WO2012086649A1 - 液晶素子 - Google Patents

液晶素子 Download PDF

Info

Publication number
WO2012086649A1
WO2012086649A1 PCT/JP2011/079533 JP2011079533W WO2012086649A1 WO 2012086649 A1 WO2012086649 A1 WO 2012086649A1 JP 2011079533 W JP2011079533 W JP 2011079533W WO 2012086649 A1 WO2012086649 A1 WO 2012086649A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
substrate
crystal element
sealing material
moth
Prior art date
Application number
PCT/JP2011/079533
Other languages
English (en)
French (fr)
Inventor
信幸 橋本
Original Assignee
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンホールディングス株式会社 filed Critical シチズンホールディングス株式会社
Priority to JP2012549835A priority Critical patent/JP5744062B2/ja
Priority to EP11850828.2A priority patent/EP2657756A4/en
Priority to CN201180060758.9A priority patent/CN103261958B/zh
Priority to US13/994,733 priority patent/US9104072B2/en
Publication of WO2012086649A1 publication Critical patent/WO2012086649A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/083Electrooptic lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133377Cells with plural compartments or having plurality of liquid crystal microcells partitioned by walls, e.g. one microcell per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/20Diffractive and Fresnel lenses or lens portions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133388Constructional arrangements; Manufacturing methods with constructional differences between the display region and the peripheral region
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/38Anti-reflection arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/28Function characteristic focussing or defocussing

Definitions

  • the present invention relates to a liquid crystal element excellent in transparency. Specifically, when a sealing material is disposed between two substrates to seal a liquid crystal layer, reflection at the seal portion is prevented and the transparency is excellent.
  • the present invention relates to a structure of a liquid crystal element.
  • a liquid crystal element devised to suppress the difference in haze value between the element and the seal frame is known (for example, Patent Document 1).
  • liquid crystal element With the above liquid crystal element, it is possible to provide a transparent state to every corner of the liquid crystal element including the seal frame, and the appearance is not impaired even if the seal frame is not covered with a case. It has become possible to provide an excellent liquid crystal element. For this reason, it has become possible to use it for show windows, various bulletin boards, automobile instrument panels, and the like that can display characters and patterns.
  • FIG. 19 is a cross-sectional view of a conventional liquid crystal element 200 in Patent Document 1.
  • a liquid crystal layer 203 is sealed in a space surrounded by a pair of first transparent substrate 201 and second transparent substrate 202 and a sealant 204 disposed therebetween. ing.
  • the liquid crystal layer 203 is a composite of liquid crystal and a cured product, and has a high light transmittance in principle, and is suitable for a show window that can display characters and patterns, various bulletin boards, and the like.
  • the area of the second transparent substrate 202 is larger than the area of the first transparent substrate 201, and the liquid crystal layer 203 is formed only in a portion that needs a function of displaying characters and patterns.
  • a plurality of transparent electrodes 210 are formed in stripes on the inner surface of the first transparent substrate 201.
  • a plurality of transparent electrodes 210 are also formed in stripes on the inner surface of the second transparent substrate 202.
  • the plurality of transparent electrodes 210 on the inner surface of the first transparent substrate 201 and the plurality of transparent electrodes 210 on the inner surface of the second transparent substrate 202 form a matrix electrode as a whole.
  • An insulating film and an alignment film are formed on both transparent electrodes 210.
  • the spacers 206 are uniformly distributed in a space surrounded by the first transparent substrate 201, the second transparent substrate 202, and the sealing material 204, and control the cell gap.
  • the sealing material 204 is formed in a frame shape along the periphery of the first transparent substrate 201 between the first transparent substrate 201 and the second transparent substrate 202.
  • the first transparent substrate 201 and the second transparent substrate 202 are joined by a sealing material 204.
  • the selected sealing material 204 is colored or has a low visible light transmittance, and the sealing material is conspicuous, the appearance may deteriorate or a design problem may occur.
  • the visible light transmittance of the sealing material 4 is set to 70% or more, or the haze value of the sealing material 204 and the haze of the liquid crystal layer 203 when visible light is transmitted. The difference in value is set to ⁇ 3% or less.
  • the sealing material there is a transparent sealing material, but the types are limited. At the same time, the compatibility with the liquid crystal and the adhesion with the substrate must be taken into account, so that there is a disadvantage that the number of materials that can be selected is extremely small. In addition, the junction between the transparent substrate and the sealing material has a drawback that there is a sudden change from the refractive index of the transparent substrate to the refractive index of the sealing material, so that reflection occurs and the boundary surface looks like a shadow. there were.
  • An object of the present invention is to provide a liquid crystal element capable of solving the above-mentioned problems.
  • an object of the present invention is to provide a liquid crystal element that can prevent reflection between a transparent substrate and a sealing material without depending on the material of the sealing material, and can eliminate the shadow of the joint.
  • the object of the present invention does not depend on the material of the sealing material, the selection range of the sealing material is widened, so that a highly transparent sealing material that is compatible with the transparent substrate is used, and the liquid crystal is more excellent in transparency. It is possible to provide an element.
  • the liquid crystal element includes a first substrate disposed on the viewing side, a second substrate facing the first substrate, a sealing material disposed between the first substrate and the second substrate, the first substrate, It has a liquid crystal layer sealed with a second substrate and a sealing material, and a muslin structure body or a moth-eye structure body positioned between the first substrate and the sealing material.
  • the above liquid crystal element preferably further includes another muslin structure or moth-eye structure provided between the sealing material and the second substrate.
  • the liquid crystal element preferably further includes an optical structure provided on the liquid crystal side of the first substrate or the second substrate.
  • the optical structure is preferably formed of the same resin as the muslin structure or moth-eye structure.
  • the first substrate or the second substrate is a resin substrate, and the muslin structure or the moth-eye structure is formed by processing the resin substrate.
  • the first substrate or the second substrate and the muslin structure or the moth-eye structure are integrally formed.
  • the muslin structure or the moth-eye structure is preferably provided also in the outer region of the sealing material between the first substrate and the second substrate.
  • a smooth refractive index distribution can be formed by providing a muslin structure or a moth-eye structure between the substrate and the sealing material. Thereby, the reflection which arises between a board
  • the optical structure formed between the substrates and the muslin structure or moth-eye structure can be molded simultaneously with the same resin, so that the manufacturing process can be simplified and the muslin structure or mus-eye structure can be manufactured at low cost.
  • a liquid crystal element including a body can be provided.
  • FIG. 1 is a cross-sectional view of the liquid crystal element 50.
  • FIG. 2 is an enlarged view of the boundary between the first transparent substrate and the sealing material indicated by part A in FIG.
  • FIG. 3 is a graph of the refractive index at the boundary between the first transparent substrate and the sealing material shown in FIG.
  • FIG. 4 is a perspective view of the moth-eye structure 7 (conical shape).
  • FIG. 5 is a perspective view of another moth-eye structure 7A (quadrangular pyramid shape).
  • FIG. 6 is a perspective view of a muslin structure.
  • FIG. 7 is a cross-sectional view of another liquid crystal element 60.
  • FIG. 8 is an enlarged view of the first transparent substrate and the sealing material boundary portion and the sealing material and the second transparent substrate boundary portion indicated by part A in FIG.
  • FIG. 9 is a graph of the refractive index of the first transparent substrate and the sealing material boundary portion and the sealing material and the second transparent substrate boundary portion shown in FIG.
  • FIG. 10 is a cross-sectional view of still another liquid crystal element 70.
  • FIG. 11 is a cross-sectional view of still another liquid crystal element 80.
  • FIG. 12 is a cross-sectional view of still another liquid crystal element 90. It is a figure for demonstrating the manufacturing process of a board
  • FIG. 15 is a cross-sectional view of still another liquid crystal element 100.
  • FIG. 16 is a plan view of the finished lens 110 created based on the liquid crystal element 100 shown in FIG.
  • FIG. 17 is a cross-sectional view taken along line AA of the finished lens 110 shown in FIG.
  • FIG. 18 is a perspective view of the liquid crystal glasses 150 in which the edging lens 120 is attached to the spectacle frame 140.
  • FIG. 19 is a cross-sectional view showing a conventional liquid crystal element.
  • FIG. 1 is a cross-sectional view of the liquid crystal element 50.
  • the liquid crystal element 50 is sandwiched between a first transparent substrate 1 and a second transparent substrate 2 that are made of the same material and surrounded by a first sealing material 4 in which no spacer is mixed. It is sealed.
  • a second sealing material 5 mixed with a spacer 6 is disposed outside the first sealing material 4 so as to surround the first sealing material 4.
  • the first transparent substrate 1 and the second transparent substrate 2 are provided with a protective film, a transparent electrode, and an alignment film (not shown).
  • the size of the first transparent substrate 1 and the size of the second transparent substrate 2 are the same, but one size may be changed to be different from the other size depending on the application. .
  • the cell gap between the first transparent substrate 1 and the second transparent substrate 2 is uniformly controlled by the spacer 6 mixed in the second sealing material 5, and the diameter of the spacer 6 has a required size according to the application. You can choose.
  • the liquid crystal element 50 is composed of two types of sealing materials, a first sealing material 4 in which the spacer 6 is not mixed and a second sealing material 5 in which the spacer 6 is mixed.
  • a spacer may be mixed in the first sealing material 4 depending on the application and manufacturing method, or the spacer may not be used at all.
  • FIG. 2 is an enlarged view of a cross section of a joint portion between the first transparent substrate 1 and the first sealing material 4 of the liquid crystal element 50 shown by part A in FIG. 1, and FIG. It is a graph showing the change of the refractive index in the junction part of the sealing material 4 of.
  • the vertical axis represents the refractive index (n)
  • the horizontal axis represents the distance (D) until the light incident from the first transparent substrate enters the sealing material.
  • a moth-eye structure 7 is provided between the first transparent substrate 1 and the first sealing material 4.
  • the height of the protrusion of the moth-eye structure 7 is h, and its refractive index is n1.
  • the refractive index of the first transparent substrate 1 is n1, and the refractive index is constant inside the first transparent substrate 1.
  • the refractive index of the first sealing material 4 is n2, and the refractive index of the first sealing material 4 is constant everywhere.
  • Visible light incident on the first transparent substrate 1 passes through the first transparent substrate having a refractive index n1, passes through the moth-eye structure 7 which is a fine optical structure having a refractive index n1, and then has a refractive index of n2. Incident on the sealing material 4.
  • a smooth refractive index distribution is formed from the refractive index n1 to the refractive index n2, and exhibits non-reflective characteristics.
  • the structure below half wavelength of light has a characteristic that the structure becomes invisible from the light, and the refractive index in that part can be regarded as averaged.
  • the refractive index at that location is a seal. It becomes substantially equal to the average refractive index of the material 4 and the moth-eye structure 7.
  • the refractive index of the sealing material is substantially equal, and at the bottom portion of the moth-eye structure 7, the refractive index of the moth-eye structure 7 is approximately equal. Further, in the portion from the apex to the bottom of the moth-eye structure 7, the average refractive index according to the volume ratio between the moth-eye structure 7 and the sealing material 4 is obtained. Therefore, in the portion from the apex to the bottom surface of the moth-eye structure 7, the refractive index n1 of the moth-eye structure 7 gradually changes from the refractive index n2 of the sealing material 4 as shown in FIG.
  • the ratio of the base of the triangle (length of the periodic structure) to the height (aspect ratio) of the moth-eye structure 7 is as follows when the refractive index difference between the moth-eye structure 7 and the sealing material 4 is 0.1. About 1: 1 or more is preferable. The aspect ratio of the moth-eye structure 7 is preferably about 1: 3 to 1: 5 or more when the refractive index difference between the moth-eye structure 7 and the sealing material 4 is 1.5.
  • the moth-eye structure 7 is provided inside the first transparent substrate 1 and the second transparent substrate 2. Since the moth-eye structure 7 is in direct contact with the first seal material 4 and the like, it does not come into contact with air. In this case, since the refractive index difference is smaller than when the moth-eye structure 7 is used in the air, the aspect ratio of the fine optical structure can be reduced, which is preferable.
  • the moth-eye structure 7 and the first sealing material 4 have a protruding shape, there is an advantage that the bonding area increases and the bonding strength increases.
  • the moth-eye structure 7 is provided between the substrates and is not touched from the outside. Therefore, the liquid crystal element 50 has high practicality because the fine optical structure is not inadvertently broken after the product is completed.
  • FIG. 4 is a perspective view of the moth-eye structure 7.
  • the moth-eye structure 7 which is a fine optical structure in the liquid crystal element 50 is composed of a group of protrusions having a conical shape, and the pitch p between the protrusions is set to about 1 ⁇ 2 wavelength or less of visible light.
  • the pitch p in the case of FIG. 4 is set to 200 nm, which is 1/2 or less of the shortest wavelength 420 nm of visible light.
  • FIG. 5 is a perspective view of another moth-eye structure 7A.
  • the moth-eye structure 7A shown in FIG. 5 can be used in the liquid crystal element 50 instead of the moth-eye structure 7 shown in FIG.
  • the moth-eye structure 7A which is a fine optical structure, is composed of a group of protrusions having a quadrangular pyramid shape, and the pitch p between the protrusions is set to about 1 ⁇ 2 wavelength or less of visible light.
  • FIG. 6 is a perspective view of the muslin structure 7B.
  • the muslin structure 7B shown in FIG. 6 can be used in the liquid crystal element 50 instead of the moth-eye structure 7 shown in FIG.
  • the muslin structure 7B which is a fine optical structure, is composed of a group of protrusions having a continuous shape with a triangular cross section, and the pitch p of the continuous shape is set to about 1 ⁇ 2 wavelength or less of visible light.
  • FIGS. 4 to 6 The structure shown in FIGS. 4 to 6 has been used in recent years for a film that suppresses reflection of external light in a liquid crystal monitor or the like.
  • the liquid crystal element 50 the first transparent substrate 1 and the first structure are used. This is used to make the shadow of the joint portion of the sealing material 4 invisible.
  • the conical shape (FIG. 4) and the quadrangular pyramid shape (FIG. 5) were shown as a moth-eye structure, it may be a triangular pyramid shape or a pentagonal pyramid shape.
  • the arrangement of the projections of the moth-eye structure shown in FIGS. 4 and 5 and the muslin structure shown in FIG. 6 may be a circular arrangement or a linear arrangement.
  • the arrangement of the projections of the moth-eye structure shown in FIGS. 4 and 5 can be shifted from the adjacent row by a half pitch, for example.
  • FIG. 7 is a cross-sectional view of another liquid crystal element 60.
  • 8 is a cross-sectional view of the junction between the first transparent substrate 1 and the first sealant 4 and the junction between the first sealant 4 and the second transparent substrate 2 of the liquid crystal element 60 shown by part A in FIG. It is an enlarged view.
  • FIG. 9 is a graph showing changes in the refractive index at the joint between the first transparent substrate 1 and the first sealing material 4 and at the joint between the first sealing material 4 and the second transparent substrate 2.
  • the liquid crystal element 60 shown in FIG. 7 is different from the liquid crystal element 50 shown in FIG. 1 only in that a moth-eye structure 7b is provided between the first sealing material 4 and the second transparent substrate 2.
  • a moth-eye structure 7a is provided between the first transparent substrate 1 and the first sealing material 4.
  • the vertical axis represents the refractive index (n)
  • the horizontal axis represents the distance (D) until the light incident from the first transparent substrate enters the sealing material and enters the second transparent substrate. ing.
  • the refractive index of the first transparent substrate 1 is n1, and the refractive index is constant inside the first transparent substrate 1.
  • the refractive index of the moth-eye structure 7a is n1.
  • the refractive index of the first sealing material 4 is n2, and the refractive index of the first sealing material 4 is constant everywhere.
  • the refractive index of the moth-eye structure 7b is n1.
  • the refractive index of the second transparent substrate 2 is n1, and the refractive index is constant inside the second transparent substrate 2.
  • Visible light incident on the first transparent substrate 1 passes through the first transparent substrate 1 having a refractive index n1, passes through the moth-eye structure 7a that is a fine optical structure having a refractive index n1, and then has a refractive index of n2. Is incident on the sealing material 4.
  • a smooth refractive index distribution is formed from the refractive index n1 to the refractive index n2. Therefore, the first transparent substrate 1 And non-reflective characteristics at the joint between the first sealing material 4 and the first sealing material 4.
  • Visible light further passes through the first sealing material 4 having a refractive index n2, passes through the moth-eye structure 7b that is a fine optical structure having a refractive index n1, passes through the second transparent substrate 2 having the refractive index n1, and then passes through the liquid crystal element.
  • the light is emitted from 60.
  • a smooth refractive index distribution is formed from the refractive index n2 to the refractive index n1.
  • Non-reflective characteristics are also exhibited at the joint with the transparent substrate 2.
  • the shadows of the joint portions on both the first transparent substrate 1 side and the second transparent substrate 2 side cannot be seen, and the transparency of the liquid crystal element 60 is further increased.
  • FIG. 10 is a cross-sectional view of still another liquid crystal element 70.
  • the same components as those of the liquid crystal element 50 shown in FIG. 10 is different from the liquid crystal element 50 shown in FIG. 1 in that the optical structure 8 is disposed on the second transparent substrate 2 side in the liquid crystal layer 3 sealed with the first sealing material 4. Is a point provided.
  • the optical structure 8 is a Fresnel lens.
  • the liquid crystal layer 3 exhibits a lens function by changing the orientation of the liquid crystal according to the applied voltage. You may comprise so that transmission and non-transmission of visible light may be controlled by ON / OFF of the voltage applied to the liquid crystal layer 3.
  • liquid crystal element 70 provided with the optical structure 8, since the non-reflective characteristic is exhibited at the joint between the first transparent substrate 1 and the first sealing material 4, the visible shadow disappears as in the liquid crystal element 50. The transparency of the liquid crystal element 70 is increased.
  • FIG. 11 is a cross-sectional view of still another liquid crystal element 80.
  • the liquid crystal element 70 shown in FIG. 11 is different from the liquid crystal element 60 shown in FIG. 7 in that the optical structure 8 is disposed on the second transparent substrate 2 side in the liquid crystal layer 3 sealed with the first sealing material 4. Is a point provided.
  • the optical structure 8 is a Fresnel lens.
  • the liquid crystal layer 3 exhibits a lens function by changing the orientation of the liquid crystal according to the applied voltage. You may comprise so that transmission and non-transmission of visible light may be controlled by ON / OFF of the voltage applied to the liquid crystal layer 3.
  • liquid crystal element 80 including the optical structure 8 non-reflective characteristics are exhibited at the joint between the first transparent substrate 1 and the first sealing material 4 and at the joint between the second transparent substrate 2 and the first sealing material 4. Therefore, like the liquid crystal element 60, the visible shadow disappears, and the transparency of the liquid crystal element 80 is further increased.
  • FIG. 12 is a cross-sectional view of still another liquid crystal element 90.
  • the liquid crystal element 90 shown in FIG. 12 is different from the liquid crystal element 60 shown in FIG. 7 in that the optical structure 8 is disposed on the first transparent substrate 1 side in the liquid crystal layer 3 sealed with the first sealing material 4. Is a point provided.
  • the optical structure 8 is a Fresnel lens.
  • the liquid crystal layer 3 exhibits a lens function by changing the orientation of the liquid crystal according to the applied voltage. You may comprise so that transmission and non-transmission of visible light may be controlled by ON / OFF of the voltage applied to the liquid crystal layer 3.
  • liquid crystal element 90 including the optical structure 8 non-reflective characteristics are exhibited at the joint between the first transparent substrate 1 and the first sealing material 4 and at the joint between the second transparent substrate 2 and the first sealing material 4. Therefore, like the liquid crystal element 60, the visible shadow disappears, and the transparency of the liquid crystal element 90 is further increased.
  • the moth-eye structures 7a and 7b are provided on both the first transparent substrate 1 and the second transparent substrate 2, but the moth-eye structure is provided on one of the substrates. May be.
  • the liquid crystal element 90 shown in FIG. 12 is provided with the optical structure 8 on the first transparent substrate 1 side, so that it is refracted by a Fresnel lens when parallel light enters from the first transparent substrate 1 side, and further the second Since the light is refracted on the transparent substrate 2 side, the lens power is distributed to both the substrates, and there is an advantage that there is little aberration.
  • the optical structure 8 may be provided on the first transparent substrate 1 side or on the second transparent substrate 2 side.
  • the optical structure 8 is a Fresnel lens.
  • the optical structure 8 may be a microlens or another optical structure. is there.
  • the side on which the first transparent substrate 1 is present is the viewing side.
  • FIGS. 13 (a) to 13 (d) are diagrams for explaining a substrate manufacturing process.
  • FIG. 13 illustrates a process of simultaneously forming the optical structure 8 and the moth-eye structure on the first transparent substrate 1 or the second transparent substrate 2 by the imprint molding method. Note that FIG. 13 shows only a necessary part of the substrate manufacturing process, and a process for completing an actual liquid crystal element is omitted.
  • the substrate 22 to be the first transparent substrate 1 or the second transparent substrate 2 is set, and a predetermined amount of the photocurable resin 21 is dropped on the substrate 22 from the supply device 20.
  • the mold 23 is pressed against the substrate 22 to adjust the shape of the photo-curing resin 22.
  • a mold shape 8 m corresponding to the optical structure 8 and a mold shape 7 m corresponding to the moth-eye structure 7 are formed in the mold 23.
  • the photocurable resin 21 is cured by irradiating ultraviolet rays (UV) from the back side of the substrate 22.
  • UV ultraviolet rays
  • the imprint molded substrate 24 can constitute a liquid crystal element as the first transparent substrate 1 or the second transparent substrate 2.
  • the optical structure 8 and the moth-eye structure 7 can be formed by the same material and the same process, and the moth-eye structure 7 that is a fine optical structure can be realized with almost no cost. . Thereby, a highly transparent liquid crystal element in which the shadow of the joint with the first sealing material 4 is not visible can be provided at low cost.
  • the photocurable resin 21 to be used it is desirable to use a resin whose refractive index after curing is close to the refractive index of the substrate 22.
  • the non-reflective property is further improved in the vicinity of the joint portion with the sealing material, which is preferable.
  • the material of the substrate 22 may be glass or resin.
  • FIG. 14A and FIG. 14B are diagrams for explaining another substrate manufacturing process.
  • FIG. 14 illustrates a manufacturing process in which the first transparent substrate 1 or the second transparent substrate 2, the optical structure 8 and the moth-eye structure 7 are simultaneously formed by an injection molding method.
  • FIG. 14 only the necessary part of the manufacturing process of the substrate is shown, and the process up to completion of the actual liquid crystal element is omitted.
  • the injection mold 25 and the injection mold 26 are set in an injection molding machine (not shown).
  • a predetermined resin is injected into the molds 25 and 26 from a nozzle (not shown) by a predetermined pressure, a predetermined temperature, a predetermined time, and a predetermined amount by an injection molding machine.
  • the injection molding mold 25 and the injection molding mold 26 are opened, and the injection molding substrate 27 is taken out (see FIG. 14B).
  • the extracted injection-molded substrate 27 is subjected to predetermined processing / cleaning, if necessary, and then the liquid crystal element can be configured using the molded substrate 27 as the first transparent substrate 1 or the second transparent substrate 2.
  • the substrate 27, the optical structure 8, and the moth-eye structure 7 to be the first transparent substrate 1 or the second transparent substrate 2 can be formed by the same resin material and the same processing process.
  • the non-reflective characteristics at the joint between the substrate and the sealing material are improved, and a highly transparent liquid crystal element can be provided at low cost.
  • substrate 27 and the moth-eye structure 7 becomes the same in the integrally molded board
  • the manufacturing method shown in FIG. 14 is a method of manufacturing the substrate, the optical structure, and the muslin structure (see FIG. 6). It can also be applied to.
  • FIG. 15 is a cross-sectional view of still another liquid crystal element 100.
  • the liquid crystal element 100 shown in FIG. 15 differs from the liquid crystal element 80 shown in FIG. 11 in that a moth-eye is also formed between the first transparent substrate 1 and the second transparent substrate 2 in the outer region of the first sealing material 4.
  • the structure 7 is provided.
  • the first transparent substrate 1 and the second transparent substrate 2 each have a whole surface from the joint corresponding to the first sealant 4 to the joint corresponding to the second sealant 5 in the outer region.
  • a moth-eye structure 107a and a moth-eye structure 107b are provided.
  • a filling resin 109 is sealed in the space between the first sealing material 4 and the second sealing material 5.
  • the moth-eye structure 107a and the moth-eye structure 107b have the same shape as the moth-eye structure described in FIG.
  • the moth-eye structure 107a and the moth-eye structure 107b may have the same shape as the moth-eye structure described in FIG.
  • the moth-eye structure 107a and the moth-eye structure 107b may be the muslin structure described in FIG.
  • the moth-eye structure 107a and the moth-eye structure 107b provided on each substrate may be the same structure or different structures.
  • liquid crystal element 100 a moth-eye structure is provided in all the spaces between the first transparent substrate 1 and the second transparent substrate 2 and in the spaces other than the liquid crystal layer 3. Therefore, all visible light incident from the first transparent substrate side passes through the outer region of the liquid crystal layer 3 passes through the moth-eye structure 7a or 7b. Therefore, it is possible to provide a liquid crystal element that exhibits non-reflective characteristics over the entire region outside the joint with the first sealing material 4 and has high transparency in a wider region.
  • the liquid crystal element 100 can be manufactured using the manufacturing method described in FIG. 13 or FIG.
  • FIG. 16 is a plan view of the finished lens 110 created based on the liquid crystal element 100 shown in FIG.
  • FIG. 17 is a cross-sectional view taken along line AA of the finish lens 110 shown in FIG.
  • the liquid crystal element 100 as shown in FIG. 15 has the disc-shaped first transparent substrate 1 and second transparent substrate 2 that are not polished. Thereafter, as shown in FIG. 17, the first transparent substrate 1 and the second transparent substrate 2 each polished into a lens shape are referred to as a “finished lens”. In addition, the “finished lens” cut along the frame of the spectacles is referred to as an “edging lens”.
  • the oval portion surrounded by a two-dot chain line is the edging lens 120, and the finished lens 110 is processed into a shape that matches the frame of the glasses.
  • the shape of the edging lens 120 is not limited to an elliptical shape, and may be a shape that matches the spectacle frame.
  • the processing range to be cut into the edging lens 120 is desirably a B region (see FIG. 17).
  • the region B is an outer region of the first sealing material 4 and an inner region of the second sealing material 5. Since the spacer 6 is mixed in the second sealing material 5, it is desirable to cut and remove it.
  • transparent electrodes are formed on the first transparent substrate 1 and the second transparent substrate 2 respectively corresponding to each blaze of the Fresnel lens 8 which is an optical structure.
  • a liquid crystal lens structure 130 is configured by the first transparent substrate 1 and the second transparent substrate 2, the transparent electrode, and the liquid crystal layer 3.
  • the side on which the first transparent substrate 1 is present is the viewing side.
  • the edging lens 120 cut from the finished lens 110 is the side on which the first transparent substrate 1 is present.
  • FIG. 18 is a perspective view of the liquid crystal glasses 150 in which the edging lens 120 is attached to the spectacle frame 140.
  • the edging lens 120 is mounted on the glasses frame 140.
  • a connection line (not shown) connected to a transparent electrode (not shown) of the liquid crystal lens structure 130 is connected to a connector (not shown) of the armor portion 141.
  • the edging lens 120 has a structure that can be connected to the outside even if the edging process is performed in the B region outside the first sealing material 4.
  • the armor part 141 has a built-in power supply part (not shown) so that a predetermined voltage can be supplied to the transparent electrode of the liquid crystal lens structure 130 via the connector. The ON / OFF of the voltage supply can be controlled by a switch (not shown) provided in the armature portion 141.
  • the sealing material 4 of the edging lens 120 is indicated by a dotted line, but it is not actually transparent.
  • the liquid crystal glasses 150 are configured to act as far point glasses. Can do.
  • a predetermined voltage is supplied to the transparent electrode of the liquid crystal lens structure 130 and the liquid crystal lens structure 130 operates so as to have the power of the Fresnel lens 8
  • the liquid crystal glasses 150 are configured to act as near-point glasses. It can be.
  • the switching between the far point glasses and the near point glasses can be performed by a switch for controlling power supply.
  • the eyeglasses are required to have high transparency as wide as possible.
  • the moth-eye structure 107a and the moth-eye structure 107b are all outside the liquid crystal layer 3 in the space sandwiched between the first transparent substrate 1 and the second transparent substrate 2. Is provided. Accordingly, all visible light incident from the first transparent substrate 1 side and passing through the outer region of the liquid crystal layer 3 passes through the moth-eye structure 107a and the moth-eye structure 107b. Therefore, the non-reflective characteristic can be shown in a wide range, and the electronic glasses 150 with higher transparency can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Eyeglasses (AREA)

Abstract

 基板間をシールで封止する液晶素子において、シール部分での反射を防止し、透明性に優れた液晶素子を提供すること。視認側に配置された第1基板と、第1基板に対向する第2基板と、第1基板と第2基板との間に配置されたシール材と、第1基板、第2基板、及びシール材によって封止された液晶層と、第1基板とシール材との間に位置されたモスリン構造体又はモスアイ構造体を有することを特徴とする液晶素子。モスリン構造体又はモスアイ構造体によって、シール材と第1透明基板との間に、滑らかな屈折率の分布を形成することにより、より透明性の高い液晶素子を提供する。

Description

液晶素子
 本発明は透明性に優れた液晶素子に関するものであり、詳しくは二つの基板間にシール材を配置して液晶層を封止する際、シール部分での反射を防止して透明性に優れた液晶素子の構成に関する。
 二つの基板間にシール材を配置して液晶層を封止する液晶素子であって、液晶素子の可視光透過時に、液晶素子とそのシール枠の可視光透過率を共に高く設定し、且つ液晶素子とシール枠のヘイズ値の差を低く抑えるように工夫した液晶素子が知られている(例えば、特許文献1)。
 上記の液晶素子では、シール枠まで含めた液晶素子の隅々にいたるまで透明状態を提供することが出来るようになり、シール枠をケースなどで覆わなくても外観を損ねることがなく、意匠性に優れた液晶素子を提供できるようになった。このため、文字や模様を表示できるショーウインドウ、各種掲示板、自動車のインストルメントパネル等への利用が可能になった。
 図19は、特許文献1における従来の液晶素子200の断面図である。
 図19に示す様に、液晶素子200では、一対の第1透明基板201及び第2透明基板202と、その間に配置されたシール材204とに囲われた空間に、液晶層203が封止されている。
 液晶素子200では、液晶層203は液晶と硬化物の複合体であり、原理的に光透過率が高く、文字や模様を表示できるショーウインドウ、各種掲示板などに適している。第1透明基板201の面積に対して、第2透明基板202の面積は大きく、文字や模様を表示する機能が必要な部分のみに液晶層203が形成されている。
 第1透明基板201の内面上には複数の透明電極210がストライプ状に形成されている。また、第2透明基板202の内面上にも複数の透明電極210がストライプ状に形成されている。第1透明基板201の内面上の複数の透明電極210と第2透明基板202の内面上の複数の透明電極210は、全体としてマトリックス電極を形成している。両方の透明電極210の上には図示しない絶縁膜や配向膜が形成されている。
 スペーサ206は、第1透明基板201、第2透明基板202及びシール材204に囲われた空間内に、均一に散布されていて、セルギャップを制御している。シール材204は、第1透明基板201、第2透明基板202の間において、第1の透明基板201の周縁に沿って枠状に形成されている。第1透明基板201及び第2透明基板202は、シール材204により接合されている。
 選択したシール材204が色見をおびていたり、可視光透過率が低かったりして、シール材が目立つ場合、外観上の見栄えが悪くなる、または、意匠上の問題が発生する可能性がある。しかしながら、液晶素子200を、ショーウインドウ、各種掲示板、自動車のインストルメントパネルなどへ応用する場合、シール材204による接合部分を、枠やケースなどにより隠すことが難しい場合がある。特許文献1によれば、それらの問題を解決する方法として、シール材4の可視光透過率を70%以上とする、または、シール材204のヘイズ値と可視光透過時の液晶層203のヘイズ値の差を±3%以下としている。
特開2008―310188号公報(第4頁、図1)
 特許文献1では、シール材の材質の選定及び液晶層の選定において、透明性が重要であり、液晶層とシール材共に可視光透過率は70%以上でなくてはならず、さらに液晶層とシール材のヘイズ値の差は±3%以下でなければならないと、記載されている。
 しかし、シール材については、透明性があるシール材も存在するが種類が限定される。同時に、液晶との相性や基板との密着性を考慮しなければならないため、選べる材質が極端に少ないという欠点がある。また、透明基板とシール材との接合部では透明基板の屈折率からシール材の屈折率への急激な変化があるために、反射が起き、境界面が影のように見えてしまうという欠点もあった。
 本発明の目的は、上記問題点を解決することを可能とした液晶素子を提供することである。
 また、本発明の目的は、透明基板とシール材の間の反射をシール材の材料に依存せずに防止し、接合部の影をなくすことを可能とした液晶素子を提供することである。
 さらに、本発明の目的は、シール材の材料に依存しないので、シール材の選択範囲が広がることで、透明基板と相性のよい透明性の高いシール材を使用し、より透明性に優れた液晶素子を提供することを可能とすることである。
 液晶素子は、視認側に配置された第1基板と、第1基板に対向する第2基板と、第1基板と前記第2基板との間に配置されたシール材と、第1基板、前記第2基板、及びシール材によって封止された液晶層と、第1基板と前記シール材との間に位置されたモスリン構造体又はモスアイ構造体を有することを特徴とする。
 上記の液晶素子においては、シール材と第2基板との間に設けられた他のモスリン構造体又はモスアイ構造体を更に有することが好ましい。
 上記の液晶素子においては、第1基板又は第2基板の液晶側に設けられた光学構造体を更に有することが好ましい。
 上記の液晶素子においては、光学構造体は、モスリン構造体又はモスアイ構造体と同一の樹脂で形成されていることが好ましい。
 上記の液晶素子においては、第1基板又は第2基板は樹脂基板であり、モスリン構造体又はモスアイ構造体は樹脂基板を加工して形成されていることが好ましい。
 上記の液晶素子においては、第1基板又は第2基板と、モスリン構造体又はモスアイ構造体は、一体的に形成されていることが好ましい。
 上記の液晶素子においては、モスリン構造体又はモスアイ構造体は、第1基板と前記第2基板との間で、シール材の外側領域にも設けられていることが好ましい。
 上記の液晶素子では、基板とシール材との間に、モスリン構造体又はモスアイ構造体を設けることで、滑らかな屈折率の分布を形成することができる。それによって、基板とシール材との間で生じる反射を防止することができる。そして、接合部の影をなくし、より透明性に優れた液晶素子を提供することができる。
 上記の液晶素子では、基板間に形成した光学構造体と、モスリン構造体またはモスアイ構造体とを同時に同一樹脂にて成形できるので、製造工程が簡略化でき、低コストでモスリン構造体またはモスアイ構造体を備えた液晶素子を提供することができる。
図1は、液晶素子50の断面図である。 図2は、図1のA部で示す第1透明基板とシール材境界部の拡大図である。 図3は、図1に示す第1透明基板とシール材境界部における屈折率のグラフである。 図4は、モスアイ構造体7(円錐形状)の斜視図である。 図5は、他のモスアイ構造体7A(四角錐形状)の斜視図である。 図6は、モスリン構造体の斜視図である。 図7は、他の液晶素子60の断面図である。 図8は、図7のA部で示す第1透明基板とシール材境界部及びシール材と第2透明基板境界部の拡大図である。 図9は、図7に示す第1透明基板とシール材境界部及びシール材と第2透明基板境界部における屈折率のグラフである。 図10は、更に他の液晶素子70の断面図である。 図11は、更に他の液晶素子80の断面図である。 図12は、更に他の液晶素子90の断面図である。 基板の製造工程を説明するための図である。 基板の製造工程を説明するための図である。 基板の製造工程を説明するための図である。 基板の製造工程を説明するための図である。 他の基板の製造工程を説明するための図である。 他の基板の製造工程を説明するための図である。 図15は、更に他の液晶素子100の断面図である。 図16は、図15で示した液晶素子100をもとに作成したフィニッシュトレンズ110の平面図である。 図17は、図16に示したフィニッシュトレンズ110のA-A断面図である。 図18は、エッジングレンズ120を眼鏡フレーム140に取り付けた液晶眼鏡150の斜視図である。 図19は、従来の液晶素子を示す断面図である。
 以下図面を参照して、液晶素子について説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
 図1は、液晶素子50の断面図である。
 図1に示すように液晶素子50は、材質が同じ第1透明基板1と第2透明基板2に挟持され、スペーサが混入されない第1のシール材4に囲われた内部に、液晶層3が封止されている。また、第1のシール材4の外側にはスペーサ6が混入された第2のシール材5が第1のシール材4を囲う形で配設されている。なお、第1透明基板1及び第2透明基板2には図示しない保護膜、透明電極、配向膜が配設されている。図1の例では、第1透明基板1の大きさと第2透明基板2の大きさは同じであるが、用途により一方の大きさを他方の大きさに対して異なるように変更しても良い。
 第1透明基板1と第2透明基板2の間のセルギャップは第2のシール材5に混入されたスペーサ6により均一に制御されており、スペーサ6の直径は用途に応じて必要なサイズを選択できる。液晶素子50は、スペーサ6の混入しない第1のシール材4とスペーサ6を混入した第2のシール材5の2種類のシール材によって構成されている。しかしながら、用途や製造方法によって、第1のシール材4にスペーサを混入しても良いし、スペーサを全く使用しなくとも良い。
 図2は、図1のA部で示す液晶素子50の第1透明基板1と第1のシール材4との接合部断面の拡大図であり、図3は、第1透明基板1と第1のシール材4の接合部における屈折率の変化を表わすグラフである。図3において、縦軸が屈折率(n)を表わし、横軸は、第1透明基板から入射した光がシール材に入射するまでの距離(D)を表わしている。
 以下、モスアイ構造体7の光学的特性について説明する。
 第1透明基板1と第1のシール材4との間にはモスアイ構造体7が設けられている。モスアイ構造体7の突起の高さをhとし、その屈折率をn1とする。第1透明基板1の屈折率をn1とし、第1透明基板1の内部では屈折率は一定である。第1のシール材4の屈折率をn2とし、第1のシール材4の屈折率はどの箇所においても一定である。
 第1透明基板1へ入射した可視光は、屈折率n1の第1透明基板を通過し、屈折率n1の微細光学構造であるモスアイ構造体7を通過した後、屈折率はn2の第1のシール材4に入射する。モスアイ構造体7の突起高さhの区間では、屈折率n1から屈折率n2に向けて、滑らかな屈折率の分布が形成され、無反射特性を示す。このように、第1透明基板1側から見て、第1透明基板1と第1のシール材4の接合部の影が見えなくなり、液晶素子50の透明度は高くなる。
 およそ光の半波長以下の構造は、光からその構造が見えなくなり、その部分での屈折率は平均化されたものと見なすことができるという特性がある。例えば、図2に示す様に、光の半波長以下の高さhで、三角形の周期構造でモスアイ構造体7(又はモスリン構造体)を樹脂で作成すると、その箇所での屈折率は、シール材4とモスアイ構造体7の平均屈折率とほぼ等しくなる。すなわち、モスアイ構造体7の頂点の部分では、ほぼシール材の屈折率と等しくなり、モスアイ構造体7の底面の部分では、ほぼモスアイ構造体7の屈折率と等しくなる。また、モスアイ構造体7の頂点から底面の部分では、モスアイ構造体7とシール材4との体積比に応じた平均屈折率となる。よって、モスアイ構造体7の頂点から底面の部分では、図3に図示する用に、モスアイ構造体7の屈折率n1からシール材4の屈折率n2と徐々に変化することとなる。
 なお、モスアイ構造体7の三角形の底辺(周期構造の長さ)と高さの比(アスペクト比)は、モスアイ構造体7とシール材4との屈折率差が0.1の場合には、1:1程度以上が好ましい。また、モスアイ構造体7のアスペクト比は、モスアイ構造体7とシール材4との屈折率差が1.5の場合には、1:3~1:5程度以上が好ましい。
 液晶素子50では、第1透明基板1と第2透明基板2に挟持される内側にモスアイ構造体7を設けている。モスアイ構造体7は第1シール材4などと直接密着するために、空気と触れることがない。この場合、モスアイ構造体7を空気中で使用するよりも、屈折率差が少なくなるので、微細光学構造のアスペクト比を小さくすることができ、好ましい。
 モスアイ構造体7と第1シール材4は突起形状であるために接着面積が増加し、接着強度が上がるという利点がある。また、液晶素子50では、モスアイ構造体7は基板間に設けられていて外部から触れることがない。したがって、液晶素子50では、製品完成後に微細光学構造が不用意に壊れることはなく実用性が高い。
 図4は、モスアイ構造体7の斜視図である。
 液晶素子50における、微細光学構造であるモスアイ構造体7は、円錐状の形状を有する突起群から構成され、突起間のピッチpは可視光の1/2波長程度以下に設定されている。図4の場合のピッチpは、可視光の一番短い波長420nmの1/2以下である、200nmに設定されている。
 図5は、他のモスアイ構造体7Aの斜視図である。
 図5に示すモスアイ構造体7Aは、液晶素子50において、図4に示すモスアイ構造体7の代わりに用いることができる。微細光学構造であるモスアイ構造体7Aは、四角錐の形状を有する突起群から構成され、突起間のピッチpは可視光の1/2波長程度以下に設定されている。
 図6は、モスリン構造体7Bの斜視図である。
 図6に示すモスリン構造体7Bは、液晶素子50において、図4に示すモスアイ構造体7の代わりに用いることができる。微細光学構造であるモスリン構造体7Bは、断面が三角形をした連続形状を有する突起群から構成され、連続形状のピッチpは可視光の1/2波長程度以下に設定されている。
 図4~6に示した構造体は、近年、液晶モニターなどで外光の写り込みを抑制するフィルムなどに使用される例があるが、液晶素子50では、第1透明基板1と第1のシール材4の接合部の影を見えなくするために利用している。なお、モスアイ構造体として円錐形状(図4)及び四角錐形状(図5)を示したが、三角錐形状や五角錐形状であっても良い。
 また、図4及び図5に示したモスアイ構造体や、図6に示したモスリン構造体の突起の配列を円形配列や直線配列としても良い。また、図4及び図5に示したモスアイ構造体の突起の配列を、例えば、隣の列と半ピッチずらしたりすることもできる。
 図7は、他の液晶素子60の断面図である。図8は、図7のA部で示す液晶素子60の第1透明基板1と第1のシール材4との接合部及び第1のシール材4と第2透明基板2との接合部断面の拡大図である。図9は、第1透明基板1と第1のシール材4の接合部、及び第1のシール材4と第2透明基板2との接合部における屈折率の変化を表わすグラフである。
 図7及び図8においては、図1及び図2と同じ構成要素には、同一番号を付し重複する説明を省略する。図7に示す液晶素子60が、図1に示す液晶素子50と異なるところは、第1のシール材4と第2透明基板2との間にもモスアイ構造体7bを設けた点のみである。なお、液晶素子60では、第1透明基板1と第1のシール材4の間には、モスアイ構造体7aが設けられている。図9において、縦軸が屈折率(n)を表わし、横軸は、第1透明基板から入射した光がシール材に入射し、第2透明基板へと入射するまでの距離(D)を表わしている。
 以下、モスアイ構造体を両側に設けた場合の光学的特性について説明する。
 液晶素子60において、第1透明基板1の屈折率をn1とし、第1透明基板1の内部では屈折率は一定である。モスアイ構造体7aの屈折率をn1とする。第1のシール材4の屈折率はn2とし、第1のシール材4の屈折率はどの箇所においても一定である。モスアイ構造体7bの屈折率をn1とする。第2透明基板2の屈折率をn1とし、第2透明基板2の内部では屈折率は一定である。
 第1透明基板1へ入射した可視光は、屈折率n1の第1透明基板1を通過し、屈折率n1の微細光学構造であるモスアイ構造体7aを通過した後、屈折率はn2の第1のシール材4に入射する。微細光学構造であるモスアイ構造体7aの突起高さh(区間S1)の区間は、屈折率n1から屈折率n2に向けて滑らかな屈折率の分布が形成されているので、第1透明基板1と第1のシール材4の接合部において無反射特性を示す。可視光はさらに屈折率n2の第1のシール材4通過し、屈折率n1の微細光学構造であるモスアイ構造体7bを通過し、屈折率n1の第2透明基板2を通過した後に、液晶素子60から出射する。2番目の突起高さh(区間S2)の区間は、屈折率n2から屈折率n1に向けて滑らかな屈折率の分布が形成されているので、同様に、第1のシール材4と第2透明基板2との接合部でも無反射特性を示す。このように、液晶素子60では、第1透明基板1側、第2透明基板2側の両方の接合部の影が見えなくなり、さらに液晶素子60の透明度は高くなる。
 図10は、更に他の液晶素子70の断面図である。
 図10において、図1に示した液晶素子50と同一の構成には同一番号を付し重複する説明を省略する。図10に示す液晶素子70において、図1に示した液晶素子50と異なる点は、第1のシール材4で封止された液晶層3内において、第2透明基板2側に光学構造体8が設けられている点である。
 光学構造体8はフレネルレンズである。液晶層3は、印加電圧により液晶の配向を変化させてレンズ機能を発現する。液晶層3への印加電圧のON/OFFにより、可視光の透過、非透過を制御するように構成しても良い。
 光学構造体8を備えた液晶素子70では、第1透明基板1と第1のシール材4の接合部で無反射特性を示すので、液晶素子50と同様に、見えていた影が消えるので、液晶素子70の透明度は高くなる。
 図11は、更に他の液晶素子80の断面図である。
 図11において、図7に示した液晶素子60と同一の構成には同一番号を付し重複する説明を省略する。図11に示す液晶素子70において、図7に示した液晶素子60と異なる点は、第1のシール材4で封止された液晶層3内において、第2透明基板2側に光学構造体8が設けられている点である。
 光学構造体8はフレネルレンズである。液晶層3は、印加電圧により液晶の配向を変化させてレンズ機能を発現する。液晶層3への印加電圧のON/OFFにより、可視光の透過、非透過を制御するように構成しても良い。
 光学構造体8を備えた液晶素子80では、第1透明基板1と第1のシール材4の接合部と、第2透明基板2と第1シール材4の接合部とで無反射特性を示すので、液晶素子60と同様に、見えていた影が消えるので、液晶素子80の透明度は更に高くなる。
 図12は、更に他の液晶素子90の断面図である。
 図12において、図7に示した液晶素子60と同一の構成には同一番号を付し重複する説明を省略する。図12に示す液晶素子90において、図7に示した液晶素子60と異なる点は、第1のシール材4で封止された液晶層3内において、第1透明基板1側に光学構造体8が設けられている点である。
 光学構造体8はフレネルレンズである。液晶層3は、印加電圧により液晶の配向を変化させてレンズ機能を発現する。液晶層3への印加電圧のON/OFFにより、可視光の透過、非透過を制御するように構成しても良い。
 光学構造体8を備えた液晶素子90では、第1透明基板1と第1のシール材4の接合部と、第2透明基板2と第1シール材4の接合部とで無反射特性を示すので、液晶素子60と同様に、見えていた影が消えるので、液晶素子90の透明度は更に高くなる。
 図12に示す液晶素子90では、第1透明基板1と第2透明基板2との両方にモスアイ構造体7a及び7bを備えていたが、モスアイ構造体は、どちらか一方の基板に備えられていてもよい。
 図12に示した液晶素子90は、光学構造体8を第1透明基板1側に設けているので、第1透明基板1側から平行光線が入ったときにフレネルレンズで屈折し、さらに第2透明基板2側でも屈折するため、レンズパワーが両方の基板に分散され、収差が少ないというメリットがある。しかし、実用的には差がないので、光学構造体8は第1透明基板1側に設けても良いし、第2透明基板2側に設けても良い。
 図10、11及び12に示す液晶素子70、80及び90では、光学構造体8はフレネルレンズであったが、光学構造体8を、マイクロレンズや、他の光学構造体とすることも可能である。
 なお、上述した液晶素子50、60、70、80及び90において、第1透明基板1が存在する側を視認側とする。
 次に液晶素子の製造工程について説明する。
 図13(a)~図13(d)は、基板の製造工程を説明するための図である。
 図13では、第1透明基板1または第2透明基板2に光学構造体8とモスアイ構造体をインプリント成型法によって同時に形成する工程を説明する。なお、図13では基板の製造工程の必要な部分のみを示し、実際の液晶素子として完成までの工程は省略する。
 図13(a)において、第1透明基板1または第2透明基板2となる基板22をセットし、供給器20から基板22上に光硬化樹脂21を所定量滴下する。
 次に、図13(b)において、モールド23を基板22に加圧し、光硬化樹脂22の形を整える。モールド23には光学構造体8に対応するモールド形状8m、及びモスアイ構造体7に対応するモールド形状7mが形成されている。
 次に図13(c)において、基板22の裏側から紫外線(UV)を照射して光硬化樹脂21を硬化させる。
 次に、図13(d)において、モールド23を取り外し、インプリント成形基板24を完成する。インプリント成形基板24は、第1透明基板1または第2透明基板2として液晶素子を構成することができる。
 図13で説明した製造方法を採用すれば、光学構造体8とモスアイ構造体7を同一材料、同一行程にて形成でき、ほとんどコストをかけることなく微細光学構造であるモスアイ構造体7を実現できる。これにより、第1のシール材4との接合部の影が見えない透明度の高い液晶素子を低コストで提供できる。なお、使用する光硬化樹脂21は、硬化後の屈折率が基板22の屈折率と近いものを使用することが望ましい。使用する光硬化樹脂21の硬化後の屈折率が基板22の屈折率と近い場合、シール材との接合部近辺において無反射特性がさらに良好となり好ましい。また、基板22の材質はガラスでも良いし、樹脂でも良い。図13では光学構造体8とモスアイ構造体7を製造する方法について説明したが、図13に示す製造方法は、光学構造体8とモスリン構造体(図6参照)を製造する方法にも適用することができる。
 図14(a)及び図14(b)は、他の基板の製造工程を説明するための図である。
 図14では、第1透明基板1または第2透明基板2と光学構造体8及びモスアイ構造体7を射出成型法によって同時に形成する製造工程を説明する。図14では、基板の製造工程の必要な部分のみを示し、実際の液晶素子として完成までの工程は省略する。
 図14(a)において、射出成型モールド金型25及び射出成型モールド金型26が図示しない射出成形機にセットされる。射出成形機により、所定の樹脂が、所定の圧力、所定の温度、所定の時間、所定の量により図示しないノズルから金型25及び26内へ射出される。
 次に、所定時間冷却した後、射出成型モールド金型25及び射出成型モールド金型26を開き、射出成形基板27を取り出す(図14(b)参照)。取り出された射出成形基板27は、必要であれば所定の加工・洗浄等を行った後、成形基板27を第1透明基板1または第2透明基板2として液晶素子を構成することができる。
 図14に示す製造方法によれば、第1透明基板1又は第2透明基板2となる基板27、光学構造体8、及びモスアイ構造体7を同一樹脂材料、同一加工行程にて形成できる。このように、第1透明基板、第2透明基板の形状を作ることにより、基板及びシール材との接合部における無反射特性が良好となり、透明度の高い液晶素子を低コストで提供できる。なお、一体成形された基板27では、基板27及びモスアイ構造体7の屈折率が同一となるため、第1のシール材4との接合部における無反射特性が極めて良好となり好ましい。図14では基板、光学構造体、及びモスアイ構造体を製造する方法について説明したが、図14に示す製造方法は、基板、光学構造体、及びとモスリン構造体(図6参照)を製造する方法にも適用することができる。
 図15は、更に他の液晶素子100の断面図である。
 図15において、図11に示した液晶素子80と同一の構成には同一番号を付し重複する説明を省略する。図15に示す液晶素子100において、図11に示した液晶素子80と異なる点は、第1透明基板1と第2透明基板2との間で、第1のシール材4の外側領域にもモスアイ構造体7を設けたことである。
 図15において、第1透明基板1及び第2透明基板2にはそれぞれ、第1のシール材4に対応する接合部から外側領域の第2のシール材5に対応する接合部に至るまで、全面にわたってモスアイ構造体107a及びモスアイ構造体107bが設けられている。また、第1のシール材4と第2のシール材5の間の空間には充填用樹脂109が封止されている。
 モスアイ構造体107a及びモスアイ構造体107bは、図4において説明したモスアイ構造体と同様の形状を有している。しかしながら、モスアイ構造体107a及びモスアイ構造体107bは、図5において説明したモスアイ構造体と同様の形状を有していてもよい。さらに、モスアイ構造体107a及びモスアイ構造体107bは、図6において説明したモスリン構造体であっても良い。
 それぞれの基板に設けたモスアイ構造体107a及びモスアイ構造体107bは、同一の構造体であっても、異なる構造体であってもよい。
 液晶素子100では、第1透明基板1及び第2透明基板2に挟持された空間で、液晶層3以外の空間には、全てモスアイ構造体が設けられている。したがって、第1透明基板側から入射した可視光で液晶層3の外側領域を通過するものはすべてモスアイ構造体7aまたは7bを通過する。そのため、第1のシール材4との接合部から外側の領域全面において、無反射特性を示し、より広い領域で透明度の高い液晶素子を提供できる。液晶素子100は、前述した図13または図14に記載の製造方法を利用して製造することが可能である。
 以下、液晶素子100の眼鏡への応用について説明する。
 図16は、図15で示した液晶素子100をもとに作成したフィニッシュトレンズ110の平面図である。図17は、図16に示すフィニッシュトレンズ110のA-A断面図である。
 ここで、図15に示すような液晶素子100では、何も研磨されていない円盤状の第1透明基板1及び第2透明基板2を有するものとする。その後、図17に示すように、第1透明基板1及び第2透明基板2を、それぞれレンズ形状に研磨したものを、「フィニッシュドレンズ」と言うものとする。また、「フィニッシュドレンズ」を眼鏡のフレーム合わせてカットしたものを「エッジングレンズ」と言うものとする。
 図16において、2点鎖線で囲われた楕円形状の部分が、エッジングレンズ120であり、フィニッシュトレンズ110を眼鏡のフレームに合わせた形状に加工したものである。エッジングレンズ120の形状は楕円形状に限らず、眼鏡フレームに合わせた形状で良い。エッジングレンズ120にカットする加工範囲は、B領域(図17参照)であることが望ましい。Bの領域は、第1のシール材4の外側領域であって、第2のシール材5の内側の領域である。第2のシール材5にはスペーサ6が混入されているのでカットして除去することが望ましい。
 図17において、光学構造体であるフレネルレンズ8の各ブレ―ズに対応して第1透明基板1及び第2透明基板2にそれぞれ透明電極(不図示)が形成されている。第1透明基板1及び第2透明基板2、透明電極、及び液晶層3により、液晶レンズ構造130が構成されている。
 なお、図17に示すフィニッシュドレンズ110において、第1透明基板1が存在する側を視認側とする。フィニッシュドレンズ110からカットしたエッジングレンズ120においても、同様である。
 図18は、エッジングレンズ120を眼鏡フレーム140に取り付けた液晶眼鏡150の斜視図である。
 液晶眼鏡150では、エッジングレンズ120が、眼鏡フレーム140に装着されている。エッジングレンズ120が眼鏡フレームに装着されることによって、液晶レンズ構造130の透明電極(不図示)と接続された接続ライン(不図示)が、ヨロイ部141のコネクタ(不図示)と接続される。エッジングレンズ120では、第1のシール材4の外側のB領域であれば、エッジング加工されても外部との接続が可能な構造になっている。ヨロイ部141には、電源供給部(不図示)が内蔵されており、コネクタを介して液晶レンズ構造130の透明電極に所定の電圧を供給することができるように構成されている。電圧の供給のON/OFFは、ヨロイ部141に設けられているスイッチ(不図示)によって制御することができる。図18において、便宜上、エッジングレンズ120のシール材4を点線で示しているが、実際には透明で見えない。
 例えば、エッジングレンズ120を遠点に焦点が合うようなパワーを得られるレンズ形状とし、液晶レンズ構造130が動作しない場合には、液晶眼鏡150は遠点用の眼鏡として作用するように構成することができる。さらに、液晶レンズ構造130の透明電極に所定の電圧が供給されて、液晶レンズ構造130がフレネルレンズ8のパワーを有するように動作すると、液晶眼鏡150は近点用の眼鏡として作用するように構成とすることができる。上記の遠点用の眼鏡と、近点用の眼鏡との切り換えは、電源供給を制御するスイッチにより行うことができる。
 従来の液晶眼鏡では、シール材や封止部などの接合部において影が見えて見栄えが悪くなり、また使用者にとっても使いにくいものであった。従って、眼鏡においては、できるだけ広い領域でかつ高い透明性が求められる。
 しかしながら、上記の液晶レンズ構造130を有する液晶眼鏡150では、第1透明基板1及び第2透明基板2に挟持された空間で液晶層3の外側領域はすべてモスアイ構造体107a及びモスアイ構造体107bが設けられている。したがって、第1透明基板1側から入射した可視光で液晶層3の外側領域を通過するものは全て、モスアイ構造体107a及びモスアイ構造体107bを通過する。そのため、広い範囲で無反射特性を示めすことができ、より透明度の高い電子眼鏡150を提供することが可能となった。

Claims (7)

  1.  視認側に配置された第1基板と、
     前記第1基板に対向する第2基板と、
     前記第1基板と前記第2基板との間に配置されたシール材と、
     前記第1基板、前記第2基板、及び前記シール材によって封止された液晶層と、
     前記第1基板と前記シール材との間に位置されたモスリン構造体又はモスアイ構造体と、
     を有することを特徴とする液晶素子。
  2.  前記シール材と前記第2基板との間に設けられた他のモスリン構造体又はモスアイ構造体を更に有する、請求項1に記載の液晶素子。
  3.  前記第1基板又は前記第2基板の前記液晶側に設けられた光学構造体を更に有する、請求項1又は2に記載の液晶素子。
  4.  前記光学構造体は、前記モスリン構造体又はモスアイ構造体と同一の樹脂で形成されている、請求項3に記載の液晶素子。
  5.  前記第1基板又は前記第2基板は樹脂基板であり、前記モスリン構造体又はモスアイ構造体は前記樹脂基板を加工して形成されている、請求項1~4の何れか一項に記載の液晶素子。
  6.  前記第1基板又は前記第2基板と、前記モスリン構造体又はモスアイ構造体とは、一体的に形成されている、請求項1~4の何れか一項に記載の液晶素子。
  7.  前記モスリン構造体又はモスアイ構造体は、前記第1基板と前記第2基板との間で、前記シール材の外側領域にも設けられている、請求項1~6の何れか一項に記載の液晶素子。
PCT/JP2011/079533 2010-12-20 2011-12-20 液晶素子 WO2012086649A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012549835A JP5744062B2 (ja) 2010-12-20 2011-12-20 液晶素子
EP11850828.2A EP2657756A4 (en) 2010-12-20 2011-12-20 LIQUID CRYSTAL ELEMENT
CN201180060758.9A CN103261958B (zh) 2010-12-20 2011-12-20 液晶元件
US13/994,733 US9104072B2 (en) 2010-12-20 2011-12-20 Liquid crystal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-283226 2010-12-20
JP2010283226 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086649A1 true WO2012086649A1 (ja) 2012-06-28

Family

ID=46313917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079533 WO2012086649A1 (ja) 2010-12-20 2011-12-20 液晶素子

Country Status (5)

Country Link
US (1) US9104072B2 (ja)
EP (1) EP2657756A4 (ja)
JP (1) JP5744062B2 (ja)
CN (1) CN103261958B (ja)
WO (1) WO2012086649A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119705A (ja) * 2012-12-19 2014-06-30 Sony Corp 防湿構造および表示装置
GB201506147D0 (en) * 2015-04-10 2015-05-27 Hanna Moore & Curley A Micro-Fastened, Sealed Light Modulator
CN106094387B (zh) * 2016-06-22 2019-01-22 武汉华星光电技术有限公司 液晶透镜和3d显示器
EP3694225A4 (en) * 2017-10-04 2021-06-16 AGC Inc. GLASS PLATE CONSTRUCTION
CN109975988B (zh) * 2017-12-28 2021-12-17 上海仪电显示材料有限公司 裸眼3d柱状透镜和3d显示屏模组
CN109243305B (zh) * 2018-09-17 2021-10-12 京东方科技集团股份有限公司 显示面板、显示装置和显示面板的制造方法
GB2593150A (en) * 2020-03-05 2021-09-22 Vlyte Ltd A light modulator having bonded structures embedded in its viewing area

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205916A (ja) * 1985-03-09 1986-09-12 Matsushita Electric Ind Co Ltd 液晶表示装置の製造方法
JPH0695130A (ja) * 1991-01-21 1994-04-08 Toshiba Corp 液晶表示装置
JP2002286906A (ja) * 2001-03-23 2002-10-03 Mitsubishi Chemicals Corp 反射防止方法及び反射防止構造並びに反射防止構造を有する反射防止構造体及びその製造方法
JP2004117540A (ja) * 2002-09-24 2004-04-15 Sharp Corp 表示装置および板状部材切断装置
JP2004287238A (ja) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd 反射防止部材及びこれを用いた電子機器
JP2007304452A (ja) * 2006-05-15 2007-11-22 Hitachi Displays Ltd 液晶表示装置
JP2008310188A (ja) 2007-06-15 2008-12-25 Asahi Glass Co Ltd 液晶光学素子
JP2010271488A (ja) * 2009-05-20 2010-12-02 Sharp Corp 液晶セル及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713146A (ja) * 1993-06-23 1995-01-17 Asahi Glass Co Ltd 液晶表示素子およびそれを用いた応用装置
US6707518B1 (en) * 1999-07-12 2004-03-16 Coho Holdings, Llc Electro-optic device allowing wavelength tuning
JP2001264777A (ja) * 2000-03-15 2001-09-26 Toshiba Corp 液晶セル
JP4201002B2 (ja) 2005-03-28 2008-12-24 セイコーエプソン株式会社 液晶装置、その製造方法およびプロジェクタ
CN100416383C (zh) * 2005-03-28 2008-09-03 精工爱普生株式会社 液晶装置及其制造方法、投影仪
JP2008216777A (ja) * 2007-03-06 2008-09-18 Victor Co Of Japan Ltd 液晶表示素子及びその製造方法
JP2010224424A (ja) * 2009-03-25 2010-10-07 Citizen Holdings Co Ltd 液晶光学素子とその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205916A (ja) * 1985-03-09 1986-09-12 Matsushita Electric Ind Co Ltd 液晶表示装置の製造方法
JPH0695130A (ja) * 1991-01-21 1994-04-08 Toshiba Corp 液晶表示装置
JP2002286906A (ja) * 2001-03-23 2002-10-03 Mitsubishi Chemicals Corp 反射防止方法及び反射防止構造並びに反射防止構造を有する反射防止構造体及びその製造方法
JP2004117540A (ja) * 2002-09-24 2004-04-15 Sharp Corp 表示装置および板状部材切断装置
JP2004287238A (ja) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd 反射防止部材及びこれを用いた電子機器
JP2007304452A (ja) * 2006-05-15 2007-11-22 Hitachi Displays Ltd 液晶表示装置
JP2008310188A (ja) 2007-06-15 2008-12-25 Asahi Glass Co Ltd 液晶光学素子
JP2010271488A (ja) * 2009-05-20 2010-12-02 Sharp Corp 液晶セル及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2657756A4 *

Also Published As

Publication number Publication date
EP2657756A1 (en) 2013-10-30
JPWO2012086649A1 (ja) 2014-05-22
JP5744062B2 (ja) 2015-07-01
CN103261958A (zh) 2013-08-21
EP2657756A4 (en) 2014-07-23
US9104072B2 (en) 2015-08-11
US20130265536A1 (en) 2013-10-10
CN103261958B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5744062B2 (ja) 液晶素子
CN109147595B (zh) 显示装置及其制作方法
JP7351244B2 (ja) 合わせガラス、合わせガラスの製造方法、調光装置、調光セル及び調光装置用積層体
US9977293B2 (en) Electronic eyeglass and liquid crystal lens production methods
WO2011132789A1 (ja) エッジング前レンズ及びエッジングレンズの製造方法
KR20190017935A (ko) 열가소성 광학 장치
JP2012145941A (ja) 液晶ディスプレイ装置用カラーシフト低減光学フィルム及びこれを具備する液晶ディスプレイ装置
JP2017026887A (ja) カバーパネル、操作パネル、操作パネルの製造方法
CN104808277A (zh) 偏振光片和包含其的液晶显示装置
JP5589157B2 (ja) マイクロリターダフィルムを形成するための方法
CN108594515B (zh) 柔性偏光盖板及其制备方法、包含它的显示面板和显示装置
CN107250848A (zh) 层叠型光学构件、照明装置、显示装置以及电视接收装置
JPWO2017098687A1 (ja) 光学デバイス
CN105116560A (zh) 3d显示装置
CN101968606B (zh) 掩膜基板和边框胶固化系统
JP2011221273A (ja) 反射防止部材、反射防止部材の製造方法、電気光学装置、電子機器
JP5654768B2 (ja) エッジング前レンズ及びエッジングレンズの製造方法
TWM527876U (zh) 光學膠曲面貼合裝置
TWM587282U (zh) 顯示裝置
JP5665375B2 (ja) 液晶レンズの製造方法
KR101423044B1 (ko) 액정표시장치
KR20080075821A (ko) 입체 영상용 평면 렌티큘라렌즈 시트
KR101177865B1 (ko) 3d 광학필름을 채용한 편광필름 및 이를 이용한 3d 디스플레이
CN208314401U (zh) 显示屏和显示装置
CN214202981U (zh) 一种显示屏保护镜片

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180060758.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549835

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011850828

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011850828

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13994733

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE