WO2012086505A1 - Procédé de production de sialon bêta - Google Patents
Procédé de production de sialon bêta Download PDFInfo
- Publication number
- WO2012086505A1 WO2012086505A1 PCT/JP2011/079008 JP2011079008W WO2012086505A1 WO 2012086505 A1 WO2012086505 A1 WO 2012086505A1 JP 2011079008 W JP2011079008 W JP 2011079008W WO 2012086505 A1 WO2012086505 A1 WO 2012086505A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sialon
- acid
- treatment step
- powder
- producing
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000000843 powder Substances 0.000 claims abstract description 29
- 238000010306 acid treatment Methods 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 239000002994 raw material Substances 0.000 claims abstract description 21
- 239000002253 acid Substances 0.000 claims abstract description 15
- 239000000725 suspension Substances 0.000 claims abstract description 14
- 238000010304 firing Methods 0.000 claims abstract description 12
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 6
- 239000006104 solid solution Substances 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 2
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910001940 europium oxide Inorganic materials 0.000 description 2
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229920000995 Spectralon Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- -1 oxides Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0883—Arsenides; Nitrides; Phosphides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/77348—Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
Definitions
- the present invention relates to a method for producing ⁇ -sialon used as a phosphor, and more particularly to a method for producing Eu 2+ -activated ⁇ -sialon excellent in luminous efficiency.
- ⁇ -type sialon is a solid solution of ⁇ -type silicon nitride in which Al is substituted at the Si position and O is substituted at the N position. Since there are two formula atoms in the unit cell (unit cell), the general formula is expressed as Si 6-z Al z O z N 8-z . Here, 0 ⁇ z ⁇ 4.2 and the solid solution range is very wide, but the molar ratio of (Si, Al) / (N, O) needs to be maintained at 3/4.
- the phosphor When Eu 2+ is contained in the ⁇ -sialon crystal, the phosphor is excited by ultraviolet to blue light and emits green light of 520 to 560 nm, and can be used as a green light emitting component of a light emitting device such as a white LED.
- This Eu 2+ activated ⁇ -sialon has a relatively sharp emission spectrum among the phosphors activated by Eu 2+ , and particularly for the back of liquid crystal display panels that require blue, green and red narrow-band emission. It is a phosphor suitable for a green light emitting component of a light source.
- raw materials such as silicon nitride, silicon oxide, aluminum nitride, aluminum oxide, and europium are mixed in a predetermined molar ratio and fired in a nitrogen atmosphere. The method is used.
- the baked Eu 2+ -activated ⁇ -sialon powder is subjected to post-treatment such as heat treatment or acid treatment to increase the purity of the crystals.
- post-treatment such as heat treatment or acid treatment to increase the purity of the crystals.
- the low crystalline portion in the powder is further destabilized by performing heat treatment in a temperature range of 1300 to 1500 ° C., and subsequently, at a temperature of 60 ° C. or higher using a mixed acid of hydrofluoric acid and nitric acid. It has been proposed to remove the destabilized phase by heating and acid treatment (Patent Document 1).
- Patent Document 1 specifically describes that the acid treatment was performed at 75 ° C. (Examples 1 to 4 and Comparative Examples 1 to 4).
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing ⁇ -sialon having higher luminous efficiency.
- the gist of the present invention is as follows.
- the method for producing ⁇ -sialon according to the present invention by performing acid treatment under a specific temperature condition, non-luminescence absorption in the fluorescence emission wavelength region is reduced, and as a result, the ⁇ -sialon has increased luminous efficiency.
- a phosphor can be obtained.
- the method for producing ⁇ -sialon according to the present invention comprises calcining ⁇ -sialon powder (firing step), heat-treating the obtained powder (heat treatment step), and further performing acid treatment under a specific temperature condition (acid treatment step). )
- firing step calcining ⁇ -sialon powder
- heat treatment step heat-treating the obtained powder
- acid treatment step further performing acid treatment under a specific temperature condition
- the firing step in the present invention does not simply refer to the step of heating the raw material mixture, but the entire process up to the post-treatment of ⁇ -sialon, that is, the raw materials are mixed, fired, and fired as necessary. It includes a plurality of steps until the subsequent powder aggregate is pulverized and classified.
- the baking method of ⁇ -sialon that can be used in the present invention is not particularly limited, and an example thereof will be described below.
- the Si source of the raw material mixture metal powder containing at least Si can be used.
- the metal powder containing Si include Si alloys containing other metals in addition to metal Si.
- inorganic substances such as silicon nitride and sialon powder can be added simultaneously.
- the Al source of the raw material mixture a metal or an inorganic compound containing Al can be used.
- metal Al, Al alloy, aluminum nitride, aluminum oxide, etc. can be mentioned.
- the Eu supply source include Eu metal, alloys containing Eu, nitrides, oxides, carbonates, and the like. Considering the availability of raw materials and the like, the raw material mixture is preferably a mixture of silicon nitride powder, aluminum nitride powder, aluminum oxide powder, and europium oxide powder.
- the phosphor is synthesized by firing the raw material mixture in a temperature range of 1200 ° C. or higher and 2200 ° C. or lower in a nitrogen-containing atmosphere.
- the nitrogen-containing atmosphere is nitrogen gas or a gas containing nitrogen atoms in the molecule, and can be mixed with other gases as necessary.
- the metal Si in the raw material is nitrided to become Si 3 N 4 , and this reacts with the Al-containing raw material and Eu-containing raw material to produce the ⁇ -type sialon phosphor.
- the nitrogen atmosphere is preferably a gas atmosphere in a pressure range of 0.1 MPa to 100 MPa. More preferably, it is 0.1 MPa or more and 1 MPa or less.
- the nitrogen gas atmosphere is lower than 0.1 MPa, the raw material is likely to be thermally decomposed, which is not preferable.
- 1 MPa is sufficient to suppress decomposition, and if it exceeds 100 MPa, a special apparatus is required, which is not suitable for industrial production.
- the powder aggregate obtained by firing is firmly fixed, it is pulverized by a pulverizer usually used in factories such as a ball mill and a jet mill.
- a pulverizer usually used in factories such as a ball mill and a jet mill.
- ball milling makes it easy to control the particle size.
- the balls and pots used at this time are preferably made of a silicon nitride sintered body or a sialon sintered body. Particularly preferably, a ceramic sintered body having the same composition as the phosphor used as the product is preferable.
- the pulverization is performed until the average particle size becomes 5 ⁇ m or less.
- the average particle size is particularly preferably 20 nm or more and 5 ⁇ m or less.
- the average particle size exceeds 5 ⁇ m, the fluidity of the powder and the dispersibility in the resin are deteriorated, and when the light emitting device is formed in combination with the light emitting element, the light emission intensity becomes uneven depending on the part.
- the thickness is less than 20 nm, the operability for handling the powder is deteriorated. If the desired particle size cannot be obtained only by grinding, classification can be combined. As a classification method, sieving, air classification, precipitation in a liquid, or the like can be used.
- heat treatment is performed. It is effective to perform the heat treatment in an atmosphere that does not contain nitrogen and oxygen as constituent elements of ⁇ -sialon as much as possible. Typically, a rare gas atmosphere such as argon is selected.
- the heat treatment temperature is preferably in the range of 1300 ° C to 1700 ° C, more preferably in the range of 1400 ° C to 1500 ° C. If it is 1300 degreeC or more, the low crystalline part can be destabilized, and if it is 1700 degreeC or less, decomposition
- the temperature holding time is not particularly limited, but is preferably 3 to 15 hours, more preferably 6 to 10 hours, in order to sufficiently achieve destabilization.
- the mixed acid in the present invention refers to a mixture of inorganic acids such as hydrochloric acid, nitric acid, hydrofluoric acid, sulfuric acid or a diluted solution thereof, and 50% hydrofluoric acid and 70% nitric acid are mixed 1: 1. Or a dilution thereof is preferred.
- Reaction heat is generated when ⁇ -sialon is suspended in mixed acid.
- the reaction heat tends to change depending on the amount of ⁇ -sialon input. For this reason, if a small amount of ⁇ -sialon is treated using a large amount of mixed acid, the heat of reaction remains almost negligible.
- the temperature rise of the suspension due to reaction heat cannot be ignored.
- the present inventors diligently studied the relationship between the suspension peak temperature and the diffuse reflectance by changing the amount of ⁇ -sialon added, and the suspension peak temperature during acid treatment was within a predetermined range. It has been found that by controlling so that the diffuse reflectance of the phosphor is improved, the luminous efficiency can be improved as a result.
- the peak temperature of the suspension composed of the mixed acid and ⁇ -sialon during the acid treatment is controlled to be in the range of 90 ° C. to 100 ° C., preferably 92 ° C. to 98 ° C. When the peak temperature is less than 90 ° C. or higher than 100 ° C., the diffuse reflectance tends to be low.
- the temperature adjusting means include, for example, heating around the container containing the suspension with a carbon heater, circulating the cooling water around the container, etc., but are not limited thereto. Absent. However, when the peak temperature falls within a predetermined temperature range due to the heat of reaction accompanying the input amount of ⁇ -sialon, it is not necessary to artificially adjust the temperature.
- the above-mentioned raw materials were mixed using a V-type mixer (S-3 manufactured by Tsutsui Rika Kikai Co., Ltd.), and then passed through a sieve having an opening of 250 ⁇ m to remove agglomerates, thereby obtaining a raw material mixed powder.
- V-type mixer S-3 manufactured by Tsutsui Rika Kikai Co., Ltd.
- the raw material mixed powder is fired by filling the raw material mixed powder into a cylindrical boron nitride container (N-1 grade manufactured by Denki Kagaku Kogyo Co., Ltd.) with a lid and pressurizing 0.9 MPa in an electric furnace equipped with a carbon heater. Firing was performed at 2000 ° C. for 10 hours in a nitrogen atmosphere.
- the green lump obtained by firing is roughly crushed using an alumina mortar until it passes through a sieve with an opening of 150 ⁇ m, and then classified with a sieve with an opening of 45 ⁇ m to obtain Eu 2+ activated ⁇ -sialon. It was.
- ⁇ Heat treatment process The ⁇ -sialon after the firing step is filled in a cylindrical boron nitride vessel with a lid (N-1 grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 1500 ° C. in an argon atmosphere at atmospheric pressure in an electric furnace equipped with a carbon heater. For 7 hours.
- the ⁇ -sialon after the heat treatment step was cooled under the following conditions in an electric furnace in the heat treatment step. Cooling rate: From 1450 ° C to 1200 ° C, 10 ° C / min. From 1200 ° C to 500 ° C, 1 ° C / min. From 500 ° C to room temperature, the gas in the furnace is cooled by forced convection with a fan.
- ⁇ Acid treatment process 150 ml of pure water was added to 50 ml of a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid and heated to 75 ° C. To this, 180 g of ⁇ -sialon cooled to room temperature was added and suspended, and the suspension was stirred for 60 minutes. The peak temperature of the suspension during stirring was 80 ° C. Next, the suspension is cooled to room temperature, allowed to stand, the supernatant is removed, distilled water is further added, stirred, allowed to stand, and decantation to remove the supernatant is performed. Repeated until neutral. Then, it filtered and dried and obtained beta type sialon of comparative example 1.
- the diffuse reflectance of the ⁇ -type sialon of Comparative Example 1 was examined.
- the diffuse reflectance means that the higher the numerical value, the less light is absorbed by the phosphor, and the higher the luminous efficiency of the phosphor.
- the diffuse reflectance was measured with a device in which an integrating sphere device (ISV-469) was attached to an ultraviolet-visible spectrophotometer (V-550) manufactured by JASCO Corporation. Baseline correction was performed with a standard reflector (Spectralon), a solid sample holder filled with ⁇ -sialon was set, and the diffuse reflectance measured in the wavelength range of 700 to 800 nm was 92.7%.
- the conditions for the acid treatment step and the results are shown in Table 1.
- Example 1 As shown in Table 1, the production method of ⁇ -sialon of Example 1 is a comparative example except that the amount of ⁇ -sialon to be added to the mixed acid is 240 g and the peak temperature in the acid treatment step is 90 ° C. 1 is the same manufacturing method. The average diffuse reflectance of the obtained ⁇ -sialon at a wavelength of 700 to 800 nm was 94.5%.
- Examples 2 to 4, Comparative Examples 2 and 3 As shown in Table 1, Examples 2 to 4 and Comparative Examples 2 and 3 were produced in the same manner as in Comparative Example 1 except that the amount of ⁇ -sialon added and the peak temperature in the acid treatment step were changed. is there.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
Abstract
L'invention concerne un procédé de production de sialon β présentant une efficacité lumineuse améliorée en raison d'un facteur de réflexion diffuse amélioré. Le sialon β est représenté par la formule générale Si-zAlzOzN-z (0 < z < 4,2), contient de l'Eu+ sous la forme d'une solution solide comme noyau électroluminescent, et présente un pic d'émission dans la plage de longueurs d'ondes comprise entre 520 et 560 nm quand il est excité par de la lumière bleue. Le procédé de production est caractérisé par les étapes consistant à: mettre en oeuvre un traitement thermique, dans lequel une poudre, obtenue par la cuisson d'une matière première, est chauffée à une température d'au moins 1300°C, et de 1700°C au maximum; et mettre ensuite en oeuvre une étape de traitement acide, dans laquelle la poudre est mise en suspension dans un acide mixte, la température de pointe du liquide de suspension, à l'étape de traitement acide, étant réglée dans la plage comprise entre 90°C au minimum et 100°C au maximum.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-283542 | 2010-12-20 | ||
JP2010283542 | 2010-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012086505A1 true WO2012086505A1 (fr) | 2012-06-28 |
Family
ID=46313781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/079008 WO2012086505A1 (fr) | 2010-12-20 | 2011-12-15 | Procédé de production de sialon bêta |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN102559178A (fr) |
TW (1) | TW201233780A (fr) |
WO (1) | WO2012086505A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018135406A (ja) * | 2017-02-20 | 2018-08-30 | デンカ株式会社 | 蛍光体および発光装置、蛍光体の製造方法 |
JP2018150487A (ja) * | 2017-03-15 | 2018-09-27 | デンカ株式会社 | 蛍光体の製造方法、蛍光体及び発光素子と発光装置 |
JP2020002245A (ja) * | 2018-06-27 | 2020-01-09 | 日亜化学工業株式会社 | βサイアロン蛍光体の製造方法 |
WO2022080097A1 (fr) * | 2020-10-14 | 2022-04-21 | デンカ株式会社 | LUMINOPHORE SIALON DE TYPE β ACTIVÉ À L'EUROPIUM |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102766459A (zh) * | 2012-07-12 | 2012-11-07 | 复旦大学 | 一种灯用荧光粉的后处理方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005255885A (ja) * | 2004-03-12 | 2005-09-22 | National Institute For Materials Science | 蛍光体とその製造方法 |
JP2010241995A (ja) * | 2009-04-08 | 2010-10-28 | Denki Kagaku Kogyo Kk | β型サイアロン蛍光体とその製造方法、およびその用途 |
WO2010143590A1 (fr) * | 2009-06-09 | 2010-12-16 | 電気化学工業株式会社 | Phosphore de β-sialon, utilisation de celui-ci et procédé de production de celui-ci |
-
2011
- 2011-12-15 WO PCT/JP2011/079008 patent/WO2012086505A1/fr active Application Filing
- 2011-12-19 TW TW100147022A patent/TW201233780A/zh unknown
- 2011-12-19 CN CN201110428060XA patent/CN102559178A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005255885A (ja) * | 2004-03-12 | 2005-09-22 | National Institute For Materials Science | 蛍光体とその製造方法 |
JP2010241995A (ja) * | 2009-04-08 | 2010-10-28 | Denki Kagaku Kogyo Kk | β型サイアロン蛍光体とその製造方法、およびその用途 |
WO2010143590A1 (fr) * | 2009-06-09 | 2010-12-16 | 電気化学工業株式会社 | Phosphore de β-sialon, utilisation de celui-ci et procédé de production de celui-ci |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018135406A (ja) * | 2017-02-20 | 2018-08-30 | デンカ株式会社 | 蛍光体および発光装置、蛍光体の製造方法 |
JP2018150487A (ja) * | 2017-03-15 | 2018-09-27 | デンカ株式会社 | 蛍光体の製造方法、蛍光体及び発光素子と発光装置 |
JP2020002245A (ja) * | 2018-06-27 | 2020-01-09 | 日亜化学工業株式会社 | βサイアロン蛍光体の製造方法 |
JP2021169629A (ja) * | 2018-06-27 | 2021-10-28 | 日亜化学工業株式会社 | βサイアロン蛍光体の製造方法 |
US11560514B2 (en) | 2018-06-27 | 2023-01-24 | Nichia Corporation | Method for producing β-sialon fluorescent material |
WO2022080097A1 (fr) * | 2020-10-14 | 2022-04-21 | デンカ株式会社 | LUMINOPHORE SIALON DE TYPE β ACTIVÉ À L'EUROPIUM |
Also Published As
Publication number | Publication date |
---|---|
CN102559178A (zh) | 2012-07-11 |
TW201233780A (en) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5910498B2 (ja) | 珪窒化物蛍光体用窒化珪素粉末並びにそれを用いたCaAlSiN3系蛍光体、Sr2Si5N8系蛍光体、(Sr,Ca)AlSiN3系蛍光体及びLa3Si6N11系蛍光体、及びその製造方法 | |
CN102226085B (zh) | 荧光体的制造方法 | |
JP5969391B2 (ja) | 蛍光体、発光装置及びその用途 | |
JP4813577B2 (ja) | β型サイアロン蛍光体の製造方法 | |
KR101725857B1 (ko) | β형 사이알론의 제조 방법 | |
WO2011142228A1 (fr) | PROCÉDÉ DE PRÉPARATION DE β-SIALON, β-SIALON, ET PRODUIT UTILISANT CELUI-CI | |
WO2012046288A1 (fr) | PROCÉDÉ DE FABRICATION DE PHOSPHORE β-SIALON, ET APPLICATION DE CELUI-CI | |
KR102059385B1 (ko) | 형광체의 제조방법 | |
WO2012086505A1 (fr) | Procédé de production de sialon bêta | |
WO2018092696A1 (fr) | Phosphore rouge, élément luminescent, et dispositif luminescent | |
TWI440697B (zh) | β型矽鋁氮氧化物之製造方法 | |
CN113785030B (zh) | 表面被覆荧光体粒子、表面被覆荧光体粒子的制造方法以及发光装置 | |
JP5388699B2 (ja) | α型サイアロン蛍光体およびそれを用いた発光素子 | |
JP5912580B2 (ja) | 蛍光体、その製造方法及びその用途 | |
WO2020209148A1 (fr) | Particules fluorescentes revêtues en surface, procédé de production de particules fluorescentes revêtues en surface, et dispositif électroluminescent | |
JP2008045080A (ja) | 無機化合物の製造方法 | |
JP2019026657A (ja) | 蛍光体、その製造方法、それを用いた発光素子、および、蛍光体を製造するための窒化ケイ素粉末 | |
WO2012032818A1 (fr) | Procédé pour la production de β-sialon dopé par eu | |
CN106978166A (zh) | 红色荧光体及发光装置 | |
JP2017179187A (ja) | 赤色蛍光体及び発光装置 | |
WO2012032824A1 (fr) | Β-sialon, dispositif électroluminescent et procédé de production de β-sialon | |
JP5697387B2 (ja) | β型サイアロンの製造法 | |
JP7282757B2 (ja) | 赤色蛍光体及び発光装置 | |
JP5002819B2 (ja) | サイアロン蛍光体およびそれを用いた白色発光ダイオード | |
JP6902368B2 (ja) | 赤色蛍光体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11850061 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11850061 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |