WO2012124494A1 - 手動変速機 - Google Patents

手動変速機 Download PDF

Info

Publication number
WO2012124494A1
WO2012124494A1 PCT/JP2012/055218 JP2012055218W WO2012124494A1 WO 2012124494 A1 WO2012124494 A1 WO 2012124494A1 JP 2012055218 W JP2012055218 W JP 2012055218W WO 2012124494 A1 WO2012124494 A1 WO 2012124494A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
shaft
select
speed
specific
Prior art date
Application number
PCT/JP2012/055218
Other languages
English (en)
French (fr)
Inventor
慎也 大須賀
勇樹 枡井
Original Assignee
アイシン・エーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エーアイ株式会社 filed Critical アイシン・エーアイ株式会社
Priority to DE112012001188T priority Critical patent/DE112012001188T5/de
Publication of WO2012124494A1 publication Critical patent/WO2012124494A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/08Multiple final output mechanisms being moved by a single common final actuating mechanism
    • F16H63/20Multiple final output mechanisms being moved by a single common final actuating mechanism with preselection and subsequent movement of each final output mechanism by movement of the final actuating mechanism in two different ways, e.g. guided by a shift gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H2063/3083Shift finger arrangements, e.g. shape or attachment of shift fingers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a manual transmission that is applied to a vehicle, and particularly to a transmission that is applied to a vehicle in which a friction clutch is interposed between an output shaft of an internal combustion engine and an input shaft of a manual transmission.
  • the position of the shift lever on the shift pattern is moved to a “corresponding select position” by a select operation (operation in the left-right direction of the vehicle), and then the shift operation is performed. It is moved from “corresponding select position” to “corresponding shift completion position” by (operation in the longitudinal direction of the vehicle).
  • a “shift completion position of the first shift stage” is arranged on the front side of the vehicle from the “select position corresponding to the first and second shift stages”.
  • the “shift completion position of the second shift stage” is arranged on the rear side of the vehicle from the “select position corresponding to the first and second shift stages”.
  • “first and second shift speeds” correspond to, for example, the first speed and the second speed, or the third speed and the fourth speed.
  • the shift stage is usually selected and established by selecting the shift and select shaft (S & S shaft) inner lever linked to the operation of the shift lever. This is performed by driving a fork shaft (specifically, a shift head integrated with the fork shaft) in the axial direction in accordance with a shift operation.
  • the S & S shaft is assumed to be a type that moves in the axial direction by the “select operation” of the shift lever and rotates around the axis by the “shift operation” of the shift lever (so-called “shift rotation type”).
  • the shift lever when selecting and establishing the first and second gears, the shift lever is moved from the “select position corresponding to the first and second gears” to the “shift completion position of the first gear”.
  • the rotation position of the S & S shaft rotates by a first angle from the reference position to one direction side.
  • the axial position of the “fork shaft corresponding to the first and second shift speeds” moves from the neutral position to the one direction side by a first distance, and the sleeve integrated with the fork shaft becomes the first shift speed.
  • Engage with the idler gear As a result, the first shift speed is selected and established.
  • the rotation position of the S & S shaft is moved from the reference position to the one position. It rotates by the same angle as the first angle on the opposite side to the direction side.
  • the axial position of the “fork shaft corresponding to the first and second shift stages” moves from the neutral position to the opposite side to the one direction side by the same distance as the first distance, and is integrated with the fork shaft. Is engaged with the idler gear for the second gear. As a result, the second shift speed is selected and established.
  • one direction of the fork shaft when the rotational position of the S & S shaft rotates by a first angle from the reference position to one direction is usually.
  • the total movement range in the axial direction of the fork shaft is twice the first distance.
  • the present inventor has succeeded in developing a manual transmission that can narrow the entire movement range in the axial direction of the fork shaft, and thus can further reduce the size of the housing of the transmission.
  • An object of the present invention is to provide a manual transmission for a vehicle, in which the entire movement range in the axial direction of the fork shaft can be narrowed, and therefore the housing of the transmission can be made smaller.
  • a feature of the manual transmission according to the present invention is that a fork shaft moving distance (B2) in one direction when the rotation position of the S & S shaft rotates by a first angle ( ⁇ A) from the reference position to one direction;
  • the movement distance (B1) of the fork shaft in the opposite direction when the rotation position of the S & S shaft rotates by the first angle ( ⁇ A) from the reference position in the opposite direction is different.
  • the transmission housing can be further downsized.
  • the S & S shaft and the fork shaft are arranged so as to be perpendicular to each other and have a torsional position relationship.
  • the engaging portion of the inner lever passes through the rotation center of the S & S shaft and the fork shaft from the rotation center. It is located on a “straight line” tilted by a predetermined angle ( ⁇ z) with respect to a perpendicular line directed toward.
  • the engaging portion of the inner lever is engaged with the concave portion of the shift head integrally connected to the fork shaft, so that the engaging portion of the inner lever drives the fork shaft in the axial direction.
  • the manual transmission according to the present invention includes a plurality of fixed gears that are provided on the input shaft or the output shaft so as not to rotate relative to each other, and each of the plurality of fixed gears corresponds to each of the plurality of shift stages.
  • a plurality of idle gears (G1o, G2o, G3o, G4o, G5o) that are always meshed with the fixed gears of the corresponding gears, and each of which rotates relative to the corresponding shaft of the input shaft and the output shaft.
  • a plurality of sleeves provided so as not to be movable relative to each other in the axial direction, each of the plurality of idler gears corresponding to the corresponding idler gear with respect to the corresponding shaft;
  • a plurality of sleeves (S1, S2, S3) that can be engaged with the corresponding idler gears to be fixed to the plurality of sleeves, and a plurality of fork shafts that are connected to each of the plurality of sleeves and are movable in the axial direction. (FS1, FS2, FS3).
  • the “specific sleeve” corresponds to one or more of the plurality of sleeves
  • the “specific fork shaft” corresponds to one or more of the plurality of fork shafts.
  • FIG. 1 is a schematic configuration diagram in a state where an N position of a power transmission control device including a manual transmission for an HV-MT vehicle according to an embodiment of the present invention is selected.
  • FIG. It is the schematic diagram which showed the positional relationship of the S & S shaft and the some fork shaft in the state where N position was selected. It is the schematic diagram which showed the engagement state of the "fork shaft” and the “inner lever”. It is the figure which showed the detail of the shift pattern. It is a figure corresponding to Drawing 1 in the state where the 1st speed position was selected. It is a figure corresponding to Drawing 2 in the state where the 1st speed position was selected. It is a figure corresponding to Drawing 1 in the state where the 2nd gear position was selected.
  • the present apparatus is “a manual transmission M / T having an engine E / G and a motor generator M / G as a power source and not having a torque converter, a friction clutch C / T, It is applied to a “vehicle equipped with a vehicle”, that is, a so-called “HV-MT vehicle”.
  • the “HV-MT vehicle” may be a front wheel drive vehicle, a rear wheel drive vehicle, or a four wheel drive vehicle.
  • this device is applied to a vehicle (that is, a normal MT vehicle) having only the engine E / G as a power source and having a manual transmission M / T and a friction clutch C / T. It goes without saying.
  • the engine E / G is a well-known internal combustion engine, for example, a gasoline engine that uses gasoline as fuel, or a diesel engine that uses light oil as fuel.
  • the manual transmission M / T is a transmission (so-called manual transmission) that does not include a torque converter that selects a gear position according to the shift position of the shift lever SL operated by the driver.
  • the M / T includes an input shaft Ai that receives power from the output shaft Ae of the E / G, and an output shaft Ao that receives power from the M / G and outputs power to the driving wheels of the vehicle.
  • the input shaft Ai and the output shaft Ao are arranged in parallel to each other.
  • the output shaft Ao may be the M / G output shaft itself, or is parallel to the M / G output shaft and connected to the M / G output shaft via a gear train so that power can be transmitted at all times. It may be an axis. Details of the configuration of the M / T will be described later.
  • the friction clutch C / T is interposed between the E / G output shaft Ae and the M / T input shaft Ai.
  • C / T rotates integrally with Ai with respect to the state of engagement of the friction plates (more specifically, the flywheel that rotates integrally with Ae) according to the operation amount (depression amount) of the clutch pedal CP operated by the driver.
  • This is a known clutch in which the axial position of the friction plate changes.
  • the C / T joined state (the axial position of the friction plate) is mechanically controlled according to the operation amount of the CP using a link mechanism or the like that mechanically connects the clutch pedal CP and the C / T (friction plate). Or may be adjusted electrically (in a so-called by-wire method) using the driving force of an actuator that operates based on the detection result of a sensor (sensor P1 to be described later) that detects the amount of operation of the CP. May be.
  • the motor generator M / G has one of known configurations (for example, an AC synchronous motor), and for example, a rotor (not shown) rotates integrally with the output shaft Ao. That is, a power transmission system is always established between the M / G output shaft and the M / T output shaft Ao.
  • EG torque the drive torque of the E / G output shaft Ae
  • MG torque the drive torque of the M / G output shaft (output shaft Ao)
  • this device has a clutch operation amount sensor P1 that detects an operation amount (depression amount, clutch stroke, etc.) of the clutch pedal CP, and a brake operation amount that detects an operation amount (stepping force, presence / absence of operation, etc.) of the brake pedal BP.
  • a sensor P2 an accelerator operation amount sensor P3 that detects the operation amount (accelerator opening) of the accelerator pedal AP, and a shift position sensor P4 that detects the position of the shift lever SL are provided.
  • this device includes an electronic control unit ECU.
  • the ECU controls the EG torque by controlling the fuel injection amount of the E / G (the opening degree of the throttle valve) based on the information from the sensors P1 to P4 and the other sensors, and the inverter.
  • the MG torque is controlled by controlling (not shown).
  • shift operation As shown in FIG. 4, a so-called “H pattern” is employed as the shift pattern of the shift lever SL.
  • select operation the operation of the shift lever SL in the vehicle left-right direction
  • shift operation the operation of the shift lever SL in the vehicle front-rear direction
  • “1st speed” and “2nd speed” shift completion positions, “3rd speed” and “4th speed” shift completion positions, and “5th speed” shift completion positions are respectively 1-2 selected.
  • the position, the N position, and the 5-R select position are at a position separated by a distance A in the shift operation direction (vehicle longitudinal direction).
  • a range of shift positions corresponding to a select operation range including “N position”, “1-2 select position”, and “5-R select position” is collectively referred to as “neutral range”.
  • M / T includes sleeves S1, S2, and S3.
  • S1, S2 and S3 are sleeves for "1st to 2nd speeds" respectively fitted to corresponding hubs that rotate integrally with the output shaft Ao so that they cannot be rotated relative to each other but can move in the axial direction.
  • the sleeves S1, S2, and S3 are integrally connected to the fork shafts FS1, FS2, and FS3 shown in FIGS. 2 and 3 (through corresponding forks), respectively.
  • FS1 to FS3 are arranged in parallel to each other.
  • Each of FS1, FS2, and FS3 (and therefore S1, S2, and S3) is pivoted by an inner lever IL (see FIGS. 2 and 3) that is integrally provided on the S & S shaft that is interlocked with the operation of the shift lever SL. It is driven in the direction (vertical direction in FIG. 2 and horizontal direction in FIGS. 1 and 3).
  • the S & S shaft moves in parallel in the axial direction by a select operation of the shift lever SL (left / right operation in FIGS. 1 and 4), and is moved by the shift operation of the shift lever SL (up / down operation in FIGS. 1 and 4). It is designed to rotate around the center (shift rotation type).
  • the S & S shaft and the fork shafts FS1 to FS3 are arranged so as to be perpendicular to each other and have a torsional position relationship.
  • FIG. 3 shows the rotation position of the S & S shaft when the shift lever SL is in the neutral range.
  • this rotational position is referred to as a “reference position”.
  • the engaging portion (tip portion) of the inner lever IL is “the rotation center of the S & S shaft.
  • the engaging portion of the inner lever IL is engaged with the concave portion of the shift head H1 that is integrally connected to the FS1 when the shift lever SL is in the 1-2 select position, and is integrated with the FS2 when the SL is in the N position.
  • the engaging portion of the IL selectively drives the FS1, FS2, and FS3 in the axial direction.
  • neutral positions the axial positions of FS1, FS2, and FS3 when the rotational position of the S & S shaft is at the reference position are referred to as “neutral positions”.
  • the SL moves from the 1-2 select position to the “second gear shift completion position” or from the N position to the “fourth gear shift completion position” (that is, moves to the rear side of the vehicle by the distance A).
  • the rotational position of the S & S shaft moves from the reference position to the position (second speed position, fourth speed position) rotated clockwise by the angle ⁇ A in FIG.
  • the axial position of FS1 (accordingly, S1) or FS2 (accordingly, S2) moves from the neutral position to the position shifted to the right in FIG. 3 by the distance B1 (second speed position, fourth speed position).
  • B2> B1 holds. That is, even if the rotation angle of the IL from the reference position is the same counterclockwise and clockwise, the amount of movement in the axial direction of FS1, FS2, and FS3 (thus, S1, S2, and S3) differs. As described above, this is based on the fact that the engaging portion of the IL is positioned on a straight line inclined by a predetermined angle ⁇ z with respect to the “perpendicular”. As described above, each of S1 to S3 corresponds to the “specific sleeve”, each of FS1 to FS3 corresponds to the “specific fork shaft”, and each of H1 to H3 corresponds to the “specific shift head”. . Hereinafter, each shift stage will be described in order.
  • the ratio of the rotational speed of Ai to the rotational speed of Ao is called “MT reduction ratio”
  • the MT reduction ratio (from the 1st speed to the 5th speed) ( The number of teeth of GNo / the number of teeth of GNi) (N: 1 to 5) gradually decreases.
  • the E / G control by this apparatus is generally performed as follows.
  • the E / G is maintained in a stopped state (a state in which fuel injection is not performed).
  • the E / G stop state the E / G is started (fuel injection is started based on the selection of a gear position for HV traveling (any one of “1st speed” to “5th speed”)).
  • the EG torque is controlled based on the accelerator opening and the like.
  • the E / G is maintained in the stopped state again based on the selection of “N” or the stop of the vehicle.
  • the manual transmission described in the “Background Art” column that is, “one direction side of the fork shaft when the rotational position of the S & S shaft rotates by a first angle from the reference position to the one direction side”
  • the distance traveled to the opposite direction side of the fork shaft when the rotational position of the S & S shaft rotates by the first angle from the reference position to the opposite direction side is the same.
  • the entire movement range in the axial direction of the fork shaft can be shortened.
  • the transmission housing can be further downsized.
  • the present invention is not limited to the above embodiment, and various modifications can be employed within the scope of the present invention.
  • the sleeves S1 to S3 are all provided on the input shaft Ai, but the sleeves S1 to S3 may be provided on the output shaft Ao. Further, a part of the sleeves S1 to S3 may be provided on the output shaft Ao and the rest on the input shaft Ai. M / G may be omitted.
  • the axial positions of the sleeves S1 to S3 are adjusted using the link mechanism (S & S shaft and fork shaft) that mechanically connects the shift lever SL and the sleeves S1 to S3. It is mechanically adjusted according to the shift position.
  • the axial positions of the sleeves S1 to S3 may be adjusted electrically (in a so-called by-wire system) using the driving force of the actuator that operates based on the detection result of the shift position sensor P4. .
  • all of the fork shafts FS1 to FS3 are the inner lever IL of the S & S shaft (that is, when the rotation position of the S & S shaft is at the reference position, the engaging portion thereof is at a predetermined angle with respect to the “perpendicular”. It is driven by an inner lever located on a straight line inclined by ⁇ z. That is, all of S1 to S3 correspond to the “specific sleeve”, all of FS1 to FS3 correspond to the “specific fork shaft”, and all of H1 to H3 correspond to the “specific shift head”. .
  • FS1 is driven by the first inner lever IL1 of the S & S shaft (the same as the inner lever IL shown in FIG. 3), and FS2 and FS3 are driven by the second inner lever IL2 of the S & S shaft.
  • the engaging portion of IL2 is located on the “perpendicular line” when the rotation position of the S & S shaft is at the reference position. Therefore, when the rotation position of the S & S shaft is rotated by a first angle from the reference position to the one direction side, the movement distance of the FS2, FS3 to the one direction side, and the rotation position of the S & S shaft is the opposite direction side from the reference position.
  • FS2 (or FS3) is driven by the first inner lever IL1 of the S & S shaft (see FIG. 15), and FS1 and FS3 (or FS1 and FS2) are driven by the second inner lever IL2 of the S & S shaft (see FIG. 15). It may be driven.
  • S2 (or S3) of S1 to S3 corresponds to the “specific sleeve”
  • FS2 (or FS3) of FS1 to FS3 corresponds to the “specific fork shaft”
  • H2 of H1 to H3. (Or H3) corresponds to the “specific shift head”.

Abstract

 S&Sシャフトの回動位置が基準位置にあるとき、インナレバーILの係合部は「垂線Zに対して所定角度θzだけ傾いた直線」の上に位置する。対応するセレクト位置から「1速(或いは3速、5速)のシフト完了位置」へのシフト操作によって、S&Sシャフトの回動位置が基準位置から反時計回りに角度θAだけ回転し、フォークシャフトFS1(或いはFS2、FS3)が、中立位置から距離B2だけ左側に移動する。対応するセレクト位置から「2速(或いは4速)のシフト完了位置」へのシフト操作によって、S&Sシャフトの回動位置が基準位置から時計回りに角度θAだけ回転し、FS1(或いはFS2)が、中立位置から距離B1だけ右側に移動する(B1<B2)。これにより、シフトパターンとしてHパターンが採用されるMT車用の手動変速機であって、フォークシャフトの軸方向における全移動範囲をより狭くできるものが提供され得る。

Description

手動変速機
 本発明は、車両に適用される手動変速機に関し、特に、内燃機関の出力軸と手動変速機の入力軸との間に摩擦クラッチが介装された車両に適用されるものに係わる。
 従来より、シフトパターン上のシフトレバーの位置に応じて複数の変速段のうちの1つが選択されるトルクコンバータを備えない手動変速機が広く知られている(例えば、特開2010-216603号公報を参照)。この手動変速機では、シフトパターンとして所謂「Hパターン」が広く用いられる(例えば、後述する図4を参照)。
 Hパターンでは、複数の変速段のそれぞれを確立するため、シフトパターン上においてシフトレバーの位置が、セレクト操作(車両の左右方向の操作)によって「対応するセレクト位置」に移動され、その後、シフト操作(車両の前後方向の操作)によって「対応するセレクト位置」から「対応するシフト完了位置」に移動される。具体的には、例えば、後述する図4に示すように、「第1及び第2の変速段に対応するセレクト位置」から車両の前方側に「第1の変速段のシフト完了位置」が配置され、「第1及び第2の変速段に対応するセレクト位置」から車両の後方側に「第2の変速段のシフト完了位置」が配置される。後述する図4に示す例では、「第1及び第2の変速段」とは、例えば、1速及び2速、或いは、3速及び4速に対応する。
 シフトパターンとして「Hパターン」が採用された手動変速機では、変速段の選択・確立は、通常、シフトレバーの操作に連動するシフトアンドセレクトシャフト(S&Sシャフト)のインナレバーがセレクト操作によって選択されたフォークシャフト(具体的には、フォークシャフトと一体のシフトヘッド)をシフト操作に応じて軸方向に駆動することによって行われる。以下、S&Sシャフトとして、シフトレバーの「セレクト操作」によって軸方向に移動し且つシフトレバーの「シフト操作」によって軸周りに回動するタイプのもの(所謂「シフト回転型」)を想定する。
 この場合、上記第1及び第2の変速段の選択・確立に際し、シフトレバーを「第1及び第2の変速段に対応するセレクト位置」から「第1の変速段のシフト完了位置」へ移動することによって、S&Sシャフトの回動位置が基準位置から一方向側に第1角度だけ回転する。これにより、「第1及び第2の変速段に対応するフォークシャフト」の軸方向位置が中立位置から一方向側に第1距離だけ移動し、このフォークシャフトと一体のスリーブが第1の変速段用の遊転ギヤと係合する。この結果、第1の変速段が選択・確立される。
 一方、シフトレバーを「第1及び第2の変速段に対応するセレクト位置」から「第2の変速段のシフト完了位置」へ移動することによって、S&Sシャフトの回動位置が基準位置から前記一方向側と反対側に前記第1角度と同じ角度だけ回転する。これにより、「第1及び第2の変速段に対応するフォークシャフト」の軸方向位置が中立位置から前記一方向側と反対側に前記第1距離と同じ距離だけ移動し、このフォークシャフトと一体のスリーブが第2の変速段用の遊転ギヤと係合する。この結果、第2の変速段が選択・確立される。
 上述したように、シフトパターンとして「Hパターン」が採用された手動変速機では、通常、S&Sシャフトの回動位置が基準位置から一方向側に第1角度だけ回転する場合のフォークシャフトの一方向側への移動距離と、S&Sシャフトの回動位置が基準位置から反対方向側に第1角度だけ回転する場合のフォークシャフトの反対方向側への移動距離とが同じ(=前記第1距離)になる。即ち、フォークシャフトの軸方向における全移動範囲は、前記第1距離の2倍となる。
 これに対し、本発明者は、フォークシャフトの軸方向における全移動範囲をより狭くでき、従って、変速機のハウジングをより小型化できる手動変速機を開発することに成功した。
 本発明の目的は、車両用の手動変速機であって、フォークシャフトの軸方向における全移動範囲をより狭くでき、従って、変速機のハウジングをより小型化できるものを提供することにある。
 本発明による手動変速機の特徴は、S&Sシャフトの回動位置が基準位置から一方向側に第1角度(θA)だけ回転する場合のフォークシャフトの一方向側への移動距離(B2)と、S&Sシャフトの回動位置が基準位置から反対方向側に第1角度(θA)だけ回転する場合のフォークシャフトの反対方向側への移動距離(B1)とが異なる点にある。
 これによれば、「背景技術」の欄で述べた手動変速機に対して、フォークシャフトの軸方向における全移動範囲を短くすることができる。この結果、変速機のハウジングをより小型化することができる。
 このような構成を達成するためには、具体的には、S&Sシャフトとフォークシャフトとは、互いに垂直であり且つねじれの位置の関係となるように配置される。S&Sシャフトの回動位置が前記基準位置にある状態において、S&Sシャフトの軸方向からみたとき、インナレバーの係合部が、「S&Sシャフトの回動中心を通り、且つ、前記回動中心からフォークシャフトに向けて下した垂線に対して所定角度(θz)だけ傾いた直線」の上に位置する。加えて、インナレバーの係合部がフォークシャフトと一体に連結されたシフトヘッドの凹部と係合することによって、インナレバーの係合部がフォークシャフトを軸方向に駆動するように構成される。
 なお、本発明に係る手動変速機は、それぞれが前記入力軸又は前記出力軸に相対回転不能に設けられた複数の固定ギヤであってそれぞれが前記複数の変速段のそれぞれに対応する複数の固定ギヤ(G1i、G2i、G3i、G4i、G5i)と、それぞれが前記入力軸又は前記出力軸に相対回転可能に設けられた複数の遊転ギヤであってそれぞれが前記複数の変速段のそれぞれに対応するとともに対応する変速段の前記固定ギヤと常時歯合する複数の遊転ギヤ(G1o、G2o、G3o、G4o、G5o)と、それぞれが前記入力軸及び前記出力軸のうち対応する軸に相対回転不能且つ軸方向に相対移動可能に設けられた複数のスリーブであってそれぞれが前記複数の遊転ギヤのうち対応する遊転ギヤを前記対応する軸に対して相対回転不能に固定するために前記対応する遊転ギヤと係合可能な複数のスリーブ(S1、S2、S3)と、それぞれが前記複数のスリーブのそれぞれと連結され且つ軸方向に移動可能な複数のフォークシャフト(FS1、FS2、FS3)と、を備える。「特定スリーブ」は、前記複数のスリーブのうちの1つ以上に対応し、「特定フォークシャフト」は、前記複数のフォークシャフトのうちの1つ以上に対応する。
本発明の実施形態に係るHV-MT車用の手動変速機を含む動力伝達制御装置のN位置が選択された状態における概略構成図である。 N位置が選択された状態におけるS&Sシャフト及び複数のフォークシャフトの位置関係を示した模式図である。 「フォークシャフト」と「インナレバー」との係合状態を示した模式図である。 シフトパターンの詳細を示した図である。 1速位置が選択された状態における図1に対応する図である。 1速位置が選択された状態における図2に対応する図である。 2速位置が選択された状態における図1に対応する図である。 2速位置が選択された状態における図2に対応する図である。 3速位置が選択された状態における図1に対応する図である。 3速位置が選択された状態における図2に対応する図である。 4速位置が選択された状態における図1に対応する図である。 4速位置が選択された状態における図2に対応する図である。 5速位置が選択された状態における図1に対応する図である。 5速位置が選択された状態における図2に対応する図である。 本発明の実施形態の変形例に係る図3に対応する図である。
 以下、本発明の実施形態に係る手動変速機M/Tを備えた車両の動力伝達制御装置の一例(以下、「本装置」と呼ぶ)について図面を参照しながら説明する。図1に示すように、本装置は、「動力源としてエンジンE/GとモータジェネレータM/Gとを備え、且つ、トルクコンバータを備えない手動変速機M/Tと、摩擦クラッチC/Tとを備えた車両」、即ち、所謂「HV-MT車」に適用される。この「HV-MT車」は、前輪駆動車であっても、後輪駆動車であっても、4輪駆動車であってもよい。なお、本装置は、動力源としてエンジンE/Gのみを備え、且つ、手動変速機M/Tと、摩擦クラッチC/Tとを備えた車両」(即ち、通常のMT車)に適用されてもよいことはいうまでもない。
(全体構成)
 先ず、本装置の全体構成について説明する。エンジンE/Gは、周知の内燃機関であり、例えば、ガソリンを燃料として使用するガソリンエンジン、軽油を燃料として使用するディーゼルエンジンである。
 手動変速機M/Tは、運転者により操作されるシフトレバーSLのシフト位置に応じて変速段が選択されるトルクコンバータを備えない変速機(所謂、マニュアルトランスミッション)である。M/Tは、E/Gの出力軸Aeから動力が入力される入力軸Aiと、M/Gから動力が入力されるとともに車両の駆動輪へ動力を出力する出力軸Aoと、を備える。入力軸Ai及び出力軸Aoは互いに平行に配置されている。出力軸Aoは、M/Gの出力軸そのものであってもよいし、M/Gの出力軸と平行であり且つM/Gの出力軸とギヤ列を介して常時動力伝達可能に接続された軸であってもよい。M/Tの構成の詳細は後述する。
 摩擦クラッチC/Tは、E/Gの出力軸AeとM/Tの入力軸Aiとの間に介装されている。C/Tは、運転者により操作されるクラッチペダルCPの操作量(踏み込み量)に応じて摩擦プレートの接合状態(より具体的には、Aeと一体回転するフライホイールに対する、Aiと一体回転する摩擦プレートの軸方向位置)が変化する周知のクラッチである。
 C/Tの接合状態(摩擦プレートの軸方向位置)は、クラッチペダルCPとC/T(摩擦プレート)とを機械的に連結するリンク機構等を利用してCPの操作量に応じて機械的に調整されてもよいし、CPの操作量を検出するセンサ(後述するセンサP1)の検出結果に基づいて作動するアクチュエータの駆動力を利用して電気的に(所謂バイ・ワイヤ方式で)調整されてもよい。
 モータジェネレータM/Gは、周知の構成(例えば、交流同期モータ)の1つを有していて、例えば、ロータ(図示せず)が出力軸Aoと一体回転するようになっている。即ち、M/Gの出力軸とM/Tの出力軸Aoとの間では動力伝達系統が常時確立されている。以下、E/Gの出力軸Aeの駆動トルクを「EGトルク」と呼び、M/Gの出力軸(出力軸Ao)の駆動トルクを「MGトルク」と呼ぶ。
 また、本装置は、クラッチペダルCPの操作量(踏み込み量、クラッチストローク等)を検出するクラッチ操作量センサP1と、ブレーキペダルBPの操作量(踏力、操作の有無等)を検出するブレーキ操作量センサP2と、アクセルペダルAPの操作量(アクセル開度)を検出するアクセル操作量センサP3と、シフトレバーSLの位置を検出するシフト位置センサP4と、を備えている。
 更に、本装置は、電子制御ユニットECUを備えている。ECUは、上述のセンサP1~P4、並びにその他のセンサ等からの情報等に基づいて、E/Gの燃料噴射量(スロットル弁の開度)を制御することでEGトルクを制御するとともに、インバータ(図示せず)を制御することでMGトルクを制御する。
(M/Tの構成)
 以下、M/Tの構成の詳細について図1~図4を参照しながら説明する。図1及び図4に示すシフトレバーSLのシフトパターンから理解できるように、本例では、選択される変速段(シフト完了位置)として、前進用の5つの変速段(1速~5速)、及び後進用の1つの変速段(R)が設けられている。以下、後進用の変速段(R)についての説明は省略する。
 図4に示すように、シフトレバーSLのシフトパターンとして所謂「Hパターン」が採用されている。シフトパターン上において、シフトレバーSLの車両左右方向の操作を「セレクト操作」と呼び、シフトレバーSLの車両前後方向の操作を「シフト操作」と呼ぶ。
 シフトパターン上において、「1速」及び「2速」のシフト完了位置、「3速」及び「4速」のシフト完了位置、並びに、「5速」のシフト完了位置はそれぞれ、1-2セレクト位置、N位置、並びに、5-Rセレクト位置からシフト操作方向(車両の前後方向)に距離Aだけ離れた位置にある。以下、説明の便宜上、「N位置」、「1-2セレクト位置」、「5-Rセレクト位置」を含むセレクト操作範囲に対応するシフト位置の範囲を総称して「ニュートラル範囲」と呼ぶ。
 M/Tは、スリーブS1、S2、及びS3を備える。S1、S2、及びS3はそれぞれ、出力軸Aoと一体回転する対応するハブに相対回転不能且つ軸方向に相対移動可能に嵌合された、「1速-2速」用のスリーブ、「3速-4速」用のスリーブ、及び「5速」用のスリーブである。スリーブS1、S2、S3は、図2及び図3に示すフォークシャフトFS1、FS2、FS3と(対応するフォークを介して)それぞれ一体に連結されている。M/Tの図示しないハウジング内において、FS1~FS3は互いに平行に配置されている。
 FS1、FS2、FS3(従って、S1、S2、S3)はそれぞれ、シフトレバーSLの操作と連動するS&Sシャフトに一体に設けられたインナレバーIL(図2、図3を参照)の回動動作によって軸方向(図2では上下方向、図1及び図3では左右方向)に駆動される。S&Sシャフトは、シフトレバーSLのセレクト操作(図1、図4では左右方向の操作)によって軸方向に平行移動し且つシフトレバーSLのシフト操作(図1、図4では上下方向の操作)によって軸中心に回動するようになっている(シフト回転型)。M/Tの図示しないハウジング内において、S&SシャフトとフォークシャフトFS1~FS3とは、互いに垂直であり且つねじれの位置の関係となるように配置されている。
 図3は、シフトレバーSLがニュートラル範囲にあるときのS&Sシャフトの回動位置を示す。以下、この回動位置を「基準位置」と呼ぶ。図3から理解できるように、S&Sシャフトの回動位置が基準位置にある状態において、S&Sシャフトの軸方向からみたとき、インナレバーILの係合部(先端部)は、「S&Sシャフトの回動中心を通り、且つ、その回動中心からフォークシャフトに向けて下した垂線に対して所定角度θzだけ傾いた直線」の上に位置している。
 インナレバーILの係合部は、シフトレバーSLが1-2セレクト位置にあるときにFS1と一体に連結されたシフトヘッドH1の凹部と係合し、SLがN位置にあるときにFS2と一体に連結されたシフトヘッドH2の凹部と係合し、SLが5-Rセレクト位置にあるときにFS3と一体に連結されたシフトヘッドH3の凹部と係合する。これにより、ILの係合部がFS1、FS2、FS3を選択的に軸方向に駆動するようになっている。以下、S&Sシャフトの回動位置が基準位置にあるときのFS1、FS2、FS3のそれぞれの軸方向位置をそれぞれの「中立位置」と呼ぶ。
 シフトパターン上において、SLが、1-2セレクト位置から「1速のシフト完了位置」へ、N位置から「3速のシフト完了位置」へ、又は、5-Rセレクト位置から「5速のシフト完了位置」へ移動する(即ち、車両前方側へ距離Aだけ移動する)ことによって、S&Sシャフトの回動位置が基準位置から図3において反時計回りに角度θAだけ回転した位置(1速位置、3速位置、5速位置)に移動する。この結果、FS1(従って、S1)、FS2(従って、S2)、又は、FS3(従って、S3)の軸方向位置が、中立位置から距離B2だけ図3において左側に偏移した位置(1速位置、3速位置、5速位置)に移動する。
 一方、SLが、1-2セレクト位置から「2速のシフト完了位置」へ、又は、N位置から「4速のシフト完了位置」へ移動する(即ち、車両後方側へ距離Aだけ移動する)ことによって、S&Sシャフトの回動位置が基準位置から図3において時計回りに角度θAだけ回転した位置(2速位置、4速位置)に移動する。この結果、FS1(従って、S1)、又は、FS2(従って、S2)の軸方向位置が、中立位置から距離B1だけ図3において右側に偏移した位置(2速位置、4速位置)に移動する。
 ここで、B2>B1が成立している。即ち、ILの基準位置からの回動角度が反時計回りと時計回りとで同じであっても、FS1、FS2、FS3(従って、S1、S2、S3)の軸方向の移動量が異なる。これは、上述のように、ILの係合部が、前記「垂線」に対して所定角度θzだけ傾いた直線の上に位置していることに基づく。以上、S1~S3のそれぞれが前記「特定スリーブ」に対応し、FS1~FS3のそれぞれが前記「特定フォークシャフト」に対応し、H1~H3のそれぞれが前記「特定シフトヘッド」に対応している。以下、各変速段について順に説明していく。
 図1、2に示すように、シフトレバーSLが「N位置」(より正確には、ニュートラル範囲)にある状態では、スリーブS1、S2、及びS3の全てが「中立位置」にある。この状態では、S1、S2、及びS3はそれぞれ、対応する何れの遊転ギヤとも係合していない。即ち、入力軸Aiと出力軸Aoとの間では動力伝達系統が確立されない。
 図5、6に示すように、シフトレバーSLが「N位置」から(1-2セレクト位置を経由して)「1速のシフト完了位置」に移動すると、S&SシャフトのILがシフトヘッドH1の「1速側係合部」を「1速」方向(図6では上方向)に距離B2だけ駆動することによって、FS1(従って、S1)のみが「1速位置」に移動する。スリーブS2、S3はそれぞれ「中立位置」にある。
 この状態では、図5に示すように、S1は、遊転ギヤG1oと係合し、G1oを出力軸Aoに対して相対回転不能に固定している。また、G1oは、入力軸Aiに固定された固定ギヤG1iと常時噛合している。この結果、図5に太い実線で示すように、M/Gと出力軸Aoとの間で動力伝達系統が確立されることに加えて、入力軸Aiと出力軸Aoとの間で、G1i及びG1oを介して「1速」に対応する動力伝達系統が確立される。即ち、「1速」が選択された場合、クラッチC/Tを介して伝達されるEGトルクと、MGトルクとの両方を利用して車両が走行する状態(即ち、所謂「HV走行」)が実現される。
 図7、8に示すように、シフトレバーSLが「N位置」から(1-2セレクト位置を経由して)「2速のシフト完了位置」に移動すると、S&SシャフトのILがシフトヘッドH1の「2速側係合部」を「2速」方向(図8では下方向)に距離B1だけ駆動することによって、FS1(従って、S1)のみが「2速位置」に移動する。スリーブS2、S3はそれぞれ「中立位置」にある。
 この状態では、S1は、遊転ギヤG2oと係合し、遊転ギヤG2oを出力軸Aoに対して相対回転不能に固定している。また、G2oは、入力軸Aiに固定された固定ギヤG2iと常時噛合している。この結果、図7に太い実線で示すように、M/Gと出力軸Aoとの間で動力伝達系統が確立されることに加えて、入力軸Aiと出力軸Aoとの間で、G2i及びG2oを介して「2速」に対応する動力伝達系統が確立される。即ち、「2速」が選択された場合、上記「HV走行」が実現される。
 以下、図9~図14に示すように、シフトレバーSLが「3速」、「4速」、「5速」にある場合も、「1速」や「2速」の場合と同様、上記「HV走行」が実現される。即ち、「3速」、「4速」、「5速」ではそれぞれ、M/Gと出力軸Aoとの間で動力伝達系統が確立されることに加えて、入力軸Aiと出力軸Aoとの間で、「G3i及びG3o」、「G4i及びG4o」、「G5i及びG5o」を介して、「3速」、「4速」、「5速」に対応する動力伝達系統が確立される。なお、EGトルクの伝達系統について、「Aoの回転速度に対するAiの回転速度の割合」を「MT減速比」と呼ぶものとすると、「1速」から「5速」に向けてMT減速比(GNoの歯数/GNiの歯数)(N:1~5)が次第に小さくなっていく。
(E/Gの制御)
 本装置によるE/Gの制御は、大略的に以下のようになされる。車両が停止しているとき、或いは、「N」が選択されているとき、E/Gが停止状態(燃料噴射がなされない状態)に維持される。E/Gの停止状態において、HV走行用の変速段(「1速」~「5速」の何れか)が選択されたことに基づいて、E/Gが始動される(燃料噴射が開始される)。E/Gの稼働中(燃料噴射がなされている間)では、アクセル開度等に基づいてEGトルクが制御される。E/Gの稼働中において、「N」が選択されたこと、或いは、車両が停止したことに基づいて、E/Gが再び停止状態に維持される。
(M/Gの制御)
 本装置によるM/Gの制御は、大略的に以下のようになされる。車両が停止しているとき、或いは、「N」が選択されているとき、M/Gが停止状態(MGトルク=0)に維持される。M/Gの停止状態において、「1速」が選択されたことに基づいて、MGトルクを利用した通常発進制御が開始される。通常発進制御では、MGトルクがアクセル開度及びクラッチストロークに基づいて制御される。通常発進制御でのMGトルクは、「手動変速機と摩擦クラッチとを備え且つ動力源として内燃機関のみを搭載した通常車両」が「1速」で発進する際における「アクセル開度及びクラッチストローク」と「クラッチを介して手動変速機の入力軸へ伝達される内燃機関のトルク」との関係を規定する予め作製されたマップ等を利用して決定される。通常発進制御の終了後は、アクセル開度等に基づいてMGトルクが制御される。そして、車両が停止したことに基づいて、M/Gが再び停止状態に維持される。
(作用・効果)
 上記のように、本発明の実施形態に係る手動変速機M/Tでは、S&Sシャフトの回動位置が基準位置から一方向側に第1角度(θA)だけ回転する場合のフォークシャフトの一方向側への移動距離(B2)と、S&Sシャフトの回動位置が基準位置から反対方向側に第1角度(θA)だけ回転する場合のフォークシャフトの反対方向側への移動距離(B1)とが異なる(図3等を参照)。これは、S&Sシャフトの回動位置が基準位置にある場合のインナレバーILの係合部が、前記「垂線」に対して所定角度θzだけ傾いた直線の上に位置していることに基づく。
 上記構成によれば、「背景技術」の欄で述べた手動変速機、即ち、「S&Sシャフトの回動位置が基準位置から一方向側に第1角度だけ回転する場合のフォークシャフトの一方向側への移動距離とS&Sシャフトの回動位置が基準位置から反対方向側に第1角度だけ回転する場合のフォークシャフトの反対方向側への移動距離とが同じになる」手動変速機に対して、フォークシャフトの軸方向における全移動範囲を短くすることができる。この結果、変速機のハウジングをより小型化することができる。
 本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、スリーブS1~S3が共に入力軸Aiに設けられているが、スリーブS1~S3が共に出力軸Aoに設けられていてもよい。また、スリーブS1~S3のうちの一部が出力軸Aoに残りが入力軸Aiに設けられていてもよい。また、M/Gは省略されてもよい。
 また、上記実施形態では、スリーブS1~S3の軸方向位置が、シフトレバーSLとスリーブS1~S3とを機械的に連結するリンク機構(S&Sシャフトとフォークシャフト)等を利用してシフトレバーSLのシフト位置に応じて機械的に調整されている。これに対し、スリーブS1~S3の軸方向位置が、シフト位置センサP4の検出結果に基づいて作動するアクチュエータの駆動力を利用して電気的に(所謂バイ・ワイヤ方式で)調整されてもよい。
 また、上記実施形態では、フォークシャフトFS1~FS3の全てがS&SシャフトのインナレバーIL(即ち、S&Sシャフトの回動位置が基準位置にある場合にその係合部が前記「垂線」に対して所定角度θzだけ傾いた直線の上に位置するインナレバー)によって駆動されている。即ち、S1~S3の全てが前記「特定スリーブ」に対応し、FS1~FS3の全てが前記「特定フォークシャフト」に対応し、H1~H3の全てが前記「特定シフトヘッド」に対応している。
 これに対し、図15に示すように、FS1のみがS&Sシャフトの第1インナレバーIL1(図3に示すインナレバーILと同じもの)によって駆動され、FS2及びFS3がS&Sシャフトの第2インナレバーIL2によって駆動されてもよい。IL2の係合部は、S&Sシャフトの回動位置が基準位置にある場合において前記「垂線」上に位置している。従って、S&Sシャフトの回動位置が基準位置から一方向側に第1角度だけ回転する場合のFS2、FS3の一方向側への移動距離と、S&Sシャフトの回動位置が基準位置から反対方向側に第1角度だけ回転する場合のFS2、FS3の反対方向側への移動距離とは、同じになる。この場合、S1~S3のうちS1のみが前記「特定スリーブ」に対応し、FS1~FS3のうちFS1のみが前記「特定フォークシャフト」に対応し、H1~H3のうちH1のみが前記「特定シフトヘッド」に対応する。
 同様に、FS2(或いはFS3)がS&Sシャフトの第1インナレバーIL1(図15を参照)によって駆動され、FS1及びFS3(或いはFS1及びFS2)がS&Sシャフトの第2インナレバーIL2(図15を参照)によって駆動されてもよい。この場合、S1~S3のうちS2(或いはS3)が前記「特定スリーブ」に対応し、FS1~FS3のうちFS2(或いはFS3)が前記「特定フォークシャフト」に対応し、H1~H3のうちH2(或いはH3)が前記「特定シフトヘッド」に対応する。

Claims (2)

  1.  動力源(E/G)を備えた車両に適用され、複数の変速段のそれぞれを確立するための運転者により操作されるシフト操作部材(SL)のそれぞれの操作が、シフトパターン上において、前記シフト操作部材の位置を、前記車両の左右方向の操作であるセレクト操作によって対応するセレクト位置に移動し、その後、前記車両の前後方向の操作であるシフト操作によって前記対応するセレクト位置から対応するシフト完了位置に移動することにより達成されるように構成された、トルクコンバータを備えない手動変速機(M/T)であって、
     前記動力源から動力が入力される入力軸(Ai)と、
     前記車両の駆動輪へ動力を出力する出力軸(Ao)と、
     前記シフト操作部材を前記シフトパターン上において前記複数の変速段(1速~5速)に対応するそれぞれの前記シフト完了位置に移動することによって、前記入力軸と前記出力軸との間で、前記出力軸の回転速度に対する前記入力軸の回転速度の割合である変速機減速比が対応する変速段に対応するそれぞれの値に設定される動力伝達系統を確立する変速機変速機構(M)と、
     を備えた手動変速機であり、
     前記シフトパターン上において、前記複数の変速段のうちの第1の変速段及び第2の変速段に対応する前記セレクト位置から前記車両の前方側に前記第1の変速段(1速、3速)のシフト完了位置が配置され、前記第1及び第2の変速段に対応するセレクト位置から前記車両の後方側に前記第2の変速段(2速、4速)のシフト完了位置が配置され、
     前記変速機変速機構は、
     前記シフト操作部材の前記セレクト操作によって軸方向に移動し且つ前記シフト操作部材の前記シフト操作によって軸周りに回動するとともにその側面から突出するインナレバー(IL)を備えたシフトアンドセレクトシャフトであって、前記シフト操作部材を前記シフトパターン上において前記第1及び第2の変速段に対応するセレクト位置から前記第1の変速段のシフト完了位置へ移動することによって前記シフトアンドセレクトシャフトの回動位置が基準位置から第1角度(θA)だけ回転した位置である第1位置(1速位置、3速位置)に移動し、前記シフト操作部材を前記シフトパターン上において前記第1、第2の変速段に対応するセレクト位置から前記第2の変速段のシフト完了位置へ移動することによって前記シフトアンドセレクトシャフトの回動位置が前記基準位置から前記基準位置に対して前記第1位置と反対側に前記第1角度(θA)だけ回転した位置である第2位置(2速位置、4速位置)に移動するシフトアンドセレクトシャフトと、
     前記入力軸及び前記出力軸の一方の軸に相対回転不能且つ軸方向に相対移動可能に設けられた特定スリーブであって前記一方の軸に相対回転可能に設けられた前記第1の変速段用の遊転ギヤ(G1o、G3o)及び前記第2の変速段用の遊転ギヤ(G2o、G4o)を前記一方の軸に対して相対回転不能に選択的に固定するために前記第1の変速段用の遊転ギヤ及び前記第2の変速段用の遊転ギヤと選択的に係合可能な特定スリーブ(S1、S2)と、
     前記特定スリーブと連結され、軸方向に移動することによって前記特定スリーブを軸方向に駆動する特定フォークシャフト(FS1、FS2)と、
     前記特定インナレバーの係合部と前記特定フォークシャフトとの係合状態を調整する調整機構であって、前記シフトアンドセレクトシャフトの回動位置が前記基準位置から前記第1位置に移動する際、前記特定インナレバーの係合部が前記特定フォークシャフトを軸方向に駆動して前記特定フォークシャフトの軸方向位置が中立位置から前記中立位置から一方向側に第1距離(B2)だけ変位した位置(1速位置、3速位置)に移動するとともに前記特定スリーブが前記第1の変速段用の遊転ギヤと係合し、前記シフトアンドセレクトシャフトの回動位置が前記基準位置から前記第2位置に移動する際、前記特定インナレバーの係合部が前記特定フォークシャフトを軸方向に駆動して前記特定フォークシャフトの軸方向位置が前記中立位置から前記中立位置から前記一方向側と反対側に前記第1距離と異なる第2距離(B1)だけ変位した位置(2速位置、4速位置)に移動するとともに前記特定スリーブが前記第2の変速段用の遊転ギヤと係合するように構成された調整機構(H1、IL)と、
     を備えた、手動変速機。
  2.  請求項1に記載の手動変速機において、
     前記シフトアンドセレクトシャフトと前記特定フォークシャフトとは、互いに垂直であり且つねじれの位置の関係となるように配置され、
     前記調整機構は、
     前記シフトアンドセレクトシャフトの回動位置が前記基準位置にある状態において、前記シフトアンドセレクトシャフトの軸方向からみたとき、前記特定インナレバー(IL)の係合部が、前記シフトアンドセレクトシャフトの回動中心を通る直線であって、且つ、前記回動中心から前記特定フォークシャフトに向けて下した垂線に対して所定角度(θz)だけ傾いた直線の上に位置し、
     前記特定インナレバーの係合部が前記特定フォークシャフトと一体に連結された特定シフトヘッド(H1、H2)の凹部と係合することによって、前記特定インナレバーの係合部が前記特定フォークシャフトを軸方向に駆動するように構成される、
     ことによって実現された、手動変速機。
PCT/JP2012/055218 2011-03-11 2012-03-01 手動変速機 WO2012124494A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112012001188T DE112012001188T5 (de) 2011-03-11 2012-03-01 Handschaltgetriebe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-053758 2011-03-11
JP2011053758A JP2012189156A (ja) 2011-03-11 2011-03-11 手動変速機

Publications (1)

Publication Number Publication Date
WO2012124494A1 true WO2012124494A1 (ja) 2012-09-20

Family

ID=46830569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055218 WO2012124494A1 (ja) 2011-03-11 2012-03-01 手動変速機

Country Status (3)

Country Link
JP (1) JP2012189156A (ja)
DE (1) DE112012001188T5 (ja)
WO (1) WO2012124494A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765398B1 (ko) 2015-12-23 2017-08-04 현대다이모스(주) 더블 클러치 변속기의 셀렉트 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209064A (ja) * 1990-01-09 1991-09-12 Kubota Corp シフトフォークの操作構造
JPH0542822U (ja) * 1991-11-06 1993-06-11 本田技研工業株式会社 車両用手動変速機
JPH05248539A (ja) * 1992-03-09 1993-09-24 Kubota Corp 変速装置の変速操作構造
JPH0932921A (ja) * 1995-07-17 1997-02-07 Fuji Heavy Ind Ltd 変速操作機構

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216603A (ja) 2009-03-18 2010-09-30 Aisin Ai Co Ltd 手動変速機の操作装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209064A (ja) * 1990-01-09 1991-09-12 Kubota Corp シフトフォークの操作構造
JPH0542822U (ja) * 1991-11-06 1993-06-11 本田技研工業株式会社 車両用手動変速機
JPH05248539A (ja) * 1992-03-09 1993-09-24 Kubota Corp 変速装置の変速操作構造
JPH0932921A (ja) * 1995-07-17 1997-02-07 Fuji Heavy Ind Ltd 変速操作機構

Also Published As

Publication number Publication date
JP2012189156A (ja) 2012-10-04
DE112012001188T5 (de) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5641610B2 (ja) 手動変速機
JP5907676B2 (ja) 手動変速機
JP5876242B2 (ja) 手動変速機
JP5670222B2 (ja) 手動変速機
JP2012224155A (ja) 車両の動力伝達制御装置
EP2733001B1 (en) Manual transmission
WO2013008855A1 (ja) 手動変速機
JP5801068B2 (ja) 手動変速機
JP5802478B2 (ja) 手動変速機
US9267573B2 (en) Manual transmission
WO2012124494A1 (ja) 手動変速機
JP5990023B2 (ja) 車両の動力伝達制御装置
WO2012081280A1 (ja) 車両の動力伝達制御装置
JP2012171595A (ja) 手動変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757522

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 112012001188

Country of ref document: DE

Ref document number: 1120120011880

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757522

Country of ref document: EP

Kind code of ref document: A1