WO2012081094A1 - 電気加熱式触媒の故障検出装置 - Google Patents

電気加熱式触媒の故障検出装置 Download PDF

Info

Publication number
WO2012081094A1
WO2012081094A1 PCT/JP2010/072560 JP2010072560W WO2012081094A1 WO 2012081094 A1 WO2012081094 A1 WO 2012081094A1 JP 2010072560 W JP2010072560 W JP 2010072560W WO 2012081094 A1 WO2012081094 A1 WO 2012081094A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically heated
catalyst
heated catalyst
fuel ratio
air
Prior art date
Application number
PCT/JP2010/072560
Other languages
English (en)
French (fr)
Inventor
高木 直也
▲吉▼岡 衛
剛 渡辺
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP10860784.7A priority Critical patent/EP2653683B1/en
Priority to PCT/JP2010/072560 priority patent/WO2012081094A1/ja
Priority to US13/994,570 priority patent/US8776586B2/en
Priority to JP2012548573A priority patent/JP5348336B2/ja
Priority to CN201080070658.XA priority patent/CN103261604B/zh
Priority to KR1020137017449A priority patent/KR101331370B1/ko
Publication of WO2012081094A1 publication Critical patent/WO2012081094A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/007Storing data relevant to operation of exhaust systems for later retrieval and analysis, e.g. to research exhaust system malfunctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/22Monitoring or diagnosing the deterioration of exhaust systems of electric heaters for exhaust systems or their power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a failure detection device for an electrically heated catalyst.
  • a technique is known in which a catalyst carrier having electrical resistance is energized to increase the temperature of the catalyst at the time of cold start of the internal combustion engine so as to activate the catalyst at an early stage (see, for example, Patent Document 1). Further, a technique for determining an abnormality of a catalyst based on an output value of an oxygen concentration sensor provided on the downstream side of the catalyst is known (for example, see Patent Document 2). Further, it is determined that the catalyst is activated when the reversal cycle of the rich / lean air-fuel ratio detected by the oxygen sensor provided on the downstream side of the catalyst exceeds a predetermined time. There is known a technique for estimating the amount of heat required until conversion and determining the deterioration of the catalyst according to the integrated value of the amount of heat (see, for example, Patent Document 3).
  • the temperature of the electrically heated catalyst does not rise unless energized. For this reason, if the temperature of the electrically heated catalyst is known, it can be determined whether or not power is supplied, so that the failure of the electrically heated catalyst can be detected.
  • a temperature sensor may be attached to the heating element.
  • SiC used for a heating element of an electrically heated catalyst is hard and brittle. And it is difficult to embed a temperature sensor because it is difficult to expand. There is also a cost to process and add a temperature sensor.
  • the present invention has been made in view of the above problems, and its purpose is to determine whether or not the electrically heated catalyst is normal by accurately detecting whether or not the temperature of the electrically heated catalyst has increased. Is to detect.
  • An air-fuel ratio control device that makes the air-fuel ratio of the exhaust gas flowing into the electric heating catalyst when the internal combustion engine starts into a rich air-fuel ratio;
  • a downstream side detection device that is provided downstream of the electrically heated catalyst and detects the oxygen concentration in the exhaust; The oxygen concentration detected by the downstream side detection device changes to a value indicating the rich air-fuel ratio after the internal combustion engine is started and when the air-fuel ratio of the exhaust gas is made rich by the air-fuel ratio control device.
  • the air-fuel ratio control device only needs to set the air-fuel ratio of the exhaust to the rich air-fuel ratio in the period required for the determination by the determination device.
  • the determination device may perform the determination only during a period in which the air-fuel ratio of the exhaust gas is set to the rich air-fuel ratio by the air-fuel ratio control device.
  • the electrically heated catalyst fails and the temperature of the catalyst does not rise, oxygen is not stored in the catalyst, so oxygen is not released even if the air-fuel ratio of the exhaust gas passing through the catalyst becomes a rich air-fuel ratio. For this reason, the air-fuel ratio of the exhaust downstream of the electrically heated catalyst immediately becomes a rich air-fuel ratio.
  • the timing when the oxygen concentration detected by the downstream side detection device changes to a value indicating the rich air-fuel ratio changes according to the temperature of the electrically heated catalyst. That is, it is possible to determine whether or not the temperature of the electrically heated catalyst is rising based on the timing when the oxygen concentration detected by the downstream side detection device changes to a value indicating a rich air-fuel ratio.
  • the temperature of the electrically heated catalyst is increased, it is possible to determine that the electrically heated catalyst is normal because the electricity to the electrically heated catalyst is normally supplied. Even when the internal combustion engine is controlled to have a rich air-fuel ratio, the exhaust gas from the previous operation of the internal combustion engine remains in the exhaust passage before the internal combustion engine is started. For this reason, when the internal combustion engine is started, a gas containing a large amount of oxygen passes through the electrically heated catalyst. At this time, oxygen is stored in the catalyst.
  • the determination device has a time from when the internal combustion engine is started to when the oxygen concentration detected by the downstream detection device changes to a value indicating a rich air-fuel ratio, When it is longer than a predetermined time, it is determined that the electric heating catalyst is normally energized, When the time is equal to or shorter than the predetermined time, it can be determined that the electric heating catalyst is not normally energized.
  • the electrically heated catalyst is normal, oxygen is released from the catalyst when the rich air-fuel ratio exhaust gas passes, and therefore the period during which the downstream air-fuel ratio is substantially the stoichiometric air-fuel ratio is relatively long.
  • the temperature of the electrically heated catalyst is not increased, oxygen is not released even if the rich air-fuel ratio exhaust gas passes, so the downstream air-fuel ratio becomes the same rich air-fuel ratio as the upstream side.
  • the amount of increase in the temperature of the catalyst is not sufficient, the amount of oxygen stored is reduced by that amount. Therefore, when the rich air-fuel ratio exhaust gas passes through, the time for which the stoichiometric air-fuel ratio is substantially reduced on the downstream side is shortened.
  • the time from when the internal combustion engine is started until the air-fuel ratio downstream of the catalyst becomes the rich air-fuel ratio has a correlation with the temperature of the catalyst. Based on this time, it can be determined whether or not the temperature of the catalyst has risen, so that a failure of the electrically heated catalyst can be detected.
  • the predetermined time can be set as a threshold when the electric heating catalyst is in a boundary between when it is normal and when it is out of order.
  • the determination device has a time from when the internal combustion engine is started until the oxygen concentration detected by the upstream side detection device and the downstream side detection device becomes a value indicating a rich air-fuel ratio. When it is longer than a predetermined time, it is determined that the electric heating catalyst is normally energized, When the time is equal to or shorter than the predetermined time, it can be determined that the electric heating catalyst is not normally energized.
  • the electrically heated catalyst is normal, oxygen is released from the catalyst when the rich air-fuel ratio exhaust gas passes, so the air-fuel ratio upstream of the electrically heated catalyst is the rich air-fuel ratio.
  • the period during which the downstream air-fuel ratio is substantially the stoichiometric air-fuel ratio is relatively long.
  • the temperature of the electrically heated catalyst is not increased, oxygen is not released even when the rich air-fuel ratio exhaust gas passes, so the upstream air-fuel ratio and the downstream air-fuel ratio become the rich air-fuel ratio. Further, when the amount of increase in the temperature of the catalyst is not sufficient, the amount of oxygen stored is reduced by that amount.
  • the time for which the stoichiometric air-fuel ratio is substantially reduced on the downstream side is shortened.
  • the time from when the internal combustion engine is started until the oxygen concentration detected by the upstream side detection device and the downstream side detection device becomes a value indicating the rich air-fuel ratio is correlated with the temperature of the catalyst. That is, based on this time, it can be determined whether or not the temperature of the catalyst is rising, so that a failure of the electrically heated catalyst can be detected.
  • the predetermined time can be set as a threshold value when the electric heating catalyst is in a boundary between when it is normal and when it is out of order.
  • the time from when the oxygen concentration detected by the upstream side detection device becomes a value indicating the rich air-fuel ratio until the oxygen concentration detected by the downstream side detection device becomes a value indicating the rich air-fuel ratio is less than a predetermined time.
  • the electric heating catalyst can be energized before the internal combustion engine is started.
  • the electrically heated catalyst is normal, the temperature of the electrically heated catalyst is high when the internal combustion engine is started, and oxygen can be stored immediately. For this reason, the time required for failure detection can be shortened and the detection accuracy can be increased.
  • a resistance detection device that detects an electric resistance of the electric heating catalyst when the electric heating catalyst is energized;
  • An estimation device that estimates the temperature of the electrically heated catalyst based on the electrical resistance detected by the resistance detection device; With The determination device can determine whether the electric heating catalyst is energized when the temperature of the electric heating catalyst estimated by the estimation device is higher than a predetermined value.
  • the temperature can be estimated based on the electric resistance.
  • the temperature estimated in this way is low in accuracy, if the failure detection of the electrically heated catalyst is performed based on this temperature, the accuracy becomes low.
  • an approximate temperature can be estimated.
  • the energization may be stopped because there is no need for energization. After the energization is thus stopped, the temperature of the electrically heated catalyst gradually decreases. If the time until the internal combustion engine is started becomes long, the activity of the catalyst cannot be maintained due to a decrease in temperature.
  • the temperature estimated by the estimation device is higher than a predetermined value as a precondition for detecting a failure of the electrically heated catalyst. That is, failure detection is performed only when the estimated temperature is higher than a predetermined value.
  • the predetermined value may be an upper limit value of the temperature at which the catalyst is not activated. When the temperature of the catalyst exceeds this upper limit value, it is estimated that the catalyst is activated. Then, it is possible to further improve the detection accuracy by determining whether or not to perform failure detection based on the estimated temperature.
  • a resistance detection device that detects an electric resistance of the electric heating catalyst when the electric heating catalyst is energized;
  • An estimation device that estimates the temperature of the electrically heated catalyst based on the electrical resistance detected by the resistance detection device; With The determination device can determine that the electric heating catalyst is energized only when the temperature of the electric heating catalyst estimated by the estimation device is higher than a predetermined value.
  • the detection accuracy can be further improved by performing the failure detection based on the estimated temperature and the oxygen concentration downstream of the electrically heated catalyst.
  • the present invention it is possible to detect whether or not the electrically heated catalyst is normal by accurately detecting whether or not the temperature of the electrically heated catalyst has risen.
  • 3 is a flowchart illustrating a failure determination flow of the electrically heated catalyst according to the first embodiment. It is the figure which showed the relationship between the electrical resistance when supplying with electricity to an electrically heated catalyst, and temperature.
  • 3 is a flowchart illustrating a flow of a failure determination process using the oxygen sensor according to the first embodiment.
  • 10 is a flowchart illustrating a flow of a failure determination process using an air-fuel ratio sensor and an oxygen sensor according to a second embodiment.
  • 10 is a flowchart illustrating a temporary failure determination flow of the electrically heated catalyst according to the third embodiment. It is the flowchart which showed the flow of the temporary failure determination process. It is the flowchart which showed the flow of this failure determination process. It is another flowchart which showed the flow of this failure determination process.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and an electrically heated catalyst according to the present embodiment.
  • the internal combustion engine 1 is mounted on a vehicle and may be a diesel engine or a gasoline engine.
  • a hybrid system including the electric motor 2 may be employed.
  • the electric motor 2 can rotate the crankshaft of the internal combustion engine 1 or drive the vehicle.
  • the exhaust passage 3 is connected to the internal combustion engine 1.
  • An electrically heated catalyst 4 is provided in the middle of the exhaust passage 3.
  • An air-fuel ratio sensor 5 for measuring the air-fuel ratio of the exhaust gas flowing through the exhaust passage 3 is attached to the exhaust passage 3 upstream of the electrically heated catalyst 4.
  • An oxygen sensor 6 for measuring the oxygen concentration of the exhaust gas flowing through the exhaust passage 3 is attached to the exhaust passage 3 downstream of the electrically heated catalyst 4.
  • the air-fuel ratio sensor 5 outputs a signal corresponding to the air-fuel ratio of the exhaust. That is, according to the air-fuel ratio sensor 5, the value of the air-fuel ratio can be detected. Further, the output signal of the oxygen sensor 6 changes suddenly with the theoretical air-fuel ratio as a boundary.
  • the oxygen sensor 6 can detect whether the air-fuel ratio of the exhaust is richer or leaner than the stoichiometric air-fuel ratio.
  • the air-fuel ratio sensor 5 corresponds to the upstream side detection device in the present invention.
  • the oxygen sensor 6 corresponds to the downstream side detection device in the present invention.
  • the electrically heated catalyst 4 is configured to include a heating element and a catalyst.
  • a heating element a material that generates heat when energized is used.
  • SiC can be used as the material of the heating element.
  • Two electrodes are connected to the heating element, and the heating element is energized by applying a voltage between the electrodes. The heating element generates heat due to the electrical resistance of the heating element.
  • the catalyst is supported on this heating element, or the catalyst is provided on the downstream side of the heating element.
  • the catalyst should just be provided in the range which can receive the heat from a heat generating body.
  • the catalyst include an oxidation catalyst, a three-way catalyst, an occlusion reduction type NOx catalyst, and a selective reduction type NOx catalyst. These catalysts have the ability to store oxygen.
  • the internal combustion engine 1 is provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1.
  • the ECU 10 includes a ROM, a RAM, and the like that store various programs and maps in addition to the CPU, and controls the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's request.
  • the ECU 10 is connected to an air-fuel ratio sensor 5 and an oxygen sensor 6 via electric wiring, and output signals from these sensors are input to the ECU 10.
  • the electrically heated catalyst 4 is connected to the ECU 10 via an electrical wiring, and the ECU 10 controls energization to the electrically heated catalyst 4.
  • the ECU 10 detects a failure of the electrically heated catalyst 4. In this failure detection, it is determined that a failure has occurred when the electric heating catalyst 4 is not energized normally. In this embodiment, the determination is made based on the oxygen storage amount of the catalyst.
  • the catalyst when the catalyst is activated, oxygen in the exhaust gas is stored in the catalyst. Therefore, if the electrically heated catalyst 4 is normal, the catalyst is activated by energization and oxygen is stored. On the other hand, if the electrically heated catalyst 4 fails and the temperature of the catalyst does not rise, the catalyst is not activated and oxygen is not stored. In this way, there is a difference in the oxygen storage amount of the catalyst between the case where the electrically heated catalyst 4 is normal and the case where it is broken. By detecting this difference, failure detection of the electrically heated catalyst 4 can be performed.
  • the electrically heated catalyst 4 is energized so that the catalyst is activated. Thereafter, the internal combustion engine 1 is started. At this time, the fuel injection amount or the intake air amount is adjusted so that the internal combustion engine 1 is operated at a rich air-fuel ratio. If the time from when the internal combustion engine 1 is started until the output value of the oxygen sensor 6 shows a rich air-fuel ratio is longer than a predetermined time, it is determined that the electric heating catalyst 4 is normal, If this time is equal to or shorter than the predetermined time, it is determined that the electrically heated catalyst 4 has failed. This predetermined time can be obtained by experiments or the like.
  • the ECU 10 that operates the internal combustion engine 1 at a rich air-fuel ratio by adjusting the fuel injection amount or the intake air amount when the internal combustion engine 1 is started corresponds to the air-fuel ratio control device in the present invention.
  • oxygen is released from the catalyst when the air-fuel ratio of the exhaust gas flowing into the electrically heated catalyst 4 is a rich air-fuel ratio.
  • This oxygen makes the air-fuel ratio of the exhaust gas substantially the stoichiometric air-fuel ratio. That is, the air-fuel ratio of the exhaust gas becomes the stoichiometric air-fuel ratio downstream of the electrically heated catalyst 4.
  • the output value of the oxygen sensor 6 does not indicate a rich air-fuel ratio. Thereafter, when the release of oxygen stored in the catalyst is finished, the output value of the oxygen sensor 6 indicates a rich air-fuel ratio.
  • the electrically heated catalyst 4 is normal, it takes a certain amount of time from when the internal combustion engine 1 is started until the output value of the oxygen sensor 6 shows a rich air-fuel ratio.
  • the catalyst is not activated, oxygen is hardly released from the catalyst even if the air-fuel ratio of the exhaust gas flowing into the electrically heated catalyst 4 is a rich air-fuel ratio. For this reason, the air-fuel ratio of the exhaust downstream of the electrically heated catalyst 4 becomes a rich air-fuel ratio. Therefore, immediately after the internal combustion engine 1 is started, the output value of the oxygen sensor 6 shows a rich air-fuel ratio. Thus, if the electrically heated catalyst 4 is out of order, it will not take much time until the output value of the oxygen sensor 6 indicates a rich air-fuel ratio after the internal combustion engine 1 is started.
  • the electric heating catalyst 4 is normally energized based on the time from when the internal combustion engine 1 is started until the output value of the oxygen sensor 6 indicates a rich air-fuel ratio. Can do. That is, failure detection of the electrically heated catalyst 4 can be performed.
  • FIG. 2 is a flowchart showing a failure determination flow of the electrically heated catalyst 4 according to the present embodiment. This routine is executed every predetermined time by the ECU 10.
  • step S101 it is determined whether or not the catalyst is normal. That is, when the catalyst is deteriorated, the oxygen storage capacity is lowered, so that it is difficult to determine whether or not the electric heating type catalyst 4 is normally energized. Therefore, in this step, it is determined whether or not the catalyst has an ability to store oxygen. Whether or not the catalyst is normal is determined at the time of the previous operation of the internal combustion engine 1, and this result is stored in the ECU 10. A known technique can be used to determine whether or not the catalyst is normal. If an affirmative determination is made in step S101, the process proceeds to step S102. If a negative determination is made, this routine is terminated because there is a possibility that failure detection of the electrically heated catalyst 4 cannot be accurately performed.
  • step S102 it is determined whether failure detection of the electrically heated catalyst 4 is incomplete. If an affirmative determination is made in step S102, the process proceeds to step S103. If a negative determination is made, it is not necessary to detect a failure of the electrically heated catalyst 4, and this routine is ended.
  • step S103 it is determined whether or not energization of the electrically heated catalyst 4 is completed.
  • the electrically heated catalyst 4 is normal, it is determined whether or not electric power sufficient to activate the catalyst is supplied.
  • the energization is completed when a predetermined time has elapsed from the start of energization. Further, energization may be completed when predetermined power is supplied.
  • the temperature of the electrically heated catalyst 4 may be estimated by, for example, electrical resistance, and the energization may be completed when the temperature reaches a predetermined temperature. This temperature estimation will be described later. If an affirmative determination is made in step S103, the process proceeds to step S104, and if a negative determination is made, this routine is terminated because it is not possible to determine the failure of the electrically heated catalyst 4.
  • step S104 it is determined whether there is a request for starting the internal combustion engine 1.
  • the internal combustion engine 1 is started when a predetermined speed is reached. That is, in such a case, it is determined that there is a request for starting the internal combustion engine 1. In the case of a vehicle that runs only with the internal combustion engine 1, for example, it is determined that there is a request for starting the internal combustion engine 1 when a switch for starting the internal combustion engine 1 is turned on. If an affirmative determination is made in step S104, the process proceeds to step S105, and if a negative determination is made, the process proceeds to step S106.
  • step S105 failure determination processing for the electrically heated catalyst 4 is performed. This determination will be described later.
  • the ECU 10 that processes step S105 corresponds to the determination device in the present invention.
  • step S106 the temperature of the electrically heated catalyst 4 is estimated.
  • the temperature of the electrically heated catalyst 4 is estimated until a request for starting the internal combustion engine 1 is made. This estimation is performed based on, for example, the electrical resistance when the electrically heated catalyst 4 is energized. At this time, since the electric heating catalyst 4 is not energized, the electric heating catalyst 4 is energized in order to detect the electric resistance of the electric heating catalyst 4.
  • FIG. 3 is a diagram showing the relationship between electrical resistance and temperature when the electrically heated catalyst 4 is energized.
  • the temperature T can be estimated based on the electric resistance R when the electric heating catalyst 4 is energized.
  • the relationship between the temperature and the electric resistance may vary depending on individual differences and aging of the electrically heated catalyst 4. If so, there may be a difference between the relationship stored in the ECU 10 and the actual relationship.
  • FIG. 4 is a flowchart showing a flow of a failure determination process using the oxygen sensor 6 according to the first embodiment. This routine is executed in step S105.
  • step S201 it is determined whether or not the temperature of the electrically heated catalyst 4 estimated in step S106 is higher than a predetermined value.
  • the predetermined value here is an upper limit value of the temperature at which the catalyst is not activated. That is, the catalyst is said to be activated when the temperature of the catalyst exceeds this upper limit. Since it is determined in step S103 that energization has been completed, energization of the electrically heated catalyst 4 is not performed when this step is processed. Then, since the temperature of the catalyst is gradually lowered, there is a possibility that the temperature of the catalyst becomes lower than the activation temperature. Therefore, in this step, it is determined whether or not the catalyst is activated.
  • step S201 When the temperature of the catalyst is low, failure detection is not performed because failure detection based on the oxygen storage amount is difficult. Since the estimated temperature is low in accuracy, it is not used for failure detection, but is used for determining whether or not a precondition for performing failure detection is satisfied. If an affirmative determination is made in step S201, the process proceeds to step S202. If a negative determination is made, failure detection of the electrically heated catalyst 4 cannot be performed, and thus this routine is terminated.
  • step S202 it is determined whether or not a rich air-fuel ratio is detected by the oxygen sensor 6. That is, it is determined whether or not the output value of the oxygen sensor 6 indicates a rich air-fuel ratio. If an affirmative determination is made in step S202, the process proceeds to step S203, and if a negative determination is made, this routine is ended because oxygen is being released from the catalyst.
  • step S203 the time from when the internal combustion engine 1 is started until the output value of the oxygen sensor 6 indicates a rich air-fuel ratio is measured. This time is counted by a timer built in the ECU 10.
  • step S204 it is determined whether the time from when the internal combustion engine 1 is started until the output value of the oxygen sensor 6 indicates a rich air-fuel ratio is longer than a predetermined time.
  • the predetermined time is an upper limit value of the time from when the internal combustion engine 1 is started when the electrically heated catalyst 4 is out of order until the output value of the oxygen sensor 6 indicates a rich air-fuel ratio. That is, if the electrically heated catalyst 4 is normal, the time taken for the output value of the oxygen sensor 6 to exhibit a rich air-fuel ratio becomes longer.
  • step S204 determines whether the catalyst is activated, and thus the process proceeds to step S205 where it is determined that the electrically heated catalyst 4 is normal.
  • step S204 determines whether the catalyst is activated, and the process proceeds to step S206, and it is determined that the electrically heated catalyst 4 has failed.
  • the catalyst is activated based on the output value of the oxygen sensor 6. Therefore, since it can be determined whether or not the temperature of the electrically heated catalyst 4 has increased, it can be determined whether or not the electrically heated catalyst 4 is normal. Further, since the temperature of the electrically heated catalyst 4 is unlikely to change when the internal combustion engine 1 is started, the accuracy of failure detection can be improved by performing failure detection at this time.
  • the electric heating catalyst 4 is energized before the internal combustion engine 1 is started. Instead, the electric heating catalyst 4 is energized after or simultaneously with the internal combustion engine 1 is started. May start. Since it takes time until the catalyst is activated after the electric heating type catalyst 4 is energized, if the electric heating type catalyst 4 is energized before the internal combustion engine 1 is started, the exhaust gas can be purified quickly. It becomes possible. Further, since the hybrid vehicle can run only by the electric motor 2 without operating the internal combustion engine 1, even when the electric heating catalyst 4 is energized before the internal combustion engine 1 is started, The motor 2 can travel.
  • the oxygen sensor 6 is heated before the internal combustion engine 1 is started in the same manner as the electrically heated catalyst 4 so that the exhaust gas is exhausted at an early stage.
  • the oxygen concentration can be measured.
  • the oxygen sensor 6 is provided on the downstream side of the electrically heated catalyst 4, but an air-fuel ratio sensor may be provided instead. That is, an air-fuel ratio sensor that outputs a signal corresponding to the air-fuel ratio may be provided, and failure detection may be performed based on the time from when the internal combustion engine 1 is started until the rich air-fuel ratio is detected by the air-fuel ratio sensor.
  • This embodiment is different from the first embodiment in the processing performed in step S105. Since other devices are the same as those in the first embodiment, the description thereof is omitted.
  • failure detection of the electrically heated catalyst 4 is performed using the output values of the air-fuel ratio sensor 5 and the oxygen sensor 6.
  • FIG. 5 is a flowchart showing a flow of a failure determination process using the air-fuel ratio sensor 5 and the oxygen sensor 6 according to the second embodiment.
  • This routine is executed in step S105.
  • symbol is attached
  • step S301 transitions of output values of the air-fuel ratio sensor 5 and the oxygen sensor 6 are read. That is, the output values of the air-fuel ratio sensor 5 and the oxygen sensor 6 are stored in the ECU 10, and the transition of the output values is obtained.
  • step S302 it is calculated whether or not the catalyst is activated.
  • this step it is calculated whether or not the catalyst is activated based on the transition of the output values of the air-fuel ratio sensor 5 and the oxygen sensor 6.
  • the output value of the air-fuel ratio sensor 5 is not affected by the electrically heated catalyst 4.
  • the air-fuel ratio detected by the air-fuel ratio sensor 5 is the air-fuel ratio of the exhaust before flowing into the electrically heated catalyst 4. Accordingly, the output value of the air-fuel ratio sensor 5 shows a rich air-fuel ratio immediately after the internal combustion engine 1 is started, and thereafter continues to change at the rich air-fuel ratio.
  • the output value of the oxygen sensor 6 is affected by the electrically heated catalyst 4 as described in the first embodiment. For this reason, the transition of the output value of the oxygen sensor 6 differs depending on whether or not the catalyst is activated. If the catalyst is activated when the internal combustion engine 1 is started, the time from when the internal combustion engine 1 is started until the rich air-fuel ratio is detected by the air-fuel ratio sensor 5 and the oxygen sensor 6 becomes longer. Therefore, for example, when this time is longer than a predetermined time, it is determined that the catalyst is activated.
  • the predetermined time here is the upper limit of the time from when the internal combustion engine 1 is started when the electrically heated catalyst 4 is out of order until the output values of the air-fuel ratio sensor 5 and the oxygen sensor 6 indicate a rich air-fuel ratio. Value.
  • step S303 it is determined whether or not it has been calculated in step S302 that the catalyst is activated. If an affirmative determination is made in step S303, the process proceeds to step S205, where it is determined that the electrically heated catalyst 4 is normal, assuming that the catalyst is activated. On the other hand, if a negative determination is made, the process proceeds to step S206, and it is determined that the electrically heated catalyst 4 has failed because the catalyst is not activated.
  • failure detection is performed using the temperature of the electrically heated catalyst 4 estimated based on the electrical resistance of the electrically heated catalyst 4 together. That is, failure detection is performed based on the time until the output value of the oxygen sensor 6 changes to a value indicating a rich air-fuel ratio and the temperature estimated based on the electrical resistance.
  • the accuracy of failure detection can be improved.
  • the internal combustion engine 1 is started to detect a failure of the electric heating catalyst 4.
  • the accuracy of failure detection can be improved by positively starting the internal combustion engine 1 when the electrically heated catalyst 4 is stable at a high temperature.
  • the electric motor 2 rotates the crankshaft of the internal combustion engine 1 while energizing the electrically heated catalyst 4.
  • air is discharged from the internal combustion engine 1 and air is fed into the electrically heated catalyst 4.
  • sufficient oxygen can be stored in the catalyst in advance, so that the accuracy of failure detection can be improved.
  • the time required for failure detection can be shortened.
  • the suppression of the electrically heated catalyst 4 being cooled by the exhaust, the suppression of the discharge of unburned fuel, and the completion of the failure detection in a short time are performed.
  • the internal combustion engine 1 is controlled so as to be realized.
  • the exhaust gas having a low temperature flows into the electrically heated catalyst 4. If it is suppressed that the electrically heated catalyst 4 is cooled by this exhaust gas, the exhaust gas purification rate can be kept high.
  • emission of unburned fuel is suppressed, it can suppress that unburned fuel is discharge
  • failure detection can be completed in a short time, it can be made less susceptible to the influence of the operating state of the internal combustion engine 1, so that the accuracy of failure detection can be increased.
  • the internal combustion engine 1 is controlled so that the ignition timing is on the advance side with respect to the top dead center and the air-fuel ratio is on the rich side with respect to the stoichiometric air-fuel ratio.
  • the combustion state can be stabilized and the combustion gas temperature can be raised, so that the electrically heated catalyst 4 is suppressed from being cooled by exhaust gas, the discharge of unburned fuel is suppressed, and the failure in a short time
  • the completion of detection can be realized.
  • FIG. 6 is a flowchart showing a temporary failure determination flow of the electrically heated catalyst 4 according to the present embodiment.
  • symbol is attached
  • step S401 it is determined whether the electric heating catalyst 4 is energized. That is, it is determined whether or not the temperature of the electrically heated catalyst 4 is being raised. If an affirmative determination is made in step S401, the process proceeds to step S402, and if a negative determination is made, the process proceeds to step S103.
  • step S402 it is determined whether or not the catalyst leaning process is not performed.
  • the catalyst leaning process is a process of sending air to the electrically heated catalyst 4 before supplying fuel to the internal combustion engine 1 and starting it.
  • fuel is not supplied to the internal combustion engine 1, and the crankshaft of the internal combustion engine 1 is rotated by the electric motor 2. That is, air is discharged from the internal combustion engine 1.
  • the electrically heated catalyst 4 is energized.
  • oxygen is stored in the electrically heated catalyst 4 as the temperature of the electrically heated catalyst 4 increases. That is, oxygen can be stored in the catalyst before the internal combustion engine 1 is started.
  • step S402 If a positive determination is made in step S402, the process proceeds to step S403. If a negative determination is made, the process proceeds to step S404.
  • step S403 a catalyst leaning process is performed.
  • the catalyst leaning process is performed until the temperature of the electrically heated catalyst 4 becomes higher than the predetermined value.
  • a temporary failure determination process is performed.
  • the temporary failure determination process is a process for determining whether or not the electric heating catalyst 4 is normal from the estimated value of the temperature of the electric heating catalyst 4.
  • the temperature of the electrically heated catalyst 4 is estimated based on the electrical resistance of the electrically heated catalyst 4 when the electrically heated catalyst 4 is energized. Details will be described later.
  • step S401 when a negative determination is made in step S401, the process proceeds to step S103, and it is determined whether or not energization to the electrically heated catalyst 4 is completed. If an affirmative determination is made in step S103, the process proceeds to step S405.
  • step S405 the internal combustion engine 1 is started. At this time, fuel is supplied to the internal combustion engine 1. In this step, the internal combustion engine 1 is started to perform failure detection.
  • step S406 the failure determination process is performed. This failure determination process will be described later.
  • step S407 the internal combustion engine 1 is stopped. That is, the internal combustion engine 1 is operated only while the failure determination process is being performed.
  • FIG. 7 is a flowchart showing the flow of the temporary failure determination process.
  • step S501 the temperature of the electrically heated catalyst 4 is estimated from the electrical resistance of the electrically heated catalyst 4. This estimation is obtained from the relationship shown in FIG.
  • the ECU 10 that detects the electric resistance of the electrically heated catalyst 4 corresponds to the resistance detecting device in the present invention.
  • the ECU 10 that estimates the temperature of the electrically heated catalyst 4 in step S501 corresponds to the estimation device in the present invention.
  • step S502 it is determined whether or not the temperature estimated in step S501 is higher than a predetermined value.
  • the predetermined value here is an upper limit value of the temperature at which the electrically heated catalyst 4 is considered to be in failure, and is set in advance.
  • step S502 If an affirmative determination is made in step S502, the process proceeds to step S503, and it is determined that the electrically heated catalyst 4 is normal in the provisional determination. In addition, if a negative determination is made in step S502, the process proceeds to step S504, and it is determined that the electrically heated catalyst 4 has failed in the temporary determination.
  • step S503 since the accuracy is low even if the temperature is estimated based on the electric resistance of the electrically heated catalyst 4, the accuracy of the provisional determination is low. For this reason, failure detection of the electrically heated catalyst 4 based only on the estimated temperature value is not performed, but failure detection is performed using an output value of an oxygen sensor 6 described later.
  • FIG. 8 is a flowchart showing the flow of this failure determination process.
  • symbol is attached
  • step S601 it is determined whether or not the elapsed time from the start of the internal combustion engine 1 measured in step S203 is longer than a predetermined time and is normal in the provisional determination.
  • This predetermined time is the same as the predetermined time described in step S204.
  • the elapsed time from the start of the internal combustion engine 1 measured in step S203 being longer than the predetermined time means that the oxygen storage amount of the catalyst was sufficiently large, and the electrically heated catalyst 4 Is likely to be normal.
  • the provisional determination is normal, there is a high possibility that the electrically heated catalyst 4 is normal. Therefore, in this embodiment, when the elapsed time measured in step S203 is longer than the predetermined time and is normal in the provisional determination, it is determined that the electrically heated catalyst 4 is normal.
  • step S601 If an affirmative determination is made in step S601, the process proceeds to step S205, where it is determined that the electrically heated catalyst 4 is normal. On the other hand, if a negative determination is made in step S601, the process proceeds to step S602.
  • step S602 it is determined whether the elapsed time from the start of the internal combustion engine 1 measured in step S203 is shorter than a predetermined time and whether or not a failure has occurred in the provisional determination.
  • the fact that the elapsed time measured in step S203 is shorter than the predetermined time means that the amount of oxygen stored in the catalyst is not sufficient, and there is a high possibility that the electrically heated catalyst 4 has failed.
  • the elapsed time measured in step S203 is shorter than the predetermined time and the failure is determined as a result of the tentative determination, it is determined that the electrically heated catalyst 4 has failed.
  • step S602 determines whether the electrically heated catalyst 4 has failed. If a negative determination is made in step S602, the process proceeds to step S603.
  • step S603 the determination as to whether or not the electrically heated catalyst 4 is normal is suspended. That is, since the elapsed time measured after the start of the internal combustion engine 1 measured in step S203 is inconsistent with the provisional determination result, the final determination (main determination) is suspended. For example, when the operating state of the internal combustion engine 1 deteriorates, the output value of the oxygen sensor 6 is not stable, and thus the elapsed time may be measured incorrectly. In such a case, accuracy can be improved by performing failure detection again. In step S603, it may be determined that the electrically heated catalyst 4 has failed.
  • FIG. 9 is another flowchart showing the flow of the failure determination process.
  • symbol is attached
  • step S701 it is determined whether the catalyst is activated in step S302 and is normal in the provisional determination.
  • the calculation that the catalyst is activated in step S302 means that the oxygen storage amount of the catalyst is sufficiently large, and there is a high possibility that the electrically heated catalyst 4 is normal. In addition, even when the provisional determination is normal, there is a high possibility that the electrically heated catalyst 4 is normal. Therefore, in this embodiment, it is calculated that the catalyst is activated in step S302, and it is determined that the electrically heated catalyst 4 is normal when the provisional determination indicates normal.
  • step S701 when an affirmative determination is made in step S701, the process proceeds to step S205, where it is determined that the electrically heated catalyst 4 is normal. On the other hand, if a negative determination is made in step S701, the process proceeds to step S702.
  • step S702 it is determined whether or not the catalyst has not been activated in step S302, and whether or not a failure has occurred in the provisional determination.
  • the fact that the catalyst is not activated in step S302 means that the amount of oxygen stored in the catalyst is not sufficient, and there is a high possibility that the electrically heated catalyst 4 has failed.
  • step S702 when an affirmative determination is made in step S702, the process proceeds to step S206, where it is determined that the electrically heated catalyst 4 has failed. On the other hand, if a negative determination is made in step S702, the process proceeds to step S603 and the determination is suspended.
  • the failure detection based on the oxygen sensor 6 and the failure determination based on the electrical resistance are used in combination, thereby further improving the accuracy of failure detection of the electrically heated catalyst 4. be able to.

Abstract

 電気加熱式触媒の温度が上昇したか否かを正確に検出することで電気加熱式触媒が正常であるか否かを検出する。このために、内燃機関(1)の始動時に電気加熱式触媒(4)に流入する排気の空燃比をリッチ空燃比とする空燃比制御装置(10)と、電気加熱式触媒(4)よりも下流側に設けられ排気中の酸素濃度を検知する下流側検知装置(6)と、内燃機関(1)の始動後であって空燃比制御装置(10)により排気の空燃比がリッチ空燃比とされているときに下流側検知装置(6)により検知される酸素濃度がリッチ空燃比を示す値に変化する時期に基づいて電気加熱式触媒(4)へ通電されているか否か判定する判定装置(10)と、を備える。

Description

電気加熱式触媒の故障検出装置
 本発明は、電気加熱式触媒の故障検出装置に関する。
 電気抵抗を有する触媒担体に通電することで、内燃機関の冷間始動時に触媒の温度を上昇させて該触媒の早期活性化を図る技術が知られている(例えば、特許文献1参照。)。また、触媒よりも下流側に設けられた酸素濃度センサの出力値に基づいて触媒の異常を判定する技術が知られている(例えば、特許文献2参照。)。また、触媒よりも下流側に設けられた酸素センサにより検出される空燃比のリッチとリーンとの反転周期が所定時間を越えたときに触媒が活性化したと判定し、機関始動時から触媒活性化までに必要とした熱量を推測し、該熱量の積算値に応じて触媒の劣化を判定する技術が知られている(例えば、特許文献3参照。)。
 ところで、電気加熱式触媒は、通電されなければ温度が上昇しない。このため、電気加熱式触媒の温度が分かれば、通電されているか否か判定できるため、該電気加熱式触媒の故障を検出することができる。ここで、電気加熱式触媒へ通電されているか否か判定するときに、たとえば発熱体に温度センサを取り付けることが考えられる。しかし、電気加熱式触媒の発熱体に用いられる例えばSiCは、硬くて脆い。そして、熱膨張もし難いため温度センサを埋め込むことが困難である。また、加工する費用及び温度センサを追加する費用もかかる。さらに、発熱体の電気抵抗を測定し、該電気抵抗に基づいて発熱体の温度を推定することも考えられるが、発熱体の温度と電気抵抗との関係が変化することがあるため、温度を正確に求めることが困難な場合もある。
特開平05-248234号公報 特開2003-120382号公報 特開平09-004438号公報
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、電気加熱式触媒の温度が上昇したか否かを正確に検出することで電気加熱式触媒が正常であるか否かを検出することにある。
 上記課題を達成するために本発明では、
 内燃機関の排気通路に設けられ通電により発熱して触媒を加熱する電気加熱式触媒の故障検出装置において、
 前記内燃機関の始動時に前記電気加熱式触媒に流入する排気の空燃比をリッチ空燃比とする空燃比制御装置と、
 前記電気加熱式触媒よりも下流側に設けられ排気中の酸素濃度を検知する下流側検知装置と、
 前記内燃機関の始動後であって前記空燃比制御装置により排気の空燃比がリッチ空燃比とされているときに前記下流側検知装置により検知される酸素濃度がリッチ空燃比を示す値に変化する時期に基づいて前記電気加熱式触媒へ通電されているか否か判定する判定装置と、
を備える。
 ここで、空燃比制御装置は、判定装置が判定に要する期間において排気の空燃比をリッチ空燃比としていればよい。また、判定装置は、空燃比制御装置により排気の空燃比がリッチ空燃比とされている期間に限り判定を行ってもよい。電気加熱式触媒へ通電することにより触媒の温度が上昇する。そうすると、触媒に酸素が貯蔵される。触媒に貯蔵されている酸素は、該触媒を通過する排気の空燃比がリッチ空燃比となると該触媒から放出される。そして、触媒から酸素が放出されている間は、電気加熱式触媒よりも下流側の排気の空燃比が略理論空燃比となる。
 しかし、電気加熱式触媒が故障して触媒の温度が上昇しないと、触媒に酸素が貯蔵されないために、触媒を通過する排気の空燃比がリッチ空燃比となっても酸素が放出されない。このため、電気加熱式触媒よりも下流側の排気の空燃比はすぐにリッチ空燃比となる。このように、下流側検知装置により検知される酸素濃度がリッチ空燃比を示す値に変化する時期が、電気加熱式触媒の温度に応じて変わる。すなわち、下流側検知装置により検知される酸素濃度がリッチ空燃比を示す値に変化する時期に基づいて、電気加熱式触媒の温度が上昇しているか否か判定することができる。そして、電気加熱式触媒の温度が上昇していれば、電気加熱式触媒への通電は正常に行われているため、該電気加熱式触媒は正常であると判定することができる。なお、内燃機関の始動時にリッチ空燃比となるように制御しても、内燃機関の始動前には前回の内燃機関の稼働時の排気が排気通路内に残留している。このため、内燃機関の始動時には酸素を多く含んだガスが電気加熱式触媒を通過する。このときに、触媒に酸素が貯蔵される。
 また、本発明においては、前記判定装置は、前記内燃機関が始動されてから、前記下流側検知装置により検知される酸素濃度がリッチ空燃比を示す値に変化するまでの時間が、
 所定時間よりも長い場合に前記電気加熱式触媒への通電が正常に行われていると判定し、
 所定時間以下の場合に前記電気加熱式触媒への通電が正常に行われていないと判定することができる。
 つまり、電気加熱式触媒が正常であれば、リッチ空燃比の排気が通過するときに触媒から酸素が放出されるため、下流側の空燃比が略理論空燃比となる期間が比較的長い。一方、電気加熱式触媒の温度が上昇していないと、リッチ空燃比の排気が通過しても酸素が放出されないため、下流側の空燃比は、上流側と同じリッチ空燃比となる。また、触媒の温度の上昇量が十分でない場合には、酸素の貯蔵量がその分少なくなるため、リッチ空燃比の排気が通過したときに下流側で略理論空燃比となる時間が短くなる。このように、内燃機関が始動されてから触媒よりも下流側の空燃比がリッチ空燃比となるまでの時間は、触媒の温度と相関関係にある。この時間に基づいて、触媒の温度が上昇しているか否か判定することができるため、電気加熱式触媒の故障を検出することができる。なお、所定時間は、電気加熱式触媒が正常のときと故障しているときとの境にあるときの閾値として設定することができる。
 また、本発明においては、前記電気加熱式触媒よりも上流側に設けられ排気中の酸素濃度を検知する上流側検知装置を備え、
 前記判定装置は、前記内燃機関が始動されてから、前記上流側検知装置及び下流側検知装置により検知される酸素濃度が共にリッチ空燃比を示す値となるまでの時間が、
 所定時間よりも長い場合に前記電気加熱式触媒への通電が正常に行われていると判定し、
 所定時間以下の場合に前記電気加熱式触媒への通電が正常に行われていないと判定することができる。
 つまり、電気加熱式触媒が正常であれば、リッチ空燃比の排気が通過するときに触媒から酸素が放出されるため、電気加熱式触媒よりも上流側の空燃比がリッチ空燃比となっており、且つ、下流側の空燃比が略理論空燃比となっている期間が比較的長い。一方、電気加熱式触媒の温度が上昇していないと、リッチ空燃比の排気が通過しても酸素が放出されないため、上流側の空燃比及び下流側の空燃比はリッチ空燃比となる。また、触媒の温度の上昇量が十分でない場合には、酸素の貯蔵量がその分少なくなるため、リッチ空燃比の排気が通過したときに下流側で略理論空燃比となる時間が短くなる。このように、内燃機関が始動されてから上流側検知装置及び下流側検知装置により検知される酸素濃度が共にリッチ空燃比を示す値となるまでの時間は、触媒の温度と相関関係にある。すなわち、この時間に基づいて、触媒の温度が上昇しているか否か判定することができるため、電気加熱式触媒の故障を検出することができる。そして、所定時間は、電気加熱式触媒が正常のときと故障しているときとの境にあるときの閾値として設定することができる。
 なお、上流側検知装置により検知される酸素濃度がリッチ空燃比を示す値となってから、下流側検知装置により検知される酸素濃度がリッチ空燃比を示す値となるまでの時間が所定時間よりも長いか否かに基づいて電気加熱式触媒が正常であるか否か判定してもよい。すなわち、電気加熱式触媒に流入する排気の空燃比がリッチ空燃比となってから、電気加熱式触媒から流出する排気の空燃比がリッチ空燃比となるまでの時間は、触媒の温度に応じて変わるため、この時間によっても電気加熱式触媒の故障検出が可能である。
 また、本発明においては、前記電気加熱式触媒へ前記内燃機関の始動前から通電することができる。
 そうすると、電気加熱式触媒が正常であれば、内燃機関の始動時には電気加熱式触媒の温度が高くなっており、酸素の吸蔵がすぐに可能となる。このため、故障検出に要する時間を短縮すると共に、検出精度を高めることができる。
 また、本発明においては、前記電気加熱式触媒へ通電したときの該電気加熱式触媒の電気抵抗を検知する抵抗検知装置と、
 前記抵抗検知装置により検知される電気抵抗に基づいて前記電気加熱式触媒の温度を推定する推定装置と、
を備え、
 前記判定装置は、前記推定装置により推定される前記電気加熱式触媒の温度が所定値よりも高いときに、前記電気加熱式触媒へ通電されているか否か判定することができる。
 ここで、電気加熱式触媒の電気抵抗と温度とには相関関係があるため、該電気抵抗に基づいて温度を推定することができる。しかし、このように推定される温度は精度が低いため、この温度に基づいて電気加熱式触媒の故障検出を行うと精度が低くなる。しかし、おおよその温度を推定することはできる。ここで、通電することにより電気加熱式触媒の温度が十分に高くなれば、通電の必要がなくなるため通電を停止することがある。このように通電を停止した後は、電気加熱式触媒の温度が徐々に低下する。そして、内燃機関が始動されるまでの時間が長くなると、温度の低下により触媒の活性が維持できなくなる。このような場合には、内燃機関の始動後に酸素の貯蔵量に基づいた故障検出を行うと、通電が行われなかったために酸素の貯蔵量が少ないのか、通電は行われたがその後に温度が低下したために酸素の貯蔵量が少ないのか判断できない。また、電気加熱式触媒の温度上昇に時間がかかり、内燃機関の始動時までに電気加熱式触媒の温度を十分に上昇させることができない場合もある。この場合も、電気加熱式触媒の故障検出が困難となる。
 そこで、推定装置により推定される温度が所定値よりも高いことを、電気加熱式触媒の故障検出の前提条件としている。すなわち、推定される温度が所定値よりも高いときに限り、故障検出を行う。なお、所定値は、触媒が活性化していないとされる温度の上限値としてもよい。触媒の温度がこの上限値を超えると触媒は活性化していると推定される。そして、推定される温度に基づいて、故障検出を行うか否かを判断することで、検出精度をさらに高めることができる。
 また、本発明においては、前記電気加熱式触媒へ通電したときの該電気加熱式触媒の電気抵抗を検知する抵抗検知装置と、
 前記抵抗検知装置により検知される電気抵抗に基づいて前記電気加熱式触媒の温度を推定する推定装置と、
を備え、
 前記判定装置が、前記電気加熱式触媒へ通電されていると判定するのは、前記推定装置により推定される前記電気加熱式触媒の温度が所定値よりも高い場合に限ることができる。
 この場合には、推定される電気加熱式触媒の温度が所定値以下であっても、電気加熱式触媒へ通電されているか否かを判定する。そして、推定される温度が所定値よりも高いことを、電気加熱式触媒へ通電されていると判定する条件の1つとしている。したがって、下流側検知装置により検知される酸素濃度がリッチ空燃比を示す値に変化する時期に基づけば電気加熱式触媒へ通電されていると考えられるような場合であっても、推定される温度が所定値以下の場合には、電気加熱式触媒が正常とは判定されない。このように、推定される温度と、電気加熱式触媒よりも下流側の酸素濃度と、に基づいて故障検出を行うことで、検出精度をさらに高めることができる。
 本発明によれば、電気加熱式触媒の温度が上昇したか否かを正確に検出することで電気加熱式触媒が正常であるか否かを検出することができる。
実施例に係る内燃機関及び電気加熱式触媒の概略構成を示す図である。 実施例1に係る電気加熱式触媒の故障判定フローを示したフローチャートである。 電気加熱式触媒へ通電したときの電気抵抗と温度との関係を示した図である。 実施例1に係る酸素センサを使用した故障判定処理のフローを示したフローチャートである。 実施例2に係る空燃比センサ及び酸素センサを使用した故障判定処理のフローを示したフローチャートである。 実施例3に係る電気加熱式触媒の仮故障判定フローを示したフローチャートである。 仮故障判定処理のフローを示したフローチャートである。 本故障判定処理のフローを示したフローチャートである。 本故障判定処理のフローを示した他のフローチャートである。
 以下、本発明に係る電気加熱式触媒の故障検出装置の具体的な実施態様について図面に基づいて説明する。なお、以下の実施例は可能な限り組み合わせることができる。
 図1は、本実施例に係る内燃機関及び電気加熱式触媒の概略構成を示す図である。内燃機関1は、車両に搭載されており、ディーゼル機関であっても、また、ガソリン機関であってもよい。また、本実施例では、電動モータ2を備えたハイブリッドシステムを採用してもよい。この電動モータ2により、内燃機関1のクランク軸を回転させることや車両を駆動することができる。
 内燃機関1には、排気通路3が接続されている。排気通路3の途中には、電気加熱式触媒4が設けられている。電気加熱式触媒4よりも上流側の排気通路3には、該排気通路3を流通する排気の空燃比を測定する空燃比センサ5が取り付けられている。また、電気加熱式触媒4よりも下流側の排気通路3には、該排気通路3を流通する排気の酸素濃度を測定する酸素センサ6が取り付けられている。空燃比センサ5は、排気の空燃比に応じた信号を出力する。すなわち、空燃比センサ5によれば、空燃比の値を検出することができる。また、酸素センサ6の出力信号は、理論空燃比を境に急変する。このため、酸素センサ6によれば、排気の空燃比が理論空燃比よりもリッチ側か又はリーン側かを検出することができる。なお、本実施例においては空燃比センサ5が、本発明における上流側検知装置に相当する。また、本実施例においては酸素センサ6が、本発明における下流側検知装置に相当する。
 本実施例に係る電気加熱式触媒4は、発熱体及び触媒を備えて構成されている。発熱体には、通電により発熱する材質のものが用いられる。発熱体の材料には、たとえばSiCを用いることができる。発熱体には、電極が2本接続されており、該電極間に電圧をかけることにより発熱体に通電される。この発熱体の電気抵抗により該発熱体が発熱する。
 この発熱体に触媒を担持させるか、または発熱体よりも下流側に触媒を備える。触媒は、発熱体からの熱を受けることができる範囲に備えられていればよい。触媒には、たとえば酸化触媒、三元触媒、吸蔵還元型NOx触媒、選択還元型NOx触媒などを挙げることができる。これらの触媒には、酸素を貯蔵する能力が備わる。
 そして、内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、CPUの他、各種のプログラム及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1を制御する。
 ECU10には、空燃比センサ5及び酸素センサ6が電気配線を介して接続されており、これらセンサの出力信号がECU10に入力される。また、ECU10には、電気加熱式触媒4が電気配線を介して接続されており、該ECU10は電気加熱式触媒4への通電を制御する。
 そしてECU10は、電気加熱式触媒4の故障検出を行う。この故障検出では、電気加熱式触媒4への通電が正常に行われていないときに故障であると判定する。本実施例では、触媒の酸素貯蔵量に基づいた判定を行う。
 ここで、触媒が活性化すると、該触媒に排気中の酸素が貯蔵される。したがって、電気加熱式触媒4が正常であれば、通電により触媒が活性化し、酸素が貯蔵される。一方、電気加熱式触媒4が故障して触媒の温度が上昇しなければ、触媒が活性化しないため酸素が貯蔵されない。このように、電気加熱式触媒4が正常の場合と故障している場合とで触媒の酸素貯蔵量に差が生じる。この差を検出することで電気加熱式触媒4の故障検出を行うことができる。
 まず、内燃機関1の始動前に触媒が活性化するように電気加熱式触媒4へ通電を行う。その後、内燃機関1を始動させる。このときには、内燃機関1がリッチ空燃比で運転されるように、燃料噴射量または吸入空気量が調節される。そして、内燃機関1が始動してから、酸素センサ6の出力値がリッチ空燃比を示すようになるまでの時間が所定時間よりも長ければ、電気加熱式触媒4が正常であると判定し、この時間が所定時間以下であれば、電気加熱式触媒4は故障していると判定する。この所定時間は、実験等により求めることができる。なお、本実施例においては内燃機関1の始動時に燃料噴射量または吸入空気量を調節することで内燃機関1をリッチ空燃比で運転させるECU10が、本発明における空燃比制御装置に相当する。
 すなわち、触媒が活性化していれば、電気加熱式触媒4に流入する排気の空燃比がリッチ空燃比のときに、触媒から酸素が放出される。この酸素により排気の空燃比が略理論空燃比となる。すなわち、電気加熱式触媒4よりも下流側では排気の空燃比が理論空燃比となる。そして、触媒から酸素が放出されている間は、酸素センサ6の出力値はリッチ空燃比を示さない。その後、触媒に貯蔵されている酸素の放出が終わると、酸素センサ6の出力値がリッチ空燃比を示すようになる。このように、電気加熱式触媒4が正常であれば、内燃機関1が始動されてから酸素センサ6の出力値がリッチ空燃比を示すようになるまでには、ある程度の時間がかかる。
 一方、触媒が活性化していないと、電気加熱式触媒4に流入する排気の空燃比がリッチ空燃比であっても触媒から酸素がほとんど放出されない。このため、電気加熱式触媒4よりも下流側の排気の空燃比はリッチ空燃比となる。したがって、内燃機関1の始動後すぐに酸素センサ6の出力値がリッチ空燃比を示すようになる。このように、電気加熱式触媒4が故障していれば、内燃機関1が始動されてから酸素センサ6の出力値がリッチ空燃比を示すようになるまでには、あまり時間がかからない。
 以上のように、内燃機関1の始動から、酸素センサ6の出力値がリッチ空燃比を示すまでの時間に基づいて電気加熱式触媒4への通電が正常に行われているか否か判定することができる。すなわち、電気加熱式触媒4の故障検出を行うことができる。
 図2は、本実施例に係る電気加熱式触媒4の故障判定フローを示したフローチャートである。本ルーチンは、ECU10により所定の時間毎に実行される。
 ステップS101では、触媒が正常であるか否か判定される。すなわち、触媒が劣化していると酸素貯蔵能力が低下するため、電気加熱式触媒4への通電が正常に行われているか否かの判定が困難となる。このため、本ステップにおいて、触媒に酸素を貯蔵する能力があるか否か判定している。触媒が正常であるか否かは、前回の内燃機関1の稼働時に判定をしておき、この結果をECU10に記憶させておく。なお、触媒が正常であるか否かの判定には、周知の技術を用いることができる。ステップS101で肯定判定がなされた場合にはステップS102へ進み、否定判定がなされた場合には電気加熱式触媒4の故障検出を正確に行うことができない可能性があるため本ルーチンを終了させる。
 ステップS102では、電気加熱式触媒4の故障検出が未完了であるか否か判定される。ステップS102で肯定判定がなされた場合にはステップS103へ進み、否定判定がなされた場合には電気加熱式触媒4の故障検出を行う必要はないため本ルーチンを終了させる。
 ステップS103では、電気加熱式触媒4への通電が完了しているか否か判定される。本ステップでは、電気加熱式触媒4が正常であれば、触媒が活性化するだけの電力が供給されたか否か判定している。例えば、通電開始から所定の時間が経過したときに通電を完了する。また、所定の電力を供給したときに通電を完了してもよい。さらに、電気加熱式触媒4の温度を例えば電気抵抗により推定しておき、該温度が所定の温度に達したときに通電を完了してもよい。この温度の推定については後述する。ステップS103で肯定判定がなされた場合にはステップS104へ進み、否定判定がなされた場合には電気加熱式触媒4の故障判定を行うことができる状態ではないため本ルーチンを終了させる。
 ステップS104では、内燃機関1の始動要求があるか否か判定される。たとえば、ハイブリッド車両では、所定の速度に達した場合に内燃機関1が始動される。すなわち、このような場合に内燃機関1の始動要求があると判定される。また、内燃機関1のみで走行する車両の場合には、例えば、内燃機関1を始動させるためのスイッチがONとされたときに内燃機関1の始動要求があると判定される。ステップS104で肯定判定がなされた場合にはステップS105へ進み、否定判定がなされた場合にはステップS106へ進む。
 ステップS105では、電気加熱式触媒4の故障判定処理がなされる。この判定については後述する。なお、本実施例においては、ステップS105を処理するECU10が、本発明における判定装置に相当する。
 ステップS106では、電気加熱式触媒4の温度が推定される。内燃機関1の始動要求があるまで、電気加熱式触媒4の温度を推定する。この推定は、例えば電気加熱式触媒4へ通電したときの電気抵抗に基づいて行われる。なお、このときには電気加熱式触媒4へ通電されていないので、該電気加熱式触媒4の電気抵抗を検出するために該電気加熱式触媒4へ通電する。
 図3は、電気加熱式触媒4へ通電したときの電気抵抗と温度との関係を示した図である。このように、電気加熱式触媒4の電気抵抗と温度とには相関関係があり、電気加熱式触媒4の温度が低くなるほど、該電気加熱式触媒4の電気抵抗が大きくなる。この関係を予め実験等により求めてECU10に記憶させておけば、電気加熱式触媒4へ通電したときの電気抵抗Rに基づいて温度Tを推定することができる。ただし、この温度と電気抵抗との関係は、電気加熱式触媒4の個体差や経年変化によって変わることがある。そうすると、ECU10に記憶させた関係と、実際の関係と、にずれが生じることがある。すなわち、電気加熱式触媒4の電気抵抗に基づいて温度を推定しても精度が低いので、推定される温度に基づいて電気加熱式触媒4の故障検出は行わない。この推定される温度は、電気加熱式触媒4の故障検出を行う前提条件が成立しているか否か判定するために用いられる。
 次に、図4は、実施例1に係る酸素センサ6を使用した故障判定処理のフローを示したフローチャートである。本ルーチンは、前記ステップS105で実行される。
 ステップS201では、ステップS106で推定された電気加熱式触媒4の温度が所定値よりも高いか否か判定される。ここでいう所定値は、触媒が活性化していないとされる温度の上限値である。すなわち、触媒の温度がこの上限値を超えると触媒は活性化しているとされる。ステップS103で通電が完了していると判定されているため、本ステップが処理されるときには電気加熱式触媒4への通電は行われていない。そうすると、触媒の温度が徐々に低下するので、該触媒の温度が活性温度よりも低くなる虞がある。このため、本ステップでは、触媒が活性化しているか否か判定している。触媒の温度が低いときには、酸素吸蔵量に基づいた故障検出が困難であるため故障検出は行わない。なお、ここで推定される温度は精度が低いために、故障検出に用いるのではなく、故障検出を行う前提条件が成立しているか否かの判定に用いている。ステップS201で肯定判定がなされた場合にはステップS202へ進み、否定判定がなされた場合には電気加熱式触媒4の故障検出を行うことができないため本ルーチンを終了させる。
 ステップS202では、酸素センサ6でリッチ空燃比が検出されたか否か判定される。すなわち、酸素センサ6の出力値がリッチ空燃比を示しているか否か判定される。ステップS202で肯定判定がなされた場合にはステップS203へ進み、否定判定がなされた場合には触媒から酸素が放出されている最中であるため本ルーチンを終了させる。
 ステップS203では、内燃機関1が始動してから、酸素センサ6の出力値がリッチ空燃比を示すまでの時間が測定される。この時間は、ECU10に内蔵されているタイマによりカウントされる。
 ステップS204では、内燃機関1が始動してから、酸素センサ6の出力値がリッチ空燃比を示すまでの時間が所定時間よりも長いか否か判定される。ここでいう所定時間は、電気加熱式触媒4が故障しているときに内燃機関1が始動してから、酸素センサ6の出力値がリッチ空燃比を示すまでの時間の上限値である。すなわち、電気加熱式触媒4が正常であれば、酸素センサ6の出力値がリッチ空燃比を示すまでにかかる時間が長くなる。
 そして、ステップS204で肯定判定がなされた場合には、触媒は活性化しているため、ステップS205へ進んで電気加熱式触媒4は正常であると判定される。一方、ステップS204で否定判定がなされた場合には、触媒は活性化していないため、ステップS206へ進んで電気加熱式触媒4は故障していると判定される。
 以上説明したように本実施例では、酸素センサ6の出力値に基づいて触媒が活性化しているか否か判定する。これにより、電気加熱式触媒4の温度が上昇したか否か判定することができるため、電気加熱式触媒4が正常であるか否か判定することができる。また、内燃機関1の始動時には、電気加熱式触媒4の温度が変化し難いため、このときに故障検出を行うことにより、故障検出の精度を高めることができる。
 なお、本実施例においては、内燃機関1の始動前から電気加熱式触媒4へ通電しているが、これに代えて、内燃機関1の始動後または始動と同時に電気加熱式触媒4への通電を開始してもよい。なお、電気加熱式触媒4へ通電してから触媒が活性化するまでには時間がかかるため、内燃機関1の始動前から電気加熱式触媒4へ通電しておけば、早期に排気の浄化が可能となる。また、ハイブリッド車両においては、内燃機関1を稼働させず電動モータ2のみで走行が可能であるため、内燃機関1の始動前に電気加熱式触媒4へ通電しているときであっても、電動モータ2により走行が可能である。
 また、酸素センサ6に備わる触媒が活性化するまでにも時間がかかるが、電気加熱式触媒4と同様に内燃機関1の始動前から該酸素センサ6を加熱することで、早期に排気中の酸素濃度を測定することができる。
 また、本実施例では、電気加熱式触媒4よりも下流側に酸素センサ6を備えているが、これに代えて、空燃比センサを備えていてもよい。すなわち、空燃比に応じた信号を出力する空燃比センサを備え、内燃機関1の始動から、該空燃比センサによりリッチ空燃比が検出されるまでの時間に基づいて故障検出を行ってもよい。
 本実施例は、前記ステップS105で行う処理が実施例1と相違する。その他の装置等は実施例1と同じため説明を省略する。なお、本実施例では、空燃比センサ5及び酸素センサ6の出力値を用いて電気加熱式触媒4の故障検出を行う。
 ここで、図5は、実施例2に係る空燃比センサ5及び酸素センサ6を使用した故障判定処理のフローを示したフローチャートである。本ルーチンは、前記ステップS105で実行される。なお、実施例1で示したフローチャートと同じ処理がなされるステップには同じ符号を付して説明を省略する。
 ステップS301では、空燃比センサ5及び酸素センサ6の出力値の推移が読み込まれる。すなわち、空燃比センサ5及び酸素センサ6の出力値をECU10に記憶しておき、該出力値の推移を得る。
 ステップS302では、触媒が活性化しているか否か演算される。本ステップでは、空燃比センサ5及び酸素センサ6の出力値の推移に基づいて触媒が活性化しているか否か演算する。ここで、空燃比センサ5の出力値は、電気加熱式触媒4からの影響を受けない。そして、空燃比センサ5により検出される空燃比は、電気加熱式触媒4へ流入する前の排気の空燃比である。したがって、空燃比センサ5の出力値は、内燃機関1の始動後からすぐにリッチ空燃比を示すようになり、その後もリッチ空燃比で推移する。
 一方、酸素センサ6の出力値は、実施例1で説明したように、電気加熱式触媒4からの影響を受ける。このため、触媒が活性化しているか否かにより酸素センサ6の出力値の推移は異なる。そして、内燃機関1の始動時に触媒が活性化していれば、内燃機関1が始動されてから、空燃比センサ5及び酸素センサ6で共にリッチ空燃比が検出されるまでの時間が長くなる。したがって、この時間がたとえば所定時間よりも長いときに触媒が活性化していると判定する。ここでいう所定時間は、電気加熱式触媒4が故障しているときに内燃機関1が始動してから、空燃比センサ5及び酸素センサ6の出力値がリッチ空燃比を示すまでの時間の上限値である。
 また、空燃比センサ5の出力値の推移と、酸素センサ6の出力値の推移と、を比較することで触媒が活性化しているか否か判定することもできる。すなわち、内燃機関1の始動時に触媒が活性化していれば、空燃比センサ5の出力値がリッチ空燃比となってから、酸素センサ6の出力値がリッチ空燃比となるまでの時間が長くなる。したがって、この時間を測定し、たとえば該時間が所定時間よりも長ければ触媒が活性化しているとする。
 ステップS303では、ステップS302において触媒が活性化していると演算されたか否か判定される。そして、ステップS303で肯定判定がなされた場合にはステップS205へ進んで触媒は活性化しているとして電気加熱式触媒4は正常であると判定される。一方、否定判定がなされた場合にはステップS206へ進んで触媒は活性化していないとして電気加熱式触媒4は故障していると判定される。
 以上説明したように本実施例によれば、空燃比センサ5及び酸素センサ6の出力値に基づいて触媒が活性化しているか否か判定することで、電気加熱式触媒4の温度が上昇したか否か判定することができるため、電気加熱式触媒4が正常であるか否か判定することができる。
 本実施例では、電気加熱式触媒4の電気抵抗に基づいて推定される該電気加熱式触媒4の温度を併用して故障検出を行う。すなわち、酸素センサ6の出力値がリッチ空燃比を示す値に変化するまでの時間と、電気抵抗に基づいて推定される温度と、に基づいて故障検出を行う。このように、電気加熱式触媒4の温度が上昇しているのか否かを2つの異なる手法によりそれぞれ検出してそれらを比較することで、故障検出の精度を高めることができる。
 また、本実施例では、電気加熱式触媒4に通電後、内燃機関1の始動要求がない場合であっても内燃機関1を始動させて電気加熱式触媒4の故障検出を行う。このように、電気加熱式触媒4が高温で安定しているときに積極的に内燃機関1を始動させることで、故障検出の精度を高めることができる。
 また、本実施例では、内燃機関1に燃料を供給して始動させる前に、電気加熱式触媒4に通電させつつ電動モータ2によって内燃機関1のクランク軸を回転させる。これにより、内燃機関1から空気を排出させて、電気加熱式触媒4に空気を送り込む。そうすると、触媒に予め十分な酸素を貯蔵させておくことができるため、故障検出の精度を高めることができる。また、故障検出に要する時間を短縮することができる。
 さらに、本実施例では、内燃機関1の始動時に、排気で電気加熱式触媒4が冷却されることの抑制と、未燃燃料の排出の抑制と、短時間での故障検出の完了と、を実現するように内燃機関1を制御する。ここで、内燃機関1の始動時には温度の低い排気が電気加熱式触媒4へ流入する。この排気で電気加熱式触媒4が冷却されることを抑制すれば、排気の浄化率を高いまま維持することができる。また、未燃燃料の排出を抑制すれば、大気中に未燃燃料が放出されることを抑制できる。さらに、短時間で故障検出を完了させることができれば、内燃機関1の運転状態の影響を受け難くすることができるため、故障検出の精度を高くすることができる。そして、例えば、点火時期が上死点よりも進角側となるように、且つ、空燃比が理論空燃比よりもリッチ側となるように、内燃機関1を制御する。これにより、燃焼状態を安定させ且つ燃焼ガス温度を高くすることができるので、排気で電気加熱式触媒4が冷却されることの抑制と、未燃燃料の排出の抑制と、短時間での故障検出の完了と、を実現できる。
 その他の装置等は実施例1と同じため説明を省略する。図6は、本実施例に係る電気加熱式触媒4の仮故障判定フローを示したフローチャートである。なお、前記実施例で示したフローチャートと同じ処理がなされるステップには同じ符号を付して説明を省略する。
 ステップS401では、電気加熱式触媒4へ通電中であるか否か判定される。すなわち、電気加熱式触媒4の温度が上昇されている最中であるか否か判定される。ステップS401で肯定判定がなされた場合にはステップS402へ進み、否定判定がなされた場合にはステップS103へ進む。
 ステップS402では、触媒リーン化処理が実施されていないか否か判定される。触媒リーン化処理とは、内燃機関1に燃料を供給して始動させる前に、電気加熱式触媒4に空気を送り込む処理である。触媒リーン化処理では、電気加熱式触媒4に空気を送り込むために、内燃機関1への燃料供給は行わず、且つ、内燃機関1のクランク軸を電動モータ2によって回転させる。すなわち、内燃機関1から空気を排出させる。このときに、電気加熱式触媒4に通電する。これにより、電気加熱式触媒4の温度上昇に伴って、該電気加熱式触媒4へ酸素が貯蔵される。すなわち、内燃機関1の始動前に触媒に酸素を貯蔵させておくことができる。
 ステップS402で肯定判定がなされた場合にはステップS403へ進む。また、否定判定がなされた場合にはステップS404へ進む。
 ステップS403では、触媒リーン化処理が実施される。触媒リーン化処理は、電気加熱式触媒4の温度が前記所定値よりも高くなるまで実施される。
 ステップS404では、仮故障判定処理が実施される。仮故障判定処理は、電気加熱式触媒4の温度の推定値から該電気加熱式触媒4が正常であるか否か判定する処理である。電気加熱式触媒4の温度は、該電気加熱式触媒4へ通電したときの該電気加熱式触媒4の電気抵抗に基づいて推定される。詳細については後述する。
 また、ステップS401で否定判定がなされたときには、ステップS103へ進んで、電気加熱式触媒4への通電が完了しているか否か判定される。そして、ステップS103で肯定判定がなされた場合にはステップS405へ進む。
 ステップS405では、内燃機関1が始動される。このときには、内燃機関1に燃料が供給される。本ステップでは、故障検出を行うために内燃機関1を始動させている。
 ステップS406では、本故障判定処理が実施される。本故障判定処理については後述する。
 ステップS407では、内燃機関1が停止される。すなわち、本故障判定処理が実施されている間だけ内燃機関1が稼働される。
 次に、ステップS404で実施される仮故障判定処理について説明する。図7は、仮故障判定処理のフローを示したフローチャートである。
 ステップS501では、電気加熱式触媒4の電気抵抗から該電気加熱式触媒4の温度が推定される。この推定は、図3に示した関係から得られる。なお、本実施例においては電気加熱式触媒4の電気抵抗を検知するECU10が、本発明における抵抗検知装置に相当する。また、本実施例においてはステップS501において電気加熱式触媒4の温度を推定するECU10が、本発明における推定装置に相当する。
 ステップS502では、ステップS501で推定される温度が所定値よりも高いか否か判定される。ここでいう所定値は、電気加熱式触媒4が故障しているとされる温度の上限値であり、予め設定しておく。
 そして、ステップS502で肯定判定がなされた場合にはステップS503へ進み、仮判定では電気加熱式触媒4が正常であるとされる。また、ステップS502で否定判定がなされた場合にはステップS504へ進み、仮判定では電気加熱式触媒4が故障しているとされる。ここで、電気加熱式触媒4の電気抵抗に基づいて温度を推定しても精度が低いため、仮判定の精度は低い。このため、温度の推定値のみによる電気加熱式触媒4の故障検出は行わず、後述する酸素センサ6の出力値を併用して故障検出を行う。
 次に、ステップS406で実施される本故障判定処理について説明する。図8は、本故障判定処理のフローを示したフローチャートである。なお、前記フローチャートと同じ処理がなされるステップについては同じ符号を付して説明を省略する。
 ステップS601では、ステップS203で測定される内燃機関1が始動してからの経過時間が所定時間よりも長く、且つ、前記仮判定で正常とされたか否か判定される。この所定時間は、ステップS204で説明した所定時間と同じである。ここで、ステップS203で測定される内燃機関1が始動してからの経過時間が所定時間よりも長いということは、触媒の酸素貯蔵量が十分に多かったということであり、電気加熱式触媒4が正常である可能性が高い。また、仮判定で正常とされた場合にも、電気加熱式触媒4が正常である可能性が高い。そこで、本実施例では、ステップS203で測定される経過時間が所定時間よりも長く、且つ、前記仮判定で正常とされたときに、電気加熱式触媒4が正常であると判定している。
 すなわち、ステップS601で肯定判定がなされた場合には、ステップS205へ進んで電気加熱式触媒4は正常であると判定される。一方、ステップS601で否定判定がなされた場合にはステップS602へ進む。
 ステップS602では、ステップS203で測定される内燃機関1が始動してからの経過時間が所定時間よりも短く、且つ、前記仮判定で故障とされたか否か判定される。ステップS203で測定される経過時間が所定時間よりも短いということは、触媒の酸素貯蔵量が十分でないということであり、電気加熱式触媒4が故障している可能性が高い。また、仮判定で故障とされた場合にも、電気加熱式触媒4が故障している可能性が高い。そこで、本実施例では、ステップS203で測定される経過時間が所定時間よりも短く、且つ、前記仮判定で故障とされたときに、電気加熱式触媒4が故障していると判定している。
 すなわち、ステップS602で肯定判定がなされた場合には、ステップS206へ進んで電気加熱式触媒4は故障していると判定される。一方、ステップS602で否定判定がなされた場合にはステップS603へ進む。
 ステップS603では、電気加熱式触媒4が正常であるか否かの判定が保留される。すなわち、ステップS203で測定される内燃機関1が始動してからの経過時間と、仮判定の結果と、が矛盾しているため、最終的な判定(本判定)を保留する。例えば、内燃機関1の運転状態が悪化した場合には酸素センサ6の出力値が安定しないため、前記経過時間の測定を誤ることがある。このような場合には、故障検出を再度行うことにより、精度を高めることができる。なお、ステップS603では、電気加熱式触媒4が故障していると判定してもよい。
 なお、ステップS406で実施される本故障判定処理では、実施例2で説明したように、空燃比センサ5及び酸素センサ6の出力値を用いた判定を行うこともできる。図9は、本故障判定処理のフローを示した他のフローチャートである。なお、前記フローチャートと同じ処理がなされるステップについては同じ符号を付して説明を省略する。
 ステップS701では、ステップS302で触媒が活性化しているとされ、且つ、前記仮判定で正常とされたか否か判定される。ステップS302で触媒が活性化していると演算されたということは、触媒の酸素貯蔵量が十分に多かったということであり、電気加熱式触媒4が正常である可能性が高い。また、仮判定で正常とされた場合にも、電気加熱式触媒4が正常である可能性が高い。そこで、本実施例では、ステップS302で触媒が活性化していると演算され、且つ、前記仮判定で正常とされたときに、電気加熱式触媒4が正常であると判定している。
 すなわち、ステップS701で肯定判定がなされた場合には、ステップS205へ進んで電気加熱式触媒4は正常であると判定される。一方、ステップS701で否定判定がなされた場合にはステップS702へ進む。
 ステップS702では、ステップS302で触媒が活性化していないとされ、且つ、前記仮判定で故障とされたか否か判定される。ステップS302で触媒が活性化していないと演算されたということは、触媒の酸素貯蔵量が十分でないということであり、電気加熱式触媒4が故障している可能性が高い。また、仮判定で故障とされた場合にも、電気加熱式触媒4が故障している可能性が高い。そこで、本実施例では、ステップS302で触媒が活性化していないと演算され、且つ、前記仮判定で故障とされたときに、電気加熱式触媒4が故障していると判定している。
 すなわち、ステップS702で肯定判定がなされた場合には、ステップS206へ進んで電気加熱式触媒4は故障していると判定される。一方、ステップS702で否定判定がなされた場合にはステップS603へ進んで判定が保留される。
 以上説明したように本実施例によれば、酸素センサ6に基づいた故障判定と、電気抵抗に基づいた故障判定と、を併用することで、電気加熱式触媒4の故障検出の精度をより高めることができる。
1     内燃機関
2     電動モータ
3     排気通路
4     電気加熱式触媒
5     空燃比センサ
6     酸素センサ
10   ECU

Claims (6)

  1.  内燃機関の排気通路に設けられ通電により発熱して触媒を加熱する電気加熱式触媒の故障検出装置において、
     前記内燃機関の始動時に前記電気加熱式触媒に流入する排気の空燃比をリッチ空燃比とする空燃比制御装置と、
     前記電気加熱式触媒よりも下流側に設けられ排気中の酸素濃度を検知する下流側検知装置と、
     前記内燃機関の始動後であって前記空燃比制御装置により排気の空燃比がリッチ空燃比とされているときに前記下流側検知装置により検知される酸素濃度がリッチ空燃比を示す値に変化する時期に基づいて前記電気加熱式触媒へ通電されているか否か判定する判定装置と、
    を備える電気加熱式触媒の故障検出装置。
  2.  前記判定装置は、前記内燃機関が始動されてから、前記下流側検知装置により検知される酸素濃度がリッチ空燃比を示す値に変化するまでの時間が、
     所定時間よりも長い場合に前記電気加熱式触媒への通電が正常に行われていると判定し、
     所定時間以下の場合に前記電気加熱式触媒への通電が正常に行われていないと判定する請求項1に記載の電気加熱式触媒の故障検出装置。
  3.  前記電気加熱式触媒よりも上流側に設けられ排気中の酸素濃度を検知する上流側検知装置を備え、
     前記判定装置は、前記内燃機関が始動されてから、前記上流側検知装置及び下流側検知装置により検知される酸素濃度が共にリッチ空燃比を示す値となるまでの時間が、
     所定時間よりも長い場合に前記電気加熱式触媒への通電が正常に行われていると判定し、
     所定時間以下の場合に前記電気加熱式触媒への通電が正常に行われていないと判定する請求項1に記載の電気加熱式触媒の故障検出装置。
  4.  前記電気加熱式触媒へ前記内燃機関の始動前から通電する請求項1から3の何れか1項に記載の電気加熱式触媒の故障検出装置。
  5.  前記電気加熱式触媒へ通電したときの該電気加熱式触媒の電気抵抗を検知する抵抗検知装置と、
     前記抵抗検知装置により検知される電気抵抗に基づいて前記電気加熱式触媒の温度を推定する推定装置と、
    を備え、
     前記判定装置は、前記推定装置により推定される前記電気加熱式触媒の温度が所定値よりも高いときに、前記電気加熱式触媒へ通電されているか否か判定する請求項1から4の何れか1項に記載の電気加熱式触媒の故障検出装置。
  6.  前記電気加熱式触媒へ通電したときの該電気加熱式触媒の電気抵抗を検知する抵抗検知装置と、
     前記抵抗検知装置により検知される電気抵抗に基づいて前記電気加熱式触媒の温度を推定する推定装置と、
    を備え、
     前記判定装置が、前記電気加熱式触媒へ通電されていると判定するのは、前記推定装置により推定される前記電気加熱式触媒の温度が所定値よりも高い場合に限る請求項1から4の何れか1項に記載の電気加熱式触媒の故障検出装置。
PCT/JP2010/072560 2010-12-15 2010-12-15 電気加熱式触媒の故障検出装置 WO2012081094A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10860784.7A EP2653683B1 (en) 2010-12-15 2010-12-15 Failure detection apparatus for an electrically heated catalyst
PCT/JP2010/072560 WO2012081094A1 (ja) 2010-12-15 2010-12-15 電気加熱式触媒の故障検出装置
US13/994,570 US8776586B2 (en) 2010-12-15 2010-12-15 Failure detection apparatus for an electrically heated catalyst
JP2012548573A JP5348336B2 (ja) 2010-12-15 2010-12-15 電気加熱式触媒の故障検出装置
CN201080070658.XA CN103261604B (zh) 2010-12-15 2010-12-15 电加热式催化剂的故障检测装置
KR1020137017449A KR101331370B1 (ko) 2010-12-15 2010-12-15 전기 가열식 촉매의 고장 검출 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072560 WO2012081094A1 (ja) 2010-12-15 2010-12-15 電気加熱式触媒の故障検出装置

Publications (1)

Publication Number Publication Date
WO2012081094A1 true WO2012081094A1 (ja) 2012-06-21

Family

ID=46244221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072560 WO2012081094A1 (ja) 2010-12-15 2010-12-15 電気加熱式触媒の故障検出装置

Country Status (6)

Country Link
US (1) US8776586B2 (ja)
EP (1) EP2653683B1 (ja)
JP (1) JP5348336B2 (ja)
KR (1) KR101331370B1 (ja)
CN (1) CN103261604B (ja)
WO (1) WO2012081094A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9297843B2 (en) * 2013-03-15 2016-03-29 GM Global Technology Operations LLC Fault diagnostic systems and methods using oxygen sensor impedance
JP5783202B2 (ja) * 2013-03-27 2015-09-24 トヨタ自動車株式会社 内燃機関の異常検出装置
US10221792B2 (en) * 2013-08-15 2019-03-05 Ford Global Technologies, Llc Two-stage catalyst regeneration
JP6376169B2 (ja) * 2016-04-20 2018-08-22 トヨタ自動車株式会社 ハイブリッド車両
JP6424861B2 (ja) * 2016-04-20 2018-11-21 トヨタ自動車株式会社 ハイブリッド車両
DE102016219387B4 (de) * 2016-10-06 2019-01-24 Audi Ag Verfahren und Vorrichtung zur Kalibrierung eines Abgassensors
DE102017107678A1 (de) * 2017-04-10 2018-10-11 Volkswagen Aktiengesellschaft Verfahren zur Inbetriebnahme eines Verbrennungsmotors und Kraftfahrzeug mit einem Verbrennungsmotor
JP2021110321A (ja) * 2020-01-15 2021-08-02 トヨタ自動車株式会社 内燃機関の触媒劣化判断装置
US11268416B2 (en) * 2020-05-19 2022-03-08 Denso International America, Inc. Methods and systems for detecting an impedance of a catalytic converter
IT202100017255A1 (it) * 2021-06-30 2022-12-30 Marelli Europe Spa Metodo di controllo di un bruciatore per un sistema di scarico di un motore a combustione interna
CN114033536B (zh) * 2021-11-29 2022-09-13 东风汽车有限公司东风日产乘用车公司 三元催化器加热控制方法、装置、设备及存储介质
CN114542251B (zh) * 2022-03-18 2023-01-20 潍柴动力股份有限公司 一种电加热催化剂载体电阻故障诊断方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269330A (ja) * 1994-03-30 1995-10-17 Nippon Soken Inc 触媒劣化判定装置
JPH0828252A (ja) * 1994-07-12 1996-01-30 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JPH08338235A (ja) * 1995-06-15 1996-12-24 Hitachi Ltd ハイブリット車の排気ガス低減装置及び方法
JPH094438A (ja) 1995-02-10 1997-01-07 Nippondenso Co Ltd 触媒の劣化検出装置及び排気浄化装置の異常検出装置
JPH09125943A (ja) * 1995-11-06 1997-05-13 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003120382A (ja) 2001-10-16 2003-04-23 Denso Corp 内燃機関の触媒早期暖機制御システムの異常診断装置
JP2009191681A (ja) * 2008-02-13 2009-08-27 Toyota Motor Corp 通電加熱式触媒装置の異常判定システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269330A (ja) * 1988-09-01 1990-03-08 Furukawa Electric Co Ltd:The 光フアイバ用線引塔
JPH05248234A (ja) 1992-03-09 1993-09-24 Mitsubishi Motors Corp 排気ガス浄化用触媒コンバータ
JP3603422B2 (ja) * 1995-10-23 2004-12-22 日産自動車株式会社 エンジンの触媒温度推定装置および触媒診断装置
JP3163994B2 (ja) * 1996-10-07 2001-05-08 トヨタ自動車株式会社 内燃機関関係機器の異常検出装置およびこれを備える動力出力装置
US6668545B2 (en) 2001-03-30 2003-12-30 General Motors Corporation Catalyst warm-up assessment method for a motor vehicle catalytic converter
US6898927B2 (en) 2001-10-16 2005-05-31 Denso Corporation Emission control system with catalyst warm-up speeding control
JP4687681B2 (ja) * 2007-03-30 2011-05-25 トヨタ自動車株式会社 内燃機関の触媒劣化判定装置
JP5248234B2 (ja) 2008-08-04 2013-07-31 株式会社柔道指導研究所 トレーニングマシン
DE112009004665T5 (de) * 2009-04-16 2012-08-02 Toyota Jidosha K.K. Katalysatoranormalitätsdiagnosevorrichtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269330A (ja) * 1994-03-30 1995-10-17 Nippon Soken Inc 触媒劣化判定装置
JPH0828252A (ja) * 1994-07-12 1996-01-30 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JPH094438A (ja) 1995-02-10 1997-01-07 Nippondenso Co Ltd 触媒の劣化検出装置及び排気浄化装置の異常検出装置
JPH08338235A (ja) * 1995-06-15 1996-12-24 Hitachi Ltd ハイブリット車の排気ガス低減装置及び方法
JPH09125943A (ja) * 1995-11-06 1997-05-13 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003120382A (ja) 2001-10-16 2003-04-23 Denso Corp 内燃機関の触媒早期暖機制御システムの異常診断装置
JP2009191681A (ja) * 2008-02-13 2009-08-27 Toyota Motor Corp 通電加熱式触媒装置の異常判定システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653683A4 *

Also Published As

Publication number Publication date
JPWO2012081094A1 (ja) 2014-05-22
CN103261604B (zh) 2014-11-12
KR101331370B1 (ko) 2013-11-20
JP5348336B2 (ja) 2013-11-20
US20130291630A1 (en) 2013-11-07
EP2653683A1 (en) 2013-10-23
US8776586B2 (en) 2014-07-15
EP2653683B1 (en) 2017-01-25
EP2653683A4 (en) 2014-06-11
KR20130087608A (ko) 2013-08-06
CN103261604A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5348336B2 (ja) 電気加熱式触媒の故障検出装置
JP3744483B2 (ja) 内燃機関の排気浄化装置
JP6237057B2 (ja) ガスセンサ制御装置
KR101442391B1 (ko) 내연 기관의 배출 제어 시스템
WO2015170449A1 (ja) 内燃機関の排出ガス浄化装置
JP6119434B2 (ja) ガスセンサ制御装置
JP2003314350A (ja) 内燃機関の排ガス浄化装置
JP2008121428A (ja) 内燃機関の触媒劣化検出装置
EP2667003A1 (en) Air-fuel ratio control device for internal combustion engine
JP5155238B2 (ja) センサ制御装置
JP2012068150A (ja) 酸素センサの異常診断装置
JP2008038720A (ja) 排出ガス浄化システムの下流側酸素センサの異常診断装置
JP4395890B2 (ja) 内燃機関の二次空気供給システムの異常診断装置
JP2006126218A (ja) 空燃比検出装置の劣化検出装置
JP4547617B2 (ja) 内燃機関の二次空気供給システムの異常診断装置
JP2016112910A (ja) ハイブリッド車両の制御装置
JP2012230046A (ja) ガス濃度検出装置の異常診断装置
JP4281747B2 (ja) 空燃比検出装置の劣化検出装置
JP5262856B2 (ja) ガスセンサの劣化診断装置及びガスセンサの劣化診断方法
JP2008002440A (ja) 内燃機関の排気ガス濃度センサの異常判定装置
JP2695294B2 (ja) 酸素センサの異常検出装置
JP2003293842A (ja) 水温センサの故障判定装置
JP2007056832A (ja) 空燃比センサの活性判定装置
JP2010002192A (ja) ガスセンサのヒータ劣化検出装置
JP2009156151A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548573

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010860784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010860784

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137017449

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13994570

Country of ref document: US