WO2012081325A1 - 車両の動力伝達制御装置 - Google Patents

車両の動力伝達制御装置 Download PDF

Info

Publication number
WO2012081325A1
WO2012081325A1 PCT/JP2011/075257 JP2011075257W WO2012081325A1 WO 2012081325 A1 WO2012081325 A1 WO 2012081325A1 JP 2011075257 W JP2011075257 W JP 2011075257W WO 2012081325 A1 WO2012081325 A1 WO 2012081325A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
speed
output shaft
power transmission
internal combustion
Prior art date
Application number
PCT/JP2011/075257
Other languages
English (en)
French (fr)
Inventor
小林 和貴
宮崎 剛枝
高橋 知也
Original Assignee
アイシン・エーアイ株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エーアイ株式会社, トヨタ自動車株式会社 filed Critical アイシン・エーアイ株式会社
Priority to CN201180060833.1A priority Critical patent/CN103328297B/zh
Priority to EP11848690.1A priority patent/EP2653363B1/en
Publication of WO2012081325A1 publication Critical patent/WO2012081325A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/04Vehicle stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/14Clutch pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/71Manual or semi-automatic, e.g. automated manual transmissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power transmission control device for a vehicle, and more particularly, to a vehicle having an internal combustion engine and an electric motor as power sources, and having a manual transmission and a friction clutch.
  • a so-called hybrid vehicle including an engine and an electric motor (electric motor, motor generator) as a power source is widely known (see, for example, Patent Document 1).
  • an electric motor electric motor, motor generator
  • a configuration in which the output shaft of the electric motor is connected to any of the output shaft of the internal combustion engine, the input shaft of the transmission, and the output shaft of the transmission can be employed.
  • the driving torque of the output shaft of the internal combustion engine is referred to as “internal combustion engine driving torque”
  • the driving torque of the output shaft of the electric motor is referred to as “motor driving torque”.
  • HV-MT vehicle power transmission control device a power transmission control device that has been applied to hybrid vehicles and includes a manual transmission and a friction clutch
  • the “manual transmission” referred to here is a transmission (so-called manual transmission, MT) that does not include a torque converter in which a gear position is selected according to a shift position of a shift lever operated by a driver.
  • the “friction clutch” referred to here is interposed between the output shaft of the internal combustion engine and the input shaft of the manual transmission, and the friction plate is operated according to the operation amount of the clutch pedal operated by the driver. This is a clutch whose joining state changes.
  • a configuration in which an output shaft of an electric motor is connected to an output shaft of an internal combustion engine is employed.
  • the internal combustion engine always operates, and the motor drive torque assists the internal combustion engine drive torque as necessary. Therefore, a state in which the vehicle travels using only the motor driving torque while maintaining the internal combustion engine in a stopped state (a state where the rotation of the output shaft of the internal combustion engine is stopped) (hereinafter referred to as “EV traveling”) is realized. I don't get it.
  • the state where the input shaft of the transmission does not rotate is set.
  • the output shaft of the transmission needs to be driven by the motor driving torque while maintaining.
  • the transmission is in a state where a power transmission system is not established between the input shaft of the transmission and the output shaft of the transmission. Needs to be maintained.
  • a shift stage in which a power transmission system is established between the input shaft of the transmission and the output shaft of the transmission For this purpose, as a shift stage of the manual transmission, for normal travel using the internal combustion engine drive torque, “a shift stage in which a power transmission system is established between the input shaft of the transmission and the output shaft of the transmission”. (Hereinafter referred to as “internal combustion engine travel gear stage”), and “the power transmission system is not established between the input shaft of the transmission and the output shaft of the transmission, and the output shaft of the motor It is necessary to provide a “speed stage in which a power transmission system is established with the output shaft of the transmission” (a speed stage different from neutral, hereinafter referred to as “motor running speed stage”).
  • a vehicle equipped with a power transmission control device for an HV-MT vehicle capable of EV traveling which employs a manual transmission provided with an “motor traveling gear stage” in addition to an “internal combustion engine traveling gear stage” is assumed.
  • a motor travel shift stage is provided for starting the vehicle by EV travel
  • creep travel in a state where the motor shift stage is selected.
  • “Creep traveling” refers to a vehicle that travels at a minute speed using a minute torque generated by the torque converter in a state where an accelerator pedal is not operated in a vehicle equipped with an automatic transmission that uses a torque converter.
  • An object of the present invention is to provide a power transmission control device for an HV-MT vehicle capable of EV traveling, which can realize a low speed traveling similar to so-called creep traveling.
  • the vehicle power transmission control apparatus is applied to a hybrid vehicle including an internal combustion engine and an electric motor as power sources.
  • This power transmission device includes a manual transmission, a friction clutch, and control means.
  • the manual transmission is a transmission that does not include a torque converter that selects a gear position according to a shift position of a shift operation member that is operated by a driver, and that receives input of power from the output shaft of the internal combustion engine.
  • the motor travel shift stage is selected and realized by moving the shift operation member to the shift position corresponding to the motor travel shift stage, and the internal combustion engine travel is performed by moving the shift operation member to the shift position corresponding to the internal combustion engine travel shift stage.
  • a gear stage is selected and realized.
  • the “reduction ratio of the output shaft of the transmission with respect to the output shaft of the motor” of the one or more motor travel shift stages is set to “the shift speed of the one or more internal combustion engine travel shift stages”. It can be designed to be larger than the maximum value of the “reduction ratio of the output shaft of the transmission to the input shaft of the machine”.
  • the electric motor travel shift stage can function as a low speed shift stage.
  • the electric motor travel shift stage can be used as a shift stage for “starting the vehicle by EV travel”.
  • the friction clutch is a clutch which is interposed between the output shaft of the internal combustion engine and the input shaft of the manual transmission, and whose joining state changes according to the operation amount of a clutch operation member operated by a driver. .
  • the control means controls an internal combustion engine driving torque that is a driving torque of the output shaft of the internal combustion engine and an electric motor driving torque that is a driving torque of the output shaft of the electric motor.
  • the power transmission control device includes a first detection unit that detects an operation amount of the clutch operation member, a second detection unit that detects an operation of an acceleration operation member for accelerating the vehicle operated by a driver, Third detection means for detecting the selected shift speed and fourth detection means for detecting the speed of the vehicle are provided.
  • the control means maintains the internal combustion engine in a stopped state when it is detected that the electric motor travel speed is selected, and detects that the internal combustion engine travel speed is selected when the internal combustion engine travel speed is selected.
  • the engine is operated and the internal combustion engine drive torque is adjusted based on the operation amount of the acceleration operation member.
  • the electric motor drive torque determines the operation amount of the acceleration operation member and the clutch operation. It can be adjusted based on the amount of operation of the member. Thereby, the motor drive torque can assist the internal combustion engine drive torque as necessary.
  • This power transmission control device is characterized in that the control means is configured as follows. That is, when it is detected that the electric motor travel gear stage is selected and the operation of the acceleration operation member is not detected, the operation amount between the clutch operation member and the target vehicle speed (within a minute vehicle speed range) is determined. The target vehicle speed is determined based on the predetermined relationship and the detected operation amount of the clutch operation member. Then, vehicle speed control is performed to adjust the electric motor drive torque so that the detected vehicle speed matches the target vehicle speed.
  • the target vehicle speed can be determined such that the target vehicle speed increases as the operation amount (return operation amount) in the return direction from the predetermined operation amount of the clutch operation member increases.
  • the vehicle speed control is subsequently executed.
  • a minute vehicle speed can be adjusted while adjusting the operation amount of the clutch operation member (specifically, the return operation amount) without operating the acceleration operation member. That is, the low speed running similar to the so-called creep running can be realized.
  • the vehicle speed control can be terminated.
  • the electric motor driving torque can then be adjusted to a normal torque value determined based on the operation amount of the acceleration operation member and the operation amount of the clutch operation member. That is, by operating the acceleration operation member, the motor drive torque control can be smoothly switched from the vehicle speed control to the “normal start control by EV traveling”.
  • the control means may be configured to determine the target vehicle speed such that the target vehicle speed decreases as the operation amount of the deceleration operation member increases. According to this, the minute vehicle speed during the vehicle speed control can be adjusted not only by the operation amount (return operation amount) of the clutch operation member but also by the operation amount of the deceleration operation member. Therefore, the minute vehicle speed during the vehicle speed control can be adjusted more precisely so as to meet the driver's intention.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a “power transmission control device for an HV-MT vehicle capable of EV traveling” according to an embodiment of the present invention.
  • 3 is a flowchart showing a flow of processing when MG torque is controlled by the apparatus shown in FIG. 1.
  • 3 is a graph showing a map that defines the relationship between the clutch return stroke and the creep vehicle speed, which is used in the creep vehicle speed control shown in FIG. 2. It is a flowchart corresponding to FIG. 2 which concerns on the modification of embodiment of this invention. It is the graph which showed the map corresponding to FIG. 3 which concerns on the modification of embodiment of this invention.
  • FIG. 9 is a schematic configuration diagram of a vehicle equipped with a “power transmission control device for an HV-MT vehicle capable of EV traveling” according to a modification of the embodiment of the present invention.
  • FIG. 1 shows a schematic configuration of a vehicle equipped with a power transmission control device (hereinafter referred to as “the present device”) according to an embodiment of the present invention.
  • the present device is a hybrid vehicle including an internal combustion engine and a motor generator as power sources, and the present apparatus includes a manual transmission that does not include a torque converter and a friction clutch. That is, this apparatus is the above-described “HV-MT vehicle power transmission control apparatus”.
  • This vehicle includes an engine E / G, a manual transmission M / T, a friction clutch C / T, and a motor generator M / G.
  • the engine E / G is a well-known internal combustion engine, for example, a gasoline engine that uses gasoline as fuel, or a diesel engine that uses light oil as fuel.
  • the manual transmission M / T is a transmission (so-called manual transmission) that does not include a torque converter that selects a gear position according to the shift position of the shift lever SL operated by the driver.
  • the M / T includes an input shaft Ai that receives power from the output shaft Ae of the E / G, and an output shaft Ao that outputs power to the drive wheels of the vehicle.
  • the friction clutch C / T is interposed between the E / G output shaft Ae and the M / T input shaft Ai.
  • C / T rotates integrally with Ai with respect to the state of engagement of the friction plates (more specifically, the flywheel that rotates integrally with Ae) according to the operation amount (depression amount) of the clutch pedal CP operated by the driver.
  • This is a known clutch in which the axial position of the friction plate changes.
  • the C / T joined state (the axial position of the friction plate) is mechanically controlled according to the operation amount of the CP using a link mechanism or the like that mechanically connects the clutch pedal CP and the C / T (friction plate). Or may be adjusted electrically (in a so-called by-wire method) using the driving force of an actuator that operates based on the detection result of a sensor (sensor P1 to be described later) that detects the amount of operation of the CP. May be.
  • the motor generator M / G has one of known configurations (for example, an AC synchronous motor), and for example, a rotor (not shown) rotates integrally with the output shaft Am of the M / G. Yes.
  • the drive torque of the output shaft Ae of the E / G is referred to as “EG torque”
  • the drive torque of the output shaft Am of the M / G is referred to as “MG torque”.
  • the vehicle travels using only the MG torque while maintaining the E / G in the stopped state (the state where the rotation of the output shaft Ae of the E / G is stopped).
  • EV traveling the speed stage in which EV traveling is realized like “first speed” in this example is referred to as “EV traveling speed stage”.
  • EG travel gear stage a gear stage in which EG traveling is realized like “second speed” in this example is referred to as “EG traveling gear stage”.
  • the positions of the sleeves S1 to S3 may be mechanically adjusted according to the shift position of the shift lever SL using a link mechanism that mechanically connects the shift lever SL and the sleeves S1 to S3.
  • the adjustment may be performed electrically (in a so-called by-wire system) using the driving force of an actuator that operates based on the detection result of a sensor (sensor P4 described later) that detects the shift position of lever SL.
  • this device has a clutch operation amount sensor P1 that detects an operation amount (depression amount, clutch stroke, etc.) of the clutch pedal CP, and a brake operation amount that detects an operation amount (stepping force, presence / absence of operation, etc.) of the brake pedal BP.
  • a sensor P2 an accelerator operation amount sensor P3 that detects the operation amount (accelerator opening) of the accelerator pedal AP, a shift position sensor P4 that detects the position of the shift lever SL, and a wheel speed sensor P5 that detects the wheel speed of the vehicle.
  • this device includes an electronic control unit ECU.
  • the ECU controls the EG torque by controlling the fuel injection amount of the E / G (the opening degree of the throttle valve) based on the information from the above-described sensors P1 to P5 and other sensors.
  • the MG torque is controlled by controlling (not shown).
  • E / G control The E / G control by this apparatus is generally performed as follows. When the vehicle is stopped, the E / G is maintained in a stopped state (a state where fuel injection is not performed). In the E / G stop state, the operation of the shift lever SL from the neutral to the EG travel gear stage (any of “2nd speed” to “5th speed”) is performed (that is, the EG travel gear stage is selected). ) Is started (fuel injection is started). During operation of E / G (while fuel is being injected), EG torque is controlled based on the accelerator opening and the like. Hereinafter, this control is referred to as “normal control of E / G”. Traveling at the EG travel shift stage is performed by normal control of E / G.
  • the shift lever SL has been operated from the neutral to the EV travel speed ("1st speed") (that is, the EV travel speed has been selected), or the vehicle has stopped. Based on this, the E / G is maintained in the stopped state again.
  • the neutral travel to the EG travel speed (from “2nd speed” to “5th speed”) ) Is operated again (that is, the EG travel gear is selected) or the vehicle is stopped, the M / G is maintained in the stopped state again.
  • step 205 it is determined whether or not the shift lever SL has been operated from the neutral to the EV travel gear position ("1st speed").
  • the MG torque is maintained at “0” in Step 230.
  • Step 205 the case where it is determined as “Yes” in Step 205, that is, the case where the EV traveling gear stage (“1st speed”) is selected will be described.
  • the clutch pedal CP is first depressed and then the shift lever SL is operated from the neutral position to the EV travel gear position ("1st speed”) when the vehicle is stopped.
  • step 210 When the EV travel gear position ("first speed") is selected (with the clutch pedal CP depressed), it is determined in step 210 whether or not the brake pedal BP is operated, and the brake pedal BP is determined. Is depressed ("No” is determined in step 210), the MG torque is maintained at "0" in step 230. Whether or not the brake pedal BP is being operated can be determined based on whether or not the operation amount of the brake pedal BP (stepping force, brake fluid pressure, etc.) is equal to or greater than a predetermined value.
  • step 215 it is determined in step 215 whether or not the accelerator pedal AP is operated. Whether or not the accelerator pedal AP is operated can be determined based on whether or not the accelerator opening is equal to or greater than a predetermined value.
  • the “clutch return stroke” is an operation amount (stroke) in the return direction from a predetermined maximum depression amount (maximum stroke) of the clutch pedal CP.
  • the creep vehicle speed (target vehicle speed) is constant when the clutch return stroke is “0” to the value “a”, and increases from the value “a” to the value “b” as the clutch return stroke increases.
  • the value b is exceeded, it becomes constant.
  • the value a and the value b are respectively “a stroke at which the clutch C / T shifts from the completely disconnected state to the half-clutch state” and “a stroke at which the clutch C / T shifts from the half-clutch state to the fully-engaged state”. It corresponds.
  • the target creep vehicle speed is calculated based on the map and the current clutch return stroke obtained from the clutch operation amount sensor P1. Then, the MG torque is feedback-controlled so that the actual vehicle speed detected based on information from the wheel speed sensor S5 and the like coincides with the calculated creep vehicle speed.
  • the MG torque in the “normal start control” is the “accelerator” when a “normal vehicle having a manual transmission and a friction clutch and having only an internal combustion engine as a power source” starts at “first speed”. It is controlled using a map or the like prepared in advance that defines the relationship between “opening and clutch stroke” and “torque of the internal combustion engine transmitted to the input shaft of the manual transmission via the clutch”. If the brake pedal BP is operated during execution of “creep vehicle speed control” or “normal start control”, the control being executed is stopped (determined as “No” in step 210).
  • the M / G control is changed from “creep vehicle speed control” to “normal start control by EV traveling” using MG torque. Can be switched smoothly. Accordingly, the driver can start the vehicle using creep travel with the same feeling as when starting a vehicle equipped with an automatic transmission using a torque converter.
  • the present invention is not limited to the above embodiment, and various modifications can be employed within the scope of the present invention.
  • the power transmission system is connected between the M / G output shaft Am and the M / T output shaft Ao. Is not established, the EG torque cannot be assisted with the MG torque.
  • the EG torque is reduced to MG. Assist with torque.
  • step 210 when the brake pedal BP is operated during execution of “creep vehicle speed control”, “creep vehicle speed control” is stopped (determined as “No” in step 210 in FIG. 2).
  • step 210 can be omitted.
  • the map shown in FIG. 5 can be used instead of the map shown in FIG.
  • the creep vehicle speed (target vehicle speed) is set to a smaller value as the operation amount of the brake pedal BP (stepping force, brake hydraulic pressure, etc.) is larger.
  • the minute vehicle speed during the “creep vehicle speed control” can be adjusted not only by the clutch return operation amount but also by the operation amount of the brake pedal BP. Therefore, the minute vehicle speed during the “creep vehicle speed control” can be adjusted more precisely so as to meet the driver's intention.
  • a power transmission system with a “second speed” reduction ratio is established between the M / G output shaft Am and the M / T output shaft Ao via the gear G2i and the gear G2o.
  • a power transmission system is not established between the M / T input shaft Ai and the M / T output shaft Ao. That is, when “second speed” is selected, EV traveling is realized as in the case where “first speed” is selected. Therefore, using the “second speed”, the vehicle can be started using creep travel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 この装置の手動変速機は、変速機の出力軸に接続されたモータの駆動トルクのみによってEV走行するためのEV走行変速段(1速)と、クラッチを介したエンジンの駆動トルクによって走行するためのEG走行変速段(2速~5速)とを備える。車両停止状態にて、クラッチペダルが踏み込まれた状態でEV走行変速段(「1速」)が選択され且つアクセルペダルが操作されていない場合、その後、MGトルクを利用した「クリープ車速制御」が実行される。「クリープ車速制御」では、アクセルペダルを操作することなくクラッチ戻しストロークを調整しながら微小の車速を調整することができる。これにより、EV走行可能なHV-MT車用動力伝達制御装置であって、所謂クリープ走行と同様の微速走行を実現できるものが提供され得る。

Description

車両の動力伝達制御装置
 本発明は、車両の動力伝達制御装置に関し、特に、動力源として内燃機関と電動機とを備えた車両に適用され、手動変速機と摩擦クラッチとを備えたものに係わる。
 従来より、動力源としてエンジンと電動機(電動モータ、電動発電機)とを備えた所謂ハイブリッド車両が広く知られている(例えば、特許文献1を参照)。ハイブリット車両では、電動機の出力軸が、内燃機関の出力軸、変速機の入力軸、及び変速機の出力軸の何れかに接続される構成が採用され得る。以下、内燃機関の出力軸の駆動トルクを「内燃機関駆動トルク」と呼び、電動機の出力軸の駆動トルクを「電動機駆動トルク」と呼ぶ。
 近年、ハイブリッド車両に適用され、且つ手動変速機と摩擦クラッチとを備えた動力伝達制御装置(以下、「HV-MT車用動力伝達制御装置」と呼ぶ)が開発されてきている。ここにいう「手動変速機」とは、運転者により操作されるシフトレバーのシフト位置に応じて変速段が選択されるトルクコンバータを備えない変速機(所謂、マニュアルトランスミッション、MT)である。また、ここにいう「摩擦クラッチ」とは、内燃機関の出力軸と手動変速機の入力軸との間に介装されて、運転者により操作されるクラッチペダルの操作量に応じて摩擦プレートの接合状態が変化するクラッチである。
特開2000-224710号公報
 一般に、現在開発されてきているHV-MT車用動力伝達制御装置では、電動機の出力軸が内燃機関の出力軸に接続される構成が採用されている。車両が走行する際、内燃機関が常時稼働し、必要に応じて電動機駆動トルクが内燃機関駆動トルクをアシストする。従って、内燃機関を停止状態(内燃機関の出力軸の回転が停止した状態)に維持しながら電動機駆動トルクのみを利用して車両が走行する状態(以下、「EV走行」と呼ぶ)が実現され得ない。
 HV-MT車用動力伝達制御装置において、運転者がクラッチペダルを操作しない状態(即ち、クラッチが接合された状態)においてEV走行を実現するためには、変速機の入力軸が回転しない状態を維持しながら変速機の出力軸が電動機駆動トルクにより駆動される必要がある。このためには、電動機の出力軸が変速機の出力軸に接続されることに加え、変速機が「変速機の入力軸と変速機の出力軸との間で動力伝達系統が確立されない状態」に維持される必要がある。
 このためには、手動変速機の変速段として、内燃機関駆動トルクを利用する通常走行用の「変速機の入力軸と変速機の出力軸との間で動力伝達系統が確立される変速段」(以下、「内燃機関走行変速段」と呼ぶ)に加えて、EV走行用の「変速機の入力軸と変速機の出力軸との間で動力伝達系統が確立されず且つ電動機の出力軸と変速機の出力軸との間で動力伝達系統が確立される変速段」(ニュートラルとは異なる変速段。以下、「電動機走行変速段」と呼ぶ)が設けられる必要がある。
 以下、「内燃機関走行変速段」に加えて「電動機走行変速段」が設けられた手動変速機が採用されたEV走行可能なHV-MT車用動力伝達制御装置を搭載した車両を想定する。この車両において、例えば、EV走行による車両発進用に電動機走行変速段が設けられている場合、電動機変速段を選択した状態で、所謂クリープ走行と同様の微速走行を実現したいという要求がある。「クリープ走行」とは、トルクコンバータを用いた自動変速機を搭載した車両においてアクセルペダルが操作されない状態でトルクコンバータにより発生する微小トルクを利用して車両が微小速度で走行することを指す。
 本発明の目的は、EV走行可能なHV-MT車用動力伝達制御装置であって、所謂クリープ走行と同様の微速走行を実現できるものを提供することにある。
 本発明による車両の動力伝達制御装置は、動力源として内燃機関と電動機とを備えたハイブリッド車両に適用される。この動力伝達装置は、手動変速機と、摩擦クラッチと、制御手段とを備える。
 手動変速機は、運転者により操作されるシフト操作部材のシフト位置に応じて変速段が選択されるトルクコンバータを備えない変速機であって、前記内燃機関の出力軸から動力が入力される入力軸と前記車両の駆動輪へ動力を出力する出力軸とを備え、1つ又は複数の「電動機走行変速段」と1つ又は複数の「内燃機関走行変速段」とを備える。シフト操作部材を電動機走行変速段に対応するシフト位置に移動することにより電動機走行変速段が選択・実現され、シフト操作部材を内燃機関走行変速段に対応するシフト位置に移動することにより内燃機関走行変速段が選択・実現される。なお、「内燃機関走行変速段」では、「前記変速機の入力軸と前記変速機の出力軸との間」に加えて、「前記電動機の出力軸と前記変速機の出力軸との間」でも動力伝達系統が確立されてよい。これにより、必要に応じて電動機駆動トルクが内燃機関駆動トルクをアシストし得る。
 この場合、例えば、前記1つ又は複数の電動機走行変速段の「前記電動機の出力軸に対する前記変速機の出力軸の減速比」が、前記1つ又は複数の内燃機関走行変速段の「前記変速機の入力軸に対する前記変速機の出力軸の減速比」のうちの最大値より大きいように設計され得る。これによれば、電動機走行変速段が低速側の変速段として機能し得、例えば、電動機走行変速段が「EV走行による車両発進用」の変速段として使用され得る。
 摩擦クラッチは、前記内燃機関の出力軸と前記手動変速機の入力軸との間に介装されて、運転者により操作されるクラッチ操作部材の操作量に応じて接合状態が変化するクラッチである。制御手段は、前記内燃機関の出力軸の駆動トルクである内燃機関駆動トルク、及び、前記電動機の出力軸の駆動トルクである電動機駆動トルクを制御する。
 この動力伝達制御装置は、前記クラッチ操作部材の操作量を検出する第1検出手段と、運転者により操作される前記車両を加速させるための加速操作部材の操作を検出する第2検出手段と、前記選択された変速段を検出する第3検出手段と、前記車両の速度を検出する第4検出手段とを備える。
 前記制御手段は、前記電動機走行変速段が選択されたことが検出された場合、前記内燃機関を停止状態に維持し、前記内燃機関走行変速段が選択されたことが検出された場合、前記内燃機関を稼働して前記内燃機関駆動トルクを前記加速操作部材の操作量に基づいて調整するように構成される。「内燃機関走行変速段」にて前記電動機の出力軸と前記変速機の出力軸との間で動力伝達系統が確立される場合、前記電動機駆動トルクが前記加速操作部材の操作量及び前記クラッチ操作部材の操作量に基づいて調整され得る。これにより、必要に応じて電動機駆動トルクが内燃機関駆動トルクをアシストし得る。
 この動力伝達制御装置の特徴は、前記制御手段が以下のように構成されたことにある。即ち、前記電動機走行変速段が選択されたことが検出され且つ前記加速操作部材の操作が検出されていない場合、前記クラッチ操作部材の操作量と目標車速(微小の車速範囲内)との間の既に定められた関係と、検出された前記クラッチ操作部材の操作量とに基づいて前記目標車速が決定される。そして、検出された前記車両の速度が前記目標車速に一致するように前記電動機駆動トルクを調整する車速制御が実行される。ここにおいて、前記クラッチ操作部材の所定の操作量からの戻し方向の操作量(戻し操作量)が大きいほど前記目標車速が大きくなるように前記目標車速が決定され得る。
 これによれば、(クラッチ操作部材が操作された状態で)発進用の電動機走行変速段が選択され且つ加速操作部材が操作されていない場合、その後、車速制御が実行される。車速制御では、加速操作部材を操作することなくクラッチ操作部材の操作量(具体的には、上記戻し操作量)を調整しながら微小の車速を調整することができる。即ち、所謂クリープ走行と同様の微速走行が実現され得る。
 この車速制御の実行中において前記加速操作部材の操作が検出された場合、前記車速制御が終了され得る。車速制御が終了された場合、その後、前記電動機駆動トルクが、前記加速操作部材の操作量及び前記クラッチ操作部材の操作量に基づいて決定される通常トルク値に調整され得る。即ち、加速操作部材が操作されることにより、電動機駆動トルクの制御が車速制御から「EV走行による通常の発進制御」へとスムーズに切り換えられ得る。
 上記本発明に係る動力伝達制御装置においては、前記制御手段は、減速操作部材の操作量が大きいほど前記目標車速が小さくなるように前記目標車速を決定するように構成され得る。これによれば、車速制御中の微小車速が、クラッチ操作部材の操作量(戻し操作量)のみならず減速操作部材の操作量によっても調整され得る。従って、車速制御中の微小車速が、運転者の意図に沿うようにより緻密に調整され得る。
本発明の実施形態に係る「EV走行可能なHV-MT車用の動力伝達制御装置」を搭載した車両の概略構成図である。 図1に示した装置によってMGトルクが制御される際の処理の流れについて示したフローチャートである。 図2に示したクリープ車速制御において使用される、クラッチ戻しストロークとクリープ車速との関係を規定するマップを示したグラフである。 本発明の実施形態の変形例に係る図2に対応するフローチャートである。 本発明の実施形態の変形例に係る図3に対応するマップを示したグラフである。 本発明の実施形態の変形例に係る「EV走行可能なHV-MT車用の動力伝達制御装置」を搭載した車両の概略構成図である。
 以下、本発明による車両の動力伝達制御装置の実施形態について図面を参照しつつ説明する。
(構成)
 図1は、本発明の実施形態に係る動力伝達制御装置(以下、「本装置」と称呼する。)を搭載した車両の概略構成を示している。この車両は、動力源として内燃機関とモータジェネレータとを備えたハイブリッド車両であり、本装置は、トルクコンバータを備えない手動変速機と摩擦クラッチとを備える。即ち、本装置は、上述した「HV-MT車用動力伝達制御装置」である。
 この車両は、エンジンE/Gと、手動変速機M/Tと、摩擦クラッチC/Tと、モータジェネレータM/Gと、を備えている。エンジンE/Gは、周知の内燃機関であり、例えば、ガソリンを燃料として使用するガソリンエンジン、軽油を燃料として使用するディーゼルエンジンである。
 手動変速機M/Tは、運転者により操作されるシフトレバーSLのシフト位置に応じて変速段が選択されるトルクコンバータを備えない変速機(所謂、マニュアルトランスミッション)である。M/Tは、E/Gの出力軸Aeから動力が入力される入力軸Aiと、車両の駆動輪へ動力を出力する出力軸Aoとを備える。
 摩擦クラッチC/Tは、E/Gの出力軸AeとM/Tの入力軸Aiとの間に介装されている。C/Tは、運転者により操作されるクラッチペダルCPの操作量(踏み込み量)に応じて摩擦プレートの接合状態(より具体的には、Aeと一体回転するフライホイールに対する、Aiと一体回転する摩擦プレートの軸方向位置)が変化する周知のクラッチである。
 C/Tの接合状態(摩擦プレートの軸方向位置)は、クラッチペダルCPとC/T(摩擦プレート)とを機械的に連結するリンク機構等を利用してCPの操作量に応じて機械的に調整されてもよいし、CPの操作量を検出するセンサ(後述するセンサP1)の検出結果に基づいて作動するアクチュエータの駆動力を利用して電気的に(所謂バイ・ワイヤ方式で)調整されてもよい。
 モータジェネレータM/Gは、周知の構成(例えば、交流同期モータ)の1つを有していて、例えば、ロータ(図示せず)がM/Gの出力軸Amと一体回転するようになっている。以下、E/Gの出力軸Aeの駆動トルクを「EGトルク」と呼び、M/Gの出力軸Amの駆動トルクを「MGトルク」と呼ぶ。
 図1に示すシフトレバーSLのシフトパターンから理解できるように、本例では、選択される変速段として、前進用の5つの変速段(1速~5速)、及び後進用の1つの変速段(R)が設けられている。以下、後進用の変速段(R)についての説明は省略する。
 シフトレバーSLが「1速」位置に操作されると、スリーブS1が図1に示すニュートラル位置から右側(1速位置)へ移動し、遊転ギヤG1oが出力軸Aoに対して相対回転不能に固定される。この結果、ギヤG1i及びギヤG1oを介してM/Gの出力軸AmとM/Tの出力軸Aoとの間で「1速」の減速比を伴う動力伝達系統が確立される。一方、M/Tの入力軸AiとM/Tの出力軸Aoとの間では動力伝達系統が確立されない。即ち、「1速」が選択された場合、E/Gを停止状態(E/Gの出力軸Aeの回転が停止した状態)に維持しながらMGトルクのみを利用して車両が走行する状態(以下、「EV走行」と呼ぶ)が実現される。即ち、この車両では、「1速」を選択することにより、EV走行による発進が可能である。以下、本例の「1速」のようにEV走行が実現される変速段を「EV走行変速段」と呼ぶ。
 シフトレバーSLが「2速」位置に操作されると、スリーブS1が図1に示すニュートラル位置から左側(2速位置)へ移動し、遊転ギヤG2oが出力軸Aoに対して相対回転不能に固定される。この結果、ギヤG2i及びギヤG2oを介してM/Tの入力軸Ai(即ち、E/Gの出力軸Ae)とM/Tの出力軸Aoとの間で「2速」の減速比を伴う動力伝達系統が確立される。一方、M/Gの出力軸AmとM/Tの出力軸Aoとの間では動力伝達系統が確立されない。即ち、「2速」が選択された場合、クラッチC/Tを介して伝達されるEGトルクのみを利用して車両が走行する状態(以下、「EG走行」と呼ぶ)が実現される。以下、本例の「2速」のようにEG走行が実現される変速段を「EG走行変速段」と呼ぶ。
 シフトレバーSLが「3速(4速)」位置に操作されると、スリーブS2が図1に示すニュートラル位置から右側(左側)(3速(4速)位置)へ移動し、遊転ギヤG3i(G4i)が入力軸Aiに対して相対回転不能に固定される。この結果、ギヤG3i(G4i)及びギヤG3o(G4o)を介してM/Tの入力軸Ai(即ち、E/Gの出力軸Ae)とM/Tの出力軸Aoとの間で「3速(4速)」の減速比を伴う動力伝達系統が確立される。一方、M/Gの出力軸AmとM/Tの出力軸Aoとの間では動力伝達系統が確立されない。即ち、「3速(4速)」も「EG走行変速段」である。
 シフトレバーSLが「5速」位置に操作されると、スリーブS3が図1に示すニュートラル位置から右側(5速位置)へ移動し、遊転ギヤG5iが入力軸Aiに対して相対回転不能に固定される。この結果、ギヤG5i及びギヤG5oを介してM/Tの入力軸Ai(即ち、E/Gの出力軸Ae)とM/Tの出力軸Aoとの間で「5速」の減速比を伴う動力伝達系統が確立される。一方、M/Gの出力軸AmとM/Tの出力軸Aoとの間では動力伝達系統が確立されない。即ち、「5速」も「EG走行変速段」である。
 以上、本例では、「1速」のみがEV走行変速段であり、「2速」~「5速」はEG走行変速段である。「2速」~「5速」の減速比(Aiに対するAoの減速比、Aoの回転速度に対するAiの回転速度の割合)は、「2速」の減速比が最も大きく、「5速」の減速比が最も小さい。「1速」の減速比(Amに対するAoの減速比、Aoの回転速度に対するAmの回転速度の割合)は、「2速」の減速比より大きい。本例では、EG走行変速段である「2速」~「5速」が選択された場合、AmとAoとの間で動力伝達系統が確立されないことから、EGトルクをMGトルクでアシストすることができない。
 スリーブS1~S3の位置は、シフトレバーSLとスリーブS1~S3とを機械的に連結するリンク機構等を利用してシフトレバーSLのシフト位置に応じて機械的に調整されてもよいし、シフトレバーSLのシフト位置を検出するセンサ(後述するセンサP4)の検出結果に基づいて作動するアクチュエータの駆動力を利用して電気的に(所謂バイ・ワイヤ方式で)調整されてもよい。
 また、本装置は、クラッチペダルCPの操作量(踏み込み量、クラッチストローク等)を検出するクラッチ操作量センサP1と、ブレーキペダルBPの操作量(踏力、操作の有無等)を検出するブレーキ操作量センサP2と、アクセルペダルAPの操作量(アクセル開度)を検出するアクセル操作量センサP3と、シフトレバーSLの位置を検出するシフト位置センサP4と、車両の車輪速度を検出する車輪速度センサP5と、を備えている。
 更に、本装置は、電子制御ユニットECUを備えている。ECUは、上述のセンサP1~P5、並びにその他のセンサ等からの情報等に基づいて、E/Gの燃料噴射量(スロットル弁の開度)を制御することでEGトルクを制御するとともに、インバータ(図示せず)を制御することでMGトルクを制御する。
(E/Gの制御)
 本装置によるE/Gの制御は、大略的に以下のようになされる。車両が停止しているとき、E/Gが停止状態(燃料噴射がなされない状態)に維持される。E/Gの停止状態において、ニュートラルからEG走行変速段(「2速」~「5速」の何れか)へのシフトレバーSLの操作がなされたこと(即ち、EG走行変速段が選択されたこと)に基づいて、E/Gが始動される(燃料噴射が開始される)。E/Gの稼働中(燃料噴射がなされている間)では、アクセル開度等に基づいてEGトルクが制御される。以下、この制御を「E/Gの通常制御」と呼ぶ。EG走行変速段での走行は、E/Gの通常制御によりなされる。E/Gの稼働中において、ニュートラルからEV走行変速段(「1速」)へのシフトレバーSLの操作がなされたこと(即ち、EV走行変速段が選択されたこと)、或いは、車両が停止したことに基づいて、E/Gが再び停止状態に維持される。
(M/Gの制御)
 本装置によるM/Gの制御は、大略的に以下のようになされる。車両が停止しているとき、M/Gが停止状態(MGトルク=0)に維持される。M/Gの停止状態において、ニュートラルからEV走行変速段(「1速」)へのシフトレバーSLの操作がなされたこと(即ち、EV走行変速段が選択されたこと)に基づいて、MGトルクを利用した「クリープ車速制御」、又は、MGトルクを利用した「通常発進制御」が開始される。「クリープ車速制御」、及び「通常発進制御」については後述する。
 EV走行変速段(「1速」)にて、「クリープ車速制御」又は「通常発進制御」を利用して車両発進後、ニュートラルからEG走行変速段(「2速」~「5速」の何れか)へのシフトレバーSLの操作がなされたこと(即ち、EG走行変速段が選択されたこと)、或いは、車両が停止したことに基づいて、M/Gが再び停止状態に維持される。
(クリープ車速制御、及び通常発進制御)
 以下、図2に示すフローチャートを参照しながら、「クリープ車速制御」及び「通常発進制御」を含むMGトルクの制御について説明する。以下の処理は、イグニッションスイッチ(図示せず)がオン状態であることが前提とされる。先ず、ステップ205では、ニュートラルからEV走行変速段(「1速」)へのシフトレバーSLの操作がなされたか否かが判定される。ここで、「No」と判定される場合、ステップ230にてMGトルクが「0」に維持される。
 以下、ステップ205にて「Yes」と判定される場合、即ち、EV走行変速段(「1速」)が選択された場合について説明していく。なお、このフローチャートでは、車両停止状態において、先ずクラッチペダルCPが踏み込まれ、次いで、ニュートラルからEV走行変速段(「1速」)へのシフトレバーSLの操作がなされる状況が想定される。
 (クラッチペダルCPが踏み込まれた状態にて)EV走行変速段(「1速」)が選択されると、ステップ210にてブレーキペダルBPが操作されていないか否かが判定され、ブレーキペダルBPが踏み込まれていると(ステップ210にて「No」と判定)、ステップ230にてMGトルクが「0」に維持される。ブレーキペダルBPが操作されているか否かは、ブレーキペダルBPの操作量(踏力、ブレーキ液圧等)が所定値以上か否かに基づいて判定され得る。
 一方、ステップ210にて「Yes」と判定される場合、ステップ215にてアクセルペダルAPが操作されていないか否かが判定される。アクセルペダルAPが操作されているか否かは、アクセル開度が所定値以上か否かに基づいて判定され得る。
 先ず、「Yes」と判定される場合、即ち、(クラッチペダルCPが踏み込まれた状態にて)EV走行変速段(「1速」)が選択され、且つ、ブレーキペダルBPが操作されておらず、且つ、アクセルペダルAPが操作されていない場合について説明する。この場合、ステップ220にて「クリープ車速制御」が実行される。
 「クリープ車速制御」では、図3に示す「クラッチ戻しストローク」と「クリープ車速」(目標となる微小車速)との関係を規定する既に作製されたマップが使用される。「クラッチ戻しストローク」とは、クラッチペダルCPの予め定められた最大踏み込み量(最大ストローク)からの戻し方向の操作量(ストローク)である。
 図3に示すように、本例では、クリープ車速(目標車速)は、クラッチ戻しストロークが「0」から値aまでは一定で、値aから値bまではクラッチ戻しストロークの増加に従って増大し、値bを超えると一定となる。例えば、値a、及び値bはそれぞれ、「クラッチC/Tが完全分断状態から半クラッチ状態に移行するストローク」、及び「クラッチC/Tが半クラッチ状態から完全接合状態に移行するストローク」に対応している。
 「クリープ車速制御」では、上記マップと、クラッチ操作量センサP1から得られる現在のクラッチ戻しストロークとに基づいて、目標となるクリープ車速が算出される。そして、車輪速度センサS5等からの情報に基づいて検出される実際の車速が算出されたクリープ車速と一致するように、MGトルクがフィードバック制御される。
 これにより、「クリープ車速制御」では、アクセルペダルAPを操作することなくクラッチペダルCPの操作量(クラッチ戻しストローク)を調整しながら、微小の車速を調整することができる。即ち、所謂クリープ走行と同様の微速走行が実現され得る。
 このように「クリープ車速制御」の実行中において、アクセルペダルAPが操作されると、ステップ215にて「No」と判定されて、ステップ225にて「クリープ車速制御」に代えて「通常発進制御」が実行される。「通常発進制御」では、MGトルクがアクセル開度及びクラッチストローク(クラッチ戻しストローク)に基づいて制御される。
 具体的には、「通常発進制御」におけるMGトルクは、「手動変速機と摩擦クラッチとを備え且つ動力源として内燃機関のみを搭載した通常車両」が「1速」で発進する際における「アクセル開度及びクラッチストローク」と「クラッチを介して手動変速機の入力軸へ伝達される内燃機関のトルク」との関係を規定する予め作製されたマップ等を利用して制御される。なお、「クリープ車速制御」又は「通常発進制御」の実行中においてブレーキペダルBPが操作されると、実行中の制御が中止される(ステップ210にて「No」と判定)。
(作用・効果)
 上述したように、本装置では、車両停止状態にて、クラッチペダルCPが踏み込まれた状態で発進用の電動機走行変速段(「1速」)が選択され且つアクセルペダルAPが操作されていない場合、その後、MGトルクを利用した「クリープ車速制御」が実行される。この結果、アクセルペダルAPを操作することなくクラッチ戻しストロークを調整しながら微小の車速を調整することができる。即ち、所謂クリープ走行と同様の微速走行が実現され得る。
 加えて、「クリープ車速制御」の実行中においてアクセルペダルAPの操作が検出された場合、M/Gの制御が、「クリープ車速制御」からMGトルクを利用した「EV走行による通常の発進制御」へとスムーズに切り換えられる。従って、運転者は、トルクコンバータを用いた自動変速機を搭載した車両を発進させる場合と同じような感覚をもって、クリープ走行を利用しながら車両を発進させることができる。
 本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、EG走行変速段である「2速」~「5速」が選択された場合、M/Gの出力軸AmとM/Tの出力軸Aoとの間で動力伝達系統が確立されないことから、EGトルクをMGトルクでアシストすることができない。これに対し、EG走行変速段である「2速」~「5速」が選択された状態においてAmとAoとの間で動力伝達系統を確立し得る構造が採用される場合、EGトルクをMGトルクでアシストすることができる。
 また、上記実施形態では、「クリープ車速制御」の実行中においてブレーキペダルBPが操作されると、「クリープ車速制御」が中止されていた(図2のステップ210にて「No」と判定)。これに対し、図4に示すように、ステップ210を省略することができる。この場合、ステップ405の「クリープ車速制御」において、図3に示したマップに代えて図5に示すマップが使用され得る。
 これにより、クリープ車速(目標車速)は、ブレーキペダルBPの操作量(踏力、ブレーキ油圧等)が大きいほどより小さい値に設定される。この結果、「クリープ車速制御」中の微小車速が、クラッチ戻し操作量のみならずブレーキペダルBPの操作量によっても調整され得る。従って、「クリープ車速制御」中の微小車速が、運転者の意図に沿うようにより緻密に調整され得る。
 加えて、上記実施形態では、「1速」のみがEV走行変速段であり、「2速」~「5速」はEG走行変速段であるが、図6に示すように、「1速」及び「2速」がEV走行変速段であり、「3速」~「5速」はEG走行変速段であってもよい。図6に示す構成では、シフトレバーSLが「2速」位置に操作されると、スリーブS1が図6に示すニュートラル位置から左側(2速位置)へ移動し、遊転ギヤG2oが出力軸Aoに対して相対回転不能に固定される。この結果、ギヤG2i及びギヤG2oを介してM/Gの出力軸AmとM/Tの出力軸Aoとの間で「2速」の減速比を伴う動力伝達系統が確立される。一方、M/Tの入力軸AiとM/Tの出力軸Aoとの間では動力伝達系統が確立されない。即ち、「2速」が選択された場合、「1速」が選択された場合と同様、EV走行が実現される。従って、「2速」を利用して、クリープ走行を利用しながら車両を発進させることもできる。

Claims (5)

  1.  動力源として内燃機関と電動機とを備えた車両に適用され、
     運転者により操作されるシフト操作部材のシフト位置に応じて変速段が選択されるトルクコンバータを備えない手動変速機であって、前記内燃機関の出力軸から動力が入力される入力軸と前記車両の駆動輪へ動力を出力する出力軸とを備え、前記変速機の入力軸と前記変速機の出力軸との間で動力伝達系統が確立されず且つ前記電動機の出力軸と前記変速機の出力軸との間で動力伝達系統が確立される1つ又は複数の電動機走行変速段と、前記変速機の入力軸と前記変速機の出力軸との間で動力伝達系統が確立される1つ又は複数の内燃機関走行変速段と、を備え、前記シフト操作部材を前記電動機走行変速段に対応するシフト位置に移動することにより前記電動機走行変速段が選択・実現され、前記シフト操作部材を前記内燃機関走行変速段に対応するシフト位置に移動することにより前記内燃機関走行変速段が選択・実現されるように構成された手動変速機と、
     前記内燃機関の出力軸と前記手動変速機の入力軸との間に介装されて、運転者により操作されるクラッチ操作部材の操作量に応じて接合状態が変化する摩擦クラッチと、
     前記内燃機関の出力軸の駆動トルクである内燃機関駆動トルク、及び、前記電動機の出力軸の駆動トルクである電動機駆動トルクを制御する制御手段と、
     前記クラッチ操作部材の操作量を検出する第1検出手段と、
     運転者により操作される前記車両を加速させるための加速操作部材の操作を検出する第2検出手段と、
     前記選択された変速段を検出する第3検出手段と、
     前記車両の速度を検出する第4検出手段と、
     を備えた車両の動力伝達制御装置であって、
     前記制御手段は、
     前記電動機走行変速段が選択されたことが検出された場合、前記内燃機関を停止状態に維持し、前記内燃機関走行変速段が選択されたことが検出された場合、前記内燃機関を稼働して前記内燃機関駆動トルクを前記加速操作部材の操作量に基づいて調整するように構成され、
     前記制御手段は、
     前記電動機走行変速段が選択されたことが検出され且つ前記加速操作部材の操作が検出されていない場合、前記クラッチ操作部材の操作量と目標車速との間の既に定められた関係と、検出された前記クラッチ操作部材の操作量とに基づいて前記目標車速を決定し、検出された前記車両の速度が前記目標車速に一致するように前記電動機駆動トルクを調整する車速制御を実行するように構成された、車両の動力伝達制御装置。
  2.  請求項1に記載の車両の動力伝達制御装置において、
     前記制御手段は、
     前記車速制御の実行中において前記加速操作部材の操作が検出された場合、前記車速制御を終了し、前記電動機駆動トルクを前記加速操作部材の操作量及び前記クラッチ操作部材の操作量に基づいて決定される通常トルク値に調整するように構成された、車両の動力伝達制御装置。
  3.  請求項1又は請求項2に記載の車両の動力伝達制御装置において、
     前記制御手段は、
     前記クラッチ操作部材の所定の操作量からの戻し方向の操作量である戻し操作量が大きいほど前記目標車速が大きくなるように前記目標車速を決定するように構成された車両の動力伝達制御装置。
  4.  請求項1乃至請求項3の何れか一項に記載の車両の動力伝達制御装置であって、
     運転者により操作される前記車両を減速させるための減速操作部材の操作量を検出する第5検出手段を備え、
     前記制御手段は、
     前記減速操作部材の操作量が大きいほど前記目標車速が小さくなるように前記目標車速を決定するように構成された車両の動力伝達制御装置。
  5.  請求項1乃至請求項4の何れか一項に記載の車両の動力伝達制御装置において、
     前記1つ又は複数の電動機走行変速段の前記電動機の出力軸に対する前記変速機の出力軸の減速比は、前記1つ又は複数の内燃機関走行変速段の前記変速機の入力軸に対する前記変速機の出力軸の減速比のうちの最大値より大きい、車両の動力伝達制御装置。
PCT/JP2011/075257 2010-12-17 2011-11-02 車両の動力伝達制御装置 WO2012081325A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180060833.1A CN103328297B (zh) 2010-12-17 2011-11-02 车辆的动力传递控制装置
EP11848690.1A EP2653363B1 (en) 2010-12-17 2011-11-02 Power transmission control device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010281114A JP5422544B2 (ja) 2010-12-17 2010-12-17 車両の動力伝達制御装置
JP2010-281114 2010-12-17

Publications (1)

Publication Number Publication Date
WO2012081325A1 true WO2012081325A1 (ja) 2012-06-21

Family

ID=46244438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075257 WO2012081325A1 (ja) 2010-12-17 2011-11-02 車両の動力伝達制御装置

Country Status (4)

Country Link
EP (1) EP2653363B1 (ja)
JP (1) JP5422544B2 (ja)
CN (1) CN103328297B (ja)
WO (1) WO2012081325A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114056119A (zh) * 2020-08-07 2022-02-18 丰田自动车株式会社 电动汽车
CN114291091A (zh) * 2022-01-24 2022-04-08 一汽解放汽车有限公司 一种车辆的蠕动模式的控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103557319B (zh) * 2013-10-31 2016-02-24 长城汽车股份有限公司 一种自动档汽车低速蠕行控制方法
AU2015348405B2 (en) 2014-11-17 2019-07-18 Alpraaz Ab Powertrain for a vehicle
CN105736601B (zh) * 2016-03-02 2017-12-01 安徽江淮汽车集团股份有限公司 一种汽车蠕动初期离合器扭矩控制方法及系统
CN107524796A (zh) * 2017-08-21 2017-12-29 合肥力正新能源科技有限公司 一种电动汽车换挡处理方法
CN108068802B (zh) * 2017-11-09 2020-02-21 吉利汽车研究院(宁波)有限公司 一种车辆蠕行控制方法及利用其的自动泊车方法
JP2021098402A (ja) * 2019-12-20 2021-07-01 トヨタ自動車株式会社 電動車両および電動車両の制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224710A (ja) 1999-01-27 2000-08-11 Mitsubishi Motors Corp ハイブリッド車
JP2006298064A (ja) * 2005-04-18 2006-11-02 Nissan Motor Co Ltd 車両のクリープ制御装置
JP2006298185A (ja) * 2005-04-21 2006-11-02 Advics:Kk 車両用ブレーキ制御装置
JP2006298063A (ja) * 2005-04-18 2006-11-02 Nissan Motor Co Ltd 車両のクリープ制御装置及び制御方法
JP2009292313A (ja) * 2008-06-05 2009-12-17 Mazda Motor Corp 車両の駆動制御装置及び方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621244B1 (en) * 1999-08-05 2003-09-16 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for hybrid vehicle
JP3706290B2 (ja) * 2000-02-04 2005-10-12 株式会社日立製作所 ハイブリッド自動車の制御装置
JP4108265B2 (ja) * 2000-11-22 2008-06-25 本田技研工業株式会社 車両用クラッチの接続状態判定装置およびこれを用いた変速制御装置
FR2821137B1 (fr) * 2001-02-19 2004-05-28 Peugeot Citroen Automobiles Sa Systeme de transmission de mouvement pour vehicules a propulsion hybride
JP3499852B2 (ja) * 2001-12-03 2004-02-23 本田技研工業株式会社 動力伝達機構
JP2005138743A (ja) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP4268954B2 (ja) * 2005-05-30 2009-05-27 株式会社日立製作所 電動4輪駆動車の制御装置,電動駆動システムおよび電動4輪駆動車
JP2009090769A (ja) * 2007-10-05 2009-04-30 Aisin Ai Co Ltd 車両における動力装置
DE102007055785A1 (de) * 2007-12-13 2009-06-18 Zf Friedrichshafen Ag Verfahren und Vorrichtung zur Steuerung eines Kriechbetriebes eines Fahrzeuges mit einem Hybridantrieb
JP5267303B2 (ja) * 2009-04-22 2013-08-21 トヨタ自動車株式会社 車両用駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224710A (ja) 1999-01-27 2000-08-11 Mitsubishi Motors Corp ハイブリッド車
JP2006298064A (ja) * 2005-04-18 2006-11-02 Nissan Motor Co Ltd 車両のクリープ制御装置
JP2006298063A (ja) * 2005-04-18 2006-11-02 Nissan Motor Co Ltd 車両のクリープ制御装置及び制御方法
JP2006298185A (ja) * 2005-04-21 2006-11-02 Advics:Kk 車両用ブレーキ制御装置
JP2009292313A (ja) * 2008-06-05 2009-12-17 Mazda Motor Corp 車両の駆動制御装置及び方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114056119A (zh) * 2020-08-07 2022-02-18 丰田自动车株式会社 电动汽车
CN114056119B (zh) * 2020-08-07 2023-11-21 丰田自动车株式会社 电动汽车
CN114291091A (zh) * 2022-01-24 2022-04-08 一汽解放汽车有限公司 一种车辆的蠕动模式的控制方法
CN114291091B (zh) * 2022-01-24 2023-07-25 一汽解放汽车有限公司 一种车辆的蠕动模式的控制方法

Also Published As

Publication number Publication date
EP2653363A1 (en) 2013-10-23
EP2653363A4 (en) 2015-09-23
JP5422544B2 (ja) 2014-02-19
EP2653363B1 (en) 2017-12-20
CN103328297A (zh) 2013-09-25
CN103328297B (zh) 2015-09-30
JP2012126319A (ja) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5422544B2 (ja) 車両の動力伝達制御装置
JP5096552B2 (ja) 車両の動力伝達制御装置
JP5521151B2 (ja) 車両の動力伝達制御装置
JP5367682B2 (ja) 車両の動力伝達制御装置
EP2682646B1 (en) Manual transmission
WO2011148753A1 (ja) ハイブリッド車両のアクセルペダル踏力制御装置
JP5769956B2 (ja) 車両の動力伝達制御装置
JP5876242B2 (ja) 手動変速機
EP2548780A2 (en) Power transmission control device for vehicle
WO2013008856A1 (ja) 手動変速機
JP5715848B2 (ja) 車両の動力伝達制御装置
JP5185994B2 (ja) 車両の動力伝達制御装置
JP5409526B2 (ja) 車両の動力伝達制御装置
WO2013008855A1 (ja) 手動変速機
WO2012124493A1 (ja) 手動変速機
JP5885407B2 (ja) 車両の動力伝達制御装置
WO2012081280A1 (ja) 車両の動力伝達制御装置
JP5990023B2 (ja) 車両の動力伝達制御装置
JP5226847B2 (ja) 車両の動力伝達制御装置
JP5650262B2 (ja) 車両の動力伝達制御装置
WO2012077382A1 (ja) 車両の動力伝達制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011848690

Country of ref document: EP