WO2012079281A1 - 汽车的纯滚动转向装置 - Google Patents

汽车的纯滚动转向装置 Download PDF

Info

Publication number
WO2012079281A1
WO2012079281A1 PCT/CN2011/002067 CN2011002067W WO2012079281A1 WO 2012079281 A1 WO2012079281 A1 WO 2012079281A1 CN 2011002067 W CN2011002067 W CN 2011002067W WO 2012079281 A1 WO2012079281 A1 WO 2012079281A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
trajectory
shaft
actuator
connecting shaft
Prior art date
Application number
PCT/CN2011/002067
Other languages
English (en)
French (fr)
Inventor
马燕翔
Original Assignee
Ma Yanxiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ma Yanxiang filed Critical Ma Yanxiang
Publication of WO2012079281A1 publication Critical patent/WO2012079281A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/08Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle

Definitions

  • the present invention relates to steering devices for automobiles, and more particularly to pure rolling steering of automobiles.
  • the solution of the present invention is: fixedly mounting a steering slide on the left and right knuckles at the same time toward the front or the rear of the steering cymbal, respectively, and the two steering slides respectively.
  • the inner wheel surface of the steering wheel on the joint is formed into an angle of the same size (although the size of the two angles is not equal, the invention can be implemented, but due to the asymmetry of the two sides, it will bring a lot of design and manufacture.
  • the inconvenience, and because it works in the same way, can be analogized according to the example when the two angles are equal. Therefore, the present invention only discusses the case where the two angles are equal), and is installed in a plane parallel to the vehicle chassis.
  • the two steering slides intersect at one point.
  • the intersection of the two steering slides is bound to leave the original position.
  • a movement is generated, leaving a moving trajectory of an intersection point (the movement trajectory of the intersection is referred to as a purely rolling steering trajectory).
  • the pure rolling steering trajectory of this intersection movement and the pure rolling steering of the steering wheel correspond to each other because the pure rolling steering trajectory itself is made when the two steering wheels are purely rolling. Therefore, to achieve the pure rolling steering of the steering wheel, as long as the pure rolling steering trajectory of the intersection of the two steering sliders is first made, the corresponding trajectory mechanism is created, so that the intersection of the two steering sliders always falls on the pure rolling steering.
  • the invention makes this mechanism which can make the intersection of the two steering slides always fall on the pure rolling steering trajectory, and is called the trajectory executing mechanism of the pure rolling steering trajectory, and can also be simply referred to as the trajectory actuator.
  • the trajectory actuators can also have different titles due to different types of purely rolling steering trajectories, such as elliptical trajectory actuators and linear trajectory actuators, which are two trajectory actuators with pure rolling steering trajectories of ellipse and straight line, respectively.
  • the above-described depiction of the pure rolling steering trajectory is a well-known technique: in addition to establishing coordinates, two steering slips are obtained according to the pure rolling steering relationship of the two steering wheels.
  • the trajectory equation of the movement point of the rod intersection, and then the image is obtained by means of information technology.
  • the original method of realizing the sample or reducing the actual sample can be used, that is, according to the pure rolling steering relationship of the two steering wheels, a number of calculations are calculated.
  • the corresponding angles of the two steering sliders are used to obtain the intersection points of the groups, and then connected into an image.
  • the above-mentioned pure rolling steering trajectory is a well-known quadratic curve, and the image of the curve may vary due to the change of the angle between the inner wheel surface of the steering wheel and the steering slider.
  • the change (as mentioned above, the present invention only discusses the case where the angle between the left and right steering wheels and the steering slider is equal, so the "size change” here means that the two angles become larger at the same time or Smaller, and the two angles are still equal).
  • Due to the class of quadratic curves There are many types, and the present invention cannot do all of them. Only the ellipse and a straight line parallel to the X-axis (retraction conic curve) are selected.
  • the aforementioned trajectory actuator of the purely rolling steering trajectory is very simple to manufacture: the desired pure rolling steering trajectory is drawn on the steel plate, and the trajectory is carved into a groove (slot) having a certain width, and then A roller having a diameter slightly smaller than the groove width (movable in the groove but having a small gap) is placed therein so that the roller tread is parallel to the plate surface, and then an axle that is freely rotatable relative to the roller is mounted in the center of the roller.
  • the present invention refers to the axle as a connecting shaft). Then, no matter how the roller moves in the chute, the center axle (connecting shaft) must be on the pure rolling steering track as long as the chute is not thrown.
  • a rack which is curved in synchronization with the chute (referred to as a curved rack in the present invention) on the side of the slipper, and then fix it on the connecting shaft at the center of the roller.
  • a gear (which is referred to herein as a rolling gear) that is engageable with the curved curvilinear rack is mounted.
  • the steering torque is above the steel plate, and the steering wheel and the steering shaft are transmitted to the connecting shaft of the center of the roller through the universal joint and the swinging and retractable swing shaft (the universal joint is also used between the swing shaft and the connecting shaft).
  • the connecting shaft rotates the connecting shaft to drive the rolling gear on the connecting shaft to rotate, so that the rolling gear moves along the curved rack that meshes with it, and finally drives the connecting shaft and the roller thereon to move along the sliding slot.
  • the connecting axis on the center of the roller inside the chute is required to be a pure rolling steering trajectory.
  • the input end of the trajectory actuator is a pendulum shaft connected to the steering shaft with a universal joint, and the output end is a connecting shaft for pure rolling steering trajectory movement.
  • the chute in the above trajectory actuator may also be a slide rail or the like. Therefore, the present invention refers to the above-described trajectory actuator (in terms of its structure) as a groove rail trajectory actuator. At the same time, the above-described chute is referred to as a groove track in the following description.
  • the groove-type trajectory actuator is applicable not only to a quadratic curve such as an ellipse, but also to a wide variety of other curves.
  • the above-mentioned steering sliders and sliding sleeves are actually interchangeably mounted, such as forming the steering slider into a sleeve shape, forming a sliding sleeve, mounting on the steering knuckle, and turning the steering
  • One end of the rod is connected with the connecting shaft, and the other end is inserted into the sliding rod sleeve.
  • the steering sliding rod With the movement of the connecting shaft, the steering sliding rod can be telescopically twitched relative to the sliding rod sleeve, which is sliding with the sliding rod sleeve on the steering sliding rod It is equivalent, therefore, in fact, the sliding sleeve and the steering slider are only a pair of sliding pairs.
  • the present invention combines the sliding sleeve with the sliding sliding rod, which is called a steering sliding pair, and
  • the two connecting ends of the sliding sleeve and the steering sliding rod in the sliding pair are called inner end and outer end, and the end connected to the connecting shaft is called the inner end, and the other end is called the outer end, but for the later description, Conveniently, the present invention can continue to use the steering slide and the slider sleeve to represent the steering slide pair.
  • trajectory actuators There are many kinds of trajectory actuators.
  • the size and rotation speed of the two gears meshing with the two racks are the same and meshed at the equal length of the rack. Then the two racks are equal in length and stretched in equal length, and the obtained trajectory is a parabola. If the gear ratio of the gear is adjusted, the ratio of the distance from the moving point to the focus to the distance from the moving point to the guide line is greater than 1 is a hyperbola, and less than 1 is an ellipse.
  • This is a trajectory actuator designed according to the definition of the conic curve.
  • the position of the moving point is the output end of the trajectory actuator.
  • the connecting shaft can be installed, and then two sliding rod sleeves are connected on the connecting shaft.
  • the steering slider is inserted into the slider sleeve to create a pure rolling steering device.
  • the trajectory actuator of the present invention is referred to as a defined trajectory actuator.
  • trajectory actuators for different quadratic curves, there may be various specific trajectory actuators, for example, for a hyperbola, the difference between the distances of the moving points and the two fixed points may be fixed. The image is made, and the ellipse can be imaged with an elliptical gauge like a circle with a compass, so the trajectory actuator has a variety of structural changes that cannot be done.
  • the elliptical trajectory actuator in addition to the above-mentioned groove-track trajectory actuator, can be designed with reference to the elliptical gauge method: it mainly has one of two horizontal and vertical chutes a cross recess and a rocker with two sliders and a connecting shaft; the connecting shaft is mounted on one end of the rocker, and the two sliders are rotatably mounted on the rocker at different distances from the connecting shaft (two The two different distances between the slider and the connecting shaft respectively represent the semi-long axis and the semi-short axis of the ellipse, and the two sliders are respectively placed in the transverse groove and the vertical sliding groove of the cross groove, when the two sliding When the blocks slide in the respective chutes, the movement track of the connecting shaft on the end of the rocker is an ellipse, which is an ellipsoidal trajectory actuator, which is similar to a compass, and thus the invention refers to the elli
  • the linear trajectory actuator in addition to the above-mentioned groove rail type for the linear trajectory, can simply refer to the existing gear rack and screw nut and other steering gear for manufacturing, because the rack can be in the gear Driven by the linear motion in the chute, the connecting shaft on the rack moves in a linear path; likewise, the rotation of the screw can move the nut that cannot rotate on the screw linearly, so that the connecting shaft on the nut is made Linear path movement (in order to reduce steering resistance and wear, a recirculating ball can also be installed between the screw and the nut).
  • the connecting shaft on the output end of the trajectory actuator becomes a pure rolling steering device after connecting the two sliding sleeves with the steering slider, but if the calculation is based on the large size of the automobile, the steering slider is bound to be It needs to be very long, so it needs to be changed in practical application.
  • the trajectory actuator can be divided into two, which are respectively installed near the left and right knuckles, each trajectory.
  • the pure rolling steering device of this type is a trapezoidal frame pure rolling steering device.
  • it can be reduced according to the similar principle, in the form of a pure rolling steering gear, which can shorten the steering slide Inside the steering gear, they are respectively mounted on the left and right rocker shafts.
  • the rocker arm is also equipped with a steering rocker connected to the steering knuckle, the steering force transmitted from the steering wheel to the trajectory actuator will pass through
  • the two steering wheels are transmitted to the left and right rocker shafts, and then the left and right two steering rockers on the left and right rocker shafts are transmitted to the left and right horizontal tie rods (or directly from the left and right rocker shafts through the left and right drive shafts, etc. )
  • the steering wheels are transmitted to the left and right knuckles respectively to achieve pure rolling steering. .
  • the pure rolling steering device has a steering angle that is accurate to the current ordinary vehicle.
  • a large angle of pure rolling steering which can make the turning radius of the vehicle gradually reduced until the original position is turned, some changes are needed:
  • the first is to select a circular elliptic curve as a large angle pure rolling steering trajectory, because the elliptical curve is a circular ring, so as long as the sliding of the sliding sleeve on the steering sliding bar is not affected by the steering sliding bar and the steering knuckle ( Or the obstacle at the joint of the rocker shaft can realize the pure rolling steering at a large angle.
  • the steering slider should be made into a "T" shape or a "work” shape, etc., and mounted on the knuckle (or rocker arm).
  • the slider On the top of the shaft, the slider is sleeved into the shape of the open slot below, and the lower end of the connecting shaft is rotatably connected to the upper surface of the slider sleeve; and in order to prevent the two steering sliders from blocking each other, the front can be used
  • the trajectory actuator In the form of the trapezoidal frame type pure rolling steering device, the trajectory actuator is split to the vicinity of the knuckles on both sides so as not to interfere with each other.
  • FIG. 1 is a schematic view showing a steering principle of a pure rolling steering device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a purely rolling steering trajectory of two ellipse due to the difference in the angle between the steering slider and the steering wheel.
  • FIG 3 is a schematic view of a pure rolling steering device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic view of the groove track type trajectory mechanism of FIG. 3 of the present invention.
  • FIG. 5 is a schematic view of a purely rolling steering device in which a groove rail type trajectory actuator according to a third embodiment of the present invention is arranged in a trapezoidal frame on both sides.
  • FIG. 6 is a schematic diagram showing changes of some related mechanisms when the vehicle realizes large angle steering.
  • Fig. 7 is a view showing an elliptical gauge trajectory actuator and a pure rolling steering device thereof according to a fourth embodiment of the present invention. '
  • FIG. 8 is a schematic view of a pure rolling steering device in which an elliptical gauge trajectory actuator according to a fifth embodiment of the present invention is arranged in a trapezoidal frame on both sides.
  • FIG. 9 is a schematic diagram of a defined trajectory actuator of the present invention.
  • FIG. 10 is a schematic view of a pure rolling steering trajectory of the present invention parallel to the X axis.
  • FIG. 11 is a rack and pinion type linear trajectory actuator and a pure rolling steering device thereof according to a sixth embodiment of the present invention.
  • FIG. 12 is a schematic view of a screw-nut type linear trajectory actuator and a pure rolling steering device thereof according to a seventh embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the mutual transformation of the steering slider and the slider sleeve of the present invention.
  • FIG. 14 is a schematic view of a slide bar type linear trajectory actuator of the eighth embodiment of the present invention and a pure rolling direction-turning device for trapezoidal frame arrangement.
  • FIG. 15 is a pure roll of a rack-and-rack linear path actuator of a ninth embodiment of the present invention in a trapezoidal frame arrangement; Schematic diagram of the steering device.
  • 16 is a schematic view of a purely rolling steering device in the form of a ladder-type pure rolling steering device of the tenth embodiment of the present invention, which is similarly reduced to a steering gear.
  • FIG. 1 is a schematic view showing the working principle of the steering device of the present invention.
  • the Cartesian coordinates are established in the figure. 3 ⁇ 45N and JK represent the two steering wheels in front of the car.
  • the coordinates of the midpoint A of the MN are (S, 0), and the coordinates of the midpoint B of JK are (-S, 0).
  • the two rear wheels are at the position of point C (-S, -L) and point D (S, -L) respectively;
  • AE and BF represent two steering sliders, and AE and MN form a fixed angle e, BF and JK also form a fixed angle ⁇ ; AE and BF intersect at point G.
  • the H point of the steering center located on the extension line to the right of the two points of the CD gradually approaches the Y axis, so that the intersection G of the AE and the BF is on the Y axis.
  • a trajectory GG "symmetric to the Y-axis (the curve indicated by the solid line in the figure) and a trajectory GG' form a complete trajectory of the intersection point G symmetrically with respect to the Y-axis, which the present invention calls For the pure rolling steering trajectory (1).
  • the angle between the two steering slides in FIG. 1 and the inner wheel surface of the steering wheel are equal, both equal to ⁇ (in particular, since the steering slide is mounted on the steering knuckle, and steering The wheel has a certain distance, so the angle formed by the steering slider and the inner wheel surface of the steering wheel in the present invention actually refers to the angle between the extension line of the steering slider and the plane of the inner wheel surface of the steering wheel)
  • the present invention can be practiced when the two angles are not equal, since the pure rolling steering trajectory curve is asymmetrical to the ⁇ axis, which is disadvantageous for mechanical manufacture, the present invention only discusses the case where the two angles are equal.
  • the first example of the present invention is an elliptic curve. Since (Ltan ⁇ + S) (Ltan ⁇ - Stan 2 ⁇ ) > 0, it is an elliptic equation, so the long axis of the elliptical pattern can be on the Y axis, or The short axis is on the ⁇ axis due to the change of 8.
  • Figure 2 is a schematic diagram of the two elliptical trajectories.
  • the elliptical figure made by the solid line is the pure rolling steering trajectory when the angle is ;
  • the steering slider AE ' When BF' is a dotted line, the elliptical figure made by the dotted line is the pure rolling turning trajectory when the angle is ⁇ '.
  • the long axes of these two elliptical pure rolling steering trajectories On the Y-axis, but when the steering sliders AE ⁇ and BF ⁇ are dotted lines, the pattern made by the dotted line is an ellipse with a short axis on the Y-axis.
  • the steering slider is oriented toward the car, and The angle formed by the steering wheel face is ⁇ " .
  • the present invention refers to the orientation of the steering slider indicated by the chain line as the front of the steering axle, and the orientation of the steering slider indicated by the solid line and the broken line is referred to as the orientation of the steering slider. Behind the steering axle.
  • FIG. 3 is a schematic view of a purely rolling steering device similarly reduced in FIG. 1, in which the left steering slide bar (2) (representing BF) and the right steering slide bar (3) (representing ⁇ ) respectively correspond to each other.
  • the right tie rod (11) is connected to the left steering arm (14) and the right steering arm (15), and finally connects the left knuckle (6) and the right knuckle (7) and the left steering wheel (4).
  • right steering wheel (5) is a schematic view of a purely rolling steering device similarly reduced in FIG. 1, in which the left steering slide bar (2) (representing BF) and the right steering slide bar (3) (representing ⁇ ) respectively correspond to each other.
  • the steering torque on the steering slide is transmitted to the steering arm through the steering rocker arm and the tie rod on the rocker shaft to drive the steering wheel on the steering knuckle for pure rolling steering.
  • This similar reduction allows the steering slide to be greatly shortened to produce a purely rolling steering (or steering).
  • the trajectory actuator (24) in the figure consists of a swing shaft (23), a telescopic joint (29), a universal joint (28), a roller (19), a groove rail (18), a rolling gear (21), and a curved rack ( 22) and the connecting shaft (20).
  • the roller (19) is freely movable along the groove rail (18) in the groove rail (18); the rolling gear (21) meshes with the curved rack (22) and can roll along the curved rack (22); (20)
  • the roller (19) and the rolling gear (21) are connected in series (where the rolling gear is fixedly connected to the connecting shaft), and the telescopic joint (29) on the universal joint (28) and the swing shaft (23) is passed.
  • the pendulum shaft (23> on the input end of the trajectory actuator (24) is connected to the steering wheel (27) through the steering transmission shaft (25) and the steering shaft (26); the connecting shaft on the output end of the trajectory actuator (24) (20) ) also has a left slider sleeve (16) and a right slider sleeve (17), and the left slider sleeve (16) and the right slider sleeve (17) are respectively sleeved on the left steering slider (2) and the right
  • the steering torque on the steering wheel (27) is transmitted to the swing shaft (23) by the steering shaft (26) and the steering transmission shaft (25), and the swing shaft (23) is rotated, thereby driving
  • the swing shaft (23) is rotated by a connecting shaft (20) connected by a universal joint (28), so that the rolling gear (21) fixedly mounted to the connecting shaft (20) carries the connecting shaft (20) and the connecting shaft (20).
  • the roller (19) and the left “" sleeve (16) right slider sleeve (17) start to roll along the curved rack (22) (the roller moves along the groove rail), thereby making the left slider sleeve (16)
  • the intersection of the left steering slide (2) and the right steering slide (3) in the right slide sleeve (17) moves along the pure rolling steering trajectory (1), and finally on the rocker shaft Steering rocker arm through tie rod and steering arm belt
  • the steering wheel on the knuckle is used for pure rolling steering.
  • the groove rail in FIG. 4 only draws the outer portion, and the inner portion is replaced by the rolling gear and the curved rack, and the expansion joint on the swing shaft is because the ellipse has a long and short axis. If the telescopic stroke is not large, you can use the universal joint with the telescopic fork directly.
  • the left slider sleeve (16) and the right slider sleeve (17) of the above trajectory actuator are respectively placed on the left steering slider (2) and the right steering slider (3), and then can be shaken with the left
  • the arm shaft (12), the right rocker shaft (13) and the left steering rocker arm (8) are connected to the right steering rocker arm (9) to form a pure rolling steering gear.
  • it can be connected to the left steering arm (14) and the right steering arm (15) via the left tie rod (10) and the right tie rod (11) to drive the steering wheel on the steering knuckle to become a Pure rolling steering.
  • the above-mentioned groove-track trajectory actuator can be applied to an elliptical trajectory of a long axis on a ⁇ axis, or an elliptical trajectory of a short axis on a ⁇ axis, in fact, such a groove Rail-type trajectory actuators are applicable not only to quadratic curves, but also to other curves. Because the groove rail and the curved rack can be bent almost arbitrarily.
  • FIG. 5 is a schematic view showing the working principle of a pure rolling steering device in the form of a ladder frame.
  • the difference from the similar reduction in Figure 3 is that two trajectory actuators are used here, but each trajectory actuator has only one steering slider and A slider set. It is not difficult to see from the figure that the G ⁇ point is actually the intersection of the left steering slider (BF) and the right steering slider (AE) at the same time, the movement of the G" point and the movement of the G and G' points.
  • the trajectories are similar, so as long as the motion positions on the G-point and G'-point in their respective purely rolling steering trajectories (the curves indicated by the solid lines in the figure) always correspond to the same, the trajectory of the G" point is the same as the G-point and The trajectories of the G' points are similar (in fact, this is also a similarity, which is similarly reduced and then separately steered the steering wheel individually), and the steering wheel can achieve pure rolling steering.
  • the G point and the G' point are connected by a transmission rod (30).
  • this transmission rod (30) represents the transmission of steering torque, so it can be a transmission shaft or a transmission chain, or a transmission gear. Or drive rods, etc., depending on actual needs.
  • the torque on the steering wheel is divided into two by the gear, and the two shafts are synchronously driven by the swing shaft, so that the G point and the G′ point are synchronously moved correspondingly on the respective pure rolling steering trajectories.
  • the gear is used to divide the steering torque into two, which acts as a transmission rod. Therefore, the structure of the trapezoidal steering device of this type may also be different due to the different transmission modes (since the pure rolling steering device of FIG. 5 is similar to the current trapezoidal bogie, the present invention It is called a trapezoidal pure rolling steering device. '
  • the trajectory made by the output end (connecting shaft) of the trajectory actuator is, strictly speaking, only a trajectory similar to the pure rolling steering trajectory (1), only when the connecting shaft is exactly at two directions.
  • the movement trajectory of the connecting shaft changes from the original similarity to the congruence, becoming a true pure rolling steering trajectory.
  • the present invention is described in a unified and simple manner. Any trajectory made by the output of the trajectory actuator, whether it is a similar trajectory or a congruent trajectory, is collectively referred to as a purely rolling steering trajectory (1).
  • a rocker arm shaft is respectively installed at two points A and B, so that the steering slide bar at the two points A and B is connected with the rocker arm shaft, and the steering torque is controlled by the rocker arm shaft. It is transmitted to the steering wheels on both sides by means of tie rods, etc., thus forming a ladder-type pure rolling steering gear.
  • FIG. 6 is a schematic diagram showing changes of some mechanisms when the vehicle performs a large angle pure rolling steering. Since the ellipse is annular, a pure angle can be achieved as long as the slider sleeve can pass over the position of the rocker shaft. Steering can provide convenience for some special vehicles.
  • the steering device of Fig. 5 can be referred to, so that the trajectory actuator only needs to consider one sliding sleeve and one steering slider, and only one of them is shown in Fig. 6-A. The case where the right slider sleeve (17) passes over the right rocker shaft (13) (the same is true for the left side).
  • the right sliding sleeve ( ⁇ ) is formed into a lower open groove shape, and is installed at the lower end of the connecting shaft (20), and the right steering slider (3) is made into a "work" shape (also " T” shape), mounted on the top of the rocker shaft (13), the right steering slide (3) can easily slide freely in the chute below the right slide sleeve (17), due to the right slide sleeve (17) It is already above the rocker shaft (13), so the sliding of the right slide sleeve (17) on the right steering slide (3) is not blocked by the right rocker shaft (13) and can pass smoothly (like this
  • the combination of the sliding rod sleeve and the steering sliding rod does not interfere with each other, and the invention refers to the upper and lower matching structure).
  • the slide rail (33) and the curve on the slide rail (33) in contact with the roller (19) just meet the requirements of the steering wheel when the connecting shaft (20) is located above and near the right rocker shaft (13) Pure rolling steering angle (sliding rails are generally short and lose their effect when the connecting shaft is offset from the right rocker shaft).
  • FIG. 6-B is a schematic view showing the curved rack (22) and the groove rail (18) both mounted on the outer periphery (right side) of the connecting shaft (20).
  • the connecting shaft (20) and the roller shaft (32) mounted on the moving block (31) are respectively mounted with rolling gears (21) and rollers (19), and the rolling gears (21) are fixedly coupled to the steering gear housing.
  • the upper curved rack (22) is engaged and the roller (19) is rotatable in a groove rail (18) that is attached to the steering gear housing.
  • this is a groove-type trajectory actuator suitable for large-angle steering, which is composed of a steering gear (34), a steering sprocket (35), a moving groove (36), and a moving block ( 31), the roller (19), the groove rail (18) and the connecting shaft (20).
  • the steering gear (34) meshes with the steering sprocket (35), the movement groove (36) is radially mounted on the steering sprocket (35), and the moving block (31) is slidably mounted in the movement groove (36).
  • a connecting shaft (20) is mounted on the moving block (31), and rollers (19) are mounted on both ends of the connecting shaft (20), and the roller (19) is rollably mounted in the groove rail (18).
  • roller (19) (The roller in Figure 6-A is downward, visible both up and down).
  • the slide rail is installed under the housing of the trajectory actuator (24) corresponding to the small roller (19). (33), the functions of the roller shaft (32), the small roller (19) and the slide rail (33) are the same as those described in Fig. 6-A, and will not be repeated here. It is obvious that this groove-type trajectory actuator can also be equipped with two slider sleeves for the non-large angle pure rolling steering like the aforementioned trajectory actuator.
  • the elliptical gauge trajectory actuator (24) in the figure consists of a cross recess (37), a rocker (38), a top slider (39), a middle slider (40), a known steering gear (41), and a transmission rod (30). ) and the connecting shaft (20).
  • the top slider (39) is rotatably mounted on one end of the rocker (38), connecting the shaft
  • the distance from the top slider (39) is exactly equal to the semi-long axis of the elliptical path;
  • the middle slider (40) is rotatably mounted on the top slider (39) and the connecting shaft ( 20) between the rocker (38) and the connecting shaft (20) is exactly equal to the semi-minor axis of the elliptical path;
  • the top slider (39) is limited to sliding in the transverse groove in the cross recess (37),
  • the middle slider (40) is only limited to slide in the vertical slot in the cross recess (37);
  • the other end of the rocker (38) is connected to one end of the transmission rod (30), and the other end of the transmission rod (30) is well-known to the steering
  • the device (41) is connected to a known steering gear (41) when the steering torque acts on the input of the trajectory actuator (24) (the known steering gear refers to the non-pure rolling steering gear commonly used on vehicles today, such as the liberation of the CA1091 medium-duty truck.
  • the left and right sliding sleeves drive the left and right sides.
  • the steering slider makes the steering angles of the left and right rocker shafts of the left and right steering sliders and the left and right steering rocker arms on the left and right sides meet the requirements of pure rolling steering.
  • the elliptical trajectory actuator described above is shaped like an elliptical gauge for drawing an ellipse, so the invention is referred to as an elliptical orbital trajectory actuator, and it is obviously also applicable to an elliptical trajectory of the minor axis on the y-axis. Only the top slider slides in the vertical slot in the cross recess, and the middle slider slides in the transverse groove of the cross recess. The transverse grooves and vertical grooves in the cross recess mentioned here are only in accordance with the figure drawn in the drawing, and are prone to errors. For this reason, the present invention is based on the position of the cross groove and the long axis and the short axis of the elliptical path.
  • the rule of the cross position is such that the horizontal groove in the cross groove is called the chute in the short axis position in the cross groove, and is the sliding groove of the top slider (39), and the vertical groove in the cross groove is called
  • the chute in the long axis position in the cross recess is the chute in which the middle slider slides.
  • FIG. 8 is a schematic diagram of two ladder-type pure rolling steering devices composed of elliptical gauge trajectory actuators.
  • the long axis of the elliptical orbit of Figure 8-A is on the Y-axis, so the top slider (39) is in the transverse groove of the cross recess (37) and the middle slider (40) is in the vertical groove, here the cross slot ( 37) It has actually become a T-slot, because it is not a large-angle steering, so the device can be applied to the current ordinary vehicle; one end of each of the two rockers (38) is connected to the transmission rod (30), the transmission rod ( 30)
  • the connecting shaft (20) is installed at both ends, and the left sliding rod sleeve (16) and the right sliding rod sleeve (17> and the horizontal pulling rod (10) are respectively connected to the connecting shafts (20) at both ends.
  • trajectory actuator of the elliptic curve and its steering device have been discussed above, and some variations are exemplified.
  • conic curves such as parabola
  • the trajectory actuator can be designed using its definition.
  • Figure 9 is a definition of the trajectory actuator, in which the Cartesian coordinates (indicated by dashed lines) are established, and the guide bar (53) is fixed to the steering gear housing, which represents the position of the alignment line (fixed line) on the coordinates;
  • the wire rack (44) is mounted on the rack frame (48) and is telescopic with respect to the rack frame (48) and meshes with the guide gear (46) on the rack frame (48), the rack rack ( 48) can slide on the guide bar (53); drive slip
  • the shaft (52) is mounted on the alignment slider (53), and one end of the shaft is mounted with a guide transmission gear (51), and the intermediate axially slidingly penetrates the guide gear on the rack bracket (48) ( 46), the guide wire gear (46) can be rotated;
  • the guide wire drive gear (51) meshes with the guide wire drive rack (50), and the guide wire drive rack (50) and the crank link mechanism (54)
  • the left piston (55) is fixedly connected;
  • the focus turntable (47) is rot
  • crank-link mechanism (54) When the crank-link mechanism (54) is operated (here, the crank-link mechanism, in fact, it can be a rack and pinion, etc., as long as the two-side synchronous reciprocating mechanism can be used), the left piston (55) and the right piston (56) are synchronized.
  • the focus drive rack (49) and the alignment drive rack (50) When reciprocating, the focus drive rack (49) and the alignment drive rack (50) will also follow the up and down movement of the two pistons, and the guide gear (46) and the focus gear (45) will also rotate, so that the focus gear ( 45) the engaged focus rack (43) and the alignment rack (44) meshing with the guide gear (46) are simultaneously elongated or shortened in the direction of the connecting shaft (20), thereby causing the focus rack (43) and
  • the connecting axis (20) at the junction of the guide bar (44) acts as a curved path (indicated by a broken line) in the coordinate, and this curved track is a conic curve.
  • the above-described defined trajectory actuator has a quasi-line rack that exactly overlaps the X-axis when the crank-link mechanism is at the top dead center position. At this time, it is difficult to control whether the guide rack is moved above the X axis or below the X axis by the rotation of the crank.
  • the manual steering force can be applied to the rotation of the crank link mechanism.
  • the force generated by the steering force device is used to push the rack rack along the guide bar. If there is no force device, the steering force can be divided into two, which is used to rotate the crank mechanism and translate the rack frame.
  • the foregoing invention has taken an elliptical trajectory as an example to illustrate its trajectory actuator and steering or steering device. Since other quadratic curves such as parabola, etc., are roughly the same, there is no need for further examples.
  • the second example of the present invention selects a retracting conic curve - a straight line, because the straight trajectory is extremely easy to implement and is easy to manufacture. This is explained below. ,
  • the steering wheel and the steering slide indicated by the dotted line in the figure are the conditions when the vehicle turns to the right (the same is true to the left).
  • the dotted line perpendicular to the steering wheel surface indicates the position of the steering center H of the vehicle at this time (on the extension line of the CD).
  • the linear path actuator (24) in the figure consists of a steering gear (34), a steering pinion (58), a chute (57) and a connecting shaft (20) which constitute a steering gear (34) and can be used in the chute ( 57)
  • the steering gear rack (58) that slides left and right is engaged, and the connecting shaft (20) is mounted on the steering gear rack (58).
  • the steering gear (34) is a member of the input end of the trajectory actuator that can be coupled to the steering wheel (27) via a steering shaft (25) and a steering shaft (26).
  • the connecting shaft (20) is the trajectory actuator The output on the output can be connected to the steering slide and the slide sleeve and the steering rocker on the rocker shaft until the steering wheel is connected.
  • the steering gear (58) meshing with the steering gear (34) drives the steering gear (58)
  • the connecting shaft (20) and the left steering slider (2) and the right steering slider (3) move linearly along the chute (57), thereby forcing the left slider sleeve (16) and the left rocker shaft mounted thereto ( 12) and the right slider sleeve (17) and the right rocker shaft (13) mounted below it for rotation at a pure rolling steering angle.
  • the left rocker shaft (12) and the right rocker shaft (13) are the two steering output shafts of the steering gear, and the corresponding left and right steering rocker arms (not shown) will be driven by the tie rods.
  • Two steering wheels are used for pure rolling steering.
  • the direction of rotation of the steering gear (34) in FIG. 11 is inconsistent with the actual steering of the vehicle, and a pair of gears can be added between the steering wheel (27) and the transmission connection of the steering gear (34) to correct it. Keep the steering wheel in line with the actual steering of the vehicle.
  • FIG. 12 is a schematic view of a pure rolling steering device including a screw nut type linear trajectory actuator, wherein the linear trajectory actuator is composed of a steering screw (59), a steering nut (60) and a connecting shaft (20).
  • the steering nut (60) is sleeved on the rotatable steering screw (59), and the connecting nut (20) is mounted on the steering nut (60).
  • the steering screw (59) is a member on the input end of the trajectory actuator, and can be connected to the steering wheel (27) through a steering shaft (25) and a steering shaft (26); the connecting shaft (20) is executed by the trajectory
  • the mechanism on the output of the mechanism can be connected to the steering pulley and the sliding sleeve until the steering wheel.
  • the steering nut (60) sleeved on the steering screw (59) drives the connecting shaft thereon ( 20) and the left steering slider (2) and the right steering slider (3) move linearly along the steering screw (59), thereby forcing the left slider sleeve (16) and the lower left rocker shaft (12) and The right slider sleeve (17) and the right rocker shaft (13) mounted thereto serve to rotate at a purely rolling steering angle.
  • the left rocker shaft (12) and the right rocker shaft (13) are the two steering output shafts of the steering gear, and the corresponding left and right steering rocker arms (not shown) will be driven by the tie rods to the left and right.
  • the steering wheel is used for pure rolling steering.
  • the steering slider is not mounted on the rocker shaft of Fig. 11 and the above, but a slider sleeve is mounted, which is obviously achievable.
  • the steering slider and the sliding sleeve of the present invention are only a pair of sliding pairs, and are a sliding compatibility and can be installed interchangeably. If the slider is formed into a long groove shape, it is mounted on the rocker shaft, and the steering slider is made shorter and placed in the sliding groove of the sliding sleeve, and then the connecting shaft is used to connect the steering slider. This can be replaced with the aforementioned embodiment.
  • the chute in the slider sleeve needs to be opened on both sides, which may be complicated. Therefore, how to install the steering slide and the slide sleeve on the rocker shaft or knuckle should be determined according to the actual design needs.
  • FIG. 13 is a schematic diagram of the interchange of two steering sliders and a slider sleeve.
  • the left slider sleeve (16) and the right slider sleeve (17) formed in a groove shape are respectively mounted on the left rocker shaft (12) and the right rocker shaft (13);
  • the steering slider (2) and the right steering slider (3) are slidable in the slots of the left slider sleeve (16) and the right slider sleeve (17), respectively, and are connected in series to the connecting shaft (20).
  • the connecting shaft (20) moves according to the pure rolling steering trajectory (1) in the figure, the left rocker shaft (12) and the right rocker shaft (13) will also be purely rolling and steered as in the above-mentioned FIG. Angle rotation. Therefore, the steering slider and the slider sleeve can be exchanged in the same manner.
  • FIG. 13-B is a connecting shaft (20) for the large angle steering in FIG. 6-A after the steering slider and the sliding sleeve are interchanged. It is necessary to pass the rocker shaft (13) to form a groove type (the bottom is not open) slider sleeve (17> mounted on the rocker shaft (13), and the steering slide (3) is mounted on the connecting shaft (20) Upper, and can slide in the grooved chute of the sliding sleeve (17), and the bobbin (61) is mounted on the 'soil-end (as shown) of the sliding sliding rod (3), the yoke (61) The two ends extend to the outside of the two edges of the slider sleeve (17), and the roller shaft (32) is mounted on both ends, and the roller shaft (32) is also mounted on the roller shaft (32), and Fig.
  • the present invention refers to the sliding pair formed by the above-mentioned sliding sleeve and the steering sliding rod as a steering sliding pair, and Divided into a left steering sliding pair (62) and a right steering sliding pair (63); at the same time, the connecting end of the steering sliding pair and the steering knuckle (or the rocker shaft) is also referred to as the outer end of the steering sliding pair (ie If the steering slide is connected to the steering knuckle or the rocker shaft, one end of the steering slide becomes the outer end of the steering sliding pair, and if the sliding sleeve is connected to the steering knuckle or the rocker shaft, the sliding sleeve is One end becomes the outer end of the steering slide pair, and the end to which the steering slide pair is coupled to the connecting shaft is referred to as an inner end.
  • FIG. 14 is a schematic view of a ladder-type pure rolling steering device in which a pure rolling steering trajectory is a straight line, as shown in FIG. 14, where the trajectory actuator (24) is driven by a chute (57), a sliding rod (42), and a transmission.
  • the rod (30), the known steering gear (41) and the connecting shaft (20) are composed; the sliding rod (42) is slidably installed in the sliding groove (57), and the connecting shaft is installed at both ends of the sliding rod (42) (20) ), the middle of the sliding rod (42) is actively connected with one end of the transmission rod (30), and the other end of the transmission rod (30) is actively connected with the known steering gear (41); the known steering gear (41) is the trajectory actuator
  • the mechanism on the input end can be linked with the steering shaft (25) and the steering shaft (26) and the steering wheel (27);
  • the connecting shaft (20) is the mechanism on the output end of the trajectory actuator, and
  • the left sliding sleeve (16) and the right sliding sleeve (17) are connected, and are connected to the steering knuckle and the steering wheel through the left and right corresponding left sliding sliders (2) and right steering sliders (3).
  • the trajectory here is very simple. Its input end is a well-known steering gear (41), and the output end is a connecting shaft (20) at both ends of the sliding rod (42). The path from the input power to the output power is also very straightforward, and the structure is suitable for the known steering gear. The role of (41), therefore, this pure rolling steering device can be applied to current ordinary vehicles.
  • the steering slider and the sliding sleeve are the steering sliding pair, it can be used for backwards, or the sliding sleeve can be mounted on the steering knuckle, and the steering slider is mounted on the connecting shaft for implementation.
  • FIG. 15 is a schematic view of a trapezoidal frame type pure rolling steering device driven by a rack and pinion.
  • a sliding slider (42) is mounted in the sliding groove (57) on the steering bridge, and the left steering sliding pair (62) is respectively mounted on the connecting shafts (20) of the sliding rods (42).
  • the right steering sliding pair (63), the outer ends of the two steering sliding pairs are respectively connected with the steering knuckles on which the steering wheels are mounted;
  • the steering gear (42) is provided with a steering transmission meshing with the steering transmission gears (34)
  • the rack (58) and the steering gear (34) are coupled to the steering wheel '27 by a steering shaft (25) or the like.
  • the steering device of Fig. 15 is substantially the same as Fig. 14, except that the driving method of the slider (42) is different, and therefore belongs to the same type.
  • the trajectory actuator here is also very simple, and is composed only of the steering gear (34), the steering pinion (58), the slide bar (42), the chute (57) and the connecting shaft (20). Connection from the input steering gear (34) to the output The shaft (20) is also very straightforward to drive. Therefore, as with FIG. 14, it can be applied to a conventional ordinary vehicle.
  • FIG. 16 is a schematic view of a purely rolling steering device in the form of a steering gear that is similarly reduced in a trapezoidal frame type pure rolling steering device.
  • the structural form in the dotted line in the figure is actually the same as that in Figs. 14 and 15.
  • the present invention is called a trapezoidal pure rolling steering gear (the working principle will not be described again), and thus Fig. 11 and Fig. 1.2 can be seen.
  • the two ends of the left and right steering sleds in the middle do not have to be on the same connecting shaft between the steering racks (or steering nuts), or they can be properly branched and mounted on the steering rack (or steering)
  • the two ends of the nut are made into a trapezoidal pure rolling steering gear.
  • the configuration of Fig. 5 can be similarly reduced to a trapezoidal type of pure rolling steering gear. In all of these, there are many changes, and all those skilled in the art can make a variety of different structural arrangements, so the present invention cannot be exhaustive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Controls (AREA)
  • Transmission Devices (AREA)

Description

汽车的纯滚动转向装置 [0001 ] 一、技术领域:本发明涉及汽车的转向装置,尤其与汽车的纯滚动转向有关。 二、背景技术-
[0002] 公知的汽车转向梯形,只能近似地满足转向关系式,无法保证转向轮绕转向中心 作纯滚动转向,转向角度越大,误差越明显。 因此汽车在低速行驶时,转向操作特别沉重费 力,但在高速行驶时,转向操作却感觉漂浮发摆。 转向梯形的这种转向误差,不但会加剧转 向轮的磨损及增加转向阻力,更重要的是会造成车辆的侧滑,使行车的稳定性下降,严重时 甚至会导致事故的发生。 三、发明内容:
[0003] 本发明的任务是提供一种能使汽车转向轮绕转向中心作纯滚动转向的转向装置。
[0004] 为了完成上述任务,本发明的解决方案是:在左右两个转向节上,同时朝向转向挢 的前面或后面,分别固定安装一条转向滑杆,该两条转向滑杆又分别与转向节上的转向轮 的内侧轮面成一相同大小的夹角(虽然,此两只夹角的大小不相等时,也可以实施本发明, 但由于其两边不对称,会给设计和制造带来许多的不便,而且由于其工作原理相同,可以按 照两个夹角相等时的例子进行类推,因此,本发明仅对两个夹角相等时的情形进行讨论), 并安装在与车辆底盘平行的平面上,使得在车辆直线前行时,两条转向滑杆相交于一点,此 时,如果让两个转向轮作纯滚动转向,那么两条转向滑杆原来所成的交点,势必离开原来的 位置而产生移动,留下一段交点的移动轨迹(本发明称该交点的移动轨迹为纯滚动转向轨 迹)。 显然,这个交点移动的纯滚动转向轨迹与转向轮的纯滚动转向是相互对应的,因为这 个纯滚动转向轨迹本身是在两个转向轮作纯滚动转向时作出的。 因此要实现转向轮的纯 滚动转向,只要先作出两条转向滑杆的交点移动的纯滚动转向轨迹,再制造出相应的轨迹 机构,使得两条转向滑杆的交点始终落在该纯滚动转向轨迹上即可。 本发明将这个能使两 条转向滑杆的交点始终落在纯滚动转向轨迹上的机构,称为纯滚动转向轨迹的轨迹执行机 构,也可以简称为轨迹执行机构。 轨迹执行机构还可以因纯滚动转向轨迹的类型不同而有 不同的称谓,如椭圆轨迹执行机构和直线轨迹执行机构,就是指纯滚动转向轨迹分别为椭 圆和直线的两种轨迹执行机构。
[0005] 在了解了本发明的工作原理以后,对于上述的纯滚动转向轨迹的描绘,便是众所 周知的技术:除了建立坐标,按照两个转向轮的纯滚动转向关系式求得两条转向滑杆交点 移动的轨迹方程,再描点或借助信息技术得到图像外,尚可用最原始的放实样或缩小的实 样的方法,即先依据两个转向轮的纯滚动转向关系式,计算出若干组转向轮作纯滚动转向 时,两条转向滑杆的对应角度,再用实样得到各组的交点,然后连成图像等。
[0006] 经过实际计算,上述的纯滚动转向轨迹是人们熟知的二次曲线,曲线的图像,会因 转向轮内侧轮面与转向滑杆之间的夹角大小的变化,而有多种不同的变化(前面已说过, 本发明这里只讨论左右转向轮与转向滑杆之间所成两只夹角大小相等的情况,因此这里的 "大小变化"是指两只夹角同时变大或变小,而两只夹角仍是相等的)。 由于二次曲线的类 型较多,本发明无法尽举,只选取了其中的椭圆和一条平行于 X轴的直线(退缩圆锥曲线)。
[0007] 前述的纯滚动转向轨迹的轨迹执行机构的制造非常简单:将所需的纯滚动转向轨 迹描绘在钢板上,并将该轨迹刻制成有一定宽度的槽(滑槽),然后再将直径略小于槽宽 (可在槽内活动,但间隙较小)的滚轮放入其中,使滚轮轮面与钢板板面平行,再在滚轮的 中心安装一根可相对于滚轮自由转动的轮轴(本发明称该轮轴为连接轴)。 那么,无论滚 轮在滑槽内如何运动,只要不抛出滑槽外,其中心的轮轴(连接轴)必定在纯滚动转向轨迹 上。由于滚轮在滑槽内的运动,需要动力推动,因此需在滑糟边上安装一条与滑槽同步弯曲 的齿条(本发明称其为曲线齿条),再在滚轮中心的连接轴上固定安装上可与该弯曲的曲 线齿条啮合的齿轮(本发明称其为滚动齿轮)。 转向扭矩在钢板的上方,由转向盘及转向 传动轴等通过万向节及既可摆动又可伸缩的摆轴传至滚轮中心的连接轴上(摆轴与连接 轴之间也用万向节连接),使连接轴转动,从而带动连接轴上的滚动齿轮旋转,使滚动齿轮 沿着与其啮合的曲线齿条运动,最终带动连接轴及其上的滚轮沿着滑槽运动。 由于滑槽是 按照纯滚动转向轨迹刻制的,因此滑槽内滚轮中心上的连接轴势必作纯滚动转向轨迹的运 动。 这便制成了纯滚动转向轨迹的轨迹执行机构。 显然,这个轨迹执行机构的输入端是与 转向传动轴用万向节连接的摆轴,输出端是作纯滚动转向轨迹运动的连接轴。 为了使两条 转向滑杆与连接轴连接,还需在连接轴上可旋转地串接两只可分别在两条转向滑杆上自由 滑动的套(本发明称其为滑杆套),并将两条转向滑杆套入其中(这便制成了一个纯滚动的 转向装置)。此时如果连接轴按照纯滚动转向轨迹运动,那么连接轴上的两个滑杆套也将随 之而运动,因此将带动滑杆套内的两条转向滑杆绕各自的转向节转动,从而带动两边的转 向轮作纯滚动转向。
[0008] 显然,上述轨迹执行机构中的滑槽,也可以是滑轨等,因此本发明将上述的这类轨 迹执行机构(就其结构而言),称之为槽轨式轨迹执行机构。 同时上述的滑槽,在以下的说 明中被改称为槽轨。
[0009] 槽轨式的轨迹执行机构,不但适用于椭圆等二次曲线,也可广泛地适用于其它多 种曲线。
[0010] 另外,上述的转向滑杆 ^滑杆套,实际上是可以互换安装的,如将转向滑杆制成套 状,而成滑杆套,安装于转向节上,而将转向滑杆的一端与连接轴连接,另一端穿入滑杆套 中,随着连接轴的运动,转向滑杆可相对于滑杆套作伸缩的抽动,这与滑杆套在转向滑杆上 的滑动是等效的,因此,实际上滑杆套与转向滑杆只是一对滑动副,为此本发明将滑杆套与 转向滑杆的这种滑动配伍,称之为转向滑动副,同时把该转向滑动副中的滑杆套和转向滑 杆的两个连接端,称为内端和外端,把与连接轴连接的一端称为内端,另一端称为外端,但 为了以后描述的简便,本发明仍可继续用转向滑杆和滑杆套来代表转向滑动副。
[001 1 ] 轨迹执行机构可以有多种,除槽轨式外,还可以用圆锥曲线的定义设计出定义式 · 的轨迹执行机构,因为根据一个动点到一个定点(焦点)的距离和它到一条定直线(准 线)的距离的比值大小可以画出曲线的图像,因此完全可以根据此原理设计出相应的轨迹 执行机构:由从动点出发的两根齿条,其中一根可垂直准线上下及左右移动(将准线制成 一根滑杆,在该滑杆上套上一个可在其上自由滑动的架子,齿条可垂直该架子伸缩,并与安 装在该架子上的一个齿轮啮合.),另一根齿条通过焦点,可相对于焦点伸缩,并可绕焦点转 动(在焦点上设置一个转盘,齿条安装在转盘上,可相对于转盘作伸缩移动,并与安装在转 盘上的一个齿轮啮合);然后再用传动机构对与两根齿条啮合的两只齿轮进行传动。 如果 要使动点到焦点的距离与动点到准线的距离相等,那么只要使与两根齿条啮合的两只齿轮 的大小及转速均相同,并啮合在齿条的等长位置上,则两根齿条等长并等长地伸缩,得到的 轨迹为抛物线。 如果调节齿轮的传动比,则使动点到焦点的距离与动点到准线的距离的比 值大于 1的为双曲线,小于 1的为椭圆。 这便是一个按照圆锥曲线的定义而设计出来的轨 迹执行机构,动点所在位置是该轨迹执行机构的输出端,可以安装上连接轴,再在连接轴上 连接两只滑杆套,再将转向滑杆穿入滑杆套中,便可制成一个纯滚动转向装置。本发明称该 类轨迹执行机构为定义式轨迹执行机构。
[0012] 除此之外,对于不同的二次曲线,还可以有各种不同的特定的轨迹执行机构,如对 于双曲线,还可以用动点到两个定点的距离之差为定值而作出图像,而椭圆则可以象用圆 规画圆那样地用椭圆规作出图像,因此轨迹执行机构有多种的结构变化,无法尽举。
[0013] 由于不同的圆锥曲线,还可以有各种不同的特定的轨迹执行机构,本发明在这些 圆锥曲线中选取了二种,一种是椭圆轨迹,另一种录一条平行于 X轴的直线轨迹(退缩圆锥 曲线)。
[0014] —、椭圆形轨迹的轨迹执行机构,除上述的槽轨式轨迹执行机构外,椭圆形的轨迹 执行机构,可以参照椭圆规的方法设计:它主要有由横竖两滑槽构成的一个十字槽及一根 带有二个滑块和一条连接轴的摇杆组成;连接轴安装于摇杆的一端,两滑块分别可旋转地 安装在离连接轴不同距离的摇杆上(两个滑块与连接轴之间的两个不同距离分别代表了 椭圆的半长轴和半短轴),将两个滑块分别放入十字槽的横滑槽和竖滑槽中,当两个滑块分 别在各自的滑槽中滑动时,摇杆端头上的连接轴的运动轨迹为椭圆,这便是一个椭圆轨迹 的轨迹执行机构,它类似于圆规,因而本发明称其为椭圆规式轨迹执行机构。由于连接轴安 装在摇杆的一端上,因此这种转向装置易于制成一种类似于转向梯形的形式。
[0015] 二、直线形的轨迹执行机构,除上述的槽轨式外对于直线形的轨迹,完全可以简单 引用现有的齿轮齿条及螺杆螺母等转向器进行制造,因为齿条可在齿轮的驱动下,在滑槽 内作直线运动,使齿条上的连接轴作直线轨迹运动;同样地螺杆的旋转可使其上不能转动 的螺母沿螺杆直线移动,从而使螺母上的连接轴作直线轨迹运动(为了减小转向阻力及磨 损,螺杆与螺母之间也可以安装循环球等)。
[0016] 对于上述的直线轨迹的轨迹执行机构,只要将两条转向滑杆安装到摇臂轴上,便 可制纯滚动转向器,制造也非常简单,从外形看,与普通的转向器相比,只是多了一条转向 摇臂。 因而这种转向器的市场前景会非常好。
[0017] 轨迹执行机构输出端上的连接轴,在连接两只套有转向滑杆的滑杆套后,便成了 一个纯滚动转向装置,但如果按照汽车的庞大进行计算,转向滑杆势必需要很长,因此在实 际应用时,是要有所改变的,然而这种改变也可以有多种:可以将轨迹执行机构分开成二 个,分别安装于左右两只转向节附近,每个轨迹执行机构的连接轴上只有一个滑杆套,只对 附近转向节上的一根转向滑杆进行驱动,两个轨迹执行机构之间用传动杆使其同步运动, 由于两个轨迹执行机构是同步运动的,因此分别受两个轨迹执行机构驱动的两条转向滑杆 之间的转角与两条转向滑杆同时受一个轨迹执行机构驱动时是相同的(由于这种结构有点 象转向梯形,因此本发明称这种结构形式的纯滚动转向装置为梯形架 ί纯滚动转向装置 )。 除此之外,还可以按照相似原理进行缩小,制成纯滚动转向器的形式,可以将转向滑杆缩短 到转向器内部,分别安装于左右两根摇臂轴上,由于摇臂轴上还安装有与转向节连接的转 向摇臂,因此由转向盘传至轨迹执行机构上的转向力,会通过左右两条转向滑 传至左右 两根摇臂轴上,再通过左右两根摇臂轴上的左右两只转向摇臂传至左右两条横拉杆(或直 接由左右摇臂轴通过左右传动轴等)分别传至左右两个转向节上的转向轮,实现纯滚动转 向。 .
[0018] 综上所述的纯滚动转向装置,其转向角度的大小,均是准对现行普通车辆的。 对 于大角度的纯滚动转向(能使车辆的转弯半径逐步缩小,直至原地转向) 尚需进行一些改 变:
[0019] 首先是选取一条环形的椭圆曲线,作为大角度纯滚动转向轨迹,因为椭圆曲线是 一个圆环形,因此只要滑杆套在转向滑杆上的滑动不受转向滑杆与转向节(或摇臂轴)的 连接处的阻碍,便可实现大角度的纯滚动转向,为此需把转向滑杆制成 " T "字形或 "工 "字 形等,安装在转向节上面(或摇臂轴的顶端上),再将滑杆套制成下面开通的滑槽形状,并 使连接轴的下端可转动地连接在滑杆套的上面;同时为了防止二条转向滑杆相互阻挡,可 采用前面提到的梯形架式纯滚动转向装置的形式,将轨迹执行机构分拆到两边的转向节附 近,使之互不干扰。 四、附图说明:
[0020] 图 1是本发明的第一实施例的纯滚动转向装置转向原理示意图。
[0021 ] 图 2是因转向滑杆与转向轮之间的夹角不同而得到两种椭圆的纯滚动转向轨迹 示意图。
[0022] 图 3是本发明第二实施例的纯滚动转向装置示意图。
[0023] 图 4是本发明的图 3中的槽轨式轨迹执行机构示意图。
[0024] 图 5是本发明第三实施例槽轨式轨迹执行机构分两边成梯形架式布置的纯滚动 转向装置示意图。
[0025] 图 6是车辆实现大角度转向时一些相关机构的变化示意图。
[0026〗 图 7是本发明的第四实施例椭圆规式轨迹执行机构及其纯滚动转向装置(器)示 意图。 '
[0027] 图 8是本发明的第五实施例椭圆规式轨迹执行机构分两边成梯形架式布置的纯 滚动转向装置示意图。
[0028] 图 9是本发明的定义式轨迹执行机构示意图。
[0029] 图 10是本发明的纯滚动转向轨迹为平行于 X轴的直线示意图。
[0030] 图 11是本发明第六实施例的齿轮齿条式的直线轨迹执行机构及其纯滚动转向器
(装置)示意图。
[0031 ] 图 12是本发明第七实施例的螺杆螺母式的直线轨迹执行机构及其纯滚动转向器 (装置)示意图。
[0032] 图 13是本发明的转向滑杆与滑杆套的互相变换示意图。
[0033] 图 14是本发明第八实施例的滑杆滑槽式的直线轨迹执行机构及其作梯形架式布 置的纯滚动转 -向装置示意图。
[0034] 图 15是本发明第九实施例的齿轮齿条直线轨迹执行机构作梯形架式布置的纯滚 转向装置示意图。
[0035] 图 16是本发明第十实施例的梯形架式纯滚动转向装置作相似缩小成转向器形式 的纯滚动转向装置(器)示意图。
[0036] 下面结合附图和具体实施方式对本发明作进一步详细说明。 五、具体实施方式:
[0037] 如图 1,图 1是本发明的转向装置工作原理示意图。 图中建立了直角坐标, ¾5N及 JK分别代表汽车前面的两个转向轮, MN的中点 A的坐标为(S, 0), JK的中点 B的坐标为 (- S, 0) ,汽车的两只后轮分别在点 C (-S, -L)和点 D (S, -L)的位置; AE与 BF代表两条转向 滑杆、 AE与 MN成一固定不变的夹角 e,BF与 JK也成一固定不变的夹角 θ ;AE与 BF相交 于 G点。 当汽车向右作纯滚动转向并逐渐加大转向角度时,位于过 CD两点向右延长线上的 转向中心 H点,便逐渐向 Y轴靠近,使得 AE与 BF的交点 G向 Y轴的左上方移动( Θ 固定不 变),直至转向轮 MN和 JK停留在图中的 M' N' 和 J ' K ' 位置时, G点便运动到了 G ' 的 位置,在 Y轴的左边留下了一段 G点的运动轨迹 G6' (图中用黑体实线表示的曲线);同样 地,当汽车向左作纯滚动转向时, G点将向 Y轴的右上方移动,也会在 Y轴的右边留下一段 与 GG ' 对称于 Y轴的轨迹 GG " (图中用实线表示的曲线)并与轨迹 GG ' 组成一个完整的 于 Y轴对称的交点 G的运动轨迹,本发明称其为纯滚动转向轨迹(1)。 由于两转向滑杆 AE 和 BF的交点 G的纯滚动转向轨迹(1〉是基于两转向轮丽和 JK作纯滚动转向(應和 JK的 两个转向轮的转向角度 α和 β符合纯滚动转向关系式)时作出的,因此,只要有这样一种 机构(本发明称之为轨迹执行机构),能使两条转向滑杆 ΑΕ和 BF的交点 G始终落在纯滚动 转向轨迹(1)上,则两个转向轮的转向角度,必定符合纯滚动转向关系式,也就实现了汽车 的纯滚动转向。
[0038] 上述图 1中的两条转向滑杆与转向轮的内侧轮面之间的夹角是相等的,都等于 Θ (特别指出,由于转向滑杆是安装在转向节上的,与转向轮有一定的距离,因此本发明所 说的转向滑杆与转向轮内侧轮面所成的夹角,实际上就是指转向滑杆的延长线与转向轮内 侧轮面所在平面的夹角),虽然这两个夹角不相等时也可以实施本发明,但由于其纯滚动转 向轨迹曲线与 Υ轴不对称,不利于机械制造,因此本发明只讨论这两个夹角相等时的情况。
[0039] 根据图 1及其工作原理,不难求出纯滚动转向轨迹的方程。 因为图中的两个转向 轮的轮距为 2S,前后桥(轴)距为 L,两转向滑杆与两转向轮内侧轮面的夹角均为 Θ,因此 根据 cot P - cot α = 2S/L便可得到它的方程:
[0040] (Ltan Θ +S) x2+ (Ltan Θ -Stan2 θ ) y2+ (SL- 2S2tan Θ -SLtan2 Θ ) y- (S2Ltan Θ +S3) = 0 '
[0041 ] 这是一条二次曲线,本发明称其为纯滚动转向轨迹方程,其曲线类型会因夹角 Θ 的变化而发生变化(对于二次曲线的类型随 Θ 如何变化,可参见数学教科书,这里限于篇 幅,不再讨论)。 本发明首先例举的是椭圆曲线,由于当(Ltan Θ +S) (Ltan Θ -Stan2 θ ) > 0 时,是椭圆型的方程,因此椭圆图形的长轴可以在 Y轴上,也可以因 8 的变化而使短轴在 Υ 轴上。 图 2便是这两种椭圆轨迹的示意图,图中,转向滑杆 ΑΕ和 BF为实线时,实线所作的 椭圆图形便是夹角为 Θ时的纯滚动转向轨迹;转向滑杆 AE ' 和 BF' 为虚线时,虚线所作的 椭圆图形便是夹角为 Θ ' 时的纯滚动转向轨迹。 这两种椭圆形纯滚动转向轨迹的长轴均 在 Y轴上,但转向滑杆 AE〃和 BF〃为点划线时,点划线所作的图形却是一个短轴在 Y轴上 的椭圆,这时转向滑杆朝向汽车的前进方向,与转向轮轮面所成的夹角为 Θ " 。
[0042] 为了确切表示转向滑杆的朝向,本发明将上述用点划线表示的转向滑杆的朝向称 为在转向桥的前面,而将实线和虚线表示的转向滑杆的朝向称为在转向桥的后面。
[0043] 图 3是将图 1进行相似缩小而成的纯滚动转向装置示意图,图中的左转向滑杆 (2) (表示 BF)与右转向滑杆(3) (表示 ΑΕ)分别对应地安装在左摇臂轴(12)和右摇臂轴 (13)上,而安装于左右两摇臂轴上的左转向摇臂(8)和右转向摇臂(9)又分别通过左横拉 杆(10)和右横拉杆(11)对应地与左转向臂(14)和右转向臂(15)连接,最终连接左转向 节(6)和右转向节(7)及左转向轮(4)和右转向轮(5)。 转向滑杆上的转向扭矩通过摇臂 轴上的转向摇臂及横拉杆传至转向臂,从而驱动转向节上的转向轮,实现纯滚动转向。这种 相似的缩小,可以使转向滑杆大幅度地缩短,从而制成纯滚动转向器(或转向装置)。
[0044] 图 4是本发明的图 3中的槽轨式轨迹执行机构示意图。图中的轨迹执行机构(24) 由摆轴 (23)、伸缩节 (29)、万向节 (28)、滚轮 (19)、槽轨(18)、滚动齿轮(21)、曲线齿条 (22)及连接轴(20)组成。 滚轮(19)在槽轨(18)内,可沿槽轨 (18)自由运动;滚动齿轮 (21)与曲线齿条(22)啮合,并可沿着曲线齿条(22)滚动;连接轴 (20)将滚轮 (19)及滚动 齿轮(21)串接在一起(其中滚动齿轮与连接轴固定连接),并通过万向节(28)与摆轴(23) 上的伸缩节(29)连接。 轨迹执行机构(24)输入端上的摆轴(23〉通过转向传动轴(25)及 转向轴(26)与转向盘(27)连接;轨迹执行机构(24)输出端上的连接轴(20)还串接有左 滑杆套(16)和右滑杆套(17),左滑杆套(16)和右滑杆套(17)分别对应地套在左转向滑杆 (2)和右转向滑杆(3)上。转向盘(27)上的转向扭矩由转向轴(26)和转向传动轴(25)等 传至摆轴(23) ,使摆轴(23)旋转,因而带动与摆轴(23)用万向节(28)连接的连接轴(20) 转动,使与连接轴(20)固定安装的滚动齿轮(21)带着连接轴(20)及连接轴(20)上的滚轮 (19)和左^ "杆套(16)右滑杆套(17)—起,沿曲线齿条(22)滚动(滚轮沿槽轨运动),从 而使左滑杆套(16)内的左转向滑杆(2)与右滑杆套(17)内的右转向滑杆(3)的交点(图 中用虚线表示)沿纯滚动转向轨迹 (1)运动,最终由摇臂轴上的转向摇臂通过横拉杆及转 向臂带动转向节上的转向轮作纯滚动转向。
[0045] 为了求简,图 4中的槽轨只画了外边的部分,而里边的部分由滚动齿轮和曲线齿 条作替代,同时摆轴上的伸缩节是因为椭圆有长短轴之分,如果伸缩行程不大,可直接用带 伸縮叉的万向节。
[0046] 上述这个轨迹执行机构的左滑杆套(16)和右滑杆套(17)分别套在左转向滑杆 (2)和右转向滑杆(3)上后,便可与左摇臂轴(12)、右摇臂轴 (13)及左转向摇臂(8)和右 转向摇臂(9)连接,联合组成一个纯滚动转向器。与所有转向器一样,它可以通过左横拉杆 (10)和右横拉杆(11)与左转向臂(14)和右转向臂(15)对应连接,驱动转向节上的转向轮 转向,成为一个纯滚动转向装置。
[0047] 显然,上述的这种槽轨式轨迹执行机构,既可适用于长轴在 Υ轴上的椭圆轨迹,也 可以适用于短轴在 Υ轴上的椭圆轨迹,实际上,这种槽轨式的轨迹执行机构,不但适用于二 次曲线,也可广泛地适用于其它曲线。 因为槽轨及曲线齿条几乎可以任意弯曲。
[0048] 图 5是一只成梯形架形式的纯滚动转向装置工作原理示意图。与图 3的相似缩小 有所不同的是,这里用了两个轨迹执行机构,但每个轨迹执行机构各只有一条转向滑杆和 一只滑杆套。从图中不难看出, G〃点实际上就是左转向滑杆(BF)与右转向滑杆 (AE)同时 延长后的交点, G" 点所运动的轨迹与 G点和 G ' 点所运动的轨迹是相似的,因此只要 G点 与 G ' 点在各自的纯滚动转向轨迹(图中用实线表示的曲线)上的运动位置始终对应相同, G" 点的运动轨迹便与 G点及 G' 点的运动轨迹均相似(实际上这也是一种相似,是相似缩 小后分别同步地对转向轮进行单个的转向驱动),转向轮便可实现纯滚动转向。图中 G点与 G' 点之间用一条传动杆(30)进行连接,显然,这条传动杆(30)代表了转向扭矩的传递,因 此可以是传动轴或传动链,也可以是传动齿轮或传动拉杆等,可视实际需要而定。如将转向 盘上的扭矩用齿轮一分为二,分别用摆轴对两边^两条连接轴进行同步传动,从而使 G点 及 G ' 点在各自的纯滚动转向轨迹上互相对应地同步运动,这里用齿轮将转向扭矩一分为 二,起到了传动杆的作用。 因此,这类梯形架式的转向装置的结构形式,也可因这种传动方 式的不同而有诸多的不同(因为图 5的这种纯滚动转向装置与现行的梯形转向架相似,因 此本发明将其称为梯形架式的纯滚动转向装置)。 '
[0049] 在图 5中,轨迹执行机构的输出端(连接轴)所作出的运动轨迹,严格地说,只是 与纯滚动转向轨迹(1)相似的轨迹,只有当连接轴正好在两条转向滑杆所在直线的交点上 时,连接轴的运动轨迹才由原来的相似变成了全等,成为真正的纯滚动转向轨迹。为此本发 明为了既统一又简单地进行描述,凡是轨迹执行机构输出端作出的,无论是相似的轨迹,还 是全等的轨迹,一律统称为纯滚动转向轨迹(1)。
[0050] 另外,如将图 5縮小后,在 A、B两点上,分别安装一条摇臂轴,使 A、B两点上的转向 滑杆与摇臂轴连接,转向扭矩由摇臂轴通过横拉杆等传递给两边的转向轮,这样便制成了 一个梯形架式的纯滚动转向器。
[0051 ] 图 6是在车辆进行大角度纯滚动转向时的一些机构的变动示意图,由于椭圆为环 状,因此只要滑杆套能越过摇臂轴的所在位置,便可实现大角度的纯滚动转向,可为一些特 种车辆提供方便,为求简单可以参照图 5的这种转向装置,使得轨迹执行机构只需考虑一 只滑杆套和一条转向滑杆,图 6-A中只画出了右滑杆套(17)越过右摇臂轴(13)的情况(左 边的情况也是相同的)。 图中将右滑杆套(Π)制成了下部开通的槽形,并安装于连接轴 (20)的下端,同时将右转向滑杆(3)制成了 "工"字形(也可 "T"字形),安装于摇臂轴(13) 的顶端,右转向滑杆(3)可轻松地在右滑杆套(17)下部的滑槽中自由滑动,由于右滑杆套 (17)已在摇臂轴(13)的上方,因此右滑杆套(17)在右转向滑杆(3)上的滑动不会受右摇 臂轴(13)的阻挡,可以顺利地通过(像这种滑杆套与转向滑杆分上下互不干扰的搭配,本 发明称其为上下搭配结构)。 但是,当连接轴(20)位于右摇臂轴(13)的正上方时,此时连 接轴(20)与右摇臂轴(13)成一直线,使得右转向滑杆(3)和右滑杆套(17)分别可绕各自 的右摇臂轴(13)和连接轴(20) 自由转动,失去了对右转向轮的控制力矩,因此,在右滑杆 套(17)的一端向下安装滚轮轴(32)并在滚轮轴(32)的下端安装滚轮(19),同时在离右摇 臂轴(13)不远处的对应于两只滚轮(19)的位置上,安装两段滑轨(33),并使滑轨(33)上 的与滚轮(19)接触处的曲线,正好满足当连接轴(20)位于右摇臂轴(13)上方及附近时, 转向轮所需的纯滚动转向角度(滑轨一般很短,当连接轴与右摇臂轴错开时,就失去了作 用)。
[0052] 上述是滑杆套越过摇臂轴的举例。 显然,用同样的方法也可以让"工"字(或" T" 字)形的转向滑杆直接安装在转向节上,此时槽形的滑杆套自然也可以在转向滑杆上自由 11 002067 滑动而不受转向滑杆与转向节连接处的干扰,因为转向滑杆与转向节的连接处在 "工"字
( "T"字)形的下面。
[0053] 由于右转向滑杆(3)与摆轴(23)都必须整周运动,因此,位于其中的曲线齿条及 槽轨等都应布置在连接轴(20)的外围。 图 6-B便是曲线齿条(22)和槽轨(18)均安装在 连接轴(20)外围(右边)的示意图。 图中安装于运动块(31)上的连接轴(20)及滚轮轴 (32)上分别安装有滚动齿轮(21)及滚轮(19),滚动齿轮(21)与固连在转向器壳体上的曲 线齿条(22)啮合,滚轮(19)可在固连于转向器壳体上的槽轨(18)中滚动。 当转向扭矩使 摆轴(23)与其下面的连接轴(20)—并转动时,滚动齿轮(21)将带动运动块(31)及滚轮
(19)沿槽轨(18)运动,从而使连接轴(20)及其下端的右滑杆套(17)作椭圆轨迹的运动。
[0054] 如图 6- C,这是一只适合大角度转向的槽轨式轨迹执行机构,它由转向传动齿轮 (34)、转向齿盘(35)、运动槽(36)、运动块(31)、滚轮(19)、槽轨(18)及连接轴(20)组成。 转向传动齿轮(34)与转向齿盘(35)啮合,运动槽(36)在转向齿盘(35)上作径向安装,运 动块(31)可滑动地安装于运动槽(36)中,运动块(31)上安装有连接轴(20),连接轴(20) 的两端安装有滚轮(19),滚轮(19)可滚动地安装于槽轨(18)内。当转向传动杆(25)带动 该轨迹执行机构输入端上的转向传动齿轮(34)旋转时,与其啮合的转向齿盘(35)便转动 起来,并带动运动槽(36)内的运动块(31)及运动块(31)上的连接轴(20)—起运动,由于 连接轴 (20)两端的滚轮(19)在槽轨 (18)内,因此连接轴 (20)便沿槽轨 (18)作纯滚动转 向轨迹运动。 图中的连接轴(20)下方安装了右滑杆套(17) ,右滑杆套(17)上又向上安装 了小(为与连接轴上的滚轮进行处分而加上一个 "小"字)滚轮(19) (图 6-A中的滚轮是 向下的,可见上下均可安装)同时在轨迹执行机构(24)的壳体下面与小滚轮(19)对应的 位置上安装了滑轨(33),这些滚轮轴(32)、小滚轮(19)及滑轨(33)的作用均与图 6- A所 述的原理相同,这里不再重复了。 显然这个槽轨式的轨迹执行机构上也可以像前述的轨迹 执行机构一样地安装两个滑杆套,用于非大角度纯滚动转向。
[0055] 特别指出:对于大角度转向的转向角度的传递,实际上不适用于横拉杆,需要用传 动轴或传动齿轮等进行传递,但考虑这类变化是众所周知的,因此本发明不再进行处分,为 了说明的便利,本发明均仍用横拉杆表示。
[0056] 图 7是一个含有椭圆规式轨迹执行机构的纯滚动转向器示意图。图中的椭圆规式 轨迹执行机构 (24)由十字槽 (37)、摇杆 (38)、顶滑块(39)、中滑块(40)、公知转向器 (41)、 传动杆(30)及连接轴(20)组成。顶滑块(39)可转动地安装在摇杆(38)的一端上,连接轴
(20)安装在摇杆(38)上,与顶滑块(39)相距正好等于椭圆轨迹的半长轴;中滑块(40)可 转动地安装于顶滑块(39)和连接轴(20)之间的摇杆(38)上,并与连接轴(20)相距正好等 于椭圆轨迹的半短轴;顶滑块(39)只限于在十字槽(37)中的横槽中滑动,中滑块(40)只 限于在十字槽(37) 中的竖槽中滑动;摇杆(38)的另一端与传动杆(30)的一端连接,传动 杆(30)的另一端与公知转向器(41)连接,当转向扭矩作用在轨迹执行机构(24)输入端的 公知转向器(41) (公知转向器是指现在车辆上普遍使用的非纯滚动转向器,如解放 CA1091 中型货车上的循环球齿条齿扇式转向器等。 这里实际上可以不用公知转向器,用可以十字 槽为中心运转的齿环或转臂,对传动杆进行圆弧形的传动,效果会更好,但为了方便说明, 这里不再过多地例举这些变化)上时,摇杆(38)便跟随传动杆(30)运动,此时顶滑块(39) 作横向滑行,中滑块(40)作竖向滑行,使得摇杆 (38)上的连接轴(20)沿图中的椭圆轨迹 (虚线表示)运动。 因为轨迹执行机构(24)输出端的连接轴(20)上活络连接有左滑杆套 (16)和右滑杆套(17),因此,左右两个滑杆套便带动其内的左右两条转向滑杆,使安装左 右两条转向滑杆的左右两条摇臂轴及其上的左右两个转向摇臂的转向角度,满足纯滚动转 向的要求。
[0057〕 上述的这种椭圆轨迹执行机构,形如一个用来画椭圆的椭圆规,因此本发明称其 为椭圆轨式轨迹执行机构,显然它也可用于短轴在 Y轴上的椭圆轨迹,只是顶滑块在十字 槽中的竖槽中滑动,中滑块在十字槽的横槽中滑动。 这里所提到的十字槽中的横槽和竖槽 只是根据图中所画的图形而言的,容易出现错误,为此本发明根据十字槽的位置正好与所 作椭圆轨迹的长轴和短轴所构成的十字位置重合的规律,将十字槽中的横槽称为十字槽中 的短轴位置上的滑槽,是顶滑块(39)滑动的滑槽,将十字槽中的竖槽称为十字槽中的长轴 位置上的滑槽,是中滑块滑动的滑槽。
[0058] 另外,曲于这种椭圆规式的轨迹执行机构中的连接轴(20)的一端上,如果只安装 一只滑杆套,并带动一条转向滑杆进行整周运动时,是不会影响十字槽的安装的,因此还可 以制成形如图 5的那种梯形架布置的纯滚动转向器,从而实现大角度的纯滚动转向。
[0059] 图 8是二只由椭圆规式轨迹执行机构组成的梯形架式纯滚动转向装置示意图。 图 8- A的椭圆轨道的长轴在 Y轴上,因此顶滑块(39)在十字槽(37)的横槽中,而中滑块 (40)在竖槽中,这里的十字槽(37)实际上己成了丁字槽,因为不是进行大角度的转向,因 此本装置可适用于现行的普通车辆;两条摇杆(38)的一端分别与传动杆(30)连接,传动杆 (30)的两端安装有连接轴(20) ,两端的连接轴(20)上分别安装有左滑杆套(16)和右滑杆 套(17〉、横拉杆(10)连接在与两条摇杆(38)端头连接的传动杆(30〉上,当转向力通过横 拉杆(10)作用在两条摇杆(38)端头时,摇杆(38)端头便作椭圆轨迹的运动,从而使传动 杆(30)两端上的连接轴(20)作椭圆的纯滚转向轨迹运动。
[0060] 图 8- B的椭圆轨道的短轴在 Y轴上,因此顶骨块(39)在十字槽的竖槽中,而滑杆 (42)在横槽中;这里的十字槽己发生了很大的变化,变成了二个短槽,滑杆(42)既可作为 传动杆又替代了中滑块(40)的滑动作用,左滑杆套(16)和右滑杆套(17)通过连接轴(20) 分别安装于两摇杆(38)的端头上。 当转向力作用于与滑杆(42)连接的横拉杆(10)上时, 滑杆(42)将推动两边的摇杆(38)摆动,从而使安装于摇杆(38)端头上的连接轴(20)及 与之连接的左滑杆套(16)和右滑杆套(17)作椭圆轨迹的运动,最终使转向轮作纯滚动转 向。 -
[0061 ] 显然,无论图 8- A中的传动杆(30)还是图 8-B中的滑杆(42),实际上均可以连接 在两滑杆套之间或连接在横槽中的两滑块之间。 连接在两滑杆套之间时,传动杆运动的行 程较大,但转向力可较小,比较轻便,而连接于横槽中的两滑块之间时,滑杆的运动行程较 小却较重,但有利的一面是,滑杆是作直线运动的。 因此可根据实际所需而选用。
[0062] 前面讨论了椭圆曲线的轨迹执行机构及其转向装置,并例举了一些变化。 对于通 常的圆锥曲线如抛物线等,除槽轨式的轨迹执行机构外,也可以有多种的结构变化,可以运 用它的定义而设计出轨迹执行机构。 图 9是一个定义式的轨迹执行机构,图中建立了直角 坐标(虚线表示),准线滑杆(53)固定于转向器外壳,这里代表了坐标上的准线(定直线) 位置;准线齿条(44)安装于齿条架子(48)上,可相对于齿条架子(48)伸缩,并与位于齿 条架子(48)上的准线齿轮(46)啮合,齿条架子 (48)可在准线滑杆(53)上滑动;传动滑 轴(52)安装于准线滑杆(53)上,它的一端安装有准线传动齿轮(51),中间可轴向滑动地 穿入了位于齿条架子(48)上的准线齿轮(46),可带动准线齿轮(46)转动;准线传动齿轮 (51)与准线传动齿条(50)啮合,准线传动齿条(50)又与曲柄连杆机构(54)上的左活塞 (55)固定连接;焦点转盘(47)可旋转地安装于 X轴上的焦点位置上,代表了坐标上的焦点 (定点)位置;焦点齿条(43)安装于焦点转盘(47)上,可相对于焦点转盘(47)伸缩,并与 安装在焦点转盘(47)上的焦点齿轮(45)啮合;焦点传动齿条(49)的一端与曲柄连杆机构 (54)上的右活塞(56)可转动地连接,中间与焦点齿轮(45)啮合;连接轴(20)将焦点齿条 (43)的一端与准线齿条(44) '的一端可转动地连接在一起,成为坐标上的动点位置。 当曲 柄连杆机构(54)运转(这里是曲柄连杆机构,其实也可以是齿轮齿条等,只要能两边同步 往复的机构均可用)使左活塞(55)和右活塞(56)同步上下往复时,焦点传动齿条(49)及 准线传动齿条(50)也将跟随两活塞上下运动,则准线齿轮(46)及焦点齿轮(45)也随之转 动,使得与焦点齿轮(45)啮合的焦点齿条(43)和与准线齿轮 (46)啮合的准线齿条(44) 同时向连接轴(20)的方向伸长或缩短,从而使焦点齿条(43)和准线齿条(44)连接处的连 接轴(20)作坐标中的曲线轨迹(虚线表示)运动,这条曲线轨迹就是圆锥曲线。 因为根据 一个动点(连接轴所在位置)到一个定点(焦点转盘所在位置)的距离和它到一条定直线 (准线滑杆所在位置)的距离之比的大小,可以得到不同类型的圆锥曲线,因此改变准线齿 轮等的传动比,即可获得不同类型的圆锥曲线。
[0063] 上述的定义式轨迹执行机构,在曲柄连杆机构位于上死点位置时,准线齿条正好 重叠在 X轴上。 此时,光靠曲柄的旋转很难控制准线齿条是向 X轴的上方还是向 X轴的下 方移动,在实际的运用中可将手工转向力作用在曲柄连杆机构的转动上,而将转向加力装 置产生的作用力用在对齿条架子沿准线滑杆的推动上。 如果没有加力装置,可将转向力一 分为二,同时用来对曲柄机构进行转动及对齿条架子进行平移。
[0064] 前面本发明己以椭圆轨迹为例,对其轨迹执行机构及转向器或转向装置作了说 明。 由于其它的二次曲线如抛物线等,其理大致相同,没有再作举例的必要。为此本发明的 第二例曲线选择了一条退缩圆锥曲线——直线,因为直线轨迹极易实现,而且制造也容易。 下面就此进行说明。 ,
[0065] 根据图 1所得到的纯滚动转向轨迹方程可知,当 tan Θ = - S/L时,纯滚动转向轨 迹方程可变为 Y = L的直线方程。 如图 10所示,图中的四个车轮(与图 1相同)分别在坐 标的 A、B、C、D四个位置上,由于 tan 9 为负值,而且等于- S/L,因此 Θ > 90° ,左转向滑 杆(BF)与右转向滑杆(AE)的交点 G在车辆转向桥前面的 Y = L的直线上。 当车辆直线前 行时,两条转向滑杆的交点 G的坐标为(0,L),该点是直线 Y == L与 Y轴的交点。 图中用虚 线表示的转向轮及转向滑杆,是车辆向右(向左时道理也一样)方向转向时的情形,此时 G 点己沿 ¾- Y = U直线运行到了 G ' 点位置,同时垂直于转向轮轮面的点划线表示了此时车 辆的转向中心 H的位置(在 CD的延长线上)。
[0066] 因为图 10中的两条转向滑杆的交点的运动轨迹为直线,因此其轨迹执行机构根 本用不上槽轨式等,完全可以参照现行的齿轮齿条式或螺杆螺母式(公知的直线机构较 多,这里限于篇幅不作过多的举例)等这些传动方式进行设计和制作。 同时,因为图 10中 的平行于 X轴的线段 QR与虚线表示的线段 Q' R' 在同一直线上且等长,因此对于梯形架 式的纯滚动转向装置的设计及制造也变得非常简单。 [0067] 图 11是一个含有齿轮齿条式直线轨迹执行机构的纯滚动转向器示意图。 图中的 直线轨迹执行机构(24) 由转向传动齿轮(34)、转向传动齿条(58)、滑槽(57)及连接轴 (20)组成转向传动齿轮(34)与可在滑槽(57)中左右滑动的转向传动齿条(58)啮合,转 向传动齿条(58)上安装有连接轴(20)。 转向传动齿轮(34)是该轨迹执行机构的输入端 上的机件可通过转向传动轴(25)及转向轴(26)与转向盘(27)连接,连接轴(20)是该轨 迹执行机构的输出端上的机件,可与转向滑杆及滑杆套和摇臂轴上的转向摇臂等直至转向 轮连接。 当转向盘(27)上的转向扭矩由转向传动轴(25)送至转向传动齿轮(34)使其转 动时,与转向传动齿轮(34)啮合的转向传动齿条(58)带动其上的连接轴(20)及左转向滑 杆(2)和右转向滑杆(3)沿滑槽(57)作直线运动,从而迫使左滑杆套(16)及其下安装的 左摇臂轴(12)和右滑杆套(17)及其下安装的右摇臂轴(13)作满足纯滚动转向角度的转 动。左摇臂轴(12)和右摇臂轴(13)是这个转向器的两条转向输出轴,其上对应安装的左、 右转向摇臂(图中未画出)将通过横拉杆带动左右两个转向轮作纯滚动转向。
[0068] 图 11中的转向传动齿轮(34)的转动方向与车辆的实际转向不一致,可在转向盘 (27)与转向传动齿轮(34)的传动连接之间加装一对齿轮予以纠正,使转向盘与车辆的实 际转向保持一致。
[0069] 图 12是一个含有螺杆螺母式直线轨迹执行机构的纯滚动转向器示意图,图中的 直线轨迹执行机构由转向螺杆(59)、转向螺母(60)及连接轴(20)组成。转向螺母(60)套 在可转动的转向螺杆(59)上,转向螺母(60)上安装有连接轴(20)。 转向螺杆(59)是该 轨迹执行机构的输入端上的机件,可通过转向传动轴(25)及转向轴(26)等与转向盘(27) 连接;连接轴(20)是该轨迹执行机构的输出端上的机件,可与转向滑杆及滑杆套等直至转 向轮连接。 当转向盘(27)上的转向扭矩由转向传动轴(25)送至转向螺杆(59)使其转动 时,套在转向螺杆(59)上的转向螺母(60)带动其上的连接轴(20)及左转向滑杆(2)和右 转向滑杆(3)沿转向螺杆(59)作直线运动,从而迫使左滑杆套(16)及其下安装的左摇臂 轴(12)和右滑杆套(17)及其下安装的右摇臂轴(13)作满足纯滚动转向角度的转动。 左 摇臂轴(12)和右摇臂轴(13)是这个转向器的两条转向输出轴,其上对应安装的左右转向 摇臂(图中未画出)将通过横拉杆带动左右两个转向轮作纯滚动转向。
[0070] 上述图 11和图 中的摇臂轴上没有安装转向滑杆,而是安装了滑杆套,显然是可 以实施的。其实本发明中的转向滑杆与滑杆套只是一对滑动副而已,是一种滑动配伍,可以 互换地安装。如果将滑杆套制成较长的槽形,安装于摇臂轴上,同时将转向滑杆制得较短并 放入滑杆套的滑槽中,然后再用连接轴连接转向滑杆,这样便可以替换到前述的实施例中 去。 当然有时候由于结构的原因,滑杆套中的滑槽需要两面开通等,会显得有些复杂。 因此 转向滑杆与滑杆套在摇臂轴或转向节上如何安装,应视实际的设计需要而定。
[0071 ] 图 13是二幅转向滑杆与滑杆套的互换示意图。
[0072] 图 Ί3-Α中,制成槽形的左滑杆套(16)和右滑杆套(17)分别安装于左摇臂轴(12) 和右摇臂轴(13)上;左转向滑杆(2)和右转向滑杆(3)可分别在左滑杆套(16)和右滑杆 套(17)的槽中自由滑动,并一起串接在连接轴(20)上。 当连接轴(20)按图中的纯滚动转 向轨迹(1)运动时,左摇臂轴(12)和右摇臂轴(13)也将与上述的图 4中一样地作纯滚动 转向的角度转动。 因此转向滑杆与滑杆套互换后同样地可以实施。
[0073] 图 13- B是转向滑杆与滑杆套互换后,针对图 6-A中的大角度转向时的连接轴(20) 需要越过摇臂轴(13)的情形,制成沟形(底下不开通〉的滑杆套(17〉安装于摇臂轴(13) 上,转向滑杆(3)安装于连接轴(20)上,并可在滑杆套(17)的沟形滑槽中滑动,转向滑杆 (3)的向'土的 -端 (如图中 )上安装有轴架(61),轴架 (61)的两端伸展到滑杆套 (17)的 两边缘的外面,并在两端上安装了滚轮轴(32),滚轮轴(32)上还安装了滚轮(19),与图 6-A 一样当连接轴(20)在摇臂轴(13)的正上方及附近时,滚轮(19)也可与两边的滑轨(33) 接触,而使摇臂轴(13)不能随意转动,从而使转向轮准确地进行纯滚动转向。
[0074] 由于上述转向滑杆与滑杆套可以互换地安装,为求简单,本发明将上述提到的滑 杆套与转向滑杆所构成的滑动副称为转向滑动副,并将其分为左转向滑动副(62)和右转 向滑动副(63);同时还将该转向滑动副与转向节(或摇臂轴)的连接端称为(该转向滑动 副的)外端(即如果是转向滑杆与转向节或摇臂轴连接的,则转向滑杆的一端成为该转向 滑动副的外端,如果是滑杆套与转向节或摇臂轴连接的,则滑杆套的一端成了该转向滑动 副的外端),而将转向滑动副与连接轴连接的一端称为内端。
[0075] 图 14是一只纯滚动转向轨迹为直线的梯形架式纯滚动转向装置示意图,如图 14, 这里的轨迹执行机构(24)由滑槽(57)、滑杆(42)、传动杆(30)、公知转向器(41)及连接轴 (20)组成;滑杆(42)可滑动地安装于滑槽(57)中,滑杆(42)的两端安装有连接轴(20) , 滑杆(42)的中间与传动杆(30)的一端活络连接,传动杆(30)的另一端与公知转向器(41) 活络连接;公知转向器(41)是该轨迹执行机构的输入端上的机件,可与转向传动轴(25)及 转向轴(26)和转向盘(27)连动;连接轴(20)是该轨迹执行机构的输出端上的机件,可与 左滑杆套(16)和右滑杆套(17)连接,并通过左右对应的左转向滑杆(2)及右转向滑杆(3) 与转向节及转向轮连接。 当转向盘(27)转动时,公知转向器(41)推动与其连接的传动杆 (30)使滑杆(42)两端的连接轴(20)进行直线运动,从而使连接轴(20)上的两只滑杆套, 带动各自的转向滑杆及其转向节上的转向轮作纯滚动转向。
[0076] 这里的轨迹^ <行机构非常简单。 它的输入端是公知转向器(41),输出端是滑杆 (42)两端的连接轴(20),从输入动力到输出动力的路径看也非常直接,而且这种结构适合 于公知转向器(41)的作用,因此这种纯滚动转向装置可适用于现行的普通车辆。
[0077] 由于转向滑杆与滑杆套是转向滑动副,它可以倒过^ 5使用,也可以让滑杆套安装 于转向节上,转向滑杆安装于连接轴上进行实施。
[0078] 图 15是一只由齿轮齿条驱动的梯形架式的纯滚动转向装置示意图。图中,在转向 桥上的滑槽(57)内安装了一条可滑动的滑杆(42),滑杆(42)的两端的连接轴(20)上分 别安装有左转向滑动副(62)和右转向滑动副(63),该两转向滑动副的外端分别与两边安 装有转向轮的转向节相连;滑杆(42)的中间安装了一条与转向传动齿轮(34)啮合的转向 传动齿条(58)、转向传动齿轮(34)通过转向传动轴(25)等与转向盘' (27)相连。 当转向 盘(27)转动时,转向扭矩作用在转向传动齿轮(34)上,驱动滑杆(42)上的转向传动齿条 (58)带动滑杆(42)及其两端的连接轴(20)作直线运动,从而使连接轴(20)上的左右两个 转向滑动副连同与其连接的左右两个转向节及其上的转向轮作纯滚动转向。 图 15的这个 转向装置实际上与图 14是相同的,只是对滑杆(42)的驱动方法不同而己,因此属于同一类 型。
[0079] 这里的轨迹执行机构也非常简单,仅由转向传动齿轮(34)、转向传动齿条(58)、 滑杆(42)、滑槽(57)及连接轴(20)构成。从输入端的转向传动齿轮(34)到输出端的连接 轴(20) ,其传动也非常直接。 因此也与图 14一样,能很好地运用于现行的普通车辆上。
[0080] 图 16是一个梯形架式的纯滚动转向装置进行相似縮小后变成一个转向器形式的 纯滚动转向装置的示意图。 图中虚线界内的结构形式,实际上与图 14及图 15是一样的,本 发明称之为梯形架式的纯滚动转向器(工作原理不再赘述),由此可见图 11及图 1.2中的左 右两条转向滑杆的两个端头不一定要在转向传动齿条(或转向螺母)中间的同一条连接轴 上,也可以适当地分幵,安装于转向传动齿条(或转向螺母)的两端而制成梯形架式的纯滚 动转向器。同样地对于图 5的这种结构形式也可以进行相似缩小而变换成梯形架式的纯滚 动转向器的形式等。凡此种种,变化非常多,一切熟习此技者均可以作出多种不同的结构布 置,因此本发明无法一一尽详。

Claims

1. 一种包括转向盘(27)、转向轴(26)、转向传动轴(25)、左转向节(6)、右转向节(7) 及左转向轮(4)和右转向轮(5)的纯滚动转向装置,其特征在于:它还由左转向滑杆(2)与 左滑杆套(16)构成的左转向滑动副(62)及右转向滑杆(3)与右滑杆套(17)构成的右转 向滑动副(63)和作纯滚动转向轨迹(1)输出的轨迹执行机构(24)联合组成;左转向滑动 副(62)的外端与左转向节(6)连接,并与左转向节(6)上的左转向轮(4)的内侧轮面成一 夹角,右转向滑动副(63)的外端与右转向节(7)连接,并与右转向节(7)上的右转向轮(5) 的内侧轮面成一夹角,左转向滑动副(62)的内端及右转向滑动副(63)的内端的朝向同时 在转向桥的前面或后面,并使得当车辆直线前行时,左转向滑动副(62)的滑动方向所在的 直线与右转向滑动副(63)的滑动方向所在的直线相交于一点;轨迹执行机构(24)是一个 输出端能作纯滚动转向轨迹(1)运动的机构,它的输出端分别与左转向滑动副(62)的内端 和右转向滑动副(63)的内端活络连接,它的输入端与转向传动轴(25)和转向轴(26)及转 向盘(27)连动;转向盘(27)上的转向扭矩,由转向轴(26〉和转向传动轴(25)送至轨迹执 行机构(24),轨迹执行机构(24)的输出端便带动与其活络连接的左转向滑动副(62)和右 转向滑动副(63)—起,作纯滚动转向轨迹(D的运动,使得左转向滑动副(62)的滑动方向 所在的直线与右转向滑动副(63)的滑动方向所在的直线的交点,作满足与左转向滑动副 (62)成一夹角的左转向轮(4)和与右转向滑动副(63)成一夹角的右转向轮 (5)作纯滚动 转向所需要的纯滚动转向轨迹(1)运动,从西使. 左转向轮 (4)和右转向轮(5)作纯滚动 转向。
2. 根据权利要求 1所述的纯滚动转向装置,其特征在于:在左转向节 (6)与左转向滑 动副(62)外端的连接之间及右转向节(7)与右转向滑动副(63)外端的连接之间,还左右 对应地安装有左转向臂(14)、右转向臂(15)、左横拉杆(10)、右横拉杆(11)、左转向摇臂 (8)、右转向摇臂(9)及左摇臂轴(12)和右摇臂轴(13);左转向节(6)上安装有左转向臂 (14),左转向臂(14)与左摇臂轴(12)上安装的左转向摇臂(8)用左横拉杆(10)连接,左 转向滑动副(62)的外端安装在左摇臂轴(12)上;右转向节(7)上安装有右转向臂(15), 右转向臂(15)与右摇臂轴(13)上安装的右转向摇臂(9)用右横拉杆(11)连接,右转向滑 动副(63)的外端安装在右摇臂轴(13)上。
3. 根据权利要求 1或 2所述的纯滚动转向装置,其特征在于:左转向滑动副(62)与左 转向轮(4)的内侧轮面所成夹角的大小等于右转向滑动副(63)与右转向轮(5)的内侧轮 面所成夹角的大小,且轨迹执行机构(24)是一个输出端所作的纯滚动转向轨迹(1)为直线 的直线轨迹执行机构(24)。
4.根据权利要求 3所述的纯滚动转向装置,其特征在于:直线轨迹执行机构(24)由转 向传动齿轮(34)、转向传动齿条(58)、滑槽(57)及连接轴(20)组成;转向传动齿轮(34) 与可在滑槽 (57)中左右滑动的转向传动齿条(58)啮合,转向传动齿条(58)上安装有连接 轴(20);转向传动齿轮(34)是直线轨迹执行机构(24)的输入端,连接轴(20)是直线轨迹 执行机构(24)的输出端。 '
5. 根据权利要求 3所述的纯滚动转向装置,其特征在于:直线轨迹执行机构(24) 由 转向螺杆(59)、转向螺母(60)及连接轴(20)构成;转向螺母(60)套在可转动的转向螺杆 (59)上,转向螺母(60)上安装有连接轴(20);转向螺杆(59)是直线轨迹执行机构的输入 端,连接轴(20)是直线轨迹执行机构的输出端。 ·
6. 根据权利要求 3所述的纯滚动转向装置,其特征在于:直线轨迹执行机构(24)由滑 槽 (57)、滑杆 (42)、传动杆 (30)、公知转向器 (41)及连接轴 (20)组成;滑杆 (42)可滑动地 安装于滑槽(57)中,滑杆(42)的两端安装有连接轴(20) ,滑杆(42)的中间与传动杆(30) 的一端活络连接,传动杆(30)的另一端与公知转向器(41)活络连接;公知转向器(41)是 直线轨迹执行机构(24)的输入端,连接轴(20)是直线轨迹执行机构 (24)的输出端。
7. 根据权利要求 1或 2所述的纯滚动转向装 g,其特征在于:左转向滑动副(62)与左 转向轮 (4)的内侧轮面所成夹角的大小等于右转向滑动副(63)与右转向轮(5)的内侧轮 面所成夹角的大小,且轨迹执行机构(24)是一个输出端所作的纯滚动转向轨迹(1)为椭圆 的椭圆轨迹执行机构(24)。
8.根据权利要求 7所述的纯滚动转向装置,其特征在于:椭圆轨迹执行机构(24)由摆 轴 (23)、伸缩节 (29)、万向节 (28)、滚轮 (19)、槽轨 (18)、滚动齿轮 (21)、曲线齿条(22)及 连接轴(20)组成;滚轮(19)在槽轨(18)内,可沿槽轨(18) 自由运动,滚动齿轮(21)与曲 线齿条(22)啮合,并可沿着曲线齿条(22)滚动;连接轴(20)与滚动齿轮(21)固定连接, 并将滚轮(19) 串接在一起,连接轴(20)的一端通过万向节(28)与摆轴(23)上的伸缩节
(29)连接;摆轴(23)是椭圆轨迹执行机构(24)的输入端,连接轴(20)是椭圆轨迹执行机 构(24)的输出端。
9.根据权利要求 7所述的纯滚动转向装置,其特征在于:椭圆轨迹执行机构(24)由十 字槽(37)、摇杆(38)、顶滑块(39)、中滑块(40)、公知转向器(41)、传动杆(30)及连接轴 (20)组成;顶滑块(39)可转动地安装于摇杆(38)的一端上,摇杆(38)的另一端与传动杆
(30)的一端活络连接,传动杆(30)的另一端与公知转向器(41)连接;连接轴(20)安装在 摇杆(38)上,与顶滑块(39)相距正好等于椭圆轨迹的半长轴,中滑块(40)可转动地安装 于顶滑块(39)和连接轴(20)之间的摇杆(38)上,并与连接轴(20)相距正好等于椭圆轨 迹的半短轴;顶滑块(39)在十字槽(37)中的短轴位置上的滑槽中滑动,中滑块(40)在十 字槽(37)中的长轴位置上的滑槽中滑动;公知转向器(41)是椭圆轨迹执行机构(24)的输 入端,连接轴(20)是椭圆轨迹执行机构(24)的输出端。
10.根据权利要求 7所述的 ^£滚动转向装置,其特征在于:椭圆轨迹执行机构(24)由 转向传动齿轮(34)、转向齿盘(35)、运动槽(36)、运动块(31)、滚轮(19)、槽轨(18)、传动 杆(30)及连接轴(20)组成;转向传动齿轮(34)与转向齿盘(35)啮合,运动槽(36)在转 向齿盘(35)上作径向安装,运动块(31)可滑动地安装于运动槽(36)中,运动块 (31)上 安装有连接轴(20),连接轴(20)上安装有滚轮.(19),滚轮(19)可滚动地安装于槽轨(18) 内;椭圆轨迹执行机构(24)作梯形架安装,其两边的转向传动齿轮(34)通过传动杆(30) 连动而成为椭圆轨迹执行机构(24) '的输入端;椭圆轨迹执行机构(24)'输出端的两条连接 轴(20)下端面分别与采用上下搭配结构的左转向滑动副 (62)和右转向滑动副(63)的内 端活络连接;左转向滑动副(62)及右转向滑动副(63)上安装有滚轮轴(32),滚轮轴(32〉 上安装有小滚轮(19),左摇臂轴(12)和右摇臂轴(13)附近与小滚轮(19)相对应的位置上 还安装有滑轨(33),左转向滑动副(62)及右转向滑动副(63)的外端分别左右对应地安装 于左摇臂轴(12)及右摇臂轴(13)的端面上。
PCT/CN2011/002067 2010-12-13 2011-12-12 汽车的纯滚动转向装置 WO2012079281A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010605346.6 2010-12-13
CN 201010605346 CN102069846B (zh) 2010-12-13 2010-12-13 汽车的纯滚动转向装置

Publications (1)

Publication Number Publication Date
WO2012079281A1 true WO2012079281A1 (zh) 2012-06-21

Family

ID=44028658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/002067 WO2012079281A1 (zh) 2010-12-13 2011-12-12 汽车的纯滚动转向装置

Country Status (2)

Country Link
CN (1) CN102069846B (zh)
WO (1) WO2012079281A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112849264A (zh) * 2021-01-12 2021-05-28 孙洪春 一种恒转矩式的汽车转向节臂

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102069846B (zh) * 2010-12-13 2012-12-26 马燕翔 汽车的纯滚动转向装置
CN102285376B (zh) * 2011-06-09 2012-12-26 重庆理工大学 一种汽车转向机构
CN102975764B (zh) * 2012-11-01 2014-12-24 奇瑞汽车股份有限公司 一种阿克曼转向机构
CN103727197A (zh) * 2013-12-18 2014-04-16 谢福存 旋臂变距式可变速比装置
CN104058005A (zh) * 2014-07-01 2014-09-24 童亮 菱形转向机构
CN107813868A (zh) * 2016-09-14 2018-03-20 比亚迪股份有限公司 转向系统和车辆
US10322750B2 (en) * 2017-03-27 2019-06-18 Ford Global Technologies, Llc Power steering assembly mounts with tapered protrusions
CN107458452B (zh) * 2017-08-03 2019-11-12 德州学院 纯滚动汽车转向机构
CN107826162A (zh) * 2017-11-03 2018-03-23 陆逸钧 一种能够实现精确转向的机构
CN111114633A (zh) * 2020-01-16 2020-05-08 湖南汇捷智能装备有限公司 一种跨运车转向同步机构
CN112172921B (zh) * 2020-08-31 2022-03-15 河南坐骑科技有限公司 车辆侧倾驱动机构及应用该机构的主动侧倾车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2117306U (zh) * 1992-03-24 1992-09-30 谷建章 汽车转向传动机构
EP1285787A2 (de) * 2001-08-23 2003-02-26 DaimlerChrysler AG Radaufhängung eines Kraftfahrzeuges
US20060096096A1 (en) * 2004-10-28 2006-05-11 Robert Bosch Corporation Method of manufacturing a Corner Assembly
DE102005043425A1 (de) * 2005-09-13 2007-03-29 Schaeffler Kg Schwenklagereinheit
KR100748762B1 (ko) * 2006-05-16 2007-08-14 현대자동차주식회사 자동차용 로워 암과 스티어링 너클간의 볼 조인트 구조
JP2009298388A (ja) * 2008-06-17 2009-12-24 Equos Research Co Ltd 旋回制御装置
CN102069846A (zh) * 2010-12-13 2011-05-25 马燕翔 汽车的纯滚动转向装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141069A (en) * 1988-09-13 1992-08-25 Aisin Seiki Kabushiki Kaisha Steering mechanism with toe-in control
DE4414020C1 (de) * 1994-04-22 1995-06-08 Daimler Benz Ag Lagerung einer Zahnstangenlenkung
JPH08198128A (ja) * 1995-01-30 1996-08-06 Kondo Lacing Gareeji:Kk 自動車のステアリング装置
CN2242211Y (zh) * 1995-12-15 1996-12-11 胡朝阳 导杆式转向机构
AUPR114800A0 (en) * 2000-11-01 2000-11-23 Bishop Steering Technology Limited Variable ratio steering gear
CN101417669B (zh) * 2008-12-02 2011-09-07 上海汽车集团股份有限公司 汽车转向器
CN201371854Y (zh) * 2009-03-30 2009-12-30 闫成贵 汽车转向传动机构
CN101549710B (zh) * 2009-05-08 2011-03-16 上海汽车集团股份有限公司 车辆转向器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2117306U (zh) * 1992-03-24 1992-09-30 谷建章 汽车转向传动机构
EP1285787A2 (de) * 2001-08-23 2003-02-26 DaimlerChrysler AG Radaufhängung eines Kraftfahrzeuges
US20060096096A1 (en) * 2004-10-28 2006-05-11 Robert Bosch Corporation Method of manufacturing a Corner Assembly
DE102005043425A1 (de) * 2005-09-13 2007-03-29 Schaeffler Kg Schwenklagereinheit
KR100748762B1 (ko) * 2006-05-16 2007-08-14 현대자동차주식회사 자동차용 로워 암과 스티어링 너클간의 볼 조인트 구조
JP2009298388A (ja) * 2008-06-17 2009-12-24 Equos Research Co Ltd 旋回制御装置
CN102069846A (zh) * 2010-12-13 2011-05-25 马燕翔 汽车的纯滚动转向装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112849264A (zh) * 2021-01-12 2021-05-28 孙洪春 一种恒转矩式的汽车转向节臂

Also Published As

Publication number Publication date
CN102069846B (zh) 2012-12-26
CN102069846A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2012079281A1 (zh) 汽车的纯滚动转向装置
CN102285376B (zh) 一种汽车转向机构
TWI377141B (zh)
CN201566632U (zh) 一种十字滑块式塞拉门机构
JP6268639B2 (ja) 交差軌道、及び転換装置
US9717998B2 (en) Double-sided toy car
CN104695796B (zh) 一种摆动式塞拉门机构
CN103110489B (zh) 一种电动轮椅转向控制机构
CN204645944U (zh) 一种摆动式塞拉门机构
CN208021482U (zh) 一种道岔和具有其的轨道交通系统
CN103596859B (zh) 用于变换导轨的自动装置
CN215518516U (zh) 分段式道闸
CN201325746Y (zh) 横向移动翻转换面式流水线
CN104695745B (zh) 一种多功能搬运取车装置
JP2001213587A (ja) クレーンの走行装置
CN110900664A (zh) 一种智能机器人的转向装置
CN108533029A (zh) 一种j型地轨横移车库装置
CN214885951U (zh) 一种框架定点回转位移驱动机构
CN110001757A (zh) 基于十字轴万向节的可变速比转向系统
CN214996469U (zh) 一种前端中置滚轮离合器驱动板框的动力装置
CN219821554U (zh) 车辆转向机构及转向系统
CN203819114U (zh) 一种转向车灯
CN104002902A (zh) 三轮电动扫地车三轮联动转向机构
CN110585739B (zh) 一种转向机构及无碳小车
CN220535753U (zh) 一种可调节的车辆模型转向装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849235

Country of ref document: EP

Kind code of ref document: A1