WO2012086576A1 - アミン化合物及び有機el素子 - Google Patents

アミン化合物及び有機el素子 Download PDF

Info

Publication number
WO2012086576A1
WO2012086576A1 PCT/JP2011/079322 JP2011079322W WO2012086576A1 WO 2012086576 A1 WO2012086576 A1 WO 2012086576A1 JP 2011079322 W JP2011079322 W JP 2011079322W WO 2012086576 A1 WO2012086576 A1 WO 2012086576A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
mmol
halogen atom
Prior art date
Application number
PCT/JP2011/079322
Other languages
English (en)
French (fr)
Inventor
松本 直樹
高則 宮崎
靖 原
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2012086576A1 publication Critical patent/WO2012086576A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms

Definitions

  • the present invention relates to a novel amine compound and an organic EL device using the same.
  • An organic EL element is a surface-emitting element in which an organic thin film is held between a pair of electrodes, and has features such as a thin and light weight, a high viewing angle, and a high-speed response, and is expected to be applied to various display elements. .
  • An organic EL element is an element that utilizes light emitted when holes injected from an anode and electrons injected from a cathode are recombined in a light emitting layer, and has a structure of a hole transport layer, a light emitting layer
  • a multi-layer laminate type in which an electron transport layer and the like are laminated is the mainstream.
  • the charge transport layer such as the hole transport layer and the electron transport layer does not emit light by itself, but facilitates the injection of charges into the light emitting layer, and the charge injected into the light emitting layer or the light emitting layer. It plays the role of confining the energy of the generated excitons. Therefore, the charge transport layer is very important in reducing the driving voltage and the light emission efficiency of the organic EL element.
  • an amine compound having an appropriate ionization potential and hole transport ability is used.
  • NPD 4,4′-bis [N- (1-naphthyl) -N-phenyl] biphenyl
  • the driving voltage, light emission efficiency and durability of an element using NPD for the hole transport layer are not sufficient, and development of new materials is required.
  • an organic EL device using a phosphorescent material for the light emitting layer has been developed, and a device using phosphorescent light emission requires a hole transport material having a high triplet level. . From the viewpoint of triplet levels, NPD is not sufficient.
  • an organic EL element in which a phosphorescent material having green light emission and NPD are combined reduces the luminous efficiency (for example, non-patent Reference 1).
  • amine compounds having a carbazole ring in the molecule have been reported as hole transport materials.
  • An amine compound having a carbazole ring is a useful molecular skeleton because it has a high triplet level compared to NPD and is excellent in hole transportability, but many of the compounds reported so far are A 3-aminocarbazole compound having an amino group at the 3-position of the carbazole ring (see, for example, Patent Documents 1 and 2). Since the 3-position of the carbazole ring is the para-position of the nitrogen atom that is an electron donor property, the amino group substituted at the 3-position is activated by the nitrogen atom of the carbazole ring.
  • the ionization potential of the 3-aminocarbazole compound is lower than that of a normal amine compound. Therefore, when the 3-aminocarbazole compounds reported so far are used for the hole transport layer, there is a problem that the hole injection barrier to the light emitting layer is increased and the driving voltage of the organic EL device is increased. .
  • the amino group bonded to the 2-position of the carbazole ring may have a more appropriate ionization potential than that bonded to the 3-position.
  • 2-ditolylaminocarbazoles are exemplified as charge transport materials in electrophotographic photoreceptors (see, for example, Patent Document 3).
  • the exemplified compounds have a low glass transition temperature, and when used in an organic EL device, there is a problem in durability at high temperature driving.
  • 7-phenyl-2-aminocarbazole compounds are also disclosed as materials for organic electronic devices (see, for example, Patent Document 4).
  • Patent Document 4 in which the phenyl group is substituted at the 7-position of the carbazole ring, which is the para-position of the amino group, has a small molecular energy gap due to the wide conjugation of pi electrons, and the triplet level. Is also low. Therefore, sufficient luminous efficiency cannot be obtained with an element combined with a phosphorescent material having green emission.
  • Non-Patent Document 2 When driving an organic EL device, a phenomenon occurs in which electrons that have not recombined with holes in the light emitting layer are injected into the hole transport layer, so that the irreversible amine compound accompanying the injection of electrons into the hole transport layer Reduction is considered as one of the deterioration factors of the element.
  • An object of the present invention is to provide an amine compound particularly suitable for a hole transport material of an organic EL device. Another object of the present invention is to provide an organic EL device having high luminous efficiency, low driving voltage, and excellent durability.
  • the present inventors have found that the amine compound represented by the following general formula (1) is excellent in hole transport properties and exhibits good electron acceptance stability, and that the compound is transported by holes. It has been found that the organic EL element used for the layer has a low driving voltage and is excellent in luminous efficiency and durability. And based on these knowledge, it came to complete this invention. That is, this invention provides the amine compound represented by following General formula (1).
  • Ar represents a substituent having 1 to 36 carbon atoms or an aryl group having 6 to 30 carbon atoms which may have a halogen atom.
  • a and B each independently represent a heteroaryl group having 3 to 20 carbon atoms having at least one C ⁇ N bond, which may have a substituent having 1 to 36 carbon atoms or a halogen atom.
  • X 1 and X 2 each independently represent a carbon atom or a nitrogen atom.
  • R 1 , R 2 and R 4 to R 7 are each independently a hydrogen atom, a halogen atom, a straight chain, branched or cyclic alkyl group having 1 to 18 carbon atoms, a straight chain or branched chain having 1 to 18 carbon atoms.
  • a cyclic alkoxy group a substituent having 1 to 36 carbon atoms, or an aryl group having 6 to 30 carbon atoms which may have a halogen atom, or a substituent or halogen atom having 1 to 36 carbon atoms. And may represent a heteroaryl group having 4 to 20 carbon atoms.
  • R 3 represents a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, or a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms.
  • R 8 and R 9 are each independently a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms, or a carbon number It represents a 1 to 36 substituent group or an aryl group having 6 to 30 carbon atoms which may have a halogen atom.
  • m and n each independently represents an integer of 0 or 1 [provided that m + n is 1 or 2], and p and q each independently represents an integer of 0 to 4.
  • the present invention further provides an organic EL device having at least one layer selected from a light emitting layer, a hole transport layer and a hole injection layer, which contains the amine compound represented by the general formula (1). .
  • the amine compound of the present invention represented by the general formula (1) has a higher hole transport ability than that of the conventional material and has a good electron accepting stability. Efficiency and durability can be improved. 2
  • Ar represents a substituent having 1 to 36 carbon atoms or an aryl group having 6 to 30 carbon atoms which may have a halogen atom.
  • the aryl group having 6 to 30 carbon atoms which may have a substituent having 1 to 36 carbon atoms or a halogen atom represented by Ar
  • the aryl group having 6 to 30 carbon atoms is not particularly limited. Specific examples thereof include phenyl group, biphenylyl group, terphenyl group, naphthyl group, fluorenyl group, phenanthryl group, benzofluorenyl group, dibenzofluorenyl group, fluoranthenyl group, pyrenyl group, chrysenyl group, perylenyl group. And a picenyl group.
  • Examples of the substituent having 1 to 36 carbon atoms include linear, branched or cyclic alkyl groups, linear, branched or cyclic alkoxy groups, aryloxy groups, trialkylsilyl groups, triarylsilyl groups, and 9-carbazolyl groups.
  • Examples of the halogen atom include fluorine, chlorine, bromine and iodine. There are no particular limitations on the substitution position and the number of substitutions of the substituent having 1 to 36 carbon atoms and the halogen atom.
  • the linear, branched or cyclic alkyl group may have a halogen atom, and specific examples of the linear, branched or cyclic alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec -Butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, trifluoromethyl group, cyclopropyl group, cyclohexyl group and the like can be exemplified. It is not limited.
  • Linear, branched or cyclic alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, stearyloxy Examples of the group include, but are not limited to, groups.
  • aryloxy group examples include a phenoxy group, a 4-methylphenyloxy group, a 3-methylphenyloxy group, a 4-biphenyloxy group, a 3-biphenyloxy group, a 1-naphthyloxy group, and a 2-naphthyloxy group. However, it is not limited to these.
  • trialkylsilyl group examples include, but are not limited to, a trimethylsilyl group, a triethylsilyl group, and a tributylsilyl group.
  • Triarylsilyl group includes triphenylsilyl group, tri (4-methylphenyl) silyl group, tri (3-methylphenyl) silyl group, tri (4-methylphenyl) silyl group, tri (4-biphenyl) silyl group
  • the present invention is not limited to these examples.
  • Ar include phenyl group, 4-methylphenyl group, 3-methylphenyl group, 2-methylphenyl group, 4-ethylphenyl group, 3-ethylphenyl group, 2-ethylphenyl group, 4-n- Propylphenyl group, 4-isopropylphenyl group, 2-isopropylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-sec-butylphenyl group, 4-tert-butylphenyl group, 4-n- Pentylphenyl group, 4-isopentylphenyl group, 4-neopentylphenyl group, 4-n-hexylphenyl group, 4-n-octylphenyl group, 4-n-decylphenyl group, 4-n-dodecylphenyl group, 4-cyclopentylphenyl group, 4-cyclohexylphenyl group, 4-tritylphen
  • Ar has a high triplet level as compared with a phosphorescent material having a high glass transition temperature and green emission, and therefore Ar has 1 to It is preferably a 4-biphenylyl group, a 3-biphenylyl group, an m-terphenyl group, a phenyl group, or a 2-fluorenyl group, which may have 36 substituents or a halogen atom.
  • a and B each independently have at least one C ⁇ N bond optionally having a substituent having 1 to 36 carbon atoms or a halogen atom. Represents a heteroaryl group having 3 to 20 carbon atoms.
  • heteroaryl group having 3 to 20 carbon atoms having at least one C ⁇ N bond which may have a substituent having 1 to 36 carbon atoms or a halogen atom represented by A and B, at least one C ⁇ N
  • the heteroaryl group having 3 to 20 carbon atoms having a bond for example, imidazolyl group, pyrazolyl group, thiazolyl group, isothiazolyl group, oxazolyl group, isoxazolyl group, Pyridyl group, pyrimidyl group, pyrazyl group, 1,3,5-triazyl group, benzimidazolyl group, indazolyl group, benzothiazolyl group, benzisothiazolyl group, 2,1,3-benzothiadiazolyl group, benzoxazolyl group , Benzisoxazolyl group, 2,1,3-Benzoxadiazolyl group, quinolyl , It can be exemplified isoquinolyl group,
  • a and B include 1-imidazolyl group, 2-phenyl-1-imidazolyl group, 2-phenyl-3,4-dimethyl-1-imidazolyl group, 2,3,4-triphenyl-1-imidazolyl.
  • a and B are each independently a substituent having 1 to 36 carbon atoms or a halogen atom, because it is preferable to have high stability against reduction and heat resistance.
  • the substituent may be an imidazolyl group, a thiazolyl group, a pyridyl group, a pyrimidyl group, a pyrazyl group, a 1,3,5-triazyl group, a benzoimidazolyl group, a benzothiazolyl group, or a quinoxalyl group, which may be present. .
  • X 1 and X 2 each independently represent a carbon atom or a nitrogen atom. From the viewpoint of easy synthesis of the amine compound, both X 1 and X 2 are preferably carbon atoms.
  • R 1 , R 2 and R 4 to R 7 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms.
  • halogen atom represented by R 1 , R 2 and R 4 to R 7 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the linear, branched or cyclic alkyl group having 1 to 18 carbon atoms represented by R 1 , R 2 and R 4 to R 7 may contain a halogen atom.
  • a halogen atom include a methyl group, an ethyl group, Propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, trifluoromethyl group, cyclopropyl group, cyclohexyl group, etc.
  • the present invention is not limited to these examples.
  • the linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms represented by R 1 , R 2 and R 4 to R 7 may contain a halogen atom. Specific examples thereof include a methoxy group, an ethoxy group, Examples include propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, stearyloxy group, but are not limited thereto. .
  • the substituent having 1 to 36 carbon atoms represented by R 1 , R 2 and R 4 to R 7 or the aryl group having 6 to 30 carbon atoms which may have a halogen atom is not particularly limited. Specific examples thereof include those similar to the specific examples of the substituent having 1 to 36 carbon atoms exemplified for Ar and the aryl group having 6 to 30 carbon atoms which may have a halogen atom.
  • the aryl group is an aromatic group containing at least one heteroatom among an oxygen atom, a nitrogen atom and a sulfur atom, and is not particularly limited.
  • the substituent having 1 to 36 carbon atoms and the halogen atom are not particularly limited. Specific examples of the substituent having 1 to 36 carbon atoms and the halogen atom include those similar to the specific examples of the substituent having 1 to 36 carbon atoms and the halogen atom exemplified as Ar.
  • R 3 is a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, or a linear, branched or branched group having 1 to 18 carbon atoms. Represents a cyclic alkoxy group.
  • halogen atom represented by R 3 a straight-chain, branched or cyclic alkyl group having 1 to 18 carbon atoms, or a straight-chain, branched or cyclic alkoxy group having 1 to 18 carbon atoms are the above R 1 , respectively.
  • R 2 and R 4 to R 7 specific examples of halogen atoms, linear, branched or cyclic alkyl groups having 1 to 18 carbon atoms, or linear, branched or cyclic alkoxy groups having 1 to 18 carbon atoms The same thing is mentioned.
  • R 8 and R 9 are each independently a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, or a C 1 to 18 carbon atoms.
  • a straight-chain, branched or cyclic alkoxy group, or a C1-C36 substituent or a C6-C30 aryl group optionally having a halogen atom is represented.
  • halogen atom represented by R 8 and R 9 a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, or a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms are as follows:
  • the halogen atom exemplified for the above R 1 , R 2 and R 4 to R 7 a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, or a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms
  • the same thing as the specific example of is mentioned.
  • substituent having 1 to 36 carbon atoms represented by R 8 and R 9 or the aryl group having 6 to 30 carbon atoms which may have a halogen atom are not particularly limited. And the same examples as the specific examples of the substituent having 1 to 36 carbon atoms and the aryl group having 6 to 30 carbon atoms which may have a halogen atom.
  • m and n each independently represents an integer of 0 or 1. However, m + n is 1 or 2. An amine compound in which m is 1 and n is 0, and an amine compound in which m is 0 and n is 1 are preferable. An amine compound in which m is 1 and n is 0 is particularly preferable.
  • p and q each independently represents an integer of 0 to 4.
  • the amine compound represented by the general formula (1) can be synthesized by, for example, a known method (Tetrahedron Letters, 1998, Vol. 39, page 2367). Specifically, it can be synthesized by the following route.
  • (Route b) 2-halogenated-9-substituted carbazole is produced by reacting 9H-carbazole compound halogenated at the 2-position with a halogenated aromatic compound in the presence of a base using a copper catalyst or a palladium catalyst. Then, the product is reacted with a primary amine compound in the presence of a base using a copper catalyst or a palladium catalyst to obtain a secondary amine. Further, the obtained secondary amine is reacted with a halogenated aromatic compound in the presence of a base using a copper catalyst or a palladium catalyst.
  • the amine compound represented by the general formula (1) of the present invention may be used as a material for forming at least one layer selected from a light emitting layer, a hole transport layer and a hole injection layer of an organic EL device. it can.
  • the amine compound represented by the general formula (1) is excellent in hole transport ability, when used as a hole transport layer and / or a hole injection layer, the driving voltage of the organic EL device is reduced. Thus, it is possible to achieve high luminous efficiency and improved durability.
  • the amine compound represented by the general formula (1) has a higher triplet level than conventional materials, not only fluorescent light-emitting materials but also elements using phosphorescent light-emitting materials in a light-emitting layer are used. High luminous efficiency can be obtained.
  • the amine compound represented by the general formula (1) is used as a hole injection layer and / or a hole transport layer of an organic EL device
  • a known fluorescent or phosphorescent light emitting layer conventionally used as the light emitting layer is used. Material can be used.
  • the light emitting layer may be formed of only one kind of light emitting material, or one or more kinds of light emitting materials may be doped in the host material.
  • two or more kinds of materials may be contained in one layer as necessary.
  • two or more layers each including two or more types may be stacked.
  • an oxide such as molybdenum oxide, 7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrafluoro-7 , 7,8,8-tetracyanoquinodimethane, hexacyanohexaazatriphenylene, etc., and a known electron-accepting material together with the amine compound represented by the general formula (1) in the same layer
  • the amine compound-containing layer represented by the general formula (1) and a known electron-accepting material-containing layer may be laminated.
  • the amine compound represented by the general formula (1) is used as a light emitting layer of an organic EL device, the amine compound is used alone, a known light emitting host material is doped with an amine compound, or an amine compound Can be used by doping with a known light-emitting dopant.
  • a method for forming a hole injection layer, a hole transport layer, or a light emitting layer containing the amine compound represented by the general formula (1) for example, a known method such as a vacuum deposition method, a spin coating method, or a casting method is used. The method can be applied.
  • the reduction characteristics were evaluated by cyclic voltammetry using HA-501 and HB-104 manufactured by Hokuto Denko.
  • the light emission characteristics of the organic EL element were evaluated by applying a direct current to the produced element and using a luminance meter of LUMINANCEMETER (BM-9) manufactured by TOPCON.
  • Synthesis example 1 (Synthesis of 2- (4-chlorophenyl) nitrobenzene [see the following formula (2)]) Under a nitrogen stream, in a 500 mL three-neck flask, 25.0 g (123.0 mmol) of o-bromonitrobenzene, 21.1 g (135.3 mmol) of p-chlorophenylboronic acid, 0.71 g of tetrakis (triphenylphosphine) palladium (0. 61 mmol), 100 mL of tetrahydrofuran, 162 g of a 20 wt% aqueous sodium carbonate solution (307.5 mmol as sodium carbonate) were added, and the mixture was heated to reflux for 8 hours.
  • the compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.
  • Synthesis example 2 (Synthesis of 2-chlorocarbazole [see the following formula (2)]) Under a nitrogen stream, 10.0 g (42.7 mmol) of 2- (4-chlorophenyl) nitrobenzene obtained in Synthesis Example 1 was charged into a 200 mL eggplant-shaped flask, 50 mL of triethyl phosphite was added, and the mixture was heated at 150 ° C. for 24 hours. Stir for hours. Triethyl phosphite was distilled off under reduced pressure, and 5.1 g (25.6 mmol) of 2-chlorocarbazole white powder was isolated by adding o-xylene to the residue and recrystallizing (yield 60% ).
  • the compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.
  • Synthesis example 3 (Synthesis of 2-chloro-N- (4-biphenylyl) carbazole) In a 50 mL three-necked flask under a nitrogen stream, 4.0 g (19.8 mmol) of 2-chlorocarbazole obtained in Synthesis Example 2, 5.5 g (23.7 mmol) of 4-bromobiphenyl, 3.83 g of potassium carbonate (27. 7 mmol) and 20 mL of o-xylene were added, and 44 mg (0.19 mmol) of palladium acetate and 0.14 g (0.69 mmol) of tri (tert-butyl) phosphine were added to the slurry reaction solution, followed by stirring at 130 ° C.
  • the compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.
  • Synthesis example 4 (Synthesis of N-phenyl-N- (2- (N- (4-biphenylyl)) carbazolyl) amine) Under a nitrogen stream, 9.5 g (26.8 mmol) of 2-chloro-N- (4-biphenylyl) carbazole obtained in Synthesis Example 3 in a 100 mL three-necked flask, 3.7 g (40.2 mmol) of aniline, sodium-tert -Butoxide 3.6 g (37.5 mmol) and o-xylene 60 mL were added, and palladium acetate 60 mg (0.26 mmol) and tri (tert-butyl) phosphine 189 mg (0.93 mmol) were added to the slurry reaction solution.
  • the compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.
  • Synthesis example 5 (Synthesis of 2- (4-bromophenyl) -4,5-diphenyl-1H-imidazole) To a 200 mL three-necked flask, 10 g (54.0 mmol) of 4-bromobenzaldehyde, 11.3 g (54.0 mmol) of diphenylethanedione, 20.8 g (270.2 mmol) of ammonium acetate, and 100 mL of acetic acid were added, and 110 ° C. for 12 hours. Stir. After cooling to room temperature, the reaction solution was added to 200 mL of water.
  • the precipitated white powder was collected by filtration, washed with water, and further washed with methanol, whereby 20.0 g (53.53 g) of white powder of 2- (4-bromophenyl) -4,5-diphenyl-1H-imidazole was obtained. 4 mmol) (yield 98%).
  • the compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.
  • Synthesis example 7 (Synthesis of 1-methyl-2- (4-bromophenyl) benzimidazole) In a 50 mL three-necked flask, 2 g (7.3 mmol) of 2- (4-bromophenyl) -1H-benzimidazole, 1.1 g (8.0 mmol) of iodomethane, 2.2 g (8.0 mmol) of benzyltriethylammonium chloride, 48 A 0.6% aqueous sodium hydroxide solution (0.29 g as a sodium hydroxide solid) and 10 mL of dimethyl sulfoxide were added, and the mixture was stirred at 70 ° C. for 5 hours.
  • Example 1 (Synthesis of Compound (A2)) In a 200 mL three-necked flask under a nitrogen stream, 7.8 g (39.0 mmol) of 2-chlorocarbazole obtained in Synthesis Example 2, 9.0 g (39.0 mmol) of 4- (2-pyridyl) bromobenzene, potassium carbonate 7 0.5 g (54.6 mmol) and 75 mL of o-xylene were added, and 87 mg (0.39 mmol) of palladium acetate and 275 mg (1.3 mmol) of tri (tert-butyl) phosphine were added to the slurry reaction solution at 130 ° C. Stir for 15 hours.
  • the compound was identified by FDMS, 1 H-NMR measurement, and 13 C-NMR measurement.
  • Example 2 (Synthesis of Compound (A45)) In a 100 mL three-necked flask under a nitrogen stream, 3.2 g (16.0 mmol) of 2-chlorocarbazole obtained in Synthesis Example 2 and 1-methyl-2- (4-bromophenyl) -4, obtained in Synthesis Example 6 were obtained. 6.0 g (16.0 mmol) of 5-diphenyl-imidazole, 3.1 g (22.4 mmol) of potassium carbonate and 40 mL of o-xylene were added, and 35 mg (0.16 mmol) of palladium acetate was added to the slurry reaction solution.
  • Example 3 (Synthesis of Compound (A52)) In a 200 mL three-necked flask under a nitrogen stream, 5.0 g (24.7 mmol) of 2-chlorocarbazole obtained in Synthesis Example 2 and 1-methyl-2- (4-bromophenyl) benzimidazole obtained in Synthesis Example 7 7 0.0 g (24.7 mmol), 4.8 g (34.7 mmol) of potassium carbonate, and 75 mL of o-xylene were added, and 55 mg (0.24 mmol) of palladium acetate and 174 mg of tri (tert-butyl) phosphine were added to the slurry reaction solution. 0.86 mmol) was added and stirred at 130 ° C.
  • Example 4 (Synthesis of Compound (A57)) In a 50 mL three-necked flask under a nitrogen stream, 2.0 g (7.2 mmol) of 2-chlorocarbazole obtained in Synthesis Example 2 and 1- (4-bromophenyl) -2-phenylbenzimidazole obtained in Synthesis Example 8 2 0.5 g (7.2 mmol), 1.4 g (10.1 mmol) of potassium carbonate, and 20 mL of o-xylene were added, and 16 mg (0.07 mmol) of palladium acetate and 49 mg of tri (tert-butyl) phosphine were added to the slurry reaction solution. 0.24 mmol) was added and stirred at 130 ° C.
  • Example 5 Synthesis of Compound (A59)
  • 2-chlorocarbazole obtained in Synthesis Example 2
  • 10.0 g (34.4 mmol) of 4- (2-benzothiazolyl) bromobenzene, potassium carbonate 6 .6 g (48.1 mmol) and o-xylene 60 mL were added, and 77 mg (0.34 mmol) of palladium acetate and 243 mg (1.2 mmol) of tri (tert-butyl) phosphine were added to the slurry reaction solution at 130 ° C. Stir for 20 hours.
  • Example 6 (Synthesis of Compound (B3)) In a 50 mL three-necked flask under a nitrogen stream, 3.0 g (7.3 mmol) of N-phenyl-N- (2- (N- (4-biphenylyl)) carbazolyl) amine obtained in Synthesis Example 4 and 4- (2 -Pyridyl) bromobenzene (1.7 g, 7.3 mmol), sodium-tert-butoxide (0.98 g, 10.2 mmol), and o-xylene (15 mL) were added. To the slurry reaction solution, palladium acetate (16 mg, 0.07 mmol) was added.
  • Example 7 (Synthesis of Compound (B10)) In a 50 mL three-necked flask under a nitrogen stream, 0.90 g (2.2 mmol) of N-phenyl-N- (2- (N- (4-biphenylyl)) carbazolyl) amine obtained in Synthesis Example 4 was used. 0.62 g (2.2 mmol) of 1-methyl-2- (4-bromophenyl) benzimidazole obtained, 0.28 g (3.0 mmol) of sodium-tert-butoxide, and 10 mL of o-xylene were added to form a slurry reaction.
  • Example 8 (Synthesis of Compound (B13)) In a 50 mL three-neck flask under a nitrogen stream, 0.82 g (2.0 mmol) of N-phenyl-N- (2- (N- (4-biphenylyl)) carbazolyl) amine obtained in Synthesis Example 4 was used. 0.69 g (2.0 mmol) of the obtained 1- (4-bromophenyl) -2-phenylbenzimidazole, 0.27 g (2.8 mmol) of sodium-tert-butoxide, and 10 mL of o-xylene were added to form a slurry reaction.
  • Example 9 (Synthesis of Compound (B14)) In a 50 mL three-necked flask under nitrogen flow, 1.5 g (3.6 mmol) of N-phenyl-N- (2- (N- (4-biphenylyl)) carbazolyl) amine obtained in Synthesis Example 4 was used. The obtained 1-methyl-2- (4-bromophenyl) -4,5-diphenyl-imidazole 1.3 g (3.6 mmol), sodium tert-butoxide 0.48 g (5.0 mmol), and o-xylene 15 mL were added.
  • Example 10 (Synthesis of Compound (B19)) In a 50 mL three-necked flask under a nitrogen stream, 3.7 g (9.0 mmol) of 4-N2 (N-phenyl-N- (2- (N- (4-biphenylyl)) carbazolyl) amine obtained in Synthesis Example 4 was obtained. -Benzothiazolyl) bromobenzene 2.6 g (9.0 mmol), sodium-tert-butoxide 1.2 g (12.6 mmol), and o-xylene 25 mL were added, and 20 mg (0.09 mmol) of palladium acetate was added to the slurry reaction solution.
  • Tri (tert-butyl) phosphine (63 mg, 0.31 mmol) was added, and the mixture was stirred at 130 ° C. for 5 hours. After cooling to room temperature, 10 mL of water was added and the organic layer was separated. The organic layer was washed with water, further washed with saturated brine, dried over anhydrous magnesium sulfate, and insolubles were removed by filtration. The solution obtained by filtration was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (a mixed solvent of toluene and hexane), and 4.5 g (7.3 mmol) of a glassy solid of compound (B19) was isolated (yield 82%).
  • Example 11 (Reduction characteristic evaluation of compound (A2))
  • Compound (A2) was dissolved at a concentration of 0.001 mol / L in an anhydrous tetrahydrofuran solution having a tetrabutylammonium perchlorate concentration of 0.1 mol / L, and the reduction potential was measured by cyclic voltammetry.
  • Glassy carbon was used for the working electrode
  • platinum wire was used for the counter electrode
  • silver wire immersed in an acetonitrile solution of AgNO 3 was used for the reference electrode.
  • Compound (A2) has a concentration of -2.88 V vs. ferrocene based on the redox potential of ferrocene. Reduction waves were observed in Fc / Fc + , confirming electron acceptability.
  • Example 12 (Reduction characteristic evaluation of compound (A45))
  • the compound (A45) was used instead of the compound (A2), the reduction characteristics were evaluated by the same method as in Example 11.
  • the compound (A45) was determined based on the oxidation-reduction potential of ferrocene. -2.98V vs. Reduction waves were observed in Fc / Fc + , confirming electron acceptability.
  • Example 13 (Reduction characteristic evaluation of compound (A52))
  • the compound (A52) was used instead of the compound (A2), the reduction characteristics were evaluated by the same method as in Example 11.
  • the compound (A52) was based on the oxidation-reduction potential of ferrocene. -2.93V vs. Reduction waves were observed in Fc / Fc + , confirming electron acceptability.
  • Example 14 (Reduction characteristic evaluation of compound (A57))
  • the compound (A57) was used instead of the compound (A2), the reduction characteristics were evaluated by the same method as in Example 11.
  • the compound (A57) was based on the oxidation-reduction potential of ferrocene. -2.95V vs. Reduction waves were observed in Fc / Fc + , confirming electron acceptability.
  • Example 15 (Reduction characteristic evaluation of compound (A59))
  • the compound (A59) was used instead of the compound (A2), the reduction characteristics were evaluated by the same method as in Example 11.
  • the compound (A59) was based on the oxidation-reduction potential of ferrocene. -2.48V vs.. Reduction waves were observed in Fc / Fc + , confirming electron acceptability.
  • the results of cyclic voltammetry measurement are shown in FIG.
  • Example 16 (Reduction characteristic evaluation of compound (B3)) In Example 11, except that the compound (B3) was used instead of the compound (A2), the reduction characteristics were evaluated by the same method as in Example 11. As a result, the compound (B3) was based on the oxidation-reduction potential of ferrocene. -3.08V vs. Reduction waves were observed in Fc / Fc + , confirming electron acceptability.
  • Example 17 (Reduction characteristic evaluation of compound (B13))
  • the compound (B13) was used instead of the compound (A2), the reduction characteristics were evaluated by the same method as in Example 11.
  • the compound (B13) was based on the oxidation-reduction potential of ferrocene. -3.15V vs. Reduction waves were observed in Fc / Fc + , confirming electron acceptability.
  • Example 18 (Reduction characteristic evaluation of compound (B14))
  • the compound (B14) was used instead of the compound (A2), the reduction characteristics were evaluated by the same method as in Example 11.
  • the compound (B14) was based on the oxidation-reduction potential of ferrocene. -3.18V vs. Reduction waves were observed in Fc / Fc + , confirming electron acceptability.
  • Example 19 (Reduction characteristic evaluation of compound (B19))
  • the compound (B19) was used instead of the compound (A2), the reduction characteristics were evaluated by the same method as in Example 11.
  • the compound (B19) was based on the oxidation-reduction potential of ferrocene. -2.75V vs. Reduction waves were observed in Fc / Fc + , confirming electron acceptability.
  • Comparative Example 1 (Reduction characteristic evaluation of comparative compound (a))
  • the reduction property was evaluated in the same manner as in Example 11 except that the following comparative compound (a) was used instead of the compound (A2). -3.30V vs. potential with reference to potential. Although it ran to Fc / Fc + , no reduction wave was observed.
  • Example 20 (Element evaluation of compound (A2))
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • Alq 3 Tris (8-quinolinolato) aluminum
  • lithium fluoride was deposited as an electron injection layer to a thickness of 0.5 nm at a deposition rate of 0.01 nm / second
  • aluminum was further deposited to a thickness of 100 nm at a deposition rate of 0.25 nm / second to form a cathode.
  • Example 21 (Element evaluation of compound (A45)) An organic EL device was produced in the same manner as in Example 20 except that the compound (A2) was changed to the compound (A45).
  • Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.
  • Example 22 (Element evaluation of compound (A52)) An organic EL device was produced in the same manner as in Example 20 except that the compound (A2) was changed to the compound (A52).
  • Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.
  • Example 23 (Element evaluation of compound (A57)) An organic EL device was produced in the same manner as in Example 20 except that the compound (A2) was changed to the compound (A57).
  • Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.
  • Example 24 (Element evaluation of compound (A59)) An organic EL device was produced in the same manner as in Example 20 except that the compound (A2) was changed to the compound (A59).
  • Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.
  • Example 25 (Element evaluation of compound (B3)) An organic EL device was produced in the same manner as in Example 20 except that the compound (A2) was changed to the compound (B3).
  • Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.
  • Example 26 (Element evaluation of compound (B13)) An organic EL device was produced in the same manner as in Example 20 except that the compound (A2) was changed to the compound (B13).
  • Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.
  • Comparative Example 2 (Element evaluation of NPD) An organic EL device was produced in the same manner as in Example 20, except that the compound (A2) was changed to NPD (4,4′-bis [N- (1-naphthyl) -N-phenyl] biphenyl).
  • Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.
  • Example 27 Evaluation of device lifetime of compound (A2)
  • the glass substrate on which the ITO transparent electrode (anode) having a thickness of 200 nm was laminated was subjected to ultrasonic cleaning with acetone and pure water and boiling cleaning with isopropyl alcohol. Further, UV / ozone cleaning was carried out, and after evacuation with a vacuum pump until it was 1 ⁇ 10 ⁇ 4 Pa after installation in a vacuum deposition apparatus. First, copper phthalocyanine was deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second to form a 10 nm hole injection layer.
  • NPD was deposited at a deposition rate of 0.3 nm / second to 25 nm, and then compound (A2) was deposited at a deposition rate of 0.1 nm / second to 5 nm.
  • compound (A2) was deposited at a deposition rate of 0.1 nm / second to 5 nm.
  • tris (2-phenylpyridine) iridium (Ir (ppy) 3 ) which is a phosphorescent dopant material and 4,4′-bis (N-carbazolyl) biphenyl (CBP) which is a host material have a weight ratio of 1:11.
  • BAlq bis (2-methyl-8-quinolinolato) (p-phenylphenolate) aluminum
  • Alq 3 Tris (8-quinolinolato) aluminum
  • lithium fluoride was deposited as an electron injection layer to a thickness of 0.5 nm at a deposition rate of 0.01 nm / second
  • aluminum was further deposited to a thickness of 100 nm at a deposition rate of 0.25 nm / second to form a cathode.
  • Example 28 Evaluation of device lifetime of compound (A57)
  • An organic EL device was produced in the same manner as in Example 27 except that the compound (A2) was changed to the compound (A57).
  • Table 2 shows the luminance half time when a current of 6.25 mA / cm 2 was applied.
  • Example 29 Evaluation of device lifetime of compound (A59)
  • An organic EL device was produced in the same manner as in Example 27 except that the compound (A2) was changed to the compound (A59).
  • Table 2 shows the luminance half time when a current of 6.25 mA / cm 2 was applied.
  • Reference example 1 Evaluation of device life of reference compound (a)
  • An organic EL device was produced in the same manner as in Example 27 except that the compound (A2) was changed to the following reference compound (a).
  • Table 2 shows the luminance half time when a current of 6.25 mA / cm 2 was applied.
  • the amine compound of the present invention represented by the general formula (1) has a higher hole transport ability than that of the conventional material and also has a good electron accepting stability.
  • the amine compound of the present invention is useful as a material for forming a light emitting layer, a hole transport layer or a hole injection layer of an organic EL device, particularly as a material for forming a hole transport layer.
  • An organic EL device having at least one layer selected from a light emitting layer, a hole transport layer and a hole injection layer containing the amine compound of the present invention has a low driving voltage, a high luminous efficiency, and an excellent durability. .

Abstract

下記一般式(1)で表されるアミン化合物。 式中、Arは、置換若しくは未置換のアリール基を表し、A及びBは置換若しくは未置換の、C=N結合を有するヘテロアリール基を表す。X及びXはC又はNを表す。R、R及びR~Rは水素、ハロゲン、アルキル基、アルコキシ基、置換若しくは未置換のアリール基、又は、置換若しくは未置換のヘテロアリール基を表し、RはH、ハロゲン、アルキル基、又はアルコキシ基を表し、R及びRはハロゲン、アルキル基、アルコキシ基、又は置換若しくは未置換のアリール基を表す。m及びnは0又は1の整数を表し[但し、m+nは1又は2である]、p及びqは0~4の整数を表す。このアミン化合物は、有機EL素子の発光層、正孔輸送層および/または正孔注入層の形成材料として有用である。

Description

アミン化合物及び有機EL素子
 本発明は、新規なアミン化合物及びそれを用いた有機EL素子に関するものである。
 有機EL素子は、有機薄膜を1対の電極で狭持した面発光型素子であり、薄型軽量、高視野角、高速応答性といった特徴を有し、各種表示素子への応用が期待されている。また最近では、携帯電話のディスプレイ等の一部の分野で実用化も始まっている。有機EL素子とは、陽極から注入された正孔と、陰極から注入された電子とが発光層で再結合する際に発する光を利用した素子であり、その構造は正孔輸送層、発光層、電子輸送層等を積層した多層積層型が主流である。ここで、正孔輸送層や電子輸送層といった電荷輸送層は、それ自体は発光するわけではないが、発光層への電荷注入を容易にし、また、発光層に注入された電荷や発光層で生成した励起子のエネルギーを閉じ込めるといった役割を果たしている。従って、電荷輸送層は有機EL素子の低駆動電圧化及び発光効率を向上させるうえで非常に重要である。
 正孔輸送材料には、適当なイオン化ポテンシャルと正孔輸送能を有するアミン化合物が用いられ、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニル]ビフェニル(以下、「NPD」と略す)がよく知られている。しかしながら、NPDを正孔輸送層に用いた素子の駆動電圧、発光効率及び耐久性は十分ではなく、新しい材料の開発が求められている。さらに、近年では発光層に燐光発光材料を用いた有機EL素子の開発も進められており、そして、燐光発光を用いた素子では、三重項準位が高い正孔輸送材料が必要とされている。三重項準位という観点からもNPDは十分ではなく、例えば、緑色の発光を有する燐光発光材料とNPDを組み合わせた有機EL素子では、発光効率が低下することが報告されている(例えば、非特許文献1参照)。
 このような背景から、最近では、正孔輸送材料として、分子内にカルバゾール環を有するアミン化合物が報告されている。カルバゾール環を有するアミン化合物は、NPDと比較して高い三重項準位を有すると共に、正孔輸送性に優れることから有用な分子骨格であるが、これまでに報告されている化合物の多くは、カルバゾール環の3位にアミノ基を有する3-アミノカルバゾール化合物である(例えば、特許文献1,2参照)。カルバゾール環の3位は、電子ドナー性である窒素原子のパラ位となるため、3位に置換されたアミノ基はカルバゾール環の窒素原子によって活性化されることになる。即ち、3-アミノカルバゾール化合物のイオン化ポテンシャルは、通常のアミン化合物と比較して低くなってしまう。従って、これまでに報告されている3-アミノカルバゾール化合物を正孔輸送層に用いた場合、発光層への正孔注入障壁が大きくなり、有機EL素子の駆動電圧が高くなるという問題があった。
 上記の背景から、アミノ基が、カルバゾール環の2位に結合したもののほうが、3位に結合したものと比べて、適切なイオン化ポテンシャルとなる可能性があった。カルバゾール環の2位がアミノ基で置換された化合物については、2-ジトリルアミノカルバゾール類が電子写真感光体における電荷輸送材料として例示されている(例えば、特許文献3参照)。しかしながら、例示されている化合物はガラス転移温度が低く、有機EL素子に使用した場合、高温駆動時の耐久性に問題があった。また、有機電子デバイス用の材料として、7-フェニル-2-アミノカルバゾール化合物も開示されている(例えば、特許文献4参照)。しかし、アミノ基のパラ位であるカルバゾール環の7位にフェニル基が置換した特許文献4に記載の化合物は、パイ電子の共役が広がるため、分子のエネルギーギャップが小さく、また、三重項準位も低い。従って、緑色発光を有する燐光発光材料と組み合わせた素子では、十分な発光効率を得ることができない。
 有機EL素子の耐久性は、正孔輸送層に電子を受容できるドーパントをドープすることによって向上することが報告されている(例えば、非特許文献2参照)。有機EL素子の駆動時には、発光層内で正孔と再結合しなかった電子が正孔輸送層に注入されるという現象も起こるため、正孔輸送層への電子注入に伴うアミン化合物の不可逆的還元が素子の劣化要因の一つとして考えられている。
特開2006-28176公報 特開2006-298898公報 特開2003-316035公報 国際公開2006/108497パンフレット
Journal of Applied Physics,2004年,95巻,7798頁 Japanese Journal of Applied Physics,1995年,34巻,L824頁
 本発明の目的は、有機EL素子の特に正孔輸送材料に適したアミン化合物を提供することにある。
 本発明の他の目的は、発光効率が高く、駆動電圧が低く、耐久性に優れた有機EL素子を提供することにある。
 本発明者らは、鋭意検討した結果、下記一般式(1)で表されるアミン化合物が正孔輸送特性に優れると共に、良好な電子受容安定性を示すこと、および、該化合物を正孔輸送層に用いた有機EL素子は駆動電圧が低く、さらに発光効率及び耐久性に優れることを見出した。そして、これらの知見に基づいて、本発明を完成するに至った。
 即ち、本発明は、下記一般式(1)で表されるアミン化合物を提供する。
Figure JPOXMLDOC01-appb-I000002
 一般式(1)において、Arは炭素数1~36の置換基若しくはハロゲン原子を有していてもよい炭素数6~30のアリール基を表す。A及びBは、各々独立して、炭素数1~36の置換基又はハロゲン原子を有していてもよい、少なくとも1つのC=N結合を有する炭素数3~20のヘテロアリール基を表す。X及びXは、各々独立して、炭素原子又は窒素原子を表す。R、R及びR~Rは、各々独立して、水素原子、ハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基、炭素数1~36の置換基若しくはハロゲン原子を有していてもよい炭素数6~30のアリール基、又は、炭素数1~36の置換基若しくはハロゲン原子を有していてもよい炭素数4~20のヘテロアリール基を表す。Rは水素原子、ハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、又は炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基を表す。R及びRは、各々独立して、ハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基、又は炭素数1~36の置換基又はハロゲン原子を有していてもよい炭素数6~30のアリール基を表す。m及びnは各々独立して0又は1の整数を表し[但し、m+nは1又は2である]、p及びqは各々独立して0~4の整数を表す。
 本発明は、さらに、上記一般式(1)で表されるアミン化合物を含む、発光層、正孔輸送層および正孔注入層の中から選ばれる少なくとも1つの層を有する有機EL素子を提供する。
 一般式(1)で表される本発明のアミン化合物は、従来材料以上の高い正孔輸送能力を有すると共に、良好な電子受容安定性を有するため、有機EL素子の低駆動電圧化、高発光効率化、耐久性の向上を実現することができる。
2
実施例15においてサイクリックボルタンメトリー測定を行ったアミン化合物(A59)のサイクリックボルタモグラムを示す。
 以下、本発明のアミン化合物および有機EL素子に関し詳細に説明する。
 本発明の一般式(1)で表されるアミン化合物において、Arは炭素数1~36の置換基又はハロゲン原子を有していてもよい炭素数6~30のアリール基を表す。
 Arで示される炭素数1~36の置換基又はハロゲン原子を有していてもよい炭素数6~30のアリール基において、炭素数6~30のアリール基は、特に限定されるものではない。その具体例としては、フェニル基、ビフェニリル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フルオランテニル基、ピレニル基、クリセニル基、ペリレニル基、ピセニル基等を挙げることができる。
 炭素数1~36の置換基としては、直鎖、分岐若しくは環状のアルキル基、直鎖、分岐若しくは環状のアルコキシ基、アリールオキシ基、トリアルキルシリル基、トリアリールシリル基、及び9-カルバゾリル基を挙げることができる。ハロゲン原子としては、フッ素、塩素、臭素およびヨウ素を挙げることができる。炭素数1~36の置換基およびハロゲン原子の置換位置および置換個数については特に限定はない。
 直鎖、分岐若しくは環状のアルキル基はハロゲン原子を有してもよく、直鎖、分岐若しくは環状のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基、トリフルオロメチル基、シクロプロピル基、シクロヘキシル基等を例示することができるが、これらに限定されるものではない。
 直鎖、分岐若しくは環状のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ステアリルオキシ基等を例示することができるが、これらに限定されるものではない。
 アリールオキシ基としては、フェノキシ基、4-メチルフェニルオキシ基、3-メチルフェニルオキシ基、4-ビフェニルオキシ基、3-ビフェニルオキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基等を例示することができるが、これらに限定されるものではない。
 トリアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリブチルシリル基等を例示することができるが、これらに限定されるものではない。
 トリアリールシリル基としては、トリフェニルシリル基、トリ(4-メチルフェニル)シリル基、トリ(3-メチルフェニル)シリル基、トリ(4-メチルフェニル)シリル基、トリ(4-ビフェニル)シリル基等を例示することができるが、これらに限定されるものではない。
 Arの具体例としては、フェニル基、4-メチルフェニル基、3-メチルフェニル基、2-メチルフェニル基、4-エチルフェニル基、3-エチルフェニル基、2-エチルフェニル基、4-n-プロピルフェニル基、4-イソプロピルフェニル基、2-イソプロピルフェニル基、4-n-ブチルフェニル基、4-イソブチルフェニル基、4-sec-ブチルフェニル基、4-tert-ブチルフェニル基、4-n-ペンチルフェニル基、4-イソペンチルフェニル基、4-ネオペンチルフェニル基、4-n-ヘキシルフェニル基、4-n-オクチルフェニル基、4-n-デシルフェニル基、4-n-ドデシルフェニル基、4-シクロペンチルフェニル基、4-シクロヘキシルフェニル基、4-トリチルフェニル基、3-トリチルフェニル基、4-トリフェニルシリルフェニル基、3-トリフェニルシリルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,6-ジメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、4-メトキシフェニル基、3-メトキシフェニル基、2-メトキシフェニル基、4-エトキシフェニル基、3-エトキシフェニル基、2-エトキシフェニル基、4-n-プロポキシフェニル基、3-n-プロポキシフェニル基、4-イソプロポキシフェニル基、2-イソプロポキシフェニル基、4-n-ブトキシフェニル基、4-イソブトキシフェニル基、2-sec-ブトキシフェニル基、4-n-ペンチルオキシフェニル基、4-イソペンチルオキシフェニル基、2-イソペンチルオキシフェニル基、4-ネオペンチルオキシフェニル基、2-ネオペンチルオキシフェニル基、4-n-ヘキシルオキシフェニル基、2-(2-エチルブチル)オキシフェニル基、4-n-オクチルオキシフェニル基、4-n-デシルオキシフェニル基、4-n-ドデシルオキシフェニル基、4-n-テトラデシルオキシフェニル基、4-シクロヘキシルオキシフェニル基、2-シクロヘキシルオキシフェニル基、4-フェノキシフェニル基、2-メチル-4-メトキシフェニル基、2-メチル-5-メトキシフェニル基、3-メチル-4-メトキシフェニル基、3-メチル-5-メトキシフェニル基、3-エチル-5-メトキシフェニル基、2-メトキシ-4-メチルフェニル基、3-メトキシ-4-メチルフェニル基、2,4-ジメトキシフェニル基、2,5-ジメトキシフェニル基、2,6-ジメトキシフェニル基、3,4-ジメトキシフェニル基、3,5-ジメトキシフェニル基、3,5-ジエトキシフェニル基、3,5-ジ-n-ブトキシフェニル基、2-メトキシ-4-エトキシフェニル基、2-メトキシ-6-エトキシフェニル基、3,4,5-トリメトキシフェニル基、4-(9-カルバゾリル)フェニル基、3-(9-カルバゾリル)フェニル基、4-フルオロフェニル基、3-フルオロフェニル基、2-フルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、4-(1-ナフチル)フェニル基、4-(2-ナフチル)フェニル基、3-(1-ナフチル)フェニル基、3-(2-ナフチル)フェニル基、1-ナフチル基、2-ナフチル基、4-メチル-1-ナフチル基、6-メチル-2-ナフチル基、4-フェニル-1-ナフチル基、6-フェニル-2-ナフチル基、2-アントリル基、9-アントリル基、10-フェニル-9-アントリル基、2-フルオレニル基、9,9-ジメチル-2-フルオレニル基、9,9-ジエチル-2-フルオレニル基、9,9-ジ-n-プロピル-2-フルオレニル基、9,9-ジ-n-オクチル-2-フルオレニル基、9,9-ジフェニル-2-フルオレニル基、9,9’-スピロビフルオレニル基、9-フェナントリル基、2-フェナントリル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フルオランテニル基、ピレニル基、クリセニル基、ペリレニル基、ピセニル基、4-ビフェニリル基、3-ビフェニリル基、2-ビフェニリル基、p-ターフェニル基、m-ターフェニル基、o-ターフェニル基等を例示することができる。Arは、これらに限定されるものではない。
 一般式(1)で表されるアミン化合物において、ガラス転移温度が高く、緑色発光を有する燐光発光材料と比較して高い三重項準位を有することが好ましい点から、Arは、炭素数1~36の置換基又はハロゲン原子を有していてもよい、4-ビフェニリル基、3-ビフェニリル基、m-ターフェニル基、フェニル基、および2-フルオレニル基であることが好ましい。
 一般式(1)で表されるアミン化合物において、A及びBは、各々独立して、炭素数1~36の置換基又はハロゲン原子を有していてもよい、少なくとも1つのC=N結合を有する炭素数3~20のヘテロアリール基を表す。
 A及びBで示される炭素数1~36の置換基又はハロゲン原子を有していてもよい少なくとも1つのC=N結合を有する炭素数3~20のヘテロアリール基において、少なくとも1つのC=N結合を有する炭素数3~20のヘテロアリール基としては、還元に対する安定性及び耐熱性が高いことが好ましい点から、例えば、イミダゾリル基、ピラゾリル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、ピリジル基、ピリミジル基、ピラジル基、1,3,5-トリアジル基、ベンゾイミダゾリル基、インダゾリル基、ベンゾチアゾリル基、ベンゾイソチアゾリル基、2,1,3-ベンゾチアジアゾリル基、ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、2,1,3-ベンゾオキサジアゾリル基、キノリル基、イソキノリル基、キノキサリル基、キナゾリル基、アクリジニル基、1,10-フェナントロリル基等を挙げることができる。炭素数1~36の置換基又はハロゲン原子としては、特に限定するものではないが、前記Arで例示した炭素数1~36の置換基又はハロゲン原子を挙げることができる。
 A及びBの具体例としては、1-イミダゾリル基、2-フェニル-1-イミダゾリル基、2-フェニル-3,4-ジメチル-1-イミダゾリル基、2,3,4-トリフェニル-1-イミダゾリル基、2-(2-ナフチル)-3,4-ジメチル-1-イミダゾリル基、2-(2-ナフチル)-3,4-ジフェニル-1-イミダゾリル基、1-メチル-2-イミダゾリル基、1-エチル-2-イミダゾリル基、1-フェニル-2-イミダゾリル基、1-メチル-4-フェニル-2-イミダゾリル基、1-メチル-4,5-ジメチル-2-イミダゾリル基、1-メチル-4,5-ジフェニル-2-イミダゾリル基、1-フェニル-4,5-ジメチル-2-イミダゾリル基、1-フェニル-4,5-ジフェニル-2-イミダゾリル基、1-フェニル-4,5-ジビフェニリル-2-イミダゾリル基、1-メチル-3-ピラゾリル基、1-フェニル-3-ピラゾリル基、1-メチル-4-ピラゾリル基、1-フェニル-4-ピラゾリル基、1-メチル-5-ピラゾリル基、1-フェニル-5-ピラゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-ピリジル基、3-メチル-2-ピリジル基、4-メチル-2-ピリジル基、5-メチル-2-ピリジル基、6-メチル-2-ピリジル基、3-ピリジル基、4-メチル-3-ピリジル基、4-ピリジル基、2-ピリミジル基、5-ピリミジル基、ピラジル基、1,3,5-トリアジル基、4,6-ジフェニル-1,3,5-トリアジン-2-イル基、1-ベンゾイミダゾリル基、2-メチル-1-ベンゾイミダゾリル基、2-フェニル-1-ベンゾイミダゾリル基、1-メチル-2-ベンゾイミダゾリル基、1-フェニル-2-ベンゾイミダゾリル基、1-メチル-5-ベンゾイミダゾリル基、1,2-ジメチル-5-ベンゾイミダゾリル基、1-メチル-2-フェニル-5-ベンゾイミダゾリル基、1-フェニル-5-ベンゾイミダゾリル基、1,2-ジフェニル-5-ベンゾイミダゾリル基、1-メチル-6-ベンゾイミダゾリル基、1,2-ジメチル-6-ベンゾイミダゾリル基、1-メチル-2-フェニル-6-ベンゾイミダゾリル基、1-フェニル-6-ベンゾイミダゾリル基、1,2-ジフェニル-6-ベンゾイミダゾリル基、1-メチル-3-インダゾリル基、1-フェニル-3-インダゾリル基、2-ベンゾチアゾリル基、4-ベンゾチアゾリル基、5-ベンゾチアゾリル基、6-ベンゾチアゾリル基、7-ベンゾチアゾリル基、3-ベンゾイソチアゾリル基、4-ベンゾイソチアゾリル基、5-ベンゾイソチアゾリル基、6-ベンゾイソチアゾリル基、7-ベンゾイソチアゾリル基、2,1,3-ベンゾチアジアゾリル-4-イル基、2,1,3-ベンゾチアジアゾリル-5-イル基、2-ベンゾオキサゾリル基、4-ベンゾオキサゾリル基、5-ベンゾオキサゾリル基、6-ベンゾオキサゾリル基、7-ベンゾオキサゾリル基、3-ベンゾイソオキサゾリル基、4-ベンゾイソオキサゾリル基、5-ベンゾイソオキサゾリル基、6-ベンゾイソオキサゾリル基、7-ベンゾイソオキサゾリル基、2,1,3-ベンゾオキサジアゾリル-4-イル基、2,1,3-ベンゾオキサジアゾリル-5-イル基、2-キノリル基、3-キノリル基、5-キノリル基、6-キノリル基、1-イソキノリル基、4-イソキノリル基、5-イソキノリル基、2-キノキサリル基、3-フェニル-2-キノキサリル基、6-キノキサリル基、2,3-ジメチル-6-キノキサリル基、2,3-ジフェニル-6-キノキサリル基、2-キナゾリル基、4-キナゾリル基、2-アクリジニル基、9-アクリジニル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-5-イル基等を例示することができる。AおよびBは、これらに限定されるものではない。
 一般式(1)で表されるアミン化合物において、還元に対する安定性及び耐熱性が高いことが好ましい点から、A及びBは、各々独立して、炭素数1~36の置換基又はハロゲン原子を有していてもよい、イミダゾリル基、チアゾリル基、ピリジル基、ピリミジル基、ピラジル基、1,3,5-トリアジル基、ベンゾイミダゾリル基、ベンゾチアゾリル基、又はキノキサリル基から選ばれる置換基であることが好ましい。
 一般式(1)で表されるアミン化合物において、X及びXは各々独立して炭素原子又は窒素原子を表す。アミン化合物の合成が容易な点から、X及びXが共に炭素原子であることが好ましい。
 一般式(1)で表されるアミン化合物において、R、R及びR~Rは各々独立して水素原子、ハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基、炭素数1~36の置換基又はハロゲン原子を有していてもよい炭素数6~30のアリール基、又は炭素数1~36の置換基又はハロゲン原子を有していてもよい炭素数4~20のヘテロアリール基を表す。
 R、R及びR~Rで示されるハロゲン原子の具体例としては、フッ素、塩素、臭素、又はヨウ素原子が挙げられる。
 R、R及びR~Rで示される炭素数1~18の直鎖、分岐若しくは環状のアルキル基は、ハロゲン原子を含んでもよく、その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基、トリフルオロメチル基、シクロプロピル基、シクロヘキシル基等を例示することができるが、これらに限定されるものではない。
 R、R及びR~Rで示される炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基は、ハロゲン原子を含んでもよく、その具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ステアリルオキシ基等を例示することができるが、これらに限定されるものではない。
 R、R及びR~Rで示される炭素数1~36の置換基又はハロゲン原子を有していてもよい炭素数6~30のアリール基は、特に限定されるものではないが、その具体例としては、前記Arで例示した炭素数1~36の置換基又はハロゲン原子を有していてもよい炭素数6~30のアリール基の具体例と同様なものが挙げられる。
 R、R及びR~Rで示される炭素数1~36の置換基又はハロゲン原子を有していてもよい炭素数4~20のヘテロアリール基において、炭素数4~20のヘテロアリール基としては、酸素原子、窒素原子及び硫黄原子のうち少なくとも一つのヘテロ原子を含有する芳香族基であり、特に限定するものではないが、例えば、2-ピリジル基、3-ピリジル基、4-ピリジル基、3-キノリル基、4-キノリル基、2-フリル基、3-フリル基、2-チエニル基、3-チエニル基、2-オキサゾリル基、2-チアゾリル基、2-ベンゾオキサゾリル基、2-ベンゾチアゾリル基、2-ベンゾチオフェニル基、3-ベンゾチオフェニル基、2-ベンゾイミダゾリル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基等を例示することができる。炭素数1~36の置換基およびハロゲン原子は、特に限定されるものではない。炭素数1~36の置換基およびハロゲン原子の具体例としては、前記Arで例示した炭素数1~36の置換基又はハロゲン原子の具体例と同様なものを挙げることができる。
 一般式(1)で表されるアミン化合物において、Rは水素原子、ハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、又は炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基を表す。
 Rで示されるハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、又は炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基の具体例としては、それぞれ前記R、R及びR~Rで例示したハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、又は炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基の具体例と同様なものが挙げられる。
 一般式(1)で表されるアミン化合物において、R及びRは、各々独立して、ハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基、又は炭素数1~36の置換基若しくはハロゲン原子を有していてもよい炭素数6~30のアリール基を表す。
 R及びRで示されるハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、又は炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基の具体例としては、それぞれ前記R、R及びR~Rで例示したハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、又は炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基の具体例と同様なものが挙げられる。
 R及びRで示される炭素数1~36の置換基又はハロゲン原子を有していてもよい炭素数6~30のアリール基の具体例としては、特に限定するものではないが、前記Arで例示した炭素数1~36の置換基又はハロゲン原子を有していてもよい炭素数6~30のアリール基の具体例と同様なものが挙げられる。
 一般式(1)で表されるアミン化合物において、m及びnは各々独立して0又は1の整数を表す。但し、m+nは1又は2である。
 mが1、かつnが0であるアミン化合物、及びmが0、かつnが1であるアミン化合物が好ましい。mが1、かつnが0であるアミン化合物は特に好ましい。
 一般式(1)で表されるアミン化合物において、p及びqは各々独立して0~4の整数を表す。
 以下に、一般式(1)で表されるアミン化合物の好ましい例を示すが、これらの化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
 前記一般式(1)で表されるアミン化合物は、例えば、公知の方法(Tetrahedron Letters,1998年,第39巻,2367頁)によって合成することができる。具体的には、下記のルートにより合成することができる。
 (ルートa)2位がハロゲン化された9H-カルバゾール化合物とハロゲン化芳香族化合物を、塩基の存在下、銅触媒又はパラジウム触媒を用いて反応させて2-ハロゲン化-9-置換カルバゾールを生成せしめ、次いで、この生成物に、2級アミン化合物を、塩基の存在下、銅触媒又はパラジウム触媒を用いて反応させる。
 (ルートb)2位がハロゲン化された9H-カルバゾール化合物とハロゲン化芳香族化合物を、塩基の存在下、銅触媒又はパラジウム触媒を用いて反応させて2-ハロゲン化-9-置換カルバゾールを生成せしめ、次いで、この生成物に、1級アミン化合物を、塩基の存在下、銅触媒又はパラジウム触媒を用いて反応させて2級アミンを得る。さらに得られた2級アミンにハロゲン化芳香族化合物を、塩基の存在下、銅触媒又はパラジウム触媒を用いて反応させる。
 本発明の前記一般式(1)で表されるアミン化合物は、有機EL素子の発光層、正孔輸送層および正孔注入層の中から選ばれる少なくとも1つの層の形成材料として使用することができる。
 特に、前記一般式(1)で表されるアミン化合物は、正孔輸送能に優れることから、正孔輸送層及び/又は正孔注入層として使用した際に、有機EL素子の低駆動電圧化、高発光効率化及び耐久性の向上を実現することができる。また、前記一般式(1)で表されるアミン化合物は、従来の材料と比較して三重項準位が高いため、蛍光発光材料だけでなく、燐光発光材料を発光層に用いた素子においても高い発光効率を得ることができる。
 前記一般式(1)で表されるアミン化合物を有機EL素子の正孔注入層及び/又は正孔輸送層として使用する際、発光層としては、従来から使用されている公知の蛍光若しくは燐光発光材料を使用することができる。発光層は1種類の発光材料のみで形成されていても、ホスト材料中に1種類以上の発光材料がドープされていてもよい。
 前記一般式(1)で表されるアミン化合物からなる正孔注入層及び/又は正孔輸送層を形成する際には、必要に応じて、1つの層中に2種類以上の材料を含有せしめてもよく、または、2種類以上のそれぞれからなる2層以上を積層させてもよい。例えば、一般式(1)で表されるアミン化合物に加えて、酸化モリブデン等の酸化物、7,7,8,8-テトラシアノキノジメタン、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン、ヘキサシアノヘキサアザトリフェニレン等の公知の電子受容性材料を用い、一般式(1)で表されるアミン化合物とともに公知の電子受容性材料を同一層中に含有せしめてもよく、または、一般式(1)で表されるアミン化合物の含有層と、公知の電子受容性材料の含有層とを積層させてもよい。
 前記一般式(1)で表されるアミン化合物を有機EL素子の発光層として使用する場合には、アミン化合物を単独で使用、公知の発光ホスト材料にアミン化合物をドープして使用、又はアミン化合物に公知の発光ドーパントをドープして使用することができる。
 前記一般式(1)で表されるアミン化合物を含有する正孔注入層、正孔輸送層又は発光層を形成する方法としては、例えば、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができる。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれら実施例により限定されるものではない。
 H-NMR及び13C-NMR測定は、バリアン社製 Gemini200を用いて行った。
 FDMS測定は、日立製作所製 M-80Bを用いて行った。
 還元特性は、北斗電工製のHA-501及びHB-104を使用したサイクリックボルタンメトリーで評価した。
 有機EL素子の発光特性は、作製した素子に直流電流を印加し、TOPCON社製のLUMINANCEMETER(BM-9)の輝度計を用いて評価した。
 合成例1
 (2-(4-クロロフェニル)ニトロベンゼンの合成[下記式(2)参照])
 窒素気流下、500mLの三口フラスコに、o-ブロモニトロベンゼン 25.0g(123.0mmol)、p-クロロフェニルボロン酸 21.1g(135.3mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.71g(0.61mmol)、テトラヒドロフラン 100mL、20wt%の炭酸ナトリウム水溶液 162g(炭酸ナトリウムとして307.5mmol)を加え、8時間加熱還流した。室温まで冷却した後、水層と有機層を分液した。有機層を飽和塩化アンモニウム水溶液で洗浄し、さらに飽和塩化ナトリウム水溶液で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、濾過により不溶物を除去した溶液を減圧下に濃縮し、残渣をシリカゲルカラムクロマトグラフィー(トルエン)で精製し、2-(4-クロロフェニル)ニトロベンゼンを27.2g単離した(収率94%)。
 化合物の同定は、H-NMR測定、13C-NMR測定により行った。
 H-NMR(CDCl)δ(ppm); 7.87(d,1H),7.36-7.66(m,5H),7.21-7.27(m,2H)
 13C-NMR(CDCl)δ(ppm); 148.98,135.85,135.12,134.37,132.45,131.79,129.23,128.84,128.53,124.21
 合成例2 
 (2-クロロカルバゾールの合成[下記式(2)参照])
 窒素気流下、200mLのナス型フラスコに、合成例1で得た2-(4-クロロフェニル)ニトロベンゼン 10.0g(42.7mmol)を仕込み、亜リン酸トリエチルを50mL加えた後、150℃で24時間攪拌した。減圧下に亜リン酸トリエチルを留去し、残渣にo-キシレンを加えて再結晶することにより、2-クロロカルバゾールの白色粉末を5.1g(25.6mmol)単離した(収率60%)。
 化合物の同定は、H-NMR測定、13C-NMR測定により行った。
 H-NMR(Acetone-d)δ(ppm); 10.46(br-s,1H),8.10(d,2H),7.37-7.55(m,3H),7.15-7.24(m,2H)
 13C-NMR(Acetone-d)δ(ppm); 141.35,141.15,131.33,126.70,123.17,122.64,121.92,120.84,120.09,119.78,111.81,111.43
Figure JPOXMLDOC01-appb-I000016
 合成例3
 (2-クロロ-N-(4-ビフェニリル)カルバゾールの合成)
 窒素気流下、50mLの三口フラスコに、合成例2で得た2-クロロカルバゾール 4.0g(19.8mmol)、4-ブロモビフェニル 5.5g(23.7mmol)、炭酸カリウム 3.83g(27.7mmol)、o-キシレン 20mLを加え、スラリー状の反応液に酢酸パラジウム 44mg(0.19mmol)、トリ(tert-ブチル)ホスフィン 0.14g(0.69mmol)を添加して130℃で24時間攪拌した。室温まで冷却後、析出した沈殿を濾取し、得られた固体を水で洗浄し、さらにメタノールで洗浄した。減圧乾燥した後、n-ブタノールで再結晶し、2-クロロ-N-(4-ビフェニリル)カルバゾールの白色粉末を4.9g(13.8mmol)単離した(収率69%)。
 化合物の同定は、H-NMR測定、13C-NMR測定により行った。
 H-NMR(CDCl)δ(ppm); 8.07(d,1H),8.00(d,1H),7.77(d,2H),7.65(d,2H),7.54(d,2H),7.21-7.41(m,8H)
 13C-NMR(CDCl)δ(ppm); 141.38,141.18,140.72,140.08,136.17,131.75,128.99,128.66,127.74,127.27,127.16,126.23,122.82,121.99,121.19,120.47,120.29,110.05,109.98
 合成例4
 (N-フェニル-N-(2-(N-(4-ビフェニリル))カルバゾリル)アミンの合成)
 窒素気流下、100mLの三口フラスコに合成例3で得られた2-クロロ-N-(4-ビフェニリル)カルバゾール 9.5g(26.8mmol)、アニリン 3.7g(40.2mmol)、ナトリウム-tert-ブトキシド 3.6g(37.5mmol)、o-キシレン 60mLを加え、スラリー状の反応液に酢酸パラジウム 60mg(0.26mmol)、トリ(tert-ブチル)ホスフィン 189mg(0.93mmol)を添加して130℃で10時間攪拌した。室温まで冷却後、純水を35mL添加し攪拌した。水層と有機層を分液し、有機層を純水で洗浄し、その後飽和塩化ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、濾過によって不溶物を除去した溶液を減圧下に濃縮し茶色の固体を得た。o-キシレンで再結晶し、N-フェニル-N-(2-(N-(4-ビフェニリル))カルバゾリル)アミンの白色粉末を8.0g(19.4mmol)単離した(収率72%)。
 化合物の同定は、H-NMR測定、13C-NMR測定により行った。
 H-NMR(CDCl)δ(ppm); 7.95-8.04(m,2H),7.74(d,2H),7.18-7.66(m,12H),6.99-7.12(m,4H),6.87(t,1H),5.77(br,1H)
 13C-NMR(CDCl)δ(ppm); 143.62,142.19,141.73,141.02,140.21,136.79,129.37,128.95,128.49,127.63,127.23,127.14,124.79,123.77,121.11,120.71,120.12,119.45,118.00,117.27,112.38,109.63,99.03
 合成例5
 (2-(4-ブロモフェニル)-4,5-ジフェニル-1H-イミダゾールの合成)
 200mLの三口フラスコに、4-ブロモベンズアルデヒド 10g(54.0mmol)、ジフェニルエタンジオン 11.3g(54.0mmol)、酢酸アンモニウム 20.8g(270.2mmol)、酢酸 100mLを加え、110℃で12時間攪拌した。室温まで冷却後、反応液を水 200mLに添加した。析出した白色粉末を濾取し、水で洗浄し、さらにメタノールで洗浄することにより、2-(4-ブロモフェニル)-4,5-ジフェニル-1H-イミダゾールの白色粉末を20.0g(53.4mmol)得た(収率98%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 374(M+)
 合成例6
(1-メチル-2-(4-ブロモフェニル)-4,5-ジフェニル-イミダゾールの合成)
 100mLの三口フラスコに、合成例5で得た2-(4-ブロモフェニル)-4,5-ジフェニル-1H-イミダゾール 10g(26.7mmol)、ヨードメタン 4.1g(29.3mmol)、ベンジルトリエチルアンモニウムクロリド 8.1g(29.3mmol)、48%濃度の水酸化ナトリウム水溶液 2.4g(水酸化ナトリウム固体として1.15g)、ジメチルスルホキシド 40mLを加え、70℃で3時間攪拌した。室温まで冷却後、反応液に水 40mLを添加した。析出した白色粉末を濾取し、水で洗浄し、さらにメタノールで洗浄することにより、1-メチル-2-(4-ブロモフェニル)-4,5-ジフェニル-イミダゾールの白色粉末を8.2g(21.9mmol)得た(収率81%)。
 化合物の同定は、H-NMR測定、13C-NMR測定により行った。
 H-NMR(CDCl)δ(ppm); 7.61(s,4H),7.13-7.54(m,10H),3.47(s,3H) 13C-NMR(CDCl)δ(ppm); 146.66,137.94,134.39,131.73,130.89,130.78,130.43,129.79,129.04,128.66,128.09,126.88,126.41,123.02,33.29
 合成例7
 (1-メチル-2-(4-ブロモフェニル)ベンゾイミダゾールの合成)
 50mLの三口フラスコに、2-(4-ブロモフェニル)-1H-ベンゾイミダゾール 2g(7.3mmol)、ヨードメタン 1.1g(8.0mmol)、ベンジルトリエチルアンモニウムクロリド 2.2g(8.0mmol)、48%濃度の水酸化ナトリウム水溶液 0.6g(水酸化ナトリウム固体として0.29g)、ジメチルスルホキシド 10mLを加え、70℃で5時間攪拌した。室温まで冷却後、反応液に水 10mLを添加した。析出した白色粉末を濾取し、水で洗浄し、さらにメタノールで洗浄することにより、1-メチル-2-(4-ブロモフェニル)ベンゾイミダゾールの白色粉末を1.4g(5.1mmol)得た(収率70%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 286(M+)
 合成例8
 (1-(4-ブロモフェニル)-2-フェニルベンゾイミダゾールの合成) 
 窒素気流下、100mLの三口フラスコに、2-フェニル-1H-ベンゾイミダゾール 3.0g(15.4mmol)、p-ブロモヨードベンゼン 8.6g(30.8mmol)、ヨウ化銅 0.58g(3.0mmol)、炭酸セシウム 10.0g(30.8mmol)、ジメチルホルムアミド 30mLを加え、室温で30分間攪拌した。その後、120℃で36時間攪拌した。室温まで冷却後、酢酸エチルを50mL加え、不溶物を濾過した。濾液を水で洗浄し、さらに飽和食塩水で洗浄した後、減圧下に濃縮し残渣を得た。残渣をシリカゲルカラムクロマトグラフィーで精製し、1-(4-ブロモフェニル)-2-フェニルベンゾイミダゾールの白色粉末を1.7g(4.9mmol)単離した(収率32%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 348(M+)
 実施例1
 (化合物(A2)の合成)
 窒素気流下、200mLの三口フラスコに、合成例2で得た2-クロロカルバゾール 7.8g(39.0mmol)、4-(2-ピリジル)ブロモベンゼン 9.0g(39.0mmol)、炭酸カリウム 7.5g(54.6mmol)、o-キシレン 75mLを加え、スラリー状の反応液に酢酸パラジウム 87mg(0.39mmol)、トリ(tert-ブチル)ホスフィン 275mg(1.3mmol)を添加して130℃で15時間攪拌した。室温まで冷却後、水 30mLを加え、有機層を分離した。有機層を水で洗浄し、さらに飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、濾過して不溶物を除去した。濾過で得られた溶液を200mLの三口フラスコに仕込んだ。溶液に、N,N-ビス(4-ビフェニリル)アミン 12.5g(39.0mmol)、ナトリウム-tert-ブトキシド 5.2g(54.6mmol)、酢酸パラジウム 87mg(0.39mmol)、トリ(tert-ブチル)ホスフィン 275mg(1.36mmol)を添加して130℃で8時間攪拌した。室温まで冷却後、水 30mLを加えた。析出した沈殿を濾取し、得られた沈殿物を水で洗浄し、さらにエタノールで洗浄した。減圧乾燥した後、o-キシレンで再結晶し、化合物(A2)の白色粉末を17.9g(28.0mmol)単離した(収率72%)。
 化合物の同定は、FDMS、H-NMR測定、13C-NMR測定により行った。
 FDMS(m/z); 639(M+)
 H-NMR(CDCl)δ(ppm); 8.63(d, 1H),8.13(d, 2H),8.05(d, 2H),7.73(d, 2H),7.54-7.62(m, 6H),7.10-7.49(m, 20H)
 13C-NMR(CDCl)δ(ppm); 156.38,149.70,147.26,146.02,141.66,141.18,140.60,138.23,138.09,136.88,134.96,128.69,128.42,127.72,126.92,126.73,126.62,125.47,123.64,123.44,122.34,121.13,120.56,120.36,119.94,119.85,119.03,109.80,106.92
 実施例2
 (化合物(A45)の合成)
 窒素気流下、100mLの三口フラスコに、合成例2で得た2-クロロカルバゾール 3.2g(16.0mmol)、合成例6で得た1-メチル-2-(4-ブロモフェニル)-4,5-ジフェニル-イミダゾール 6.0g(16.0mmol)、炭酸カリウム 3.1g(22.4mmol)、o-キシレン 40mLを加え、スラリー状の反応液に酢酸パラジウム 35mg(0.16mmol)、トリ(tert-ブチル)ホスフィン 113mg(0.56mmol)を添加して130℃で20時間攪拌した。室温まで冷却後、水 20mLを加え、有機層を分離した。有機層を水で洗浄し、さらに飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、濾過して不溶物を除去した。濾過で得られた溶液を100mLの三口フラスコに仕込んだ。溶液に、N-(4-ビフェニリル)-N-(p-トリル)アミン 4.1g(16.0mmol)、ナトリウム-tert-ブトキシド 2.1g(22.4mmol)、酢酸パラジウム 35mg(0.16mmol)、トリ(tert-ブチル)ホスフィン 113mg(0.56mmol)を添加して130℃で4時間攪拌した。室温まで冷却後、水 20mLを加えた。析出した沈殿を濾取し、得られた沈殿物を水で洗浄した、さらにエタノールで洗浄した。減圧乾燥した後、o-キシレンで再結晶し、化合物(A45)の淡黄色粉末を7.90g(10.8mmol)単離した(収率68%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 732(M+)
 実施例3
 (化合物(A52)の合成)
 窒素気流下、200mLの三口フラスコに、合成例2で得た2-クロロカルバゾール 5.0g(24.7mmol)、合成例7で得た1-メチル-2-(4-ブロモフェニル)ベンゾイミダゾール 7.0g(24.7mmol)、炭酸カリウム 4.8g(34.7mmol)、o-キシレン 75mLを加え、スラリー状の反応液に酢酸パラジウム 55mg(0.24mmol)、トリ(tert-ブチル)ホスフィン 174mg(0.86mmol)を添加して130℃で18時間攪拌した。室温まで冷却後、水 30mLを加え、有機層を分離した。有機層を水で洗浄し、さらに飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、濾過により不溶物を除去した。濾過で得られた溶液を200mLの三口フラスコに仕込んだ。溶液に、N,N-ビス(4-ビフェニリル)アミン 7.9g(24.7mmol)、ナトリウム-tert-ブトキシド 3.3g(34.5mmol)、酢酸パラジウム 55mg(0.24mmol)、トリ(tert-ブチル)ホスフィン 174mg(0.86mmol)を添加して130℃で5時間攪拌した。室温まで冷却後、水 30mLを加えた。析出した沈殿を濾取し、得られた沈殿物を水で洗浄し、さらにエタノールで洗浄した。減圧乾燥した後、o-キシレンで再結晶し、化合物(A52)の淡黄色粉末を10.2g(14.8mmol)単離した(収率60%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 692(M+)
 実施例4
 (化合物(A57)の合成)
 窒素気流下、50mLの三口フラスコに、合成例2で得た2-クロロカルバゾール 2.0g(7.2mmol)、合成例8で得た1-(4-ブロモフェニル)-2-フェニルベンゾイミダゾール 2.5g(7.2mmol)、炭酸カリウム 1.4g(10.1mmol)、o-キシレン 20mLを加え、スラリー状の反応液に酢酸パラジウム 16mg(0.07mmol)、トリ(tert-ブチル)ホスフィン 49mg(0.24mmol)を添加して130℃で18時間攪拌した。室温まで冷却後、水 10mLを加え、有機層を分離した。有機層を水で洗浄し、さらに飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、濾過により不溶物を除去した。濾過で得られた溶液を50mLの三口フラスコに仕込んだ。溶液に、N-(4-ビフェニリル)-N-(p-トリル)アミン 1.8g(7.2mmol)、ナトリウム-tert-ブトキシド 968mg(10.1mmol)、酢酸パラジウム 16mg(0.07mmol)、トリ(tert-ブチル)ホスフィン 49mg(0.24mmol)を添加して130℃で6時間攪拌した。室温まで冷却後、水 10mLを加えた。析出した沈殿を濾取し、得られた沈殿物を水で洗浄し、さらにエタノールで洗浄した。減圧乾燥した後、o-キシレンで再結晶し、化合物(A57)の白色粉末を3.2g(4.7mmol)単離した(収率66%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 692(M+)
 実施例5
 (化合物(A59)の合成)
 窒素気流下、100mLの三口フラスコに、合成例2で得た2-クロロカルバゾール 6.9g(34.4mmol)、4-(2-ベンゾチアゾリル)ブロモベンゼン 10.0g(34.4mmol)、炭酸カリウム 6.6g(48.1mmol)、o-キシレン 60mLを加え、スラリー状の反応液に酢酸パラジウム 77mg(0.34mmol)、トリ(tert-ブチル)ホスフィン 243mg(1.2mmol)を添加して130℃で20時間攪拌した。室温まで冷却後、水 30mLを加え、有機層を分離した。有機層を水で洗浄し、さらに飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、濾過により不溶物を除去した。濾過で得られた溶液を50mLの三口フラスコに仕込んだ。溶液に、N,N-ビス(4-ビフェニリル)アミン 11.0g(34.4mmol)、ナトリウム-tert-ブトキシド 4.6g(48.1mmol)、酢酸パラジウム 77mg(0.34mmol)、トリ(tert-ブチル)ホスフィン 243mg(1.2mmol)を添加して130℃で5時間攪拌した。室温まで冷却後、水 20mLを加えた。析出した沈殿を濾取し、得られた沈殿物を水で洗浄し、さらにエタノールで洗浄した。減圧乾燥した後、o-キシレンで再結晶し、化合物(A59)の淡黄色粉末を18.8g(27.1mmol)単離した(収率79%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 695(M+)
 実施例6
 (化合物(B3)の合成)
 窒素気流下、50mLの三口フラスコに、合成例4で得たN-フェニル-N-(2-(N-(4-ビフェニリル))カルバゾリル)アミン 3.0g(7.3mmol)、4-(2-ピリジル)ブロモベンゼン 1.7g(7.3mmol)、ナトリウム-tert-ブトキシド 0.98g(10.2mmol)、o-キシレン 15mLを加え、スラリー状の反応液に酢酸パラジウム 16mg(0.07mmol)、トリ(tert-ブチル)ホスフィン 49mg(0.24mmol)を添加して130℃で5時間攪拌した。室温まで冷却後、水 10mLを加え、有機層を分離した。有機層を水で洗浄し、さらに飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、濾過によって不溶物を除去した溶液を減圧下に濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(トルエンとヘキサンの混合溶媒)で精製し、化合物(B3)のガラス状固体を3.4g(6.2mmol)単離した(収率85%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 563(M+)
 実施例7
 (化合物(B10)の合成)
 窒素気流下、50mLの三口フラスコに、合成例4で得たN-フェニル-N-(2-(N-(4-ビフェニリル))カルバゾリル)アミン 0.90g(2.2mmol)、合成例7で得た1-メチル-2-(4-ブロモフェニル)ベンゾイミダゾール 0.62g(2.2mmol)、ナトリウム-tert-ブトキシド 0.28g(3.0mmol)、o-キシレン 10mLを加え、スラリー状の反応液に酢酸パラジウム 5mg(0.02mmol)、トリ(tert-ブチル)ホスフィン 14mg(0.07mmol)を添加して130℃で5時間攪拌した。室温まで冷却後、水 5mLを加え、有機層を分離した。有機層を水で洗浄し、さらに飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、濾過によって不溶物を除去した。濾過で得られた溶液を減圧下に濃縮した。残渣をシリカゲルカラムクロマトグラフィー(トルエンとヘキサンの混合溶媒)で精製し、化合物(B10)のガラス状固体を0.92g(1.5mmol)単離した(収率72%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 616(M+)
 実施例8
 (化合物(B13)の合成)
 窒素気流下、50mLの三口フラスコに、合成例4で得たN-フェニル-N-(2-(N-(4-ビフェニリル))カルバゾリル)アミン 0.82g(2.0mmol)、合成例8で得た1-(4-ブロモフェニル)-2-フェニルベンゾイミダゾール 0.69g(2.0mmol)、ナトリウム-tert-ブトキシド 0.27g(2.8mmol)、o-キシレン 10mLを加え、スラリー状の反応液に酢酸パラジウム 5mg(0.02mmol)、トリ(tert-ブチル)ホスフィン 14mg(0.07mmol)を添加して130℃で5時間攪拌した。室温まで冷却後、水 5mLを加え、有機層を分離した。有機層を水で洗浄し、さらに飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、濾過によって不溶物を除去した。濾過で得られた溶液を減圧下に濃縮した。残渣をシリカゲルカラムクロマトグラフィー(トルエンとヘキサンの混合溶媒)で精製し、化合物(B13)のガラス状固体を0.82g(1.2mmol)単離した(収率60%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 678(M+)
 実施例9
 (化合物(B14)の合成)
 窒素気流下、50mLの三口フラスコに、合成例4で得たN-フェニル-N-(2-(N-(4-ビフェニリル))カルバゾリル)アミン 1.5g(3.6mmol)、合成例6で得た1-メチル-2-(4-ブロモフェニル)-4,5-ジフェニル-イミダゾール 1.3g(3.6mmol)、ナトリウム-tert-ブトキシド 0.48g(5.0mmol)、o-キシレン 15mLを加え、スラリー状の反応液に酢酸パラジウム 7mg(0.03mmol)、トリ(tert-ブチル)ホスフィン 21mg(0.10mmol)を添加して130℃で7時間攪拌した。室温まで冷却後、水 10mLを加え、有機層を分離した。有機層を水で洗浄し、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、濾過によって不溶物を除去した。濾過で得られた溶液を減圧下に濃縮した。残渣をシリカゲルカラムクロマトグラフィー(トルエンとヘキサンの混合溶媒)で精製し、化合物(B14)のガラス状固体を2.0g(2.8mmol)単離した(収率79%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 718(M+)
 実施例10
 (化合物(B19)の合成)
 窒素気流下、50mLの三口フラスコに、合成例4で得たN-フェニル-N-(2-(N-(4-ビフェニリル))カルバゾリル)アミン 3.7g(9.0mmol)、4-(2-ベンゾチアゾリル)ブロモベンゼン 2.6g(9.0mmol)、ナトリウム-tert-ブトキシド 1.2g(12.6mmol)、o-キシレン 25mLを加え、スラリー状の反応液に酢酸パラジウム 20mg(0.09mmol)、トリ(tert-ブチル)ホスフィン 63mg(0.31mmol)を添加して130℃で5時間攪拌した。室温まで冷却後、水 10mLを加え、有機層を分離した。有機層を水で洗浄し、さらに飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、濾過によって不溶物を除去した。濾過で得られた溶液を減圧下に濃縮した。残渣をシリカゲルカラムクロマトグラフィー(トルエンとヘキサンの混合溶媒)で精製し、化合物(B19)のガラス状固体を4.5g(7.3mmol)単離した(収率82%)。
 化合物の同定は、FDMSにより行った。
 FDMS(m/z); 619(M+)
 実施例11
 (化合物(A2)の還元特性評価)
 過塩素酸テトラブチルアンモニウムの濃度が0.1mol/Lである無水テトラヒドロフラン溶液に、化合物(A2)を0.001mol/Lの濃度で溶解させ、サイクリックボルタンメトリーで還元電位を測定した。作用電極にはグラッシーカーボン、対極に白金線、参照電極にAgNOのアセトニトリル溶液に浸した銀線を用いた。化合物(A2)は、フェロセンの酸化還元電位を基準として-2.88V vs.Fc/Fcに還元波が観測され、電子受容性を有することが確認された。
 実施例12
 (化合物(A45)の還元特性評価)
 実施例11において、化合物(A2)の代わりに化合物(A45)を用いた他は、実施例11と同じ方法で還元特性を評価したところ、化合物(A45)は、フェロセンの酸化還元電位を基準として-2.98V vs.Fc/Fcに還元波が観測され、電子受容性を有することが確認された。
 実施例13
 (化合物(A52)の還元特性評価)
 実施例11において、化合物(A2)の代わりに化合物(A52)を用いた他は、実施例11と同じ方法で還元特性を評価したところ、化合物(A52)は、フェロセンの酸化還元電位を基準として-2.93V vs.Fc/Fcに還元波が観測され、電子受容性を有することが確認された。
 実施例14
 (化合物(A57)の還元特性評価)
 実施例11において、化合物(A2)の代わりに化合物(A57)を用いた他は、実施例11と同じ方法で還元特性を評価したところ、化合物(A57)は、フェロセンの酸化還元電位を基準として-2.95V vs.Fc/Fcに還元波が観測され、電子受容性を有することが確認された。
 実施例15
 (化合物(A59)の還元特性評価)
 実施例11において、化合物(A2)の代わりに化合物(A59)を用いた他は、実施例11と同じ方法で還元特性を評価したところ、化合物(A59)は、フェロセンの酸化還元電位を基準として-2.48V vs.Fc/Fcに還元波が観測され、電子受容性を有することが確認された。サイクリックボルタンメトリー測定の結果を図1に示す。
 実施例16
 (化合物(B3)の還元特性評価)
 実施例11において、化合物(A2)の代わりに化合物(B3)を用いた他は、実施例11と同じ方法で還元特性を評価したところ、化合物(B3)は、フェロセンの酸化還元電位を基準として-3.08V vs.Fc/Fcに還元波が観測され、電子受容性を有することが確認された。
 実施例17
 (化合物(B13)の還元特性評価)
 実施例11において、化合物(A2)の代わりに化合物(B13)を用いた他は、実施例11と同じ方法で還元特性を評価したところ、化合物(B13)は、フェロセンの酸化還元電位を基準として-3.15V vs.Fc/Fcに還元波が観測され、電子受容性を有することが確認された。
 実施例18
 (化合物(B14)の還元特性評価)
 実施例11において、化合物(A2)の代わりに化合物(B14)を用いた他は、実施例11と同じ方法で還元特性を評価したところ、化合物(B14)は、フェロセンの酸化還元電位を基準として-3.18V vs.Fc/Fcに還元波が観測され、電子受容性を有することが確認された。
 実施例19
 (化合物(B19)の還元特性評価)
 実施例11において、化合物(A2)の代わりに化合物(B19)を用いた他は、実施例11と同じ方法で還元特性を評価したところ、化合物(B19)は、フェロセンの酸化還元電位を基準として-2.75V vs.Fc/Fcに還元波が観測され、電子受容性を有することが確認された。
 比較例1
 (比較化合物(a)の還元特性評価)
 実施例11において、化合物(A2)の代わりに、下記の比較化合物(a)を用いた他は、実施例11と同じ方法で還元特性を評価したところ、化合物(a)は、フェロセンの酸化還元電位を基準として-3.30V vs.Fc/Fcまで走引したが、還元波は観測されなかった。
Figure JPOXMLDOC01-appb-I000017
 実施例20
 (化合物(A2)の素子評価)
 厚さ200nmのITO透明電極(陽極)を積層したガラス基板を、アセトン及び純水による超音波洗浄、イソプロピルアルコールによる沸騰洗浄を行なった。さらに、紫外線/オゾン洗浄を行ない、真空蒸着装置へ設置後、1×10-4Paになるまで真空ポンプにて排気した。まず、ITO透明電極上にNPDを蒸着速度0.3nm/秒で蒸着し、20nmの正孔注入層とした。引続き、化合物(A2)を蒸着速度0.3nm/秒で30nm蒸着した後、燐光ドーパント材料であるトリス(2-フェニルピリジン)イリジウム(Ir(ppy))とホスト材料である4,4’-ビス(N-カルバゾリル)ビフェニル(CBP)を重量比が1:11.5になるように蒸着速度0.25nm/秒で共蒸着し、20nmの発光層とした。次に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を蒸着速度0.3nm/秒で蒸着し、10nmのエキシトンブロック層とした後、さらに、Alq(トリス(8-キノリノラト)アルミニウム)を0.3nm/秒で蒸着し、30nmの電子輸送層とした。引続き、電子注入層として沸化リチウムを蒸着速度0.01nm/秒で0.5nm蒸着し、さらに、アルミニウムを蒸着速度0.25nm/秒で100nm蒸着して陰極を形成した。窒素雰囲気下、封止用のガラス板をUV硬化樹脂で接着し、評価用の有機EL素子とした。このように作製した素子に20mA/cmの電流を印加し、駆動電圧及び外部量子効率を測定した。結果を表1に示す。
 実施例21
 (化合物(A45)の素子評価)
 化合物(A2)を化合物(A45)に変更した以外は実施例20と同じ方法で有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
 実施例22
 (化合物(A52)の素子評価)
 化合物(A2)を化合物(A52)に変更した以外は実施例20と同じ方法で有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
 実施例23
 (化合物(A57)の素子評価)
 化合物(A2)を化合物(A57)に変更した以外は実施例20と同じ方法で有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
 実施例24
 (化合物(A59)の素子評価)
 化合物(A2)を化合物(A59)に変更した以外は実施例20と同じ方法で有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
 実施例25
 (化合物(B3)の素子評価)
 化合物(A2)を化合物(B3)に変更した以外は実施例20と同じ方法で有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
 実施例26
 (化合物(B13)の素子評価)
 化合物(A2)を化合物(B13)に変更した以外は実施例20と同じ方法で有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
 比較例2
 (NPDの素子評価)
 化合物(A2)をNPD(4,4’-ビス[N-(1-ナフチル)-N-フェニル]ビフェニル)に変更した以外は実施例20と同じ方法で有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
Figure JPOXMLDOC01-appb-T000018
 実施例27
 (化合物(A2)の素子寿命評価)
 厚さ200nmのITO透明電極(陽極)を積層したガラス基板を、アセトン及び純水による超音波洗浄、イソプロピルアルコールによる沸騰洗浄を行なった。さらに、紫外線/オゾン洗浄を行ない、真空蒸着装置へ設置後、1×10-4Paになるまで真空ポンプにて排気した。まず、ITO透明電極上に銅フタロシアニンを蒸着速度0.1nm/秒で蒸着し、10nmの正孔注入層とした。引続き、NPDを蒸着速度0.3nm/秒で25nm蒸着し、その後、化合物(A2)を蒸着速度0.1nm/秒で5nm蒸着した。続いて、燐光ドーパント材料であるトリス(2-フェニルピリジン)イリジウム(Ir(ppy))とホスト材料である4,4’-ビス(N-カルバゾリル)ビフェニル(CBP)を重量比が1:11.5になるように蒸着速度0.25nm/秒で共蒸着し、30nmの発光層とした。次に、BAlq(ビス(2-メチル-8-キノリノラート)(p-フェニルフェノラート)アルミニウム)を蒸着速度0.3nm/秒で蒸着し、5nmのエキシトンブロック層とした後、さらにAlq(トリス(8-キノリノラト)アルミニウム)を0.3nm/秒で蒸着し、45nmの電子輸送層とした。引続き、電子注入層として沸化リチウムを蒸着速度0.01nm/秒で0.5nm蒸着し、さらにアルミニウムを蒸着速度0.25nm/秒で100nm蒸着して陰極を形成した。窒素雰囲気下、封止用のガラス板をUV硬化樹脂で接着し、評価用の有機EL素子とした。このように作製した素子に6.25mA/cmの電流を印加し、輝度半減時間を評価した。結果を表2に示す。
 実施例28
 (化合物(A57)の素子寿命評価)
 化合物(A2)を化合物(A57)に変更した以外は実施例27と同じ方法で有機EL素子を作製した。6.25mA/cmの電流を印加した際の輝度半減時間を表2に示す。
 実施例29
 (化合物(A59)の素子寿命評価)
 化合物(A2)を化合物(A59)に変更した以外は実施例27と同じ方法で有機EL素子を作製した。6.25mA/cmの電流を印加した際の輝度半減時間を表2に示す。
 参考例1
 (参考化合物(a)の素子寿命評価)
 化合物(A2)を下記の参考化合物(a)に変更した以外は実施例27と同じ方法で有機EL素子を作製した。6.25mA/cmの電流を印加した際の輝度半減時間を表2に示す。
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-T000020
 一般式(1)で表される本発明のアミン化合物は、従来材料以上の高い正孔輸送能力を有すると共に、良好な電子受容安定性を有する。
 上記の特性を活かして、本発明のアミン化合物は、有機EL素子の発光層、正孔輸送層または正孔注入層の形成材料として、特に正孔輸送層の形成材料として有用である。本発明のアミン化合物を含む、発光層、正孔輸送層および正孔注入層の中から選ばれる少なくとも1つの層を有する有機EL素子は、駆動電圧が低く、発光効率が高く、耐久性に優る。

Claims (6)

  1.  下記一般式(1)で表されるアミン化合物。
    Figure JPOXMLDOC01-appb-I000001
     式中、Arは炭素数1~36の置換基又はハロゲン原子を有していてもよい炭素数6~30のアリール基を表す。A及びBは、各々独立して、炭素数1~36の置換基又はハロゲン原子を有していてもよい少なくとも1つのC=N結合を有する炭素数3~20のヘテロアリール基を表す。X及びXは、各々独立して、炭素原子又は窒素原子を表す。R、R及びR~Rは、各々独立して、水素原子、ハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基、炭素数1~36の置換基若しくはハロゲン原子を有していてもよい炭素数6~30のアリール基、又は、炭素数1~36の置換基若しくはハロゲン原子を有していてもよい炭素数4~20のヘテロアリール基を表す。Rは水素原子、ハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、又は炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基を表す。R及びRは、各々独立して、ハロゲン原子、炭素数1~18の直鎖、分岐若しくは環状のアルキル基、炭素数1~18の直鎖、分岐若しくは環状のアルコキシ基、又は炭素数1~36の置換基若しくはハロゲン原子を有していてもよい炭素数6~30のアリール基を表す。m及びnは、各々独立して、0又は1の整数を表し[但し、m+nは1又は2である]、p及びqは、各々独立して、0~4の整数を表す。
  2.  一般式(1)において、A及びBは、各々独立して、炭素数1~36の置換基又はハロゲン原子を有していてもよい、イミダゾリル基、チアゾリル基、ピリジル基、ピリミジル基、ピラジル基、1,3,5-トリアジル基、ベンゾイミダゾリル基、ベンゾチアゾリル基、及びキノキサリル基から選ばれる置換基である請求項1に記載のアミン化合物。
  3.  一般式(1)において、Arは、炭素数1~36の置換基又はハロゲン原子を有していてもよい、4-ビフェニリル基、3-ビフェニリル基、m-ターフェニル基、フェニル基、および2-フルオレニル基から選ばれる置換基である請求項1または2に記載のアミン化合物。
  4.  一般式(1)において、mが1、かつnが0であるか、または、mが0、かつnが1である請求項1~3のいずれかに記載のアミン化合物。
  5.  一般式(1)において、X及びXが共に炭素原子である請求項1~4のいずれかに記載のアミン化合物。
  6. 請求項1~5のいずれかに記載のアミン化合物を含む、発光層、正孔輸送層および正孔注入層の中から選ばれる少なくとも1つの層を有する有機EL素子。
PCT/JP2011/079322 2010-12-20 2011-12-19 アミン化合物及び有機el素子 WO2012086576A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010283792 2010-12-20
JP2010-283792 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086576A1 true WO2012086576A1 (ja) 2012-06-28

Family

ID=46313846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079322 WO2012086576A1 (ja) 2010-12-20 2011-12-19 アミン化合物及び有機el素子

Country Status (3)

Country Link
JP (1) JP5927875B2 (ja)
TW (1) TW201233677A (ja)
WO (1) WO2012086576A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478725A (zh) * 2014-11-25 2015-04-01 天津市均凯化工科技有限公司 一种制备4′-氯-2-硝基联苯的方法
CN106062127A (zh) * 2014-03-07 2016-10-26 九州有机光材股份有限公司 发光材料、有机发光元件及化合物
CN106432093A (zh) * 2016-09-14 2017-02-22 信阳师范学院 一种苯并咪唑类化合物及其制备方法
CN106753340A (zh) * 2016-12-20 2017-05-31 中节能万润股份有限公司 一种苯并咪唑类有机电致发光材料及其制备方法和应用
CN115974697A (zh) * 2022-12-16 2023-04-18 南京工业大学 一种催化合成4’-氯-2-硝基联苯的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051274B2 (en) 2011-06-24 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Triarylamine compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP6194645B2 (ja) 2012-09-27 2017-09-13 東ソー株式会社 アミン化合物及びその用途
JP6032107B2 (ja) * 2013-04-16 2016-11-24 東ソー株式会社 2,5−ジアミノカルバゾール化合物及びその用途
JP2015071582A (ja) * 2013-09-09 2015-04-16 東ソー株式会社 2−アミノカルバゾール化合物及びその用途
JP6311266B2 (ja) * 2013-10-17 2018-04-18 東ソー株式会社 カルバゾール化合物及びその用途
WO2015034093A1 (ja) * 2013-09-09 2015-03-12 東ソー株式会社 2-アミノカルバゾール化合物及びその用途
KR101883772B1 (ko) * 2015-03-20 2018-08-01 대주전자재료 주식회사 벤지이미다졸 유도체 및 이를 포함하는 유기전기발광소자

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108216A (ja) * 2005-10-11 2007-04-26 Konica Minolta Business Technologies Inc 有機感光体、画像形成方法及び画像形成装置
JP2007520470A (ja) * 2004-03-19 2007-07-26 エルジー・ケム・リミテッド 新規な正孔注入または輸送用物質及びこれを用いた有機発光素子
WO2010027129A1 (en) * 2008-09-02 2010-03-11 Cheil Industries Inc. Pyrrole compounds and organic photoelectric device including the same
KR20100071723A (ko) * 2008-12-19 2010-06-29 엘지디스플레이 주식회사 아민 유도체 및 이를 포함하는 유기전계발광소자
KR20100073543A (ko) * 2008-12-23 2010-07-01 덕산하이메탈(주) 퀴놀린 유도체를 함유하는 방향족 아민계 화합물 및 이를 포함하는 유기전계발광소자
JP2010185047A (ja) * 2009-02-13 2010-08-26 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
KR20110105285A (ko) * 2010-03-18 2011-09-26 에스에프씨 주식회사 트리아진계 화합물 및 이를 포함하는 유기전계발광소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609256B2 (ja) * 2009-05-20 2014-10-22 東ソー株式会社 2−アミノカルバゾール化合物及びその用途
JP5609234B2 (ja) * 2010-04-26 2014-10-22 東ソー株式会社 ビスカルバゾール化合物及びその用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520470A (ja) * 2004-03-19 2007-07-26 エルジー・ケム・リミテッド 新規な正孔注入または輸送用物質及びこれを用いた有機発光素子
JP2007108216A (ja) * 2005-10-11 2007-04-26 Konica Minolta Business Technologies Inc 有機感光体、画像形成方法及び画像形成装置
WO2010027129A1 (en) * 2008-09-02 2010-03-11 Cheil Industries Inc. Pyrrole compounds and organic photoelectric device including the same
KR20100071723A (ko) * 2008-12-19 2010-06-29 엘지디스플레이 주식회사 아민 유도체 및 이를 포함하는 유기전계발광소자
KR20100073543A (ko) * 2008-12-23 2010-07-01 덕산하이메탈(주) 퀴놀린 유도체를 함유하는 방향족 아민계 화합물 및 이를 포함하는 유기전계발광소자
JP2010185047A (ja) * 2009-02-13 2010-08-26 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
KR20110105285A (ko) * 2010-03-18 2011-09-26 에스에프씨 주식회사 트리아진계 화합물 및 이를 포함하는 유기전계발광소자

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062127A (zh) * 2014-03-07 2016-10-26 九州有机光材股份有限公司 发光材料、有机发光元件及化合物
US9773982B2 (en) 2014-03-07 2017-09-26 Kyulux, Inc. Light-emitting material, organic light-emitting device, and compound
US10043981B2 (en) 2014-03-07 2018-08-07 Kyulux, Inc. Light-emitting material, organic light-emitting device, and compound
CN104478725A (zh) * 2014-11-25 2015-04-01 天津市均凯化工科技有限公司 一种制备4′-氯-2-硝基联苯的方法
CN106432093A (zh) * 2016-09-14 2017-02-22 信阳师范学院 一种苯并咪唑类化合物及其制备方法
CN106753340A (zh) * 2016-12-20 2017-05-31 中节能万润股份有限公司 一种苯并咪唑类有机电致发光材料及其制备方法和应用
CN115974697A (zh) * 2022-12-16 2023-04-18 南京工业大学 一种催化合成4’-氯-2-硝基联苯的方法

Also Published As

Publication number Publication date
JP2012144515A (ja) 2012-08-02
TW201233677A (en) 2012-08-16
JP5927875B2 (ja) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5927875B2 (ja) アミン化合物及びその用途
JP5609256B2 (ja) 2−アミノカルバゾール化合物及びその用途
JP6260726B2 (ja) 4−アミノカルバゾール化合物及びその用途
TWI429650B (zh) Organic electroluminescent elements
KR101935710B1 (ko) 카바졸 화합물 및 그 용도
JP5200099B2 (ja) 有機電界発光素子用化合物及び有機電界発光素子
JP5821635B2 (ja) 発光素子材料および発光素子
KR102013400B1 (ko) 인데노페난트렌 유도체 및 이를 포함하는 유기전계발광소자
WO2013062043A1 (ja) 4-アミノカルバゾール化合物及びその用途
TW201434828A (zh) 具有二氮雜聯三伸苯環結構之化合物及有機電致發光元件
JPWO2009136595A1 (ja) 有機電界発光素子用化合物及び有機電界発光素子
KR20120003922A (ko) 유기 전계 발광 소자
JP5585044B2 (ja) カルバゾール化合物及びその用途
EP2902391B1 (en) Novel amine compound and use thereof
JP5609234B2 (ja) ビスカルバゾール化合物及びその用途
JP6032107B2 (ja) 2,5−ジアミノカルバゾール化合物及びその用途
JP5716270B2 (ja) カルバゾール化合物およびその用途
TW201412718A (zh) 具有聯三伸苯環結構之化合物及有機電致發光元件
KR102278854B1 (ko) 신규한 피렌 유도체 및 이를 포함하는 유기 발광 소자
TWI827533B (zh) 芳基二胺化合物及有機電致發光元件
KR101569101B1 (ko) 신규한 유기발광화합물 및 이를 포함하는 유기전기발광소자
KR20140023283A (ko) 치환된 오르토 터페닐 구조를 가지는 화합물 및 유기 일렉트로루미네선스 소자
KR102146386B1 (ko) 유기발광소자 발광층용 조성물, 신규한 유기발광화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850370

Country of ref document: EP

Kind code of ref document: A1