WO2012124493A1 - 手動変速機 - Google Patents

手動変速機 Download PDF

Info

Publication number
WO2012124493A1
WO2012124493A1 PCT/JP2012/055217 JP2012055217W WO2012124493A1 WO 2012124493 A1 WO2012124493 A1 WO 2012124493A1 JP 2012055217 W JP2012055217 W JP 2012055217W WO 2012124493 A1 WO2012124493 A1 WO 2012124493A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
shaft
region
connection state
shift operation
Prior art date
Application number
PCT/JP2012/055217
Other languages
English (en)
French (fr)
Inventor
慎也 大須賀
Original Assignee
アイシン・エーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エーアイ株式会社 filed Critical アイシン・エーアイ株式会社
Priority to EP12758118.9A priority Critical patent/EP2684755B1/en
Publication of WO2012124493A1 publication Critical patent/WO2012124493A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/08Multiple final output mechanisms being moved by a single common final actuating mechanism
    • F16H63/20Multiple final output mechanisms being moved by a single common final actuating mechanism with preselection and subsequent movement of each final output mechanism by movement of the final actuating mechanism in two different ways, e.g. guided by a shift gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/3013Constructional features of the final output mechanisms the final output mechanism being characterised by linkages converting movement, e.g. into opposite direction by a pivoting lever linking two shift rods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a manual transmission applied to a vehicle having an internal combustion engine and an electric motor as a power source, and more particularly, a friction clutch is interposed between an output shaft of the internal combustion engine and an input shaft of the manual transmission. It relates to what is applied to vehicles.
  • hybrid vehicle including an engine and an electric motor as power sources has been widely known (see, for example, Japanese Patent Application Laid-Open No. 2000-224710).
  • the hybrid vehicle a configuration in which the output shaft of the electric motor is connected to any of the output shaft of the internal combustion engine, the input shaft of the transmission, and the output shaft of the transmission can be employed.
  • the driving torque of the output shaft of the internal combustion engine is referred to as “internal combustion engine driving torque”
  • motor driving torque the driving torque of the output shaft of the electric motor
  • HV-MT vehicle a power transmission control device applied to a hybrid vehicle (hereinafter referred to as “HV-MT vehicle”) having a manual transmission and a friction clutch
  • the “manual transmission” referred to here is a transmission (so-called manual transmission, MT) that does not include a torque converter in which a gear position is selected according to a shift position of a shift lever operated by a driver.
  • the “friction clutch” referred to here is interposed between the output shaft of the internal combustion engine and the input shaft of the manual transmission, and the friction plate is operated according to the operation amount of the clutch pedal operated by the driver. This is a clutch whose joining state changes.
  • the output shaft of the motor is connected to the input shaft of the transmission so that power can be transmitted (hereinafter referred to as “IN connection state”), and the output shaft of the motor is the output shaft of the transmission. And a state in which power transmission is possible (hereinafter referred to as “OUT connection state”).
  • the rotational speed of the output shaft of the motor relative to the vehicle speed can be changed by changing the gear position of the transmission. Therefore, by adjusting the gear position of the transmission, the rotational speed of the output shaft of the motor is maintained within a range where the energy conversion efficiency (more specifically, the generation efficiency of drive torque, regenerative torque, etc.) is good. There is a merit that it is easy.
  • the transmission is in a neutral state (a state where a power transmission system is not established between the input and output shafts)
  • the motor is operated in a vehicle stop state by operating the internal combustion engine and bringing the friction clutch into a joint state.
  • the output shaft can be rotated. That is, there is also an advantage that the electric power obtained by the electric power generation of the electric motor can be stored in the battery when the vehicle is stopped.
  • connection switching mechanism that selectively realizes the IN connection state and the OUT connection state in the manual transmission applied to the HV-MT vehicle.
  • the connection switching mechanism it is inevitable that the torque transmission between the motor and the transmission needs to be temporarily interrupted when the connection state of the output shaft of the motor is changed. Therefore, a shock (change in acceleration in the longitudinal direction of the vehicle) accompanying the change in the connection state of the output shaft of the electric motor inevitably occurs.
  • production of such a shock leads to giving a driver discomfort.
  • An object of the present invention is a manual transmission for an HV-MT vehicle that includes a connection switching mechanism that selectively realizes an IN connection state and an OUT connection state, and is accompanied by a change in the connection state of the output shaft of the motor.
  • the object is to provide something that is difficult for the driver to perceive shock.
  • a manual transmission includes an input shaft (Ai) to which power is input from the internal combustion engine, and an output shaft (Ao) to output power to the drive wheels of the vehicle.
  • the manual transmission includes a transmission transmission mechanism (M1) and a connection switching mechanism (M2).
  • the transmission speed change mechanism (M1) moves the shift operation member (SL) to each shift completion position corresponding to a plurality of shift speeds (EV, 2nd to 5th speed) on the shift pattern. (Different from neutral).
  • a power transmission system may or may not be established between the input and output shafts.
  • An example of a shift stage in which a power transmission system is not established between the input and output shafts (different from neutral) is a shift stage for EV travel.
  • a power transmission system is established in which the transmission reduction ratio is set to each value corresponding to the gear stage corresponding to the input and output shafts.
  • connection switching mechanism (M2) is based on the fact that the position of the shift operation member has passed a predetermined position on the shift pattern excluding the respective shift completion positions.
  • the output shaft connection state is configured to be switched (from the IN connection state to the OUT connection state or vice versa).
  • the driver when changing the connection state of the output shaft of the motor, the driver needs to operate the shift operation member on the shift pattern. In general, when a person is performing some operation, it becomes difficult to sense a shock or the like received from the outside.
  • the above configuration is based on this viewpoint.
  • connection state of the output shaft of the motor is changed while the driver operates the shift operation member.
  • the driver receives a shock accompanying a change in the connection state of the output shaft of the electric motor while operating the shift operation member. Therefore, it becomes difficult for the driver to sense such a shock.
  • the shift operation member moves to each shift completion position corresponding to the plurality of shift speeds
  • the position of the shift operation member is changed between the input shaft and the output shaft.
  • a select operation that is a left-right operation of the vehicle is set to a corresponding select position
  • a shift operation that is a front-back operation of the vehicle is performed. This is achieved by moving from the corresponding select position to the corresponding shift completion position.
  • connection state of the output shaft of the motor is changed based on the fact that the position of the shift operation member that moves along the left-right direction of the vehicle during the select operation has passed a predetermined position in the left-right direction of the vehicle. May be.
  • the position of the shift operation member is between the select position corresponding to the first shift stage (EV) of the plurality of shift stages and the shift completion position corresponding to the first shift stage. It is preferable that the connection state of the output shaft of the electric motor is switched based on having passed through the first switching position. Further, a shift completion position corresponding to the first gear position is disposed on the front side of the vehicle from a select position corresponding to the first gear position (EV), and the select position corresponding to the first gear position is selected.
  • the connection state of the output shaft of the electric motor based on having passed the “second switching position” between the select position corresponding to the second gear and the shift completion position corresponding to the second gear. May be configured to switch.
  • FIG. 1 is a schematic configuration diagram in a state where an N position of a power transmission control device including a manual transmission for an HV-MT vehicle according to an embodiment of the present invention is selected.
  • FIG. It is the schematic diagram which showed the positional relationship of the S & S shaft and the some fork shaft in the state where N position was selected. It is a figure for demonstrating "IN connection area
  • FIG. 3 is an enlarged view of a Z portion in FIG. 2 showing a state of the connection switching mechanism (IN connection state) in a state where an N position is selected.
  • FIG. 5 is a view corresponding to FIG.
  • FIG. 4 for explaining the operation when switching from the IN connection state to the OUT connection state is performed by a shift operation from the EV-2 select position to the EV shift completion position.
  • FIG. 5 is a view corresponding to FIG. 4 for explaining the operation when the OUT connection state is switched to the IN connection state by a shift operation from the EV shift completion position to the EV-2 select position.
  • FIG. 5 is a diagram corresponding to FIG. 4 for explaining an operation when switching from the IN connection state to the OUT connection state by a shift operation from the EV-2 select position to the second speed shift completion position.
  • FIG. 5 is a view corresponding to FIG. 4 for explaining the operation when the OUT connection state is switched to the IN connection state by a shift operation from the second-speed shift completion position to the EV-2 select position.
  • FIG. 2 is a diagram corresponding to FIG. 1 in a state where an EV position is selected.
  • FIG. 3 is a diagram corresponding to FIG. 2 in a state where an EV position is selected. It is a figure corresponding to Drawing 1 in the state where the 2nd gear position was selected. It is a figure corresponding to Drawing 2 in the state where the 2nd gear position was selected. It is a figure corresponding to Drawing 1 in the state where the 3rd speed position was selected. It is a figure corresponding to Drawing 2 in the state where the 3rd speed position was chosen. It is a figure corresponding to Drawing 1 in the state where the 4th speed position was chosen. It is a figure corresponding to Drawing 2 in the state where the 4th gear position was selected. It is a figure corresponding to Drawing 1 in the state where the 5th gear position was selected. It is a figure corresponding to Drawing 2 in the state where the 5th speed position was chosen.
  • the present apparatus is “a manual transmission M / T having an engine E / G and a motor generator M / G as a power source and not having a torque converter, a friction clutch C / T, This is applied to the “vehicle equipped with the vehicle”, that is, the “HV-MT vehicle”.
  • the “HV-MT vehicle” may be a front wheel drive vehicle, a rear wheel drive vehicle, or a four wheel drive vehicle.
  • the engine E / G is a well-known internal combustion engine, for example, a gasoline engine that uses gasoline as fuel, or a diesel engine that uses light oil as fuel.
  • the manual transmission M / T is a transmission (so-called manual transmission) that does not include a torque converter that selects a gear position according to the shift position of the shift lever SL operated by the driver.
  • M / T includes an input shaft Ai that receives power from the output shaft Ae of the E / G, an output shaft Ao that outputs power to the drive wheels of the vehicle, and an MG shaft Am that receives power from the M / G. .
  • the input shaft Ai, the output shaft Ao, and the MG axis Am are arranged in parallel to each other. In the example shown in FIG. 1, the MG axis Am is arranged coaxially with the input axis Ai. Details of the configuration of the M / T will be described later.
  • the friction clutch C / T is interposed between the E / G output shaft Ae and the M / T input shaft Ai.
  • C / T rotates integrally with Ai with respect to the state of engagement of the friction plates (more specifically, the flywheel that rotates integrally with Ae) according to the operation amount (depression amount) of the clutch pedal CP operated by the driver.
  • This is a known clutch in which the axial position of the friction plate changes.
  • the C / T joined state (the axial position of the friction plate) is mechanically controlled according to the operation amount of the CP using a link mechanism or the like that mechanically connects the clutch pedal CP and the C / T (friction plate). Or may be adjusted electrically (in a so-called by-wire method) using the driving force of an actuator that operates based on the detection result of a sensor (sensor P1 to be described later) that detects the amount of operation of the CP. May be.
  • the motor generator M / G has one of known configurations (for example, an AC synchronous motor), and for example, a rotor (not shown) rotates integrally with the MG shaft Am.
  • EG torque the drive torque of the E / G output shaft Ae
  • MG torque the drive torque of the MG shaft Am (torque of the output shaft of M / G) is referred to as “MG torque”.
  • this device has a clutch operation amount sensor P1 that detects an operation amount (depression amount, clutch stroke, etc.) of the clutch pedal CP, and a brake operation amount that detects an operation amount (stepping force, presence / absence of operation, etc.) of the brake pedal BP.
  • a sensor P2 an accelerator operation amount sensor P3 that detects the operation amount (accelerator opening) of the accelerator pedal AP, and a shift position sensor P4 that detects the position of the shift lever SL are provided.
  • this device includes an electronic control unit ECU.
  • the ECU controls the EG torque by controlling the fuel injection amount of the E / G (the opening degree of the throttle valve) based on the information from the sensors P1 to P4 and the other sensors, and the inverter.
  • the MG torque is controlled by controlling (not shown).
  • shift operation the operation of the shift lever SL in the left-right direction of the vehicle
  • shift operation the operation of the shift lever SL in the front-rear direction of the vehicle
  • EV ⁇ the intersection position between the locus of the shift operation and the locus of the select operation between the “EV shift completion position” and the “second gear shift completion position”
  • a state where the MG shaft Am is connected to the M / T input shaft Ai (without going through the M / T output shaft Ao) so as to be able to transmit power is referred to as an “IN connection state”.
  • a state in which power transmission is possible with Ao (without going through Ai) is called an “OUT connection state”.
  • the “ratio of the rotational speed of the input shaft Ai to the rotational speed of the output shaft Ao” is referred to as “MT reduction ratio”.
  • M / T includes sleeves S1, S2, S3, and Sm.
  • S1, S2, and S3 are “EV-2 speed” switching sleeves, which are fitted to the corresponding hubs that rotate integrally with the output shaft Ao so that they cannot be rotated relative to each other but can be moved relative to each other in the axial direction.
  • -4th speed "switching sleeve and" 5th speed-R switching sleeve.
  • Sm is a sleeve for switching the connection state of the MG shaft Am, which is fitted to a hub that rotates integrally with the MG shaft Am so that it cannot rotate relative to the MG shaft Am but can move relative to the shaft.
  • the sleeves S1, S2, S3, and Sm are integrally connected to the fork shafts FS1, FS2, FS3, and the moving member Hm, respectively.
  • FS1, FS2, FS3, and Hm are respectively shift operations of the inner lever IL (shown by hatching in FIG. 2) provided on the S & S shaft in conjunction with the operation of the shift lever SL.
  • the inner lever IL shown by hatching in FIG. 2
  • it is driven in the up and down direction in FIG. (Details will be described later).
  • shift rotation is performed in parallel by moving in the axial direction by a select operation (left-right operation in FIG. 1) and rotating about the axis by a shift operation (up-down direction operation in FIG. 1).
  • type is shown, a “select rotation type” that rotates around the axis by a select operation and translates in the axial direction by a shift operation may be used.
  • connection state of the MG shaft As shown in FIG. 3, an “IN connection area” (refer to an area indicated by fine dots) and an “OUT connection area” (area indicated by oblique lines) are defined.
  • Switching of the connection state of the MG axis means that the SL position has moved from the “IN connection area” to the “OUT connection area” (or vice versa) during the shift operation (ie, the “predetermined position”, the “ The first switching position ”and“ the second switching position ”have been passed).
  • the shift operation ie, the “predetermined position”, the “ The first switching position ”and“ the second switching position ”have been passed.
  • the fork shaft FS1 and the switching shaft FSm arranged in parallel with each other are inserted into corresponding through holes formed in the moving member Hm so as to be relatively movable in the axial direction (vertical direction in FIG. 4).
  • the moving member Hm is restricted from relative movement downward in FIG. 4 with respect to FS1 and FSm by snap rings SR and SR fixed to FS1 and FSm, respectively.
  • the moving member Hm is constantly urged downward in FIG. 4 with respect to FS1 and FSm by springs SP and SP provided on FS1 and FSm, respectively.
  • a pin P is inserted inside the moving member Hm so as to be movable in the left-right direction in FIG.
  • the pin P can selectively engage with the groove G1 formed on the side surface of the FS1 and the groove Gm formed on the side surface of the FSm in a state where the Hm is locked to the snap rings SR, SR. ing.
  • FS1 and FSm are connected to both ends of a lever Lm that rotates about a fulcrum O.
  • FS1 moves to one side in the axial direction (vertical direction in FIG. 4)
  • FSm moves to the other side in the axial direction. It is supposed to be.
  • FIG. 4 shows a state where SL is at the N position (more precisely, the neutral range).
  • both FS1 and FSm are in the neutral position.
  • Hm can move relative to FS1 and FSm.
  • Hm is fixed at a position where it is locked to the snap rings SR, SR by the urging force of the springs SP, SP described above. Therefore, the pin P does not engage with any of the grooves G1 and Gm.
  • this position of the sleeve Sm integrated with Hm and Hm is referred to as an “IN position”.
  • FIG. 5 shows a case where the SL moves from the neutral position (more precisely, the EV-2 select position) to the EV shift completion position.
  • the FS 1 is driven upward in FIG. 5 by being pressed by the inner lever SL.
  • Hm tends to move upward in FIG. 5 integrally with FS1 by the action of the snap ring SR fixed to FS1.
  • the FSm tends to move downward in FIG. 5 by the action of the lever Lm.
  • the vertical position between the pin P and the groove G1 still matches, while the vertical position between the pin P and the groove Gm does not match. Therefore, the pin P moves to the right in FIG. 5 and engages only with the groove G1, and Hm is coupled integrally with the FS1 (the FSm is maintained so as to be relatively movable).
  • Hm is integrally coupled with FS1, and as a result of the movement from the neutral position of FS1 to the EV position (upward movement in FIG. 5), Hm (and therefore Sm) becomes the “IN position”. Then, it moves to the upper position in FIG. Hereinafter, for Hm and Sm, this position is referred to as an “OUT position”.
  • FIG. 6 shows a case where the SL returns from the EV shift completion position to the neutral position (more precisely, the EV-2 select position).
  • FS1 returns from the EV position to the neutral position by being pressed by the inner lever SL.
  • Hm integrated with FS1 also returns from the “OUT position” to the “IN position”, and FSm also returns to the neutral position. That is, the state shown in FIG. 4 is obtained again.
  • the connection state of the MG axis changes from “OUT connection state” to “IN connection state”.
  • FIG. 7 shows a case where the SL moves from the neutral position (more precisely, the EV-2 select position) to the second speed shift completion position.
  • FS1 when pressed by the inner lever SL, FS1 is driven downward in FIG. 5, and FSm is driven upward in FIG.
  • Hm tends to move upward in FIG. 7 integrally with FSm by the action of the snap ring SR. Therefore, the vertical position of the pin P and the groove Gm continues to match, while the vertical position of the pin P and the groove G1 does not match. For this reason, the pin P moves in the left direction of FIG. 7 and engages only with the groove Gm, and Hm is coupled integrally with the FSm (maintained so as to be relatively movable with the FS1).
  • FIG. 8 shows the case where SL returns from the 2nd gear shift completion position to the neutral position (more precisely, the EV-2 select position).
  • the FS1 returns from the second gear position to the neutral position
  • the FSm also returns to the neutral position.
  • Hm integrated with FSm also returns from the “OUT position” to the “IN position”. That is, the state shown in FIG. 4 is obtained again.
  • the connection state of the MG axis changes from “OUT connection state” to “IN connection state”.
  • the “IN connection state” is maintained when SL is in the IN connection region, and the “OUT connection state” is maintained when SL is in the OUT connection region.
  • switching from the “IN connection state” to the “OUT connection state” is performed. More specifically, when the SL is in the neutral position, the SL moves from the neutral position to the shift completion position of “a gear stage other than EV and 2nd speed” (3 to 5 speed) (or vice versa). The “IN connection state” is maintained.
  • the “IN connection state” is changed to the “OUT connection state”. (Or vice versa) is switched.
  • the M / T includes the connection switching mechanism M2 that selectively realizes the “IN connection state” and the “OUT connection state”.
  • M2 comprises a sleeve Sm, a moving member Hm, a fork shaft FS1, a switching shaft FSm, a pin P, grooves G1, Gm, snap rings SR, SR, springs SP, SP, fixed gears Gin, Goto, idle gears Gouti, etc. Is done.
  • the rotation speed of the MG shaft Am can be changed to energy conversion efficiency (more specifically, driving torque, regenerative torque, etc.) by adjusting the M / T shift speed.
  • the generation efficiency is easily maintained within a range where the generation efficiency is good.
  • the M / T includes the MT speed change mechanism M1 that can selectively set the MT reduction ratio in four stages from “2nd speed” to “5th speed”.
  • the MT transmission mechanism M1 includes a fixed gear GNi, an idle gear GNo, sleeves S1 to S3, and fork shafts FS1 to FS3 (N: 2 to 5).
  • the E / G control by this apparatus is generally performed as follows.
  • the E / G is maintained in a stopped state (a state in which fuel injection is not performed).
  • the E / G stop state the E / G is started (fuel injection is started based on the selection of a gear position for HV traveling (any one of “2nd speed” to “5th speed”)).
  • the EG torque is controlled based on the accelerator opening and the like.
  • the E / G is maintained in the stopped state again based on the selection of “N” or “EV” or the stop of the vehicle.
  • a torque of the internal combustion engine transmitted to the input shaft of the manual transmission via the clutch and a previously prepared map or the like that defines the relationship.
  • the MG torque is determined based on the accelerator opening, etc. Be controlled. Then, based on the fact that the vehicle has stopped, M / G is again maintained in the stopped state.
  • the connection state of the MG shaft is changed while the driver performs the shift operation of the shift lever SL (operation in the front-rear direction of the vehicle). (Switching between IN connection state and OUT connection state) is performed.
  • the driver receives a shock accompanying a change in the connection state of the MG shaft while performing the SL shift operation.
  • this M / T it becomes difficult for the driver to sense a shock accompanying a change in the connection state of the MG shaft.
  • the present invention is not limited to the above embodiment, and various modifications can be employed within the scope of the present invention.
  • the sleeves S1, S2, and S3 are all provided on the output shaft Ao, but may be provided on the input shaft Ai.
  • a part (and corresponding idle gear) of the sleeves S1, S2, and S3 may be provided on the output shaft Ao, and the remaining (and corresponding idle gear) may be provided on the input shaft Ai.
  • connection state of the MG axis is changed during the shift operation.
  • connection state of the MG axis may be changed during the selection operation.
  • a shift stage in which a power transmission system is not established between the input and output shafts (different from neutral)” (EV) is included. All of the above may be set as “a shift stage in which a power transmission system is established between the input and output shafts”. In this case, “EV” is changed to “1st speed”, and HV traveling is possible in all 1st to 5th speeds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Structure Of Transmissions (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 この手動変速機は、電動機の出力軸が変速機の入力軸と動力伝達可能に接続される「IN接続状態」と、電動機の出力軸が変速機の出力軸と動力伝達可能に接続される「OUT接続状態」とを選択的に実現する接続切替機構を備える。シフトレバーがニュートラル位置にあるとき、或いは、特定の変速段(EV又は2速)以外の変速段(3~5速)のシフト完了位置にあるとき、IN接続状態に維持される。シフトレバーがニュートラル位置から特定の変速段(EV又は2速)のシフト完了位置(或いは、その逆)に移動したとき、IN接続状態からOUT接続状態(或いは、その逆)への切り替えがなされる。これにより、HV-MT車用の手動変速機であって、IN接続状態とOUT接続状態との切り替えに伴うショックを運転者が感知し難いものが提供され得る。

Description

手動変速機
 本発明は、動力源として内燃機関と電動機とを備えた車両に適用される手動変速機に関し、特に、内燃機関の出力軸と手動変速機の入力軸との間に摩擦クラッチが介装された車両に適用されるものに係わる。
 従来より、動力源としてエンジンと電動機とを備えた所謂ハイブリッド車両が広く知られている(例えば、特開2000-224710号公報を参照)。ハイブリット車両では、電動機の出力軸が、内燃機関の出力軸、変速機の入力軸、及び変速機の出力軸の何れかに接続される構成が採用され得る。以下、内燃機関の出力軸の駆動トルクを「内燃機関駆動トルク」と呼び、電動機の出力軸の駆動トルクを「電動機駆動トルク」と呼ぶ。
 近年、手動変速機と摩擦クラッチとを備えたハイブリッド車両(以下、「HV-MT車」と呼ぶ)に適用される動力伝達制御装置が開発されてきている。ここにいう「手動変速機」とは、運転者により操作されるシフトレバーのシフト位置に応じて変速段が選択されるトルクコンバータを備えない変速機(所謂、マニュアルトランスミッション、MT)である。また、ここにいう「摩擦クラッチ」とは、内燃機関の出力軸と手動変速機の入力軸との間に介装されて、運転者により操作されるクラッチペダルの操作量に応じて摩擦プレートの接合状態が変化するクラッチである。
 以下、HV-MT車について、電動機の出力軸が変速機の入力軸と動力伝達可能に接続される状態(以下、「IN接続状態」と呼ぶ)と、電動機の出力軸が変速機の出力軸と動力伝達可能に接続される状態(以下、「OUT接続状態」と呼ぶ)と、を想定する。
 IN接続状態では、変速機の変速段を変更することで、車速に対する電動機の出力軸の回転速度を変更することができる。従って、変速機の変速段を調整することで、電動機の出力軸の回転速度をエネルギー変換効率(より具体的には、駆動トルク、回生トルク等の発生効率)が良好となる範囲内に維持し易いというメリットがある。また、変速機がニュートラル(入力・出力軸間で動力伝達系統が確立されていない状態)にあるときに、内燃機関を稼働し且つ摩擦クラッチを接合状態とすることによって、車両停止状態にて電動機の出力軸を回転駆動できる。即ち、車両停止状態において電動機の発電によって得られた電力をバッテリに蓄えることができるというメリットもある。
 一方、OUT接続状態では、動力伝達系統が複雑な機構を有する変速機を介さないことから、動力の伝達損失を小さくできるというメリットがある。また、変速機が「入力・出力軸間で動力伝達系統が確立されていない状態(ニュートラル、或いは、ニュートラルとは異なる変速段(EV))」にあり且つ摩擦クラッチが接合状態にあるときに、内燃機関を停止状態(内燃機関の出力軸の回転が停止した状態)に維持しながら電動機駆動トルクのみを利用して車両が走行する状態(以下、「EV走行」と呼ぶ)を実現することができるというメリットもある。
 以上のことに鑑み、HV-MT車に適用される手動変速機において、IN接続状態とOUT接続状態とを選択的に実現する接続切替機構を設けることが考えられる。接続切替機構が設けられた場合、電動機の出力軸の接続状態の変更の際、電動機と変速機との間のトルクの伝達を一時的に遮断する必要が不可避的に生じる。従って、電動機の出力軸の接続状態の変更に伴うショック(車両前後方向の加速度の変化)が不可避的に発生する。係るショックの発生は、運転者に不快感を与えることに繋がる。
 本発明の目的は、IN接続状態とOUT接続状態とを選択的に実現する接続切替機構を備えたHV-MT車用の手動変速機であって、電動機の出力軸の接続状態の変更に伴うショックを運転者が感知し難いものを提供することにある。
 本発明に係る手動変速機は、前記内燃機関から動力が入力される入力軸(Ai)と、前記車両の駆動輪へ動力を出力する出力軸(Ao)とを備える。この手動変速機は、変速機変速機構(M1)と、接続切替機構(M2)とを備える。
 変速機変速機構(M1)は、シフト操作部材(SL)をシフトパターン上において複数の変速段(EV、2速~5速)に対応するそれぞれのシフト完了位置に移動することによってそれぞれの変速段(ニュートラルとは異なる)を達成する。各変速段では、入力・出力軸間で動力伝達系統が確立されてもされなくてもよい。入力・出力軸間で動力伝達系統が確立されない(ニュートラルとは異なる)変速段としては、例えば、EV走行用の変速段が挙げられる。入力・出力軸間で動力伝達系統が確立される変速段では、入力・出力軸間で変速機減速比が対応する変速段に対応するそれぞれの値に設定される動力伝達系統が確立される。
 本発明に係る手動変速機の特徴は、接続切替機構(M2)が、シフト操作部材の位置がシフトパターン上におけるそれぞれのシフト完了位置を除いた所定の位置を通過したことに基づいて、前記電動機の出力軸の接続状態を(IN接続状態からOUT接続状態へ、或いはその逆へ)切り替えるように構成されることにある。
 上記構成によれば、電動機の出力軸の接続状態を変更する場合、運転者がシフトパターン上においてシフト操作部材を操作する必要がある。一般に、人間は、何らかの操作を行っているとき、外部から受けるショック等を感知し難くなるものである。上記構成は、係る観点に基づく。
 上記構成によれば、運転者がシフト操作部材を操作している間に電動機の出力軸の接続状態が変更される。換言すれば、運転者は、シフト操作部材を操作している間に電動機の出力軸の接続状態の変更に伴うショックを受けることになる。従って、運転者が係るショックを感知し難くなる。
 上記手動変速機では、例えば、前記複数の変速段に対応するそれぞれの前記シフト完了位置への前記シフト操作部材の移動操作が、前記シフト操作部材の位置を、前記入力軸と前記出力軸との間で動力伝達系統が確立されていない状態において前記車両の左右方向の操作であるセレクト操作を行うことによって対応するセレクト位置に設定し、その後、前記車両の前後方向の操作であるシフト操作を行うことによって前記対応するセレクト位置から対応する前記シフト完了位置に移動することにより達成される。
 この場合、前記セレクト操作中において前記車両の左右方向に沿って移動する前記シフト操作部材の位置が前記車両の左右方向における所定の位置を通過したことに基づいて電動機の出力軸の接続状態が変更されてもよい。
 また、前記シフト操作中において前記シフト操作部材の位置が前記複数の変速段のうち第1の変速段(EV)に対応するセレクト位置と前記第1の変速段に対応するシフト完了位置との間の第1切替位置を通過したことに基づいて、前記電動機の出力軸の接続状態を切り替えるように構成されることが好ましい。更には、前記第1の変速段(EV)に対応するセレクト位置から前記車両の前方側に前記第1の変速段に対応するシフト完了位置が配置され、前記第1の変速段に対応するセレクト位置から前記車両の後方側に第2の変速段(2速)に対応するシフト完了位置が配置される場合、前記シフト操作部材の位置が「第1切替位置」を通過したことのみならず、第2の変速段に対応するセレクト位置と前記第2の変速段に対応するシフト完了位置との間の「第2切替位置」を通過したことにも基づいて、前記電動機の出力軸の接続状態を切り替えるように構成されてもよい。
本発明の実施形態に係るHV-MT車用の手動変速機を含む動力伝達制御装置のN位置が選択された状態における概略構成図である。 N位置が選択された状態におけるS&Sシャフト及び複数のフォークシャフトの位置関係を示した模式図である。 シフトパターンにおける、「IN接続領域」と「OUT接続領域」とを説明するための図である。 N位置が選択された状態における接続切替機構の状態(IN接続状態)を示した図2のZ部の拡大図である。 EV-2セレクト位置からEVシフト完了位置へのシフト操作によってIN接続状態からOUT接続状態への切り替えがなされる際の作動を説明するための図4に対応する図である。 EVシフト完了位置からEV-2セレクト位置へのシフト操作によってOUT接続状態からIN接続状態への切り替えがなされる際の作動を説明するための図4に対応する図である。 EV-2セレクト位置から2速シフト完了位置へのシフト操作によってIN接続状態からOUT接続状態への切り替えがなされる際の作動を説明するための図4に対応する図である。 2速シフト完了位置からEV-2セレクト位置へのシフト操作によってOUT接続状態からIN接続状態への切り替えがなされる際の作動を説明するための図4に対応する図である。 EV位置が選択された状態における図1に対応する図である。 EV位置が選択された状態における図2に対応する図である。 2速位置が選択された状態における図1に対応する図である。 2速位置が選択された状態における図2に対応する図である。 3速位置が選択された状態における図1に対応する図である。 3速位置が選択された状態における図2に対応する図である。 4速位置が選択された状態における図1に対応する図である。 4速位置が選択された状態における図2に対応する図である。 5速位置が選択された状態における図1に対応する図である。 5速位置が選択された状態における図2に対応する図である。
 以下、本発明の実施形態に係る手動変速機M/Tを備えた車両の動力伝達制御装置の一例(以下、「本装置」と呼ぶ)について図面を参照しながら説明する。図1に示すように、本装置は、「動力源としてエンジンE/GとモータジェネレータM/Gとを備え、且つ、トルクコンバータを備えない手動変速機M/Tと、摩擦クラッチC/Tとを備えた車両」、即ち、上記「HV-MT車」に適用される。この「HV-MT車」は、前輪駆動車であっても、後輪駆動車であっても、4輪駆動車であってもよい。
(全体構成)
 先ず、本装置の全体構成について説明する。エンジンE/Gは、周知の内燃機関であり、例えば、ガソリンを燃料として使用するガソリンエンジン、軽油を燃料として使用するディーゼルエンジンである。
 手動変速機M/Tは、運転者により操作されるシフトレバーSLのシフト位置に応じて変速段が選択されるトルクコンバータを備えない変速機(所謂、マニュアルトランスミッション)である。M/Tは、E/Gの出力軸Aeから動力が入力される入力軸Aiと、車両の駆動輪へ動力を出力する出力軸Aoと、M/Gから動力が入力されるMG軸Amと、を備える。入力軸Ai、出力軸Ao、及びMG軸Amは互いに平行に配置されている。図1に示す例では、MG軸Amは、入力軸Aiと同軸に配置されている。M/Tの構成の詳細は後述する。
 摩擦クラッチC/Tは、E/Gの出力軸AeとM/Tの入力軸Aiとの間に介装されている。C/Tは、運転者により操作されるクラッチペダルCPの操作量(踏み込み量)に応じて摩擦プレートの接合状態(より具体的には、Aeと一体回転するフライホイールに対する、Aiと一体回転する摩擦プレートの軸方向位置)が変化する周知のクラッチである。
 C/Tの接合状態(摩擦プレートの軸方向位置)は、クラッチペダルCPとC/T(摩擦プレート)とを機械的に連結するリンク機構等を利用してCPの操作量に応じて機械的に調整されてもよいし、CPの操作量を検出するセンサ(後述するセンサP1)の検出結果に基づいて作動するアクチュエータの駆動力を利用して電気的に(所謂バイ・ワイヤ方式で)調整されてもよい。
 モータジェネレータM/Gは、周知の構成(例えば、交流同期モータ)の1つを有していて、例えば、ロータ(図示せず)がMG軸Amと一体回転するようになっている。以下、E/Gの出力軸Aeの駆動トルクを「EGトルク」と呼び、MG軸Am(M/Gの出力軸のトルク)の駆動トルクを「MGトルク」と呼ぶ。
 また、本装置は、クラッチペダルCPの操作量(踏み込み量、クラッチストローク等)を検出するクラッチ操作量センサP1と、ブレーキペダルBPの操作量(踏力、操作の有無等)を検出するブレーキ操作量センサP2と、アクセルペダルAPの操作量(アクセル開度)を検出するアクセル操作量センサP3と、シフトレバーSLの位置を検出するシフト位置センサP4と、を備えている。
 更に、本装置は、電子制御ユニットECUを備えている。ECUは、上述のセンサP1~P4、並びにその他のセンサ等からの情報等に基づいて、E/Gの燃料噴射量(スロットル弁の開度)を制御することでEGトルクを制御するとともに、インバータ(図示せず)を制御することでMGトルクを制御する。
(M/Tの構成)
 以下、図1~図3を参照しながら、M/Tの構成の詳細について説明する。図1、及び図3に示すシフトレバーSLのシフトパターンから理解できるように、本例では、選択される変速段(シフト完了位置)として、前進用の5つの変速段(EV、2速~5速)、及び後進用の1つの変速段(R)が設けられている。以下、後進用の変速段(R)についての説明は省略する。
 図3に示すように、シフトパターンにおいて、車両の左右方向のシフトレバーSLの操作を「セレクト操作」と呼び、車両の前後方向のシフトレバーSLの操作を「シフト操作」と呼ぶ。図3に示すように、シフトパターン上において、「EVのシフト完了位置」と「2速のシフト完了位置」との間でのシフト操作の軌跡とセレクト操作の軌跡との交差位置を「EV-2セレクト位置」と呼び、「3速のシフト完了位置」と「4速のシフト完了位置」との間でのシフト操作の軌跡とセレクト操作の軌跡との交差位置を「N位置」(又は「3-4セレクト位置」)と呼び、「5速のシフト完了位置」と「Rのシフト完了位置」との間でのシフト操作の軌跡とセレクト操作の軌跡との交差位置を「5-Rセレクト位置」と呼ぶ。また、セレクト操作によってSLが移動可能となる範囲(「EV-2セレクト位置」、「N位置」、及び「5-Rセレクト位置」を含む、車両左右方向に延びる範囲)を「ニュートラル範囲」と呼ぶ。
 以下、説明の便宜上、MG軸Amが(M/Tの出力軸Aoを介することなく)M/Tの入力軸Aiと動力伝達可能に接続される状態を「IN接続状態」と呼び、Amが(Aiを介することなく)Aoと動力伝達可能に接続される状態を「OUT接続状態」と呼ぶ。また、「出力軸Aoの回転速度に対する入力軸Aiの回転速度の割合」を「MT減速比」と呼ぶ。
 M/Tは、スリーブS1、S2、S3、及びSmを備える。S1、S2、及びS3はそれぞれ、出力軸Aoと一体回転する対応するハブに相対回転不能且つ軸方向に相対移動可能に嵌合された、「EV-2速」切り替え用のスリーブ、「3速-4速」切り替え用のスリーブ、及び「5速-R」切り替え用のスリーブである。Smは、MG軸Amと一体回転するハブに相対回転不能且つ軸方向に相対移動可能に嵌合された、MG軸Amの接続状態の切り替え用のスリーブである。
 図2から理解できるように、スリーブS1、S2、S3、及びSmはそれぞれ、フォークシャフトFS1、FS2、FS3、及び移動部材Hmと一体に連結されている。FS1、FS2、FS3、及びHm(従って、S1、S2、S3、及びSm)はそれぞれ、シフトレバーSLの操作と連動するS&Sシャフトに設けられたインナレバーIL(図2に斜線で示す)のシフト操作時における図2の上下方向(図1では左右方向)の移動に連動して、シフト操作時にて図2の上下方向(図1では左右方向)に駆動される。(詳細は後述)。
 なお、図2では、S&Sシャフトとして、セレクト操作(図1では左右方向の操作)によって軸方向に平行移動し且つシフト操作(図1では上下方向の操作)によって軸中心に回動する「シフト回転型」が示されているが、セレクト操作によって軸中心に回動し且つシフト操作によって軸方向に平行移動する「セレクト回転型」が使用されてもよい。
<MG軸の接続状態の切り替え>
 以下、先ず、図3~図8を参照しながら、MG軸の接続状態の切り替えについて説明する。図3に示すように、「IN接続領域」(微細なドットで示した領域を参照)、並びに、「OUT接続領域」(斜線で示した領域)を定義する。
 MG軸の接続状態の切り替えは、シフト操作中においてSLの位置が「IN接続領域」から「OUT接続領域」(或いは、その逆)に移動したこと(即ち、前記「所定の位置」、前記「第1切替位置」、前記「第2切替位置」を通過したこと)に基づいて行われる。以下、この点について、図4~図8を参照しながら説明する。
 図4に示すように、互いに平行に配置されたフォークシャフトFS1及び切替シャフトFSmが、移動部材Hmに形成された対応する貫通孔に軸方向(図4の上下方向)に相対移動可能にそれぞれ挿入されている。移動部材Hmは、FS1,FSmにそれぞれ固定されたスナップリングSR,SRによって、FS1,FSmに対する図4の下方への相対移動が規制される。移動部材Hmは、FS1,FSmにそれぞれ設けられたスプリングSP,SPによってFS1,FSmに対して図4の下方へ常時付勢されている。
 移動部材Hmの内部には、ピンPが図4の左右方向に移動可能に挿入されている。ピンPは、HmがスナップリングSR,SRに係止されている状態において、FS1の側面に形成された溝G1と、FSmの側面に形成された溝Gmとに選択的に係合可能となっている。
 FS1及びFSmは、支点Oを中心に回動するレバーLmの両端のそれぞれと連結され、FS1が軸方向(図4の上下方向)の一方側へ移動すると、FSmが軸方向の他方側に移動するようになっている。
 図4は、SLがN位置(より正確には、ニュートラル範囲)にある状態を示す。この状態では、FS1及びFSmが共に中立位置にある。HmはFS1,FSmに対して相対移動可能となっている。しかしながら、Hmは、上述のスプリングSP,SPの付勢力によってスナップリングSR,SRに係止される位置で固定される。従って、ピンPは、溝G1、Gmの何れとも係合しない。以下、Hm、及び、Hmと一体のスリーブSmについて、この位置を「IN位置」と呼ぶ。
 図1に示すように、SmがIN位置にあるとき、Smは入力軸Aiに設けられた固定ギヤGinと係合する。この結果、MG軸Amと入力軸Aiとの間で動力伝達系統が確立される。このように、SLがN位置(より正確には、ニュートラル範囲)にあるとき、「IN接続状態」が実現される。
 図5は、SLがニュートラル位置(より正確には、EV-2セレクト位置)からEVシフト完了位置に移動する場合を示す。この場合、インナレバーSLに押圧されることによってFS1が図5の上方向に駆動される。この結果、FS1に固定されたスナップリングSRの作用によってHmがFS1と一体で図5の上方向に移動しようとする。一方、レバーLmの作用によってFSmが図5の下方向に移動しようとする。この結果、ピンPと溝G1との上下方向の位置がなおも合致し続ける一方で、ピンPと溝Gmとの上下方向の位置が合致しなくなる。このため、ピンPは、図5の右方向に移動して溝G1のみと係合し、HmはFS1と一体に連結される(FSmとは相対移動可能に維持される)。
 このように、HmがFS1と一体に連結されることによって、FS1の中立位置からEV位置への移動(図5の上方向の移動)に伴って、Hm(従って、Sm)が「IN位置」より図5の上方向の位置に移動する。以下、Hm及びSmについて、この位置を「OUT位置」と呼ぶ。
 後述する図9に示すように、SmがOUT位置にあるとき、SmはMG軸Amに相対回転可能に設けられた遊転Goutiと係合する。遊転ギヤGoutiは、出力軸Aoに設けられた固定ギヤGoutoと常時噛合している。この結果、MG軸Amと出力軸Aoとの間で動力伝達系統が確立される。このように、SLが、EV-2セレクト位置からEVシフト完了位置に移動すると(前記「第1切替位置」を通過すると)、MG軸の接続状態が「IN接続状態」から「OUT接続状態」へと変更される。
 図6は、SLがEVシフト完了位置からニュートラル位置(より正確には、EV-2セレクト位置)に戻る場合を示す。この場合、インナレバーSLに押圧されることによってFS1がEV位置から中立位置へ戻る。これに伴い、FS1と一体のHmも「OUT位置」から「IN位置」へと戻るとともに、FSmも中立位置に戻る。即ち、図4に示す状態が再び得られる。このように、SLが、EVシフト完了位置からEV-2セレクト位置に戻ると(前記「第1切替位置」を通過すると)、MG軸の接続状態が「OUT接続状態」から「IN接続状態」へ戻る。
 図7は、SLがニュートラル位置(より正確には、EV-2セレクト位置)から2速シフト完了位置に移動する場合を示す。この場合、インナレバーSLに押圧されることによってFS1が図5の下方向に駆動され、FSmが図5の上方向に駆動される。この結果、スナップリングSRの作用によってHmがFSmと一体で図7の上方向に移動しようとする。従って、ピンPと溝Gmとの上下方向の位置が合致し続ける一方で、ピンPと溝G1との上下方向の位置が合致しなくなる。このため、ピンPは、図7の左方向に移動して溝Gmのみと係合し、HmはFSmと一体に連結される(FS1とは相対移動可能に維持される)。
 このように、HmがFSmと一体に連結されることによって、FS1の中立位置から2速位置への移動(図5の下方向の移動)、即ち、FSmの中立位置から図5の上方向の移動に伴って、Hm(従って、Sm)が「IN位置」から「OUT位置」まで移動する。このように、SLが、EV-2セレクト位置から2速シフト完了位置に移動すると(前記「第2切替位置」を通過すると)、MG軸の接続状態が「IN接続状態」から「OUT接続状態」へと変更される。
 図8は、SLが2速シフト完了位置からニュートラル位置(より正確には、EV-2セレクト位置)に戻る場合を示す。この場合、インナレバーSLに押圧されることによってFS1が2速位置から中立位置へ戻り、FSmも中立位置に戻る。これに伴い、FSmと一体のHmも「OUT位置」から「IN位置」へと戻る。即ち、図4に示す状態が再び得られる。このように、SLが、2速シフト完了位置からEV-2セレクト位置に戻ると(前記「第2切替位置」を通過すると)、MG軸の接続状態が「OUT接続状態」から「IN接続状態」へ戻る。
 以上より、図3に示すシフトパターンにおいて、SLがIN接続領域にあるときは「IN接続状態」が維持され、SLがOUT接続領域にあるときは「OUT接続状態」が維持される。そして、SLがIN接続領域からOUT接続領域(或いは、その逆)へ移動するときは「IN接続状態」から「OUT接続状態」(或いは、その逆)への切り替えがなされる。より具体的には、SLがニュートラル位置にあるとき、並びに、SLがニュートラル位置から「EV及び2速以外の変速段」(3~5速)のシフト完了位置(或いは、その逆)へ移動するとき、「IN接続状態」が維持される。一方、ニュートラル位置から「EV」又は「2速」(前記第1、第2の変速段)のシフト完了位置(或いは、その逆)へ移動するとき、「IN接続状態」から「OUT接続状態」(或いは、その逆)への切り替えがなされる。
 以上、M/Tは、「IN接続状態」と「OUT接続状態」とを選択的に実現する接続切替機構M2を備えている。M2は、スリーブSm、移動部材Hm、フォークシャフトFS1、切り替えシャフトFSm、ピンP、溝G1,Gm、スナップリングSR,SR、スプリングSP,SP、固定ギヤGin、Gouto、遊転ギヤGouti等から構成される。
<変速段の切り替え>
 次に、図1、2、9~18を参照しながら、変速段の切り替えについて簡単に説明する。図1、2に示すように、シフトレバーSLが「N位置」(より正確には、ニュートラル位置)にある状態では、スリーブS1、S2、及びS3の全てが「中立位置」にある。この状態では、S1、S2、及びS3はそれぞれ、対応する何れの遊転ギヤとも係合していない。なお、上述のように、この状態では、Smは「IN位置」にある(図4も参照)。
 このように、SLが「N位置」(より正確には、ニュートラル位置)にある状態では、入力・出力軸Ai,Ao間で動力伝達系統が確立されない。加えて、「IN接続状態」が実現される。従って、E/Gを稼働し且つ摩擦クラッチC/Tを接合状態とすることによって、車両停止状態にてMG軸Amを回転駆動できる。即ち、車両停止状態においてM/Gの発電によって得られた電力をバッテリ(図示せず)に蓄えることができる。
 図9、10に示すように、シフトレバーSLが「EVシフト完了位置」に移動すると、S&SシャフトのインナレバーILがFS1に固定された「EV」用ヘッドを「EV」方向(図10では上方向)に駆動することによって、FS1(従って、S1)が(図10では上方向、図9では右方向)に駆動される。この結果、スリーブS1が「中立位置」から「EV位置」に移動する。スリーブS2、S3はそれぞれ「中立位置」にある。なお、上述のように、この状態では、Smは「OUT位置」にある(図5も参照)。
 S1が「EV位置」に移動した場合、S1と係合する遊転ギヤ(並びに、この遊転ギヤと常時噛合する固定ギヤ)が存在しない。従って、SLが「EVシフト完了位置」にある状態では、入力・出力軸Ai,Ao間で動力伝達系統が確立されない。加えて、「OUT接続状態」が実現される。従って、摩擦クラッチC/Tを接合状態に維持し、且つ、E/Gを停止状態(E/Gの出力軸Aeの回転が停止した状態)に維持しながら、MGトルクのみを利用して車両が走行する状態(即ち、「EV走行」)を実現することができる(図9の太線を参照)。なお、ニュートラル位置とEVシフト完了位置との識別は、例えば、シフト位置センサP4の出力結果、S&Sシャフトの位置を検出するセンサの出力結果等に基づいて達成される。
 図11、12に示すように、シフトレバーSLが「2速のシフト完了位置」に移動すると、ILがFS1に固定された「2速」用ヘッドを「2速」方向(図12では下方向)に駆動することによって、FS1(従って、S1)が(図12では下方向、図11では左方向)に駆動される。この結果、スリーブS1が「中立位置」から「2速位置」に移動する。スリーブS2、S3はそれぞれ「中立位置」にある。なお、上述のように、この状態では、Smは「OUT位置」にある(図7も参照)。
 この状態では、S1が、出力軸Aoに設けられた遊転ギヤG2oと係合する。遊転ギヤG2oは、入力軸Aiに設けられた固定ギヤG2iと常時噛合している。この結果、入力軸Aiと出力軸Aoとの間で、「G2i及びG2o」を介してEGトルクについての「2速」に対応する動力伝達系統が確立される。即ち、MT減速比は(G2oの歯数/G2iの歯数)(=「2速」)となる。加えて、「OUT接続状態」が実現される。従って、MGトルクとEGトルクの両方を利用して車両が走行する状態(即ち、「HV走行」)を実現することができる(図11の太線を参照)。また、「OUT接続状態」が実現されているので、MGトルクが複雑な機構を有するM/Tの内部を介さずに伝達されるので、MGトルクの伝達損失を小さくできる。
 以下、図13~図18に示すように、シフトレバーSLが「3速のシフト完了位置」~「5速のシフト完了位置」にある場合、「2速のシフト完了位置」の場合と同様、入力軸Aiと出力軸Aoとの間で、「GNi及びGNo」を介して、「N速」に対応する動力伝達系統が確立される(N:3~5)。このとき、MT減速比は(GNoの歯数/GNiの歯数)(=「N速」)となる(N:3~5)。「2速」から「5速」に向けて、MT減速比は次第に小さくなっていく。加えて、「IN接続状態」が実現される。従って、2速が選択された場合と同様、「HV走行」を実現することができる。また、「IN接続状態」が実現されているので、M/Tの変速段を調整することで、MG軸Amの回転速度をエネルギー変換効率(より具体的には、駆動トルク、回生トルク等の発生効率)が良好となる範囲内に維持し易くなる。
 このように、M/Tは、MT減速比を「2速」~「5速」の4段階に選択的に設定可能なMT変速機構M1を備えている。MT変速機構M1は、固定ギヤGNi、遊転ギヤGNo、スリーブS1~S3、及びフォークシャフトFS1~FS3等から構成される(N:2~5)。
(E/Gの制御)
 本装置によるE/Gの制御は、大略的に以下のようになされる。車両が停止しているとき、或いは、「N」又は「EV」が選択されているとき、E/Gが停止状態(燃料噴射がなされない状態)に維持される。E/Gの停止状態において、HV走行用の変速段(「2速」~「5速」の何れか)が選択されたことに基づいて、E/Gが始動される(燃料噴射が開始される)。E/Gの稼働中(燃料噴射がなされている間)では、アクセル開度等に基づいてEGトルクが制御される。E/Gの稼働中において、「N」又は「EV」が選択されたこと、或いは、車両が停止したことに基づいて、E/Gが再び停止状態に維持される。
(M/Gの制御)
 本装置によるM/Gの制御は、大略的に以下のようになされる。車両が停止しているとき、或いは、「N」が選択されているとき、M/Gが停止状態(MGトルク=0)に維持される。M/Gの停止状態において、「EV」が選択されたことに基づいて、MGトルクを利用した通常発進制御が開始される。通常発進制御では、MGトルクがアクセル開度及びクラッチストロークに基づいて制御される。通常発進制御でのMGトルクは、「手動変速機と摩擦クラッチとを備え且つ動力源として内燃機関のみを搭載した通常車両」が「1速」で発進する際における「アクセル開度及びクラッチストローク」と「クラッチを介して手動変速機の入力軸へ伝達される内燃機関のトルク」との関係を規定する予め作製されたマップ等を利用して決定される。通常発進制御の終了後は、「EV」の選択時、或いは、「2速」~「5速」(複数のHV走行用変速段)の選択時において、アクセル開度等に基づいてMGトルクが制御される。そして、車両が停止したことに基づいて、M/Gが再び停止状態に維持される。
(作用・効果)
 上記のように、本発明の実施形態に係る手動変速機M/Tでは、運転者がシフトレバーSLのシフト操作(車両の前後方向の操作)を行っている間にMG軸の接続状態の変更(IN接続状態とOUT接続状態の間の切り替え)がなされる。換言すれば、運転者は、SLのシフト操作を行っている間にMG軸の接続状態の変更に伴うショックを受けることなる。ここで、一般に、人間は、何らかの操作を行っているとき、外部から受けるショック等を感知し難くなるものである。以上より、このM/Tでは、運転者がMG軸の接続状態の変更に伴うショックを感知し難くなる。
 本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、スリーブS1、S2、S3(及び対応するそれぞれの遊転ギヤ)が共に出力軸Aoに設けられているが、共に入力軸Aiに設けられていてもよい。また、スリーブS1、S2、S3のうちの一部(及び対応する遊転ギヤ)が出力軸Aoに、残り(及び対応する遊転ギヤ)が入力軸Aiに設けられていてもよい。
 また、上記実施形態では、シフト操作中においてMG軸の接続状態の変更がなされるようになっているが、セレクト操作中においてMG軸の接続状態の変更がなされるように構成されてもよい。
 また、上記実施形態では、シフトレバーSLがニュートラル位置から「EV」のシフト完了位置(或いは、その逆)へ移動する場合も、ニュートラル位置から「2速」のシフト完了位置(或いは、その逆)へ移動する場合も、「IN接続状態」から「OUT接続状態」(或いは、その逆)への切り替えがなされるが、シフトレバーSLがニュートラル位置から「EV」のシフト完了位置(或いは、その逆)へ移動する場合のみ、「IN接続状態」から「OUT接続状態」(或いは、その逆)への切り替えがなされてもよい(SLが2速のシフト完了位置にあるとき、「IN接続状態」が維持される)。この場合、切り替えシャフトFSm等が不要となる。
 また、上記実施形態では、複数の変速段のうちで「入力・出力軸間で動力伝達系統が確立されない(ニュートラルとは異なる)変速段」(EV)が含まれているが、複数の変速段の全てを「入力・出力軸間で動力伝達系統が確立される変速段」としてもよい。この場合、「EV」が「1速」に変更されて、1~5速の全てにおいてHV走行が可能となる。

Claims (7)

  1.  動力源として内燃機関(E/G)と電動機(M/G)とを備えた車両に適用される、トルクコンバータを備えない手動変速機(M/T)であって、
     前記内燃機関から動力が入力される入力軸(Ai)と、
     前記車両の駆動輪へ動力を出力する出力軸(Ao)と、
     運転者により操作されるシフト操作部材(SL)をシフトパターン上において複数の変速段(EV、2速~5速)に対応するそれぞれのシフト完了位置に移動することによってそれぞれの変速段を達成する変速機変速機構(M1)と、
     前記電動機の出力軸(Am)が前記変速機の入力軸と動力伝達可能に接続されるIN接続状態と、前記電動機の出力軸が前記変速機の出力軸と動力伝達可能に接続されるOUT接続状態とを選択的に実現する接続切替機構(M2)と、
     を備え、
     前記接続切替機構は、
     前記シフト操作部材の位置が前記シフトパターン上における前記それぞれのシフト完了位置を除いた所定の位置を通過したことに基づいて、前記電動機の出力軸の接続状態を切り替えるように構成された、手動変速機。
  2.  請求項1に記載の手動変速機において、
     前記変速機変速機構は、
     前記複数の変速段に対応するそれぞれの前記シフト完了位置への前記シフト操作部材の移動操作が、前記シフト操作部材の位置を、前記入力軸と前記出力軸との間で動力伝達系統が確立されていない状態において前記車両の左右方向の操作であるセレクト操作を行うことによって対応するセレクト位置に設定し、その後、前記車両の前後方向の操作であるシフト操作を行うことによって前記対応するセレクト位置から対応する前記シフト完了位置に移動することにより達成されるように構成され、
     前記接続切替機構は、
     前記シフト操作中において前記シフト操作部材の位置が前記複数の変速段のうち第1の変速段(EV)に対応するセレクト位置と前記第1の変速段に対応するシフト完了位置との間の第1切替位置を通過したことに基づいて、前記電動機の出力軸の接続状態を切り替えるように構成された、手動変速機。
  3.  請求項2に記載の手動変速機において、
     前記接続切替機構は、
     前記車両の前後方向における前記シフト操作部材の位置が、前記第1切替位置に対して前記第1の変速段に対応するセレクト位置に近い第1領域(IN接続領域)から、前記第1切替位置に対して前記第1の変速段に対応するシフト完了位置に近い第2領域(OUT接続領域)に移動したことに基づいて、前記電動機の出力軸の接続状態を前記IN接続状態から前記OUT接続状態に切り替え、前記車両の前後方向における前記シフト操作部材の位置が前記第2領域から前記第1領域に移動したことに基づいて、前記電動機の出力軸の接続状態を前記OUT接続状態から前記IN接続状態に切り替えるように構成された、手動変速機。
  4.  請求項3に記載の手動変速機において、
     前記変速機変速機構は、
     それぞれが前記入力軸又は前記出力軸に相対回転不能に設けられた複数の固定ギヤであってそれぞれが前記複数の変速段のそれぞれに対応する複数の固定ギヤ(G2i、G3i、G4i、G5i、G6i)と、
     それぞれが前記入力軸又は前記出力軸に相対回転可能に設けられた複数の遊転ギヤであってそれぞれが前記複数の変速段のそれぞれに対応するとともに対応する変速段の前記固定ギヤと常時歯合する複数の遊転ギヤ(G2o、G3o、G4o、G5o、G6o)と、
     それぞれが前記入力軸及び前記出力軸のうち対応する軸に相対回転不能且つ軸方向に相対移動可能に設けられた複数のスリーブであってそれぞれが前記複数の遊転ギヤのうち対応する遊転ギヤを前記対応する軸に対して相対回転不能に固定するために前記対応する遊転ギヤと係合可能な複数のスリーブ(S1、S2、S3)と、
     それぞれが前記複数のスリーブのそれぞれと連結され且つ軸方向に移動可能な複数のフォークシャフト(FS1、FS2、FS3)と、
     前記シフト操作部材のセレクト操作によって軸方向に移動し又は軸周りに回動し且つ前記シフト操作部材のシフト操作によって軸周りに回動し又は軸方向に移動するシフトアンドセレクトシャフトと、
     を備え、
     前記シフト操作部材のセレクト操作によって前記複数のフォークシャフトのうちから対応するフォークシャフトが選択され、前記シフト操作部材のシフト操作によって前記シフトアンドセレクトシャフトの側面から突出するインナレバー(IL)が前記選択されたフォークシャフトをその軸方向に押圧・移動することによって対応する変速段が達成されるように構成され、
     前記接続切替機構は、
     移動可能な移動部材であって、その位置が第1位置にあるときに前記電動機の出力軸の接続状態が前記IN接続状態に設定され、その位置が第2位置にあるときに前記電動機の出力軸の接続状態が前記OUT接続状態に設定される移動部材(Hm)を備え、
     前記シフト操作部材のシフト操作中において前記シフト操作部材の位置が前記第1領域から前記第2領域に移動したことによって、前記第1の変速段に対応するフォークシャフト(FS1)の軸方向の移動に連動して前記移動部材の位置が前記第1位置から前記第2位置に変更され、
     前記シフト操作部材のシフト操作中において前記シフト操作部材の位置が前記第2領域から前記第1領域に移動したことによって、前記第1の変速段に対応するフォークシャフト(FS1)の軸方向の移動に連動して前記移動部材の位置が前記第2位置から前記第1位置に変更されるように構成された、手動変速機。
  5.  請求項4に記載の手動変速機において、
     前記シフトパターン上において、前記第1の変速段に対応するセレクト位置から前記車両の前方側に前記第1の変速段に対応するシフト完了位置が配置され、前記第1の変速段に対応するセレクト位置から前記車両の後方側に第2の変速段に対応するシフト完了位置が配置され、
     前記接続切替機構は、
     前記シフト操作中において前記シフト操作部材の位置が前記複数の変速段のうち第2の変速段(2速)に対応するセレクト位置と前記第2の変速段に対応するシフト完了位置との間の第2切替位置を通過したことに基づいて、前記電動機の出力軸の接続状態を切り替えるように構成され、
     前記接続切替機構は、
     前記車両の前後方向における前記シフト操作部材の位置が、前記第2切替位置に対して前記第2の変速段に対応するセレクト位置に近い第3領域(IN接続領域)から、前記第2切替位置に対して前記第2の変速段に対応するシフト完了位置に近い第4領域(OUT接続領域)に移動したことに基づいて、前記電動機の出力軸の接続状態を前記IN接続状態から前記OUT接続状態に切り替え、前記車両の前後方向における前記シフト操作部材の位置が前記第4領域から前記第3領域に移動したことに基づいて、前記電動機の出力軸の接続状態を前記OUT接続状態から前記IN接続状態に切り替えるように構成された、手動変速機。
  6.  請求項5に記載の手動変速機において、
     前記第1の変速段に対応するフォークシャフトと前記第2の変速段に対応するフォークシャフトとは共通の1本のフォークシャフト(FS1)で構成され、
     前記接続切替機構は、
     前記シフト操作部材のシフト操作中において前記シフト操作部材の位置が前記第3領域から前記第4領域に移動したことによって、前記共通のフォークシャフトの軸方向の移動に連動して前記移動部材の位置が前記第1位置から前記第2位置に変更され、
     前記シフト操作部材のシフト操作中において前記シフト操作部材の位置が前記第4領域から前記第3領域に移動したことによって、前記共通のフォークシャフトの軸方向の移動に連動して前記移動部材の位置が前記第2位置から前記第1位置に変更されるように構成された、手動変速機。
  7.  請求項6に記載の手動変速機において、
     前記接続切替機構は、
     前記共通のフォークシャフトと平行に配置された切替シャフトであって、前記共通のフォークシャフトの軸方向の一方側への移動に対して前記軸方向の他方側に移動するように前記共通のフォークシャフトとリンク機構(Lm)を介して連結された切替シャフト(FSm)と、
     前記シフト操作部材の位置が前記第1領域と前記第2領域との間で移動する際には前記移動部材を前記共通のフォークシャフトと一体に連結し、前記シフト操作部材の位置が前記第3領域と前記第4領域との間で移動する際には前記移動部材を前記切替シャフトと一体に連結する連結機構(Hm、P、G1、Gm)を備えた、手動変速機。
PCT/JP2012/055217 2011-03-11 2012-03-01 手動変速機 WO2012124493A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12758118.9A EP2684755B1 (en) 2011-03-11 2012-03-01 Manual transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-053757 2011-03-11
JP2011053757A JP5801068B2 (ja) 2011-03-11 2011-03-11 手動変速機

Publications (1)

Publication Number Publication Date
WO2012124493A1 true WO2012124493A1 (ja) 2012-09-20

Family

ID=46830568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055217 WO2012124493A1 (ja) 2011-03-11 2012-03-01 手動変速機

Country Status (3)

Country Link
EP (1) EP2684755B1 (ja)
JP (1) JP5801068B2 (ja)
WO (1) WO2012124493A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104742721A (zh) * 2013-12-30 2015-07-01 联合汽车电子有限公司 一种采用双离合器的混合动力系统及其实现方法
US20160102621A1 (en) * 2014-10-14 2016-04-14 Hyundai Autron Co., Ltd. Apparatus and method for estimating engine power
CN107070070A (zh) * 2017-06-13 2017-08-18 湖北科技学院 一种变矩电机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2774822B1 (en) * 2011-11-04 2018-08-22 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
JPWO2018173670A1 (ja) 2017-03-22 2019-11-14 川崎重工業株式会社 ハイブリッド車両
DE102020007307B4 (de) 2020-11-30 2022-12-22 Mercedes-Benz Group AG Hybrid-Antriebsvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224710A (ja) 1999-01-27 2000-08-11 Mitsubishi Motors Corp ハイブリッド車
WO2009051143A1 (ja) * 2007-10-18 2009-04-23 Aisin Ai Co., Ltd. 動力伝達装置
JP2010208523A (ja) * 2009-03-11 2010-09-24 Aisin Ai Co Ltd 車両の動力伝達制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128519A (ja) * 1983-12-16 1985-07-09 Aisin Seiki Co Ltd 変速機の操作機構
JP3556893B2 (ja) * 2000-10-11 2004-08-25 本田技研工業株式会社 動力伝達機構
JP2004245395A (ja) * 2003-02-17 2004-09-02 Toyota Motor Corp 動力出力装置及びその制御方法並びに車両
JP2009090769A (ja) * 2007-10-05 2009-04-30 Aisin Ai Co Ltd 車両における動力装置
JP5307588B2 (ja) * 2009-03-11 2013-10-02 アイシン・エーアイ株式会社 車両の動力伝達制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224710A (ja) 1999-01-27 2000-08-11 Mitsubishi Motors Corp ハイブリッド車
WO2009051143A1 (ja) * 2007-10-18 2009-04-23 Aisin Ai Co., Ltd. 動力伝達装置
JP2010208523A (ja) * 2009-03-11 2010-09-24 Aisin Ai Co Ltd 車両の動力伝達制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2684755A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104742721A (zh) * 2013-12-30 2015-07-01 联合汽车电子有限公司 一种采用双离合器的混合动力系统及其实现方法
US20160102621A1 (en) * 2014-10-14 2016-04-14 Hyundai Autron Co., Ltd. Apparatus and method for estimating engine power
US9500149B2 (en) * 2014-10-14 2016-11-22 Hyundai Autron Co., Ltd. Apparatus and method for estimating engine power
CN107070070A (zh) * 2017-06-13 2017-08-18 湖北科技学院 一种变矩电机
CN107070070B (zh) * 2017-06-13 2023-04-14 湖北科技学院 一种变矩电机

Also Published As

Publication number Publication date
EP2684755A1 (en) 2014-01-15
EP2684755B1 (en) 2016-10-26
JP5801068B2 (ja) 2015-10-28
JP2012188031A (ja) 2012-10-04
EP2684755A4 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5907676B2 (ja) 手動変速機
JP5641610B2 (ja) 手動変速機
JP5670222B2 (ja) 手動変速機
JP5731884B2 (ja) 車両の動力伝達制御装置
JP5876242B2 (ja) 手動変速機
JP5801068B2 (ja) 手動変速機
WO2013008856A1 (ja) 手動変速機
WO2013008855A1 (ja) 手動変速機
JP5802478B2 (ja) 手動変速機
JP5815988B2 (ja) 手動変速機
WO2014162760A1 (ja) 車両の制御装置
WO2012124494A1 (ja) 手動変速機
JP2012171595A (ja) 手動変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758118

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012758118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012758118

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE