WO2012086564A1 - 金属材料の塑性加工用潤滑剤 - Google Patents

金属材料の塑性加工用潤滑剤 Download PDF

Info

Publication number
WO2012086564A1
WO2012086564A1 PCT/JP2011/079283 JP2011079283W WO2012086564A1 WO 2012086564 A1 WO2012086564 A1 WO 2012086564A1 JP 2011079283 W JP2011079283 W JP 2011079283W WO 2012086564 A1 WO2012086564 A1 WO 2012086564A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricant
organic
metal material
clay mineral
plastic working
Prior art date
Application number
PCT/JP2011/079283
Other languages
English (en)
French (fr)
Inventor
敦 芹田
康介 幢崎
小見山 忍
藤脇 健史
正人 大竹
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to JP2012549783A priority Critical patent/JP5718944B2/ja
Priority to CN201180061110.3A priority patent/CN103261384B/zh
Priority to KR1020137015723A priority patent/KR101497252B1/ko
Publication of WO2012086564A1 publication Critical patent/WO2012086564A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/40Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/101Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/044Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/0605Organic compounds derived from inorganic acids or metal salts used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/246Iron or steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/247Stainless steel

Definitions

  • the present invention provides a metal material to be processed such as steel, stainless steel, aluminum and aluminum alloy, titanium and titanium alloy, copper and copper alloy, magnesium and magnesium alloy, such as forging, wire drawing, tube drawing, rolling, and pressing.
  • a metal material to be processed such as steel, stainless steel, aluminum and aluminum alloy, titanium and titanium alloy, copper and copper alloy, magnesium and magnesium alloy, such as forging, wire drawing, tube drawing, rolling, and pressing.
  • the present invention relates to a lubricant for reducing seizure and frictional resistance at a frictional interface between a metal material to be processed and a tool such as a die, which is generated when plastic working is performed.
  • the technical field in which the present invention is useful is the general field of cold plastic working of the metal material, and the most suitable is the field of cold forging that is susceptible to high contact pressure at the friction interface.
  • the present invention relates to a non-black plasticity of a metal material that is interposed between the friction interface between a metal material to be processed and a tool such as a die and exhibits both seizure resistance and friction reduction ability. It relates to a processing lubricant.
  • lubricant In plastic processing of metal materials such as forging, wire drawing, pipe drawing, rolling, and pressing, the use of lubricant is indispensable because the metal material that is the workpiece and tools such as molds rub against each other at the friction interface. It is.
  • Lubricants in the plastic processing of metal materials intervene in the friction interface and contribute to prevention of seizure (direct contact between metals), reduction of frictional resistance and suppression of wear, etc. This is one of the important factors directly linked to reduction and quality improvement of processed products.
  • plastic deformation is caused by applying a force exceeding the yield stress to the metal material that is the work material, so the friction interface is subjected to extremely high contact pressure, and the work material undergoes deformation work. And affected by heat and surface area increase converted from friction work.
  • Lubricant Since it is necessary for the lubricant to maintain its performance under such severe conditions as high surface pressure, thermal load, and surface area expansion, it has been devised to have both seizure resistance and friction reducing ability. Lubricants have been used.
  • a method of interposing a lubricant such as oils, soaps, waxes, etc., at the friction interface may be used for mild processing, but it is a cooling agent that is forced to slide at a particularly high contact pressure. In inter-forging, etc., direct contact between the workpiece and the mold cannot be prevented, and seizure is likely to occur, so that it is not usually used.
  • a chemical conversion film for plastic working is formed by forming a crystalline chemical conversion film such as phosphate or oxalate on the surface of a metal material that is a workpiece, and then performing a lubricating treatment with soap or the like thereon. Used as a lubricant.
  • the inorganic salt film deposited by chemical reaction on the metal surface that is the workpiece is responsible for seizure resistance, and the upper soap film chemically reacts with the lower inorganic salt to produce metal soap. It forms an ideal lubricating film that exhibits excellent friction reducing ability.
  • a lubricant composition in which a water-soluble polymer or an aqueous emulsion thereof is used as a base material and a solid lubricant and a chemical film forming agent are blended (Patent Document 1)
  • a lubricant composition for plastic working of a metal material (Patent Document 2) and the like show a lubricant in which a lubricating film is formed by simple application and drying based on a synthetic resin.
  • Patent Document 3 a film in which a synthetic resin and a water-soluble inorganic salt are uniformly deposited is formed on the surface of a workpiece, thereby directly It is intended to avoid metal contact, and by adding a lubricating component or the like in the film at an arbitrary ratio, it is shown that performance equal to or higher than that obtained when a lubricating component layer is formed on a phosphate film is shown. ing.
  • Patent Document 4 Metallic material for plastic working having an inclined two-layer lubricating film and manufacturing method thereof.
  • phosphate, sulfate, borate, silicate, molybdate, and tungstate For plastic processing by forming a base layer mainly composed of inorganic compounds such as, and a slanted two-layer lubricating layer composed mainly of metal soap, wax, polytetrafluoroethylene, molybdenum disulfide and graphite. It is shown as a lubricant having the same performance as the chemical conversion film.
  • a lubricant containing a large amount of a solid lubricant such as molybdenum disulfide, tungsten disulfide, or graphite is generally used.
  • These solid lubricants have a hexagonal layered crystal structure, and the friction between them is reduced due to the low bonding force between the layers (van der Waals force, ⁇ bond). It has characteristics suitable for plastic working, such as being well tolerated.
  • solid lubricants examples include: (A) water-soluble inorganic salt, (B) molybdenum disulfide, and “water-based lubricant for plastic processing of metal materials and method for treating lubricating film” (Patent Document 5). It contains one or more lubricants selected from graphite and (C) wax, and these components are dissolved or dispersed in water, and the solid content concentration ratio (mass ratio) (B) / (A) is An aqueous lubricant for plastic working of a metal material characterized by 1.0 to 5.0 and (C) / (A) of 0.1 to 1.0 is shown.
  • solid lubricants such as molybdenum disulfide, tungsten disulfide, and graphite are black, significant contamination is seen as a problem in the working environment, and it has a non-black appearance and excellent lubricity. Solid lubricants are highly desired.
  • Fluorinated graphite is synthesized by fluorinating a carbon material such as graphite with fluorine gas at high temperature (by synthesizing a highly crystalline carbon material at high temperature, a synthetic product with a whiter appearance can be obtained).
  • a carbon material such as graphite with fluorine gas at high temperature
  • fluorine gas at high temperature
  • it is a solid lubricant having a layered structure having a slippery layer plane composed of covalent bonds of carbon and carbon
  • it is a disadvantage that it becomes a very expensive material because it requires raw material costs and high temperature heat treatment.
  • hexagonal boron nitride has a yellowish white or white appearance and has a hexagonal layered structure and is excellent in heat resistance, but has a high bonding strength between layers and a similar structure.
  • the coefficient of friction is higher than molybdenum disulfide and graphite.
  • Polytetrafluoroethylene an organic polymer with a white appearance, is a solid lubricant that expresses a low coefficient of friction due to the fact that the molecular chains are slidable with each other because of its smooth and small cohesive molecular structure.
  • PTFE polytetrafluoroethylene
  • it is an organic substance and chemically inert, it is not as good as an inorganic substance in terms of pressure resistance and heat resistance.
  • a mica having a lamellar structure with cleavable minerals, and sericite which belongs to this, is a solid lubricant with a very fine grain and white appearance.
  • the interlayer is a strong ionic bond, the interlayer is difficult to slip and the friction coefficient is also increased.
  • the friction reducing ability is low for inorganic substances having a layered structure or a cleaved crystal structure such as talc, light calcium carbonate, magnesium hydroxide, and magnesium oxide.
  • melamine cyanurate, amino acid compounds and the like are organic substances and have a friction reducing ability like polytetrafluoroethylene, but are not as good as inorganic substances due to pressure resistance and heat resistance.
  • Soaps and waxes which are lubricant components of general plastic processing lubricants, are vulnerable to shearing, and develop friction reducing ability by receiving heat generated from friction during processing and material deformation. It has almost no seizure resistance.
  • molten lubricant components flow in a tool such as a mold, and are deposited locally together with a lubricant film that has fallen off during processing.
  • the main problem of the present invention is to solve these problems. Specifically, it is not applicable to black-type appearances that can be applied even in strong processing applications and that significantly contaminates the work environment.
  • Another object of the present invention is to provide a lubricant for plastic working of a metal material that is less likely to cause lubrication debris that causes molding defects.
  • a sub-task of the present invention is to provide a lubricant for plastic working of a metal material that can prevent the occurrence of film residue as much as possible in order to omit precision forging.
  • an organically modified clay mineral carrying a cationic organic compound between layers preferably a layered structure having exchangeable cations between layers. It has been found that a lubricant containing a specific ratio of an organically modified clay mineral obtained by ion exchange between a clay mineral and a cationic organic compound) can have both seizure resistance and friction reducing performance.
  • the invention has been completed.
  • One of the features of the present invention is that the appearance is non-black, and the significant contamination in the working environment possessed by a lubricant containing a black solid lubricant such as molybdenum disulfide and graphite is present in the present invention. It disappears by applying.
  • the organic compound that expresses the friction reducing ability is supported between the layers of the layered clay mineral that expresses seizure resistance by chemical bonding. Local deposition due to flow is less likely to occur, leading to the effect of eliminating or minimizing the use of lubricant components such as soaps and waxes.
  • the present invention improves the problem of molding defects caused by the accumulation of lubricating debris, which is possessed by general plastic working lubricants that contain a large amount of lubricant components that have been the cause of lubricating debris.
  • the lubricant according to the present invention is a well-known means of coating with a binder component and the like, and then drying the water contained after application, soaking, etc. It can be interposed at the friction interface of the tool.
  • hue representing hue There are roughly three elements for color expression: hue representing hue, lightness representing brightness, and saturation representing vividness.
  • the lightness is a high value when it becomes white, and a low value when it becomes black.
  • the difference in brightness is used as an index of the degree of dirt.
  • the measurement was performed using a color difference meter through a glass plate on a sample in which an appropriate amount of solid lubricant powder was placed in a glass petri dish and compressed vertically to a thickness of 2 mm.
  • Konica Minolta CR-300, D65 light source, CAE Lab color system L value Konica Minolta CR-300, D65 light source, CAE Lab color system L value
  • the value was about 45 for molybdenum disulfide and about 40 for graphite.
  • the value is lower than the lightness value of molybdenum disulfide and graphite, which are considered to be significantly contaminated in practical use, that is, the material is naturally noticeable in the dark color appearance, and conversely, the lightness is high, that is, the light color appearance. Is considered to be a material that makes contamination less noticeable.
  • a dark color with a lightness less than 50 is defined as “black”, and a bright color with a lightness of 50 or more is defined as “non-black”.
  • the organically modified clay mineral is in the range of 2 to 5% by mass in the solid content ratio
  • the lubricant component is in the range of 1 to 10% by mass in the solid content ratio.
  • the plastic working lubricant can exhibit both extremely excellent seizure resistance and friction reducing ability.
  • the application of the present invention leads to the solution of problems (contamination problems in the working environment of black solid lubricant-containing lubricants and molding defects due to accumulation of lubricating debris) that had previously been involved in plastic working lubricants. There is an effect.
  • FIG. 1 shows a hermetic extrusion mold used in a hermetic extrusion test in an example (an example corresponding to the main problem).
  • FIG. 2 shows a principle diagram of a spike test in an example (an example corresponding to a sub-task) and an appearance after forging.
  • FIG. 3 shows a principle diagram of an upsetting-ball ironing test in an example (an example corresponding to a sub-task) and an appearance after the test.
  • ⁇ Lubricant for plastic working ⁇ (Component A: Organically modified clay mineral)
  • Layered clay mineral A layered clay mineral that is one raw material of the organically modified clay mineral according to the present invention is a cationic organic compound that acts as a base material that imparts seizure resistance and friction reducing ability, and improves the slipperiness between layers.
  • a material having an exchangeable cation capable of undergoing an ion exchange reaction with is used.
  • the layered clay mineral is selected from natural products or synthetic products such as smectite (montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, soconite), stevensite, vermiculite, mica group, brittle mica group.
  • smectite montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, soconite
  • stevensite vermiculite
  • mica group brittle mica group.
  • synthetic clay mineral having a small particle diameter is more preferable, and specific examples thereof include synthetic mica and hectorite type synthetic smectite.
  • hectorite-type synthetic smectite is preferable for the present invention because it has a small particle size and is easily retained in a lubricant that becomes an extremely thin film at the friction interface.
  • the primary particles of hectorite-type synthetic smectite are two-dimensional platelets with a thickness of about 1 nm, that is, rectangular or disk-like plates.
  • One side or diameter of the plate surface is considered to be 20 to 500 nm, and the thickness is about 1 nm.
  • a synthetic product which is a disk-like particle having a diameter of 20 to 40 nm is on the market.
  • Examples of the synthesis of hectorite smectite include hydrothermal synthesis as disclosed in, for example, Japanese Patent Publication No. 61-12845, Japanese Patent Application Laid-Open No. 5-279002, and the like. Includes a method of synthesizing talc, a transition metal compound, and an alkali silicofluoride by heat treatment as disclosed in, for example, JP-A-6-298522. Is not important.
  • Clay minerals are the main constituent minerals of clay. Layered silicate minerals (phyllosilicate minerals), calcite (calcite), dolomite, feldspars, quartz, zeolites (zeolites), and other chains Those with a structure (Attapulgite, Sepiolite, etc.) and those without a clear crystal structure (Allophane) are called clay minerals. Generally, layered silicate minerals are called layered clay. It is called a mineral.
  • Layered clay minerals have two-dimensional layers of positive and negative ions stacked in parallel to form a crystal structure. In this layer structure, there are two structural units, one that surrounds Si 4+ .
  • the tetrahedral layer is composed of O 2 ⁇ , and the other is composed of an octahedral layer composed of Al 3+ (or Mg 2+ , Fe 2+, etc.) and (OH) ⁇ surrounding it.
  • tetrahedron layer O at the four vertices of the tetrahedron and Si located at the center form an Si—O tetrahedron, which is connected to each other at the three vertices to spread two-dimensionally, and Si 4 O A layer lattice having a composition of 10 is formed. Si 4+ is often replaced by Al 3+ .
  • the octahedron layer In the octahedron layer, the octahedron formed by (OH) or O at the six vertices of the octahedron and Al, Mg, Fe, etc. located at the center of the octahedron is connected at each vertex and spreads two-dimensionally. A layer lattice having a composition of Al 2 (OH) 6 or Mg 3 (OH) 6 is formed.
  • a divalent cation such as Mg 2+
  • a divalent cation enters the lattice point of the cation surrounded by 6 anions, and occupies all of the lattice points.
  • a 2-octahedron type in which trivalent cations (Al 3+, etc.) enter the lattice points and occupy 2/3, and the remaining 1/3 is empty.
  • tetrahedron and octahedron combinations There are two types of tetrahedron and octahedron combinations, one is a 1: 1 type structure with the unit of one tetrahedron layer and one octahedron layer, and the other is two tetrahedrons.
  • one Si 4+ is usually surrounded by four O atoms and has a stable coordination, but sometimes Al 3+ having a slightly larger ion radius than this Si 4+ replaces Si 4+ .
  • Al 3+ having a slightly larger ion radius than this Si 4+ replaces Si 4+ .
  • negative charges are generated with the replacement of Al 3+ and Fe 3+ by Mg 2+ and Fe 2+ .
  • This negatively charged layer is a positive layer such as Li + , K + , Na + , NH 4 + , H 3 O + , Ca 2+ , Mg 2+ , Sr 2+ , Ba 2+ , Co 2+ , Fe 2+ , Al 3+.
  • the ions are electrically neutral due to the presence of ions, resulting in a laminated structure in which these exchangeable cations exist between layers.
  • the cationic organic compound (organic compound inserted and carried between the layers) which is one raw material of the organically modified clay mineral according to the present invention is the interlayer spacing of the layered clay mineral. And an excellent effect as a lubricant for improving the slipperiness between layers.
  • the organic compound examples include at least one cationic organic compound (organic group + cationic group) selected from organic ammonium compounds, organic phosphonium compounds, and organic sulfonium compounds.
  • organic group of the organic compound is not particularly limited, but is a linear, branched or cyclic (having a cyclic group), saturated hydrocarbon group or unsaturated hydrocarbon group having 1 to 30 carbon atoms. A group is preferred.
  • bonded with the carbon atom which comprises a carbon chain or a carbocycle may be substituted by the other substituent, and the one part carbon atom which comprises a carbon chain or a carbocycle is another atom (for example, it may be substituted with O, S, etc., and may further contain another bond (for example, ester bond, ether bond) between the CC chains.
  • Preferable is an organic ammonium compound composed of an aliphatic hydrocarbon group (preferably having 1 to 30 carbon atoms) advantageous for friction reducing ability and an ammonium group advantageous for fixing ability between layers.
  • organic salts used when introducing the organic compound between the layers chloride, bromide, iodide, nitride, fluoride, hydroxide and the like are preferable.
  • Particularly preferred organic salts are quaternary ammonium chlorides (capryltrimethylammonium chloride, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, dicapryldimethylammonium chloride, dilauryldimethylammonium chloride which are easy to wash away by-product salts with water. Chloride, distearyldimethylammonium chloride, etc.).
  • organic modified clay mineral As a manufacturing method of organic modified clay mineral (means for inserting and supporting an organic compound between layers of layered clay mineral), it is performed by organicizing clay mineral which is a well-known technique.
  • the layered clay mineral has a laminated structure in which a cation is present between layers in order to keep the negative charge in the layer structure electrically neutral, and when dispersed in the aqueous phase, the cation between layers is water. As a result, the particles swell and separate into layer platelets.
  • an organic exchange agent is carried out in the presence of a cationic organic salt, which is an organic agent, and by-product salt is removed by washing with water, dried and pulverized to insert and carry organic compounds between layers.
  • Clay mineral is obtained as a powder material.
  • the type of the exchangeable cation between the layers of the layered clay mineral is preferably Li + or Na + from the viewpoint of ease of hydration or substitution, but can also be used for other types, for example, Ca 2+ is the interlayer.
  • the layered clay mineral present in it can be indirectly organized, for example, by pretreatment such as replacement with Na + in an aqueous Na 2 CO 3 solution.
  • the organic compound carried between the layers of the layered clay mineral in the present invention is adsorbed with a cationic group directed to the negatively charged plate surface, and in a state where organic chains are grown between the layers. It seems to exist.
  • the ammonium group is adsorbed toward the plate surface of the layered clay mineral, and an aliphatic hydrocarbon group is grown between the layers,
  • the aliphatic hydrocarbon group acts as a lubricant component, making the layers very slippery.
  • the lubricant component is carried between the layers, it is possible to express the friction reducing ability without using or reducing the lubricant component such as soaps and waxes as much as possible.
  • Local lubrication debris accumulation due to flow is much less likely to occur than general plastic working lubricants, and the problem of molding defects caused by lubrication debris accumulation is improved.
  • the appearance of the organically modified clay mineral of the present invention as a specific example, the brightness of the synthetic hectorite powder organically treated with distearyldimethylammonium chloride and the untreated synthetic hectorite powder were measured by the same method as described above. Since both are about 95 and have a non-black appearance, they are suitable for the present invention for the purpose of improving the pollution problem of the work environment.
  • the main characteristics are imparting properties in organic materials, such as swelling in organic solvents, imparting viscosity, or improving mechanical properties by kneading into various organic materials, and barrier effects. Is the purpose.
  • the organic compound between the layers imparts swellability in an organic solvent, and the action of the organic compound is different from that of the present invention.
  • the organic compound here is also selected for the purpose of affinity with a polymer material or an organic solvent, and is different from the action of the organic compound of the present invention.
  • Binder component In the lubricant of the present invention, (A) used as a film component for introducing and maintaining an organically modified clay mineral and other blending components at the friction interface with the mold (B) Binder components include sulfate, silica Water-soluble inorganic salts such as acid salts, borates, molybdates, vanadates and tungstates, water-soluble organic salts such as malates, succinates, citrates and tartrates, acrylic resins, Organic polymers such as amide resin, epoxy resin, phenol resin, urethane resin, and polymaleic acid resin are exemplified, but are not particularly limited and are selected in consideration of the required items.
  • Component C Lubricant component
  • soaps sodium stearate, potassium stearate, sodium oleate, etc.
  • metal soaps calcium stearate, magnesium stearate, aluminum stearate, stearin).
  • waxes polyethylene wax, polypropylene wax, carnauba wax, beeswax, paraffin wax, microcrystalline wax, etc.
  • Component D Other components
  • the lubricant of the present invention can be appropriately selected and contained as an example of the other components described below.
  • a black solid lubricant such as molybdenum disulfide, tungsten disulfide, or graphite does not impair the purpose of the present invention, but depending on the amount to be added, it may cause contamination of the work environment, so it must be considered. .
  • Extreme pressure additive Sulfurized olefin, sulfurized ester, sulfite, thiocarbonate, chlorinated fatty acid, phosphate ester, phosphite ester, molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate (MoDTP), zinc dithio Sulfur-based extreme pressure additives such as phosphate (ZnDTP), organic molybdenum-based extreme pressure additives, phosphorus-based extreme pressure additives, chlorine-based extreme pressure additives, etc.
  • MoDTC molybdenum dithiocarbamate
  • MoDTP molybdenum dithiophosphate
  • ZnDTP zinc dithio Sulfur-based extreme pressure additives
  • organic molybdenum-based extreme pressure additives organic molybdenum-based extreme pressure additives
  • phosphorus-based extreme pressure additives chlorine-based extreme pressure additives, etc.
  • Viscosity modifiers Hydroxyethyl cellulose, carboxymethyl cellulose, polyacrylic amide, sodium polyacrylate, polyvinyl pyrrolidone, polyvinyl alcohol, smectite clay mineral, finely divided silica, bentonite, kaolin, etc.
  • Nonionic surfactant anionic surfactant, amphoteric surfactant, cationic surfactant, water-soluble Polymer dispersants, etc.
  • the liquid medium of the lubricant according to the present invention is preferably water (for example, deionized water or pure water).
  • the agent may be in a dry form or a concentrated form. In this case, dilute with water on site.
  • composition Next, the composition of each component contained in the lubricant according to the present invention will be described.
  • the lubricant of the present invention contains the organically modified clay mineral in a solid content ratio of 5 to 95% by mass, but if it is less than this range, the lubricity and seizure resistance are insufficient. If it exceeds this range, it becomes difficult to retain the organically modified clay mineral in the film, and seizure resistance cannot be exhibited. More preferably, the organically modified clay mineral is in the range of 10 to 40% by mass in terms of solid content.
  • the ratio is in the range of 0 to 25% by mass.
  • (C) can be contained for the purpose of supplementing the friction reducing ability, but it causes lubrication residue, so it is preferable to make it as small as possible.
  • the forging lubricant may be any combination of component A to component C in the description of plastic processing as a whole.
  • component A as synthetic smectite and / or synthetic mica
  • component B Particularly suitable are combinations of water-soluble inorganic salts (silicates, borates, molybdates, tungstates) and / or polymaleic acid resins, as component C, metal soaps and / or waxes.
  • component C polyethylene wax and / or polypropylene wax are particularly preferred.
  • the forging lubricant contains (Component A) an organically modified clay mineral in a solid content ratio of 2 to 5% by mass. When it is less than this range, the seizure resistance is insufficient. If it exceeds this range, the lubricating film will fall off due to plastic deformation and will tend to adhere to the mold, resulting in insufficient moldability. More preferably, the organically modified clay mineral component is in the range of 2 to 4% by mass in terms of solid content.
  • the forging lubricant contains (Component C) a lubricant component in the range of 1 to 10% by mass in terms of solid content. If it is less than this range, the friction reducing ability is insufficient. When it exceeds this range, the lubricating film adheres to the mold and the moldability becomes insufficient. More preferably, the lubricant component is in the range of 5 to 7% by mass in terms of solid content.
  • the ratio ((A) / (C) ⁇ of the component (A) to the component (C) in the forging lubricant is preferably 2/10 to 5/1, more preferably 2/7 to 4/5. It is.
  • the lubricant of the present invention is applied to a frictional interface by drying the moisture contained in a tool such as a metal material or a die to be processed after being applied or dipped, which is a well-known means.
  • a tool such as a metal material or a die to be processed after being applied or dipped
  • seizure resistance and friction reducing ability in cold forging can be imparted.
  • the seizure resistance is greatly raised, and various bases are applied to the processed material as necessary. Processing may be performed.
  • zinc phosphate treatment As base treatments here, zinc phosphate treatment, iron zinc phosphate treatment, calcium zinc phosphate treatment, iron phosphate treatment, iron oxalate treatment, zirconium oxide treatment, conversion treatment such as aluminum fluoride treatment, alkali silicate
  • the coating treatment include salt treatment, alkali sulfate treatment, alkali borate treatment, alkali metal salt treatment of organic acid salts, and organic polymer film treatment, but there is no particular limitation.
  • the metal material used in the present invention is preferably cleaned by at least one method selected from alkali cleaning, acid cleaning, sand blasting and shot blasting prior to adhering the composition of the present invention.
  • the metal material targeted in the present invention is not particularly limited from the viewpoint of material, but iron, steel, stainless steel, copper, copper alloy, aluminum, aluminum alloy, titanium, titanium alloy, magnesium, magnesium alloy, etc.
  • the metal material which consists of metals is illustrated.
  • the metal material targeted by the present invention is not particularly limited.
  • materials such as wires, pipes, rods, block materials, but also shapes (gears, shafts, etc.) Is also included.
  • the adhesion amount of the film formed as described above needs to be 0.1 to 50 g / m 2 , preferably 0.5 to 30 g / m 2 , and preferably 1 to 25 g / m 2. More preferred. If it is less than 0.1 g / m 2 , the lubricity is insufficient and sufficient performance for plastic working cannot be exhibited. If it exceeds 50 g / m 2 , the surplus is increased, and the residue of the lubricating film is likely to be deposited on the mold, which is not preferable in terms of forming defects and cost.
  • Table 1 shows the component types (A) to (D), the solid content ratio, and the coating amount for the formulations of Examples and Comparative Examples. Subsequently, the details of the preparation method (A) and the treatment liquid preparation method were described. In addition, the ratio in Table 1 is a mass part.
  • D Other components
  • distearyldimethylammonium chloride manufactured by Kao Corp .: Cotamine D86P
  • Cotamine D86P distearyldimethylammonium chloride
  • Stirring was then continued for 1 hour, and the resulting insoluble particles were filtered using filter paper (5C), washed with deionized water, dried in a warm air drying oven at 60 ° C. for 16 hours, and then pulverized to synthesize synthetic smectite. (Organic A) powder was obtained.
  • dioleyldimethylammonium chloride Lion Corp .: ARCARD 2O-75I
  • Example 1 17.4 g of potassium tetraborate was added to 77.4 g of deionized water while stirring with a propeller, and dissolved by heating to 60 ° C. Then, 0.2 g of nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.) and 1.6 g of the prepared synthetic mica (Organic A) were added while stirring the propeller at room temperature, and the solution was stirred for 1 hour with a homogenizer. And dispersed in the liquid. Thereafter, 4 g of polyethylene wax emulsion (manufactured by Mitsui Chemicals, Inc.) was added while stirring the propeller to obtain 100 g of a treatment solution having a concentration of about 20%.
  • Example 2 24.2 g of an epoxy resin aqueous solution (Arakawa Chemical Industries, Ltd.) and 0.4 g of a nonionic surfactant (Shin-Etsu Chemical Co., Ltd.) were prepared while 58.1 g of deionized water was stirred with a propeller. 3 g of synthetic smectite (organic C) and 6 g of calcium carbonate were added, and the liquid was stirred for 1 hour with a homogenizer and dispersed in the liquid.
  • an epoxy resin aqueous solution Arakawa Chemical Industries, Ltd.
  • a nonionic surfactant Shin-Etsu Chemical Co., Ltd.
  • Example 3 While stirring propeller with 76.2 g of deionized water, 13 g of sodium citrate was added and heated to 60 ° C. to dissolve. Thereafter, 0.2 g of a nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.), 3 g of the produced synthetic smectite (organic C) and 2 g of zinc phosphate were added while stirring the propeller at room temperature, and the liquid was homogenized. The mixture was stirred for 1 hour and dispersed in the liquid. Thereafter, 5.6 g of zinc stearate emulsion (manufactured by Chukyo Yushi Co., Ltd.) was added while stirring the propeller to obtain 100 g of a processing solution having a concentration of about 20%.
  • a nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 4 179.8 g of potassium tetraborate was added to 79.8 g of deionized water while stirring with a propeller, and heated to 60 ° C. to dissolve. Then, 0.2 g of nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.) and 3 g of the produced synthetic smectite (Organic C) were added while stirring the propeller at room temperature, and the solution was stirred for 1 hour with a homogenizer. 100 g of a treatment liquid having a concentration of about 20% was obtained by dispersing in the liquid.
  • Example 5 8 g of sodium silicate was added to 75.1 g of deionized water while stirring with a propeller, and heated to 60 ° C. to dissolve. Then, while stirring the propeller at room temperature, 0.4 g of nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.), 5 g of the produced synthetic smectite (organic A), melamine cyanurate (manufactured by Sakai Chemical Industry Co., Ltd.) 4 g was added, and the liquid was stirred with a homogenizer for 1 hour and dispersed in the liquid. Thereafter, 7.5 g of a polypropylene wax emulsion (Mitsui Chemicals, Inc.) was added while stirring the propeller to obtain 100 g of a treatment solution having a concentration of about 20%.
  • nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 6 Preparation of 60 g of styrene-maleic anhydride resin aqueous solution (manufactured by Nichiyu Solution Co., Ltd.) and 0.2 g of nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.) while stirring 28.2 g of deionized water with a propeller 5 g of the synthesized smectite (Organic A) and 1 g of untreated synthetic smectite (Coop Chemical Co., Ltd.) were added, and the liquid was stirred with a homogenizer for 1 hour and dispersed in the liquid.
  • styrene-maleic anhydride resin aqueous solution manufactured by Nichiyu Solution Co., Ltd.
  • nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 7 While stirring the propeller, 7 g of deionized water was added with 5 g of sodium silicate and dissolved by heating to 60 ° C. Then, 0.6 g of a nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.), 7 g of the produced synthetic smectite (organic B) and 4 g of calcium carbonate were added while stirring the propeller at room temperature, and the liquid was mixed with a homogenizer. The mixture was stirred for 1 hour and dispersed in the liquid. Thereafter, 10 g of paraffin wax emulsion (Nippon Seiki Co., Ltd.) was added while stirring the propeller to obtain 100 g of a treatment solution having a concentration of about 20%.
  • a nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • 7 g of the produced synthetic smectite (organic B) and 4 g of calcium carbonate were added while stirring the propeller at room temperature
  • Example 8 97.6 g of potassium tetraborate was added to 77.6 g of deionized water while stirring with a propeller, and dissolved by heating to 60 ° C. Then, 0.4 g of nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.), 7 g of the produced synthetic smectite (organic B) and 2 g of magnesium hydroxide were added while stirring the propeller at room temperature, and the liquid was homogenized. The mixture was stirred for 1 hour and dispersed in the liquid. Thereafter, 4 g of calcium stearate emulsion (manufactured by Modern Chemical Industry Co., Ltd.) was added while stirring with a propeller to obtain 100 g of a treatment liquid having a concentration of about 20%.
  • nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 9 4 g of sodium vanadate was added to 74.9 g of deionized water while stirring with a propeller, and dissolved by heating to 60 ° C. Then, 0.6 g of nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.), 9 g of the prepared synthetic mica (organic A), and 4 g of talc (manufactured by Nippon Talc Co., Ltd.) were added while stirring the propeller at room temperature. The liquid was stirred with a homogenizer for 1 hour and dispersed in the liquid. Thereafter, 7.5 g of polyethylene wax emulsion (Mitsui Chemicals, Inc.) was added while stirring with a propeller to obtain 100 g of a treatment solution having a concentration of about 20%.
  • nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • talc manufactured by Nippon Talc Co., Ltd.
  • Example 10 79.4 g of sodium succinate was added to 79.4 g of deionized water while stirring with a propeller, and heated to 60 ° C. to dissolve. Then, while stirring the propeller at room temperature, 0.6 g of nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.), 9 g of the prepared synthetic mica (Organic A), untreated synthetic mica (manufactured by Coop Chemical Co., Ltd.) 2 g) and 2 g of lithium stearate were added, and the liquid was stirred for 1 hour with a homogenizer and dispersed in the liquid to obtain 100 g of a processing liquid having a concentration of about 20%.
  • nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 11 While propylene stirring 35.6 g of deionized water, 55 g of isobutylene-maleic anhydride resin aqueous solution (manufactured by Kuraray Co., Ltd.) and 0.4 g of nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.) were prepared. 9 g of synthetic mica (Organic A) was added, and the liquid was stirred for 1 hour with a homogenizer and dispersed in the liquid to obtain 100 g of a processing liquid having a concentration of about 20%.
  • synthetic mica Organic A
  • Example 12 While propylene stirring 76.6 g of deionized water, 5 g of polyamide resin (manufactured by Toray Industries, Inc.) was added and heated to 60 ° C. to dissolve. Then, 0.4 g of nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.), 11 g of the prepared natural montmorillonite (organic A), and 2 g of calcium carbonate were added while stirring the propeller at room temperature, and the liquid was mixed with a homogenizer. The mixture was stirred for 1 hour and dispersed in the liquid. Thereafter, 5 g of a polypropylene wax emulsion (Mitsui Chemicals, Inc.) was added while stirring the propeller to obtain 100 g of a treatment solution having a concentration of about 20%.
  • a polypropylene wax emulsion Mitsubishi Chemicals, Inc.
  • Example 13 79.4 g of sodium tartrate was added to 79.4 g of deionized water while stirring with a propeller and heated to 60 ° C. to dissolve. Then, 0.6 g of nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.), 11 g of the produced synthetic smectite (organic B), and a layered structure amino acid compound (manufactured by Ajinomoto Co., Inc.) while stirring the propeller at room temperature. 2 g was added, and the liquid was stirred for 1 hour with a homogenizer and dispersed in the liquid to obtain 100 g of a processing liquid having a concentration of about 20%.
  • nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • a layered structure amino acid compound manufactured by Ajinomoto Co., Inc.
  • Example 14 59.4 g of ammonium molybdate was added to 79.4 g of deionized water while stirring with a propeller, and heated to 60 ° C. to dissolve. Then, 0.6 g of a nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.), 13 g of the prepared synthetic smectite (Organic A), and 2 g of barium stearate were added while stirring the propeller at room temperature, and the liquid was homogenized. The mixture was stirred for 1 hour and dispersed in the liquid to obtain 100 g of a treatment liquid having a concentration of about 20%.
  • a nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 15 While 18.6 g of polyurethane resin aqueous solution (manufactured by Adeka Co., Ltd.) was added to 68.6 g of deionized water with propeller stirring, the mixture was heated to 60 ° C. and dissolved. Then, 0.6 g of a nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.) and 15 g of the prepared synthetic smectite (Organic C) were added while stirring the propeller at room temperature, and the liquid was stirred with a homogenizer for 1 hour. Dispersed in the liquid. Thereafter, 2.5 g of microcrystalline wax emulsion (manufactured by Nippon Seiki Co., Ltd.) was added while stirring the propeller to obtain 100 g of a treatment solution having a concentration of about 20%.
  • Example 16 While propeller stirring 88.2 g of deionized water, 3.5 g of potassium tetraborate was added and heated to 60 ° C. to dissolve. Then, 0.3 g of a nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.), 3.5 g of the produced synthetic smectite (Organic A) and 1.5 g of magnesium hydroxide were added while stirring the propeller at room temperature. The liquid was stirred for 1 hour with a homogenizer and dispersed in the liquid. Thereafter, 3 g of calcium stearate emulsion (manufactured by Modern Chemical Industry Co., Ltd.) was added while stirring the propeller to obtain 100 g of a treatment liquid having a concentration of about 10%.
  • a nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • 3.5 g of the produced synthetic smectite Organic A
  • magnesium hydroxide 1.5 g
  • Example 17 While stirring the propeller, 5 g of deionized water was added with 14 g of sodium succinate and heated to 60 ° C. to dissolve. Thereafter, 0.8 g of a nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.), 18 g of the prepared synthetic smectite (organic B) and 4 g of zinc phosphate are added while stirring the propeller at room temperature, and the liquid is homogenized. The mixture was stirred for 1 hour and dispersed in the liquid. Thereafter, 10 g of polyethylene wax emulsion (manufactured by Mitsui Chemicals, Inc.) was added while stirring the propeller to obtain 100 g of a treatment solution having a concentration of about 40%.
  • a nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • 18 g of the prepared synthetic smectite (organic B) and 4 g of zinc phosphate are added while stirring the propeller
  • Example 18 While propeller stirring 35.8 g of deionized water, 6.7 g of an aqueous phenol resin solution (manufactured by Konishi Chemical Industry Co., Ltd.) and 0.4 g of a nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.) were prepared. 18 g of synthetic mica (Organic A) was added, and the liquid was stirred for 1 hour with a homogenizer and dispersed in the liquid to obtain 100 g of a treatment liquid having a concentration of about 20%.
  • Example 19 97.8 g of potassium tetraborate was added to 77.8 g of deionized water with propeller stirring, and the mixture was heated to 60 ° C. to dissolve. Then, 0.4 g of a nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.) and 9 g of the produced natural montmorillonite (Organic D) were added while stirring the propeller at room temperature, and the liquid was stirred with a homogenizer for 1 hour. Dispersed in the liquid. Thereafter, 3.8 g of calcium stearate emulsion (manufactured by Modern Chemical Industry Co., Ltd.) was added while stirring with a propeller to obtain 100 g of a processing solution having a concentration of about 20%.
  • a nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • Organic D 9 g of the produced natural montmorillonite
  • Example 20 11 g of sodium silicate was added to 76.6 g of deionized water while stirring with a propeller, and heated to 60 ° C. to dissolve. Then, while stirring the propeller at room temperature, 0.4 g of a nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.) and 7 g of the prepared synthetic mica (Organic D) were added, and the liquid was stirred with a homogenizer for 1 hour. Dispersed in the liquid. Thereafter, 5 g of polyethylene wax emulsion (Mitsui Chemicals, Inc.) was added while stirring the propeller to obtain 100 g of a treatment solution having a concentration of about 20%.
  • a nonionic surfactant manufactured by Shin-Etsu Chemical Co., Ltd.
  • Organic D 7 g of the prepared synthetic mica
  • ⁇ Method for preparing treatment liquid of comparative example ⁇ (Comparative Example 1) Preparation of 80 g of styrene-maleic anhydride resin aqueous solution (manufactured by Nichiyu Solution Co., Ltd.) and 0.2 g of nonionic surfactant (manufactured by Shin-Etsu Chemical Co., Ltd.) while stirring 12.4 g of deionized water with a propeller 0.6 g of the synthesized mica (organic A) was added, and the liquid was stirred for 1 hour with a homogenizer and dispersed in the liquid. Thereafter, 6.8 g of calcium stearate emulsion (manufactured by Modern Chemical Industry Co., Ltd.) was added while stirring the propeller to obtain 100 g of a treatment liquid having a concentration of about 20%.
  • ⁇ Processing conditions> According to the invention of JP-A-5-7969, a 200-ton crank press is used, a constrained finish flat die (SKD11) is set on the top, and a mirror finish funnel-like die (SKD11) is set on the bottom. A test piece was placed in the center of the plate and struck from above (processing speed was 30 strokes / min). The seizure resistance was evaluated by observing the degree of seizure at the spike tip of the test piece after processing. ⁇ Evaluation criteria> ⁇ Evaluate the presence or absence of seizure by observing the spike tip of the specimen after seizure resistance processing. ⁇ : No seizure ⁇ : Micro seizure ⁇ : Severe seizure
  • Table 2 shows the results of the above tests.
  • Examples 1 to 20 using the present invention exhibit a practical level of lubricity and seizure resistance, and there are few lubrication residues generated during processing.
  • Comparative Example 1 with a small amount of the organically modified clay mineral is inferior in lubricity and seizure resistance, and in Comparative Example 2 in which the amount is too large, seizure resistance and lubrication residue resistance are inferior due to the removal of the components.
  • Comparative Example 3 containing a layered clay mineral in which no organic compound is inserted, the lubricity is inferior, and in Comparative Example 4 containing a lubricant component to compensate for it, the lubrication residue resistance is inferior.
  • Comparative Examples 5 to 7 which are a combination of a general solid lubricant and a lubricant component, there was a tendency that the evaluation of lubricity and seizure resistance and the evaluation of lubrication resistance were contradictory.
  • Comparative Examples 7 to 8 using a black solid lubricant had good lubricity and seizure resistance, but of course, the mold periphery was contaminated black.
  • Table 3 shows an example of the determination result (friction reduction ability) in the spike test when the combination of components A to C is changed.
  • the adhesion amount of the lubricating film was 10 g / m 2 (the same applies to other tests).
  • FIG. 2 shows the principle diagram of the spike test in this example and the appearance after forging.
  • the matters not specifically mentioned, such as the production method of the agent were carried out according to “1. Examples corresponding to main problems”.
  • a combination of synthetic mica or montmorillonite as component A, potassium tetraborate, sodium tungstate or sodium molybdate as component B, and polyethylene wax as component C is particularly good.
  • Table 4 shows the result of verifying the amount of residue transferred to the mold when the solid content ratio of the polyethylene wax was changed after fixing the synthetic mica at 3 mass% (upsetting test). . From this result, it can be seen that if the upper limit value is up to 10% by mass, reduction of the amount of residue transferred to the mold can be ensured even if wax is contained.
  • Table 5 shows the result of verifying the difficulty of falling off the film residue when the solid content ratio of the synthetic mica is changed after fixing the polyethylene wax at 5% by mass.
  • Test upset-ball ironing test
  • FIG. 3 shows the principle diagram of the upsetting-ball ironing test in this example and the appearance after the test. From this result, it can be seen that if the upper limit value is up to 5% by mass, it is possible to ensure that the coating residue does not easily fall off even if an organically modified clay mineral is contained.
  • Table 6 shows the determination result (anti-seizure ability) in the upsetting-ball ironing test when the content of the organically modified clay mineral was changed after fixing polyethylene wax at 5% by mass. From this result, it is understood that the seizure resistance can be secured if the organic modified clay mineral is contained in an amount of 2% by mass as the lower limit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

【課題】 強加工用途でも適用可能で、且つ作業環境を著しく汚染するような黒色系の外観では無く、且つ成型不良の要因となる潤滑カスが生じにくい、金属材料の塑性加工用潤滑剤の提供。 【解決手段】 層状粘土鉱物の層間に陽イオン性の有機化合物を坦持した有機変性粘土鉱物を、固形分比で5~95質量%の範囲で含有することを特徴とする金属材料の塑性加工用潤滑剤。

Description

金属材料の塑性加工用潤滑剤
本発明は鉄鋼、ステンレス、アルミニウムおよびアルミニウム合金、チタンおよびチタン合金、銅および銅合金、マグネシウムおよびマグネシウム合金などの被加工材となる金属材料を、鍛造、伸線、伸管、圧延、プレスなどの塑性加工を行う際に生じる、被加工材となる金属材料と金型などの工具の摩擦界面での焼付きや摩擦抵抗を軽減するための潤滑剤に関する。
 本発明が有用な技術分野は、前記金属材料の冷間塑性加工分野全般であり、最も適しているのが摩擦界面で高い接触圧力を受けやすい冷間鍛造分野である。
 より詳しく述べるならば、本発明は、被加工材となる金属材料と金型などの工具の摩擦界面に介在し、耐焼付き性と摩擦低減能両方の性能を発現する金属材料の非黒色系塑性加工用潤滑剤に関する。
鍛造、伸線、伸管、圧延、プレスなどに代表される金属材料の塑性加工では、被加工材である金属材料と金型などの工具が摩擦界面で激しく擦れ合うため、潤滑剤の使用が不可欠である。
 金属材料の塑性加工における潤滑剤は、その摩擦界面に介在して焼付き(金属同士の直接接触)の防止、摩擦抵抗の低下および摩耗の抑制などに寄与し、工具の寿命向上や加工エネルギーの低減および加工製品の品質向上などに直結する重要な要素の一つである。
 例えば鍛造においては、被加工材である金属材料に対し降伏応力を超えた力を与えることで塑性変形を起こさせるため、その摩擦界面は極めて高い接触圧力を受けており、被加工材は変形仕事と摩擦仕事から変換される熱および表面積の増大などの影響を受ける。
 このような高面圧、熱負荷、表面積拡大などの過酷な条件下にて、潤滑剤は性能を維持することが必要であることから、耐焼付き性と摩擦低減能両方を併せ持つように工夫された潤滑剤が用いられてきた。
 塑性加工用潤滑剤として、軽度の加工には油類、石鹸類、ワックス類などの滑剤を摩擦界面に介在させる方法が用いられることもあるが、特に高い接触圧力での摺動を強いられる冷間鍛造などにおいては、被加工材と金型との直接接触を防ぎきれずに焼付きを起こしやすいため通常は用いられない。
 そのため一般的には、被加工材である金属材料の表面にリン酸塩やシュウ酸塩などの結晶性化成皮膜を生成させ、その上に石鹸などの潤滑処理を行った塑性加工用化成皮膜が潤滑剤として用いられている。
 この塑性加工用化成皮膜は、被加工材である金属表面に化学反応により析出した無機塩皮膜が耐焼付き性を担い、上層の石鹸皮膜は下層の無機塩と化学反応し金属石鹸を生成して優れた摩擦低減能を示す理想的な潤滑皮膜を形成している。
 しかしながら塑性加工用化成皮膜は、各々の処理工程で化学反応を制御しなければならないため液管理を必要とし、処理槽を高温に保つため大量のエネルギーを消費する。
 また、処理工程では大量の不溶性塩(スラッジ)および廃液が発生し廃水処理や産業廃棄物処理が必要である。
 これらの影響および処理時の水洗や酸洗いまでを含め多数の工程により構成されていることから、導入時および操業時とも多くの費用が必要であり、工程管理、環境保全の点で好ましい手法とは言えないことから、工程が簡便で且つ廃棄物が生じない潤滑剤や処理方法が望まれている。
 このような要望から種々の潤滑剤や処理方法が提案されている。
 例えば、「水溶性高分子又はその水性エマルジョンを基材とし、固体潤滑剤と化成皮膜形成剤とを配合した潤滑剤組成物」(特許文献1)、「金属材料の塑性加工用潤滑剤組成物」(特許文献2)などでは合成樹脂を主成分とした簡便な塗布、乾燥により潤滑皮膜が形成される潤滑剤が示されている。
 また、「金属材料の冷間塑性加工用水系潤滑剤」(特許文献3)では、被加工材表面に合成樹脂と水溶性無機塩が均一に析出した皮膜を形成させることによって、工具との直接金属接触を避けるものであり、さらに任意の割合で潤滑成分などを皮膜中に含有させることにより、リン酸塩皮膜上に潤滑成分層を形成した場合と同等以上の性能が得られるものとして示されている。
 また、「傾斜型2層潤滑皮膜を有する塑性加工用金属材料およびその製造方法」(特許文献4)では、りん酸塩、硫酸塩、ホウ酸塩、ケイ酸塩、モリブデン酸塩およびタングステン酸塩等の無機化合物を主成分とするベース層と、金属石鹸、ワックス、ポリテトラフルオロエチレン、二硫化モリブデンおよびグラファイト等を主成分の滑剤層の傾斜型2層潤滑層を形成することで塑性加工用化成皮膜と同等の性能を持つ潤滑剤として示されている。
 近年の塑性加工、特に冷間鍛造においては、環境保全、金型の長寿命化といった従来からのニーズに加え、材料損失のある切削加工を極力減らし、複雑な形状で且つ高い寸法精度でより平滑な表面の高品質な加工品を経済的に得ようとするネットシェイプ鍛造品を目指しており、潤滑剤への要求は高まっている。
 そのため、加工時の面圧や表面積拡大はより増して加工の難易度は上昇、従来の塑性加工用潤滑剤では対応が困難になる加工が増えつつある。
 このような強加工に対応の可能性がある潤滑剤としては、二硫化モリブデン、二硫化タングステン、グラファイトといった固体潤滑剤を多量に含有した潤滑剤が一般的である。
 これら固体潤滑剤は六方晶の層状結晶構造を持っており、層間の結合力(ファンデルワールス力、π結合)が小さいことにより摩擦低減能を発現、表面積の増大にも追従し、高圧、高熱にもよく耐えるといった塑性加工に適した特徴を有している。
 これら固体潤滑剤の利用例としては、「金属材料塑性加工用水系潤滑剤および潤滑皮膜の処理方法」(特許文献5)にて、(A)水溶性無機塩と、(B)二硫化モリブデンおよびグラファイトから選ばれる1種以上の滑剤と、(C)ワックスとを含有し、かつこれらの成分が水に溶解または分散しており、固形分濃度比(質量比)(B)/(A)が1.0~5.0、(C)/(A)が0.1~1.0であることを特徴とする金属材料塑性加工用水系潤滑剤が示されている。
 しかしながら、二硫化モリブデン、二硫化タングステン、グラファイトといった固体潤滑剤の外観は黒色系であることから、その作業環境では著しい汚染が問題視されており、非黒色系の外観で且つ潤滑性に優れた固体潤滑剤が強く望まれている。
 なお、非黒色系の外観を持つ一般的な固体潤滑剤としては次のようなものがある。
 フッ化黒鉛は、グラファイトなどの炭素材料を高温でフッ素ガスを用いてフッ素化することにより合成され(高結晶性炭素材料を高温で合成することでより白い外観の合成品が得られる)、フッ素と炭素の共有結合で構成された滑りやすい層平面を持つ層状構造の固体潤滑剤であるが、原料コストや高温熱処理を必要とするため非常に高価な材料になってしまうのが欠点である。
 また、六方晶窒化ホウ素(h-BN)は、黄白色または白色の外観を持ち、六方晶の層状構造を有しており、耐熱性に優れているが、層間の結合力が高く類似構造の二硫化モリブデン、グラファイトと比べると摩擦係数は高い。
 また、白色の外観を持つ有機高分子のポリテトラフルオロエチレン(PTFE)は、平滑で凝集性の小さい分子構造のため、分子鎖同士が互いに滑りやすいことにより低摩擦係数を発現する固体潤滑剤であるが、有機物で且つ化学的に不活性であるため、耐圧性、耐熱性などでは無機物には及ばない。
 また、へき開性をもつ薄片状鉱物で層状構造を有した雲母、これに属する絹雲母(セリサイト)は非常に細粒で白色の外観を持つ固体潤滑剤であり、耐圧性や金属表面の酸化を抑制する作用を有するが、層間が強いイオン結合であるため層間が滑りにくく摩擦係数も高くなる。
 その他、タルク、軽質炭酸カルシウム、水酸化マグネシウム、酸化マグネシウムなど層状構造もしくはへき開性のある結晶構造をもつ無機物についても摩擦低減能は低い。
 また、メラミンシアヌレート、アミノ酸化合物などは有機物でありポリテトラフルオロエチレン同様摩擦低減能は有るものの耐圧性、耐熱性などで無機物には及ばない。
 これら一般的な非黒色系の固体潤滑剤では、塑性加工用として黒色系の二硫化モリブデン、二硫化タングステン、グラファイトなどの持つ耐焼付き性と摩擦低減能に匹敵するような材料は見出せていないのが現状である。
 また、熱間鍛造用分野では白色の非黒鉛系鍛造用潤滑剤が提案されているが、これは固体潤滑作用ではなく、高温条件下での有機物の溶融・熱分解による融解物と残渣の混合物による擬似固体潤滑、および熱分解で発生するガスによる離型効果の組み合わせで性能を発揮すると考えられているものであり、加工力の高い冷間鍛造分野では適しているとは云い難い。
 一般的な塑性加工用潤滑剤の滑剤成分である石鹸類やワックスなどは、せん断に弱く、また加工時の摩擦や材料変形から生じる熱を受けて溶融状態となることで摩擦低減能を発現しており、このもの自体の耐焼付き性はほとんどない。
 溶融したこれら滑剤成分は金型などの工具中で流動し、加工時に脱落した潤滑皮膜も相まって局所的に堆積する。
 これにより金型の細部形状への被加工材の流れが阻害されて欠肉や寸法不良などの成形不良に発展するのである。
 前記の通り、所望の加工品を高精度で得ようとしている近年のニーズに対してこの問題は重大であり、改善が不可欠な問題である。
特開昭52-20967号公報 特開2000-63880 特開平10-008085号公報 特開2002-264252号公報 国際公開WO2002/012419号
 これまでの記述の通り、現在の塑性加工用潤滑剤が抱える主な問題は以下の通りである。
(1)強加工用途における黒色系固体潤滑剤含有潤滑剤の作業環境における汚染
(2)滑剤成分が原因となり生じた潤滑カスが金型内に堆積することによる成形不良
 以上を踏まえ、本発明の主課題はこれら問題を解決するためのものであり、具体的には、強加工用途でも適用可能で、且つ作業環境を著しく汚染するような黒色系の外観では無く、且つ成型不良の要因となる潤滑カスが生じにくい、金属材料の塑性加工用潤滑剤を提供することである。
 前記主課題に加え、更なる課題もある。一般的に、多くの鍛造部品メーカーは、先ず、大きな塑性変形を伴う鍛造を行った後、最後に、精密鍛造を行い、最終的な部品形状に仕上げている。しかし、近年、コスト競争の激化により、各メーカーでは、生産コストの更なる低減化への動きが活発化している。コスト低減化の手段の一つとしては、鍛造工程数の短縮が挙げられ、例えば、最終工程である精密鍛造を省略できると、精密鍛造前の焼鈍工程、精密鍛造向け潤滑処理及び鍛造工程などが省略される為、コストの大幅な低減化が可能となる。その為には、大きな変形に耐え、加工精度及び作業性に優れた潤滑皮膜剤を提供する必要がある。
 精密鍛造を省略する為、大きな塑性変形を伴う鍛造を行っても、良好な寸法精度や表面仕上がりを維持することが求められる。その為には、成形不良やワーク導入不良の原因である金型に付着する皮膜カスの発生を制御することが必要となる。
 以上を踏まえ、本発明の副課題は、精密鍛造を省略する為に、皮膜カスの発生を極力防止できる金属材料の塑性加工用潤滑剤を提供することである。
(主課題を解決するための手段)
 本発明者らは前記主課題を解決するため鋭意研究を行ってきた結果、層間に陽イオン性の有機化合物を坦持した有機変性粘土鉱物(好適には、交換性陽イオンを層間に持つ層状粘土鉱物と陽イオン性の有機化合物のイオン交換により得られた有機変性粘土鉱物)を特定比率で含有する潤滑剤が、耐焼付き性と摩擦低減能両方の性能を併せ持つことができることを見出し、本発明を完成するに至った。
 本発明の特徴の一つとして外観が非黒色系であることであり、二硫化モリブデン、グラファイトなどの黒色系の固体潤滑剤を含有する潤滑剤が抱えている、作業環境における著しい汚染は本発明を適用することで無くなる。
 また、耐焼付き性を発現する層状粘土鉱物の層間に、摩擦低減能を発現する有機化合物を化学的な結び付きにより坦持させているため、一般的な滑剤成分が引き起こすような金型内での流動による局所的な堆積が起こりにくく、石鹸類やワックスなどの滑剤成分を使わなくて済むか極力減ずることができるといった効果につながる。
 その結果、潤滑カスの原因とされてきた滑剤成分を多量に含有している一般の塑性加工用潤滑剤が抱えている、潤滑カスの堆積による成形不良の問題が本発明により改善される。
 本発明の潤滑剤は、バインダー成分などとともに塗料化した上で周知の手段である塗布、浸漬などした後含まれている水分を乾燥することにより、被加工材となる金属材料と金型などの工具の摩擦界面に介在させることが出来る。
 なおここで、本発明における黒色系および非黒色系といった外観について定義する。
 色の表現として大きくは三つの要素があり、色あいを表す色相、明るさを表す明度、あざやかさを表す彩度である。
 その中で明度は、白くなれば高い値となり、黒くなれば低い値になるといったように、汚染の官能的な度合いが表現されやすい要素であり、例えば(財)土木研究センターが行っている構造物の防汚材料評価促進試験では、明度の差を汚れの程度の指標として用いられている。
 よって、この明度が低い材料が飛散するほど著しい汚染になると考えられ、二硫化モリブデンおよびグラファイトについて、各々の固体潤滑剤粉末の明度を実際に測定した。
 測定は固体潤滑剤粉末をガラスシャーレに適量入れて垂直に圧縮し厚さ2mmにした試料に対して、ガラス板を透して色彩色差計を用いて行った。(コニカミノルタ製CR-300、D65光源、CAE Lab表色系のL値)
 その結果、二硫化モリブデンが約45、グラファイトが約40という値であった。
 このことから、実用において著しい汚染とされている二硫化モリブデンおよびグラファイトの明度値より低い値、つまり暗い色の外観では当然汚染が目立つ材料となり、逆に明度が高い、つまり明るい色の外観であれは汚染が目立ちにくくなる材料になるものと考えられる。
 よって、色相と彩度は考慮せず明度を指標として、明度50未満の暗い色を「黒色系」とし、明度50以上の明るい色を「非黒色系」とした。
(副課題を解決するための手段)
 皮膜カス発生は、加工熱により皮膜が軟化して金型に粘着するケースと、塑性変形によって皮膜が脱落して金型に付着するケースの2通りがある。前者を解決する為には、加工熱で粘着化しやすい(C)潤滑成分の配合量を制御する必要がある。また、後者を解決する為には、潤滑皮膜の密着性を阻害する(A)有機変性粘土鉱物の配合量を制御する必要がある。具体的には、剤組成において、(A)有機変性粘土鉱物が固形分比で2~5質量%の範囲であり、(C)滑剤成分が固形分比で1~10質量%の範囲であるよう構成することで、前記副課題は達成される。
 以上説明してきたように、前記主課題と対応した効果としては、陽イオン性の有機化合物を層間に坦持した有機変性粘土鉱物を特定比率で含有することを特徴とする金属材料の非黒色系塑性加工用潤滑剤は、極めて優れた耐焼付き性、摩擦低減能両方の性能を発現することができる。本発明の適用により、従来から塑性加工用潤滑剤が抱えていた問題点(黒色系固体潤滑剤含有潤滑剤の作業環境の汚染問題、および潤滑カスの堆積による成形不良問題)の解決につながるといった効果を奏する。
 更に、前記副課題と対応した効果として、皮膜カスの発生を極力防止できるため、精密鍛造を省略することが可能となるという効果を奏する。
図1は、実施例(主課題と対応した実施例)での密閉押出し加工試験で使用する密閉押出し加工金型を示したものである。 図2は、実施例(副課題と対応した実施例)でのスパイクテストの原理図と鍛造後外観である。 図3は、実施例(副課題と対応した実施例)での据込-ボールしごき試験の原理図と試験後外観である。
発明の実施の形態
 以下に本発明の内容をより詳細に説明する。
≪塑性加工用潤滑剤≫
(成分A:有機変性粘土鉱物)
・層状粘土鉱物
 本発明に係る有機変性粘土鉱物の一原料である層状粘土鉱物は、耐焼付き性と摩擦低減能を付与する基材として作用し、層間の滑り性を向上する陽イオン性有機化合物とのイオン交換反応が可能な交換性陽イオンを層間に持つものが用いられる。
 前記、層状粘土鉱物としては、スメクタイト(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、鉄サポナイト、ヘクトライト、ソーコナイト)、スチーブンサイト、バーミキュライト、雲母族、脆雲母族などの天然品もしくは合成品から選ばれる少なくとも1種が例示されるが、より好ましいものとしては小粒径の合成粘土鉱物であり、その具体例としては合成雲母、ヘクトライト型の合成スメクタイトである。
 特にヘクトライト型の合成スメクタイトは粒子径が小さく、摩擦界面で極度に薄膜となる潤滑剤の中で保持されやすく本発明に好ましい。
 ヘクトライト型の合成スメクタイトの一次粒子は厚さ約1nmの二次元小板すなわち方形又は円板状のプレートでプレート面の一辺もしくは直径は20~500nmであると考えられており、厚さ約1nmで20~40nmの直径を持つ円板状粒子である合成品が販売されている。
 なお、ヘクトライト型のスメクタイトの合成については、例えば特公昭61-12845号公報、特開平5-279012号公報などに示されているような水熱合成などが挙げられており、雲母の合成については、例えば特開平6-298522号公報などに示されているようなタルクと遷移金属化合物、ケイフッ化アルカリを熱処理することで合成する方法などが挙げられており、各々既製品として存在しその過程は重要ではない。
 ここで、一般的な層状粘土鉱物とその構造について説明する。
 粘土鉱物は粘土を構成する主成分鉱物で、層状珪酸塩鉱物(フィロ珪酸塩鉱物)、方解石(カルサイト)、苦灰石(ドロマイト)、長石類、石英、沸石(ゼオライト)類、その他鎖状構造を持つもの(アタパルジャイト、セピオライトなど)、はっきりとした結晶構造を持たないもの(アロフェン)などが粘土鉱物と呼ばれているが、一般的にはその中の層状珪酸塩鉱物のことを層状粘土鉱物と呼んでいる。
 層状粘土鉱物は、正負のイオンの二次元的な層が平行に積み重なって結合し結晶構造を作っており、この層構造の中には2つの構造単位、一つはSi4+とこれを囲んだO2-とから成る四面体層、他はAl3+(あるいはMg2+、Fe2+など)とこれを囲んだ(OH)とから成る八面体層で構成されている。
 四面体層中では、四面体の4つの頂点にあるOと中心に位置するSiによりSi-Oの四面体が形成され、これが3つの頂点で互いに連結して二次元的に広がり、Si10の組成を有する層格子を形成している。Si4+はしばしばAl3+で置換される。
 八面体層中では、八面体の6つの頂点にある(OH)またはOとその中心に位置するAl、Mg、Feなどにより形成された八面体が、各頂点で連結して二次元的に広がり、Al(OH)あるいはMg(OH)の組成を有する層格子を形成している。
 八面体層には、6個の陰イオンで囲まれた陽イオンの格子点に2価の陽イオン(Mg2+など)が入り格子点のすべてを占めている3-八面体型、陽イオンの格子点に3価の陽イオン(Al3+など)が入り2/3が占め、残りの1/3は空所となっている2-八面体型がある。
 四面体層と八面体層の組み合わせには2種類あり、一つは1枚の四面体層と1枚の八面体層の結合を単位とする1:1型構造、他は2枚の四面体層とその間に挟まれた1枚の八面体層の結合を単位とする2:1型構造がある。
 四面体層では通常は1個のSi4+が4個のO原子で囲まれて安定な配位をとっているが、ときにこのSi4+よりわずかにイオン半径の大きいAl3+がSi4+の代わりに四面体層に存在する。
 配位するO原子の数には変化が無いので、一つのAl3+がSi4+を置換するごとに四面体層には一単位の負電荷を生じる。
 同様に八面体層でもMg2+、Fe2+によるAl3+、Fe3+の置換に伴い負電荷を生じる。
 この負電荷を生じた層は、Li、K、Na、NH 、H、Ca2+、Mg2+、Sr2+、Ba2+、Co2+、Fe2+、Al3+などの陽イオンが介在することで電気的中性になり、層間にこれら交換性陽イオンが存在した積層構造となる。
・陽イオン性の有機化合物
本発明に係る有機変性粘土鉱物の一原料である陽イオン性の有機化合物(層間に挿入、坦持する有機化合物)は、前記層状粘土鉱物の層間隔を増大させるとともに層間の滑り性を向上する滑剤として優れた効果を示す。
 前記、有機化合物としては、有機アンモニウム化合物、有機ホスホニウム化合物、有機スルホニウム化合物から選ばれる少なくとも1種の陽イオン性有機化合物(有機基+カチオン性基)を挙げることができる。ここで、当該有機化合物が有する有機基は、特に限定されないが、炭素数1~30の直鎖状、分岐鎖状または環状の(環式基を有する)、飽和炭化水素基または不飽和炭化水素基が好適である。また、炭素鎖又は炭素環を構成する炭素原子に結合している水素原子が他の置換基で置換されていてもよく、炭素鎖又は炭素環を構成する一部の炭素原子が他の原子(例えば、OやS等)で置換されていてもよく、更には、C-C鎖間に他の結合(例えば、エステル結合、エーテル結合)を含んでいてもよい。好ましいものとしては、摩擦低減能に有利な脂肪族炭化水素基(好適には炭素数1~30)と、層間での固定能で有利なアンモニウム基で構成される有機アンモニウム化合物である。ここで、当該有機化合物を層間に導入する際に使用される有機塩類としては、塩化物、臭化物、沃化物、硝化物、フッ化物、水酸化物などが好適である。特に好ましい有機塩類としては、副生した塩を水洗除去しやすい四級アンモニウム塩化物(カプリルトリメチルアンモニウム塩化物、ラウリルトリメチルアンモニウム塩化物、ステアリルトリメチルアンモニウム塩化物、ジカプリルジメチルアンモニウム塩化物、ジラウリルジメチルアンモニウム塩化物、ジステアリルジメチルアンモニウム塩化物など)である。
・層状粘土鉱物/陽イオン性の有機化合物の量比
 各々の層状粘土鉱物が持つ陽イオン交換容量(CEC)の0.8~1.2モル量の陽イオン性の有機化合物をイオン交換させることが好適である。
・有機変性粘土鉱物の製造方法
 有機変性粘土鉱物の製造方法(層状粘土鉱物の層間に有機化合物を挿入、坦持する手段)としては、周知の技術である粘土鉱物の有機化によって行われる。
 層状粘土鉱物は前記の通り、層構造中の負電荷を電気的中性に保つために層間に陽イオンが存在した積層構造となっており、水相に分散されると層間の陽イオンが水和されて粒子が膨潤して層小板に分離する。
 その状態で有機化剤である陽イオン性有機塩を共存させてイオン交換反応を行い、副生した塩を水洗除去、乾燥、粉砕することで層間に有機化合物が挿入、坦持された有機変性粘土鉱物が粉体材料として得られる。
 本発明における層状粘土鉱物の層間にある交換性陽イオンの種類は、水和や置換の容易性からLi、Naが好ましいが、その他であっても用いることができ、例えばCa2+が層間に存在する層状粘土鉱物の場合は、NaCO水溶液内でNaと置換するなどの前処理をするといったように間接的に有機化を行うことができる。
 なお、層状粘土鉱物の層間に有機化合物を挿入した有機変性粘土鉱物を生成する手段については、例えば特開平2-267113号公報、特開2002-348365号公報などでその手段が挙げられており、既製品として存在しその過程は重要ではない。
 また、水を介さないで直接もしくは有機溶剤中で挿入する方法でもかまわない。
・作用機序
 本発明における層状粘土鉱物の層間に坦持した有機化合物は、負電荷に帯電したプレート面に陽イオン基を向けて吸着した状態で、層間で有機鎖を生やしたような状態で存在しているものと思われる。
 具体例として、アンモニウム基と脂肪族炭化水素基を有する構造の有機化合物では、アンモニウム基を層状粘土鉱物のプレート面に向けて吸着し、層間で脂肪族炭化水素基を生やしたような状態となり、脂肪族炭化水素基が滑剤成分として作用して層間が非常に滑りやすくなる。
 層間に滑剤成分が坦持されていることにより、石鹸類やワックス類などの滑剤成分を使わずに済むか極力減ずる形で摩擦低減能を発現することができ、加工時における金型内での流動による局所的な潤滑カスの堆積は、一般的な塑性加工用潤滑剤と比べると非常に起こりにくくなるため、潤滑カスの堆積により生じていた成形不良の問題は改善される。
 本発明の有機変性粘土鉱物の外観について、具体例としてジステアリルジメチルアンモニウム塩化物で有機処理をした合成ヘクトライト粉末、および未処理の合成ヘクトライト粉末を前記同様の手法で明度を測定したところ、いずれも約95であり非黒色系の外観であることから、作業環境の汚染問題改善を目的とする本発明に適した外観である。
 層状粘土鉱物と有機化合物を組み合わせた事例として、「塑性加工用離型剤」(特開昭56-145994号公報)では、雲母粉末と初留点230℃以上のろうを主成分とする混合物(ろう/雲母比=1.5~9の範囲)が本発明同様の目的で提案されているが、これは熱間鍛造時に生じるろうの蒸気が離型性能を発現しており、層間を滑らせるものとしては記述が無く、滑剤成分を多量に含有した混合物であるため、例えばこの組成物を冷間鍛造で適用した場合、潤滑カスは生じやすい。
 層状粘土鉱物の層間に有機化合物を挿入した材料については有機物中における特性付与、例えば有機溶媒中における膨潤性、粘性付与、もしくは各種有機物に混練することによる機械的物性の向上、バリア効果などが主たる目的である。
 潤滑分野では、塗料やグリースにおいて粘稠剤として一般的に用いられているが、層間の有機化合物が有機溶媒中における膨潤性を付与しているもので、本発明とは有機化合物の作用が異なる。
 また、「有機粘土複合体及びその製造方法」(特開2006-52136号公報)では、層状粘土鉱物の層間に有機化合物を挿入した材料について、高融点高分子材料との溶融混練や重合反応に耐え、有機溶媒に対し分散、充分な増粘効果を発揮する耐熱性フィラーとして提供する内容が挙げられている。
 ここでの有機化合物も、高分子材料や有機溶媒との親和性を目的として選択されており、本発明の有機化合物の作用とは異なる。
(成分B:バインダー成分)
 本発明の潤滑剤にて、(A)有機変性粘土鉱物やその他の配合成分を金型との摩擦界面に導入保持するための皮膜成分として用いられる(B)バインダー成分としては、硫酸塩、ケイ酸塩、ホウ酸塩、モリブデン酸塩、バナジン酸塩、タングステン酸塩などの水溶性無機塩、リンゴ酸塩、コハク酸塩、クエン酸塩、酒石酸塩などの水溶性有機塩、アクリル系樹脂、アミド系樹脂、エポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂およびポリマレイン酸系樹脂などの有機高分子が例示されるが特に制限はなく、要求項目を考慮して選定される。
(成分C:滑剤成分)
 本発明の潤滑剤にて用いられる(C)滑剤成分としては、石鹸類(ステアリン酸ナトリウム、ステアリン酸カリウム、オレイン酸ナトリウム等)、金属石けん類(ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸亜鉛、パルミチン酸カルシウム等)、ワックス類(ポリエチレンワックス、ポリプロピレンワックス、カルナウバロウ、ミツロウ、パラフィンワックス、マイクロクリスタリンワックス等)などから選ばれる少なくとも1種を適宜含有することができる。
(成分D:その他の成分)
 本発明の潤滑剤には、その他の成分として以下の記載したものを例として適宜選択して含有することが出来る。
 なお、二硫化モリブデン、二硫化タングステン、グラファイトなどの黒色系固体潤滑剤を少量配合することは本発明の目的を損なわないが、配合する量によっては作業環境の汚染を招くため考慮が必要である。
・固体潤滑剤
二硫化モリブデン、二硫化タングステン、グラファイト、フッ化黒鉛、六方晶窒化ホウ素(h-BN)、雲母、タルク、炭酸カルシウム、塩基性炭酸マグネシウム、塩基性炭酸亜鉛、水酸化カルシウム、水酸化マグネシウム、酸化マグネシウム、リン酸カルシウム、リン酸亜鉛、トリポリリン酸二水素アルミニウム、ポリテトラフルオロエチレン(PTFE)、メラミンシアヌレート、アミノ酸化合物など
・極圧添加剤
硫化オレフィン、硫化エステル、サルファイト、チオカーボネート、塩素化脂肪酸、リン酸エステル、亜リン酸エステル、モリブデンジチオカーバメート(MoDTC)、モリブデンジチオホスフェート(MoDTP)、亜鉛ジチオホスフェート(ZnDTP)などの硫黄系極圧添加剤、有機モリブデン系極圧添加剤、リン系極圧添加剤及び塩素系極圧添加剤など
・腐食抑制剤
亜リン酸塩、ジルコニウム化合物、タングステン酸塩、バナジン酸塩、タングステン酸塩、ケイ酸塩、ホウ酸塩、炭酸塩、アミン類、ベンゾトリアゾール類、キレート化合物など
・粘度調整剤
ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリアクリル酸アミド、ポリアクリル酸ナトリウム、ポリビニルピロリドン、ポリビニルアルコール、スメクタイト系粘土鉱物、微粉シリカ、ベントナイト、カオリンなど
・油類
植物油、鉱物油、合成油など
・各成分を分散または乳化させるための各種界面活性剤や高分子分散剤
非イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤、陽イオン性界面活性剤、水溶性高分子分散剤など
(液体媒体)
 本発明に係る潤滑剤の液体媒体は、好適には水(例えば、脱イオン水、純水)である。なお、液体媒体として水以外の他の液体媒体を含有していてもよく(例えばアルコール)、この場合には液体媒体の全質量を基準として10質量%以下とすることが好適である。また、本剤は、乾燥形態又は濃縮形態であってもよい。この場合に現場にて水で希釈して使用する。
(組成)
 次に、本発明に係る潤滑剤中に含まれる各成分の組成について説明する。
・成分Aの含有量
 本発明の潤滑剤は、該有機変性粘土鉱物を固形分比で5~95質量%の範囲で含有するが、この範囲より少ないと潤滑性および耐焼付き性が不十分であり、この範囲より多くなると該有機変性粘土鉱物を皮膜中に保持することが困難となり耐焼付き性を発現できなくなる。より好ましくは、該有機変性粘土鉱物が固形分比で10~40質量%の範囲である。
・成分A/成分Bの含有比
 本発明の潤滑剤は、(A)有機変性粘土鉱物と(B)バインダー成分との合計が固形分比で30~100質量%の範囲で且つ(A)と(B)の質量比が(A)/(B)=5/95~95/5の範囲で構成される。
 より好ましくは、(A)と(B)との合計が固形分比で50~90質量%の範囲で且つ(A)と(B)の質量比が(A)/(B)=15/85~65/35の範囲である。
・成分A/成分Cの含有比(+成分Cの含有量)
 本発明の潤滑剤は、(A)有機変性粘土鉱物と(C)滑剤成分との質量比が(A)/(C)=25/75~100/0の範囲で且つ(C)が固形分比で0~25質量%の範囲で構成される。
 (C)は摩擦低減能を補う目的で含有することができるが潤滑カスの原因となるため、極力少量とするのが好ましい。
≪塑性加工用潤滑剤(特に鍛造用潤滑剤)≫
 以上は塑性加工全般における説明であったが、鍛造という用途、特に精密鍛造を省略することを想定した場合、剤は下記組成であることが好適である。
(成分A~成分C)
 鍛造用潤滑剤は、塑性加工全般における説明での成分A~成分Cのいずれの組み合わせでもよいが、当該用途を考慮した場合には、成分Aとして、合成スメクタイト及び/又は合成雲母、成分Bとして、水溶性無機塩(ケイ酸塩、ホウ酸塩、モリブデン酸塩、タングステン酸塩)及び/又はポリマレイン酸系樹脂、成分Cとして、金属石鹸類及び/又はワックス類、の組み合わせが特に好適である。更に、成分Cとしては、ポリエチレンワックス及び/又はポリプロピレンワックスが特に好ましい。
(成分A及び成分Cの量)
 鍛造用潤滑剤は、(成分A)有機変性粘土鉱物を固形分比で2~5質量%の範囲で含有する。この範囲より少ないと、耐焼き付き能が不十分である。この範囲より多くなると潤滑皮膜が、塑性変形によって脱落して金型に付着しやくなり、成形性が不十分となる。より好ましいのは、該有機変性粘土鉱物成分が固形分比で2~4質量%の範囲である。また、鍛造用潤滑剤は、(成分C)滑剤成分を固形分比で1~10質量%の範囲で含有する。この範囲より少ないと、摩擦低減能が不十分である。この範囲より多くなると、潤滑皮膜が金型に粘着し、成形性が不十分となる。より好ましいのは、該滑剤成分が固形分比で5~7質量%の範囲である。
(成分Aと成分Cの比)
 鍛造用潤滑剤における(A)成分と(C)成分との比{(A)/(C)}は、好ましくは2/10~5/1であり、より好ましくは2/7~4/5である。
≪塑性加工用潤滑剤の使用方法・用途≫
 本発明の潤滑剤は、塑性加工用として被加工材となる金属材料と金型などの工具の摩擦界面に介在させるための手段は問わない。
 本発明の潤滑剤を、被加工材となる金属材料もしくは金型などの工具に対し、周知の手段である塗布、浸漬などした後含まれている水分を乾燥することにより摩擦界面に介在させることで冷間鍛造における耐焼付き性と摩擦低減能を付与することができる。
 また、本発明の潤滑剤を被加工材となる金属材料と金型などの工具の摩擦界面に介在させる前に、耐焼付き性を大幅に底上げするなど必要に応じて被加工材に対し各種下地処理を施しても良い。
 ここでの下地処理としては、リン酸亜鉛処理、リン酸鉄亜鉛処理、リン酸カルシウム亜鉛処理、リン酸鉄処理、シュウ酸鉄処理、酸化ジルコニウム処理、フッ化アルミニウム処理などの化成皮膜処理、アルカリケイ酸塩処理、アルカリ硫酸塩処理、アルカリホウ酸塩処理、有機酸塩類のアルカリ金属塩処理、有機高分子皮膜処理などの塗布型皮膜処理が例示されるが特に制限はない。
 本発明で使用する金属材料は、本発明の組成物を付着させるのに先立って、アルカリ洗浄、酸洗浄、サンドブラストおよびショットブラストから選ばれる少なくとも1種以上の方法により清浄化するのが好ましい。
これは、金属表面が汚れていると該潤滑剤の付着性に悪影響を与え、潤滑性に支障を来たすからである。
 近年、環境保全の面より廃液を生じないことが望まれているが、これに対してはブラスト処理を適用すれば廃水を生じることなくこと金属表面を清浄化することができる。
 本発明で対象とする金属材料は、材質面から特に限定されるものではないが、鉄、鋼、ステンレス鋼、銅、銅合金、アルミニウム、アルミニウム合金、チタン、チタン合金、マグネシウム、マグネシウム合金等の金属よりなる金属材料が例示される。
 また、形状面からは、本発明で対象とする金属材料は特に限定されるものではなく、例えば、線材、管材、棒材、ブロック材等の素材だけでなく、形状物(ギヤやシャフト等)をも包含する。
≪塑性加工用潤滑剤を用いて形成される潤滑被膜≫
 前記によって形成される皮膜の付着量は0.1~50g/m2であることが必要であり、0.5~30g/m2であることが好ましく、1~25g/m2であることがより好ましい。0.1g/m2未満では、潤滑性が不十分であり塑性加工に対して充分な性能を発揮できない。50g/m2を超えると余剰分が多くなり、金型に潤滑皮膜のカスが堆積しやすくなり、成形不良の要因となることおよびコスト面でも好ましくない。
≪実施例≫
 以下に本発明に関し、いくつかの実施例を挙げ、その有用性を比較例と対比して示す。尚、前記主課題と対応した実施例と前記副課題と対応した実施例とに分けて説明する。
{1.主課題と対応した実施例}
 実施例と比較例の処方について、(A)~(D)の成分種類と固形分比、および皮膜量を表1に記載した。それに続けて、(A)の作製方法と処理液作製方法の詳細を記載した。なお、表1での割合は質量部である。
(A)有機変性粘土鉱物
(B)バインダー成分
(C)滑剤成分
(D)その他の成分
Figure JPOXMLDOC01-appb-T000001
≪(成分A)有機変性粘土鉱物の作製方法≫
(合成雲母(有機A))
脱イオン水1000mlに合成雲母(コープケミカル(株)製:ソマシフME-100;交換性陽イオン=Na;CEC値=120meq/100g)を50g添加しホモジナイザーで1時間攪拌し水中に分散し、その後90℃に加温してプロペラ攪拌しながらジステアリルジメチルアンモニウム塩化物(花王(株)製:コータミンD86P)を有効成分で36g(CMC値の1.0モル量相当)を添加した。その後攪拌を1時間継続し、生成した不溶性粒子をろ紙(5C)を用いてろ過、脱イオン水で洗浄をした後、60℃温風乾燥炉で16時間かけて乾燥、その後粉砕して合成雲母(有機A)の粉末を得た。
(合成スメクタイト(有機A))
脱イオン水1000mlに合成スメクタイト(コープケミカル(株)製:ルーセンタイトSWN;交換性陽イオン=Na;CEC値=101meq/100g)を50g添加しホモジナイザーで1時間攪拌、水中に分散し水中に分散し、その後90℃に加温してプロペラ攪拌しながらジステアリルジメチルアンモニウム塩化物(花王(株)製:コータミンD86P)を有効成分で32g(CMC値の1.0モル量相当)を添加した。その後攪拌を1時間継続し、生成した不溶性粒子をろ紙(5C)を用いてろ過、脱イオン水で洗浄をした後、60℃温風乾燥炉で16時間かけて乾燥、その後粉砕して合成スメクタイト(有機A)の粉末を得た。
(天然モンモリロナイト(有機A))
脱イオン水1000mlに天然モンモリロナイト(ホージュン(株)製:ベンゲルA;交換性陽イオン=Na;CEC値=115meq/100g)を50g添加しホモジナイザーで1時間攪拌、水中に分散し水中に分散し、その後90℃に加温してプロペラ攪拌しながらジステアリルジメチルアンモニウム塩化物(花王(株)製:コータミンD86P)を有効成分で27g(CMC値の1.0モル量相当)を添加した。その後攪拌を1時間継続し、生成した不溶性粒子をろ紙(5C)を用いてろ過、脱イオン水で洗浄をした後、60℃温風乾燥炉で16時間かけて乾燥、その後粉砕して天然モンモリロナイト(有機A)の粉末を得た
(合成スメクタイト(有機B))
脱イオン水1000mlに合成スメクタイト(コープケミカル(株)製:ルーセンタイトSWN;交換性陽イオン=Na;CEC値=101meq/100g)を50g添加しホモジナイザーで1時間攪拌、水中に分散し水中に分散し、その後90℃に加温してプロペラ攪拌しながらジオレイルジメチルアンモニウム塩化物(ライオン(株)製:アーカード2O-75I)を有効成分で30g(CMC値の1.0モル量相当)添加した。その後攪拌を1時間継続し、生成した不溶性粒子をろ紙(5C)を用いてろ過、脱イオン水で洗浄をした後、60℃温風乾燥炉で16時間かけて乾燥、その後粉砕して合成スメクタイト(有機B)の粉末を得た。
(合成スメクタイト(有機C))
脱イオン水1000mlに合成スメクタイト(コープケミカル(株)製:ルーセンタイトSWN;交換性陽イオン=Na;CEC値=101meq/100g)を50g添加しホモジナイザーで1時間攪拌、水中に分散し水中に分散し、その後90℃に加温してプロペラ攪拌しながらステアリルトリメチルアンモニウム塩化物(花王(株)製:コータミン86W)を有効成分で17g(CMC値の1.0モル量相当)添加した。その後攪拌を1時間継続し、生成した不溶性粒子をろ紙(5C)を用いてろ過、脱イオン水で洗浄をした後、60℃温風乾燥炉で16時間かけて乾燥、その後粉砕して合成スメクタイト(有機C)の粉末を得た。
(天然モンモリロナイト(有機D))
 脱イオン水1000mlに天然モンモリロナイト(ホージュン(株)製:ベンゲルA;交換性陽イオン=Na;CEC値=115meq/100g)を50g添加しホモジナイザーで1時間攪拌、水中に分散し水中に分散し、その後90℃に加温してプロペラ攪拌しながらベンジルトリフェニルホスホニウム塩化物を有効成分で22g(CMC値の1.0モル量相当)を添加した。その後攪拌を3時間継続し、生成した不溶性粒子をろ紙(5C)を用いてろ過、脱イオン水で洗浄をした後、60℃温風乾燥炉で16時間かけて乾燥、その後粉砕して天然モンモリロナイト(有機D)の粉末を得た。
(合成雲母(有機D))
 脱イオン水1000mlに合成雲母(コープケミカル(株)製:ソマシフME-100;交換性陽イオン=Na;CEC値=120meq/100g)を50g添加しホモジナイザーで1時間攪拌し水中に分散し、その後90℃に加温してプロペラ攪拌しながらベンジルトリフェニルホスホニウム塩化物を有効成分で23g(CMC値の1.0モル量相当)を添加した。その後攪拌を3時間継続し、生成した不溶性粒子をろ紙(5C)を用いてろ過、脱イオン水で洗浄をした後、60℃温風乾燥炉で16時間かけて乾燥、その後粉砕して合成雲母(有機D)の粉末を得た。
≪実施例の処理液作製方法≫
(実施例1)
脱イオン水77.4gをプロペラ攪拌しながら四ホウ酸カリウムを16.8g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.2g、作製した合成雲母(有機A)を1.6g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらポリエチレンワックスエマルジョン(三井化学(株)製)を4g添加して、濃度約20%の処理液100gを得た。
(実施例2)
脱イオン水58.1gをプロペラ攪拌しながらエポキシ樹脂水溶液(荒川化学工業(株)製)を24.2g、非イオン性界面活性剤(信越化学工業(株)製)を0.4g、作製した合成スメクタイト(有機C)を3g、炭酸カルシウムを6g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後プロペラ攪拌しながらステアリン酸亜鉛エマルジョン(中京油脂(株)製)を8.3g添加して、濃度約20%の処理液100gを得た。
(実施例3)
脱イオン水76.2gをプロペラ攪拌しながらクエン酸ナトリウムを13g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.2g、作製した合成スメクタイト(有機C)を3g、リン酸亜鉛を2g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらステアリン酸亜鉛エマルジョン(中京油脂(株)製)を5.6g添加して、濃度約20%の処理液100gを得た。
(実施例4)
脱イオン水79.8gをプロペラ攪拌しながら四ホウ酸カリウムを17g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.2g、作製した合成スメクタイト(有機C)を3g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させて、濃度約20%の処理液100gを得た。
(実施例5)
脱イオン水75.1gをプロペラ攪拌しながらケイ酸ナトリウムを8g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.4g、作製した合成スメクタイト(有機A)を5g、メラミンシアヌレート(堺化学工業(株)製)を4g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらポリプロピレンワックスエマルジョン(三井化学(株)製)を7.5g添加して、濃度約20%の処理液100gを得た。
(実施例6)
脱イオン水28.2gをプロペラ攪拌しながらスチレン-無水マレイン酸樹脂水溶液(ニチユソリューション(株)製)を60g、非イオン性界面活性剤(信越化学工業(株)製)を0.2g、作製した合成スメクタイト(有機A)を5g、未処理の合成スメクタイト(コープケミカル(株)製)を1g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後プロペラ攪拌しながらステアリン酸亜鉛エマルジョン(中京油脂(株)製)を5.6g添加して、濃度約20%の処理液100gを得た。
(実施例7)
脱イオン水73.4gをプロペラ攪拌しながらケイ酸ナトリウムを5g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.6g、作製した合成スメクタイト(有機B)を7g、炭酸カルシウムを4g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらパラフィンワックスエマルジョン(日本精鑞(株)製)を10g添加して、濃度約20%の処理液100gを得た。
(実施例8)
脱イオン水77.6gをプロペラ攪拌しながら四ホウ酸カリウムを9g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.4g、作製した合成スメクタイト(有機B)を7g、水酸化マグネシウムを2g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらステアリン酸カルシウムエマルジョン(近代化学工業(株)製)を4g添加して、濃度約20%の処理液100gを得た。
(実施例9)
脱イオン水74.9gをプロペラ攪拌しながらバナジン酸ナトリウムを4g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.6g、作製した合成雲母(有機A)を9g、タルク(日本タルク(株)製)を4g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらポリエチレンワックスエマルジョン(三井化学(株)製)を7.5g添加して、濃度約20%の処理液100gを得た。
(実施例10)
脱イオン水79.4gをプロペラ攪拌しながらコハク酸ナトリウムを7g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.6g、作製した合成雲母(有機A)を9g、未処理の合成雲母(コープケミカル(株)製)を2g、ステアリン酸リチウムを2g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させて、濃度約20%の処理液100gを得た。
(実施例11)
脱イオン水35.6gをプロペラ攪拌しながらイソブチレン-無水マレイン酸樹脂水溶液(クラレ(株)製)を55g、非イオン性界面活性剤(信越化学工業(株)製)を0.4g、作製した合成雲母(有機A)を9g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させて、濃度約20%の処理液100gを得た。
(実施例12)
脱イオン水76.6gをプロペラ攪拌しながらポリアミド樹脂(東レ(株)製)を5g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.4g、作製した天然モンモリロナイト(有機A)を11g、炭酸カルシウムを2g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらポリプロピレンワックスエマルジョン(三井化学(株)製)を5g添加して、濃度約20%の処理液100gを得た。
(実施例13)
脱イオン水79.4gをプロペラ攪拌しながら酒石酸ナトリウムを7g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.6g、作製した合成スメクタイト(有機B)を11g、層状構造アミノ酸化合物(味の素(株)製)を2g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させて、濃度約20%の処理液100gを得た。
(実施例14)
脱イオン水79.4gをプロペラ攪拌しながらモリブデン酸アンモニウムを5g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.6g、作製した合成スメクタイト(有機A)を13g、ステアリン酸バリウムを2g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させて、濃度約20%の処理液100gを得た。
(実施例15)
脱イオン水68.6gをプロペラ攪拌しながらポリウレタン樹脂水溶液(アデカ(株)製)を13.3g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.6g、作製した合成スメクタイト(有機C)を15g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらマイクロクリスタリンワックスエマルジョン(日本精鑞(株)製)を2.5g添加して、濃度約20%の処理液100gを得た。
(実施例16)
脱イオン水88.2gをプロペラ攪拌しながら四ホウ酸カリウムを3.5g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.3g、作製した合成スメクタイト(有機A)を3.5g、水酸化マグネシウムを1.5g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらステアリン酸カルシウムエマルジョン(近代化学工業(株)製)を3g添加して、濃度約10%の処理液100gを得た。
(実施例17)
脱イオン水53.2gをプロペラ攪拌しながらコハク酸ナトリウムを14g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.8g、作製した合成スメクタイト(有機B)を18g、リン酸亜鉛を4g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらポリエチレンワックスエマルジョン(三井化学(株)製)を10g添加して、濃度約40%の処理液100gを得た。
(実施例18)
脱イオン水35.8gをプロペラ攪拌しながらフェノール樹脂水溶液(小西化学工業(株)製)を6.7g、非イオン性界面活性剤(信越化学工業(株)製)を0.4g、作製した合成雲母(有機A)を18g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させて、濃度約20%の処理液100gを得た。
(実施例19)
 脱イオン水77.8gをプロペラ攪拌しながら四ホウ酸カリウムを9g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.4g、作製した天然モンモリロナイト(有機D)を9g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらステアリン酸カルシウムエマルジョン(近代化学工業(株)製)を3.8g添加して、濃度約20%の処理液100gを得た。
(実施例20)
 脱イオン水76.6gをプロペラ攪拌しながらケイ酸ナトリウムを11g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.4g、作製した合成雲母(有機D)を7g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらポリエチレンワックスエマルジョン(三井化学(株)製)を5g添加して、濃度約20%の処理液100gを得た。
≪比較例の処理液作製方法≫
(比較例1)
脱イオン水12.4gをプロペラ攪拌しながらスチレン-無水マレイン酸樹脂水溶液(ニチユソリューション(株)製)を80g、非イオン性界面活性剤(信越化学工業(株)製)を0.2g、作製した合成雲母(有機A)を0.6g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらステアリン酸カルシウムエマルジョン(近代化学工業(株)製)を6.8g添加して、濃度約20%の処理液100gを得た。
(比較例2)
脱イオン水79.6gをプロペラ攪拌しながら四ホウ酸カリウムを0.6g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.4g、作製した合成スメクタイト(有機B)を19.4g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させて、濃度約20%の処理液100gを得た。
(比較例3)
脱イオン水35.6gをプロペラ攪拌しながらイソブチレン-無水マレイン酸樹脂水溶液(クラレ(株)製)を55g、非イオン性界面活性剤(信越化学工業(株)製)を0.4g、未処理の合成雲母(コープケミカル(株)製)を9g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させて、濃度約20%の処理液100gを得た。
(比較例4)
脱イオン水48.8gをプロペラ攪拌しながらイソブチレン-無水マレイン酸樹脂水溶液(クラレ(株)製)を30g、非イオン性界面活性剤(信越化学工業(株)製)を0.2g、未処理の合成雲母(コープケミカル(株)製)を6g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらポリエチレンワックスエマルジョン(三井化学(株)製)を15g添加して、濃度約20%の処理液100gを得た。
(比較例5)
脱イオン水79.4gをプロペラ攪拌しながらクエン酸ナトリウムを6g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.6g、メラミンシアヌレート(堺化学工業(株)製)を7g、ステアリン酸バリウムを7g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させて、濃度約20%の処理液100gを得た。
(比較例6)
脱イオン水42.3gをプロペラ攪拌しながらイソブチレン-無水マレイン酸樹脂水溶液(クラレ(株)製)を30g、非イオン性界面活性剤(信越化学工業(株)製)を0.2g、リン酸亜鉛を5g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらポリエチレンワックスエマルジョン(三井化学(株)製)を22.5g添加して、濃度約20%の処理液100gを得た。
(比較例7)
脱イオン水75.6gをプロペラ攪拌しながら酒石酸ナトリウムを8g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.4g、PTFE(住友3M(株)製)を8g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらステアリン酸カルシウムエマルジョン(近代化学工業(株)製)を8g添加して、濃度約20%の処理液100gを得た。
(比較例8)
脱イオン水72.1gをプロペラ攪拌しながらケイ酸ナトリウムを5g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.4g、二硫化モリブデンを10g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらパラフィンワックスエマルジョン(日本精鑞(株)製)を12.5g添加して、濃度約20%の処理液100gを得た。
(比較例9)
脱イオン水47.7gをプロペラ攪拌しながらポリウレタン樹脂水溶液(アデカ(株)製)を30g添加、60℃に加温して溶解させた。その後室温としてプロペラ攪拌しながら非イオン性界面活性剤(信越化学工業(株)製)を0.6g、グラファイトを5g添加し、その液をホモジナイザーで1時間攪拌して液中に分散させた。その後、プロペラ攪拌しながらステアリン酸亜鉛エマルジョン(中京油脂(株)製)を16.7g添加して、濃度約20%の処理液100gを得た。
≪試験方法≫
(密閉押出し加工試験)
<試験片素材>
SAE1008(引張り強さ488MPa)の円柱状(直径11.8mmφ×20mm)
<処理工程>
■清浄化:アルカリ脱脂市販のアルカリ脱脂剤(ファインクリーナー4360,日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分にて行った。
■水洗:水道水、常温、浸漬1分にて行った。
■表面処理:各水準の薬剤に試験片を浸漬塗布し、100℃、30分の条件で乾燥させた。
<加工条件>
 図1に示す密閉押出し加工金型を用いて、サーボプレスにて試験片を押出し加工を行い、その際の加工荷重について、塑性加工用化成処理(リン酸亜鉛化成皮膜の上に石鹸潤滑処理を行ったもの。以下、ボンデと称す)と比較することにより潤滑性の評価を行った。
<評価基準>
・潤滑性
◎:平均加工荷重がボンデ以下
○:平均加工荷重がボンデ同等~10%増以下
△:平均加工荷重がボンデの10%超~20%増以下
×:平均加工荷重がボンデの20%超
≪スパイクテスト≫
<試験片素材>
S45C球状化焼鈍材の円柱状(直径25mmφ、高さ30mm)
<処理工程>
■清浄化:アルカリ脱脂市販のアルカリ脱脂剤(ファインクリーナー4360,日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分にて行った。
■水洗:水道水、常温、浸漬1分にて行った。
■表面処理:各水準の薬剤に試験片を浸漬塗布し、100℃、30分の条件で乾燥させた。
<加工条件>
 特開平5-7969号公報の発明に準じて、200トンクランクプレスを用い、上部に拘束仕上げの平面金型(SKD11)、下部に鏡面仕上げのロート状金型(SKD11)をセット、下部金型の中心に試験片を置き上方から打ち付けた(加工速度は30ストローク/分)。加工後の試験片のスパイク先端部の焼付き度合いを観察して耐焼付き性を評価した。
<評価基準>
・耐焼付き性
加工後の試験片のスパイク先端部を観察して焼付き有無を評価する。
○:焼付き無し
△:微小焼付き
×:重度焼付き
≪据込み加工試験≫
<試験片素材>
S45C球状化焼鈍材の円柱状(直径25mmφ、高さ30mm)
<処理工程>
■清浄化:アルカリ脱脂市販のアルカリ脱脂剤(ファインクリーナー4360,日本パーカライジング(株)製)濃度20g/L、温度60℃、浸漬10分にて行った。
■水洗:水道水、常温、浸漬1分にて行った。
■表面処理:各水準の薬剤に試験片を浸漬塗布し、100℃設定の温風電気炉で1時間乾燥させた。(比較例2の表面処理は水準の項目に記載の方法で行った。)
<加工条件>
 200トンクランクプレスを用い、上部および下部ともに鏡面仕上げの平面金型(SKD11)をセット、下部金型の中心に試験片を置き、圧縮率が約50%になるよう上方から打ち付けた(加工速度は30ストローク/分)。3ヶの試験片を連続して加工し、下部金型に堆積した潤滑カスの度合いを観察して評価を行った。
<評価基準>
・耐潤滑カス性
加工後の下部金型に堆積した潤滑カスを観察して評価する。
○:堆積ほとんど無し、もしくは少なく容易に脱落
△:堆積やや多いが除去しやすい
×:堆積多く、融着気味
≪作業環境性評価≫
前記の各加工試験にて、作業時における金型周辺の汚染状況を観察した。
<評価基準>
・作業環境性
○:目立つ汚染はほとんど無し、もしくは軽度である
×:黒いなど目立つ汚れが生じている
 以上の試験の結果を表2に示す。
 本発明を用いた実施例1~20は、実用レベルの潤滑性、耐焼付き性を発現しており、加工時に生じる潤滑カスも少ないことが分かる。
 比較として、該有機変性粘土鉱物が少ない比較例1では潤滑性と耐焼付き性が劣り、多すぎる比較例2では成分の脱落により耐焼付き性と耐潤滑カス性が劣る。
 有機化合物が挿入されていない層状粘土鉱物を含有した比較例3では潤滑性が劣っており、それを補うよう滑剤成分を含有した比較例4では耐潤滑カス性が劣る。
 一般的な固体潤滑剤と滑剤成分の組合せである比較例5~7は、潤滑性、耐焼付き性の評価と耐潤滑カス性の評価が相反する傾向であった。
 黒色系固体潤滑剤を用いた比較例7~8は、潤滑性、耐焼付き性は良いが、当然ながら金型周辺は黒く汚染されてしまう状態となった。
Figure JPOXMLDOC01-appb-T000002
{2.副課題と対応した実施例}
 表3は、成分A~Cの組み合わせを変えた際の、スパイクテストでの判定結果(摩擦低減能)の一例を示したものである。尚、潤滑皮膜の付着量を10g/mとした(他の試験も同様)。ここで、図2は、本例におけるスパイクテストの原理図と鍛造後外観である。尚、剤の製法等、特記していない事項は「1.主課題と対応した実施例」に準じて実施した。この表から分かるように、摩擦低減能に関しては、A成分として、合成雲母又はモンモリロナイト、B成分として、四ホウ酸カリウム、タングステン酸ナトリウム又はモリブデン酸ナトリウム、C成分としてポリエチレンワックス、の組み合わせが特に良好であることが確認された。また、この結果から、ワックスを下限値として1質量%含有していれば摩擦低減能が担保されていることが分かる。尚、以下では、これら良好な組み合わせの内、一例として、A成分として合成雲母、B成分として四ホウ酸カリウム、C成分としてポリエチレンワックスについての試験結果を記載する。尚、以後の表中、「%」は特記しない限り「質量%」を示す。
Figure JPOXMLDOC01-appb-T000003
 表4は、合成雲母を3質量%に固定した上でポリエチレンワックスの固形分比を変えた際の、金型へのカス転着量を検証した結果を示したものである(据え込み試験)。この結果から、上限値として10質量%までであればワックスを含有していても金型へのカス転着量低減を担保できることが分かる。
Figure JPOXMLDOC01-appb-T000004
 また、表5は、ポリエチレンワックスを5質量%に固定した上で合成雲母の固形分比を変えた際の、皮膜カスの脱落しにくさを検証した結果を示したものである{拘束据え込み試験(据込-ボールしごき試験)}。ここで、図3は、本例での据込-ボールしごき試験の原理図と試験後外観である。この結果から、上限値として5質量%までであれば有機変性粘土鉱物を含有していても皮膜カスの脱落しにくさが担保できることが分かる。
Figure JPOXMLDOC01-appb-T000005
 また、表6は、ポリエチレンワックスを5質量%に固定した上で有機変性粘土鉱物含有量を変えた際の据込-ボールしごき試験での判定結果(耐焼き付き能)を示したものである。この結果から、有機変性粘土鉱物を下限値として2質量%含有していれば耐焼き付き能が担保できることが分かる。
Figure JPOXMLDOC01-appb-T000006

Claims (12)

  1.  層状粘土鉱物の層間に陽イオン性の有機化合物を坦持した有機変性粘土鉱物を、固形分比で5~95質量%の範囲で含有することを特徴とする金属材料の塑性加工用潤滑剤。
  2.  層状粘土鉱物が、スメクタイト(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、鉄サポナイト、ヘクトライト、ソーコナイト)、スチーブンサイト、バーミキュライト、雲母族、脆雲母族の天然品もしくは合成品から選ばれる少なくとも1種であることを特徴とする請求項1に記載の金属材料の塑性加工用潤滑剤。
  3.  層状粘土鉱物が、合成スメクタイト、合成雲母から選ばれる少なくとも1種であることを特徴とする請求項2に記載の金属材料の塑性加工用潤滑剤。
  4.  前記、層間に坦持した有機化合物が、有機アンモニウム塩類、有機ホスホニウム塩類、有機スルホニウム塩類から選ばれる少なくとも1種であることを特徴とする請求項1~3のいずれか一項に記載の金属材料の塑性加工用潤滑剤。
  5.  前記、層間に坦持した有機化合物が、脂肪族の四級アンモニウム塩類から選ばれる少なくとも1種であることを特徴とする請求項4に記載の金属材料の塑性加工用潤滑剤。
  6.  (A)有機変性粘土鉱物と(B)バインダー成分との合計が固形分比で30~100質量%の範囲で且つ(A)と(B)の質量比が(A)/(B)=5/95~95/5の範囲である請求項1~5のいずれか一項に記載の金属材料の塑性加工用潤滑剤。
  7.  (B)バインダー成分が、硫酸塩、ケイ酸塩、ホウ酸塩、モリブデン酸塩、バナジン酸塩、タングステン酸塩の水溶性無機塩、リンゴ酸塩、コハク酸塩、クエン酸塩、酒石酸塩の水溶性有機塩、アクリル系樹脂、アミド系樹脂、エポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、ポリマレイン酸系樹脂の有機高分子から選ばれる少なくとも1種であることを特徴とする請求項1~6のいずれか一項に記載の金属材料の塑性加工用潤滑剤。
  8.  (C)滑剤成分が固形分比で0~25質量%の範囲で且つ(A)と(C)との質量比が(A)/(C)=25/75~100/0の範囲であることを特徴とする請求項1~7のいずれか一項に記載の金属材料の塑性加工用潤滑剤。
  9.  (C)滑剤成分が、石鹸類、金属石鹸類、ワックス類から選ばれる少なくとも1種であることを特徴とする請求項8に記載の金属材料の塑性加工用潤滑剤。
  10.  被加工材となる金属材料が鉄鋼、ステンレス、アルミニウムおよびアルミニウム合金、チタンおよびチタン合金、銅および銅合金、マグネシウムおよびマグネシウム合金である請求項1~9のいずれか一項に記載の金属材料の塑性加工用潤滑剤。
  11.  適用される加工法が冷間鍛造であることを特徴とする請求項1~10のいずれか一項に記載の金属材料の塑性加工用潤滑剤。
  12.  層状粘土鉱物の層間に陽イオン性の有機化合物を坦持した有機変性粘土鉱物を固形分比で2~5質量%の範囲で含有し、滑剤成分を固形分比で1~10質量%の範囲で含有することを特徴とする鍛造用潤滑剤。
PCT/JP2011/079283 2010-12-20 2011-12-19 金属材料の塑性加工用潤滑剤 WO2012086564A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012549783A JP5718944B2 (ja) 2010-12-20 2011-12-19 金属材料の塑性加工用潤滑剤
CN201180061110.3A CN103261384B (zh) 2010-12-20 2011-12-19 金属材料的塑性加工用润滑剂
KR1020137015723A KR101497252B1 (ko) 2010-12-20 2011-12-19 금속 재료의 소성 가공용 윤활액

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-283274 2010-12-20
JP2010283274 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086564A1 true WO2012086564A1 (ja) 2012-06-28

Family

ID=46313834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079283 WO2012086564A1 (ja) 2010-12-20 2011-12-19 金属材料の塑性加工用潤滑剤

Country Status (4)

Country Link
JP (1) JP5718944B2 (ja)
KR (1) KR101497252B1 (ja)
CN (1) CN103261384B (ja)
WO (1) WO2012086564A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129268A1 (ja) * 2012-02-27 2013-09-06 株式会社神戸製鋼所 塑性加工用水溶性潤滑剤、塑性加工用金属材および金属加工品
JP5549957B1 (ja) * 2013-07-10 2014-07-16 大同化学工業株式会社 水性冷間塑性加工用潤滑剤組成物
WO2016174923A1 (ja) * 2015-04-27 2016-11-03 日本パーカライジング株式会社 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
WO2016185876A1 (ja) * 2015-05-15 2016-11-24 日本パーカライジング株式会社 水性潤滑剤、金属材料及び金属加工品
JP2016204724A (ja) * 2015-04-27 2016-12-08 日本パーカライジング株式会社 金属材料用水系潤滑皮膜剤、表面処理金属材料及び金属材料の潤滑皮膜形成方法
JP2016222793A (ja) * 2015-05-29 2016-12-28 日本パーカライジング株式会社 含水潤滑膜剤、表面処理金属材料、及び、金属材料の含水潤滑膜形成方法
WO2019004328A1 (ja) 2017-06-29 2019-01-03 日本パーカライジング株式会社 潤滑剤、金属材、金属材の塑性加工方法及び成形加工金属材の製造方法
JP2019203037A (ja) * 2018-05-21 2019-11-28 ユシロ化学工業株式会社 水性冷間塑性加工用潤滑剤組成物
EP3705556A1 (de) * 2019-03-04 2020-09-09 Saarstahl Aktiengesellschaft Schmierstoff zur metallumformung, insbesondere zur umformung von stahl, und verfahren zur herstellung des umformschmierstoffs
US11261397B2 (en) 2017-11-01 2022-03-01 Moresco Corporation Lubricant composition for plastic processing
CN114480003A (zh) * 2022-02-22 2022-05-13 江苏中晟高科环境股份有限公司 一种金属拉丝固体润滑剂及其制备方法
CN115386410A (zh) * 2022-08-11 2022-11-25 西安建筑科技大学 一种钛合金挤压用高温固体润滑剂及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104263491A (zh) * 2014-09-24 2015-01-07 无锡康柏斯机械科技有限公司 一种端铣加工切削液
KR101659319B1 (ko) * 2015-11-24 2016-09-23 엘더블유티 주식회사 윤활유 첨가제 조성물, 이의 제조방법 및 이를 포함하는 윤활유
CN105524691B (zh) * 2015-12-17 2018-03-27 上海金兆节能科技有限公司 一种环保锻造脱模油及其制备方法
CN109274231B (zh) * 2017-10-13 2021-03-30 江阴康瑞成型技术科技有限公司 一种用钛金属生产马达外壳的加工工艺
CN109971532A (zh) * 2019-04-24 2019-07-05 上海尤希路化学工业有限公司 高润滑、高脱模性钛合金锻造专用水性热锻加工油
CN110057856A (zh) * 2019-05-15 2019-07-26 中南大学 一种高温梯度热变形高通量测试系统
CN110029008A (zh) * 2019-05-17 2019-07-19 湖南省机械科学研究院有限公司 一种用于铝合金冷挤压的高效环保脱模剂
CN110157521B (zh) * 2019-06-13 2020-11-20 北京科技大学 一种锆合金热挤压润滑和热防护用材料及制备方法
CN111570227B (zh) * 2020-05-15 2021-11-19 中国科学院兰州化学物理研究所 一种硬脂酸钾边界润滑薄膜的制备及在真空电接触运动部件上的应用
CN113234520A (zh) * 2021-05-19 2021-08-10 湖南加美乐素新材料股份有限公司 一种混凝土建筑钢模用脱模剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127352A (en) * 1977-04-14 1978-11-07 Kyodo Yushi Hot rolling lubricant for steel material
JPS6474294A (en) * 1987-09-17 1989-03-20 Nippon Steel Corp Production of lubricating grease
WO2002014458A1 (fr) * 2000-08-11 2002-02-21 Nihon Parkerizing Co., Ltd. Composition aqueuse permettant la formation d'une pellicule protectrice
JP2002361302A (ja) * 2001-05-31 2002-12-17 Nippon Parkerizing Co Ltd 金属材料板の圧延方法
JP2005314558A (ja) * 2004-04-28 2005-11-10 Idemitsu Kosan Co Ltd 金属加工油組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3939700B2 (ja) * 2002-03-25 2007-07-04 日本パーカライジング株式会社 金属石けん被覆粒子及びそれを用いる物及び製法、並びに潤滑皮膜剤及び潤滑皮膜
CN100448963C (zh) * 2005-08-31 2009-01-07 中国石油化工股份有限公司 含插层粘土抗磨剂的热轧油组合物
CN100425681C (zh) * 2005-09-28 2008-10-15 中国石油化工股份有限公司 含油分散性粘土抗磨防滑剂的热轧油组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127352A (en) * 1977-04-14 1978-11-07 Kyodo Yushi Hot rolling lubricant for steel material
JPS6474294A (en) * 1987-09-17 1989-03-20 Nippon Steel Corp Production of lubricating grease
WO2002014458A1 (fr) * 2000-08-11 2002-02-21 Nihon Parkerizing Co., Ltd. Composition aqueuse permettant la formation d'une pellicule protectrice
JP2002361302A (ja) * 2001-05-31 2002-12-17 Nippon Parkerizing Co Ltd 金属材料板の圧延方法
JP2005314558A (ja) * 2004-04-28 2005-11-10 Idemitsu Kosan Co Ltd 金属加工油組成物

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129268A1 (ja) * 2012-02-27 2013-09-06 株式会社神戸製鋼所 塑性加工用水溶性潤滑剤、塑性加工用金属材および金属加工品
JP2013209625A (ja) * 2012-02-27 2013-10-10 Kobe Steel Ltd 塑性加工用水溶性潤滑剤、塑性加工用金属材および金属加工品
JP5549957B1 (ja) * 2013-07-10 2014-07-16 大同化学工業株式会社 水性冷間塑性加工用潤滑剤組成物
JP2015017171A (ja) * 2013-07-10 2015-01-29 大同化学工業株式会社 水性冷間塑性加工用潤滑剤組成物
WO2016174923A1 (ja) * 2015-04-27 2016-11-03 日本パーカライジング株式会社 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
JP2016204724A (ja) * 2015-04-27 2016-12-08 日本パーカライジング株式会社 金属材料用水系潤滑皮膜剤、表面処理金属材料及び金属材料の潤滑皮膜形成方法
JP2016204577A (ja) * 2015-04-27 2016-12-08 日本パーカライジング株式会社 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
US10760029B2 (en) 2015-04-27 2020-09-01 Nihon Parkerizing Co., Ltd. Water-based lubricating coating agent for metal material, surface-treated metal material, and method for forming lubricating coating for metal material
EP3290544A4 (en) * 2015-04-27 2018-10-10 Nihon Parkerizing Co., Ltd. Water-based lubricating coating agent for metal material, surface-treated metal material, and method for forming lubricating coating for metal material
WO2016185876A1 (ja) * 2015-05-15 2016-11-24 日本パーカライジング株式会社 水性潤滑剤、金属材料及び金属加工品
EP3305882A4 (en) * 2015-05-29 2018-11-21 Nihon Parkerizing Co., Ltd. Water-containing lubricating film agent, surface treated metallic material, and method for forming water containing-lubricating film of metallic material
JP2016222793A (ja) * 2015-05-29 2016-12-28 日本パーカライジング株式会社 含水潤滑膜剤、表面処理金属材料、及び、金属材料の含水潤滑膜形成方法
WO2019004328A1 (ja) 2017-06-29 2019-01-03 日本パーカライジング株式会社 潤滑剤、金属材、金属材の塑性加工方法及び成形加工金属材の製造方法
US11261397B2 (en) 2017-11-01 2022-03-01 Moresco Corporation Lubricant composition for plastic processing
JP2019203037A (ja) * 2018-05-21 2019-11-28 ユシロ化学工業株式会社 水性冷間塑性加工用潤滑剤組成物
EP3705556A1 (de) * 2019-03-04 2020-09-09 Saarstahl Aktiengesellschaft Schmierstoff zur metallumformung, insbesondere zur umformung von stahl, und verfahren zur herstellung des umformschmierstoffs
CN114480003A (zh) * 2022-02-22 2022-05-13 江苏中晟高科环境股份有限公司 一种金属拉丝固体润滑剂及其制备方法
CN114480003B (zh) * 2022-02-22 2022-12-16 江苏中晟高科环境股份有限公司 一种金属拉丝固体润滑剂及其制备方法
CN115386410A (zh) * 2022-08-11 2022-11-25 西安建筑科技大学 一种钛合金挤压用高温固体润滑剂及其制备方法
CN115386410B (zh) * 2022-08-11 2023-09-12 西安建筑科技大学 一种钛合金挤压用高温固体润滑剂及其制备方法

Also Published As

Publication number Publication date
KR101497252B1 (ko) 2015-02-27
CN103261384A (zh) 2013-08-21
JPWO2012086564A1 (ja) 2014-05-22
CN103261384B (zh) 2015-04-01
JP5718944B2 (ja) 2015-05-13
KR20130096301A (ko) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5718944B2 (ja) 金属材料の塑性加工用潤滑剤
JP3684363B2 (ja) 保護皮膜形成用水性組成物
JP6757556B2 (ja) 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
KR101508454B1 (ko) 소성 가공용 윤활 피막제와 그의 제조 방법
CN107709610B (zh) 金属材料用水系润滑被膜剂、表面处理金属材料及金属材料的润滑被膜形成方法
JP3939700B2 (ja) 金属石けん被覆粒子及びそれを用いる物及び製法、並びに潤滑皮膜剤及び潤滑皮膜
WO2015146818A1 (ja) 耐食性、加工性に優れた水系潤滑皮膜処理剤及び金属材料
WO2019004328A1 (ja) 潤滑剤、金属材、金属材の塑性加工方法及び成形加工金属材の製造方法
JP2017066515A (ja) 耐食性及び加工後の外観に優れた鋼線材
JP4384641B2 (ja) 塑性加工用金属材料
JPWO2018020976A1 (ja) 固体潤滑剤、グリース組成物、及び塑性加工用潤滑剤組成物、並びに固体潤滑剤の製造方法及び金属材料の加工方法
JP4751053B2 (ja) 塑性加工潤滑剤
JP2019157141A (ja) 固体潤滑剤、金属材料用潤滑皮膜剤、表面処理金属材料、及び金属材料の潤滑皮膜形成方法
WO2011040261A1 (ja) 金属材料塑性加工用水系潤滑皮膜剤および塑性加工性に優れた金属材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549783

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137015723

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851497

Country of ref document: EP

Kind code of ref document: A1