WO2012086292A1 - スパークプラグ及びその製造方法 - Google Patents

スパークプラグ及びその製造方法 Download PDF

Info

Publication number
WO2012086292A1
WO2012086292A1 PCT/JP2011/073064 JP2011073064W WO2012086292A1 WO 2012086292 A1 WO2012086292 A1 WO 2012086292A1 JP 2011073064 W JP2011073064 W JP 2011073064W WO 2012086292 A1 WO2012086292 A1 WO 2012086292A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground electrode
spark plug
electrode
hardness
metal
Prior art date
Application number
PCT/JP2011/073064
Other languages
English (en)
French (fr)
Inventor
高明 鬼海
智雄 田中
柴田 勉
かおり 岸本
武人 久野
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46313576&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012086292(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2012511467A priority Critical patent/JP5238096B2/ja
Priority to CN201180061371.5A priority patent/CN103283098B/zh
Priority to US13/877,352 priority patent/US9768588B2/en
Priority to EP11851707.7A priority patent/EP2658051B1/en
Priority to BR112013015609-0A priority patent/BR112013015609A2/pt
Publication of WO2012086292A1 publication Critical patent/WO2012086292A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs

Definitions

  • the present invention relates to a spark plug used for an internal combustion engine or the like and a method for manufacturing the same.
  • the spark plug is attached to an internal combustion engine (engine), for example, and is used for ignition of the air-fuel mixture in the combustion chamber.
  • a spark plug is composed of an insulator having a shaft hole, a center electrode inserted into the tip end side of the shaft hole, a metal shell provided on the outer periphery of the insulator, and a ground connected to the tip of the metal shell.
  • the ground electrode is bent back so that the tip of the ground electrode is opposed to the center electrode at a bent portion provided at a substantially intermediate portion of the ground electrode, and a spark discharge is generated between the tip of the ground electrode and the tip of the center electrode. A gap is formed.
  • Ni plating or zinc plating may be applied to the metal shell to which the ground electrode is joined by a barrel plating apparatus or the like.
  • the ground electrode may be bent or twisted in the process of providing Ni plating or the like or in the process of joining the ground electrode to the metal shell. Furthermore, in the case of a relatively thin ground electrode, the heat at the tip of the ground electrode is difficult to be transferred to the metal shell, and the tip of the ground electrode may be quickly consumed with use.
  • the present invention has been made in view of the above circumstances, and an object thereof is to improve both deformation resistance and wear resistance of a ground electrode in a spark plug having a relatively thin ground electrode.
  • An object of the present invention is to provide a spark plug and a manufacturing method thereof.
  • the spark plug of this configuration includes a cylindrical insulator having an axial hole penetrating in the axial direction; A center electrode inserted on the tip side of the shaft hole; A cylindrical metal shell provided on the outer periphery of the insulator; A spark plug that is disposed at a tip of the metal shell and includes a ground electrode that forms a gap with the center electrode;
  • the ground electrode is formed of a metal containing 93 mass% or more of nickel (Ni), In an arbitrary cross section along the direction orthogonal to the central axis of the ground electrode, the cross-sectional area of the ground electrode is 2.0 mm 2 or less,
  • the ground electrode has a Vickers hardness of 130 Hv to 260 Hv.
  • the cross-sectional area of the ground electrode is 2.0 mm 2 or less, and the ground electrode is very thin. For this reason, there is a concern that the deformation resistance and wear resistance of the ground electrode may be reduced.
  • the hardness of the ground electrode is 130 Hv or more, and the ground electrode is configured to have sufficient mechanical strength. Therefore, sufficient deformation resistance of the ground electrode can be ensured.
  • the hardness of a ground electrode is 260 Hv or less, and it is comprised so that distortion of the metal crystal grain which comprises a ground electrode may be suppressed. Therefore, heat is smoothly conducted inside the ground electrode, and the thermal conductivity of the ground electrode can be improved.
  • the ground electrode is made of a metal containing 93 mass% or more of Ni having excellent thermal conductivity, the thermal conductivity of the ground electrode can be further improved. That is, the thermal conductivity of the ground electrode can be drastically improved by forming the ground electrode from a metal having a Ni content of 93% by mass or more while setting the hardness of the ground electrode to 260 Hv or less. As a result, it is possible to achieve excellent wear resistance even in a ground electrode having a cross-sectional area of 2.0 mm 2 or less, and where wear resistance is particularly concerned.
  • the spark plug of this configuration is characterized in that, in the above configuration 1, the ground electrode has a Vickers hardness of 150 Hv or more and 240 Hv or less.
  • the hardness of the ground electrode is 150 Hv or more, the mechanical strength of the ground electrode can be further improved, and the deformation resistance of the ground electrode can be further improved.
  • the hardness of the ground electrode is 240 Hv or less, and the strain of the metal crystal grains constituting the ground electrode is further suppressed. Therefore, it is possible to further improve the thermal conductivity of the ground electrode, and as a result, it is possible to realize further excellent wear resistance.
  • the spark plug of this configuration is the above configuration 1 or 2, wherein the maximum cross-sectional area of the ground electrode in a cross section orthogonal to the central axis of the ground electrode is S (mm 2 ), and the ground electrode along the central axis is When the length is L (mm), L / S (1 / mm) is 3 or more and 10 or less.
  • L / S is set to 10 (1 / mm) or less, and the length L is configured not to be excessively large. Therefore, the stress applied to the ground electrode can be reduced during the plating process or the like. As a result, the deformation resistance of the ground electrode can be further improved.
  • L / S is excessively small, the tip of the ground electrode cannot be brought sufficiently close to the center electrode, and the gap (spark) is between the tip of the ground electrode and the center electrode. Although there is a concern that the gap in which discharge occurs) cannot be formed, according to the configuration 3, since L / S is 3 (1 / mm) or more, such a concern can be eliminated.
  • the spark plug of this configuration is characterized in that, in any one of the above configurations 1 to 3, the ground electrode has a convex curved surface on the back surface opposite to the plane on the center electrode side.
  • the convex curved surface is formed on the back surface of the ground electrode. Therefore, the fuel gas can easily enter the gap in the form of surrounding the ground electrode, and the ignitability can be improved.
  • a ground electrode having a curved surface may not have corners formed on the outer periphery or may have a relatively large corner angle. . For this reason, the mechanical strength of the ground electrode may be reduced.
  • the configuration 1 and the like are particularly significant in a spark plug in which a convex curved surface is formed on the back surface of the ground electrode.
  • the ground electrode has convex curved surfaces on both side surfaces located between the plane on the center electrode side and the plane on the opposite side. It is characterized by that.
  • the convex curved surfaces are formed on both side surfaces of the ground electrode, the fuel gas can easily enter the gap, and the ignitability can be further improved.
  • the mechanical strength of the ground electrode may be reduced by configuring the ground electrode to have a curved surface, but the mechanical strength can be sufficiently maintained by adopting the configuration 1 or the like. And bending of the ground electrode can be more reliably suppressed.
  • T / W is 0.6. It is characterized by the above.
  • bending or the like may occur in the ground electrode in the plating process or the like, but the bending of the ground electrode is particularly likely to occur along the thickness direction of the ground electrode.
  • the thickness T of the ground electrode is 0.6 times or more the width W of the ground electrode so that the thickness T of the ground electrode does not become excessively small. It is configured. Therefore, the ground electrode has sufficient strength against the load in the thickness direction, and the bending of the ground electrode can be prevented more reliably.
  • T of the ground electrode is excessively large with respect to the width W of the ground electrode, it is necessary to increase the thickness of the metal shell to which the ground electrode is joined.
  • T / W is preferably set to 1.0 or less.
  • the spark plug of this configuration is any one of the above configurations 1 to 6, wherein the ground electrode contains one or more rare earth elements, The total content of rare earth elements is 0.05% by mass or more and 0.45% by mass or less.
  • a metal containing a large amount of Ni tends to grow at high temperatures. Therefore, when the ground electrode is formed of a metal containing a large amount of Ni as in the above-described configuration 1, there is a concern about the growth of grains of the metal constituting the ground electrode during use.
  • the ground electrode contains one or more rare earth elements, and the total content of rare earth elements is 0.05% by mass or more. Therefore, the grain growth of the metal constituting the ground electrode can be more reliably suppressed, and the wear resistance can be further improved. In addition, by suppressing the grain growth, even when vibration is applied to the ground electrode at a high temperature, the breakage can be more reliably prevented.
  • the total content of rare earth elements is excessively large, sweat particles are likely to occur on the surface of the ground electrode during use. If sweat particles are generated, the gap formed between the center electrode and the ground electrode is locally narrowed due to the presence of the sweat particles, which may lead to a decrease in ignitability.
  • the total rare earth element content is 0.45% by mass or less and is sufficiently small. Therefore, the generation of sweat particles can be effectively suppressed, and the reduction in ignitability can be more reliably prevented.
  • the spark plug of this configuration is characterized in that, in any of the above configurations 1 to 7, at least a part of the surface of the ground electrode is covered with plating.
  • the configuration 1 or the like is particularly significant in a spark plug in which the surface of the ground electrode is covered with plating (that is, the ground electrode is plated).
  • a spark plug manufacturing method is the spark plug manufacturing method according to any one of the above configurations 1 to 8, A metal member forming step of forming a ground electrode metal member to be the ground electrode, In the metal member forming step, A softening step for reducing the hardness of the intermediate member by performing a heat treatment on the intermediate member made of metal containing 93 mass% or more of Ni, After the softening step, a plasticizing process is performed on the intermediate member to increase the hardness of the intermediate member, thereby obtaining a ground electrode metal member.
  • a method for setting the metal material to a predetermined hardness a method for setting the metal material to a predetermined hardness by reducing the hardness of the metal material by applying a heat treatment to the metal material can be considered.
  • the hardness of the metal material becomes lower than the predetermined hardness or the hardness is set to a predetermined value only by slight fluctuations in the heating temperature and time during the heat treatment.
  • it cannot be reduced to the hardness of. That is, in the method of adjusting the hardness by heat treatment, it is necessary to perform temperature management and the like very carefully, and a metal material having a predetermined hardness cannot be easily obtained.
  • the intermediate member is softened by heat treatment, and then the intermediate member is cured by plastic working so that a metal member for a ground electrode having a predetermined hardness can be obtained.
  • plastic working by increasing the hardness by plastic working, the hardness of the member is adjusted, and the hardness is set to a predetermined hardness.
  • the hardness of the member can be easily adjusted by adjusting the processing rate of the member. Therefore, a ground electrode metal member having a predetermined hardness can be easily obtained, and productivity can be improved.
  • FIG. 1 is a partially cutaway front view showing a spark plug 1.
  • the direction of the axis CL ⁇ b> 1 of the spark plug 1 is the vertical direction in the drawing, the lower side is the front end side of the spark plug 1, and the upper side is the rear end side.
  • the spark plug 1 includes an insulator 2 as a cylindrical insulator, a cylindrical metal shell 3 that holds the insulator 2, and the like.
  • the insulator 2 is formed by firing alumina or the like, and in its outer portion, a rear end side body portion 10 formed on the rear end side, and a front end than the rear end side body portion 10.
  • a large-diameter portion 11 that protrudes radially outward on the side, a middle body portion 12 that is smaller in diameter than the large-diameter portion 11, and a tip portion that is more distal than the middle body portion 12.
  • the leg length part 13 formed in diameter smaller than this on the side is provided.
  • the large diameter portion 11, the middle trunk portion 12, and most of the leg long portions 13 are accommodated inside the metal shell 3.
  • a tapered step portion 14 is formed at the connecting portion between the middle body portion 12 and the long leg portion 13, and the insulator 2 is locked to the metal shell 3 at the step portion 14.
  • the insulator 2 is formed with a shaft hole 4 extending along the axis CL 1, and a center electrode 5 is inserted and fixed at the tip side of the shaft hole 4.
  • the center electrode 5 includes an inner layer 5A made of copper or a copper alloy and an outer layer 5B made of a Ni alloy containing nickel (Ni) as a main component.
  • the center electrode 5 has a rod shape (cylindrical shape) as a whole, and a tip portion of the center electrode 5 projects from the tip of the insulator 2.
  • a terminal electrode 6 is inserted and fixed on the rear end side of the shaft hole 4 in a state of protruding from the rear end of the insulator 2.
  • a cylindrical resistor 7 is disposed between the center electrode 5 and the terminal electrode 6 of the shaft hole 4. Both ends of the resistor 7 are electrically connected to the center electrode 5 and the terminal electrode 6 through conductive glass seal layers 8 and 9, respectively.
  • the metal shell 3 is formed in a cylindrical shape from a metal such as low carbon steel, and a screw for attaching the spark plug 1 to a combustion device such as an internal combustion engine or a fuel cell reformer on the outer peripheral surface thereof.
  • a portion (male screw portion) 15 is formed.
  • a seat portion 16 is formed on the rear end side of the screw portion 15 so as to protrude toward the outer peripheral side, and a ring-shaped gasket 18 is fitted into the screw neck 17 at the rear end of the screw portion 15.
  • a tool engaging portion 19 having a hexagonal cross section for engaging a tool such as a wrench when the metal shell 3 is attached to the combustion device is provided on the rear end side of the metal shell 3.
  • a caulking portion 20 that bends inward in the radial direction is provided at the rear end portion of the metal shell 3.
  • the metal shell 3 is reduced in diameter, and the screw diameter of the screw portion 15 is relatively small (for example, M12 or less).
  • a tapered step portion 21 for locking the insulator 2 is provided on the inner peripheral surface of the metal shell 3.
  • the insulator 2 is inserted from the rear end side to the front end side of the metal shell 3, and the rear end of the metal shell 3 is engaged with the step portion 14 of the metal shell 3. It is fixed to the metal shell 3 by caulking the opening on the side inward in the radial direction, that is, by forming the caulking portion 20.
  • An annular plate packing 22 is interposed between the step portions 14 and 21 of both the insulator 2 and the metal shell 3. Thereby, the airtightness in the combustion chamber is maintained, and the fuel gas entering the gap between the leg long portion 13 of the insulator 2 exposed to the combustion chamber and the inner peripheral surface of the metal shell 3 is prevented from leaking outside.
  • annular ring members 23 and 24 are interposed between the metal shell 3 and the insulator 2 on the rear end side of the metal shell 3, and the ring member 23 , 24 is filled with talc 25 powder. That is, the metal shell 3 holds the insulator 2 via the plate packing 22, the ring members 23 and 24, and the talc 25.
  • the front end surface 26 of the metal shell 3 is bent back by a bent portion 27 ⁇ / b> B, and the front end side surface faces the front end portion of the center electrode 5.
  • a spark discharge gap 28 is formed as a gap between the tip of the center electrode 5 and the tip of the ground electrode 27, and the spark discharge gap 28 has a direction substantially along the axis CL ⁇ b> 1. Spark discharge is performed.
  • the ground electrode 27 is made of a metal containing 93 mass% or more of Ni.
  • the ground electrode 27 contains one or more rare earth elements, and the total content of the rare earth elements is 0.05 mass% or more and 0.45 mass% or less.
  • rare earth elements include yttrium (Y), lanthanum (La), cerium (Ce), protheodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), and gadolinium (Gd).
  • Tb Terbium
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • Tm thulium
  • lanthanoids consisting of ytterbium (Yb) and lutetium (Lu), and scandium (Sc).
  • the ground electrode 27 contains silicon (Si) in a predetermined amount (for example, 0.15 mass% to 2.5 mass%) and manganese (Mn) in a predetermined amount (for example, 0.05 mass). % To 2.5% by mass).
  • Si silicon
  • Mn manganese
  • a strong oxide film against deposits attachments such as oil and unburned fuel
  • the ground electrode 27 contains carbon (C), and its content is 0.1% by mass or less. By containing C, the strength of the ground electrode 27 can be improved and the deformation resistance can be improved.
  • the ground electrode 27 may not contain C.
  • the width (thickness) along the radial direction of the distal end surface 26 of the metal shell 3 is also relatively reduced. Therefore, as shown in FIG. 3, when the thickness of the ground electrode 27 joined to the metal shell 3 is T (mm), T is relatively small (for example, 0.7 mm to 1.4 mm). ing. Since the ground electrode 27 is formed relatively thin in this way, the cross-sectional area of the ground electrode 27 is 2.0 mm 2 or less in an arbitrary cross section along the direction orthogonal to the central axis CL2 of the ground electrode 27. ing. From the viewpoint of ensuring sufficient bonding strength of the ground electrode 27 to the metal shell 3, the cross-sectional area of the ground electrode 27 is preferably 0.5 mm 2 or more.
  • the maximum cross-sectional area of the ground electrode 27 in a cross section orthogonal to the central axis CL2 of the ground electrode 27 is S (mm 2 ), and the length of the ground electrode 27 along the central axis CL2 is L.
  • (Mm) L / S (1 / mm) is 3 or more and 10 or less.
  • T / W is 0.6 or more and 1.0 or less.
  • the hardness of the ground electrode 27 at room temperature is 130 to 260 Hv (more preferably 150 to 240 Hv) in terms of Vickers hardness.
  • a part of the ground electrode 27 that has been processed after joining to the metal shell 3 that is, a part where a hardness change caused by the process can occur) is excluded. Accordingly, the ground electrode 27 is bent to the center electrode 5 side after being joined to the metal shell 3 as will be described later, so that the ground electrode 27 is bent back to the center electrode 5 side. Will be removed.
  • the surface of the metal shell 3 and the ground electrode 27 is galvanized or Ni-plated in order to improve the corrosion resistance.
  • the metal shell 3 is processed in advance. That is, a rough shape is formed on a cylindrical metal material (for example, an iron-based material or a stainless steel material) by cold forging or the like, and a through hole is formed. Thereafter, the outer shape is adjusted by cutting to obtain a metal shell intermediate.
  • a cylindrical metal material for example, an iron-based material or a stainless steel material
  • the ground electrode metal member 32 to be the ground electrode 27 is manufactured.
  • a linear intermediate member 31 containing 93 mass% or more of Ni is prepared.
  • the intermediate member 31 is subjected to heat treatment to reduce the hardness of the intermediate member 31.
  • the cross-sectional shape of the intermediate member 31 is adjusted, and the cross-sectional area of the intermediate member 31 is 2.0 mm 2 or less.
  • the hardness of the member 31 is increased to the above-described hardness (130 Hv or more and 260 Hv or less). Thereafter, the intermediate member 31 is cut into a predetermined length, whereby the ground electrode metal member 32 is obtained as shown in FIG.
  • the obtained ground electrode metal member 32 is resistance-welded to the front end surface of the metal shell intermediate.
  • so-called “sag” is generated.
  • the threaded portion 15 is formed by rolling at a predetermined portion of the metal shell intermediate body. Thereby, the metal shell 3 to which the ground electrode metal member 32 is welded is obtained.
  • the metal shell 3 to which the metal member 32 for ground electrode is welded is subjected to zinc plating or Ni plating by a barrel plating apparatus (not shown).
  • the surface may be further subjected to chromate treatment.
  • the insulator 2 is molded separately from the metal shell 3.
  • a raw material powder mainly composed of alumina and containing a binder or the like a green compact for molding is prepared, and a rubber-molded product is used to form a cylindrical molded body. Is obtained.
  • the obtained molded body is ground and shaped, and the shaped product is fired in a firing furnace, whereby the insulator 2 is obtained.
  • the center electrode 5 is manufactured separately from the metal shell 3 and the insulator 2. That is, the center electrode 5 is produced by forging a Ni alloy in which a copper alloy or the like for improving heat dissipation is arranged at the center.
  • the glass seal layers 8 and 9 are generally prepared by mixing borosilicate glass and metal powder and injected into the shaft hole 4 of the insulator 2 with the resistor 7 interposed therebetween, and then from the rear. While being pressed by the terminal electrode 6, it is fired by being heated in a firing furnace. At this time, the glaze layer may be fired simultaneously on the surface of the rear end side body portion 10 of the insulator 2 or the glaze layer may be formed in advance.
  • the insulator 2 provided with the center electrode 5 and the terminal electrode 6 and the metal shell 3 provided with the ground electrode metal member 32 are fixed. More specifically, after the insulator 2 is inserted through the metal shell 3, the opening on the rear end side of the metal shell 3 formed relatively thin is caulked radially inward, that is, the caulking portion 20 is By forming, the insulator 2 and the metal shell 3 are fixed.
  • the hardness of the ground electrode 27 is 130 Hv or more, and the mechanical strength is sufficiently ensured even in the ground electrode 27 having a cross-sectional area of 2.0 mm 2 or less. It is configured as follows. Therefore, the deformation resistance of the ground electrode 27 can be sufficiently maintained.
  • the hardness of the ground electrode 27 is 260 Hv or less, and the distortion of the metal crystal grains constituting the ground electrode 27 is suppressed. Therefore, the thermal conductivity of the ground electrode 27 can be improved. Further, since the ground electrode 27 is made of a metal containing 93 mass% or more of Ni having excellent thermal conductivity, the thermal conductivity of the ground electrode 27 can be further improved. That is, the thermal conductivity of the ground electrode 27 can be drastically improved by forming the ground electrode 27 from a metal having a Ni content of 93 mass% or more while the hardness of the ground electrode 27 is 260 Hv or less. As a result, it is possible to realize excellent wear resistance even in the ground electrode 27 in which the cross-sectional area is 2.0 mm 2 or less and the deterioration of wear resistance is particularly a concern.
  • the ratio of the length L of the ground electrode 27 to the maximum cross-sectional area S of the ground electrode 27 is 3 (1 / mm) or more, and the length L of the ground electrode 27 is sufficiently large. . Therefore, the spark discharge gap 28 can be more reliably formed between the tip of the ground electrode 27 and the center electrode 5. Furthermore, in this embodiment, L / S is 10 (1 / mm) or less, and the length L is configured not to be excessively large. Thereby, the stress applied to the ground electrode 27 can be reduced during the plating process and the like, and the deformation resistance of the ground electrode 27 can be further improved.
  • the thickness T of the ground electrode 27 is set to 0.6 times or more the width W of the ground electrode 27, and the thickness T of the ground electrode 27 is not excessively small. ing. Therefore, the ground electrode 27 has sufficient strength against the load in the thickness direction, and the bending of the ground electrode 27 can be prevented more reliably.
  • the ground electrode 27 contains one or more rare earth elements, and the total content of rare earth elements is 0.05 mass% or more. Therefore, the grain growth of the metal constituting the ground electrode 27 can be more reliably suppressed, and the wear resistance can be further improved. Further, by suppressing the grain growth, even when vibration is applied to the ground electrode 27 at a high temperature, the breakage can be more reliably prevented. In addition, since the total content of rare earth elements is sufficiently small at 0.45% by mass or less, it is possible to effectively suppress the generation of sweating particles and more reliably prevent deterioration of ignitability. can do.
  • the intermediate member 31 is softened by heat treatment, and then the intermediate member 31 is hardened by plastic working, whereby the ground electrode metal member 32 having a predetermined hardness is obtained. Therefore, the hardness can be easily adjusted as compared with the case where the ground electrode metal member 32 has a predetermined hardness by heat treatment. Accordingly, the ground electrode metal member 32 having a predetermined hardness can be easily obtained, and productivity can be improved.
  • the ground electrode is configured so that the cross-sectional area thereof is constant along the longitudinal direction, and then the hardness and cross-sectional area S (mm 2 ) of the ground electrode.
  • the ratio (L / S) of the length L (mm) of the ground electrode to the maximum cross-sectional area of the ground electrode (mm 2 ; equal to the cross-sectional area S of the ground electrode) and the width W (mm) of the ground electrode A plurality of spark plug samples in which the ratio (T / W) of the thickness T of the ground electrode was variously changed were prepared, and a wear resistance evaluation test was performed on each sample.
  • the outline of the wear resistance evaluation test is as follows.
  • a sample having a gap increase of more than 0.10 mm but not more than 0.15 mm is evaluated as “ ⁇ ”because it has excellent wear resistance, and the gap increase is more than 0.15 mm and not more than 0.20 mm.
  • the samples were evaluated as “ ⁇ ” as having sufficient wear resistance.
  • a sample with an increase in gap exceeding 0.20 mm was evaluated as “x” because the wear resistance was insufficient.
  • each sample is supplied to the spark plug production line, the number of ground electrodes that are bent or twisted after the process of joining the ground electrode to the metal shell and the plating process using a barrel plating apparatus is measured, and the bending is measured. The rate of occurrence of twist and twist (failure rate) was calculated.
  • a sample having a defective rate of 1.0% or less was evaluated as “ ⁇ ” because it was extremely excellent in deformation resistance, and a sample having a defective rate of more than 1.0% but not more than 2.0%. Is rated as “Excellent” as being excellent in deformation resistance, and samples with a defect rate of more than 2.0% and not more than 3.0% are evaluated as “ ⁇ ” as having sufficient deformation resistance. I decided to give it. On the other hand, a sample having a defect rate larger than 3.0% was evaluated as “x” because it was inferior in deformation resistance.
  • Table 1 shows the test results of the wear resistance evaluation test and the deformation resistance evaluation test, respectively.
  • Each ground electrode contains 93% by mass or more of Ni, and is formed of an alloy having a hardness of 100 Hv when heat treatment (annealing) is sufficiently performed. Further, the hardness of the ground electrode was changed by adjusting the plastic working conditions.
  • the thread diameter of the thread portion was M14
  • the protrusion length of the insulator tip with respect to the tip of the metal shell was 3 mm
  • the protrusion length of the tip of the center electrode with respect to the insulator tip was 3 mm.
  • the size of the spark discharge gap before the test was 0.8 mm
  • the outer diameter of the tip of the center electrode was 2.5 mm.
  • the size of the screw diameter of the thread portion and the like was the same as that described above for each sample.
  • the samples (samples 1 to 4) in which the cross-sectional area of the ground electrode is 2.5 mm 2 or 2.2 mm 2 are the surface of wear resistance and deformation resistance regardless of the hardness of the ground electrode.
  • a sample having a ground electrode having a cross-sectional area of 2.0 mm 2 or less may not be able to achieve sufficient performance in terms of wear resistance and deformation resistance. This is presumably because the mechanical strength and thermal conductivity of the ground electrode were reduced by making the ground electrode thinner.
  • samples (samples 9 to 32) in which the hardness of the ground electrode is 130 Hv or more and 260 Hv or less have both wear resistance and deformation resistance. It became clear that it has sufficient performance. This is because the mechanical strength of the ground electrode is improved by setting the hardness to 130 Hv or more, and the distortion of the metal crystal grains constituting the ground electrode is suppressed by setting the hardness to 260 Hv or less. It is thought that this is because heat is efficiently conducted from the distal end side of the electrode to the proximal end side (the metal shell side).
  • the samples (samples 10 to 13, 16 to 19, and 21 to 32) in which the hardness of the ground electrode is 150 Hv or more and 240 HV or less are confirmed to have excellent performance in both wear resistance and deformation resistance. It was.
  • the T / W is set to 0. It was confirmed that setting it to 6 or more contributes to the improvement of deformation resistance. This is because bending of the ground electrode is particularly likely to occur along the thickness direction, and T / W is set to 0.6 or more, so that the ground electrode has sufficient strength against the load in the thickness direction. This is thought to be because of
  • the ground electrode was formed of an alloy containing at least one of Si, Cr, Al, Mn, C, Ti, Mg, Fe, Cu, P, and S in addition to Ni. Table 2 also shows the total content of Si, Cr and the like. In each test, L / S was 6 and T / W was 0.8 for each sample.
  • sample 43 As shown in Table 2, it was confirmed that the sample having the Ni content of less than 93% by mass (sample 43) was inferior in wear resistance even if the hardness of the ground electrode was 130 Hv or more and 260 Hv or less. It was. This is considered to be because the thermal conductivity of the ground electrode was lowered because the Ni content was relatively small.
  • samples (samples 44 to 49) in which the Ni content is 93% by mass or more while the hardness of the ground electrode is 130 Hv or more and 260 Hv or less have sufficient performance in both wear resistance and deformation resistance. It became clear to have.
  • both the wear resistance and the deformation resistance are sufficient.
  • the Ni content of the ground electrode is 93% by mass or more and the hardness of the ground electrode is 130Hv or more and 260Hv or less.
  • the hardness of the ground electrode is more preferably 150 Hv or more and 240 Hv or less in order to further improve the wear resistance and deformation resistance.
  • the ground electrode contains at least one rare earth element (including at least Y), and a plurality of ground electrodes with various changes in the total content of the rare earth elements are prepared, and the above-described deformation resistance evaluation test is performed on each ground electrode.
  • a spark plug sample having such a ground electrode was subjected to a wear resistance evaluation test.
  • Each sample of the spark plug was also subjected to a sweat resistance evaluation test and a breakage resistance evaluation test.
  • the outline of the sweat resistance evaluation test is as follows. That is, after assembling each sample into a 6-cylinder gasoline engine with a displacement of 2000 cc, using unleaded gasoline as the engine fuel, maintaining the engine speed of 5000 rpm with the throttle fully opened, the engine is operated for 100 hours. Made it work. Then, after observing the surface of the ground electrode after 100 hours, a sample in which sweat particles (oxides) are generated on the surface of the ground electrode is said to be deteriorated in ignitability due to the effect of the sweat particles. "). A sample in which the surface of the ground electrode was rough but the surface of the ground electrode was rough (the state where the oxide ran up on the surface of the ground electrode) was not preferable in appearance.
  • the outline of the fracture resistance evaluation test is as follows. That is, the ground electrode was heated to 1000 ° C., and while maintaining this temperature, a vibration with an acceleration of 30 G and a frequency of 40 Hz was applied to each sample for 8 hours. After 8 hours, the sample in which the ground electrode was broken was evaluated as “x” because it was inferior in breakage resistance, and the ground electrode was not broken, but the crack was generated. The sample was evaluated as “ ⁇ ” because it was slightly inferior in breakage resistance. On the other hand, the sample in which the ground electrode was not broken or cracked was evaluated as “ ⁇ ” because it was excellent in breakage resistance.
  • Table 3 shows test results of a wear resistance evaluation test, a deformation resistance evaluation test, a sweat resistance evaluation test, and a breakage resistance evaluation test, respectively.
  • the cross-sectional area of the ground electrode was 1.5 mm 2 and the hardness of the ground electrode was 180 Hv.
  • the screw diameter of the screw portion is M12
  • the protrusion length of the insulator tip with respect to the tip of the metal shell is 3 mm
  • the insulator The protruding length of the tip of the center electrode with respect to the tip was 3 mm.
  • the size of the spark discharge gap before the test was 0.8 mm
  • the outer diameter of the tip of the center electrode was 2.5 mm.
  • L / S was set to 6 and T / W was set to 0.8 for each sample.
  • samples (samples 52 to 54) in which the total content of rare earth elements was 0.05% by mass or more and 0.45% by mass or less were excellent in both sweat resistance and breakage resistance. It became clear.
  • the ground electrode contains one or more rare earth elements, and the total content of rare earth elements is 0.05 mass% or more. It can be said that the content is preferably 45% by mass or less.
  • the ground electrode 27 has a rectangular cross section.
  • the ground electrode 37 is on the side opposite to the plane 37S on the center electrode 5 side. It is good also as comprising so that it may have convex curved surface 37W on the back.
  • the ground electrode 47 has convex curved surfaces 47W1 and 47W2 on both side surfaces located between the flat surface 47S on the central electrode 5 side and the flat surface 47H on the opposite side. It is good also as comprising. In this case, the fuel gas easily enters the spark discharge gap 28 in the form of wrapping around the ground electrodes 37 and 47, and the ignitability can be improved.
  • the ground electrodes 37 and 47 have relatively large corners formed on the outer periphery, so that the mechanical strength is further reduced. . That is, the ground electrodes 37 and 47 are more concerned about the occurrence of bending and twisting in the manufacturing process, but by applying the present invention, bending and the like can be effectively suppressed. In other words, the present invention is particularly significant in the ground electrode whose outer peripheral surface is formed in a curved shape.
  • the spark discharge gap 28 is formed between the tip of the center electrode 5 and the tip of the ground electrode 27.
  • a noble metal tip made of a noble metal alloy for example, platinum alloy or iridium alloy
  • a spark discharge gap 28 is provided in one electrode 5 (27). It may be formed between the noble metal tip thus formed and the other electrode 27 (5), or may be formed between both noble metal tips provided on both electrodes 5 and 27.
  • the hardness of the ground electrode 27 is a portion other than a portion where the hardness change caused by the joining of the noble metal tip may occur (for example, a portion separated by 1.5 mm or more from the side surface of the noble metal tip).
  • the metal member 32 for ground electrodes used as the ground electrode 27 is obtained by performing plastic processing (rolling processing and wire drawing processing) and raising the hardness of the intermediate member 31.
  • plastic processing rolling processing and wire drawing processing
  • FIG. Therefore, for example, by performing plastic working (drawing process), the hardness of the intermediate member 31 is increased to 130 Hv or more, and the cross-sectional area of the intermediate member 31 is sufficiently thin as 2.0 mm 2 or less.
  • the intermediate member 31 is subjected to a heat treatment (annealing), and then the intermediate member 31 is cut into a predetermined length, whereby the hardness is set to 130 Hv or more and 260 Hv or less.
  • the metal member 32 for the ground electrode may be obtained.
  • the heat treatment it is necessary to adjust the heating time and the heating temperature so that the hardness of the intermediate member 31 is not excessively reduced. Further, the heat treatment may be performed after the intermediate member 31 is cut.
  • the tool engaging portion 19 has a hexagonal cross section, but the shape of the tool engaging portion 19 is not limited to such a shape.
  • it may be a Bi-HEX (deformed 12-angle) shape [ISO 22777: 2005 (E)].

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)

Abstract

 スパークプラグ(1)は、軸線(CL1)方向に貫通する軸孔(4)を有する絶縁碍子(2)と、軸孔(4)の先端側に挿設された中心電極(5)と、絶縁碍子(2)の外周に設けられた主体金具(3)と、主体金具(3)の先端部に配置され、中心電極(5)との間に火花放電間隙(28)を形成する接地電極(27)とを備え、接地電極(27)の中心軸(CL2)と直交する方向に沿った任意の断面において、接地電極(27)の断面積が2.0mm2以下とされる。接地電極(27)は、Niを93質量%以上含有する金属により形成されるとともに、接地電極(27)の硬度がビッカース硬度で130Hv以上260Hv以下とされる。これにより、比較的細い接地電極を有するスパークプラグにおいて、接地電極の耐変形性、及び、耐消耗性の双方を向上させることができる。

Description

スパークプラグ及びその製造方法
 本発明は、内燃機関等に使用されるスパークプラグ及びその製造方法に関する。
 スパークプラグは、例えば、内燃機関(エンジン)に取付けられ、燃焼室内の混合気への着火のために用いられる。一般的にスパークプラグは、軸孔を有する絶縁体と、当該軸孔の先端側に挿通される中心電極と、絶縁体の外周に設けられる主体金具と、主体金具の先端部に接合される接地電極とを備える。接地電極は、自身の略中間部分に設けられた屈曲部において先端部が中心電極と対向するように曲げ返されており、接地電極の先端部と中心電極の先端部との間には火花放電間隙が形成される。そして、中心電極に高電圧が印加されることで火花放電間隙において火花放電が生じ、混合気へと着火されるようになっている(例えば、特許文献1等参照)。また、耐食性の向上を図るべく、接地電極の接合された主体金具に対して、バレルメッキ装置などによりNiメッキや亜鉛メッキが施されることがある。
特開2008-108478号公報
 ところで近年では、スパークプラグの小型化や小径化が要請されており、小径化した主体金具へと接合可能とすべく接地電極をより細いものとすることが要求されている。このような細い接地電極においては、Niメッキ等を設けるための工程や、主体金具に接地電極を接合する工程において、接地電極に曲がりやねじれ等が生じてしまうおそれがある。さらに、比較的細い接地電極では、その先端部の熱が主体金具側へと伝導されにくく、使用に伴い接地電極の先端部が急速に消耗してしまうおそれがある。
 本発明は、上記事情を鑑みてなされたものであり、その目的は、比較的細い接地電極を有するスパークプラグにおいて、接地電極の耐変形性、及び、耐消耗性の双方を向上させることができるスパークプラグ及びその製造方法を提供することにある。
 以下、上記目的を解決するのに適した各構成につき、項分けして説明する。なお、必要に応じて対応する構成に特有の作用効果を付記する。
 構成1.本構成のスパークプラグは、軸線方向に貫通する軸孔を有する筒状の絶縁体と、
 前記軸孔の先端側に挿設された中心電極と、
 前記絶縁体の外周に設けられた筒状の主体金具と、
 前記主体金具の先端部に配置され、前記中心電極との間に間隙を形成する接地電極とを備えるスパークプラグであって、
 前記接地電極は、ニッケル(Ni)を93質量%以上含有する金属により形成されるとともに、
 前記接地電極の中心軸と直交する方向に沿った任意の断面において、前記接地電極の断面積が2.0mm2以下であり、
 前記接地電極の硬度を、ビッカース硬度で130Hv以上260Hv以下としたことを特徴とする。
 上記構成1によれば、接地電極の断面積が2.0mm2以下とされており、接地電極が非常に細いものとされている。そのため、接地電極における耐変形性や耐消耗性の低下が懸念される。
 この点、上記構成1によれば、接地電極の硬度が130Hv以上とされており、接地電極が十分な機械的強度を有するように構成されている。従って、接地電極の耐変形性を十分に確保することができる。
 さらに、上記構成1によれば、接地電極の硬度が260Hv以下とされており、接地電極を構成する金属の結晶粒の歪みが抑制されるように構成されている。従って、接地電極の内部において熱がスムーズに伝導されることとなり、接地電極の熱伝導性を向上させることができる。また、接地電極は、熱伝導性に優れるNiを93質量%以上含む金属により形成されているため、接地電極の熱伝導性を一層向上させることができる。すなわち、接地電極の硬度を260Hv以下としつつ、Ni含有量が93質量%以上の金属により接地電極を形成することで、接地電極の熱伝導性を飛躍的に向上させることができる。その結果、断面積が2.0mm2以下とされ、耐消耗性の低下が特に懸念される接地電極においても、優れた耐消耗性を実現することができる。
 構成2.本構成のスパークプラグは、上記構成1において、前記接地電極の硬度を、ビッカース硬度で150Hv以上240Hv以下としたことを特徴とする。
 上記構成2によれば、接地電極の硬度が150Hv以上とされているため、接地電極の機械的強度をより向上させることができ、ひいては接地電極の耐変形性を一層高めることができる。
 また、上記構成2によれば、接地電極の硬度が240Hv以下とされており、接地電極を構成する金属の結晶粒の歪みがより一層抑制されるように構成されている。従って、接地電極の熱伝導性をさらに向上させることができ、その結果、一層優れた耐消耗性を実現することができる。
 構成3.本構成のスパークプラグは、上記構成1又は2において、前記接地電極の中心軸と直交する断面における前記接地電極の最大断面積をS(mm2)とし、前記中心軸に沿った前記接地電極の長さをL(mm)としたとき、L/S(1/mm)が3以上10以下とされることを特徴とする。
 上記構成3によれば、L/Sが10(1/mm)以下とされており、長さLが過度に大きなものとならないように構成されている。従って、メッキ工程時等において、接地電極に加わる応力を低減させることができる。その結果、接地電極の耐変形性を一層向上させることができる。
 尚、L/Sが過度に小さい場合には、接地電極の先端部を中心電極に対して十分に接近させることができず、接地電極の先端部と中心電極との間で、前記間隙(火花放電の生じる間隙)を形成できないことが懸念されるが、上記構成3によれば、L/Sが3(1/mm)以上とされているため、このような懸念を払拭することができる。
 構成4.本構成のスパークプラグは、上記構成1乃至3のいずれかにおいて、前記接地電極は、前記中心電極側の平面とは反対側の背面に凸状の湾曲面を有することを特徴とする。
 上記構成4によれば、接地電極の背面に凸状の湾曲面が形成されている。従って、接地電極を回り込む形で間隙に対して燃料ガスが入り込みやすくなり、着火性の向上を図ることができる。
 一方で、断面矩形状の接地電極と異なり、湾曲面を有する接地電極は、外周に角部が形成されなかったり、また、形成される角部の角度が比較的大きなものとなってしまったりする。そのため、接地電極の機械的強度が低下してしまうおそれがあるが、上記構成1等を採用することで、接地電極の機械的強度を十分に維持することができ、接地電極の曲がり等をより確実に抑制することができる。換言すれば、上記構成1等は、接地電極の背面に凸状の湾曲面が形成されたスパークプラグにおいて、特に有意である。
 構成5.本構成のスパークプラグは、上記構成1乃至4のいずれかにおいて、前記接地電極は、前記中心電極側の平面とその反対側の平面との間に位置する両側面に凸状の湾曲面を有することを特徴とする。
 上記構成5によれば、接地電極の両側面に凸状の湾曲面が形成されているため、間隙に対して燃料ガスが入り込みやすくなり、ひいては着火性を一層向上させることができる。
 また、接地電極が湾曲面を有するように構成することで、接地電極の機械的強度の低下が懸念されるが、上記構成1等を採用することで、機械的強度を十分に維持することができ、接地電極の曲がり等をより確実に抑制することができる。
 構成6.本構成のスパークプラグは、上記構成1乃至5のいずれかにおいて、前記接地電極の厚みをT(mm)とし、前記接地電極の幅をW(mm)としたとき、T/Wが0.6以上とされることを特徴とする。
 上述の通り、メッキ工程等において接地電極に曲がり等が生じ得るが、接地電極の曲がりは特に接地電極の厚さ方向に沿って生じやすい。
 この点を鑑みて、上記構成6によれば、接地電極の厚みTが、接地電極の幅Wの0.6倍以上とされており、接地電極の厚みTが過度に小さなものとならないように構成されている。従って、接地電極が、厚み方向の負荷に対して十分な強度を有することとなり、接地電極の曲がりをより確実に防止することができる。
 尚、接地電極の幅Wに対して接地電極の厚みTが過度に大きい場合には、接地電極が接合される主体金具の肉厚を大きくする必要が生じる。しかしながら、主体金具の肉厚を大きくすると、絶縁体に対して主体金具が接近してしまい、中心電極と主体金具との間で火花放電が生じやすくなる等の不具合が発生してしまうおそれがある。従って、この点を考慮して、T/Wを1.0以下とすることが好ましいといえる。
 構成7.本構成のスパークプラグは、上記構成1乃至6のいずれかにおいて、前記接地電極には、希土類元素が一種以上含有され、
 希土類元素の総含有量が、0.05質量%以上0.45質量%以下とされることを特徴とする。
 一般にNiを多量に含有する金属は高温下で粒成長しやすい。従って、上記構成1のように、Niを多量に含む金属により接地電極を形成する場合には、使用時において、接地電極を構成する金属の粒成長が懸念される。
 この点、上記構成7によれば、接地電極に希土類元素が一種以上含有されるとともに、希土類元素の総含有量が0.05質量%以上とされている。従って、接地電極を構成する金属の粒成長をより確実に抑制することができ、耐消耗性をより一層向上させることができる。また、粒成長の抑制が図られることで、接地電極に対して高温下で振動が加わった場合であっても、その折損をより確実に防止することができる。
 一方で、希土類元素の総含有量を過度に大きなものとしてしまうと、使用時において接地電極の表面に発汗粒が生じやすくなってしまう。発汗粒が生じてしまうと、その発汗粒の存在により中心電極と接地電極との間に形成された間隙が局所的に狭くなってしまい、ひいては着火性の低下を招いてしまうおそれがある。この点、上記構成7によれば、希土類元素の総含有量が0.45質量%以下と十分に小さなものとされている。従って、発汗粒の発生を効果的に抑制することができ、着火性の低下をより確実に防止することができる。
 構成8.本構成のスパークプラグは、上記構成1乃至7のいずれかにおいて、前記接地電極のうち少なくとも一部の表面はメッキで覆われていること特徴とする。
 上記構成8によれば、接地電極の表面の少なくとも一部はメッキで覆われているため、接地電極の耐食性を向上させることができる。
 一方で、断面積が2.0mm2以下の接地電極においては、メッキが施される際の負荷により曲がりやねじれが生じてしまいやすいが、上記構成1等を採用することで、曲がり等の発生を効果的に抑制することができる。換言すれば、上記構成1等は、接地電極の表面がメッキで覆われる(すなわち、接地電極にメッキ加工が施される)スパークプラグにおいて、特に有意である。
 構成9.本構成のスパークプラグの製造方法は、上記構成1乃至8のいずれかに記載のスパークプラグの製造方法であって、
 前記接地電極となる接地電極用金属部材を形成する金属部材形成工程を含み、
 前記金属部材形成工程においては、
 Niを93質量%以上含有する金属からなる中間部材に対して、熱処理を施し、前記中間部材の硬度を低下させる軟化工程と、
 前記軟化工程の後に、前記中間部材に塑性加工を施し、前記中間部材の硬度を上昇させることで、前記接地電極用金属部材を得る硬化工程と
を含むことを特徴とする。
 金属材料を所定の硬度とするための手法としては、金属材料に熱処理を加えることで、金属材料の硬度を低減させることにより、金属材料を所定の硬度とする手法が考えられる。しかしながら、熱処理により硬度を調節する手法では、熱処理時の加熱温度や加熱時間などに若干の変動が生じただけで、金属材料の硬度が所定の硬度よりも低くなってしまったり、その硬度を所定の硬度まで低減させることができなかったりしてしまうおそれがある。すなわち、熱処理による硬度の調節手法では、温度管理等を極めて慎重に行う必要があり、所定の硬度を有する金属材料を容易に得ることができない。
 この点、上記構成9によれば、熱処理を施し中間部材を一旦軟化させた上で、塑性加工により中間部材を硬化させることにより、所定の硬度を有する接地電極用金属部材が得られるように構成されている。すなわち、塑性加工により硬度を上昇させることで、部材の硬度を調節し、その硬度を所定の硬度とするように構成されている。ここで、塑性加工では、部材の加工率を調節することで、部材の硬度を容易に調節することができる。従って、所定の硬度を有する接地電極用金属部材を容易に得ることができ、生産性の向上を図ることができる。
スパークプラグの構成を示す一部破断正面図である。 スパークプラグの先端部の構成を示す一部破断拡大正面図である。 接地電極の厚さ及び幅を示す接地電極の断面図である。 (a)は中間部材の構成を示す断面図であり、(b)は接地電極用金属部材の構成を示す断面図である。 (a),(b)は、別の実施形態における接地電極の断面形状を示す部分拡大断面図である。
 以下に、一実施形態について図面を参照しつつ説明する。図1は、スパークプラグ1を示す一部破断正面図である。尚、図1では、スパークプラグ1の軸線CL1方向を図面における上下方向とし、下側をスパークプラグ1の先端側、上側を後端側として説明する。
 スパークプラグ1は、筒状をなす絶縁体としての絶縁碍子2、これを保持する筒状の主体金具3などから構成されるものである。
 絶縁碍子2は、周知のようにアルミナ等を焼成して形成されており、その外形部において、後端側に形成された後端側胴部10と、当該後端側胴部10よりも先端側において径方向外向きに突出形成された大径部11と、当該大径部11よりも先端側においてこれよりも細径に形成された中胴部12と、当該中胴部12よりも先端側においてこれよりも細径に形成された脚長部13とを備えている。加えて、絶縁碍子2のうち、大径部11、中胴部12、及び、大部分の脚長部13は、主体金具3の内部に収容されている。そして、中胴部12と脚長部13との連接部にはテーパ状の段部14が形成されており、当該段部14にて絶縁碍子2が主体金具3に係止されている。
 さらに、絶縁碍子2には、軸線CL1に沿って延びる軸孔4が貫通形成されており、当該軸孔4の先端側には中心電極5が挿入、固定されている。当該中心電極5は、銅又は銅合金からなる内層5Aと、ニッケル(Ni)を主成分とするNi合金からなる外層5Bとを備えている。また、中心電極5は、全体として棒状(円柱状)をなし、その先端部分が絶縁碍子2の先端から突出している。
 加えて、軸孔4の後端側には、絶縁碍子2の後端から突出した状態で端子電極6が挿入、固定されている。
 さらに、軸孔4の中心電極5と端子電極6との間には、円柱状の抵抗体7が配設されている。当該抵抗体7の両端部は、導電性のガラスシール層8,9を介して、中心電極5と端子電極6とにそれぞれ電気的に接続されている。
 加えて、前記主体金具3は、低炭素鋼等の金属により筒状に形成されており、その外周面にはスパークプラグ1を内燃機関や燃料電池改質器等の燃焼装置に取付けるためのねじ部(雄ねじ部)15が形成されている。また、ねじ部15の後端側には座部16が外周側に向けて突出形成されており、ねじ部15後端のねじ首17にはリング状のガスケット18が嵌め込まれている。さらに、主体金具3の後端側には、主体金具3を燃焼装置に取付ける際にレンチ等の工具を係合させるための断面六角形状の工具係合部19が設けられている。また、主体金具3の後端部には、径方向内側に向けて屈曲する加締め部20が設けられている。尚、本実施形態においては、スパークプラグ1の小型化を図るべく、主体金具3が小径化されており、ねじ部15のねじ径は比較的小径(例えば、M12以下)とされている。
 また、主体金具3の内周面には、絶縁碍子2を係止するためのテーパ状の段部21が設けられている。そして、絶縁碍子2は、主体金具3の後端側から先端側に向かって挿入され、自身の段部14が主体金具3の段部21に係止された状態で、主体金具3の後端側の開口部を径方向内側に加締めること、つまり上記加締め部20を形成することによって主体金具3に固定されている。尚、絶縁碍子2及び主体金具3双方の段部14,21間には、円環状の板パッキン22が介在されている。これにより、燃焼室内の気密性を保持し、燃焼室内に晒される絶縁碍子2の脚長部13と主体金具3の内周面との隙間に入り込む燃料ガスが外部に漏れないようになっている。
 さらに、加締めによる密閉をより完全なものとするため、主体金具3の後端側においては、主体金具3と絶縁碍子2との間に環状のリング部材23,24が介在され、リング部材23,24間には滑石(タルク)25の粉末が充填されている。すなわち、主体金具3は、板パッキン22、リング部材23,24及び滑石25を介して絶縁碍子2を保持している。
 また、図2に示すように、主体金具3の先端面26には、屈曲部27Bにて曲げ返されて、その先端側側面が中心電極5の先端部と対向する断面矩形状の接地電極27が接合されている。加えて、中心電極5の先端部と接地電極27の先端部との間には、間隙としての火花放電間隙28が形成されており、当該火花放電間隙28において、軸線CL1にほぼ沿った方向で火花放電が行われるようになっている。
 さらに、本実施形態においては、接地電極27は、Niを93質量%以上含有する金属により形成されている。また、接地電極27には、希土類元素が一種類以上含有されており、希土類元素の総含有量は、0.05質量%以上0.45質量%以下とされている。尚、希土類元素としては、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プロセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から成るランタノイド、並びに、スカンジウム(Sc)を挙げることができる。
 さらに、接地電極27には、ケイ素(Si)が所定量(例えば、0.15質量%以上2.5質量%以下)含有されるとともに、マンガン(Mn)が所定量(例えば、0.05質量%以上2.5質量%以下)含有されている。SiやMnが前記所定量含有されることで、接地電極27の表面に、デポジット(オイルや未燃焼燃料等の付着物)に対して強固な酸化膜を形成することができる。
 併せて、接地電極27には、炭素(C)が含有されており、その含有量が0.1質量%以下とされている。Cが含有されることで、接地電極27の強度が向上し、耐変形性の向上を図ることができる。尚、接地電極27にCを含有しなくてもよい。
 また、主体金具3の小径化に伴い、主体金具3の先端面26の径方向に沿った幅(肉厚)も比較的小さくされている。そのため、図3に示すように、主体金具3に接合される接地電極27の厚さをT(mm)としたとき、Tが比較的小さなもの(例えば、0.7mm~1.4mm)とされている。このように接地電極27が比較的薄肉に形成されているため、接地電極27の中心軸CL2と直交する方向に沿った任意の断面において、接地電極27の断面積は2.0mm2以下となっている。尚、主体金具3に対する接地電極27の接合強度を十分に確保する等の観点から、接地電極27の断面積を0.5mm2以上とすることが好ましい。
 加えて、本実施形態では、接地電極27の中心軸CL2と直交する断面における接地電極27の最大断面積をS(mm2)とし、前記中心軸CL2に沿った接地電極27の長さをL(mm)としたとき、L/S(1/mm)が3以上10以下とされている。
 併せて、接地電極27の厚みをT(mm)とし、接地電極27の幅をW(mm)としたとき、T/Wが0.6以上1.0以下とされている。
 さらに、本実施形態では、接地電極27の常温における硬度が、ビッカース硬度で130Hv以上260Hv以下(より好ましくは、150Hv以上240Hv以下)とされている。尚、接地電極27の硬度を測定する部位として、接地電極27のうち、主体金具3への接合後に加工が施された部位(つまり、加工に伴う硬度変化が生じ得る部位)は除かれる。従って、接地電極27は、後述するように主体金具3に接合した後に、屈曲加工が施されて中心電極5側へと曲げ返されるため、接地電極27の硬度を測定する部位として、屈曲部27Bは除かれることとなる。
 加えて、本実施形態では、耐食性の向上を図るべく、主体金具3及び接地電極27の表面に、亜鉛メッキ或いはNiメッキが施されている。
 次に、上記のように構成されてなるスパークプラグ1の製造方法について説明する。
 まず、主体金具3を予め加工しておく。すなわち、円柱状の金属素材(例えば、鉄系素材やステンレス素材)に対して冷間鍛造加工等により概形を形成するとともに、貫通孔を形成する。その後、切削加工を施すことで外形を整え、主体金具中間体を得る。
 次いで、金属部材形成工程において、接地電極27となる接地電極用金属部材32を製造する。まず、図4(a)に示すように、Niを93質量%以上含有する線状の中間部材31を用意する。次いで、中間部材31に対して熱処理を施すことで、中間部材31の硬度を低減させる。
 この中間部材31に対して塑性加工(圧延加工や伸線加工)を施すことで、中間部材31の断面形状を整えるとともに、中間部材31の断面積を2.0mm2以下とし、さらには、中間部材31の硬度を上述の硬度(130Hv以上260Hv以下)に上昇させる。その後、中間部材31を所定の長さに切断することで、図4(b)に示すように、接地電極用金属部材32が得られる。
 続いて、得られた接地電極用金属部材32が、主体金具中間体の先端面に抵抗溶接される。当該溶接に際してはいわゆる「ダレ」が生じるので、その「ダレ」を除去した後、主体金具中間体の所定部位にねじ部15が転造によって形成される。これにより、接地電極用金属部材32の溶接された主体金具3が得られる。
 次いで、接地電極用金属部材32の溶接された主体金具3に、バレルメッキ装置(図示せず)により亜鉛メッキ或いはNiメッキが施される。尚、耐食性向上を図るべく、その表面に、さらにクロメート処理が施されることとしてもよい。
 一方、前記主体金具3とは別に、絶縁碍子2を成形加工しておく。例えば、アルミナを主体としバインダ等を含む原料粉末を用いて、成形用素地造粒物を調製するとともに、当該成形用素地造粒物を用いてラバープレス成形を行うことで、筒状の成形体が得られる。そして、得られた成形体に対し、研削加工が施され整形されるとともに、整形されたものが焼成炉で焼成されることにより、絶縁碍子2が得られる。
 また、前記主体金具3、絶縁碍子2とは別に、中心電極5を製造しておく。すなわち、中央部に放熱性向上を図るための銅合金等を配置したNi合金に鍛造加工を施すことで中心電極5を作製する。
 次に、上記のようにして得られた絶縁碍子2及び中心電極5と、抵抗体7と、端子電極6とが、ガラスシール層8,9によって封着固定される。ガラスシール層8,9は、一般的にホウ珪酸ガラスと金属粉末とが混合されて調製されたものが、抵抗体7を挟むようにして絶縁碍子2の軸孔4内に注入された後、後方から前記端子電極6で押圧しつつ、焼成炉内にて加熱されることで焼成される。尚、このとき、絶縁碍子2の後端側胴部10表面には釉薬層が同時に焼成されることとしてもよいし、事前に釉薬層が形成されることとしてもよい。
 その後、上記のようにそれぞれ作製された中心電極5及び端子電極6を備える絶縁碍子2と、接地電極用金属部材32を備える主体金具3とが固定される。より詳しくは、主体金具3に絶縁碍子2を挿通した上で、比較的薄肉に形成された主体金具3の後端側の開口部を径方向内側に加締めること、つまり上記加締め部20を形成することによって絶縁碍子2と主体金具3とが固定される。
 そして最後に、接地電極用金属部材32の略中間部分を中心電極5側に屈曲させることで屈曲部27Bを有する接地電極27を形成するとともに、中心電極5及び接地電極27間の火花放電間隙28の大きさを調整することにより上述したスパークプラグ1が得られる。
 以上詳述したように、本実施形態によれば、接地電極27の硬度が130Hv以上とされており、断面積が2.0mm2以下の接地電極27においても機械的強度が十分に確保されるように構成されている。従って、接地電極27の耐変形性を十分に維持することができる。
 さらに、接地電極27の硬度が260Hv以下とされており、接地電極27を構成する金属の結晶粒の歪みが抑制されるように構成されている。従って、接地電極27の熱伝導性を向上させることができる。また、接地電極27は、熱伝導性に優れるNiを93質量%以上含む金属により形成されているため、接地電極27の熱伝導性を一層向上させることができる。すなわち、接地電極27の硬度を260Hv以下としつつ、Ni含有量が93質量%以上の金属により接地電極27を形成することで、接地電極27の熱伝導性を飛躍的に向上させることができる。その結果、断面積が2.0mm2以下とされ、耐消耗性の低下が特に懸念される接地電極27においても、優れた耐消耗性を実現できる。
 また、接地電極27の最大断面積Sに対する、接地電極27の長さLの比が3(1/mm)以上とされており、接地電極27の長さLが十分に大きなものとされている。従って、接地電極27の先端部と中心電極5との間で、火花放電間隙28をより確実に形成することができる。さらに、本実施形態では、L/Sが10(1/mm)以下とされており、長さLが過度に大きなものとならないように構成されている。これにより、メッキ工程時等において、接地電極27に加わる応力を低減させることができ、接地電極27の耐変形性を一層向上させることができる。
 併せて、本実施形態では、接地電極27の厚みTが、接地電極27の幅Wの0.6倍以上とされており、接地電極27の厚みTが過度に小さなものとならないように構成されている。従って、接地電極27が、厚み方向の負荷に対して十分な強度を有することとなり、接地電極27の曲がりをより確実に防止することができる。
 加えて、接地電極27に希土類元素が一種以上含有されるとともに、希土類元素の総含有量が0.05質量%以上とされている。従って、接地電極27を構成する金属の粒成長をより確実に抑制することができ、耐消耗性をより一層向上させることができる。また、粒成長の抑制が図られることで、接地電極27に対して高温下で振動が加わった場合であっても、その折損をより確実に防止することができる。併せて、希土類元素の総含有量が0.45質量%以下と十分に小さなものとされているため、発汗粒の発生を効果的に抑制することができ、着火性の低下をより確実に防止することができる。
 また、熱処理を施し中間部材31を一旦軟化させた上で、塑性加工により中間部材31を硬化させることにより、所定の硬度を有する接地電極用金属部材32が得られるように構成されている。従って、熱処理により接地電極用金属部材32を所定の硬度とする場合と比較して、その硬度を容易に調節することができる。従って、所定の硬度を有する接地電極用金属部材32を容易に得ることができ、生産性の向上を図ることができる。
 次いで、上記実施形態によって奏される作用効果を確認すべく、接地電極の断面積が、その長手方向に沿って一定となるように構成した上で、接地電極の硬度及び断面積S(mm2)、並びに、接地電極の最大断面積(mm2;接地電極の断面積Sと等しい)に対する接地電極の長さL(mm)の比(L/S)及び接地電極の幅W(mm)に対する接地電極の厚さTの比(T/W)を種々変更したスパークプラグのサンプルを複数作製するとともに、各サンプルについて耐消耗性評価試験を行った。耐消耗性評価試験の概要は次の通りである。すなわち、各サンプルを排気量4000ccの6気筒ガソリンエンジンに組付けた上で、エンジンの燃料として無鉛ガソリンを用いて、スロットル全開状態で、エンジン回転数3000rpmを維持して300時間に亘ってエンジンを動作させた。そして、300時間経過後において火花放電間隙の大きさを測定し、試験前(初期状態)における火花放電間隙の大きさに対する増加量(ギャップ増加量)を測定した。ここで、ギャップ増加量が0.10mm以下となったサンプルは、耐消耗性に極めて優れるとして「☆」の評価を下すこととした。また、ギャップ増加量が0.10mm超0.15mm以下となったサンプルは、耐消耗性に優れるとして「◎」の評価を下すこととし、ギャップ増加量が0.15mm超0.20mm以下となったサンプルは、十分な耐消耗性を有するとして「○」の評価を下すこととした。一方で、ギャップ増加量が0.20mm超となったサンプルは、耐消耗性が不十分であるとして「×」の評価を下すこととした。
 さらに、硬度及び断面積、並びに、L/S及びT/Wを種々変更した接地電極のサンプルを複数用意して、各サンプルについて耐変形性評価試験を行った。耐変形性評価試験の概要は次の通りである。すなわち、各サンプルをスパークプラグの製造ラインに供給し、主体金具に対する接地電極の接合工程やバレルメッキ装置によるメッキ工程を経た後における、曲がりやねじれが発生した接地電極の本数を測定するとともに、曲がりやねじれの発生率(不良率)を算出した。ここで、不良率が1.0%以下となったサンプルは、耐変形性に極めて優れるとして「☆」の評価を下し、不良率が1.0%超2.0%以下となったサンプルは、耐変形性に優れるとして「◎」の評価を下し、不良率が2.0%超3.0%以下となったサンプルは、十分な耐変形性を有するとして「○」の評価を下すこととした。一方で、不良率が3.0%よりも大きくなったサンプルは、耐変形性に劣るとして「×」の評価を下した。
 表1に、耐消耗性評価試験、及び、耐変形性評価試験の試験結果をそれぞれ示す。尚、各接地電極は、Niを93質量%以上含有し、熱処理(アニール処理)を十分に行った際に、硬度が100Hvとなる合金により形成した。また、接地電極の硬度は、塑性加工の条件を調節することで変更した。
 加えて、各サンプルともに、ねじ部のねじ径をM14とし、主体金具の先端に対する絶縁碍子の先端の突出長を3mmとし、絶縁碍子の先端に対する中心電極の先端の突出長を3mmとした。また、試験前における火花放電間隙の大きさを0.8mmとし、中心電極の先端の外径を2.5mmとした。尚、以下の耐消耗性評価試験及び耐変形性評価試験においては、各サンプルともに、ねじ部のねじ径などのサイズを上記と同様のものとした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、接地電極の断面積を2.5mm2又は2.2mm2としたサンプル(サンプル1~4)は、接地電極の硬度に関わらず、耐消耗性や耐変形性の面で優れていたが、接地電極の断面積を2.0mm2以下としたサンプルにおいては、耐消耗性や耐変形性の面で十分な性能を実現できないおそれがあることが分かった。これは、接地電極を細くしたことで、接地電極の機械的強度や熱伝導性が低下してしまったことによると考えられる。
 これに対して、接地電極の断面積が2.0mm2以下であっても、接地電極の硬度を130Hv以上260Hv以下としたサンプル(サンプル9~32)は、耐消耗性及び耐変形性の双方において十分な性能を有することが明らかとなった。これは、硬度を130Hv以上としたことで、接地電極の機械的強度が向上したこと、及び、硬度を260Hv以下としたことで、接地電極を構成する金属の結晶粒の歪みが抑制され、接地電極の先端側から基端側(主体金具側)へと効率よく熱が伝導されたことに起因すると考えられる。
 また特に、接地電極の硬度を150Hv以上240HV以下としたサンプル(サンプル10~13,16~19,21~32)は、耐消耗性及び耐変形性の双方で優れた性能を有することが確認された。
 さらに、硬度や断面積S、T/Wを同一とした上で、L/Sのみを異なるものとしたサンプル(サンプル21~23,27~29)に着目してみると、L/Sを10以下とすることで、耐変形性を効果的に向上できることが明らかとなった。これは、長さLが過度に大きなものとならないように構成したことで、メッキ工程時等に、接地電極に加わる応力を低減させることができたためであると考えられる。
 加えて、硬度や断面積S、L/Sを同一とした上で、T/Wのみを異なるものとしたサンプル(サンプル24~26,30~32)の試験結果から、T/Wを0.6以上とすることが、耐変形性の向上に寄与することが確認された。これは、接地電極の曲がりは特にその厚さ方向に沿って生じやすいところ、T/Wを0.6以上としたことで、接地電極がその厚み方向の負荷に対して十分な強度を有することとなったためであると考えられる。
 次いで、Ni含有量を90質量%、又は、93質量%とし、硬度を種々変更した接地電極について上述の耐変形性評価試験を行うとともに、このような接地電極を有するスパークプラグのサンプルについて上述の耐消耗性評価試験を行った。表2に、両試験の試験結果を示す。尚、接地電極は、Niの他に、Si、Cr、Al、Mn、C、Ti、Mg、Fe、Cu、P、及び、Sのうち少なくとも一種を含有する合金により形成した。表2には、SiやCr等の総含有量を併せて示す。また、当該試験においては、各サンプルともに、L/Sを6とし、T/Wを0.8とした。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、Ni含有量を93質量%未満としたサンプル(サンプル43)は、接地電極の硬度を130Hv以上260Hv以下としたものであっても、耐消耗性に劣ることが確認された。これは、Ni含有量が比較的少なかったため、接地電極の熱伝導性が低下してしまったことによると考えられる。
 これに対して、接地電極の硬度を130Hv以上260Hv以下としつつ、Ni含有量を93質量%以上としたサンプル(サンプル44~49)は、耐消耗性及び耐変形性の双方において十分な性能を有することが明らかとなった。
 以上の試験結果より、接地電極の断面積が2.0mm2以下とされ、耐消耗性や耐変形性の低下が懸念されるスパークプラグにおいては、耐消耗性及び耐変形性の双方において十分な性能を実現するために、接地電極のNi含有量を93質量%以上とするとともに、接地電極の硬度を130Hv以上260Hv以下とすることが好ましいといえる。また、耐消耗性や耐変形性の更なる向上を図るべく、接地電極の硬度を150Hv以上240Hv以下とすることがより好ましいといえる。
 さらに、耐変形性をより一層向上させるという観点から、L/Sを10以下としたり、T/Wを0.6以上としたりすることがより好ましいといえる。
 次に、接地電極に希土類元素(少なくともYを含む)を一種以上含有させるとともに、希土類元素の総含有量を種々変更した接地電極を複数作製し、各接地電極について上述の耐変形性評価試験を行うとともに、このような接地電極を有するスパークプラグのサンプルについて耐消耗性評価試験を行った。また、スパークプラグの各サンプルについて耐発汗性評価試験、及び、耐折損性評価試験を併せて行った。
 耐発汗性評価試験の概要は次の通りである。すなわち、各サンプルを排気量2000ccの6気筒ガソリンエンジンに組付けた上で、エンジンの燃料として無鉛ガソリンを用いて、スロットル全開状態で、エンジン回転数5000rpmを維持して100時間に亘ってエンジンを動作させた。そして、100時間経過後に接地電極の表面を観察し、接地電極の表面に発汗粒(酸化物)が発生していたサンプルは、発汗粒の影響による着火性の低下等が懸念されるとして「×」の評価を下すこととした。また、接地電極の表面に発汗粒が発生していなかったものの、接地電極の表面が荒れた状態(酸化物が接地電極の表面上にささくれ立った状態)となったサンプルは、外観上好ましくなく、また、より長期間の使用で着火性等に悪影響を与える可能性があるとして、「△」の評価を下すこととした。一方で、接地電極の表面に発汗が生じておらず、かつ、接地電極の表面が荒れた状態となっていなかったサンプルは、外観や着火性等の面で優れるとして「○」の評価を下すこととした。
 また、耐折損性評価試験の概要は次の通りである。すなわち、接地電極を1000℃に加熱するとともに、この温度を維持しつつ、各サンプルに対して周波数40Hzで、加速度30Gの振動を8時間に亘って加えた。そして、8時間経過後に、接地電極の折損が生じていたサンプルは、耐折損性に劣るとして「×」の評価を下すこととし、接地電極に折損は生じていなかったものの、クラックが生じていたサンプルは、耐折損性にやや劣るとして「△」の評価を下すこととした。一方で、接地電極に折損やクラックが生じていなかったサンプルは、耐折損性に優れるとして「○」の評価を下すこととした。
 表3に、耐消耗性評価試験、耐変形性評価試験、耐発汗性評価試験、及び、耐折損性評価試験の試験結果をそれぞれ示す。尚、各試験において、接地電極の断面積を1.5mm2とし、接地電極の硬度を180Hvとした。また、耐発汗性評価試験、及び、耐折損性評価試験においては、各サンプルともに、ねじ部のねじ径をM12とし、主体金具の先端に対する絶縁碍子の先端の突出長を3mmとし、絶縁碍子の先端に対する中心電極の先端の突出長を3mmとした。さらに、試験前における火花放電間隙の大きさを0.8mmとし、中心電極の先端の外径を2.5mmとした。加えて、各サンプルともに、L/Sを6とし、T/Wを0.8とした。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、希土類元素の総含有量を0.05質量%以上0.45質量%以下としたサンプル(サンプル52~54)は、耐発汗性及び耐折損性の双方において優れることが明らかとなった。
 上記試験の試験結果より、耐発汗性及び耐折損性の双方を向上させるためには、接地電極に希土類元素を一種以上含有するとともに、希土類元素の総含有量を0.05質量%以上0.45質量%以下とすることが好ましいといえる。
 尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
 (a)上記実施形態において、接地電極27は断面矩形状をなしているが、例えば、図5(a)に示すように、接地電極37が、中心電極5側の平面37Sとは反対側の背面に凸状の湾曲面37Wを有するように構成することとしてもよい。また、図5(b)に示すように、接地電極47が、中心電極5側の平面47Sとその反対側の平面47Hとの間に位置する両側面に凸状の湾曲面47W1,47W2を有するように構成することとしてもよい。この場合には、接地電極37,47を回り込む形で、火花放電間隙28に対して燃料ガスが入り込みやすくなり、着火性の向上を図ることができる。一方で、断面矩形状の接地電極27と異なり、接地電極37,47は、外周に形成される角部の角度が比較的大きなものとなってしまうため、その機械的強度がより低下してしまう。すなわち、接地電極37,47は、製造工程における曲がりやねじれの発生がより懸念されるものであるが、本発明を適用することで、曲がり等を効果的に抑制することができる。換言すれば、本発明は、外周面が湾曲状に形成された接地電極において、特に有意である。
 (b)上記実施形態では、中心電極5の先端部と接地電極27の先端部との間に火花放電間隙28が形成されている。これに対して、電極5,27の一方又は双方に、貴金属合金(例えば、白金合金やイリジウム合金等)からなる貴金属チップを接合し、火花放電間隙28を、一方の電極5(27)に設けられた貴金属チップと他方の電極27(5)との間に形成したり、両電極5,27に設けられた両貴金属チップの間に形成したりしてもよい。尚、接地電極27に貴金属チップを設けた場合、接地電極27の硬度は、貴金属チップの接合に伴う硬度変化が生じ得る部位以外の部位(例えば、貴金属チップ側面から1.5mm以上離間した部位)で測定される。
 (c)上記実施形態では、塑性加工(圧延加工や伸線加工)を施し、中間部材31の硬度を上昇させることで、接地電極27となる接地電極用金属部材32が得られている。これに対して、熱処理を施し、中間部材31の硬度を低減させることで、接地電極用金属部材32を得ることとしてもよい。従って、例えば、塑性加工(伸線加工)を施すことで、中間部材31の硬度を130Hv以上に上昇させるとともに、中間部材31の断面積を2.0mm2以下と十分に細いものとする。その上で、硬度を低減させるために、中間部材31に対して熱処理(アニール処理)を行い、その後、中間部材31を所定の長さに切断することで、硬度が130Hv以上260Hv以下とされた接地電極用金属部材32を得ることしてもよい。尚、熱処理時には、中間部材31の硬度が過度に低減しないように、加熱時間や加熱温度を調節することが必要である。また、熱処理を、中間部材31の切断後に行うこととしてもよい。
 (d)上記実施形態では、工具係合部19は断面六角形状とされているが、工具係合部19の形状に関しては、このような形状に限定されるものではない。例えば、Bi-HEX(変形12角)形状〔ISO22977:2005(E)〕等とされていてもよい。
 1…スパークプラグ、2…絶縁体(絶縁碍子)、3…主体金具、4…軸孔、5…中心電極、27…接地電極、28…火花放電間隙(間隙)、31…中間部材、32…接地電極用金属部材、37W,47W1,47W2…湾曲面、CL1…軸線、CL2…(接地電極の)中心軸。

Claims (9)

  1.  軸線方向に貫通する軸孔を有する筒状の絶縁体と、
     前記軸孔の先端側に挿設された中心電極と、
     前記絶縁体の外周に設けられた筒状の主体金具と、
     前記主体金具の先端部に配置され、前記中心電極との間に間隙を形成する接地電極とを備えるスパークプラグであって、
     前記接地電極は、ニッケルを93質量%以上含有する金属により形成されるとともに、
     前記接地電極の中心軸と直交する方向に沿った任意の断面において、前記接地電極の断面積が2.0mm2以下であり、
     前記接地電極の硬度を、ビッカース硬度で130Hv以上260Hv以下としたことを特徴とするスパークプラグ。
  2.  前記接地電極の硬度を、ビッカース硬度で150Hv以上240Hv以下としたことを特徴とする請求項1に記載のスパークプラグ。
  3.  前記接地電極の中心軸と直交する断面における前記接地電極の最大断面積をS(mm2)とし、前記中心軸に沿った前記接地電極の長さをL(mm)としたとき、L/S(1/mm)が3以上10以下とされることを特徴とする請求項1又は2に記載のスパークプラグ。
  4.  前記接地電極は、前記中心電極側の平面とは反対側の背面に凸状の湾曲面を有することを特徴とする請求項1乃至3のいずれか1項に記載のスパークプラグ。
  5.  前記接地電極は、前記中心電極側の平面とその反対側の平面との間に位置する両側面に凸状の湾曲面を有することを特徴とする請求項1乃至4のいずれか1項に記載のスパークプラグ。
  6.  前記接地電極の厚みをT(mm)とし、前記接地電極の幅をW(mm)としたとき、T/Wが0.6以上とされることを特徴とする請求項1乃至5のいずれか1項に記載のスパークプラグ。
  7.  前記接地電極には、希土類元素が一種以上含有され、
     希土類元素の総含有量が、0.05質量%以上0.45質量%以下とされることを特徴とする請求項1乃至6のいずれか1項に記載のスパークプラグ。
  8.  前記接地電極のうち少なくとも一部の表面はメッキで覆われていること特徴とする請求項1乃至7のいずれか1項に記載のスパークプラグ。
  9.  請求項1乃至8のいずれか1項に記載のスパークプラグの製造方法であって、
     前記接地電極となる接地電極用金属部材を形成する金属部材形成工程を含み、
     前記金属部材形成工程においては、
     ニッケルを93質量%以上含有する金属からなる中間部材に対して、熱処理を施し、前記中間部材の硬度を低下させる軟化工程と、
     前記軟化工程の後に、前記中間部材に塑性加工を施し、前記中間部材の硬度を上昇させることで、前記接地電極用金属部材を得る硬化工程と
    を含むことを特徴とするスパークプラグの製造方法。
PCT/JP2011/073064 2010-12-20 2011-10-06 スパークプラグ及びその製造方法 WO2012086292A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012511467A JP5238096B2 (ja) 2010-12-20 2011-10-06 スパークプラグ及びその製造方法
CN201180061371.5A CN103283098B (zh) 2010-12-20 2011-10-06 火花塞及其制造方法
US13/877,352 US9768588B2 (en) 2010-12-20 2011-10-06 Spark plug and manufacturing method therefor
EP11851707.7A EP2658051B1 (en) 2010-12-20 2011-10-06 Spark plug and manufacturing method therefor
BR112013015609-0A BR112013015609A2 (pt) 2010-12-20 2011-10-06 vela de ignição e método de fabricação da mesma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-282507 2010-12-20
JP2010282507 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086292A1 true WO2012086292A1 (ja) 2012-06-28

Family

ID=46313576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073064 WO2012086292A1 (ja) 2010-12-20 2011-10-06 スパークプラグ及びその製造方法

Country Status (6)

Country Link
US (1) US9768588B2 (ja)
EP (1) EP2658051B1 (ja)
JP (1) JP5238096B2 (ja)
CN (1) CN103283098B (ja)
BR (1) BR112013015609A2 (ja)
WO (1) WO2012086292A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022301A (ja) * 2012-07-23 2014-02-03 Ngk Spark Plug Co Ltd スパークプラグ
CN103579909A (zh) * 2012-08-06 2014-02-12 日本特殊陶业株式会社 火花塞
JP2016516127A (ja) * 2013-03-14 2016-06-02 ファオデーエム メタルズ ゲゼルシャフト ミット ベシュレンクテル ハフツングVDM Metals GmbH ケイ素、アルミニウム及びクロムを有するニッケル基合金
JP2021086817A (ja) * 2019-11-29 2021-06-03 日本特殊陶業株式会社 スパークプラグ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606404B2 (ja) * 2011-07-11 2014-10-15 日本特殊陶業株式会社 スパークプラグ
EP2922157B1 (en) * 2012-11-19 2017-10-18 NGK Spark Plug Co., Ltd. Spark plug
JP5990216B2 (ja) * 2014-05-21 2016-09-07 日本特殊陶業株式会社 スパークプラグ
DE102015214057B4 (de) * 2015-07-24 2017-12-28 Ford Global Technologies, Llc Verfahren zur Herstellung einer Zündkerze mittels einer mit Pulver befüllten Kapsel sowie Zündkerze

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251786A (ja) * 1997-03-11 1998-09-22 Hitachi Metals Ltd 点火プラグ用電極材料
JP2002260818A (ja) * 2001-02-28 2002-09-13 Ngk Spark Plug Co Ltd スパークプラグ及びその製造方法
JP2003229231A (ja) * 2002-02-05 2003-08-15 Denso Corp スパークプラグの製造方法
JP2008108478A (ja) 2006-10-24 2008-05-08 Nippon Soken Inc 内燃機関用スパークプラグ
WO2009020141A1 (ja) * 2007-08-08 2009-02-12 Ngk Spark Plug Co., Ltd. スパークプラグおよびその製造方法
JP2009094047A (ja) * 2007-09-18 2009-04-30 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
JP2010049911A (ja) * 2008-08-21 2010-03-04 Ngk Spark Plug Co Ltd スパークプラグの製造方法、及び、メッキ除去装置
WO2010026940A1 (ja) * 2008-09-02 2010-03-11 日本特殊陶業株式会社 スパークプラグ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947436B2 (ja) * 1982-01-14 1984-11-19 株式会社デンソー 内燃機関用スパ−クプラグ
US5204059A (en) * 1988-07-25 1993-04-20 Mitsubishi Metal Corporation Ni base alloy for spark plug electrodes of internal combustion engines
JP2002343533A (ja) 2001-03-15 2002-11-29 Denso Corp 内燃機関用スパークプラグ
JP2003197345A (ja) * 2001-12-25 2003-07-11 Denso Corp スパークプラグの製造方法
JP4699867B2 (ja) * 2004-11-04 2011-06-15 日立金属株式会社 点火プラグ用電極材料
JP4413951B2 (ja) 2007-07-06 2010-02-10 日本特殊陶業株式会社 スパークプラグ
JP5245578B2 (ja) * 2007-07-31 2013-07-24 株式会社デンソー 内燃機関用のスパークプラグ
EP2226911B1 (en) 2007-12-28 2013-11-27 NGK Spark Plug Co., Ltd. Spark plug for internal combustion engine
JP4829329B2 (ja) 2008-09-02 2011-12-07 日本特殊陶業株式会社 スパークプラグ
JP4921540B2 (ja) * 2009-11-26 2012-04-25 日本特殊陶業株式会社 スパークプラグ用の電極材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251786A (ja) * 1997-03-11 1998-09-22 Hitachi Metals Ltd 点火プラグ用電極材料
JP2002260818A (ja) * 2001-02-28 2002-09-13 Ngk Spark Plug Co Ltd スパークプラグ及びその製造方法
JP2003229231A (ja) * 2002-02-05 2003-08-15 Denso Corp スパークプラグの製造方法
JP2008108478A (ja) 2006-10-24 2008-05-08 Nippon Soken Inc 内燃機関用スパークプラグ
WO2009020141A1 (ja) * 2007-08-08 2009-02-12 Ngk Spark Plug Co., Ltd. スパークプラグおよびその製造方法
JP2009094047A (ja) * 2007-09-18 2009-04-30 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
JP2010049911A (ja) * 2008-08-21 2010-03-04 Ngk Spark Plug Co Ltd スパークプラグの製造方法、及び、メッキ除去装置
WO2010026940A1 (ja) * 2008-09-02 2010-03-11 日本特殊陶業株式会社 スパークプラグ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022301A (ja) * 2012-07-23 2014-02-03 Ngk Spark Plug Co Ltd スパークプラグ
CN103579909A (zh) * 2012-08-06 2014-02-12 日本特殊陶业株式会社 火花塞
JP2014032886A (ja) * 2012-08-06 2014-02-20 Ngk Spark Plug Co Ltd スパークプラグ
JP2016516127A (ja) * 2013-03-14 2016-06-02 ファオデーエム メタルズ ゲゼルシャフト ミット ベシュレンクテル ハフツングVDM Metals GmbH ケイ素、アルミニウム及びクロムを有するニッケル基合金
US9932656B2 (en) 2013-03-14 2018-04-03 Vdm Metals International Gmbh Nickel-based alloy with silicon, aluminum, and chromium
JP2021086817A (ja) * 2019-11-29 2021-06-03 日本特殊陶業株式会社 スパークプラグ
JP7165644B2 (ja) 2019-11-29 2022-11-04 日本特殊陶業株式会社 スパークプラグ

Also Published As

Publication number Publication date
JPWO2012086292A1 (ja) 2014-05-22
EP2658051B1 (en) 2019-12-25
EP2658051A1 (en) 2013-10-30
CN103283098A (zh) 2013-09-04
BR112013015609A2 (pt) 2018-07-24
US9768588B2 (en) 2017-09-19
US20130200774A1 (en) 2013-08-08
CN103283098B (zh) 2016-05-04
EP2658051A4 (en) 2014-12-31
JP5238096B2 (ja) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5238096B2 (ja) スパークプラグ及びその製造方法
EP1677400B1 (en) Spark plug
KR101515257B1 (ko) 내연기관용 스파크 플러그 및 그 제조방법
EP2325960B1 (en) Spark plug
EP2634873B1 (en) Spark plug
EP2658050B1 (en) Spark plug
EP2579401B1 (en) Spark plug
JP4746707B1 (ja) スパークプラグ
KR101625349B1 (ko) 전극 재료 및 스파크 플러그
US8368293B2 (en) Spark plug and method of manufacturing the same
JP2013127911A (ja) スパークプラグ及びその製造方法
JP5564070B2 (ja) スパークプラグ
JP5695609B2 (ja) スパークプラグ
JP5597227B2 (ja) 点火プラグ
EP3270475A1 (en) Spark plug
JP2008103147A (ja) 内燃機関用スパークプラグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180061371.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012511467

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13877352

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011851707

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013015609

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013015609

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013015609

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130620