汚染性の保持性に優れた塗膜を形成することができる。
 本発明の耐汚染塗料組成物による塗膜が、特に、半艶以下の光沢の塗膜とした場合において、雨水等に対する耐汚染性の保持性に優れた塗膜を形成することができる理由は、明らかではないが、以下のように考えている。
 塗膜の耐汚染性を向上させるには、塗膜が硬いことが、汚染物質をめり込ませない、固着させないという観点から有効であり、塗膜層バルク全体としてみれば、これは塗膜のガラス転移温度が高いこと、塗膜層バルク全体の架橋密度が高いことに相当することとなる。 
 しかしながら、この手法は、塗装後、塗板が様々な形状に加工されることとなるPCM(プレコートメタル)鋼板用途としては、加工性及び加工部の耐食性を低下させることとなる。
 そこで、その対策として、塗膜表層部分が十分に硬く、塗膜表層部分以外のバルク部分は軟質である塗膜構造とすることが塗膜の耐汚染性及び加工性(加工部の耐食性)を両立させるための有力な手法ではないかと考えられる。 
 本発明の耐汚染塗料組成物における耐汚染性付与成分は、オルガノシリケート及び/又はその縮合物成分、及び1分子あたり平均2個以上の反応性基を含有するシルセスキオキサン化合物成分であり、シルセスキオキサン化合物及びシリケート化合物を併用するものである。
 本発明の塗料組成物においては、耐汚染性付与成分として、シリケート化合物に加え、更に、反応性基を含有し、その分子構造から剛直(硬質)なセグメントを有するシルセスキオキサン化合物を含有するものであり、このシルセスキオキサン化合物が塗膜表層部分に局在(塗膜表層ほど、塗膜中におけるシルセスキオキサン化合物の濃度が高い)していることから、耐汚染性付与成分として、シリケート化合物(シリコーン化合物)のみを含有する塗料組成物に比べ、より塗膜表層部分が十分に硬く、塗膜表層部分以外のバルク部分は軟質である塗膜構造が得られる。また、シルセスキオキサン化合物成分及びシリケート成分の両方が塗膜表面に均一に緻密で良好な分布状態で存在していることから、耐汚染性及び加工性(加工部の耐食性)に優れた塗膜が得られると考えている。
 また、艶消し剤等により半艶以下の光沢とした塗膜は、光沢のある塗膜に比べ、表面形状が凸凹であり、水の濡れが良く、耐加水分解性に関してより厳しい状況に曝されることから、従来のポリエステル塗料系とした場合、塗装表面の劣化(チョーキング等)が加速され、見栄えの悪い外観状態となりやすい。
 本発明の耐汚染塗料組成物により得られる塗膜は、シルセスキオキサン化合物成分及びシリケート化合物の相乗作用が十分に発揮されることにより、耐汚染性に非常に優れていることから、従来のポリエステル塗料に比較して、優れた外観及び耐汚染性の保持性を発揮することができるものと考えられる。
 耐汚染塗料組成物
 本発明の耐汚染塗料組成物は、下記のポリエステル樹脂成分(A)、架橋剤成分(B)、オルガノシリケート及び/又はその縮合物成分(C)及びシルセスキオキサン化合物成分(D)を含有する塗料組成物である。
 (A)ポリエステル樹脂成分
 本発明の塗料組成物においてポリエステル樹脂成分(A)は、下記水酸基含有ポリエステル樹脂(A1)を、ポリエステル樹脂成分(A)の固形分総量に対して、固形分として50~100質量%含有する。
 (A1)水酸基含有ポリエステル樹脂
 ポリエステル樹脂成分(A)の必須成分である水酸基含有ポリエステル樹脂(A1)は、通常、下記多塩基酸成分(a1)及びアルコール成分(a2)とのエステル化反応又はエステル交換反応によって製造することができる。
 上記ポリエステル樹脂(A1)を得る反応において、多塩基酸成分(a1)としては、ポリエステル樹脂の製造に際して多塩基酸成分として通常使用される化合物を使用することができる。多塩基酸成分(a1)としては、例えば、脂環族多塩基酸(a1-1)、脂肪族多塩基酸(a1-2)、芳香族多塩基酸(a1-3)等を使用することができる。
 上記脂環族多塩基酸(a1-1)は、一般に、1分子中に1個以上の脂環式構造(例えば、4~6員環)と2個以上のカルボキシル基を有する化合物、該化合物の酸無水物、該化合物のエステル化物である。該脂環族多塩基酸(a1-1)としては、例えば、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸、3-メチル-1,2-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,3,5-シクロヘキサントリカルボン酸等の脂環族多価カルボン酸;これら脂環族多価カルボン酸の無水物;これら脂環族多価カルボン酸の低級アルキルエステル化物(ここで、本明細書において、「低級アルキル」とは、例えば、炭素数1~5程度のアルキルを指す。)等が挙げられる。脂環族多塩基酸(a1-1)は単独でもしくは2種以上を組合せて使用することができる。
 脂環族多塩基酸(a1-1)としては、特に、1,2-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸無水物、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸無水物を好適に使用することができる。
 上記のうち、耐加水分解性の観点から、1,2-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸無水物を特に好適に使用することができる。
 上記水酸基含有ポリエステル樹脂(A1)を得る反応において、脂環族多塩基酸(a1-1)の合計含有量は、耐加水分解性及び耐汚染性の観点から、多塩基酸成分(a1)の総量を基準にして、50~100mol%、特に、70~100mol%、さらに特に、80~100mol%の範囲内であることが好ましい。
 脂肪族多塩基酸(a1-2)は、一般に、1分子中に2個以上のカルボキシル基を有する脂肪族化合物、該脂肪族化合物の酸無水物及び該脂肪族化合物のエステル化物であって、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシル酸、オクタデカン二酸、クエン酸等の脂肪族多価カルボン酸;これら脂肪族多価カルボン酸の無水物;これら脂肪族多価カルボン酸の低級アルキルエステル化物等が挙げられる。脂肪族多塩基酸(a1-2)は単独でもしくは2種以上組み合わせて使用することができる。
 脂肪族多塩基酸(a1-2)としては、炭素数4~18のアルキル鎖を有するジカルボン酸を使用することが好ましい。上記炭素数4~18のアルキル鎖を有するジカルボン酸としては、例えば、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシル酸、オクタデカン二酸等が挙げられ、なかでもアジピン酸を好適に使用することができる。
 芳香族多塩基酸(a1-3)は、一般に、1分子中に2個以上のカルボキシル基を有する芳香族化合物、該芳香族化合物の酸無水物、該芳香族化合物のエステル化物等である。具体的には、例えば、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、トリメリット酸、ピロメリット酸等の芳香族多価カルボン酸;これら芳香族多価カルボン酸の無水物;これら芳香族多価カルボン酸の低級アルキルエステル化物等が挙げられる。芳香族多塩基酸(a1-3)は単独でもしくは2種以上組合せて使用することができる。
 上記多塩基酸(a1)以外に、酸成分として、例えば、ヤシ油脂肪酸、綿実油脂肪酸、麻実油脂肪酸、米ぬか油脂肪酸、魚油脂肪酸、トール油脂肪酸、大豆油脂肪酸、アマニ油脂肪酸、桐油脂肪酸、ナタネ油脂肪酸、ヒマシ油脂肪酸、脱水ヒマシ油脂肪酸、サフラワー油脂肪酸等の脂肪酸;ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、安息香酸、p-tert-ブチル安息香酸、シクロヘキサン酸、10-フェニルオクタデカン酸等のモノカルボン酸;乳酸、クエン酸、3-ヒドロキシブタン酸、3-ヒドロキシ-4-エトキシ安息香酸等のヒドロキシカルボン酸等が挙げることができる。上記多塩基酸(a1)以外の酸成分は単独でもしくは2種以上組合せて使用することができる。
 上記多塩基酸(a1)以外の酸成分のうち、脂肪酸(a3)を好適に使用することができる。脂肪酸(a3)は、直鎖炭化水素の1価のカルボン酸であり、例えば、ヤシ油脂肪酸、綿実油脂肪酸、麻実油脂肪酸、米ぬか油脂肪酸、魚油脂肪酸、トール油脂肪酸、大豆油脂肪酸、アマニ油脂肪酸、桐油脂肪酸、ナタネ油脂肪酸、ヒマシ油脂肪酸、脱水ヒマシ油脂肪酸、サフラワー油脂肪酸等の脂肪酸;ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸等を挙げることができる。上記脂肪酸は単独でもしくは2種以上組み合わせて使用することができる。
 これらのうち、耐侯性の観点から、不飽和度が低いもの、具体的には、ヨウ素価が20以下、特に10以下のものを好適に使用することができる。ヨウ素価は化合物の不飽和度を表わす指標となる数値であり、試料100gが吸収するヨウ素のg数で表わされる。測定はJIS K 5421の規格に従い行なうことができる。
 上記不飽和度の観点から、脂肪酸(a3)としては、ヤシ油脂肪酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、特にヤシ油脂肪酸を好適に使用することができる。
 アルコール成分(a2)としては、1分子中に2個以上の水酸基を有する多価アルコールを好適に使用することができる。上記多価アルコールとしては、例えば、脂環族ジオール(a2-1)、脂肪族ジオール(a2-2)、芳香族ジオール(a2-3)等を挙げることができる。
 脂環族ジオール(a2-1)は、一般に、1分子中に1個以上の脂環式構造(例えば、4~6員環)と2個の水酸基を有する化合物である。該脂環族ジオール(a2-1)としては、例えば、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、水添ビスフェノールA、水添ビスフェノールF等の2価アルコール;これらの2価アルコールにε-カプロラクトン等のラクトン化合物を付加したポリラクトンジオール等が挙げられ、これらは単独でもしくは2種以上組合せて使用することができる。
 脂肪族ジオール(a2-2)は、一般に、1分子中に2個の水酸基を有する脂肪族化合物である。該脂肪族ジオール(a2-2)としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、テトラエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,2-ブタンジオール、3-メチル-1,2-ブタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、2,3-ジメチルトリメチレングリコール、テトラメチレングリコール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,6-ヘキサンジオール、1,5-ヘキサンジオール、1,4-ヘキサンジオール、2,5-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ネオペンチルグリコール等が挙げられ、これらは単独でもしくは2種以上組合せて使用することができる。
 芳香族ジオール(a2-3)は、一般に、1分子中に2個の水酸基を有する芳香族化合物である。該芳香族ジオール(a2-3)としては、例えば、ビス(ヒドロキシエチル)テレフタレート等のエステルジオール化合物;ビスフェノールAのアルキレンオキサイド付加物等が挙げられ、これらは単独でもしくは2種以上組合せて使用することができる。
 前記脂環族ジオール(a2-1)、脂肪族ジオール(a2-2)及び芳香族ジオール(a2-3)以外の多価アルコールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリエーテルジオール化合物;グリセリン、トリメチロールエタン、トリメチロールプロパン、ジグリセリン、トリグリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、ジペンタエリスリトール、トリス(2-ヒドロキシエチル)イソシアヌレート、ソルビトール、マンニット等の3価以上のアルコール;これらの3価以上のアルコールにε-カプロラクトン等のラクトン化合物を付加させたポリラクトンポリオール化合物等が挙げられる。
 上記のうち、高分子量化及び脂肪酸(a3)を用いる場合の脂肪酸(a3)との変性反応の反応性向上の観点から、3価以上のアルコールを好適に使用することができる。
 上記3価以上の多価アルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ジグリセリン、トリグリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、ジペンタエリスリトール、ソルビトール、マンニット等の3価以上のアルコール;これらの3価以上のアルコールにε-カプロラクトン等のラクトン化合物を付加させたポリラクトンポリオール化合物;トリス(2-ヒドロキシエチル)イソシアヌレート、トリス(2-ヒドロキシプロピル)イソシアヌレート、トリス(2-ヒドロキシブチル)イソシアヌレート等のトリス(ヒドロキシアルキル)イソシアヌレート等が挙げることができる。これらのうち、特に、トリメチロールプロパンが好ましい。
 3価以上の多価アルコールを用いる場合、アルコール成分(a2)中の3価以上の多価アルコールの合計含有量は、アルコール成分(a2)の総量を基準にして、10~70mol%、特に20~65mol%、さらに特に好ましくは30~60mol%の範囲内であることが好ましい。
 また、上記多価アルコール以外のアルコール成分(a2)として、例えば、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ステアリルアルコール、2-フェノキシエタノール等のモノアルコール;プロピレンオキサイド、ブチレンオキサイド、合成高分岐飽和脂肪酸のグリシジルエステル(商品名「カージュラE10」HEXION Specialty Chemicals社製)等のモノエポキシ化合物と酸とを反応させて得られたアルコール化合物等も必要に応じて使用することができる。
 水酸基含有ポリエステル樹脂(A1)の製造は、特に限定されるものではなく、通常の方法に従って行なうことができる。例えば、前記多塩基酸成分(a1)を必須成分とする酸成分とアルコール成分(a2)とを窒素気流中、150~250℃で、5~10時間反応させて、エステル化反応又はエステル交換反応を行なうことにより製造することができる。
 上記エステル化反応又はエステル交換反応では、上記酸成分及びアルコール成分(a2)を一度に添加してもよいし、数回に分けて添加してもよい。また、はじめにカルボキシル基含有ポリエステル樹脂を合成した後、上記アルコール成分(a2)を用いて、該カルボキシル基含有ポリエステル樹脂中のカルボキシル基の一部をエステル化してもよい。さらに、はじめに水酸基含有ポリエステル樹脂を合成した後、酸無水物を反応させて、水酸基含有ポリエステル樹脂をハーフエステル化させてもよい。
 前記エステル化又はエステル交換反応の際には、反応を促進させるために、触媒を用いてもよい。触媒としては、ジブチル錫オキサイド、三酸化アンチモン、酢酸亜鉛、酢酸マンガン、酢酸コバルト、酢酸カルシウム、酢酸鉛、テトラブチルチタネート、テトライソプロピルチタネート等の既知の触媒を使用することができる。
 また、水酸基含有ポリエステル樹脂(A1)は、該樹脂の調製中、又はエステル化反応後もしくはエステル交換反応後に、脂肪酸、モノエポキシ化合物、ポリイソシアネート化合物等で変性することができる。
 上記脂肪酸としては、例えば、ヤシ油脂肪酸、綿実油脂肪酸、麻実油脂肪酸、米ぬか油脂肪酸、魚油脂肪酸、トール油脂肪酸、大豆油脂肪酸、アマニ油脂肪酸、桐油脂肪酸、ナタネ油脂肪酸、ヒマシ油脂肪酸、脱水ヒマシ油脂肪酸、サフラワー油脂肪酸等を挙げることができる。
 上記モノエポキシ化合物としては、例えば、合成高分岐飽和脂肪酸のグリシジルエステル(商品名「カージュラE10」HEXION Specialty Chemicals社製)を好適に用いることができる。
 上記ポリイソシアネート化合物としては、例えば、リジンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサンジイソシアネート等の脂肪族ジイソシアネート化合物;水素添加キシリレンジイソシアネート、イソホロンジイソシアネート、メチルシクロヘキサン-2,4-ジイソシアネート、メチルシクロヘキサン-2,6-ジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,3-(イソシアナトメチル)シクロヘキサン等の脂環族ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート化合物;リジントリイソシアネート等の3価以上のポリイソシアネート等の有機ポリイソシアネートそれ自体、又はこれらの各有機ポリイソシアネートと多価アルコール、低分子量ポリエステル樹脂もしくは水等との付加物、あるいは上記した各有機ジイソシアネート同士の環化重合体(例えば、イソシアヌレート)、ビウレット型付加物等を挙げることができる。これらは、単独でもしくは2種以上組合せて使用することができる。
 水酸基含有ポリエステル樹脂(A1)の数平均分子量は、得られる塗膜の加工性、平滑性の観点から、5000~30000であり、特に7000~25000、さらに特に10000~20000の範囲内の数平均分子量を有することが好適である。
 なお、本明細書において、数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)を用いて測定した数平均分子量及び重量平均分子量を、標準ポリスチレンの分子量を基準にして換算した値である。具体的には、ゲルパーミュエーションクロマトグラフとして、「HLC8120GPC」(商品名、東ソー(株)製)を使用し、カラムとして、「TSK-gel G4000HXL」、「TSK-gel G3000HXL」、「TSK-gel G2500HXL」及び「TSK-gel G2000HXL」(商品名、いずれも東ソー(株)製)の4本を使用し、移動相テトラヒドロフラン、測定温度40℃、流速1mL/min及び検出器RIの条件下で測定することができる。 
 水酸基含有ポリエステル樹脂(A1)の水酸基価は、得られる塗膜の硬化性の観点から、5~100mgKOH/gであり、特に10~90mgKOH/g、さらに特に40~80mgKOH/gの範囲内の水酸基価を有することが好適である。
 また、水酸基含有ポリエステル樹脂(A1)の酸価は、加工性及び耐水性等の観点から、好ましくは30mgKOH/g以下、さらに好ましくは20mgKOH/g以下の範囲内であることが好適である。
 水酸基含有ポリエステル樹脂(A1)の数平均分子量、水酸基価及び酸価の調整は、例えば、前記多塩基酸成分(a1)を必須成分とする酸成分(多塩基酸成分(a1)及び必要に応じて多塩基酸(a1)以外の酸成分)中のカルボキシル基と前記アルコール成分(a2)中の水酸基の当量比(COOH/OH)を調整する方法、又は前記エステル化反応又はエステル交換反応における反応温度や反応時間を調整する方法等によって行なうことができる。
 上記多塩基酸成分(a1)を必須成分とする酸成分中のカルボキシル基とアルコール成分(a2)中の水酸基との当量比(COOH/OH)としては、一般に、0.5~0.98の範囲内であることが好適である。
 また、水酸基含有ポリエステル樹脂(A1)は、得られる塗膜の硬度、加工性などの観点から、0~50℃、好ましくは10~40℃の範囲内のガラス転移温度を有することが好適である。本明細書において、ガラス転移温度(Tg)は、示差熱分析(DSC)により測定される値(ガラス転移温度)である。
 酸成分として、前記脂肪酸(a3)を使用する場合、水酸基含有ポリエステル樹脂(A1)は、得られる塗膜の耐候性の観点から、3~30%、好ましくは5~20%の範囲内の油長を有することが好適である。ここで、油長とは、構成成分である多塩基酸成分(a1)及び脂肪酸(a3)を必須成分とする酸成分及びアルコール成分(a2)の総量に対する脂肪酸成分(a3)の質量%である。
 ポリエステル樹脂成分(A)として、水酸基含有ポリエステル樹脂(A1)以外のポリエステル樹脂(A2)も含めることができる。
 ポリエステル樹脂(A2)は、常法により、多塩基酸成分(a1)を必須成分とする酸成分及びアルコール成分(a2)のエステル化反応又はエステル交換反応によって得られるポリエステル樹脂であり、多塩基酸成分(a1)を必須成分とする酸成分及びアルコール成分(a2)としては、上記水酸基含有ポリエステル樹脂(A1)で例示したものを使用して、上記水酸基含有ポリエステル樹脂(A1)で例示した方法と同様にして、製造することができる。
 本発明において、ポリエステル樹脂成分(A)の固形分総量に対して、水酸基含有ポリエステル樹脂(A1)の固形分含有量は、得られる塗膜の耐汚染性等の観点から、50~100質量%である。好ましくは60~100質量%、さらに好ましくは70~100質量%の範囲内である。
 (B)架橋剤成分 
 本発明の塗料組成物において架橋剤成分(B)は、メラミン樹脂及び/又はポリイソシアネート化合物である。
 メラミン樹脂
 メラミン樹脂(メチロール化メラミン樹脂とも言う。)は、メラミンとアルデヒドとの反応により得られる樹脂であり、部分メチロール化メラミン樹脂及び完全メチロール化メラミン樹脂の両者が包含される。また、メラミン樹脂は、得られる塗膜の仕上り性及び耐汚染性等の観点から、好ましくは800~8000、さらに好ましくは、1000~5000の範囲内の数平均分子量を有することが好適である。
 上記アルデヒドとしては、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられ、特にホルムアルデヒドが好適である。また、メチロール化メラミン樹脂を適当なアルコールによってメチロール基をさらに部分的にもしくは完全にエーテル化したものも使用することができる。エーテル化に使用し得るアルコールとしては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、iso-プロピルアルコール、n-ブチルアルコール、iso-ブチルアルコール、2-エチル-1-ブタノール、2-エチル-1-ヘキサノール等が挙げられる。
 メラミン樹脂としては、なかでも、部分もしくは完全メチロール化メラミン樹脂のメチロール基をメチルアルコールで部分的にもしくは完全にエーテル化したメチルエーテル化メラミン樹脂;部分もしくは完全メチロール化メラミン樹脂のメチロール基をブチルアルコールで部分的にもしくは完全にエーテル化したブチルエーテル化メラミン樹脂;部分もしくは完全メチロール化メラミン樹脂のメチロール基をメチルアルコール及びブチルアルコールの両者で部分的にもしくは完全にエーテル化したメチル-ブチル混合エーテル化メラミン樹脂を好適に使用することができる。なかでも、得られる塗膜の仕上り性及び耐汚染性等の観点から、ブチルエーテル化メラミン樹脂、メチル-ブチル混合エーテル化メラミン樹脂が好ましく、ブチルエーテル化メラミン樹脂がさらに好ましい。
 本発明の塗料組成物において、得られる塗膜の加工性及び耐汚染性の保持性の観点から、メラミン樹脂としては、メラミン樹脂の固形分総量に対して、ブチルエーテル化メラミン樹脂を、固形分として、30~100質量%、特に50~100質量%、さらに特に70~100質量%の範囲内で含有するのが好ましい。
 ブチルエーテル化メラミン樹脂は、メチルエーテル化メラミン樹脂、メチル-ブチル混合エーテル化メラミン樹脂などと比べ極性が低く、基体樹脂であるポリエステル樹脂(A)との相溶性が良好である。そのため、ブチルエーテル化メラミン樹脂を含有する耐汚染塗料組成物から得られる塗膜は、架橋の均一性が優れている。
 また、ブチルエーテル化メラミン樹脂は、メチルエーテル化メラミン樹脂、メチル-ブチル混合エーテル化メラミン樹脂と比べ塗膜中の表層への局在化が生じにくい。そのため、ブチルエーテル化メラミン樹脂を含有する耐汚染塗料組成物から得られる塗膜は、耐侯性も優れている。
 メラミン樹脂としては市販品を使用できる。市販品の商品名としては、例えば、「サイメル202」、「サイメル203」、「サイメル204」、「サイメル211」、「サイメル238」、「サイメル251」、「サイメル303」、「サイメル323」、「サイメル324」、「サイメル325」、「サイメル327」、「サイメル350」、「サイメル385」、「サイメル1156」、「サイメル1158」、「サイメル1116」、「サイメル1130」(以上、日本サイテックインダストリイズ(株)製)、「ユーバン120」、「ユーバン20HS」、「ユーバン20SE60」、「ユーバン2021」、「ユーバン2028」、「ユーバン28-60」(以上、三井化学(株)製)等が挙げられる。
 以上に述べたメラミン樹脂はそれぞれ単独でもしくは2種以上組み合わせて使用することができる。
 ブチルエーテル化メラミン樹脂の市販品としては、例えば、ユーバン20SE、ユーバン225(以上、いずれも三井化学(株)製)、スーパーベッカミンJ820-60、スーパーベッカミンL-117-60、スーパーベッカミンL-109-65、スーパーベッカミン47-508-60、スーパーベッカミンL-118-60、スーパーベッカミンG821-60(以上、いずれもDIC(株)製)等を挙げることができる。
 メチルエーテル化メラミン樹脂としては、例えば、スミマールM-100、スミマールM-40S、スミマールM-55(いずれも住友化学(株)製、商品名)、サイメル300、サイメル303、サイメル325、サイメル327、サイメル350、サイメル370、サイメル730、サイメル736、サイメル738(以上、いずれも日本サイテックインダストリイズ(株)製、商品名)、メラン522、メラン523(以上、いずれも日立化成(株)製]、ニカラックMS17、ニカラックMS15、ニカラックMS001、ニカラックMX430、ニカラックMX650(いずれも(株)三和ケミカル製、商品名)、レジミン740、レジミン741、レジミン747(以上、いずれもモンサント社製、商品名)等を挙げることができる。
 メチル-ブチル混合エーテル化メラミン樹脂としては、例えば、サイメル232、サイメル235、サイメル202、サイメル238、サイメル254、サイメル266、サイメル272、サイメル1130、サイメルXV-514、サイメルXV805(いずれも日本サイテックインダストリイズ(株)製、商品名)、スミマールM66B(住友化学(株)製、商品名)、レジミン753、レジミン755(以上、いずれもモンサント社製)等を挙げることができる。
 また、ポリエステル樹脂成分(A)とメラミン樹脂との硬化反応を促進するため、必要に応じて、硬化触媒を使用することができる。この硬化反応を促進するための硬化触媒としては、例えば、スルホン酸化合物又はスルホン酸化合物の中和物を用いることができる。
 スルホン酸化合物としては、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸等を挙げることができる。スルホン酸化合物の中和物における中和剤としては、1級アミン、2級アミン、3級アミン、アンモニア、苛性ソーダ、苛性カリなどの塩基性化合物を挙げることができる。
 ポリイソシアネート化合物
 ポリイソシアネート化合物としては、1分子中にイソシアネート基を2個以上有する化合物であり、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートの如き脂肪族ジイソシアネート化合物;水素添加キシリレンジイソシアネート、イソホロンジイソシアネートの如き環状脂肪族ジイソシアネート化合物;トリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネートの如き芳香族ジイソシアネート化合物;トリフェニルメタン-4,4′,4″-トリイソシアネート、1,3,5-トリイソシアナトベンゼン、2,4,6-トリイソシアナトトルエン、4,4′-ジメチルジフェニルメタン-2,2′,5,5′-テトライソシアネートなどの3個以上のイソシアネ-ト基を有するポリイソシアネート化合物の如き有機ポリイソシアネートそれ自体、またはこれらの各有機ポリイソシアネートと多価アルコール、低分子量ポリエステル樹脂もしくは水等との付加物、あるいは上記した各有機ポリイソシアネート同志の環化重合体、更にはイソシアネート・ビウレット体等を挙げることができる。これらのうち、ヘキサメチレンジイソシアネートが環化重合したイソシアヌレートを好適に使用することができる。
 また、ポリイソシアネート化合物として、ブロックポリイソシアネート化合物を使用することもできる。
 ブロックポリイソシアネート化合物は、ポリイソシアネート化合物のフリーのイソシアネート基をブロック化剤によってブロック化した化合物である。
 上記ブロック化剤としては、例えばフェノール、クレゾール、キシレノールなどのフェノール系;ε-カプロラクタム;δ-バレロラクタム、γ-ブチロラクタムなどラクタム系;メタノール、エタノール、n-,i-又はt-ブチルアルコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ベンジルアルコールなどのアルコール系;ホルムアミドキシム、アセトアルドキシム、アセトキシム、メチルエチルケトキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサンオキシムなどオキシム系;マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系などのブロック化剤を好適に使用することができる。上記ポリイソシアネート化合物と上記ブロック化剤とを混合することによって容易に上記ポリイソシアネート化合物のフリーのイソシアネート基をブロックすることができる。
 上記ポリイソシアネート化合物、ブロックポリイソシアネート化合物はそれぞれ単独でもしくは2種以上組合せて使用することができる。
 また、ポリイソシアネート化合物、ブロックポリイソシアネート化合物の硬化性を向上させるため硬化触媒を使用することもできる。硬化触媒としては、例えば、オクチル酸錫、ジブチル錫ジ(2-エチルヘキサノエート)、ジオクチル錫ジ(2-エチルヘキサノエート)、ジブチル錫ジラウレート、ジブチル錫オキサイド、ジオクチル錫オキサイド、2-エチルヘキサン酸鉛等の有機金属触媒等を好適に使用することができる。
 本発明の耐汚染塗料組成物において、上記ポリエステル樹脂成分(A)及び架橋剤成分(B)の比率は、ポリエステル樹脂成分(A)及び架橋剤成分(B)の固形分総量を基準にして、固形分として、ポリエステル樹脂成分(A)が50~90質量%、特に、60~80質量%であることが、硬化性及び加工性の観点から好ましい。架橋剤成分(B)の固形分含有量が10~50質量%、特に、20~40質量%であることが、硬化性及び加工性の観点から好ましい。
 本発明の耐汚染塗料組成物において、架橋剤成分(B)として、メラミン樹脂及びポリイソシアネート化合物を併用する場合、メラミン樹脂及びポリイソシアネート化合物の比率(メラミン樹脂/ポリイソシアネート化合物)は、両者の固形分質量比率で、70/30~99/1、特に80/20~95/5の範囲内であることが耐汚染性等の観点から好ましい。
 (C)オルガノシリケート及び/又はその縮合物成分
 本発明の(C)成分は、
一般式:(R ) -Si-(OR )4-n 
[式中、Rはエポキシ基又はメルカプト基で置換されていてもよい炭素数1~18のアルキル基又はフェニル基であり、Rは炭素数が1~6のアルキル基であり、nは0または1である。]
で表わされるオルガノシリケート及び/又はその縮合物である。
 本発明の塗料組成物が含有する(C)成分は、塗布後に効率よく基材表面で親水化効果を塗膜が発揮するために使用されるものであり、この効果の観点から、上記オルガノシリケートの縮合物がより好ましい。
 上記一般式におけるRの具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、ペンチル、ヘキシル、ヘプチル、n-オクチル、2-エチルヘキシル、ノニル、デシル、ウンデシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、グリシジル、メチルグリシジル(2-メチルグリシジル)-、メルカプトメチル、2-メルカプトエチル、2-メルカプトプロピル、3-メルカプトプロピル、4-メルカプトブチル、フェニル、p-メルカプトフェニル基などを挙げることができる。
 (C)成分のオルガノシリケートの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、テトライソブトキシシランなどの4官能シラン;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリn-ブトキシシラン、メチルトリイソブトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、フェニルトリイソプロポキシシラン、フェニルトリn-ブトキシシラン、フェニルトリイソブトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ラウリルトリメトキシシラン、ラウリルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトエチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトエチルトリエトキシシラン、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン等の3官能シランが挙げられる。上記オルガノシリケートの縮合物としては、これらの4官能もしくは3官能シランの1種又は2種以上の組合せでの縮合物などが挙げられる。
 オルガノシリケートの縮合物は、常法により製造することができる。市販品としては、例えば、MKCシリケートMS51、MS56、MS57、MS56S、MS56SB5、MS58B15、MS58B30、ES40、EMS31、BTS(以上、いずれも三菱化学(株)製、商品名)、メチルシリケート51、エチルシリケート40、エチルシリケート40T、エチルシリケート48(以上、いずれもコルコート(株)製、商品名)、KR500、KR9218、X-41-1805、X-41-1810、X-41-1818、X-41-1053、X-41-1056(以上、いずれも信越化学工業(株)製、商品名)等を挙げることができる。また、これらのオルガノシリケートの縮合物を単体で、又は2種以上を組合せて部分加水分解縮合することによっても得ることができる。オルガノシリケートの縮合物は、分枝状もしくは直鎖状の縮合物であって、縮合度が2~100、好ましくは2~20であることが好適である。ただし、後述のシルセスキオキサン化合物成分(D)に該当する化合物は、(C)成分には該当しない。本発明の塗料組成物においては、(C)成分のオルガノシリケートやオルガノシリケートの縮合物は、単独で用いてもよいし、2種以上を組合せて用いてもよい。
 前記一般式で表わされるオルガノシリケート及び/又はその縮合物において、OR基としてメトキシ基と炭素原子数2~6のアルコキシ基とを有し、メトキシ基/炭素原子数2~6のアルコキシ基との数の比が95/5~30/70の範囲内であることが、塗料作成後の可使時間(ポットライフ)の観点から好適である。
 本発明の塗料組成物において、(C)成分の固形分含有量は、(A)成分及び(B)成分の固形分総量を基準にして、1~20質量%である。好ましくは1~10質量%、さらに好ましくは3~7質量%である。
 (C)成分量が上記範囲内にあることによって、(C)成分配合の効果が発揮され、得られる塗膜の初期耐汚染性、及び耐汚染性の保持性、並びに得られる塗膜の機械的強度及び耐久性の面からも好適である。
 (D)シルセスキオキサン化合物成分
 本発明の塗料組成物のシルセスキオキサン化合物は、1分子あたり平均2個以上の反応性基を含有するシルセスキオキサン化合物である。
 反応性基としては、水酸基、アミノ基、エポキシ基、グリシジル基、(メタ)アクリロイルオキシ基及びメルカプト基からなる群から選ばれる少なくとも1種が好ましく、架橋剤成分との反応性の観点から、水酸基及びエポキシからなる群から選ばれる少なくとも1種が好ましく、特に水酸基が好ましい。
 ここで、本明細書において、(メタ)アクリロイルオキシ基とは、アクリロイルオキシ基及びメタクリロイルオキシ基のことを意味する。
 ここで、「シルセスキオキサン化合物」は、一般にトリアルコキシシラン化合物を加水分解縮合して得られる構造を有する。本明細書において「シルセスキオキサン化合物」とは、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物(籠型構造のシルセスキオキサン化合物、ともいう。)のみを意味するのではなく、Si-OH基が残存したラダー構造、不完全籠型構造、ランダム縮合体のシルセスキオキサン化合物をも含むことができる。本発明のシルセスキオキサン化合物は、縮合度が7~20程度であることが好ましい。シルセスキオキサン化合物は、1種単独で又は2種以上組合せて使用することができる。
 前記本発明のシルセスキオキサン化合物は、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは100質量%であることが液安定性の点から好ましい。
 上記Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合を測定する手法として、例えば、核磁共鳴(NMR)法による29Siスペクトルの測定(29Si-NMR分析)を挙げることができる。具体的には、29Si-NMR分析により、測定対象に含まれるSi原子に結合した3つの酸素原子の構造の割合が測定される。Si原子に結合した3つの酸素原子の構造として、下記のT0構造、T1構造、T2構造及びT3構造が挙げられる:
Si原子に結合した3つの酸素原子がいずれも他のSi原子と結合していないT0構造;
Si原子に結合した3つの酸素原子のうち、1つが他のSi原子と結合したものであるT1構造;
Si原子に結合した3つの酸素原子のうち、2つが他のSi原子と結合したものであるT2構造;
Si原子に結合した3つの酸素原子が全て他のSi原子と結合したT3構造。この場合、「Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合」とは、「シルセスキオキサン化合物成分(D)を構成するSi原子が、Si原子に結合した3つの酸素原子が全て他のSi原子と結合した構造(T3構造)である割合」と換言することができる。
 本発明の塗料組成物において、シルセスキオキサン化合物の反応性基含有量は、1分子あたり平均して2個以上であり、得られる塗膜の架橋密度の観点から、シルセスキオキサン化合物の全Si原子量を基準にして、25~300モル%、特に、25~100モル%、さらに特に、50~100モル%の範囲内であるのが好ましい。
 また、シルセスキオキサン化合物が反応性基として、水酸基を有する場合、得られる塗膜の架橋密度、及び他成分との相溶性の観点から、該シルセスキオキサン化合物の水酸基価が、100mgKOH/g以上、特に100~600mgKOH/g、さらに特に150~400mgKOH/gであるのが好ましい。
 シルセスキオキサン化合物が反応性基として、エポキシ基を有する場合、得られる塗膜の架橋密度の観点から、該シルセスキオキサン化合物のエポキシ価が、0.5~10mmol/g、特に1~6mmol/gであるのが好ましい。
 本発明の塗料組成物のシルセスキオキサン化合物は、1分子あたり平均2個以上の反応性基を含有するシルセスキオキサン化合物であれば、特に限定されるものではないが、具体的には、例えば以下の方法により合成されるシルセスキオキサン化合物を挙げることができる。
 1.所望の反応性基を有するトリアルコキシシラン化合物を縮合して得られる反応性基含有シルセスキオキサン化合物。
 2.第1の官能基を有するトリアルコキシシラン化合物を縮合して第1の官能基を有するシルセスキオキサン化合物を合成し、更に、所望の反応性基及び前記第1の官能基と反応して前記シルセスキオキサン化合物と化学結合を形成しうる第2の官能基を有する化合物、又は、前記第1の官能基と反応して所望の反応性基を生成し得る化合物を反応させて得られる反応性基含有シルセスキオキサン化合物。
 3.第1の官能基を有するトリアルコキシシラン化合物に、所望の反応性基及び前記第1の官能基と反応して前記トリアルコキシシラン化合物と化学結合を形成しうる第2の官能基を有する化合物、又は、前記第1の官能基と反応して所望の反応性基を生成し得る化合物を反応させ、更に、得られた該化合物を縮合して得られる反応性基含有シルセスキオキサン化合物。
 上記1の方法により得られるシルセスキオキサン化合物において、反応性基を有するトリアルコキシシラン化合物としては、従来公知の化合物を使用することができ、その具体例としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ基含有トリアルコキシシラン化合物;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のグリシジルまたはエポキシ基含有トリアルコキシシラン化合物、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン等の(メタ)アクリロイルオキシ基含有トリアルコキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプト基含有トリアルコキシシラン等をあげることができる。
 また、アルコキシシラン化合物のアルコキシ基としては、特に限定されるものではないが、メトキシ基またはエトキシ基であるものを好適に使用することができる。
 上記1の方法はシルセスキオキサン化合物の反応性基が、アミノ基、エポキシ基、グリシジル基、(メタ)アクリロイルオキシ基、メルカプト基の場合に好適に使用することができ、特に、アミノ基又はエポキシ基である場合に好適に使用することができる。
 上記2の方法は、シルセスキオキサン化合物の所望の反応性基が水酸基、エポキシ基又はアミノ基の場合に好適に使用することができ、特に水酸基の場合、上記1の方法では合成することが困難であるため、特に好適に使用することができる。また、塗料中におけるシルセスキオキサン化合物と他成分との相溶性の調整等を目的として、上記以外の反応性基を含有するシルセスキオキサン化合物を合成する場合にも、上記2の方法を用いることができる。
 反応性基が水酸基である前記シルセスキオキサン化合物において、トリアルコキシシラン化合物が有する第1の官能基としては、例えば、アミノ基、エポキシ基、グリシジル基、(メタ)アクリロイルオキシ基、メルカプト基等を挙げることができる。
 また、アルコキシシラン化合物のアルコキシ基としては、特に限定されるものではないが、メトキシ基またはエトキシ基であるものを好適に使用することができる。
 このような官能基を有するトリアルコキシシラン化合物は、従来公知の化合物を使用することができ、その具体例としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ基含有トリアルコキシシラン化合物;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のグリシジルまたはエポキシ基含有トリアルコキシシラン化合物、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン等の(メタ)アクリロイルオキシ基含有トリアルコキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプト基含有トリアルコキシシラン等をあげることができる。
 上記トリアルコキシシラン化合物は単独で、又は2種以上を組合せて使用することができる。
 トリアルコキシシラン化合物の有する第1の官能基と反応し得る第2の官能基としては、例えば、アミノ基、エポキシ基、カルボキシル基、(メタ)アクリロイルオキシ基、メルカプト基等を挙げることができる。
 このような第2の官能基及び(所望の)反応性基を有する化合物としては、従来公知の化合物を使用することができ、その具体例としては、例えば、モノエタノールアミン、ジエタノールアミン、メチルイソプロパノールアミン、グリシドール、ヒドロキシ酢酸、リンゴ酸、ジメチロールプロピオン酸、ジメチロールブタン酸、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、メルカプトエタノール等を挙げることができる。
 これらの化合物は、単独で、又は2種以上を組合せて使用することができる。
 トリアルコキシシラン化合物の有する第1の官能基と反応して(所望の)反応性基を生成し得る化合物として、例えば、第1の官能基がエポキシ基である場合には、カルボキシル基含有化合物、アミノ基含有化合物等を挙げることができる。また、第1の官能基がアミノ基である場合にはエポキシ基含有化合物、ラクトン化合物、環状カーボネート化合物等を挙げることができる。また、上記これらの化合物がさらに反応性基である水酸基を含有していてもよい。
 上記化合物の具体例として、カルボキシル基含有化合物としては、例えば、酢酸、プロパン酸、ブタン酸、2-エチルヘキサン酸、グリコール酸、リンゴ酸、ジメチロールプロピオン酸、ジメチロールブタン酸等を挙げることができる。
 アミノ基含有化合物としては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ブトキシプロピルアミン、モノエタノールアミン、ジエタノールアミン、メチルイソプロパノールアミン等を挙げることができる。
 エポキシ基含有化合物としては、例えば、グリシドール、アリルグリシジルエーテル等を挙げることができる。
 ラクトン化合物としては、例えば、γ-ブチロラクトン、ε-カプロラクトン等を挙げることができる。
 環状カーボネート化合物としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、グリセリンカーボネート等を挙げることができる。
 上記3の方法は、シルセスキオキサン化合物の所望の反応性基が水酸基、エポキシ基又はアミノ基の場合に好適に使用することができ、特に水酸基の場合、上記1の方法では合成することが困難であるため、特に好適に使用することができる。
 上記シルセスキオキサン化合物は、上記2の方法で合成することも可能であるが、第1の官能基が縮合反応中に溶剤や触媒等と反応し得る官能基である場合、第1の官能基を有するトリアルコキシシラン化合物がそのままでは縮合反応させることが困難である場合等に、上記3の方法を好適に使用することができる。
 例えば、第1の官能基がイソシアネート基である場合に、加水分解反応中にイソシアネート基が水と反応してしまう。また、イソシアネート基がアルコールの水酸基と反応してしまうために反応溶媒として、アルコール系溶剤を用いることができない等の制約がある。このような不具合を解消するために第3の方法を好適に使用することができる。
 第2の方法において、第1の官能基を有するトリアルコキシシラン化合物を縮合して得られる第1の官能基を有するシルセスキオキサン化合物の合成反応中における溶解性に問題がある場合に、第3の方法を使用することにより、この溶解性の不具合を解消できる場合がある。
 第2の方法で合成することができるシルセスキオキサン化合物を第3の方法で合成しても問題ないが、合成反応工程において、水酸基を有するトリアルコキシシラン化合物が生成する場合は、水酸基を有するトリアルコキシシラン化合物は水酸基とアルコキシシリル基が反応し得るため、その貯蔵性に問題がある場合があり、合成反応は水酸基を有するトリアルコキシシラン化合物が存在する状態で中断せず、縮合反応まで一気に完結させてしまうことが好ましい。
 反応性基が水酸基である前記シルセスキオキサン化合物において、トリアルコキシシラン化合物が有する第1の官能基としては、例えば、アミノ基、エポキシ基、グリシジル基、(メタ)アクリロイルオキシ基、メルカプト基、イソシアネート基等を挙げることができる。
 また、アルコキシシラン化合物のアルコキシ基としては、特に限定されるものではないが、メトキシ基またはエトキシ基であるものを好適に使用することができる。
 このような官能基を有するトリアルコキシシラン化合物は、従来公知の化合物を使用することができ、その具体例としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ基含有トリアルコキシシラン化合物;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のグリシジルまたはエポキシ基含有トリアルコキシシラン化合物、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有トリアルコキシシラン化合物、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン等の(メタ)アクリロイルオキシ基含有トリアルコキシシラン化合物、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプト基含有トリアルコキシシラン化合物等をあげることができる。
 トリアルコキシシラン化合物の有する第1の官能基と反応し得る第2の官能基としては、アミノ基、エポキシ基、カルボキシル基、(メタ)アクリロイルオキシ基、メルカプト基、水酸基等を挙げることができる。
 このような第2の官能基及び反応性基を有する化合物としては、従来公知の化合物を使用することができ、その具体例としては、例えば、モノエタノールアミン、ジエタノールアミン、メチルイソプロパノールアミン、グリシドール、ヒドロキシ酢酸、リンゴ酸、ジメチロールプロピオン酸、ジメチロールブタン酸、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、メルカプトエタノール、エチレングリコール、トリメチロールプロパン等を挙げることができる。
 これらの化合物は、は単独で、又は2種以上を組合せて使用することができる。
 トリアルコキシシラン化合物が有する第1の官能基と反応して(所望の)反応性基を生成し得る化合物として、例えば、第1の官能基がエポキシ基である場合には、カルボキシル基含有化合物、アミノ基含有化合物等を挙げることができる。また、第1の官能基がアミノ基である場合には、エポキシ基含有化合物、ラクトン類、環状カーボネート化合物等を挙げることができる。また、上記これらの化合物がさらに反応性基である水酸基を含有していてもよい。
 上記化合物の具体例として、例えば、カルボキシル基含有化合物としては、酢酸、プロパン酸、ブタン酸、2-エチルヘキサン酸、グリコール酸、リンゴ酸、ジメチロールプロピオン酸、ジメチロールブタン酸等を挙げることができる。
 アミノ基含有化合物としては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ブトキシプロピルアミン、モノエタノールアミン、ジエタノールアミン、メチルイソプロパノールアミン等を挙げることができる。
 エポキシ基含有化合物としては、グリシドール、アリルグリシジルエーテル等を挙げることができる。
 ラクトン化合物としては、γ-ブチロラクトン、ε-カプロラクトン等を挙げることができる。
 環状カーボネート化合物としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、グリセリンカーボネート等を挙げることができる。
 上記1の方法により得られるシルセスキオキサン化合物としては、具体的には、反応性基を含有するトリアルコキシシラン化合物を加水分解縮合して得られるシルセスキオキサン化合物をあげることができる。
 例えば、所望の反応性基がエポキシ基である場合、前記トリアルコキシシラン化合物としては、具体的には、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。
 また、反応性基を含有するトリアルコキシシラン化合物の他、反応性基の濃度や他成分との相溶性の調整のため、反応性基を持たないトリアルコキシシラン化合物や(架橋)反応に影響しない官能基を有するトリアルコキシシラン化合物を併用することもできる。
 このようなシラン化合物としては、例えば、メチルトリメトキシシラン、プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、フェニルトリメトキシシラン等を挙げることができる。
 反応性基がエポキシ基である場合には、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン等を併用することができる。
 これらのトリアルコキシシラン化合物からエポキシ基を有するシルセスキオキサン化合物を合成するには、具体的には、例えば、該トリアルコキシシラン化合物を触媒の存在下で加水分解縮合反応させることにより合成することができる。
 前記触媒としては、塩基性触媒を好適に用いることができる。塩基性触媒としては、具体的には、例えば、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の水酸化アンモニウム塩、テトラブチルアンモニウムフルオリド等のフッ化アンモニウム塩等を挙げることができる。
 前記触媒の使用量は特に限定されるものではないが、製造コスト、触媒の除去性及び生産性(反応速度)の観点から、シラン化合物1モルに対して、0.0001~1.0モル、特に、0.0005~0.1モルの範囲であることが好ましい。
 加水分解縮合反応において、シラン化合物と水との量比は限定されるものでないが、水の使用量は、シラン化合物1モルに対して、0.1~100モル、特に、0.5~3モルの範囲であることが好ましい。
 水の量が、シラン化合物1モルに対して、0.1モルより少ないと反応速度が遅くなるために、目的とするシルセスキオキサン化合物の収率が低くなる場合がある。また、100モルより多いと、高分子量化しやすくなるために、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物の生成割合が減少する場合がある。使用する水は、塩基性触媒を水溶液として用いる場合は、その水溶液の水を加水分解縮合反応に使用する水として用いることもでき、また、別途さらに水を加えることもできる。
 加水分解縮合反応において、ゲル化防止及び反応時の粘度調整等の観点から、有機溶媒を使用することができる。有機溶媒としては、極性有機溶媒、非極性有機溶媒を単独で、又は両者を混合して使用することができる。
 極性有機溶媒としてはメタノール、エタノール、2-プロパノール等の低級アルコール類、アセトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン等のエーテル類を挙げることができる。これらのうち、アセトン、テトラヒドロフランは沸点が低く、また、反応系が均一となり反応性を向上させることができることから好適に使用することができる。
 非極性有機溶媒としては、炭化水素系溶媒が好ましく、トルエン、キシレン等の水よりも沸点が高い有機溶媒を好適に使用することができる。特にトルエン等の水と共沸する有機溶媒は反応系内から水を効率よく除去することができることから好適に使用することができる。特に、極性有機溶媒と非極性有機溶媒とを混合して使用すると、前述したそれぞれの利点が得られることから好ましい。
 加水分解縮合反応における反応温度は、0~200℃、好ましくは10~200℃、更に好ましくは10~120℃とすることができる。加水分解縮合反応における反応時間は、通常、1~12時間程度で行なうことができる。
 加水分解縮合反応では、加水分解とともに縮合反応が進行し、シラン化合物のアルコキシドの全部(100%)がヒドロキシル基(OH基)に加水分解され、更に該OH基の全部(好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%)を縮合反応させることが反応生成物の液安定性の観点から好ましい。
 加水分解縮合反応後、溶媒、反応により生成したアルコール、触媒等を公知の手法により除去することができる。触媒の分離は、水洗、カラムによる分離、固体吸着剤による分離等、種々の方法により行なうことができる。
 上記の具体例により示した方法により、上記1の方法により得られるシルセスキオキサン化合物を製造することができる。
 ここで、上記加水分解縮合反応において、反応が100%完結しない場合には、上記1の方法により得られる反応生成物中には、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si-OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、上記1の方法により得られるシルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。
 前記2の方法で得られるシルセスキオキサン化合物として、具体的には例えば、所望の反応性基が水酸基である場合、例えば第1の官能基としてエポキシ基を有するトリアルコキシシラン化合物を加水分解縮合したシルセスキオキサン化合物に、第1の官能基と反応して水酸基を生成し得る化合物として、カルボキシル基を有する化合物を反応させて得られるシルセスキオキサン化合物を挙げることができる。カルボキシル基はエポキシ基との反応により反応性基である水酸基を生成するため、この合成方法を好適に使用することができる。
 本具体例で使用する第1の官能基を有するトリアルコキシシラン化合物としては、具体的には、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。
 また、第1の官能基を有するトリアルコキシシラン化合物の他、反応性基の濃度や他成分との相溶性の調整のため、官能基を持たないトリアルコキシシラン化合物、(架橋)反応や第2の官能基との反応に影響しない官能基を有するトリアルコキシシラン化合物を併用することもできる。
 このようなシラン化合物としては、例えば、メチルトリメトキシシラン、プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、フェニルトリメトキシシラン等を挙げることができる。   
 反応性基が水酸基である場合には、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン等を併用することができる。
 これらのトリアルコキシシラン化合物を加水分解縮合反応させてシルセスキオキサン化合物を得るには、公知の方法を用いればよく、前記1の方法で説示したとおりである。
 前記2の方法における第1の官能基であるエポキシ基と反応しうる第2の官能基としては、カルボキシル基をあげることができ、該第2の官能基を有する化合物は反応性基である水酸基をさらに含有していてもよい。
 該第2の官能基を有する化合物として、具体的には、例えば、酢酸、プロパン酸、ブタン酸、2-エチルヘキサン酸、グリコール酸、リンゴ酸、ジメチロールプロピオン酸、ジメチロールブタン酸等をあげることができる。
 前記2の方法における第1の官能基であるエポキシ基と第2の官能基であるカルボキシル基との付加反応の反応条件は特に限定されるものではない。反応は触媒の存在下で行うことができる。
 前記触媒としては、具体的には、例えば、トリエチルアミン、ベンジルジメチルアミン等の3級アミン;テトラメチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩;ジエチルアミン等の酢酸塩、ギ酸塩等の2級アミン塩;水酸化ナトリウム、水酸化カルシウム等のアルカリ金属、アルカリ土類金属の水酸化物;酢酸ナトリウム、酢酸カルシウム等のアルカリ金属、アルカリ土類金属塩;イミダゾ-ル類;ジアザビシクロウンデセン等の環状含窒素化合物、トリフェニルフォスフィン、トリブチルフォスフィン等のリン化合物等をあげることができる。触媒の使用量は、特に限定されるものではなく、反応原料の総量に対して、例えば、0.01~5質量%の範囲内で使用することができる。
 前記シルセスキオキサン化合物と、化学結合を形成しうる第2の官能基を有する化合物、又は前記第1の官能基と反応して所望の反応性基を生成し得る化合物との反応において、反応時の溶媒は特に限定されるものではなく、具体的には例えば、第1の官能基を有するトリアルコキシシラン化合物を縮合して第1の官能基を有するシルセスキオキサン化合物を合成する反応時に用いた有機溶媒を使用することができる。
 上記反応は0~200℃、好ましくは100~200℃の反応温度で行なうことができる。また、この反応は必要に応じて、加圧条件下で行なうことができる。加圧反応時の圧力は、例えば、0.02~0.2MPa、特に0.08~0.15MPaの範囲内で行なうことができる。
 反応時間は反応温度や使用する触媒等により調整すればよいが、通常、3~100時間で行なうことができる。
 前記3の方法で得られる反応性基含有シルセスキオキサン化合物として、具体的には、所望の反応性基が水酸基である場合、例えば、第1の官能基としてアミノ基を有するトリアルコキシシラン化合物と、第1の官能基と反応して水酸基を生成し得る化合物として、環状カーボネート化合物とを反応させ、更に、得られた該化合物を縮合して得られる反応性基含有シルセスキオキサン化合物を挙げることができる。
 第1の官能基としてアミノ基を有するトリアルコキシシラン化合物としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシランを好適に使用することができる。
 環状カーボネート化合物としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、グリセリンカーボネート等をあげることができる。これらの環状カーボネート化合物は、アミノ基と反応してウレタン結合と水酸基を生成することが知られている。
 方法3における縮合反応を行なうトリアルコキシシラン化合物の反応条件は特に限定されるものではない。具体的には、第1の官能基を有するトリアルコキシシラン化合物と、所望の反応性基及び前記第1の官能基と反応して前記トリアルコキシシラン化合物と化学結合を形成しうる第2の官能基を有する化合物、又は、前記第1の官能基と反応して所望の反応性基を生成し得る化合物とを混合して加熱することにより行なうことができる。
 前記反応において、溶媒は特に限定されるものではなく、具体的には例えば、前記方法2における、第1の官能基を有するトリアルコキシシラン化合物を縮合して第1の官能基を有するシルセスキオキサン化合物を合成する反応時に用いた有機溶媒を使用することができる。
 上記反応は0~200℃、好ましくは60~200℃、より好ましくは80~150℃の反応温度で行なうことができる。また、この反応は必要に応じて、加圧条件下で行なうことができる。加圧反応時の圧力は、例えば、0.02~0.2MPa、特に0.08~0.15MPaの範囲内で行なうことができる。
 反応時間は反応温度や使用する触媒等により調整すればよいが、通常、5~100時間で行なうことができる。
 得られた縮合反応を行なうトリアルコキシシラン化合物を加水分解縮合してシルセスキオキサン化合物を得る方法としては、一般的に公知の方法を用いればよく、前記方法1で説明した通りである。
 本発明の塗料組成物のシルセスキオキサン化合物成分(D)は、単一の組成の化合物であってもよく、又、組成の異なる化合物の混合物であってもよい。
 本発明の塗料組成物のシルセスキオキサン化合物の数平均分子量は、液安定性、相溶性の観点から、500~100000、特に、800~20000の範囲内であるのが好ましい。
 前記本発明のシルセスキオキサン化合物の製造方法は、一般的なシルセスキオキサン化合物の製造に従来用いられている製造方法を用いることができ、上記方法1、2、3の方法に特に限定されるものではない。
 シルセスキオキサン化合物の合成の加水分解縮合反応において、100%縮合しない場合には、得られる生成物には、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si-OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、本発明の塗料組成物において、シルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。
 本発明の塗料組成物において、(D)成分である反応性基含有シルセスキオキサン化合物の含有量は、得られる塗膜の耐雨筋汚染性等の耐汚染性向上効果及び耐水性の観点から、(A)成分及び(B)成分の固形分総量を基準にして、固形分として、1~20質量%である。好ましくは2~15質量%、さらに好ましくは3~10質量%である。ただし、シルセスキオキサン化合物が含有する反応性基濃度によって、該化合物の含有量は変動するものであるため、これに限定されるものではない。
 (D)成分量が上記範囲内にあることによって、(C)成分及び(D)成分を併用することによる相乗効果が十分に発揮され、得られる塗膜の初期耐汚染性及び耐汚染性の保持性、並びに得られる塗膜の機械的強度及び耐久性を向上させる観点からも好適である。
 (E)フッ素原子含有樹脂成分
 本発明の耐汚染塗料組成物には、耐汚染性をさらに向上させる目的で、フッ素原子含有樹脂成分(E)をさらに含有することができる。
 フッ素原子含有樹脂としては、公知のフッ素樹脂を使用することができる。フッ素原子含有樹脂として、特に、下記フッ素原子含有非水分散型樹脂を好適に使用することができる。
 フッ素原子含有非水分散液
 本発明の(E)成分の好ましい例として挙げられるフッ素原子含有非水分散型樹脂(Non Aqueous Dispersion、NAD)は、フッ素原子含有非水分散液と換言することもできる。該(E)成分としては、具体的には、フッ素原子含有分散安定剤を含む有機溶剤液中で重合体粒子が分散している非水分散型樹脂(E1)及び分散安定剤を含む有機溶剤液中でフルオロアルキル基含有(メタ)アクリレートを構成成分とする重合体粒子が分散している非水分散型樹脂(E2)等をあげることができる。
 非水分散型樹脂(E1)の具体例として、フッ素原子含有分散安定剤(E1a)と有機溶剤(E1b)との混合液中で、重合性不飽和モノマーを共重合させて該混合液に不溶の重合体粒子(E1c)を形成させることにより調製することができる非水分散型樹脂が例示される。非水分散型樹脂(E1)は、分散媒、重合体粒子(分散粒子)および分散安定剤を含む非水分散型樹脂において、分散安定剤がフッ素原子を含有している分散安定剤である非水分散型樹脂、と換言することができるが、これに限定されるものではない。あるいは、非水分散型樹脂(E1)は、フッ素原子含有分散安定剤を含む有機溶剤液中で重合体粒子が分散している非水分散液であり、フッ素原子含有分散安定剤(E1a)を含有する有機溶剤(E1b)中で、これらに不溶の重合体粒子(E1c)が分散している非水分散液であってもよい。
 なお、本明細書において、「(メタ)アクリレート」とは、アクリレート又はメタクリレートを示す。
 分散安定剤(E1a)はフッ素原子を含有しており、重合体粒子(E1c)を有機溶剤(E1b)中で安定に分散させるためのもの分散安定剤である。分散安定剤(E1a)は、有機溶剤(E1b)と相互に溶解し、重合体粒子(E1c)とは相溶しないものが好ましい。
 分散安定剤(E1a)としては、例えば、フルオロアルキル基含有(メタ)アクリレート(F-アクリレート)及び/又はフルオロオレフィンを含有する重合性不飽和モノマーを共重合することにより得られる重合体を適用することができる。該重合体には必要に応じて、水酸基、カルボキシル基、エポキシ基、シラノール基、アルコキシシリル基等から選ばれた官能基を1分子あたり1個以上含有させることができる。
 上記のフルオロアルキル基含有(メタ)アクリレート(F-アクリレート)としては、例えば、
一般式 CH =C(R)-COO-(CH)n -Rf
[Rは水素原子またはメチル基、nは1~10の整数、Rfは炭素数1~21個の直鎖状または分岐状のフルオロアルキル基である]
で示される化合物をあげることができる。ここで「フルオロアルキル基」は炭素原子数1~21個の直鎖状または分岐状の炭化水素基の水素の一部もしくは全部がフッ素原子に置換した基である。かかるF-アクリレートとして、例えば、パーフルオロメチルメチルアクリレート、パーフルオロメチルメチルメタクリレート、パーフルオロブチルエチルアクリレート、パーフルオロブチルエチルメタクリレート、パーフルオロイソノニルエチルアクリレート、パーフルオロイソノニルエチルメタクリレート、パーフルオロオクチルエチルアクリレート、パーフルオロオクチルエチルメタクリレート、2,2,3,3-テトラフルオロプロピルアクリレート、2,2,3,3-テトラフルオロプロピルメタクリレート、1H,1H,5H-オクタフルオロペンチルアクリレート、1H,1H,5H-オクタフルオロペンチルメタクリレート等をあげることができる。
 また、フルオロオレフィンとしては、例えば、テトラフルオロエチレン、ヘキサフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレンなどをあげることができる。分散安定剤(E1a)を得るための重合性不飽和モノマーとしてにおいて、上記F-アクリレート及び上記フルオロオレフィンから選ばれた1種もしくは2種以上を使用することができる。
 分散安定剤(E1a)は、F-アクリレート及びフルオロオレフィンからなる群から選ばれた1種もしくは2種以上を重合させるか、またはF-アクリレート及びフルオロオレフィンからなる群から選ばれる1種もしくは2種以上とその他の重合性不飽和モノマーとを重合させることにより調製することができる。その他の重合性不飽和モノマーとしては、ラジカル重合性の不飽和モノマーであれば特に制限されない。例えば以下の重合性不飽和モノマーを挙げることができる。
 アクリル酸又はメタクリル酸のエステル化合物(i):アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸プロピル、メタクリル酸プロピル、アクリル酸イソプロピル、メタクリル酸イソプロピル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸イソボルニル、メタクリル酸イソボルニル、アクリル酸ヘキシル、メタクリル酸ヘキシル、アクリル酸オクチル、メタクリル酸オクチル、アクリル酸ラウリル、メタクリル酸ラウリル等のアクリル酸又はメタクリル酸のC1~20アルキルエステル;アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル等のアクリル酸又はメタクリル酸のC3~20シクロアルキルエステル;アリルアクリレート、アリルメタクリレート等のアクリル酸又はメタクリル酸のC2~8アルケニルエステル;アリルオキシエチルアクリレート、アリルオキシエチルメタクリレート等のアクリル酸又はメタクリル酸のC3~20アルケニルオキシアルキルエステル;等。
 グリシジル基含有不飽和モノマー(ii):グリシジルアクリレート、グリシジルメタクリレート等。
 水酸基含有不飽和モノマー(iii):ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート等のアクリル酸又はメタクリル酸のC2~8ヒドロキシアルキルエステル;ヒドロキシブチルビニルエーテル等のヒドロキシアルキルビニルエーテル;アリルアルコール、メタアリルアルコール;等。
 アルコキシシリル基含有不飽和モノマー(iv):γ-アクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、β-アクリロイルオキシエチルトリメトキシシラン、γ-メタクリロイルオキシエチルトリメトキシシラン、γ-アクリロイルオキシプロピルトリエトキシシラン、γ-メタクリロイルオキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン等。
 不飽和カルボン酸(v):アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸等。
 イソシアネート基含有不飽和モノマー(vi):イソシアナトエチルアクリレート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等。
 重合性不飽和結合を2個以上有する不飽和モノマー(vii):エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート等。
 ビニル芳香族化合物(viii):スチレン、α-メチルスチレン、ビニルトルエン、p-クロルスチレンビニルピリジン等。
 (i)~(viii)以外のその他の重合性不飽和モノマー(iv):アクリロニトリル、メタクリロニトリル、メチルイソプロペニルケトン、酢酸ビニル、ベオバモノマー(シェル化学社製、商品名)、ビニルプロピオネート、ビニルピバレート、プロピオン酸ビニル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、ブチルビニルエーテル、オクチルビニルエーテル、シクロヘキシルビニルエーテル、フェニルビニルエーテル、ベンジルビニルエーテル、エチレン、プロピレン、ブタジエン、N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノエチルメタクリレート、アクリルアミド、ビニルピリジン等。
 分散安定剤(E1a)を調製するための重合反応において、F-アクリレート及び/又はフルオロオレフィンとその他の重合性不飽和モノマーとを共重合してなる系での両者(F-アクリレート及び/又はフルオロオレフィン、並びに、その他の重合性不飽和モノマーの2成分)の比率は任意に選択することができる。耐汚染性の観点から、該両成分の固形分総量を基準にして、F-アクリレート及び/又はフルオロオレフィンが、固形分として、100~1質量%、特に30~5質量%の範囲内であることが好ましく、その他の重合性不飽和モノマーが、固形分として、0~99質量%、特に70~95質量%の範囲内であることが好ましい。
 F-アクリレート及びフルオロオレフィンからなる群から選ばれた1種もしくは2種以上の重合反応、又はこれらとその他の重合性不飽和モノマーとの共重合反応はラジカル重合開始剤の存在下で行うことが好ましい。ラジカル重合開始剤としては、例えば2,2-アゾイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキサイド、ラウリルパーオキサイド、tert-ブチルパーオクトエートなどの過酸化物があげられる。これらの開始剤の使用量はF-アクリレート及び/又はフルオロオレフィンと必要微応じて使用されるその他の重合性不飽和モノマーとの固形分総量に対して、固形分として、0.2~10質量%、特に、0.5~5質量%の範囲内であることが好ましい。
 分散安定剤(E1a)を調製するための重合反応において、その他の重合性不飽和モノマーとして、(ii)グリシジル基含有不飽和モノマー、(iii)水酸基含有不飽和モノマー、(iv)アルコキシシリル基含有不飽和モノマー、(v)不飽和カルボン酸、(vi)イソシアネート基含有不飽和モノマー等を使用することにより、グリシジル基、水酸基、アルコキシシリル基、カルボキシル基、イソシアネート基等の官能基を有する分散安定剤を得ることができる。特に、水酸基を有する分散安定剤は、水酸基を有せしめた重合体粒子(E1c)と共に前記架橋剤成分(B)及び、オルガノシリケート及び/又はその縮合物成分(C)と反応して三次元に架橋した硬化塗膜を形成することができる。
 分散安定剤(E1a)としては、1分子中に平均して0.1個以上の重合性不飽和結合を有するものを好適に使用することができる。分散安定剤(E1a)に重合性不飽和結合を有せしめておくと、重合体粒子(E1c)との間に共有結合を形成させることができるので、分散液の貯蔵安定性、機械的安定性、耐汚染性等が向上するので好ましい。
 分散安定剤(E1a)に重合性不飽和結合を導入する方法としては、該分散安定剤中に存在せしめた官能基に該官能基と反応する他の官能基を含有する重合性不飽和モノマーを反応させる方法を挙げることができる。例えば、カルボキシル基を含有する分散安定剤(E1a)にグリシジル基含有重合性不飽和モノマー(例えばグリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル等)を反応させることによって、該分散安定剤に重合性不飽和結合を導入することができる。また、逆に、グリシジル基を含有する分散安定剤(E1a)にカルボキシル基含有重合性モノマー(例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等)を反応させることによっても、該分散安定剤に重合性不飽和結合を導入することができる。このような官能基の組合せとしては、上記の他に、酸無水物基と水酸基、酸無水物基とメルカプタン基、イソシアネート基と水酸基等を挙げることができる。
 分散安定剤(E1a)として、フッ素原子含有を含有する樹脂(フッ素樹脂、例えばF-アクリレート及び/又はフルオロオレフィンとその他の重合性不飽和モノマーとを共重合して得られる樹脂)、または、該フッ素樹脂に重合性不飽和結合を導入した分散安定剤を好適に用いることができる。このようなフッ素樹脂として、ルミフロンLF800(旭硝子(株))等の市販のフッ素樹脂を挙げることができる。
 分散安定剤(E1a)の分子量は、特に制限されないが、数平均分子量で1000~60000、特に2000~30000の範囲内であるのが好ましい。
 有機溶剤(E1b)としては、上記分散安定剤(E1a)及び重合体粒子(E1c)を調製するために使用するフルオロアルキル基含有(メタ)アクリレート及び/又はフルオロオレフィン、並びにその他の重合性不飽和モノマー等の重合性不飽和モノマーを溶解するが、該重合性不飽和モノマーから得られる重合体粒子(E1c)を実質的に溶解しないものを使用することができる。
 したがって、使用する分散安定剤(E1a)及び重合体粒子(E1c)の組成や分子量等の特性値等によって任意に選択されるが、例えば、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;ベンゼン、キシレン、トルエン、シクロヘキサン等の芳香族炭化水素;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アシル、酢酸エチレングリコールモノメチルエーテル、2-エチルヘキシルアセテート、酢酸ジエチレングリコールモノメチルエーテル等のエステル化合物;セロソルブ、ブチルセロソルブ、イソプロピルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル化合物;エチルアルコール、イソプロピルアルコール、n-ブチルアルコール、i-ブチルアルコール、オクチルアルコール、ヘキシルアルコール等のアルコール;メチルイソブチルケトン、ジイソブチルケトン、メチルエチルケトン、イソホロン、アセトフェノン、エチルイソアミルケトン、メチルイソアミルケトン、エチルブチルケトン等のケトン化合物等の有機溶剤を挙げることができる。一般には、脂肪族炭化水素有機溶剤を主体にし、これに適宜芳香族炭化水素、アルコール、エーテル化合物、エステル化合物又はケトン化合物等の有機溶剤を組合せたものを使用することが好ましい。このような好ましい有機溶剤として、原油を分留して得られるミネラルスピリット(例えば、JIS K 2201 4号に規定するもの。)が挙げられる。
 非水分散型樹脂(E1)は、例えば、フッ素原子含有分散安定剤(E1a)と有機溶剤(E1b)との混合液中で、重合性不飽和モノマーを共重合させて該混合液に不溶の重合体粒子(E1c)を形成させることにより調製することができる。
 重合体粒子(E1c)を得るための重合性不飽和モノマーはラジカル重合性の不飽和モノマーであれば特に制限されない。具体的には上記フッ素原子含有分散安定剤(E1a)で「その他の重合性不飽和モノマー」として例示した、アクリル酸又はメタクリル酸のエステル化合物(i)、グリシジル基含有不飽和モノマー(ii)、水酸基含有不飽和モノマー(iii)、アルコキシシリル基含有不飽和モノマー(iv)、不飽和カルボン酸(v)、イソシアネート基含有不飽和モノマー(vi)、重合性不飽和結合を2個以上有する不飽和モノマー(vii)、ビニル芳香族化合物(viii)、(i)~(viii)以外のその他の重合性不飽和モノマー(iv)等をあげることができる。さらに、重合体粒子(E1c)を調製するための重合性不飽和モノマーとして、前記F-アクリレートを使用することもできる。
 重合体粒子(E1c)を得るための上記重合性不飽和モノマーの重合反応はラジカル重合開始剤の存在下で行うことが好ましい。ラジカル重合性開始剤としては、例えば、2,2-アゾイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキサイド、ラウリルパーオキサイド、tert-ブチルパーオクトエート等の過酸化物があげられる。これらの開始剤の使用量は重合性不飽和モノマーの総量を基準にして、0.2~10質量%、特に、0.5~5質量%の範囲内であることが好ましい。
 重合体粒子(E1c)は、重合性不飽和モノマーとして、前記したグリシジル基含有不飽和モノマー(ii)、水酸基含有不飽和モノマー(iii)、アルコキシシリル基含有不飽和モノマー(iv)、不飽和カルボン酸(v)、イソシアネート基含有不飽和モノマー(vi)等を使用することにより、グリシジル基、水酸基、アルコキシシリル基、カルボキシル基、イソシアネート基等の官能基を有する重合体粒子(E1c)を得ることができる。
 特に、水酸基を有する重合体粒子は、水酸基を有せしめた分散安定剤(E1a)と共に前記架橋剤成分(B)及び、オルガノシリケート及び/又はその縮合物成分(C)と反応して三次元に架橋した硬化塗膜を形成することができる。
 重合体粒子(E1c)の数平均分子量は、耐汚染性の観点から、10000以上、特に、20000以上の範囲内であることが好ましい。
 重合体粒子(E1c)として、耐汚染性向上の観点から、粒子内架橋した重合体粒子を好適に使用することができる。
 粒子内架橋した重合体粒子とするには、例えば、相互に反応する官能基を有する重合性不飽和モノマーの組合せを重合性不飽和モノマーの構成成分として使用する方法、重合性不飽和結合を2個以上有する不飽和モノマー(vii)を重合性不飽和モノマーの構成成分として使用する方法等をあげることができる。
 上記のうち、重合反応の安定性の観点から、相互に反応する官能基を有する重合性不飽和モノマーの組合せを重合性不飽和モノマーの構成成分として使用する方法を好適に使用することができる。
 具体的には、例えば、カルボキシル基含有重合性不飽和モノマー(例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等)とグリシジル基含有重合性不飽和モノマー(例えばグリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル等)を重合性不飽和モノマーの構成成分として使用し、それぞれの重合性不飽和モノマーが有するカルボキシル基とグリシジル基とを付加反応させることにより、粒子内架橋した重合体粒子を調整することができる。
 このような官能基の組合せとしては、カルボキシル基とグリシジル基の他に、酸無水物基と水酸基、酸無水物基とメルカプタン基、イソシアネート基と水酸基等の組合せを挙げることができる。
 非水分散型樹脂(E1)において、分散安定剤(E1a)と重合体粒子(E1c)との比率は任意に選択できる。非水分散型樹脂(E1)の貯蔵安定性と耐汚染性の観点から、該両成分の固形分総量に基づいて、分散安定剤(E1a)が、3~70質量%、特に5~60質量%、重合体粒子(E1c)が、97~30質量%、特に95~40質量%の範囲内であることが好ましい。
 また、分散安定剤(E1a)と重合体粒子(E1c)との合計濃度は、分散安定剤(E1a)、有機溶剤(E1b)及び重合体粒子(E1c)の総量を基準にして、30~70質量%、特に40~60質量%の範囲内であることが好ましい。
 分散安定剤(E1a)を含有する有機溶剤(E1b)中における、重合体粒子(E1c)を得るための重合性不飽和モノマーの重合反応は、一般に60~160℃程度の温度で約1~15時間で行なうことができる。このようにして得られる非水分散液(E1)は極めて分散安定性に優れている。
 非水分散液(E1)の平均粒子径は、耐汚染性の観点から、20~500nm、特に50~400nm、さらに特に、100~300nmの範囲内であることが好ましい。
 本明細書において、平均粒子径とは、サブミクロン粒度分布測定装置「COULTER N4型」(ベックマン・コールター社製)を用いて、試料をキシレンで希釈し20℃の条件下で測定した値である。
 非水分散型樹脂(E2)は、分散安定剤を含む有機溶剤液中でフルオロアルキル基含有(メタ)アクリレートを構成成分とする重合体粒子が分散している非水分散型樹脂である。非水分散型樹脂(E2)の具体例としては、分散安定剤(E2a)と有機溶剤(E2b)との混合液中で、フルオロアルキル基含有(メタ)アクリレートとその他の重合性不飽和モノマーとを共重合させて該混合液に不溶の重合体粒子(E2c)を形成させることにより調整することができる非水分散型樹脂を挙げることができる。非水分散型樹脂(E2)は、分散安定剤(E2a)を含有する有機溶剤(E2b)中で該分散安定剤および有機溶剤に不溶の重合体粒子(E2c)が分散している非水分散型樹脂であって、該重合体粒子(E2c)がフルオロアルキル基含有(メタ)アクリレートとその他の重合性不飽和モノマーとの共重合体からなる非水分散型樹脂であってもよい。
 分散安定剤(E2a)は、重合体粒子(E2c)を有機溶剤(E2b)中で安定に分散させるためのものであり、有機溶剤(E2b)と相互に溶解し、重合体粒子(E2c)とは相溶しないものが好ましい。
 具体的には、例えば、アクリル樹脂、ビニル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、フッ素含有樹脂等を挙げることができる。これらの樹脂には必要に応じて、水酸基、カルボキシル基、エポキシ基、シラノ-ル基、アルコキシシラン基等から選ばれた官能基を1分子あたり1個以上含有させることができる。
 さらに、分散安定剤(E2a)としては、1分子あたり平均0.1個以上の重合性不飽和結合を有するものを好適に使用することができる。重合性不飽和結合を導入する方法としては、例えば、カルボキシル基を含有する分散安定剤に、グリシジル基含有重合性不飽和モノマー(例えばグリシジルアクリレ-ト、グリシジルメタクリレ-ト、アリルグリシジルエ-テル等)を反応させる方法、また、逆に、グリシジル基を含有する分散安定剤に、カルボキシル基含有重合性不飽和モノマー(例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等)を反応させる方法等を挙げることができる。このような官能基の組合せとしては、上記の他に、酸無水物基と水酸基、酸無水物基とメルカプタン基、イソシアネ-ト基と水酸基の組合せ等を挙げることができる。
 分散安定剤(E2a)に重合性不飽和結合を導入しておくと、重合体粒子(E2c)との間に共有結合が形成させることができるので、非水分散型樹脂の貯蔵安定性、機械的安定性、耐汚染性等を向上させることができるので好ましい。
 分散安定剤(E2a)の分子量は特に制限されないが、数平均分子量で1000~60000、特に2000~30000の範囲内であるのが好ましい。
 有機溶剤(E2b)は上記分散安定剤(E2a)及び重合体粒子(E2c)を調製するためのフルオロアルキル基含有(メタ)アクリレートやその他の重合性不飽和モノマー等の重合性不飽和モノマーを溶解するが、該重合性不飽和モノマーから得られる重合体粒子(E2c)を実質的に溶解しないものを使用することができる。
 したがって、使用する分散安定剤(E2a)及び重合体粒子(E2c)の組成や分子量等の特性値によって任意に選択され、有機溶剤(E2b)としては、例えば、前記有機溶剤(E1b)として、例示したものを同様に使用することができる。一般には、脂肪族系炭化水素有機溶剤を主体にし、これに適宜芳香族系炭化水素、アルコール、エーテル化合物、エステル化合物又はケトン化合物等の有機溶剤を組合せたものを使用することが好ましい。このような好ましい有機溶剤として、原油を分留して得られるミネラルスピリット(例えば、JIS K 2201 4号に規定するもの。)が挙げられる。
 非水分散型樹脂(E2)は、例えば、分散安定剤(E2a)と有機溶剤(E2b)との混合液中で、フルオロアルキル基含有(メタ)アクリレートとその他の重合性不飽和モノマーとを共重合させて該混合液に不溶の重合体粒子(E2c)を形成させることにより調整することができる。
 重合体粒子(E2c)を得るためのフルオロアルキル基含有(メタ)アクリレート(F-アクリレート)としては、例えば、
一般式 CH =C(R)-COO-(CH)n -Rf 
[Rは水素原子またはメチル基、nは1~10の整数、Rfは炭素数1~21個の直鎖状または分岐状のフルオロアルキル基である])
で示される化合物をあげることができる。ここで「フルオロアルキル基」は炭素原子数1~21個の直鎖状または分岐状の炭化水素基の水素の一部もしくは全部がフッ素原子に置換した基である。具体的には、前記分散安定剤(E1a)で例示したものを同様に使用することができる。
 その他の重合性不飽和モノマーとしては、上記F-アクリレート以外のラジカル重合性の不飽和モノマーであれば特に制限なく使用することができる。
 具体的には前記分散安定剤(E1a)で「その他の重合性不飽和モノマー」として例示した、アクリル酸又はメタクリル酸のエステル化合物(i)、グリシジル基含有不飽和モノマー(ii)、水酸基含有不飽和モノマー(iii)、アルコキシシリル基含有不飽和モノマー(iv)、不飽和カルボン酸(v)、イソシアネート基含有不飽和モノマー(vi)、重合性不飽和結合を2個以上有する不飽和モノマー(vii)、ビニル芳香族化合物(viii)、(i)~(viii)以外のその他の重合性不飽和モノマー(iv)等を同様に使用することができる。
 重合体粒子(E2c)において、F-アクリレートとその他の重合性不飽和モノマーとの比率は任意に選択することができるが、耐汚染性の観点から、該両成分の総量を基準にして、F-アクリレートが90~1質量%、特に30~5質量%、その他の重合性不飽和モノマーが、10~99質量%、特に70~95質量%の範囲内であることが好ましい。
 F-アクリレートとその他の重合性不飽和モノマーとの共重合反応はラジカル重合開始剤の存在下で行うことが好ましく、例えば2,2-アゾイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系開始剤、ベンゾイルパーオキサイド、ラウリルパーオキサイド、tert-ブチルパーオクトエート等の過酸化物系開始剤があげられ、これらの開始剤の使用量はF-アクリレートとその他の重合性不飽和モノマーとの総量に対して、0.2~10重量%、特に、0.5~5重量%の範囲内であることが好ましい。
 重合体粒子(E2c)は、重合性不飽和モノマーとして、前記したグリシジル基含有不飽和モノマー(ii)、水酸基含有不飽和モノマー(iii)、アルコキシシリル基含有不飽和モノマー(iv)、不飽和カルボン酸(v)、イソシアネート基含有不飽和モノマー(vi)等を使用することにより、グリシジル基、水酸基、アルコキシシリル基、カルボキシル基、イソシアネート基等の官能基を有する重合体粒子を得ることができる。
 特に、水酸基を有する重合体粒子は、水酸基を有せしめた分散安定剤(E2a)と共に前記架橋剤成分(B)及び、オルガノシリケート及び/又はその縮合物成分(C)と反応して三次元に架橋した硬化塗膜を形成することができる。
 重合体粒子(E2c)の数平均分子量は、耐汚染性の観点から、10000以上、特に、20000以上の範囲内であることが好ましい。
 重合体粒子(E2c)として、耐汚染性向上の観点から、粒子内架橋した重合体粒子を好適に使用することができる。
 粒子内架橋した重合体粒子とするには、例えば、相互に反応する官能基を有する重合性不飽和モノマーの組合せを重合性不飽和モノマーの構成成分として使用する方法、前記重合性不飽和結合を2個以上有する不飽和モノマー(vii)を重合性不飽和モノマーの構成成分として使用する方法等をあげることができる。
 上記のうち、重合反応の安定性の観点から、相互に反応する官能基を有する重合性不飽和モノマーの組合せを重合性不飽和モノマーの構成成分として使用する方法を好適に使用することができる。
 具体的には、例えば、カルボキシル基含有重合性不飽和モノマー(例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等)とグリシジル基含有重合性不飽和モノマー(例えばグリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル等)を重合性不飽和モノマーの構成成分として使用し、それぞれの重合性不飽和モノマーが有するカルボキシル基とグリシジル基とを付加反応させることにより、粒子内架橋した重合体粒子を調整することができる。
 このような官能基の組合せとしては、カルボキシル基とグリシジル基の他に、酸無水物基と水酸基、酸無水物基とメルカプタン基、イソシアネート基と水酸基等の組合せを挙げることができる。
 非水分散型樹脂(E2)において、分散安定剤(E2a)と重合体粒子(E2c)との比率は任意に選択できるが、非水分散液(E2)の貯蔵安定性と耐汚染性の観点から、該両成分の総量に基づいて、分散安定剤(E2a)が、3~70質量%、特に5~60質量%、重合体粒子(E2c)が、97~30質量%、特に95~40質量%の範囲内であることが好ましい。
 また、分散安定剤(E2a)と重合体粒子(E2c)との合計濃度は、分散安定剤(E2a)、有機溶剤(E2b)及び重合体粒子(E2c)の総量を基準にして、30~70質量%、特に40~60質量%の範囲内であることが好ましい。
 分散安定剤(E2a)を含有する有機溶剤(E2b)中における、重合体粒子(E2c)を得るためのF-アクリレートとその他の重合性不飽和モノマーとの重合反応は、一般に60~160℃程度の温度で約1~20時間で行なうことができる。このようにして得られる非水分散液(E2)は極めて分散安定性に優れている。
 非水分散型樹脂(E2)の平均粒子径は、耐汚染性の観点から、20~500nm、特に50~400nm、さらに特に、100~300nmの範囲内であることが好ましい。
 フッ素原子含有非水分散液成分として、フッ素原子含有分散安定剤を含む有機溶剤液中で重合体粒子が分散している非水分散液(E1)に代えてもしくはとともに、分散安定剤を含む有機溶剤液中でフルオロアルキル基含有(メタ)アクリレートを構成成分とする重合体粒子が分散している非水分散液(E2)を使用することができる。
 本発明の塗料組成物において、(E)成分を使用する場合、(E)成分の量は、(A)成分及び(B)成分の固形分総量を基準にして、固形分として、好ましくは5~30質量%、さらに好ましくは10~30質量%、さらに特に好ましくは15~25質量%の範囲内である。
 (E)成分量が上記範囲内にあることによって、(E)成分の効果が発揮され、得られる塗膜の初期耐汚染性及び耐汚染性の保持性、並びに、得られる塗膜の機械的強度及び耐久性の面からも好適である。
 本発明の塗料組成物において、前記した(A)、(B)、(C)、(D)成分及び必要に応じて使用される(E)成分の他に、本発明の効果を阻害しない範囲内において、酸性を示す界面活性剤やホウ酸系化合物などの加水分解促進剤、着色顔料、シリカ微粒子等の体質顔料、有機樹脂粉末、無機質骨材、顔料分散剤、紫外線吸収剤、紫外線安定剤、消泡剤や表面調整剤等の塗料添加剤、溶剤等従来から塗料に使用されている公知の材料も使用することができる。
 上記酸性を示す界面活性剤やホウ酸含有化合物は、上記オルガノシリケート及び/又はその縮合物成分(C)の加水分解を促進させる作用を有するものである。酸性を示す界面活性剤やホウ酸含有化合物等の加水分解促進剤は、併用すると本発明の塗料組成物のポットライフが短くなるが、耐汚染性向上の観点から使用することができる。
 酸性を示す界面活性剤としては、例えば、ポリオキシエチレンリン酸エステル、アルキルリン酸エステル塩などのリン酸エステル塩化合物;例えばラウリルスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアルキル又はアルキルベンゼンスルホン酸塩、イソプロピルナフタレンスルホン酸ナトリウムなどのアルキルナフタレンスルホン酸塩、アルキルジフェニルエーテルスルホン酸塩などスルホン酸塩化合物;例えばアルキル又はアルキルベンゼン硫酸塩、(ポリ)オキシエチレンアルキルフェニルエーテル硫酸塩などの硫酸エステル塩系;例えばアルキルスルホコハク酸塩などのカルボン酸塩系などの界面活性剤が挙げられる。ホウ酸系化合物としては、例えば、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリブチルなどのホウ酸トリアルキル;ホウ酸などが挙げられる。これらの加水分解促進剤の配合量は、前記(A)成分及び(B)成分の総量に対し、30質量%以下、特に、0.5~20質量%、さらに特に、1~10質量%であることが好ましい。
 上記体質顔料としては、シリカ微粒子、タルク、マイカ粉、バリタ等を挙げることができる。体質顔料の配合量は、前記(A)成分及び(B)成分の総量に対し、0.1~20質量%、特に0.5~15質量%、さらに特に1~10質量%であることが好ましい。
 また、本発明の塗料組成物には、得られる塗膜を、艶消し、半艶等の仕上り外観とするための光沢調整の目的で艶消し剤(F)を使用することができる。艶消し剤(F)は得られる塗膜の光沢を低下させるために使用されるものであり、有機系艶消し剤及び無機系艶消し剤のいずれであってもよい。また、これらは、単独で又は2種以上を組合せて使用することができる。
 本発明の耐汚染塗料組成物は、艶消し、半艶等の光沢を低下させた仕上り外観の塗膜において、特に、耐汚染性、耐食性の保持性に優れた塗膜を形成させることができる。
 有機系艶消し剤としては、例えば、塗膜形成時の焼付けによって完全には溶融しない有機樹脂微粒子を挙げることができる。この有機樹脂微粒子は、通常、平均粒子径が3~80μm、好ましくは5~60μmの範囲内にあることが塗膜外観、塗装作業性等の観点から好適である。有機系艶消し剤としては、例えば、ポリフッ化ビニリデンやポリテトラフルオロエチレンなどのフッ素樹脂、ポリアミド、アクリル樹脂、ポリウレタン、フェノール樹脂、シリコン樹脂、ポリプロピレン、及びナイロン11やナイロン12等のポリアミド等を挙げることができる。
 無機系艶消し剤としては、シリカ、マイカ、アルミナ、タルク、クレー、炭酸カルシウム、硫酸バリウム等を挙げることができる。
 上記艶消し剤(F)は、単独で又は2種以上を組合せて使用することができる。艶消し剤(F)の配合量は、前記(A)成分及び(B)成分の総量に対し、0.1~30質量%、特に0.5~20質量%であることが好ましい。
 本発明の耐汚染塗料組成物は、上記(A)~(D)成分、及び必要に応じて、上記その他の成分を均一に混合することによって製造することができる。好ましくは、顔料分を予め、樹脂成分(A)の一部及び/又は顔料分散剤と混合、分散して顔料ペーストを作成し、該顔料ペーストを残りの成分と混合することによって製造することができる。
 本発明の塗料組成物は、一液型塗料とすることもできるが、(C)成分であるオルガノシリケート及び/又はその縮合物を他の成分と分離しておき、使用直前に混合する二液型塗料とすることもできる。
 また、架橋剤成分(B)として、ブロックポリイソシアネート化合物でないポリイソシアンート化合物を使用する場合も二液型塗料とすることもできる。
 本発明の塗料組成物は、貯蔵性の観点等から、二液型塗料とすることが好適である。
 本発明の耐汚染塗料組成物を塗装する方法としては、塗料組成物を必要に応じて有機溶剤等を添加することにより所望の粘度に調整した後、エアスプレー、静電エアスプレー、ロールコーター、フローコーター、ディッピング形式による塗装機、刷毛、バーコーター、アプリケーターなどを用いて乾燥後の塗膜の膜厚が通常0.5~300μm、好ましくは5~50μmになるように塗布し、通常80~300℃の温度で5秒間~1時間程度加熱して硬化させる方法等が挙げられる。なお、塗装方法としては、上記の方法のうち、スプレー塗装やロールコーター塗装が好適である。
 塗膜形成方法
 本発明の塗膜形成方法は、金属板上の片面又は両面上に、クロム含有防錆成分を含有しないことを特徴とするクロムフリープライマー塗料によるプライマー塗膜を形成し、プライマー塗膜の少なくとも一方の片面上に、上記本発明の耐汚染塗料組成物による上塗塗膜を形成してなることを特徴とする塗膜形成方法である。
 換言すると、本発明の塗膜形成方法は、金属板上の片面又は両面上に、クロムフリープライマー塗料によるプライマー塗料によりプライマー塗膜を形成する工程、及び
前記形成されたプライマー塗膜の少なくとも一方の上に、上記本発明の耐汚染塗料組成物により上塗塗膜を形成する工程
を含むことを特徴とする塗膜形成方法である。
 また、上記塗膜形成方法の各工程を含む塗装金属板の製造方法、及び上記塗膜形成方法もしくは塗装金属板の製造方法により得られる塗装金属板も本発明により提供される。
 本発明の塗膜形成方法における被塗物である金属板としては、冷延鋼板、溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼板、合金亜鉛メッキ鋼板(鉄-亜鉛、アルミニウ-亜鉛、ニッケル-亜鉛などの合金亜鉛メッキ鋼板)、アルミニウム板、ステンレス鋼板、銅板、銅メッキ鋼板、錫メッキ鋼板等が挙げられる。
 金属類に塗装する場合に被塗装材である金属表面が油等汚染物質で汚染されていなければそのままプライマーを塗装してもかまわないが、塗膜との間の付着性、耐食性を改善するために公知の金属表面処理を施すのが望ましい。これら公知の表面処理方法としてリン酸塩系表面処理、クロム酸塩系表面処理、ジルコニウム系表面処理などが挙げられる。
 本発明において、金属板上にプライマー塗膜を形成するプライマーとして、環境保護の観点から、クロム含有防錆成分を含有しないことを特徴とするクロムフリープライマー塗料を使用する。上記プライマーは、クロムフリープライマー塗料であれば、着色カラー鋼板塗装分野、産業用機械塗装分野、金属部品塗装分野等で用いられる公知のプライマーを適用することができる。
 クロムフリープライマー塗料は、被塗装材の種類、金属表面処理の種類によって適宜選択されるが、特にエポキシ系、ポリエステル系プライマー塗料及びそれらの変性プライマー塗料が好適であり、加工性が特に要求される場合はポリエステル系プライマー塗料が好適である。プライマー塗膜を形成する具体的な手段として、プライマー塗料を塗装し、その後必要に応じて加熱して硬化させる手段が例示される。この場合、プライマー塗料は、プライマー塗膜厚が、1~30μm、好ましくは2~20μmとなるようにロール塗装、スプレー塗装等公知の塗装方法により塗装され、通常、雰囲気温度80~300℃の温度で5秒間~1時間程度加熱して硬化させる。、プレコート塗装する場合には、好ましくは、素材到達最高温度が140~250℃となる条件で15秒間~120秒間加熱して硬化させることが好ましい。
 プライマー塗膜の層構造は特に限定されるものではなく、例えば、一層であってもよいし、第1のプライマー塗膜の上に第2のプライマー塗膜(中塗塗膜)が形成された二層であってもよい。プライマー塗膜を二層とする場合、第1のプライマー塗膜に防食機能を持たせ、第2のプライマー塗膜(中塗塗膜)に、加工性、耐チッピング性能を持たせるなど、二層のプライマー塗膜に異なる機能を持たせることもできる。
 次いで、本発明の塗膜形成方法においては、上記金属板上の片面もしくは両面上に形成されたプライマー塗膜の少なくとも一方の上に本発明の耐汚染塗料組成物により上塗塗膜が形成される。すなわち、上塗塗膜は、形成されたプライマー塗膜の少なくとも片面上に重ねて形成される。ここで、「プライマー塗膜の少なくとも一方の上」とは、金属板上の片面上にプライマー塗膜が形成された場合は、該片面上に形成されたプライマー塗膜の上を指し、金属板上の両面上にプライマー塗膜が形成された場合は、該両面上に形成されたプライマー塗膜のうち金属板上の片面上に形成されたプライマー塗膜の上、もしくは、該両面上に形成されたプライマー塗膜の上を指す。
 上塗塗膜を形成する具体的な手段として、本発明の耐汚染塗料組成物を塗装し、その後必要に応じて加熱して硬化させる手段が例示される。塗装方法としては、カーテン塗装、ロールコーター塗装、浸漬塗装、スプレー塗装等を挙げることができる。膜厚は、通常、乾燥後の塗膜厚が5~50μm、好ましくは8~25μmの範囲内となるように塗装される。
 本発明の塗料組成物をプレコート塗装する場合、その塗装方法に制限はないがプレコート鋼板塗装の経済性からカーテン塗装、ロールコーター塗装が好ましい。ロールコーター塗装を適用する場合には、実用性の観点から、2本ロールによるボトムフィード方式(いわゆるナチュラルリバース塗装、ナチュラル塗装)が好ましい。あるいは、塗面の均一性を最良のものにするため3本ロールによるトップフィードもしくはボトムフィード方式を行うこともできる。
 本発明の塗料組成物による上塗塗膜の硬化条件は、通常、素材到達最高温度120~260℃で15秒間~30分間程度である。コイルコーティングなどによって塗装するプレコート塗装分野においては、通常、素材到達最高温度160~260℃で焼付時間15~90秒間の範囲で行なわれる。
 以下、製造例、実施例によって本発明をより具体的に説明する。本発明は下記の実施例に限定されるものではない。なお、以下、「部」および「%」はいずれも質量基準によるものである。
 水酸基含有ポリエステル樹脂(A1)の製造
製造例1
 温度計、攪拌機、加熱装置及び精留塔を備えたフラスコ内に下記原材料を仕込んだ:
1,2-シクロヘキサンジカルボン酸無水物   150.9部(0.98モル)
ネオペンチルグリコール             38.9部(0.37モル)
ブチルエチルプロパンジオール           9.6部(0.06モル)
トリメチロールプロパン             77.8部(0.57モル)
ヤシ油脂肪酸                  44.1部(0.21モル)
ジブチル錫オキサイド(触媒)          0.03部。
 次いで内容物を攪拌しながら160℃まで昇温し、160℃から230℃まで3時間かけて徐々に昇温し、230℃で30分間反応を続けた後、精留塔を水分離器と置換し、副生する縮合水の除去を促進するため、全仕込み量に対して5%のキシレンを加えて230℃でさらに反応を進め、酸価が4mgKOH/gとなったところで加熱を止め、スワゾール1500(炭化水素系溶剤)を加えて希釈し、固形分65%の水酸基含有ポリエステル樹脂(A1-1)溶液を得た。
 得られた樹脂は、数平均分子量15000、水酸基価75mgKOH/g、油長14.7%、ヨウ素価5>を有していた。
 製造例2~3
 下記表1に示す配合にて、製造例1と同様にして、固形分65%の各水酸基含有ポリエステル樹脂(A1-2)~(A1-3)の溶液を得た。表1の各成分の組成比はモル比である。
 各樹脂の数平均分子量、水酸基価、油長及びヨウ素価を併せて表1に示す。
Figure JPOXMLDOC01-appb-T000001
シルセスキオキサン化合物成分(D)の製造
製造例4
 還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、3-アミノプロピルトリエトキシシラン137部、炭酸プロピレン63部を仕込み、窒素気流下、100℃で24時間反応させ、反応生成物(P1)200部を得た。1H-NMRにより、炭酸プロピレンの残存率から求めた反応率は98%であった。
 次に、還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、2-プロパノール500部、テトラブチルアンモニウムフルオリド三水和物1.5部及び脱イオン水20部を入れ、十分に溶解させた。反応生成物(P1)(水酸基含有トリエトキシシラン化合物98質量%含有)110部及びn-ヘキシルトリメトキシシラン42部を2-プロパノール100部に溶解し、該溶解物をフラスコに投入した後、20℃で24時間反応させた。減圧蒸留にて濃度50%となるまで濃縮し、シルセスキオキサン化合物(D1)(反応性基として水酸基含有)の50%溶液を200部得た。
 シルセスキオキサン化合物(D1)について29Si-NMR分析を行った結果、Si原子に結合した3つの酸素原子が全て他のSi原子と結合したT3構造に由来する-70ppm付近のピークのみが確認され、Si-OH基の存在を示すT0~T2のピークは確認されなかった。
 シルセスキオキサン化合物(D1)のGPCによる数平均分子量は2000であり、シルセスキオキサン化合物(D1)の水酸基価は190mgKOH/gであった。
 反応生成物(P1)についての前記H-NMR、及びシルセスキオキサン化合物(D1)についての前記29Si-NMR、H-NMR、分子量分布測定及び水酸基価の結果から、シルセスキオキサン化合物(D1)は、ケイ素原子に直接に結合した有機基の63モル%が下記式(1)で表される有機基であり、残りの37モル%が下記式(2)で表わされる有機基(n-ヘキシル基)である数平均分子量2000のシルセスキオキサン化合物であることが確認された。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 また、シルセスキオキサン化合物(D1)は、1分子あたり平均7個の反応性基(水酸基)を含有するシルセスキオキサン化合物である。
 製造例5
 還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、3-アミノプロピルトリエトキシシラン144部、γ-ブチロラクトン56部を仕込み、窒素気流下、100℃で24時間反応させ、反応生成物(P2)200部を得た。1H-NMRにより、γ-ブチロラクトンの残存率から求めた反応率は100%であった。
 次に、還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、2-プロパノール500部、テトラブチルアンモニウムフルオリド三水和物1.5部及び脱イオン水17部を入れ、十分に溶解させた。反応生成物(P2)(水酸基含有トリエトキシシラン化合物100質量%含有)157部を2-プロパノール100部に溶解し、該溶解物をフラスコに投入した後、20℃で24時間反応させた。減圧蒸留にて濃度50%となるまで濃縮し、シルセスキオキサン化合物(D2)(反応性基として水酸基含有)の不揮発分50%溶液200部を得た。
 シルセスキオキサン化合物(D2)について、29Si-NMR分析を行った結果、Si原子に結合した3つの酸素原子が全て他のSi原子と結合したT3構造に由来する-70ppm付近のピークのみが確認され、Si-OH基の存在を示すT0~T2のピークは確認されなかった。
 シルセスキオキサン化合物(D2)のGPCによる数平均分子量は2300であり、シルセスキオキサン化合物(D2)の水酸基価は286mgKOH/gであった。
 反応生成物(P2)についての前記H-NMR、及びシルセスキオキサン化合物(D2)についての前記29Si-NMR、GPC測定及び水酸基価の結果から、シルセスキオキサン化合物(D2)は、ケイ素原子に直接に結合した有機基のすべてが下記式(3)で表わされる有機基である数平均分子量2300のシルセスキオキサン化合物であることが確認された。
Figure JPOXMLDOC01-appb-C000004
 また、シルセスキオキサン化合物(D2)は、1分子あたり平均12個の反応性基(水酸基)を含有するシルセスキオキサン化合物である。
 製造例6
 還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、2-プロパノール500部、テトラブチルアンモニウムフルオリド三水和物1.5部及び脱イオン水20部を入れ、十分に溶解させた。さらに、3-グリシドキシプロピルトリメトキシシラン95部及びn-ヘキシルトリメトキシシラン50部をフラスコに投入した後、20℃で24時間反応させた。減圧蒸留にて揮発分を留去した後、プロピレングリコールモノメチルエーテル100部で希釈しシルセスキオキサン化合物(D3)(反応性基としてエポキシ基含有)の不揮発分50%溶液を得た。シルセスキオキサン化合物(D3)のエポキシ価は4.0mmol/gであった。
 シルセスキオキサン化合物(D3)について29Si-NMR分析を行った結果、Si原子に結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークのみが確認され、Si-OH基の存在を示すT0~T2のピークは確認されなかった。
 シルセスキオキサン化合物(D3)についてGPC測定を行った結果、数平均分子量は1400であった。
 シルセスキオキサン化合物(D3)についての前記エポキシ価測定、29Si-NMR、GPCの結果から、シルセスキオキサン化合物(D3)が、Si原子に直接に結合した有機基の63モル%が下記式(4)で表される有機基であり、残りの37モル%が上記式(2)であらわされる有機基を有する数平均分子量1400のシルセスキオキサン化合物であることが確認された。
Figure JPOXMLDOC01-appb-C000005
 また、シルセスキオキサン化合物(D3)は、1分子あたり平均6個の反応性基(エポキシ基)を含有するシルセスキオキサン化合物である。
 製造例7
 還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、(製造例6で得た)シルセスキオキサン化合物(D3)(反応性基としてエポキシ基含有)の不揮発分50%溶液200部、グリコール酸30部及びテトラブチルアンモニウムブロミド2部を仕込み、100℃で24時間反応させた後、プロピレングリコールモノメチルエーテル32部で希釈し、シルセスキオキサン化合物(D4)の不揮発分50%溶液262部を得た。
 シルセスキオキサン化合物(D4)のエポキシ価は0.06mmol/gであり、反応率は98%以上と推定される。また、水酸基価は345mgKOH/gであった。
 シルセスキオキサン化合物(D4)について29Si-NMR分析を行った結果、Si原子に結合した3つの酸素原子が全て他のSi原子と結合したT3構造に由来する-70ppm付近のピークのみが確認され、Si-OH基の存在を示すT0~T2のピークは確認されなかった。
 シルセスキオキサン化合物(D4)についてGPC測定を行った結果、数平均分子量は2500であった。
 製造例6の結果、及び前記エポキシ価及び水酸基価の測定結果より、シルセスキオキサン化合物(D4)は、Si原子に直接に結合した有機基の60モル%以上が下記式(5)で表される有機基であり、残りの有機基が上記式(2)であらわされる有機基を有する数平均分子量2500のシルセスキオキサン化合物であることが確認された。
Figure JPOXMLDOC01-appb-C000006
 また、シルセスキオキサン化合物(D4)は、1分子あたり平均15個の反応性基(水酸基)を含有するシルセスキオキサン化合物である。
 製造例8
 還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、2-プロパノール500部、テトラブチルアンモニウムフルオリド三水和物1.5部及び脱イオン水20部を入れ、十分に溶解させた。さらに、3-グリシドキシプロピルトリメトキシシラン141部をフラスコに投入した後、20℃で24時間反応させた。減圧蒸留にて揮発分を留去した後、プロピレングリコールモノメチルエーテル100部で希釈しシルセスキオキサン化合物(D5)の不揮発分50%溶液を得た。シルセスキオキサン化合物(D5)のエポキシ価は6.0mmol/gであった。
 シルセスキオキサン化合物(D5)について29Si-NMR分析を行った結果、Si原子に結合した3つの酸素原子が全て他のSi原子と結合したT3構造に由来する-70ppm付近のピークのみが確認され、Si-OH基の存在を示すT0~T2のピークは確認されなかった。
 シルセスキオキサン化合物(D5)についてゲルパーミエーションクロマトグラフ(GPC)分析を行った結果、数平均分子量は1400であった。
 シルセスキオキサン化合物(D5)についての前記エポキシ価測定、29Si-NMR及びGPCの結果から、シルセスキオキサン化合物(D5)が、Si原子に直接に結合した有機基のすべてが上記式(4)で表される有機基を有する数平均分子量1400のシルセスキオキサン化合物であることが確認された。
 また、シルセスキオキサン化合物(D5)は、1分子あたり平均8個の反応性基(エポキシ基)を含有するシルセスキオキサン化合物である。
 製造例9
 還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、製造例8で得たシルセスキオキサン化合物(D5)の不揮発分50%溶液200部、ジメチロールプロピオン酸30部及びテトラブチルアンモニウムブロミド2部を仕込み、100℃で24時間反応させた後、プロピレングリコールモノメチルエーテル32部で希釈し、シルセスキオキサン化合物(D6)の不揮発分50%溶液262部を得た。
 シルセスキオキサン化合物(D6)のエポキシ価は2.90mmol/gであり、反応率は98%以上と推定される。また、水酸基価は286mgKOH/gであった。
 シルセスキオキサン化合物(D6)について29Si-NMR分析を行った結果、Si原子に結合した3つの酸素原子が全て他のSi原子と結合したT3構造に由来する-70ppm付近のピークのみが確認され、Si-OH基の存在を示すT0~T2のピークは確認されなかった。
 シルセスキオキサン化合物(D6)についてGPC測定を行った結果、数平均分子量は3000であった。
 製造例8の結果、及び前記エポキシ価及び水酸基価の測定結果より、シルセスキオキサン化合物(D6)は、Si原子に直接に結合した有機基の35モル%以上が下記式(6)で表される有機基であり、残りの有機基が上記式(4)であらわされる有機基を有する数平均分子量3000のシルセスキオキサン化合物であることが確認された。
Figure JPOXMLDOC01-appb-C000007
 また、シルセスキオキサン化合物(D6)は、1分子あたり平均24個の反応性基(水酸基15個、エポキシ基9個)を含有するシルセスキオキサン化合物である。
 製造例10
 還流冷却器、温度計、攪拌機、窒素導入管を取り付けた4つ口フラスコに、プロピレングリコールモノメチルエーテル100部を仕込み、窒素気流下で100℃まで昇温した。メタクリル酸メチル42部、メタクリル酸2-ヒドロキシエチル40部、メタクリル酸ブチル10部、アクリル酸3部及びV-59(アゾ系重合開始剤、商品名、和光純薬工業株式会社製)5部を混合して溶解させた後、該混合物をフラスコに2時間かけて滴下した。さらに100℃で2時間反応させることにより、アクリル樹脂(P3)の不揮発分50%溶液200部を得た。アクリル樹脂(P3)の酸価は23mgKOH/gであった。
 アクリル樹脂(P3)についてGPC測定を行った結果、数平均分子量は5000であった。
 還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、製造例6で合成したシルセスキオキサン化合物(D3)の不揮発分50%溶液200部、上記アクリル樹脂(P3)の不揮発分50%溶液192部及びテトラブチルアンモニウムブロミド2部を仕込み、窒素気流下100℃で12時間反応させた。さらに、グリコール酸30部を仕込み、100℃で24時間反応させた後、プロピレングリコールモノメチルエーテル27部を配合して攪拌して希釈することにより、アクリル樹脂変性シルセスキオキサン化合物(D7)の不揮発分50%溶液を得た。
 アクリル樹脂変性シルセスキオキサン化合物(D7)のエポキシ価は0.03mmol/g、水酸基価は262mgKOH/gであった。反応率は98%以上と推定される。このアクリル樹脂変性シルセスキオキサン化合物(D7)についてGPC測定を行った結果、数平均分子量は7000であった。
 また、アクリル樹脂変性シルセスキオキサン化合物(D7)は、1分子あたり平均33個の反応性基(水酸基)を含有するシルセスキオキサン化合物である。
 製造例11
 還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、2-プロパノール500部、テトラブチルアンモニウムフルオリド三水和物1.5部及び脱イオン水17部を入れ、十分に溶解させた。製造例5で合成した反応生成物(P2)(水酸基含有トリエトキシシラン化合物100質量%含有)33部及びn-プロピルトリメトキシシラン124部を2-プロパノール100部に溶解し、該溶解物をフラスコに投入した後、20℃で24時間反応させた。減圧蒸留にて濃度50%となるまで濃縮し、シルセスキオキサン化合物(D8)の不揮発分50%溶液200部を得た。
 シルセスキオキサン化合物(D8)について29Si-NMR分析を行った結果、Si原子に結合した3つの酸素原子が全て他のSi原子と結合したT3構造に由来する-70ppm付近のピークのみが確認され、Si-OH基の存在を示すT0~T2のピークは確認されなかった。
 また、シルセスキオキサン化合物(D8)についてGPC測定を行った結果、数平均分子量は1300であり、水酸基価は65mgKOH/gであった。
 反応生成物(P2)についての前記H-NMR、及びシルセスキオキサン化合物(D8)についての前記29Si-NMR、GPCの結果から、シルセスキオキサン化合物(D8)は、Si原子に直接に結合した有機基のうち、16モル%が上記式(3)で表される有機基を有し、残りの84%が下記式(7)で表される有機基(n-プロピル基)を有する数平均分子量1300のシルセスキオキサン化合物であることが確認された。
 なお、シルセスキオキサン化合物(D8)は、1分子あたり反応性基(水酸基)を平均1個含有するシルセスキオキサン化合物であり、比較例用のシルセスキオキサン化合物である。
Figure JPOXMLDOC01-appb-C000008
 フッ素原子含有樹脂成分(E)の製造
分散安定剤(E1a)の製造
製造例12
 撹拌装置、温度計、冷却管、酸素ガス導入口を備えた四ツ口フラスコに、ルミフロンLF800(旭硝子社製フッ素樹脂(フルオロエチレン/ビニルエーテル交互共重合体)、水酸基価38mgKOH/g、酸価2mgKOH/g、数平均分子量8100、樹脂質量固形分60%)1834部、グリシジルメタクリレート:15.4部、ターシャリブチルピロカテコール(重合禁止剤)0.55部、ジメチルエタノールアミン(反応触媒)1.1部を仕込んだ後、内容物を攪拌し酸素雰囲気下で120℃に昇温し、反応(ルミフロンLF800のカルボキシル基とグリシジルメタクリレートのグリシジル基との反応)を進めた。固形分酸価が0.4mgKOH/g以下となったところで加熱を止め、反応を終了させ、分散安定剤(E1a)(水酸基価38mgKOH/g、数平均分子量8100、樹脂質量固形分60%)を得た。
 非水分散型樹脂(E1)の製造
製造例13
 撹拌装置、温度計、冷却管、窒素ガス導入口を備えた四ツ口フラスコに、製造例12で得た分散安定剤(E1a)41.7部、ミネラルスピリット56部、ヘプタン46部を仕込み、窒素雰囲気下で100℃に昇温し、分散安定剤(E1a)125部、メチルメタクリレート40部、メチルアクリレート29部、2-ヒドロキシエチルアクリレート25部、グリシジルメタクリレート5部、メタクリル酸1部及び2,2’-アゾビスイソブチロニトリル1部からなる混合物を3時間かけて滴下した。次いで100℃で窒素ガスを通気しながら30分間熟成させた後、更に、ミネラルスピリット30部及び2,2’-アゾビスイソブチロニトリル0.5部の混合物を1時間かけて滴下した。その後、更に1時間熟成させることにより、非水分散液(E1)(質量固形分濃度50%)を得た。得られた非水分散液(E1)は、平均粒子径が180nmであり、粒子成分のガラス転移温度が18℃、水酸基価が120mgKOH/gであった。
 耐汚染塗料組成物の製造及び性能試験
実施例1~20及び比較例1~5
 後記表2及び表3に示す組成にて塗料化を行い、各耐汚染塗料組成物No.1~25を得た。耐汚染塗料組成物No.21~25は比較例用の塗料組成物である。
 化成処理が施された厚さ0.35mmの溶融55%アルミ-亜鉛めっき鋼板(ガルバリウム鋼板)の表面および裏面のそれぞれ上に、KPカラー8620プライマー(関西ペイント(株)製、プレコート鋼板用ポリエステル系プライマー)を乾燥膜厚が5μmとなるように塗装し、素材到達最高温度が220℃となるように加熱して40秒間焼付け、プライマー塗装鋼板を得た。このプライマー塗装鋼板の表面上に上記のようにして得た各耐汚染塗料組成物をバーコーターにて乾燥膜厚が約15μmとなるように塗装し、素材到達最高温度が230℃となるように加熱して50秒間焼付けて各塗装鋼板を得た。得られた各塗装鋼板について下記性能試験を行った。
 試験結果を併せて表2及び表3に示す。なお表2及び表3における各成分の量は固形分質量である。なお、耐汚染塗料組成物の塗料化に際しては、白色顔料である二酸化チタンの分散を行った。また、シクロヘキサノン/スワゾール1500(丸善石油(株)製、芳香族石油系高沸点溶剤)=60/40(質量比)の混合溶剤を塗料組成物の粘度調整等のために使用した。塗装に際しては、塗料組成物粘度をフォードカップ#4で約100秒(25℃)に調整した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 なお、表2及び表3の(注1)~(注12)は以下のとおりである。
 (注1)水酸基含有ポリエステル樹脂:アラキード7018、商品名、荒川化学工業(株)製、数平均分子量18000、水酸基価6~12mgKOH/g、酸価5mgKOH/g>、ガラス転移温度50℃(DSCによる測定)、酸成分がテレフタル酸、イソフタル酸及びセバチン酸の3成分である水酸基含有オイルフリーポリエステル樹脂。
 (注2)ユーバン20SE-60:三井化学(株)製、ブチルエーテル化メラミン樹脂、重量平均分子量約4000。
 (注3)スーパーベッカミンJ820-60:商品名「スーパーベッカミンJ-820-60」、DIC(株)製、n-ブチルエーテル化メラミン樹脂溶液。
 (注4)サイメル303:日本サイテックインダストリイズ(株)製、低分子量メチル化メラミン樹脂。ヘキサキス(メトキシメチル)メラミンの含有量が60重量%以上。
 (注5)スミジュールBL3175:住化バイエルウレタン(株)製、トリメチロールプロパンアダクト型ヘキサメチレンジイソシアネートのメチルエチルケトンオキシムブロック化合物。
 (注6)MS56S:三菱化学(株)製、商品名「MKCシリケートMS56S」、テトラメトキシシランの縮合物であるメチルエステル化シリケート。
 (注7)MS58B30:三菱化学(株)製、商品名「MKCシリケートMS58B30」、テトラアルコキシシランの縮合物であるメチル/ブチル混合エステル化シリケート、メチル/ブチル数の比率は70/30。
 (注8)X-41-1805:信越化学工業(株)製、商品名、メルカプトアルキル基含有トリアルコキシシランの縮合物、メルカプトアルキル基の炭素数は18以下、アルコキシ基の炭素数は6以下である。
 (注9)ルミフロンLF800:旭硝子(株)製、商品名、フッ素樹脂(フルオロエチレン/ビニルエーテル交互共重合体)、水酸基価38mgKOH/g、酸価2mgKOH/g、数平均分子量8100、樹脂質量固形分60%。
 (注10)サイロイド161W:GRACE GMBH社製、商品名、有機処理されたシリカ微粉末、吸油量170ml/100g。
 (注11)Nacure5225:米国キング・インダストリーズ製、ドデシルベンゼンスルホン酸の第2級アミン中和物のイソプロパノール溶液。ドデシルベンゼンスルホン酸/アミンの中和度は約1.1(モル比)。有効成分約33重量%で、うち、ドデシルベンゼンスルホン酸/アミン(質量比)は約8/25。表2中の数値は、ドデシルベンゼンスルホン酸の固形分質量部である。
 (注12)フォーメートTK-1:武田薬品工業(株)製の有機錫溶液である硬化触媒、ブロック化ポリイソシアネート化合物の解離触媒。 
 表2及び表3中における性能試験は以下の方法及び評価基準に従って行った。
 60°光沢:JIS K-5400 7.6(1990)に規定の60度鏡面光沢度に従い、60度鏡面反射率を測定した。
 屋外曝露試験:屋外曝露試験試験片(100×300mm)を、軒先をモデル化した設置台に、北側に塗膜を面するように取り付け、尼崎市神崎町の関西ペイント(株)屋上にて曝露試験を行い、耐汚染性及び耐雨筋汚染性(雨筋状の汚れ跡)を下記基準にて評価した。耐汚染性は曝露前後の色差(ΔE)をJIS Z8370に基づいて、スガ試験機(株)製の多光源分光測色計MSC-5Nを用いて測定した。耐雨筋汚染性は目視にて判定した。
 耐汚染性:屋外曝露試験前後でのΔEにより以下の基準により評価した:
A:ΔEが3未満、
B:ΔEが3以上かつ5未満、
C:ΔEが5以上。
 耐雨筋汚染性:屋外暴露試験後の雨筋跡を以下の基準により評価した:
S:雨筋跡が見られない、
A:雨筋跡がわずかに認められるが、水を染み込ませたガーゼで容易にふき取ることができる、
B:雨筋跡がかなり認められ、水を染み込ませたガーゼで完全にふき取ることができない、
C:雨筋跡が濃く残り、水を染み込ませたガーゼでふき取ることがほとんどできない。
 加工性:20℃の室内において、塗面を外側にして試験板を180度折曲げて、折曲げ部分にワレが発生しなくなるT数を表示した。T数とは、折曲げ部分の内側に何もはさまずに180度折曲げを行なった場合を0T、試験板と同じ厚さの板を1枚はさんで折曲げた場合、1T、2枚の場合2T、3枚の場合3T、4枚の場合4T、5枚の場合5T、6枚の場合6Tとした。結果を以下により判定した:
A:4T曲げ加工において、殆どワレが認められない
B:4T曲げ加工では明らかなワレが認められるが、6T曲げ加工において殆どワレが認められない
C:6T曲げ加工において、明らかなワレが認められる。
 耐スクラッチ性:20℃の室温において、コインスクラッチテスター(自動化技研工業社製)を用いて、各試験用塗装板の表面側の塗面に10円銅貨の縁を45度の角度に保ち、3kgの荷重をかけて押し付けながら10円銅貨を10mm/秒の速度で約30mm引っ張って塗面に傷を付けた時の傷の程度を下記基準に従って評価した:
S:傷の部分に金属の素地は見られない、
A:傷の部分に金属の素地がわずかに見られる、
B:傷の部分に金属の素地がかなり見られる、
C:傷の部分に塗膜がほとんど残らず金属の素地がきれいに見られる。
 総合評価:耐汚染塗料組成物においては、被塗物の加工性、ならびに、得られる塗膜の耐汚染性、耐雨筋汚染性及び耐スクラッチ性の全てが高いことが重要である。従って、以下の基準にて総合評価を行なった。
S:加工性、耐汚染性、耐雨筋汚染性及び耐スクラッチ性の評価がすべてS又はAであり、かつ少なくとも1つがSである、
A:加工性、耐汚染性、耐雨筋汚染性及び耐スクラッチ性の評価がすべてAである、
B:加工性、耐汚染性、耐雨筋汚染性及び耐スクラッチ性の評価がすべてS、A又はBであり、かつ少なくとも1つがBである
C:加工性、耐汚染性、耐雨筋汚染性及び耐スクラッチ性の評価のうち少なくとも1つがCである。

Claims (13)

  1.  (A)数平均分子量5000~30000、水酸基価5~100mgKOH/gである水酸基含有ポリエステル樹脂(A1)を固形分として50~100質量%含有するポリエステル樹脂成分であって、該水酸基含有ポリエステル樹脂(A1)が
    (a1)多塩基酸成分及び
    (a2)アルコール成分の反応によって得られる水酸基含有ポリエステル樹脂である、ポリエステル樹脂成分、
    (B)メラミン樹脂及び/又はポリイソシアネート化合物である架橋剤成分、
    (C)下記一般式で表されるオルガノシリケート及び/又はその縮合物成分
    一般式:(R-Si-(OR )4-n
    [式中、Rはエポキシ基又はメルカプト基で置換されていてもよい炭素数1~18のアルキル基又はフェニル基であり、Rは炭素数が1~6のアルキル基であり、nは0又は1である。]及び
    (D)1分子あたり平均2個以上の反応性基を含有するシルセスキオキサン化合物成分
    を含有する塗料組成物であって、
     (A)成分及び(B)成分の固形分総量を基準にして、固形分として、
    (C)成分の含有量が、1~20質量%であり、
    (D)成分の含有量が、1~20質量%
    であることを特徴とする耐汚染塗料組成物。
  2.  水酸基含有ポリエステル樹脂(A1)において、多塩基酸成分(a1)中の脂環族多塩基酸(a1-1)の合計含有量が、多塩基酸成分(a1)の総量を基準として、50~100mol%の範囲内である請求項1に記載の耐汚染塗料組成物。
  3.  シルセスキオキサン化合物の反応性基が、水酸基、アミノ基、エポキシ基、グリシジル基、(メタ)アクリロイルオキシ基及びメルカプト基からなる群から選ばれる少なくとも1種である請求項1に記載の耐汚染塗料組成物。
  4.  シルセスキオキサン化合物が、反応性基を有するトリアルコキシシラン化合物を縮合して得られる反応性基含有シルセスキオキサン化合物である請求項1に記載の耐汚染塗料組成物。
  5.  シルセスキオキサン化合物が、第1の官能基を有するトリアルコキシシラン化合物を縮合して第1の官能基を有するシルセスキオキサン化合物を合成し、更に、反応性基及び前記第1の官能基と反応して前記シルセスキオキサン化合物と化学結合を形成しうる第2の官能基を有する化合物、又は、前記第1の官能基と反応して反応性基を生成し得る化合物を反応させて得られる反応性基含有シルセスキオキサン化合物である請求項1に記載の耐汚染塗料組成物。
  6.  シルセスキオキサン化合物が、第1の官能基を有するトリアルコキシシラン化合物に、反応性基及び前記第1の官能基と反応して前記トリアルコキシシラン化合物と化学結合を形成しうる第2の官能基を有する化合物、又は、前記第1の官能基と反応して反応性基を生成し得る化合物を反応させ、更に、得られた該化合物を縮合して得られる反応性基含有シルセスキオキサン化合物である請求項1に記載の耐汚染塗料組成物。
  7.  シルセスキオキサン化合物成分において、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が80質量%以上である、請求項1に記載の耐汚染塗料組成物。
  8.  ポリエステル樹脂成分(A)及びメラミン樹脂成分(B)の固形分総量を基準にして、ポリエステル樹脂成分(A)を50~90質量%、メラミン樹脂成分(B)を10~50質量%含有する請求項1に記載の耐汚染塗料組成物。
  9.  さらに、フッ素原子含有樹脂成分(E)を含有する請求項1に記載の耐汚染塗料組成物。
  10.  さらに、艶消し剤(F)を含有する請求項1に記載の耐汚染塗料組成物。
  11.  金属板上の片面又は両面上に、クロムフリープライマー塗料によるプライマー塗膜を形成する工程、及び
    プライマー塗膜の少なくとも一方の上に、請求項1に記載の耐汚染塗料組成物による上塗塗膜を形成する工程
    を含むことを特徴とする塗膜形成方法。
  12.  金属板上の片面又は両面上に、クロムフリープライマー塗料によるプライマー塗膜を形成する工程、及び
    プライマー塗膜の少なくとも一方の上に、請求項1に記載の耐汚染塗料組成物による上塗塗膜を形成する工程
    を含むことを特徴とする塗装金属板。
  13.  請求項11または12に記載の方法により得られる、塗装金属板。
PCT/JP2011/079720 2010-12-24 2011-12-21 耐久性に優れた耐汚染塗料組成物 WO2012086723A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549858A JP5916627B2 (ja) 2010-12-24 2011-12-21 耐久性に優れた耐汚染塗料組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010286932 2010-12-24
JP2010-286932 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086723A1 true WO2012086723A1 (ja) 2012-06-28

Family

ID=46313991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079720 WO2012086723A1 (ja) 2010-12-24 2011-12-21 耐久性に優れた耐汚染塗料組成物

Country Status (2)

Country Link
JP (1) JP5916627B2 (ja)
WO (1) WO2012086723A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160029181A (ko) * 2014-09-04 2016-03-15 (주)엘지하우시스 내오염 코팅 조성물, 코팅층을 포함하는 적층체 및 이의 제조방법
JP2017052931A (ja) * 2015-09-09 2017-03-16 関西ペイント株式会社 塗料組成物
RU2692347C2 (ru) * 2015-04-30 2019-06-24 Клебхеми М. Г. Беккер Гмбх Унд Ко. Кг Способ изготовления структурированных поверхностей и изделия, структурированные таким способом
JP2020055964A (ja) * 2018-10-03 2020-04-09 日鉄日新製鋼株式会社 金属板用塗料およびこれを用いた塗装金属板の製造方法
JP2020055963A (ja) * 2018-10-03 2020-04-09 日鉄日新製鋼株式会社 金属板用塗料
CN111093963A (zh) * 2015-06-17 2020-05-01 株式会社大赛璐 成形体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106318068A (zh) * 2016-08-14 2017-01-11 安庆市沁之源电器有限公司 一种燃气灶抗氧化涂料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06507432A (ja) * 1991-05-13 1994-08-25 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー シロキサン架橋による可撓性の耐エッチ仕上げ剤
JPH1067945A (ja) * 1996-08-28 1998-03-10 Nippon Paint Co Ltd 熱硬化性樹脂組成物
JPH10316932A (ja) * 1997-05-16 1998-12-02 Showa Denko Kk 塗料配合物
JP2008081719A (ja) * 2006-08-30 2008-04-10 Kansai Paint Co Ltd 上塗塗料組成物
JP2010111793A (ja) * 2008-11-07 2010-05-20 Asia Kogyo Kk 水性低汚染塗料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074055B2 (ja) * 2006-08-17 2012-11-14 関西ペイント株式会社 上塗塗料組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06507432A (ja) * 1991-05-13 1994-08-25 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー シロキサン架橋による可撓性の耐エッチ仕上げ剤
JPH1067945A (ja) * 1996-08-28 1998-03-10 Nippon Paint Co Ltd 熱硬化性樹脂組成物
JPH10316932A (ja) * 1997-05-16 1998-12-02 Showa Denko Kk 塗料配合物
JP2008081719A (ja) * 2006-08-30 2008-04-10 Kansai Paint Co Ltd 上塗塗料組成物
JP2010111793A (ja) * 2008-11-07 2010-05-20 Asia Kogyo Kk 水性低汚染塗料

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160029181A (ko) * 2014-09-04 2016-03-15 (주)엘지하우시스 내오염 코팅 조성물, 코팅층을 포함하는 적층체 및 이의 제조방법
KR102038301B1 (ko) 2014-09-04 2019-10-31 (주)엘지하우시스 내오염 코팅 조성물, 코팅층을 포함하는 적층체 및 이의 제조방법
RU2692347C2 (ru) * 2015-04-30 2019-06-24 Клебхеми М. Г. Беккер Гмбх Унд Ко. Кг Способ изготовления структурированных поверхностей и изделия, структурированные таким способом
CN111093963A (zh) * 2015-06-17 2020-05-01 株式会社大赛璐 成形体
CN111093963B (zh) * 2015-06-17 2022-02-25 株式会社大赛璐 成形体
JP2017052931A (ja) * 2015-09-09 2017-03-16 関西ペイント株式会社 塗料組成物
JP2020055964A (ja) * 2018-10-03 2020-04-09 日鉄日新製鋼株式会社 金属板用塗料およびこれを用いた塗装金属板の製造方法
JP2020055963A (ja) * 2018-10-03 2020-04-09 日鉄日新製鋼株式会社 金属板用塗料
JP7151348B2 (ja) 2018-10-03 2022-10-12 日本製鉄株式会社 金属板用塗料およびこれを用いた塗装金属板の製造方法

Also Published As

Publication number Publication date
JPWO2012086723A1 (ja) 2014-06-05
JP5916627B2 (ja) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5814929B2 (ja) 耐久性に優れた耐汚染塗料組成物
JP5916627B2 (ja) 耐久性に優れた耐汚染塗料組成物
EP2695902B1 (en) Blocked polyisocyanate compound
JP6466977B2 (ja) 複層塗膜形成方法
JP5586799B2 (ja) 塗料組成物
JP5689210B1 (ja) 塗料組成物
JP5840132B2 (ja) 耐久性に優れた耐汚染塗料組成物
JP5705220B2 (ja) 耐久性に優れた耐汚染塗料組成物
WO1996034063A1 (fr) Composition de revetement, procede d'elaboration de cette composition et procede d'elaboration d'une dispersion de sol d'oxyde inorganique
JP5936448B2 (ja) 塗料組成物及び塗装物品
JPH1045867A (ja) 熱硬化性樹脂組成物
JP5688523B1 (ja) 二液混合型塗料組成物
JP2014012748A (ja) 耐汚染メタリック塗料組成物
JP2015108049A (ja) ちぢみ模様塗膜を形成可能な塗料組成物
JP5675005B1 (ja) 塗料組成物
CN112300393B (zh) 聚硅氧烷树脂、含其的涂料组合物及其应用
JPH09278982A (ja) 硬化性樹脂組成物ならびにそれらを用いた塗膜形成方法
JP2002309170A (ja) 塗料組成物、塗装仕上げ方法及び塗装物品
JPH10101985A (ja) 塗料組成物
WO2013011943A1 (ja) 硬化性樹脂組成物、塗料、及び該塗料の硬化塗膜を有する物品
JP4099142B2 (ja) 2液硬化型水性塗料組成物及び水性エマルジョンの製造方法
JP6080161B2 (ja) 塗料組成物
JP7389538B2 (ja) 有機ケイ素化合物の加水分解縮合物分散液の製造方法
JP5988440B2 (ja) 塗料組成物
JP2009144111A (ja) 塗料組成物及び塗膜形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012549858

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851469

Country of ref document: EP

Kind code of ref document: A1