WO2012086407A1 - 固体電解コンデンサ及びその製造方法 - Google Patents

固体電解コンデンサ及びその製造方法 Download PDF

Info

Publication number
WO2012086407A1
WO2012086407A1 PCT/JP2011/078178 JP2011078178W WO2012086407A1 WO 2012086407 A1 WO2012086407 A1 WO 2012086407A1 JP 2011078178 W JP2011078178 W JP 2011078178W WO 2012086407 A1 WO2012086407 A1 WO 2012086407A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
anode
solid electrolytic
electrolytic capacitor
anode foil
Prior art date
Application number
PCT/JP2011/078178
Other languages
English (en)
French (fr)
Inventor
貴行 松本
Original Assignee
三洋電機株式会社
佐賀三洋工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, 佐賀三洋工業株式会社 filed Critical 三洋電機株式会社
Priority to JP2012549713A priority Critical patent/JPWO2012086407A1/ja
Publication of WO2012086407A1 publication Critical patent/WO2012086407A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon

Definitions

  • the present invention relates to a winding type solid electrolytic capacitor and a method for manufacturing the same.
  • this type of solid electrolytic capacitor is conventionally electrically connected to a wound body 81 formed by overlapping and winding an anode foil 811 and a cathode foil 812, and the anode foil 811. It has a connected anode lead tab terminal 83 and a cathode lead tab terminal 84 electrically connected to the cathode foil 812 (see, for example, Patent Document 1).
  • a dielectric coating is formed on the surface of the anode foil 811 by subjecting the surface to chemical conversion treatment.
  • a paper separator 813 is interposed between the anode foil 811 and the cathode foil 812. By impregnating the separator 813 with a chemical polymerization solution and polymerizing the anode foil, A solid electrolyte layer is formed between 811 and the cathode foil 812.
  • the solid electrolytic capacitor can function as a noise filter that removes high-frequency noise generated from a processing device such as a CPU (Central Processing Unit).
  • a processing device such as a CPU (Central Processing Unit).
  • a solid electrolytic capacitor having the following configuration has been proposed in order to realize both a large capacity and a small size of the solid electrolytic capacitor (for example, Patent Document 2). That is, this solid electrolytic capacitor is electrically connected to a wound body constituted by winding a single anode foil having a dielectric film formed on a surface thereof and a paper separator, and the anode foil.
  • a wound body constituted by winding a single anode foil having a dielectric film formed on a surface thereof and a paper separator, and the anode foil.
  • One anode lead tab terminal pulled out from the winding end surface of the wound body, a solid electrolyte layer formed inside and outside the wound body, and formed on the solid electrolyte layer outside the wound body It is composed of a cathode layer and one cathode lead which is provided outside the wound body and is electrically connected to the cathode layer.
  • the cathode foil is not wound around the wound body.
  • the anode foil is manufactured as follows. First, a metal foil (for example, an aluminum foil) serving as an anode foil is prepared, and etching processing is performed on the surface of the metal foil. Next, a chemical film is applied to the surface of the metal foil to form a dielectric film on the surface. Thereafter, the metal foil is cut to cut the metal foil into a long predetermined shape. Thus, an anode foil having a dielectric film formed on the surface is produced.
  • a metal foil for example, an aluminum foil
  • etching processing is performed on the surface of the metal foil.
  • a chemical film is applied to the surface of the metal foil to form a dielectric film on the surface. Thereafter, the metal foil is cut to cut the metal foil into a long predetermined shape.
  • an anode foil having a dielectric film formed on the surface is produced.
  • the produced anode foil a part of the metal constituting the anode foil is exposed at the cut surface (end surface).
  • the dielectric film is repaired or formed according to the properties of the electrolytic solution, but the solid electrolytic capacitor does not have such properties. Therefore, in the manufacturing process of the solid electrolytic capacitor, after the anode foil is wound to produce a wound body, the wound body is subjected to a re-chemical conversion treatment, whereby the cut surface (end face) of the anode foil is applied. It is necessary to form a dielectric coating. Therefore, the manufacturing process of the solid electrolytic capacitor is complicated.
  • an object of the present invention is to realize a large capacity, low ESR, and improved yield of a solid electrolytic capacitor while simplifying the manufacturing process thereof.
  • the method for producing a solid electrolytic capacitor according to the present invention includes a step of producing an anode foil by cutting a metal foil having a dielectric film formed on a surface thereof, and at least the anode of the end face of the anode foil.
  • a step of forming a cathode layer on the solid electrolyte layer outside the wound body and a step of electrically connecting a cathode lead frame to the cathode layer.
  • the amount of the anode foil wound can be increased by replacing the anode foil with the anode foil. Therefore, in the manufactured solid electrolytic capacitor, it is possible to increase the capacity of the solid electrolytic capacitor.
  • the conductive separator does not come into electrical contact with the end face region of the anode foil due to the presence of the electrically insulating resin film. Therefore, even when a re-forming process is performed on the wound body, no current flows through the conductive separator. Therefore, the conductive separator is not corroded, and the yield of the produced solid electrolytic capacitor is improved as in the case where the re-forming process is not performed.
  • the conductive separator is made of a metal foil, a metal mesh, or a sheet or mesh having a metal layer formed on the surface.
  • a metal material constituting the metal foil, the metal mesh, or the metal layer a material having high conductivity such as copper or nickel can be used.
  • the solid electrolytic capacitor according to the present invention includes a wound body, an anode lead tab terminal, a solid electrolyte layer, a cathode layer, and a cathode lead frame.
  • the wound body is configured by winding an anode foil with a conductive separator on the anode foil but without a cathode foil, and a dielectric film is formed on the surface of the anode foil.
  • an electrically insulating resin film covering the end surface region is formed on at least the end surface region located in the width direction of the anode foil among the end surfaces of the anode foil.
  • the anode lead tab terminal is electrically connected to the anode foil and pulled out from a winding end surface of the winding body.
  • the solid electrolyte layer is formed inside and outside the wound body.
  • the cathode layer is formed on the solid electrolyte layer outside the wound body.
  • the cathode lead frame is electrically connected to the cathode layer.
  • the conductive separator does not come into electrical contact with the end face region of the anode foil due to the presence of the electrically insulating resin film. Therefore, in the manufacturing process of the solid electrolytic capacitor, it is not necessary to re-form the wound body. Therefore, the conductive separator is not corroded, and as a result, the yield of the solid electrolytic capacitor is improved. In addition, since it is not necessary to perform the re-forming process, the manufacturing process of the solid electrolytic capacitor is simplified.
  • the solid electrolytic capacitor it is not necessary to wind the cathode foil in the manufacturing process. Therefore, the amount of the anode foil wound can be increased by replacing the anode foil with the anode foil. Therefore, according to the solid electrolytic capacitor, it is possible to realize a large capacity of the solid electrolytic capacitor.
  • a separator having conductivity is used. Therefore, when a voltage is applied between the anode lead tab terminal and the cathode lead frame, electrons on the cathode side in the wound body move to the cathode layer through a conductive separator having a lower electrical resistance than the solid electrolyte layer. Will do. Therefore, according to the solid electrolytic capacitor, electrons on the cathode side in the wound body easily move to the cathode layer, and as a result, low ESR of the solid electrolytic capacitor is realized.
  • the conductive separator does not come into electrical contact with the end face region of the anode foil due to the presence of the electrically insulating resin film. Therefore, even when a re-forming process is performed on the wound body, no current flows through the conductive separator. Therefore, the conductive separator is not corroded, and the yield of the solid electrolytic capacitor is improved as in the case where the re-forming process is not performed.
  • the conductive separator is made of a metal foil, a metal mesh, or a sheet or mesh having a metal layer formed on the surface.
  • a metal material constituting the metal foil, the metal mesh, or the metal layer a material having high conductivity such as copper or nickel can be used.
  • the winding body is configured by winding a plurality of the anode foils with the conductive separators overlapped on each anode foil, At least one anode lead tab terminal is electrically connected to the anode foil.
  • the wound body is composed of a single anode foil, and only one anode lead tab terminal is electrically connected to the anode foil.
  • the length dimension of the anode foil carried by each anode lead tab terminal is reduced. Therefore, the electrical resistance generated in the anode foil itself is reduced, and as a result, further reduction in ESR of the solid electrolytic capacitor is realized.
  • the solid electrolytic capacitor of the present invention it is possible to realize a large capacity, low ESR, and improved yield of the solid electrolytic capacitor while simplifying the manufacturing process. Moreover, according to the manufacturing method which concerns on this invention, such a solid electrolytic capacitor can be produced.
  • FIG. 3 is a sectional view taken along line AA shown in FIG. 2. It is a perspective view used for description of the resin film formation process among the manufacturing methods of the said solid electrolytic capacitor. It is a perspective view used for description of a winding process among this manufacturing method. It is a perspective view used for description of an assembly process among this manufacturing method. It is the perspective view which showed the conventional solid electrolytic capacitor.
  • FIG. 1 is a perspective view showing a solid electrolytic capacitor according to an embodiment of the present invention
  • FIG. 2 is a bottom view of the solid electrolytic capacitor
  • FIG. 3 is a cross-sectional view taken along the line AA shown in FIG.
  • the solid electrolytic capacitor includes a capacitor main body 1, a seat plate 2 on which the capacitor main body 1 is mounted, two anode terminals 3 and 3, and a cathode terminal 4. Yes.
  • the anode terminals 3 and 3 and the cathode terminal 4 are both exposed on the lower surface 2 b of the seat plate 2.
  • first groove portions 201, 201 extending substantially parallel to the edge 21 of the seat plate 2, and an edge 22 opposite to the edge 21.
  • the extended second groove 202 is recessed.
  • the first groove portions 201 and 201 accommodate the anode terminals 3 and 3 one by one, and the second groove portion 202 accommodates the cathode terminal 4.
  • the capacitor body 1 includes a winding element 10, a bottomed cylindrical outer case 5 in which the winding element 10 is accommodated, and an opening 50 of the outer case 5. And a rubber sealing member 61.
  • the outer case 5 is made of a metal material such as aluminum, and the sealing member 61 is fixed to the outer case 5 by performing lateral drawing and curling on the opening end of the outer case 5.
  • the exterior case 5 is not limited to a metal material, and may be formed from various materials including an electrical insulating material.
  • the opening 50 of the outer case 5 may be sealed by pouring a resin material into the outer case 5 and solidifying the resin material.
  • the winding element 10 has a wound body 11 as shown in FIG.
  • FIG. 5 is a perspective view used for explaining the winding step in the manufacturing method described later.
  • the wound body 11 is configured by winding two anode foils 111, 111 with each of the anode foils 111 overlapped with a conductive separator 112.
  • the cathode foil is not overlapped on the two anode foils 111 and 111, and therefore the cathode foil is not wound around the wound body 11.
  • Each anode foil 111 is made of a valve metal such as aluminum, tantalum, or niobium.
  • each anode foil 111 is formed on the surface of each anode foil 111.
  • at least the end face regions 111 a and 111 a located in the width direction 91 of the anode foil 111 among the end faces of each anode foil 111 are electrically insulating to cover the end face regions 111 a and 111 a.
  • the resin film 7 is formed.
  • a thermosetting resin material such as an epoxy resin or a phenol resin can be used.
  • Each conductive separator 112 is made of a metal foil, a metal mesh, or a sheet or mesh having a metal layer formed on the surface.
  • an electrode lead member such as a lead tab terminal is not attached to the conductive separator 112.
  • the metal material constituting the metal foil, the metal mesh, or the metal layer a material having high conductivity such as copper or nickel is used.
  • a solid electrolyte layer is formed on the wound body 11.
  • the solid electrolyte layer is formed inside and outside the wound body 11.
  • each conductive separator 112 is impregnated with a chemical polymerization solution such as a conductive polymer, thereby forming a gap (mainly formed between the two anode foils 111 and 111) inside the wound body 11.
  • the solid electrolyte layer is formed in a state of filling the gaps.
  • the solid electrolyte layer is also formed on the outer peripheral surface of the wound body 11.
  • the wound body 11 further has a cathode layer 12 formed thereon.
  • the cathode layer 12 includes a carbon layer (not shown) formed on the solid electrolyte layer outside the wound body 11, and a silver paste layer (not shown) formed on the carbon layer. It is constituted by.
  • the solid electrolyte layer and the cathode layer 12 are electrically connected to each other.
  • the winding element 10 further has two anode lead tab terminals 30 and 30 as shown in FIG. 6 (see also FIG. 3).
  • FIG. 6 is a perspective view used for explaining the assembly process in the manufacturing method described later.
  • the two anode lead tab terminals 30 and 30 are electrically connected to the two anode foils 111 and 111 constituting the wound body 11, respectively, and are drawn out from the same winding end surface 11a of the wound body 11. ing.
  • the lead portion 310 of each anode lead tab terminal 30 is drawn out from the winding end surface 11a.
  • each lead portion 310 passes through the sealing member 61 and is drawn out of the exterior case 5.
  • a cathode lead frame 40 is attached to the winding element 10.
  • the cathode lead frame 40 includes a frame portion 41 and a lead portion 42 formed integrally with the frame portion 41.
  • the frame portion 41 is placed on the cathode layer 12 of the winding element 10 by the conductive adhesive 43 containing silver in a posture in which the lead portion 42 is disposed on the winding end surface 11 a of the winding body 11. Closely fixed.
  • the cathode lead frame 40 is electrically connected to the cathode layer 12.
  • the lead part 42 penetrates the sealing member 61 and is drawn out of the exterior case 5.
  • the seat plate 2 is formed with three through holes 20 to 20 that penetrate the seat plate 2 from the upper surface 2a to the lower surface 2b, and the three through holes 20 to 20 communicates with two first grooves 201 and 202 provided on the lower surface 2 b of the seat plate 2.
  • the lead portions 310 of the respective anode lead tab terminals 30 pass through the corresponding through holes 20 of the seat plate 2 and then bend in the vicinity of the outlets of the through holes 20, and then the first groove portions 201 along the first groove portions 201.
  • One groove portion 201 extends to the edge 21 of the seat plate 2.
  • a portion of the lead portion 310 that extends in the first groove portion 201 along the first groove portion 201 has a flat shape, and the flat portion constitutes the anode terminal 3 of the solid electrolytic capacitor. Yes.
  • the lead portion 42 of the cathode lead frame 40 passes through the corresponding through hole 20 of the seat plate 2 and then bends in the vicinity of the outlet of the through hole 20, and then the second portion along the second groove portion 202.
  • the groove 202 extends to the edge 22 of the seat plate 2.
  • a portion of the lead portion 42 that extends in the second groove portion 202 along the second groove portion 202 has a flat shape, and the flat portion constitutes the cathode terminal 4 of the solid electrolytic capacitor. Yes.
  • a foil production process a resin film formation process, a winding process, an electrolyte layer formation process, a cathode layer formation process, and an assembly process are sequentially performed.
  • a metal foil to be the anode foil 111 is prepared. Then, the surface of the metal foil is etched to form a plurality of fine irregularities, thereby increasing the surface area of the metal foil. Next, a chemical film is applied to the surface of the metal foil to form a dielectric film on the surface. Thereafter, the metal foil is cut to cut the metal foil into a long predetermined shape. Thus, a plurality of anode foils 111 to 111 having a dielectric film formed on the surface are produced. In addition, in the produced anode foil 111, a part of metal which comprises this anode foil 111 will be exposed to the cut surface (end surface).
  • FIG. 4 is a perspective view used for explaining the resin film forming step.
  • the end face regions 111a and 111a located in the width direction 91 of the anode foil 111 in the cut surface (end face) of each anode foil 111 are electrically insulating resins.
  • a material 71 is applied.
  • the resin material 71 is solidified.
  • an electrically insulating resin film 7 is formed on the end face regions 111a and 111a to cover the regions.
  • a thermosetting resin material such as an epoxy resin or a phenol resin can be used for the resin material 71 forming the resin film 7.
  • the anode lead tab terminal 30 is attached to each anode foil 111 (see FIG. 5).
  • two anode foils 111, 111 are wound with each of the anode foils 111 overlapped with a conductive separator 112, thereby producing a wound body 11.
  • the cathode foil is not superimposed on the two anode foils 111, 111.
  • the two anode foils 111 and 111 are wound so that the two anode lead tab terminals 30 and 30 protrude from the same winding end surface 11 a of the wound body 11.
  • the terminal portion of the anode foil 111 is fixed to the outer peripheral surface of the wound body 11 with a winding tape 113 as shown in FIG.
  • the terminal portion of the conductive separator 112 is fixed to the outer peripheral surface of the wound body 11 by the winding tape 113.
  • a conductive tape can be used for the winding tape 113.
  • an electrically insulating resin film 7 is formed on the end face regions 111 a and 111 a of each anode foil 111. Therefore, in the manufactured wound body 11, the conductive separators 112 and 112 do not make electrical contact with the end face regions 111 a and 111 a of the respective anode foils 111.
  • a chemical polymerization liquid for forming the solid electrolyte layer specifically, a chemical polymerization liquid such as a conductive polymer is prepared, and the wound body 11 is immersed in the chemical polymerization liquid.
  • each conductive separator 112 is impregnated and polymerized with the chemical polymerization solution, and thereby, the gap existing inside the wound body 11 (mainly the gap existing between the two anode foils 111 and 111), A chemical polymerization film is formed with the gap filled.
  • a chemical polymerization film is also formed on the outer peripheral surface of the wound body 11. Thereby, a solid electrolyte layer is constituted by these chemical polymerization films.
  • the wound body 11 is immersed in a carbon paste, and a carbon layer is formed on the solid electrolyte layer outside the wound body 11. Thereafter, the wound body 11 is immersed in a silver paste to form a silver paste layer on the carbon layer. Thereby, the cathode layer 12 is comprised by the carbon layer and the silver paste layer, and the winding element 10 is completed.
  • the cathode lead frame 40 is attached to the winding element 10 as shown in FIG. At this time, the frame portion 41 of the cathode lead frame 40 is bonded onto the cathode layer 12 of the winding element 10 by using a conductive adhesive 43 containing silver (see FIG. 3). Thereby, the cathode lead frame 40 is electrically connected to the cathode layer 12.
  • the winding element 10 is fixed to the sealing member 61 (see FIG. 3). Specifically, the lead portions 310 and 310 of the two anode lead tab terminals 30 and 30 and the lead portion 42 of the cathode lead frame 40 are passed through the sealing member 61. Thereafter, the winding element 10 is accommodated in the outer case 5 and the opening 50 of the outer case 5 is closed by the sealing member 61. Then, the opening end portion of the outer case 5 is subjected to lateral drawing and curling, thereby fixing the sealing member 61 to the outer case 5, thereby sealing the opening 50 of the outer case 5. As a result, the winding element 10 is fixed in the outer case 5 to complete the capacitor body 1 (see FIG. 1).
  • the capacitor body 1 is further mounted on the seat plate 2 (see FIGS. 1 to 3).
  • the lead portion 310 of each anode lead tab terminal 30 is inserted into the through hole 20 that communicates with the first groove portion 201.
  • the lead portion 42 of the cathode lead frame 40 is inserted into the through hole 20 that communicates with the second groove portion 202.
  • each of the lead portions 310, 310, and 42 is subjected to press processing on a portion protruding from the lower surface 2b of the seat plate 2, thereby deforming the portion into a flat shape.
  • the flat part of the lead part 310 is accommodated in the first groove part 201 by bending the lead part 310 of each anode lead tab terminal 30 in the vicinity of the outlet of the through hole 20.
  • the lead portion 42 of the cathode lead frame 40 is bent in the vicinity of the outlet of the through hole 20, whereby the flat portion of the lead portion 42 is accommodated in the second groove portion 202.
  • the flat portions of the lead portions 310, 310, 42 constitute the two anode terminals 3, 3 and the cathode terminal 4 exposed on the lower surface 2 b of the seat plate 2.
  • the electrically insulating resin film 7 is formed on the end face regions 111a and 111a of each anode foil 111 before the anode foils 111 and 111 and the conductive separators 112 and 112 are wound in an overlapping manner. Is done. For this reason, in the manufactured wound body 11, the conductive separators 112 and 112 do not electrically contact the end face regions 111a and 111a of the respective anode foils 111. Therefore, after the wound body 11 is manufactured, it is not necessary to subject the wound body 11 to a re-chemical conversion treatment. Therefore, the conductive separators 112 and 112 are not corroded, and as a result, the yield of the produced solid electrolytic capacitors is improved. In addition, since it is not necessary to perform the re-forming process, the manufacturing process of the solid electrolytic capacitor is simplified.
  • the solid electrolytic capacitor it is not necessary to wind the cathode foil in the manufacturing process. Accordingly, the amount of winding of the anode foil 111 can be increased by replacing the portion without the cathode foil with the anode foil 111. Therefore, according to the solid electrolytic capacitor, it is possible to realize a large capacity of the solid electrolytic capacitor.
  • the solid electrolytic capacitor a separator having conductivity is used. Therefore, when a voltage is applied between the anode terminals 3 and 3 and the cathode terminal 4, electrons on the cathode side in the wound body 11 pass through the conductive separator 112 having an electric resistance smaller than that of the solid electrolyte layer. Then, it moves to the cathode layer 12. Therefore, according to the solid electrolytic capacitor, electrons on the cathode side in the wound body 11 can easily move to the cathode layer 12, and as a result, low ESR of the solid electrolytic capacitor is realized.
  • the wound body 11 is composed of one anode foil 111 and only one anode lead tab terminal 30 is electrically connected to the anode foil 111.
  • the length dimension of the anode foil 111 which each anode lead tab terminal 30 bears becomes small compared with the structure which is not too much. Therefore, the electrical resistance generated in the anode foil 111 itself is reduced, and as a result, further reduction in ESR of the solid electrolytic capacitor is realized.
  • the inventor of the present application does not perform the resin film formation step in the above-described manufacturing method and the solid electrolytic capacitor (Example) of the present embodiment manufactured by the above-described manufacturing method, and performs the winding after the winding step.
  • An experiment was conducted to measure the electrical characteristics and yield of a solid electrolytic capacitor (comparative example) produced by subjecting the body 11 to re-chemical conversion.
  • the outer dimensions of the solid electrolytic capacitors were the same in the examples and comparative examples.
  • capacitance, ESR, and leakage current were measured as electrical characteristics.
  • the capacitance measurement frequency was 120 Hz
  • the ESR measurement frequency was 100 kHz
  • the leakage current measurement voltage was 6.3 V.
  • the capacitance was 296.6 ⁇ F
  • the ESR was 8 m ⁇
  • the leakage current was 2.0 ⁇ A.
  • the capacitance was 290. 0.2 ⁇ F
  • ESR was 8.3 m ⁇
  • leakage current was 2.4 ⁇ A. From this result, it was confirmed that the solid electrolytic capacitor of the example can obtain the same electrical characteristics as the solid electrolytic capacitor of the comparative example. In particular, it was confirmed that by performing the resin film forming step in the manufacturing process, an increase in leakage current can be prevented without performing re-forming treatment on the wound body 11.
  • the yield of the comparative solid electrolytic capacitor was 82%, whereas the yield of the solid electrolytic capacitor of the example was 100%. From this result, it was confirmed that the yield of the solid electrolytic capacitors was remarkably improved by executing the resin film forming step in the manufacturing process.
  • the resin film 7 is not only formed on the end face regions 111 a and 111 a located in the width direction 91 of the anode foil 111 among the end faces of each anode foil 111, in addition to this.
  • the anode foil 111 may be formed on the end face regions 111b and 111b (see FIG. 4) located in the longitudinal direction 92.
  • the wound body 11 is not limited to the one in which the two anode foils 111 and 111 are wound, and may be one in which the one anode foil 111 is wound.
  • a plurality of anode foils 111 to 111 that are not limited to sheets may be wound.
  • the number of anode lead tab terminals 30 is not limited to two, and may be three or more.
  • the form of the manufacturing method of the solid electrolytic capacitor described above is an example of a preferred form, and does not exclude a form including a step of performing a re-forming process on the wound body 11 after the winding step. Absent. Therefore, in the above manufacturing method, the re-chemical conversion treatment step may be performed after the winding step.
  • the wound body 11 is immersed in the chemical conversion solution, and a voltage is applied to each anode foil 111 through each anode lead tab terminal 30 in this state.
  • an aqueous solution of ammonium adipate is used as the chemical conversion solution.
  • the wound body 11 As a result, a re-forming process is performed on the wound body 11, and as a result, among the cut surfaces (end surfaces) of each anode foil 111, the wound body 11 is positioned in the length direction 92 (see FIG. 4) of the anode foil 111.
  • An oxide film (dielectric film) is formed on the end face regions 111b and 111b.
  • the conductive separators 112 and 112 are electrically connected to the end face regions 111 a and 111 a of the respective anode foils 111 due to the presence of the electrically insulating resin film 7. None touch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】固体電解コンデンサにおいて、その製造過程を簡略化しつつ、該固体電解コンデンサの大容量化、低ESR化、及び歩留まりの向上を実現させる。 【解決手段】本発明に係る固体電解コンデンサの製造方法においては、先ず、表面に誘電体被膜が形成された金属箔に切断加工を施すことにより、陽極箔111を作製する。次に、陽極箔111の端面の内、少なくとも該陽極箔111の幅方向91に位置する端面領域111a上に、該端面領域111aを覆う電気絶縁性の樹脂膜7を形成する。そして、樹脂膜7の形成後、陽極箔111に陽極リードタブ端子30を取り付け、その後、該陽極箔111を、これに導電性セパレータ112を重ね合わせる一方で陰極箔を重ねずに巻回することにより、巻回体11を作製する。次に、巻回体11に固体電解質層を形成し、巻回体11の外部にて固体電解質層上に陰極層を形成し、陰極層に対して陰極リードフレームを電気的に接続する。

Description

固体電解コンデンサ及びその製造方法
 本発明は、巻回型の固体電解コンデンサ及びその製造方法に関する。
 図7に示す様に、この種の固体電解コンデンサは、従来、陽極箔811と陰極箔812とを重ね合わせて巻回することにより構成された巻回体81と、陽極箔811に電気的に接続された陽極リードタブ端子83と、陰極箔812に電気的に接続された陰極リードタブ端子84とを有している(例えば、特許文献1参照)。ここで、陽極箔811の表面には、該表面に化成処理を施すことによって誘電体被膜が形成されている。又、図7に示す様に、陽極箔811と陰極箔812との間には紙製のセパレータ813が介在しており、該セパレータ813に化学重合液を含浸させて重合させることにより、陽極箔811と陰極箔812との間に固体電解質層が形成されている。
 上記固体電解コンデンサは、CPU(Central Processing Unit)等の処理装置から生じる高周波ノイズを除去するノイズフィルタとして機能させることが出来る。
特開2002-83750号公報 特開2007-180404号公報
 近年、電子機器の小型化に伴い、固体電解コンデンサにおいて、それが小型であるにも拘わらず大容量であるものが求められている。又、CPU等の処理装置は、その動作速度が高速化しており、このため、処理装置に供給される電流量が増大し、又、ノイズの帯域が高周波側へシフトする傾向にある。従って、固体電解コンデンサにおいて、その低ESR(等価直列抵抗)化が求められている。
 しかしながら、従来の固体電解コンデンサにおいて大容量化を実現しようとすると、陽極箔811と陰極箔812の巻回量を増やしてこれらの対向面積を増大させる必要があり、これに伴って固体電解コンデンサが大型化することになる。
 固体電解コンデンサの大容量化と小型化の両方を実現するべく、次の構成を有した固体電解コンデンサが提案されている(例えば、特許文献2)。即ち、この固体電解コンデンサは、表面に誘電体被膜が形成された1枚の陽極箔と紙製のセパレータとを巻回して構成された巻回体と、陽極箔に電気的に接続されると共に巻回体の巻回端面から引き出された1本の陽極リードタブ端子と、巻回体の内部及び外部に形成された固体電解質層と、巻回体の外部にて固体電解質層上に形成された陰極層と、巻回体の外部に設けられると共に陰極層に電気的に接続された1本の陰極リードとから構成されている。ここで、巻回体には陰極箔は巻回されていない。
 ここで、陽極箔は次の如く作製される。先ず、陽極箔となる金属箔(例えば、アルミニウム箔)を用意し、該金属箔の表面にエッチング加工を施す。次に、金属箔の表面に対して化成処理を施すことにより、該表面に誘電体被膜を形成する。その後、金属箔に切断加工を施して該金属箔を長尺状の所定形状に裁断する。これにより、表面に誘電体被膜が形成された陽極箔が作製される。
 その一方で、作製された陽極箔においては、その切断面(端面)に、該陽極箔を構成する金属の一部が露出することになる。ここで、電解液タイプの電解コンデンサであれば、電解液の特性により誘電体被膜が修復又は形成されるが、固体電解コンデンサには、この様な特性がない。従って、上記固体電解コンデンサの製造過程において、陽極箔を巻回して巻回体を作製した後、該巻回体に対して再化成処理を施し、これにより、陽極箔の切断面(端面)に誘電体被膜を形成する必要がある。従って、上記固体電解コンデンサは、その製造過程が煩雑であった。
 更には、固体電解コンデンサの低ESR化を実現するべく、上述した陰極箔のない固体電解コンデンサにおいて、セパレータとして導電性を有したもの(導電性セパレータ)を採用することが考えられている。しかしながら、この固体電解コンデンサにおいては、その製造過程において、陽極箔と導電性セパレータとを重ね合わせて巻回したとき、陽極箔の切断面(端面)に導電性セパレータが電気的に接触する虞がある。このため、再化成処理時に、陽極箔に流れる電流の一部が導電性セパレータにも流れ、その結果、導電性セパレータが腐食して歩留まりが低下する虞があった。又、導電性セパレータだけでなく、陽極箔までもが腐食する虞があった。
 そこで本発明の目的は、固体電解コンデンサにおいて、その製造過程を簡略化しつつ、該固体電解コンデンサの大容量化、低ESR化、及び歩留まりの向上を実現させることである。
 本発明に係る固体電解コンデンサの製造方法は、表面に誘電体被膜が形成された金属箔に切断加工を施すことにより、陽極箔を作製する工程と、前記陽極箔の端面の内、少なくとも該陽極箔の幅方向に位置する端面領域上に、該端面領域を覆う電気絶縁性の樹脂膜を形成する工程と、前記樹脂膜の形成後、前記陽極箔に陽極リードタブ端子を取り付け、その後、該陽極箔を、これに導電性セパレータを重ね合わせる一方で陰極箔を重ねずに巻回することにより、巻回体を作製する工程と、前記巻回体の内部及び外部に固体電解質層を形成する工程と、前記巻回体の外部にて前記固体電解質層上に陰極層を形成する工程と、前記陰極層に対して陰極リードフレームを電気的に接続する工程とを有している。
 上記製造方法においては、陽極箔と導電性セパレータとを重ね合わせて巻回する前に、該陽極箔の端面領域上に電気絶縁性の樹脂膜が形成される。このため、作製された巻回体において、陽極箔の端面領域に導電性セパレータが電気的に接触することがない。従って、巻回体を作製した後、該巻回体に対して再化成処理を施さなくて済む。よって、導電性セパレータには腐食が生じることがなく、その結果、作製される固体電解コンデンサの歩留まりが向上することになる。又、再化成処理を実行しなくて済むので、固体電解コンデンサの製造過程が簡略化されることになる。
 又、上記製造方法においては、陰極箔を巻回する必要がない。従って、陰極箔がない分を陽極箔に置き換えて陽極箔の巻回量を増やすことが出来る。よって、作製される固体電解コンデンサにおいて、該固体電解コンデンサの大容量化を実現することが可能である。
 更に、上記製造方法においては、セパレータとして導電性を有したものが用いられている。従って、作製された固体電解コンデンサにおいては、陽極リードタブ端子と陰極リードフレームとの間に電圧が印加されたとき、巻回体内の陰極側の電子は、固体電解質層よりも電気抵抗の小さい導電性セパレータを通って、陰極層まで移動することになる。よって、作製される固体電解コンデンサにおいて、巻回体内の陰極側の電子は陰極層まで移動し易く、その結果、該固体電解コンデンサの低ESR化が実現されることになる。
 尚、上記製造方法において、巻回体を作製した後、該巻回体に対して再化成処理を施してもよい。ここで、上記製造方法にて作製される巻回体においては、電気絶縁性の樹脂膜の存在により、陽極箔の端面領域に導電性セパレータが電気的に接触することがない。従って、巻回体に対して再化成処理を施した場合でも、導電性セパレータには電流が流れることがない。よって、導電性セパレータには腐食が生じることがなく、再化成処理を実行しない場合と同様、作製される固体電解コンデンサの歩留まりが向上する。
 上記製造方法の具体的態様において、前記導電性セパレータは、金属箔、金属製メッシュ、又は、表面に金属層が形成されたシート若しくはメッシュから構成されている。ここで、金属箔、金属製メッシュ、又は金属層を構成する金属材料には、銅やニッケル等、高い導電性を有する材料を用いることが出来る。
 本発明に係る固体電解コンデンサは、巻回体と、陽極リードタブ端子と、固体電解質層と、陰極層と、陰極リードフレームとを備えている。ここで、前記巻回体は、陽極箔を、該陽極箔に導電性セパレータを重ね合わせる一方で陰極箔を重ねずに巻回して構成されており、前記陽極箔の表面に誘電体被膜が形成される一方、前記陽極箔の端面の内、少なくとも該陽極箔の幅方向に位置する端面領域上に、該端面領域を覆う電気絶縁性の樹脂膜が形成されている。前記陽極リードタブ端子は、前記陽極箔に電気的に接続されると共に前記巻回体の巻回端面から引き出されている。前記固体電解質層は、前記巻回体の内部及び外部に形成されている。前記陰極層は、前記巻回体の外部にて前記固体電解質層上に形成されている。前記陰極リードフレームは、前記陰極層に電気的に接続されている。
 上記固体電解コンデンサにおいては、電気絶縁性の樹脂膜の存在により、陽極箔の端面領域に導電性セパレータが電気的に接触することがない。従って、該固体電解コンデンサの製造過程において、巻回体に対して再化成処理を施さなくて済む。よって、導電性セパレータには腐食が生じることがなく、その結果、上記固体電解コンデンサの歩留まりが向上することになる。又、再化成処理を実行しなくて済むので、固体電解コンデンサの製造過程が簡略化されることになる。
 又、上記固体電解コンデンサにおいては、その製造過程において陰極箔を巻回する必要がない。従って、陰極箔がない分を陽極箔に置き換えて陽極箔の巻回量を増やすことが出来る。よって、上記固体電解コンデンサによれば、該固体電解コンデンサの大容量化を実現することが可能である。
 更に、上記固体電解コンデンサにおいては、セパレータとして導電性を有したものが用いられている。従って、陽極リードタブ端子と陰極リードフレームとの間に電圧が印加されたとき、巻回体内の陰極側の電子は、固体電解質層よりも電気抵抗の小さい導電性セパレータを通って、陰極層まで移動することになる。よって、上記固体電解コンデンサによれば、巻回体内の陰極側の電子が陰極層まで移動し易くなり、その結果、該固体電解コンデンサの低ESR化が実現されることになる。
 尚、上記固体電解コンデンサの製造過程において、巻回体に対して再化成処理を施してもよい。ここで、上記固体電解コンデンサの巻回体においては、電気絶縁性の樹脂膜の存在により、陽極箔の端面領域に導電性セパレータが電気的に接触することがない。従って、巻回体に対して再化成処理を施した場合でも、導電性セパレータには電流が流れることがない。よって、導電性セパレータには腐食が生じることがなく、再化成処理を実行しない場合と同様、上記固体電解コンデンサの歩留まりが向上する。
 上記固体電解コンデンサの具体的構成において、前記導電性セパレータは、金属箔、金属製メッシュ、又は、表面に金属層が形成されたシート若しくはメッシュから構成されている。ここで、金属箔、金属製メッシュ、又は金属層を構成する金属材料には、銅やニッケル等、高い導電性を有する材料を用いることが出来る。
 上記固体電解コンデンサの他の具体的構成において、前記巻回体は、前記陽極箔の複数枚を、各陽極箔に前記導電性セパレータを重ね合わせて巻回することにより構成されたものであり、前記陽極箔には前記陽極リードタブ端子が少なくとも1本ずつ電気的に接続されている。
 上記具体的構成によれば、巻回体が1枚の陽極箔で構成されていて且つ該陽極箔に1本の陽極リードタブ端子だけが電気的に接続されているに過ぎない構成に比べて、各陽極リードタブ端子が担う陽極箔の長さ寸法が小さくなる。よって、陽極箔自体に生じる電気抵抗が小さくなり、その結果、固体電解コンデンサの更なる低ESR化が実現されることになる。
 本発明に係る固体電解コンデンサによれば、その製造過程を簡略化しつつ、該固体電解コンデンサの大容量化、低ESR化、及び歩留まりの向上を実現させることが出来る。又、本発明に係る製造方法によれば、その様な固体電解コンデンサを作製することが出来る。
本発明の一実施形態に係る固体電解コンデンサを示した斜視図である。 該固体電解コンデンサの下面図である。 図2に示されるA-A線に沿う断面図である。 上記固体電解コンデンサの製造方法の内、樹脂膜形成工程の説明に用いられる斜視図である。 該製造方法の内、巻回工程の説明に用いられる斜視図である。 該製造方法の内、組み立て工程の説明に用いられる斜視図である。 従来の固体電解コンデンサを示した斜視図である。
 以下、本発明の実施の形態につき、図面に沿って具体的に説明する。
 図1は、本発明の一実施形態に係る固体電解コンデンサを示した斜視図であり、図2は、該固体電解コンデンサの下面図である。又、図3は、図2に示されるA-A線に沿う断面図である。図1~図3に示す様に、該固体電解コンデンサは、コンデンサ本体1と、該コンデンサ本体1を搭載する座板2と、2本の陽極端子3,3と、陰極端子4とを備えている。ここで、該陽極端子3,3と陰極端子4は何れも、座板2の下面2bに露出している。
 図2に示す様に、座板2の下面2bには、座板2の縁21まで互いに略平行に延びた2つの第1溝部201,201と、該縁21とは反対側の縁22まで延びた第2溝部202とが凹設されている。そして、第1溝部201,201には陽極端子3,3が1本ずつ収容され、又、第2溝部202には陰極端子4が収容されている。
 図1及び図3に示す様に、コンデンサ本体1は、巻回素子10と、該巻回素子10が収容される有底筒状の外装ケース5と、該外装ケース5の開口50を封止するゴム製の封口部材61とから構成されている。ここで、外装ケース5は、アルミニウム等の金属材料から形成されており、該外装ケース5の開口端部に横絞り加工及びカール処理を施すことにより、外装ケース5に封口部材61が固定されている。尚、外装ケース5は、金属材料に限らず、電気絶縁材料を含む種々の材料から形成されていてもよい。又、外装ケース5の開口50は、該外装ケース5内へ樹脂材を流し込んで該樹脂材を固化させることにより封止されていてもよい。
 巻回素子10は、図5に示す如く巻回体11を有している。ここで、図5は、後述する製造方法の内、巻回工程の説明に用いられる斜視図である。図5に示す様に、巻回体11は、2枚の陽極箔111,111を、各陽極箔111に導電性セパレータ112を重ね合わせて巻回することにより構成されている。一方、2枚の陽極箔111、111には何れにも陰極箔が重ねられておらず、従って巻回体11には陰極箔が巻回されていない。そして、各陽極箔111は、アルミニウム、タンタル、ニオブ等の弁作用金属から形成されている。
 図示していないが、各陽極箔111の表面には誘電体被膜が形成されている。一方、図5に示す様に、各陽極箔111の端面の内、少なくとも該陽極箔111の幅方向91に位置する端面領域111a,111a上には、該端面領域111a,111aを覆う電気絶縁性の樹脂膜7が形成されている。尚、樹脂膜7を構成する樹脂材には、エポキシ樹脂やフェノール系樹脂等、熱硬化性を有する樹脂材を用いることが出来る。
 又、各導電性セパレータ112は、金属箔、金属製メッシュ、又は、表面に金属層が形成されたシート若しくはメッシュから構成されている。その一方で、該導電性セパレータ112には、リードタブ端子等の電極引出し部材が取り付けられていない。ここで、金属箔、金属製メッシュ、又は金属層を構成する金属材料には、銅やニッケル等、高い導電性を有する材料が用いられる。
 図示していないが、巻回体11には固体電解質層が形成されている。ここで、固体電解質層は、巻回体11の内部及び外部に形成されている。具体的には、各導電性セパレータ112に導電性高分子等の化学重合液を含浸させることにより、巻回体11の内部に存在する隙間(主に2枚の陽極箔111,111間に形成される隙間)を埋めた状態で、固体電解質層が形成されている。又、固体電解質層は、巻回体11の外周面上にも形成されている。
 図3に示す様に、巻回体11には更に陰極層12が形成されている。ここで、陰極層12は、巻回体11の外部にて固体電解質層上に形成されたカーボン層(図示せず)と、該カーボン層上に形成された銀ペースト層(図示せず)とによって構成されている。そして、固体電解質層と陰極層12とは互いに電気的に接続されている。
 巻回素子10は更に、図6に示す様に(図3も参照)、2本の陽極リードタブ端子30,30を有している。ここで、図6は、後述する製造方法の内、組み立て工程の説明に用いられる斜視図である。該2本の陽極リードタブ端子30,30はそれぞれ、巻回体11を構成する2枚の陽極箔111,111に電気的に接続されると共に、巻回体11の同じ巻回端面11aから引き出されている。具体的には、各陽極リードタブ端子30のリード部310が巻回端面11aから引き出されている。そして、図3に示す様に、各リード部310は、封口部材61を貫通して外装ケース5の外部へ引き出されている。
 図3に示す様に(図6も参照)、巻回素子10には、陰極リードフレーム40が取り付けられている。ここで、陰極リードフレーム40は、フレーム部41と、該フレーム部41に一体に形成されたリード部42とから構成されている。そして、フレーム部41は、リード部42が巻回体11の巻回端面11a上に配置されることとなる姿勢で、銀を含む導電性接着剤43によって巻回素子10の陰極層12上に密着固定されている。これにより、陰極リードフレーム40は、陰極層12に電気的に接続されている。一方、リード部42は、封口部材61を貫通して外装ケース5の外部へ引き出されている。
 図2及び図3に示す様に、座板2には、該座板2をその上面2aから下面2bに貫通する3つの貫通孔20~20が形成されており、該3つの貫通孔20~20はそれぞれ、座板2の下面2bに設けられている2つの第1溝部201と第2溝部202とに通じている。
 そして、各陽極リードタブ端子30のリード部310は、これに対応する座板2の貫通孔20を通過した後、該貫通孔20の出口近傍で屈曲し、その後、第1溝部201に沿って第1溝部201内を座板2の縁21まで延びている。そして、該リード部310の内、第1溝部201に沿って第1溝部201内を延びている部分は平坦形状を有しており、該平坦部分によって固体電解コンデンサの陽極端子3が構成されている。
 又、陰極リードフレーム40のリード部42は、これに対応する座板2の貫通孔20を通過した後、該貫通孔20の出口近傍で屈曲し、その後、第2溝部202に沿って第2溝部202内を座板2の縁22まで延びている。そして、該リード部42の内、第2溝部202に沿って第2溝部202内を延びている部分は平坦形状を有しており、該平坦部分によって固体電解コンデンサの陰極端子4が構成されている。
 次に、上記固体電解コンデンサの製造方法について、具体的に説明する。該製造方法では、箔作製工程、樹脂膜形成工程、巻回工程、電解質層形成工程、陰極層形成工程、及び組み立て工程が順に実行される。
 箔作製工程では先ず、陽極箔111となる金属箔を用意する。そして、該金属箔の表面にエッチング加工を施して複数の微細な凹凸を形成し、これによって金属箔の表面積を増大させる。次に、金属箔の表面に対して化成処理を施すことにより、該表面に誘電体被膜を形成する。その後、金属箔に切断加工を施して該金属箔を長尺状の所定形状に裁断する。これにより、表面に誘電体被膜が形成された複数の陽極箔111~111が作製される。尚、作製された陽極箔111においては、その切断面(端面)に、該陽極箔111を構成する金属の一部が露出することになる。
 図4は、樹脂膜形成工程の説明に用いられる斜視図である。図4に示す様に、樹脂膜形成工程では、各陽極箔111の切断面(端面)の内、該陽極箔111の幅方向91に位置する端面領域111a,111aに、電気絶縁性を有する樹脂材71を塗布する。そして、該樹脂材71を固化させる。これにより、該端面領域111a,111a上には、その領域を覆う電気絶縁性の樹脂膜7が形成される。尚、樹脂膜7を形成する樹脂材71には、エポキシ樹脂やフェノール系樹脂等、熱硬化性を有する樹脂材を用いることが出来る。
 巻回工程では先ず、各陽極箔111に陽極リードタブ端子30を取り付ける(図5参照)。次に、図5に示す様に、2枚の陽極箔111,111を、各陽極箔111に導電性セパレータ112を重ね合わせて巻回し、これにより、巻回体11を作製する。このとき、2枚の陽極箔111,111には何れにも陰極箔を重ねない。又、2本の陽極リードタブ端子30,30が巻回体11の同じ巻回端面11aから突出することとなる様に、2枚の陽極箔111,111を巻回する。そして、陽極箔111,111の巻回後、巻回体11の型崩れを防止するべく、図5に示す如く巻止めテープ113によって陽極箔111の終端部を巻回体11の外周面に固定し、又は、巻止めテープ113によって導電性セパレータ112の終端部を巻回体11の外周面に固定する。尚、巻止めテープ113には、導電性を有したものを用いることが出来る。
 ここで、各陽極箔111の端面領域111a,111a上には電気絶縁性の樹脂膜7が形成されている。従って、作製された巻回体11において、導電性セパレータ112,112が各陽極箔111の端面領域111a,111aに電気的に接触することがない。
 電解質層形成工程では、固体電解質層を形成するための化学重合液、具体的には導電性高分子等の化学重合液を用意し、該化学重合液に巻回体11を浸漬させる。これにより、各導電性セパレータ112に化学重合液が含浸して重合し、これによって巻回体11の内部に存在する隙間(主に2枚の陽極箔111,111間に存在する隙間)に、該隙間を埋めた状態で化学重合膜が形成される。又、巻回体11の外周面上にも化学重合膜が形成される。これにより、これらの化学重合膜によって固体電解質層が構成される。
 陰極層形成工程では先ず、巻回体11をカーボンペーストに浸漬させて、巻回体11の外部にて固体電解質層上にカーボン層を形成する。その後、巻回体11を銀ペーストに浸漬させて、カーボン層上に銀ペースト層を形成する。これにより、カーボン層と銀ペースト層とによって陰極層12が構成され、巻回素子10が完成する。
 組み立て工程では先ず、図6に示す様に、巻回素子10に対して陰極リードフレーム40を取り付ける。このとき、陰極リードフレーム40のフレーム部41を、銀を含む導電性接着剤43(図3参照)によって巻回素子10の陰極層12上に接着する。これにより、陰極層12に対して陰極リードフレーム40が電気的に接続される。
 次に、封口部材61に巻回素子10を固定する(図3参照)。具体的には、封口部材61に対して、2本の陽極リードタブ端子30,30のリード部310,310と陰極リードフレーム40のリード部42とを貫通させる。その後、外装ケース5内に巻回素子10を収容すると共に、外装ケース5の開口50を封口部材61によって塞ぐ。そして、外装ケース5の開口端部に横絞り加工及びカール処理を施すことにより、外装ケース5に封口部材61を固定し、これによって外装ケース5の開口50を封止する。その結果、巻回素子10が外装ケース5内に固定されて、コンデンサ本体1(図1参照)が完成する。
 組み立て工程では更に、座板2上にコンデンサ本体1を搭載する(図1~図3参照)。このとき、各陽極リードタブ端子30のリード部310を、第1溝部201に通じる貫通孔20に挿入する。又、陰極リードフレーム40のリード部42を、第2溝部202に通じる貫通孔20に挿入する。
 その後、これらのリード部310,310,42についてそれぞれ、座板2の下面2bから突出した部分にプレス加工を施し、これによって該部分を平坦形状に変形させる。そして、各陽極リードタブ端子30のリード部310を貫通孔20の出口近傍にて折り曲げることにより、該リード部310の平坦部分を第1溝部201内に収容する。又、陰極リードフレーム40のリード部42を貫通孔20の出口近傍にて折り曲げることにより、該リード部42の平坦部分を第2溝部202内に収容する。その結果、リード部310,310,42の平坦部分によって、座板2の下面2bに露出した2本の陽極端子3,3と陰極端子4とが構成されることになる。
 斯くして、本実施形態の固体電解コンデンサが完成することになる。
 上記製造方法においては、陽極箔111,111と導電性セパレータ112,112とを重ね合わせて巻回する前に、各陽極箔111の端面領域111a,111a上に電気絶縁性の樹脂膜7が形成される。このため、作製された巻回体11において、導電性セパレータ112,112が各陽極箔111の端面領域111a,111aに電気的に接触することがない。従って、巻回体11を作製した後、該巻回体11に対して再化成処理を施さなくて済む。よって、導電性セパレータ112,112には腐食が生じることがなく、その結果、作製される固体電解コンデンサの歩留まりが向上することになる。又、再化成処理を実行しなくて済むので、固体電解コンデンサの製造過程が簡略化されることになる。
 又、上記固体電解コンデンサにおいては、その製造過程において陰極箔を巻回する必要がない。従って、陰極箔がない分を陽極箔111に置き換えて陽極箔111の巻回量を増やすことが出来る。よって、上記固体電解コンデンサによれば、該固体電解コンデンサの大容量化を実現することが可能である。
 更に、上記固体電解コンデンサにおいては、セパレータとして導電性を有したものが用いられている。従って、陽極端子3,3と陰極端子4との間に電圧が印加されたとき、巻回体11内の陰極側の電子は、固体電解質層よりも電気抵抗の小さい導電性セパレータ112を通って、陰極層12まで移動することになる。よって、上記固体電解コンデンサによれば、巻回体11内の陰極側の電子が陰極層12まで移動し易くなり、その結果、該固体電解コンデンサの低ESR化が実現されることになる。
 更に又、上記固体電解コンデンサによれば、巻回体11が1枚の陽極箔111で構成されていて且つ該陽極箔111に1本の陽極リードタブ端子30だけが電気的に接続されているに過ぎない構成に比べて、各陽極リードタブ端子30が担う陽極箔111の長さ寸法が小さくなる。よって、陽極箔111自体に生じる電気抵抗が小さくなり、その結果、固体電解コンデンサの更なる低ESR化が実現されることになる。
 ここで、本願発明者は、上述の製造方法により作製した本実施形態の固体電解コンデンサ(実施例)と、上述の製造方法において樹脂膜形成工程を実行せずに、巻回工程の後に巻回体11に対して再化成処理を施して作製した固体電解コンデンサ(比較例)とについて、電気特性と歩留まりとを測定する実験を行った。そして、本実験においては、固体電解コンデンサの外寸を実施例と比較例とで同じにした。又、電気特性として、静電容量、ESR、及び漏れ電流を測定した。尚、静電容量の測定周波数を120Hz、ESRの測定周波数を100kHz、漏れ電流の測定電圧を6.3Vとした。
 電気特性に関する実験の結果、比較例の固体電解コンデンサにおいて、静電容量が296.6μF、ESRが8mΩ、漏れ電流が2.0μAとなり、又、実施例の固体電解コンデンサにおいて、静電容量が290.2μF、ESRが8.3mΩ、漏れ電流が2.4μAとなった。この結果から、実施例の固体電解コンデンサにおいて、比較例の固体電解コンデンサと同程度の電気特性が得られることが確かめられた。特に、製造過程において樹脂膜形成工程を実行することにより、巻回体11に対して再化成処理を施さなくても、漏れ電流の増加が防止されることが確かめられた。
 又、歩留まりに関する実験の結果、比較例の固体電解コンデンサにおいて歩留まりが82%であったのに対し、実施例の固体電解コンデンサにおいて歩留まりが100%となった。この結果から、製造過程において樹脂膜形成工程を実行することにより、固体電解コンデンサの歩留まりが著しく向上することが確かめられた。
 尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、上記固体電解コンデンサにおいて、樹脂膜7は、各陽極箔111の端面の内、該陽極箔111の幅方向91に位置する端面領域111a,111a上に形成されるだけでなく、これに加えて該陽極箔111の長さ方向92に位置する端面領域111b,111b(図4参照)上に形成されていてもよい。
 更に、上記固体電解コンデンサにおいて、巻回体11は、2枚の陽極箔111,111を巻回したものに限らず、1枚の陽極箔111を巻回したものであってもよいし、2枚に限らない複数枚の陽極箔111~111を巻回したものであってもよい。又、上記固体電解コンデンサにおいて、陽極リードタブ端子30の本数は、2本に限らず、3本以上の複数本であってもよい。
 更に又、上述した固体電解コンデンサの製造方法の形態は、好ましい形態の一例であって、巻回工程の後に巻回体11に対して再化成処理を施す工程を含んだ形態を排除するものではない。従って、上記製造方法において、巻回工程の後に再化成処理工程を実行してもよい。ここで、再化成処理工程では、巻回体11を化成液に浸漬させ、この状態で、各陽極リードタブ端子30を通じて各陽極箔111に電圧を印加する。化成液には、例えばアジピン酸アンモニウム水溶液が用いられる。これにより、巻回体11に対して再化成処理が施され、その結果、各陽極箔111の切断面(端面)の内、該陽極箔111の長さ方向92(図4参照)に位置する端面領域111b,111bに酸化被膜(誘電体被膜)が形成されることになる。上述した様に、上記製造方法にて作製される巻回体11においては、電気絶縁性の樹脂膜7の存在により、導電性セパレータ112,112が各陽極箔111の端面領域111a,111aに電気的に接触することがない。従って、巻回体11に対して再化成処理を施した場合でも、導電性セパレータ112,112には電流が流れることがない。よって、導電性セパレータ112,112には腐食が生じることがなく、再化成処理工程のない形態と同様、作製される固体電解コンデンサの歩留まりが向上する。
11 巻回体
11a 巻回端面
111 陽極箔
111a 端面領域
112 導電性セパレータ
12 陰極層
30 陽極リードタブ端子
40 陰極リードフレーム
7 樹脂膜
91 幅方向

Claims (5)

  1.  表面に誘電体被膜が形成された金属箔に切断加工を施すことにより、陽極箔を作製する工程と、
     前記陽極箔の端面の内、少なくとも該陽極箔の幅方向に位置する端面領域上に、該端面領域を覆う電気絶縁性の樹脂膜を形成する工程と、
     前記樹脂膜の形成後、前記陽極箔に陽極リードタブ端子を取り付け、その後、該陽極箔を、これに導電性セパレータを重ね合わせる一方で陰極箔を重ねずに巻回することにより、巻回体を作製する工程と、
     前記巻回体の内部及び外部に固体電解質層を形成する工程と、
     前記巻回体の外部にて前記固体電解質層上に陰極層を形成する工程と、
     前記陰極層に対して陰極リードフレームを電気的に接続する工程と
    を有する、固体電解コンデンサの製造方法。
  2.  前記導電性セパレータは、金属箔、金属製メッシュ、又は、表面に金属層が形成されたシート若しくはメッシュから構成されている、請求項1に記載の固体電解コンデンサの製造方法。
  3.  陽極箔を、該陽極箔に導電性セパレータを重ね合わせる一方で陰極箔を重ねずに巻回して構成された巻回体であって、前記陽極箔の表面に誘電体被膜が形成される一方、前記陽極箔の端面の内、少なくとも該陽極箔の幅方向に位置する端面領域上に、該端面領域を覆う電気絶縁性の樹脂膜が形成されている巻回体と、
     前記陽極箔に電気的に接続されると共に前記巻回体の巻回端面から引き出された陽極リードタブ端子と、
     前記巻回体の内部及び外部に形成された固体電解質層と、
     前記巻回体の外部にて前記固体電解質層上に形成された陰極層と、
     前記陰極層に電気的に接続された陰極リードフレームと
    を備える、固体電解コンデンサ。
  4.  前記導電性セパレータは、金属箔、金属製メッシュ、又は、表面に金属層が形成されたシート又はメッシュから構成されている、請求項3に記載の固体電解コンデンサ。
  5.  前記巻回体は、前記陽極箔の複数枚を、各陽極箔に前記導電性セパレータを重ね合わせて巻回することにより構成されたものであり、前記陽極箔には前記陽極リードタブ端子が少なくとも1本ずつ電気的に接続されている、請求項3又は請求項4に記載の固体電解コンデンサ。
PCT/JP2011/078178 2010-12-22 2011-12-06 固体電解コンデンサ及びその製造方法 WO2012086407A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549713A JPWO2012086407A1 (ja) 2010-12-22 2011-12-06 固体電解コンデンサ及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010285298 2010-12-22
JP2010-285298 2010-12-22

Publications (1)

Publication Number Publication Date
WO2012086407A1 true WO2012086407A1 (ja) 2012-06-28

Family

ID=46313687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078178 WO2012086407A1 (ja) 2010-12-22 2011-12-06 固体電解コンデンサ及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2012086407A1 (ja)
WO (1) WO2012086407A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149825A (ja) * 1997-09-10 1999-06-02 Tdk Corp 高分子固体電解質およびこれを用いた電気化学デバイス
JP2003197478A (ja) * 2001-12-28 2003-07-11 Nippon Chemicon Corp 固体電解コンデンサ及びその製造方法
JP2005294499A (ja) * 2004-03-31 2005-10-20 Nippon Chemicon Corp 固体電解コンデンサの製造方法
JP2007173773A (ja) * 2005-11-22 2007-07-05 Saga Sanyo Industries Co Ltd 電解コンデンサ
JP2007180404A (ja) * 2005-12-28 2007-07-12 Nichicon Corp 固体電解コンデンサ及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149825A (ja) * 1997-09-10 1999-06-02 Tdk Corp 高分子固体電解質およびこれを用いた電気化学デバイス
JP2003197478A (ja) * 2001-12-28 2003-07-11 Nippon Chemicon Corp 固体電解コンデンサ及びその製造方法
JP2005294499A (ja) * 2004-03-31 2005-10-20 Nippon Chemicon Corp 固体電解コンデンサの製造方法
JP2007173773A (ja) * 2005-11-22 2007-07-05 Saga Sanyo Industries Co Ltd 電解コンデンサ
JP2007180404A (ja) * 2005-12-28 2007-07-12 Nichicon Corp 固体電解コンデンサ及びその製造方法

Also Published As

Publication number Publication date
JPWO2012086407A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
JP7245997B2 (ja) 電解コンデンサおよびその製造方法
JP5159598B2 (ja) 電解コンデンサ
EP1962308A1 (en) Electric double layer capacitor
KR20100033937A (ko) 권회형 전해 콘덴서 및 그 제조 방법
KR101434923B1 (ko) 고체 전해 컨덴서
JP5775040B2 (ja) 固体電解コンデンサ
JP6413082B2 (ja) 電解コンデンサ
WO2012086407A1 (ja) 固体電解コンデンサ及びその製造方法
JP5945727B2 (ja) 固体電解コンデンサ
JP6774745B2 (ja) 固体電解コンデンサおよびその製造方法
JP5903611B2 (ja) 固体電解コンデンサ
JP2009026853A (ja) 電気二重層キャパシタ
JP2010074083A (ja) 電解コンデンサおよびその製造方法
JP2010074089A (ja) 電解コンデンサおよびその製造方法
WO2012049993A1 (ja) 固体電解コンデンサ及びその製造方法
JP5653707B2 (ja) 固体電解コンデンサ
JP5886766B2 (ja) 固体電解コンデンサ
JP2007194430A (ja) 固体電解コンデンサの製造方法
JP2012069631A (ja) 電解コンデンサ
JP2007227716A (ja) 積層型固体電解コンデンサおよびその製造方法
JP2005203402A (ja) 固体電解コンデンサ
JP2012084689A (ja) 固体電解コンデンサ
WO2012105124A1 (ja) 電解コンデンサ及びその製造方法
JPH0533000Y2 (ja)
JP5123136B2 (ja) 巻回型電解コンデンサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850405

Country of ref document: EP

Kind code of ref document: A1