WO2012077756A1 - 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法 - Google Patents
金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法 Download PDFInfo
- Publication number
- WO2012077756A1 WO2012077756A1 PCT/JP2011/078438 JP2011078438W WO2012077756A1 WO 2012077756 A1 WO2012077756 A1 WO 2012077756A1 JP 2011078438 W JP2011078438 W JP 2011078438W WO 2012077756 A1 WO2012077756 A1 WO 2012077756A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- substance
- detected
- spectrum
- nanoparticles
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
- G01N21/554—Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54346—Nanoparticles
Definitions
- Patent Document 1 Japanese Patent Laid-Open No. 2009-210505
- concentration of the substance to be detected in the sample is high to some extent, and a large amount of the substance to be detected is required.
- An object of the present invention is to provide an apparatus and a method capable of detecting a trace amount of a substance to be detected, and to contribute to the solution of the above problems.
- the method for detecting a substance to be detected is a method for detecting a substance to be detected that may be contained in a sample.
- the detection method includes a step of introducing a metal nanoparticle integrated structure and a metal nanostructure into a sample.
- the metal nanoparticle integrated structure is formed by integrating metal nanoparticles.
- the metal nanoparticles are modified with a first host molecule capable of specifically attaching a substance to be detected.
- the metal nanostructure is modified with a second host molecule capable of specifically attaching a substance to be detected.
- the detection method further includes a step of irradiating the sample with light, a step of measuring a spectrum of the sample, and a step of detecting a substance to be detected based on the spectrum.
- FIG. 38 is an enlarged view of the model shown in FIG. 37. It is the figure which showed the result of having calculated the intensity
- the “first host molecule” and the “second host molecule” are host molecules that can specifically adhere to different parts of the substance to be detected.
- the first host molecule is a primary antibody
- the second host molecule is a secondary antibody.
- polarized light means an electric field vector perpendicular to the propagation direction of the optical electromagnetic wave.
- the metal nanoparticle assembly structure 10 includes beads 11 and metal nanoparticles 12.
- the metal nanoparticles 12 cover the surface of the bead 11 and are immobilized on the surface of the bead 11. Thereby, an integrated structure of the metal nanoparticles 12 is formed.
- the average particle diameter of the beads is in the sub-micro order or micro order, for example, 0.1 to 100 ⁇ m, more preferably 0.1 to 10 ⁇ m.
- the beads may be mixed with a gold nanoparticle dispersion, and the gold nanoparticle dispersion may be stirred or allowed to stand.
- the gold nanoparticle dispersion may optionally contain an organic binder.
- the fixed reaction temperature can be any temperature as long as the dispersion does not completely freeze or evaporate during the reaction period.
- the fixation reaction temperature is around room temperature (eg, 10 to 35 ° C.).
- the metal nanoparticle integrated structure is preferably fixed on the substrate.
- the metal nanoparticle integrated structure may be dispersed in a medium (for example, a liquid).
- ⁇ b represents the susceptibility of the background (non-resonant part)
- ⁇ p represents plasma energy
- ⁇ represents a non-radiative relaxation constant
- V f represents the electron velocity on the Fermi surface.
- the non-radiative relaxation constant is a value indicating relaxation from excited electrons to other than light (for example, heat).
- A represents the radius of the particle.
- the peak wavelength of the absorption spectrum and the extinction spectrum in the graph labeled “calculation” is about 650 nm. This indicates that the results based on the above theory and calculation reproduce the experimental results well.
- the detection sensitivity of the substance to be detected is higher.
- the smaller the beads for immobilizing the metal nanoparticles the fewer metal nanoparticles that are immobilized on the beads. Therefore, even if only a small number (for example, one or two) of metal nanorods are bonded to the metal nanoparticle assembly structure 10, the peak of the extinction spectrum due to the localized surface plasmon of the metal nanorod itself can be clearly measured. It becomes possible. That is, a trace amount of a substance to be detected can be detected. This point will be described in detail below.
- FIG. 11 is a diagram showing a calculation model when the size of the metal nanoparticle assembly structure 10 is large.
- the number N of metal nanoparticles 12 constituting the metal nanoparticle assembly structure 10 was 96, and the radius ⁇ of the metal nanoparticle assembly structure 10 was 730 nm.
- the two-dimensional model shown in FIG. 11 and the two-dimensional model shown in FIG. 9 have the same density (interparticle distance) of the metal nanoparticles 12.
- the polarization direction of the polarized light 5 is the x direction
- the propagation direction of the polarized light 5 is a direction perpendicular to the paper surface.
- FIG. 12 is a diagram showing a result of calculating an extinction spectrum using the model of the metal nanorod conjugate shown in FIG. Referring to FIGS. 10 and 12, as the size of metal nanoparticle assembly structure 10 increases, the ratio of the peak at wavelength 650 nm to the peak at wavelength 550 nm decreases. From the result shown in FIG. 12, the signal intensity ratio when one metal nanorod is bonded to the metal nanoparticle integrated structure is about 4.4: 1. The ratio of the total volume of the metal nanoparticle integrated structure to the volume of one metal nanorod is 24: 1.
- 16 metal nanoparticle integrated structures 10 are arranged in 4 rows and 4 columns.
- the radius of each metal nanoparticle assembly structure 10 is r / 4 (1 ⁇ m).
- One metal nanorod 16 is bonded to each of the four (2 ⁇ 2) metal nanoparticle assembly structures 10 located in the center.
- FIG. 18 is a diagram showing a result of calculating an extinction spectrum using the three-dimensional model of the gold nanorod shown in FIG.
- the extinction spectrum of a gold nanorod having a minor axis of 10 nm and a major axis of 35 nm has a peak at a wavelength near 800 nm.
- the broken line shown in FIG. 18 indicates the position of this peak.
- the broken line shown in FIG. 15 indicates the position of the wavelength indicated by the broken line in FIG.
- the peak wavelength shown in FIG. 18 closely reproduces the peak wavelength shown in FIG. This means that the calculation result shown in FIG. 18 well reproduces the experimental result shown in FIG.
- a trace amount of a substance to be detected can be detected by measuring the extinction spectrum of the localized surface plasmon.
- the extinction spectrum is the sum of the scattering spectrum and the absorption spectrum. Therefore, measuring the extinction spectrum is substantially equivalent to measuring the scattering spectrum or measuring the absorption spectrum when discussing the position of the peak. In any case, the peak position on the spectrum of the localized surface plasmon is almost the same.
- a scattering spectrum may be measured and an absorption spectrum may be measured.
- the spectroscope 105 measures the extinction spectrum of the metal nanoparticle integrated structure introduced into the sample 30 and the localized surface plasmon resonance induced in the metal nanostructure, whereby the metal nanorod is applied to the metal nanoparticle integrated structure. This is to track the change in the extinction spectrum of the metal nanoparticle integrated structure upon bonding.
- the spectroscope 105 outputs a signal indicating the measurement result.
- the spectrometer 105 is preferably a spectrometer capable of measuring a spectrum in the ultraviolet region to the near infrared region (for example, a wavelength range of 200 nm to 1100 nm). Further, it is preferable that the wavelength resolution of the spectrometer 105 is smaller.
- the substrate 21 of the kit 20 may be made of a material that is transparent to white light, such as a single glass plate.
- the material used for the substrate 21 is a material that does not affect localized surface plasmon resonance and does not exhibit anisotropy with respect to polarized light, such as silicon or quartz.
- a single glass plate is used as the substrate 21, a mercapto group or amino group is introduced using a silane coupling agent. Thereby, the metal nanoparticle integrated structure 10 (bead) is captured on the substrate 21 chemically or electrostatically.
- the following method can be used.
- the host molecule is avidin
- gold nanoparticle-immobilized beads are dispersed in a phosphate buffer (20 mM, pH 7.4).
- 1 mM dithiodipropionic acid (DDA) is mixed with the buffer and the buffer is stirred for 1 hour.
- 1-ethyl-3 (3-dimethylaminopropyl) carbimide (EDC) is mixed in the buffer and stirred for 1 hour.
- EDC 1-ethyl-3 (3-dimethylaminopropyl) carbimide
- 100 mM N-hydroxysuccinimide (NHS) is mixed in the buffer and stirred for 1 hour.
- streptavidin 100 ⁇ g / mL is mixed in the buffer and stirred for 1 hour (for example, Analytical Chemistry, Vol. 77, No. 21, November 1, 2005, p6976-p6984).
- a HAuCl 4 solution (0.01 M 500 ⁇ L) and a sufficiently cooled NaBH 4 aqueous solution (300 ⁇ L, 0.01 M) are mixed with a CTAB solution (5 mL).
- Gold nanorods are grown by mixing seed solution (12 ⁇ L) with growth solution. At this time, it is preferable not to stir as much as possible. The size of the nanorod is approximately proportional to the growth time. After a predetermined time, the growth of gold nanorods is stopped by washing away the solution.
- the method for modifying gold nanorods with host molecules can be the same as the method for modifying gold nanoparticle-immobilized beads with host molecules. For this reason, detailed description is not repeated about the method of modifying a gold nanorod with a host molecule.
- the metal nanoparticle integrated structure and the metal nanorod are introduced into the sample 30.
- FIG. 28 is an exploded view showing one example of a holder for holding a substrate for fixing the metal nanoparticle assembly structure.
- holder 120 includes a base 120A and a pressing member 120B.
- An opening 121A and a recess 122A are formed in the base 120A.
- the opening part 121B and the convex part 122B are formed in the pressing member 120B.
- the base 120A and the pressing member 120B are formed of metal (for example, stainless steel).
- the detection efficiency of the substance to be detected can be increased by reducing the size of the metal nanoparticle integrated structure.
- the cost of the detection device can be reduced.
- FIG. 32 is a diagram for explaining a repulsive force acting between two metal nanoparticles by a light-induced force.
- polarized light 5 polarized in a direction perpendicular to the direction of axis Ax is incident on particles 1 and 2.
- Each of the particles 1 and 2 is polarized along a direction parallel to the polarization direction of the polarized light 5. That is, the direction of polarization is perpendicular to the direction of the axis Ax of the particles 1 and 2. Since the polarization directions of the particles 1 and 2 are equal to each other, a repulsive force is generated between the particles 1 and 2.
- FIG. 36 is a diagram for explaining the effect of electric field enhancement by the silver nanoparticle-immobilized beads.
- FIG. 37 is a diagram for explaining a three-dimensional model in which the metal nanorods 16 are fixed by the metal nanoparticle integrated structure.
- FIG. 38 is an enlarged view of the model shown in FIG.
- the metal nanoparticle assembly structure 10A is a bead having a surface on which a cluster 12A made of an aggregate of silver nanoparticles is fixed.
- d p 2.01 nm
- D b 400 nm
- D c 10 nm
- a p 2.5 nm.
- the number of clusters is 3457.
- the shape of the cluster 12A is spherical.
- the gold nanorod 16A is the gold nanorod shown in FIG.
- each circular end face of one gold nanorod is modified with about 7.6 host DNA, and the surface of one silver nanoparticle-immobilized bead is 30.07 million. It is estimated that it is modified with host DNA. Furthermore, from a comparison between theory and experiment in the wavelength region of 600 to 900 nm in FIGS. 41 and 42, it is estimated that 50 to 100 gold nanorods are bound to one silver nanoparticle-immobilized bead. From this, the host DNA (first DNA) on the silver nanoparticle-immobilized beads in a state where the target DNA (substance to be detected) is specifically attached to all the host DNA (second host molecules) on the end face of the gold nanorod. In other words, 380 to 760 target DNAs were detected.
- the silver nanoparticle-immobilized beads and gold nanorods are modified with host molecules.
- a nanogap can be generated between the silver nanoparticle bead and the gold nanorod. Therefore, according to this embodiment, the substance to be detected can be detected by detecting SERS.
- the silver nanoparticle-immobilized beads are not limited to those fixed to the substrate.
- a liquid in which silver nanoparticle fixed beads are dispersed may be prepared.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Nanotechnology (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
好ましくは、第1の光源は、金属ナノ粒子集積構造体または金属ナノ構造体の局在表面プラズモン共鳴のピークの半値全幅の2倍に対応する、1またはいくつかの領域に係る、実質的に単色の光を発する。
好ましくは、分光器により測定されるスペクトルは、局在表面プラズモン共鳴の消衰スペクトルである。消衰スペクトルとは、散乱スペクトルと吸収スペクトルとを足し合わせたものである。
好ましくは、光を照射するステップは、試料に、金属ナノ粒子集積構造体または金属ナノ構造体の局在表面プラズモン共鳴のピークの半値全幅の2倍に対応する、1またはいくつかの領域に係る、実質的に単色の光を照射するステップを含む。
好ましくは、スペクトルは、表面増強ラマン散乱(SERS)スペクトルである。
図1は、本発明の実施の形態に用いられる金属ナノ粒子集積構造体の模式的構造を示した図である。図2は、金属ナノ粒子集積構造体の一例の走査型電子顕微鏡(SEM)写真である。
個々の金属構造体の内部での感受率および電場分布は平坦であるとする。誘起分極Piは以下の式(3)に従って表わされる(O. J. F. Martin, N. B. Piller, Phys. Rev. E 58 3909 (1998))。
図23は、本発明の1つの実施の形態に係る検出装置の概略的構成を示したブロック図である。図23を参照して、検出装置100は、光源101と、キット20と、分光器105と、演算部106とを備える。
Claims (21)
- 試料に含まれる可能性がある被検出物質の検出装置であって、
前記被検出物質を特異的に付着可能な第1のホスト分子で修飾された金属ナノ粒子が集積されることにより形成された、金属ナノ粒子集積構造体と、
前記被検出物質を特異的に付着可能な第2のホスト分子で修飾された金属ナノ構造体とを備える、被検出物質の検出装置。 - 前記金属ナノ粒子集積構造体を固定するための基板をさらに備える、請求項1に記載の被検出物質の検出装置。
- 前記試料に前記金属ナノ粒子集積構造体と前記金属ナノ構造体とが導入された状態において前記試料を照射するための第1の光源と、
前記試料のスペクトルを測定するための分光器と、
前記分光器で測定された前記スペクトルに基づいて、前記被検出物質を検出する検出器とをさらに備える、請求項1に記載の被検出物質の検出装置。 - 前記第1の光源は、白色光を発する、請求項3に記載の被検出物質の検出装置。
- 前記第1の光源は、前記金属ナノ粒子集積構造体または前記金属ナノ構造体の局在表面プラズモン共鳴のピークの半値全幅の2倍に対応する、1またはいくつかの領域に係る、実質的に単色の光を発する、請求項3に記載の被検出物質の検出装置。
- 前記試料に偏光を照射する第2の光源をさらに備える、請求項3に記載の被検出物質の検出装置。
- 前記分光器により測定される前記スペクトルは、局在表面プラズモン共鳴の消衰スペクトルである、請求項3に記載の被検出物質の検出装置。
- 前記分光器により測定される前記スペクトルは、表面増強ラマン散乱(SERS)スペクトルである、請求項3に記載の被検出物質の検出装置。
- 前記金属ナノ粒子集積構造体は、前記金属ナノ粒子が固定された表面を有するビーズを含み、
前記金属ナノ構造体は、金属ナノロッドである、請求項1に記載の被検出物質の検出装置。 - 前記金属ナノロッドの短軸の長さは1nm以上であり、
前記金属ナノロッドのアスペクト比を前記短軸の長さに対する前記金属ナノロッドの長軸の比と定義すると、前記アスペクト比は、1よりも大きい値である、請求項9に記載の被検出物質の検出装置。 - 前記金属ナノ粒子集積構造体の前記金属ナノ粒子と前記金属ナノロッドとは、同じ種類の金属により形成される、請求項9に記載の被検出物質の検出装置。
- 前記金属ナノ粒子集積構造体の前記金属ナノ粒子と前記金属ナノロッドとは、互いに異なる種類の金属により形成される、請求項9に記載の被検出物質の検出装置。
- 前記被検出対象物質は、抗原であり、
前記第1および第2のホスト分子は、前記抗原と抗原抗体反応を起こす抗体である、請求項1に記載の被検出物質の検出装置。 - 試料に含まれる可能性がある被検出物質の検出方法であって、
前記試料に金属ナノ粒子集積構造体と金属ナノ構造体とを導入するステップを備え、
前記金属ナノ粒子集積構造体は、金属ナノ粒子が集積されることにより形成され、
前記金属ナノ粒子は、前記被検出物質を特異的に付着可能な第1のホスト分子で修飾され、
前記金属ナノ構造体は、前記被検出物質を特異的に付着可能な第2のホスト分子で修飾され、
前記試料に光を照射するステップと、
前記試料のスペクトルを測定するステップと、
前記スペクトルに基づいて、前記被検出物質を検出するステップとをさらに備える、被検出物質の検出方法。 - 前記光を照射するステップは、
前記試料に偏光を照射して前記金属ナノ粒子集積構造体および前記金属ナノ構造体を集めるステップを含む、請求項14に記載の被検出物質の検出方法。 - 前記光を照射するステップは、前記試料に白色光を照射するステップを含む、請求項14に記載の被検出物質の検出方法。
- 前記光を照射するステップは、前記試料に、前記金属ナノ粒子集積構造体または前記金属ナノ構造体の局在表面プラズモン共鳴のピークの半値全幅の2倍に対応する、1またはいくつかの領域に係る、実質的に単色の光を照射するステップを含む、請求項14に記載の被検出物質の検出方法。
- 前記スペクトルは、局在表面プラズモン共鳴の消衰スペクトルである、請求項14に記載の被検出物質の検出方法。
- 前記スペクトルは、表面増強ラマン散乱(SERS)スペクトルである、請求項14に記載の被検出物質の検出方法。
- 金属ナノ粒子が固定された表面を有するビーズに被検出物質を特異的に付着させて、局在表面プラズモン共鳴の消衰スペクトルを測定する、被検出物質の検出方法。
- 金属ナノ粒子が固定された表面を有するビーズに被検出物質を特異的に付着させて、表面増強ラマン散乱(SERS)スペクトルを測定する、被検出物質の検出方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012547909A JP5822239B2 (ja) | 2010-12-08 | 2011-12-08 | 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法 |
US13/992,475 US9797842B2 (en) | 2010-12-08 | 2011-12-08 | Device and method utilizing a metallic nanoparticle assembly structure for detecting a target substance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-273284 | 2010-12-08 | ||
JP2010273284 | 2010-12-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012077756A1 true WO2012077756A1 (ja) | 2012-06-14 |
Family
ID=46207239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078438 WO2012077756A1 (ja) | 2010-12-08 | 2011-12-08 | 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9797842B2 (ja) |
JP (1) | JP5822239B2 (ja) |
WO (1) | WO2012077756A1 (ja) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012132875A (ja) * | 2010-12-24 | 2012-07-12 | Seiko Epson Corp | センサーチップ、センサーチップの製造方法、検出装置 |
WO2014192937A1 (ja) * | 2013-05-30 | 2014-12-04 | 公立大学法人大阪府立大学 | 被検出物質の検出装置および方法 |
WO2015027777A1 (zh) * | 2013-09-02 | 2015-03-05 | 东北大学 | 基于表面增强的水质检测方法 |
JP2015042958A (ja) * | 2013-08-26 | 2015-03-05 | 公立大学法人大阪府立大学 | 被検出微生物を検出する検出方法 |
CN104884939A (zh) * | 2013-03-29 | 2015-09-02 | 浜松光子学株式会社 | 表面增强拉曼散射单元和拉曼光谱分析方法 |
JP2015190836A (ja) * | 2014-03-28 | 2015-11-02 | 学校法人 東洋大学 | ラマン分光測定法及びラマン分光測定器 |
CN105074436A (zh) * | 2013-03-29 | 2015-11-18 | 浜松光子学株式会社 | 表面增强拉曼散射单元及拉曼光谱分析方法 |
EP2985595A4 (en) * | 2013-03-29 | 2016-12-21 | Hamamatsu Photonics Kk | RAMAN SURFACE DELIVERY UNIT AND RAMAN SPECTROSCOPIC ANALYSIS METHOD |
JP2017095744A (ja) * | 2015-11-19 | 2017-06-01 | 大日本塗料株式会社 | 金ナノロッドを含む被験物質を検出するための組成物及びその用途 |
JP2017524140A (ja) * | 2014-08-13 | 2017-08-24 | アバクシス, インコーポレイテッド | プラズモン特異的結合パートナーアッセイにおけるシグナル増幅 |
US9863883B2 (en) | 2012-08-10 | 2018-01-09 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering element |
US9863884B2 (en) | 2012-08-10 | 2018-01-09 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element, and method for producing same |
JP2018528417A (ja) * | 2015-08-04 | 2018-09-27 | アバクシス, インコーポレイテッド | 溶液ベースのプラズモン特異的結合パートナーアッセイにおけるシグナル増幅 |
KR101944346B1 (ko) * | 2017-09-20 | 2019-01-31 | 한양대학교에리카산학협력단 | 나노 갭을 갖는 복합 입자, 및 그 제조 방법 |
JP2019066323A (ja) * | 2017-09-29 | 2019-04-25 | 日鉄ケミカル&マテリアル株式会社 | 標識抗体、その製造方法及び免疫学的測定法 |
JP2020020810A (ja) * | 2019-10-23 | 2020-02-06 | 株式会社Jvcケンウッド | エクソソームの検出方法 |
WO2020040159A1 (ja) * | 2018-08-21 | 2020-02-27 | デンカ生研株式会社 | 表面プラズモン共鳴を担体粒子を用いて増幅させるイムノクロマト法 |
WO2021225157A1 (ja) * | 2020-05-08 | 2021-11-11 | 公立大学法人大阪 | 微小物体の検出装置、検出システムおよび検出方法 |
US11255854B2 (en) | 2011-11-21 | 2022-02-22 | Zoetis Services Llc | Signal amplification in lateral flow and related immunoassays |
EP4033222A1 (en) * | 2012-08-10 | 2022-07-27 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering unit |
WO2022234849A1 (ja) * | 2021-05-07 | 2022-11-10 | 公立大学法人大阪 | 被検出物質の検出方法、検出キットおよび検出システム、ならびに、検出キットの製造方法 |
WO2023224100A1 (ja) * | 2022-05-18 | 2023-11-23 | 公立大学法人大阪 | 糖タンパク質を検出するためのキット |
US11977072B2 (en) | 2017-01-30 | 2024-05-07 | Zoetis Services Llc | Solution-based plasmonic specific-binding partner assays using metallic nanostructures |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI472059B (zh) * | 2013-10-09 | 2015-02-01 | Cheng Sheng Tsung | A method of forming a surface plasma using a microstructure |
RU2584199C2 (ru) * | 2014-09-10 | 2016-05-20 | Общество с ограниченной ответственностью "Институт Серебра" | Способ определения концентрации металла в коллоидном растворе металла в воде |
WO2016048053A1 (ko) * | 2014-09-26 | 2016-03-31 | 한국기계연구원 | 복수의 나노갭이 형성된 기판 및 이의 제조방법 |
EP3271705B1 (en) * | 2015-07-20 | 2020-07-01 | Hewlett-Packard Development Company, L.P. | Structures for surface enhanced raman spectroscopy |
CN110441284B (zh) * | 2019-07-23 | 2022-02-15 | 海南大学 | 一种可用于痕量检测的表面增强拉曼散射芯片的制备方法及所得产品和应用 |
CN111579543B (zh) * | 2020-05-15 | 2023-06-30 | 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 | 一种超低温增强拉曼光谱信号的检测方法及应用 |
US20220381984A1 (en) * | 2021-05-31 | 2022-12-01 | Jinan University | Fiber optic sensing apparatus and system |
CN113740311B (zh) * | 2021-08-13 | 2022-12-20 | 电子科技大学 | 一种金属-介电材料复合探针sers基底及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007040219A1 (ja) * | 2005-10-04 | 2007-04-12 | Intellectual Property Bank Corp. | ナノアレイdnaチップ |
JP2008538414A (ja) * | 2005-04-22 | 2008-10-23 | 富士レビオ株式会社 | 金属コーティングを含む結合された非金属粒子を備えるセンサーチップ |
JP2009150708A (ja) * | 2007-12-19 | 2009-07-09 | Canon Inc | 標的物質の検出方法及び検査キット |
JP2010525333A (ja) * | 2007-04-18 | 2010-07-22 | ベクトン・ディキンソン・アンド・カンパニー | Sersナノタグを用いる分析法 |
WO2010087121A1 (ja) * | 2009-01-30 | 2010-08-05 | 株式会社 日立ハイテクノロジーズ | 核酸分析デバイス、及び核酸分析装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002093140A1 (en) * | 2001-05-14 | 2002-11-21 | Johns Hopkins University | Multifunctional magnetic nanowires |
GB0216197D0 (en) | 2002-07-12 | 2002-08-21 | Univ Strathclyde | Serrs active particles |
US20050191665A1 (en) | 2003-12-29 | 2005-09-01 | Xing Su | Composite organic-inorganic nanoclusters |
US20050147963A1 (en) | 2003-12-29 | 2005-07-07 | Intel Corporation | Composite organic-inorganic nanoparticles and methods for use thereof |
KR101168654B1 (ko) * | 2004-05-19 | 2012-07-25 | 브이피 호울딩 엘엘씨 | 표면 증강 라만 산란에 의한 화학기의 증강된 검출을 위한 층상의 플라즈몬 구조를 가진 광센서 |
US8137759B2 (en) | 2006-04-07 | 2012-03-20 | The Regents Of The University Of California | Gold nanostructures and methods of use |
US20100167958A1 (en) * | 2006-06-16 | 2010-07-01 | Washington, University Of | Trapping of micro and nano scale objects based on localized surface plasmon |
US20100285490A1 (en) * | 2006-12-29 | 2010-11-11 | Invitrogen Corporation | Detection apparatus |
EP2755031B1 (en) * | 2007-03-20 | 2017-05-03 | Becton, Dickinson and Company | Assay using surface-enhanced raman spectroscopy (sers)-active particles |
JP4428670B2 (ja) | 2008-03-06 | 2010-03-10 | Tanakaホールディングス株式会社 | 免疫学的測定法、キット及び展開溶媒 |
US8537353B2 (en) * | 2008-05-05 | 2013-09-17 | Agency For Science, Technology And Research | Sensor chip for biological and chemical sensing |
-
2011
- 2011-12-08 WO PCT/JP2011/078438 patent/WO2012077756A1/ja active Application Filing
- 2011-12-08 US US13/992,475 patent/US9797842B2/en active Active
- 2011-12-08 JP JP2012547909A patent/JP5822239B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008538414A (ja) * | 2005-04-22 | 2008-10-23 | 富士レビオ株式会社 | 金属コーティングを含む結合された非金属粒子を備えるセンサーチップ |
WO2007040219A1 (ja) * | 2005-10-04 | 2007-04-12 | Intellectual Property Bank Corp. | ナノアレイdnaチップ |
JP2010525333A (ja) * | 2007-04-18 | 2010-07-22 | ベクトン・ディキンソン・アンド・カンパニー | Sersナノタグを用いる分析法 |
JP2009150708A (ja) * | 2007-12-19 | 2009-07-09 | Canon Inc | 標的物質の検出方法及び検査キット |
WO2010087121A1 (ja) * | 2009-01-30 | 2010-08-05 | 株式会社 日立ハイテクノロジーズ | 核酸分析デバイス、及び核酸分析装置 |
Non-Patent Citations (3)
Title |
---|
HIRONORI HATTORI ET AL.: "Henko Bunpu o Design sareta Koba ni yoru Kinzoku Nano Ryushi Hairetsu Seigyo no Riron", 2010 NEN SHUKI DAI 71 KAI EXTENDED ABSTRACTS, 30 August 2010 (2010-08-30), pages 1 - 163 * |
KALELE S A ET AL.: "Optical detection of antibody using silica-silver core-shell particles", CHEMICAL PHYSICS LETTERS, vol. 404, no. 1-3, 7 March 2005 (2005-03-07), pages 136 - 141, XP027647881, DOI: doi:10.1016/j.cplett.2005.01.064 * |
SANCHEZ-GAYTAN B L ET AL., LANGMUIR, vol. 26, no. 24, 19 November 2010 (2010-11-19), pages 19170 - 19174 * |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012132875A (ja) * | 2010-12-24 | 2012-07-12 | Seiko Epson Corp | センサーチップ、センサーチップの製造方法、検出装置 |
US11255854B2 (en) | 2011-11-21 | 2022-02-22 | Zoetis Services Llc | Signal amplification in lateral flow and related immunoassays |
US9863883B2 (en) | 2012-08-10 | 2018-01-09 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering element |
EP4033222A1 (en) * | 2012-08-10 | 2022-07-27 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering unit |
US9863884B2 (en) | 2012-08-10 | 2018-01-09 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering element, and method for producing same |
EP4202418A1 (en) * | 2013-03-29 | 2023-06-28 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering unit |
CN104884939B (zh) * | 2013-03-29 | 2018-10-26 | 浜松光子学株式会社 | 表面增强拉曼散射单元和拉曼光谱分析方法 |
EP2985594A4 (en) * | 2013-03-29 | 2016-12-14 | Hamamatsu Photonics Kk | RAMAN SURFACE DELIVERY UNIT AND RAMAN SPECTROSCOPIC ANALYSIS METHOD |
EP2985595A4 (en) * | 2013-03-29 | 2016-12-21 | Hamamatsu Photonics Kk | RAMAN SURFACE DELIVERY UNIT AND RAMAN SPECTROSCOPIC ANALYSIS METHOD |
EP2980564A4 (en) * | 2013-03-29 | 2016-12-21 | Hamamatsu Photonics Kk | SURFACE-REINFORCED RAM DISTRIBUTION UNIT AND RAMAN SPECTROSCOPIC ANALYSIS PROCESS |
US10281404B2 (en) | 2013-03-29 | 2019-05-07 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering unit and raman spectroscopic analysis method |
CN105074436A (zh) * | 2013-03-29 | 2015-11-18 | 浜松光子学株式会社 | 表面增强拉曼散射单元及拉曼光谱分析方法 |
CN110715919A (zh) * | 2013-03-29 | 2020-01-21 | 浜松光子学株式会社 | 表面增强拉曼散射单元及拉曼光谱分析方法 |
EP4198499A1 (en) * | 2013-03-29 | 2023-06-21 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering unit |
US9851305B2 (en) | 2013-03-29 | 2017-12-26 | Hamamatsu Photonics K.K. | Surface-enhanced Raman scattering unit and Raman spectroscopic analysis method |
CN110715919B (zh) * | 2013-03-29 | 2023-03-21 | 浜松光子学株式会社 | 表面增强拉曼散射单元及拉曼光谱分析方法 |
CN104884939A (zh) * | 2013-03-29 | 2015-09-02 | 浜松光子学株式会社 | 表面增强拉曼散射单元和拉曼光谱分析方法 |
US9964492B2 (en) | 2013-03-29 | 2018-05-08 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering unit and raman spectroscopic analysis method |
US9952158B2 (en) | 2013-03-29 | 2018-04-24 | Hamamatsu Photonics K.K. | Surface-enhanced raman scattering unit and raman spectroscopic analysis method |
US9903861B2 (en) | 2013-05-30 | 2018-02-27 | Osaka Prefecture University Public Corporation | Device and method for detecting an analyte |
EP2993460A4 (en) * | 2013-05-30 | 2017-04-26 | Osaka Prefecture University Public Corporation | Target-substance detection apparatus and method |
WO2014192937A1 (ja) * | 2013-05-30 | 2014-12-04 | 公立大学法人大阪府立大学 | 被検出物質の検出装置および方法 |
JPWO2014192937A1 (ja) * | 2013-05-30 | 2017-02-23 | 公立大学法人大阪府立大学 | 被検出物質の検出装置および方法 |
JP2015042958A (ja) * | 2013-08-26 | 2015-03-05 | 公立大学法人大阪府立大学 | 被検出微生物を検出する検出方法 |
WO2015027777A1 (zh) * | 2013-09-02 | 2015-03-05 | 东北大学 | 基于表面增强的水质检测方法 |
JP2015190836A (ja) * | 2014-03-28 | 2015-11-02 | 学校法人 東洋大学 | ラマン分光測定法及びラマン分光測定器 |
JP2022008384A (ja) * | 2014-08-13 | 2022-01-13 | ゾエティス サービシズ リミテッド ライアビリティ カンパニー | プラズモン特異的結合パートナーアッセイにおけるシグナル増幅 |
JP7240460B2 (ja) | 2014-08-13 | 2023-03-15 | ゾエティス サービシズ リミテッド ライアビリティ カンパニー | プラズモン特異的結合パートナーアッセイにおけるシグナル増幅 |
JP2017524140A (ja) * | 2014-08-13 | 2017-08-24 | アバクシス, インコーポレイテッド | プラズモン特異的結合パートナーアッセイにおけるシグナル増幅 |
US11209430B2 (en) | 2014-08-13 | 2021-12-28 | Zoetis Services Llc | Signal amplification in plasmonic specific-binding partner assays |
US11614447B2 (en) | 2015-08-04 | 2023-03-28 | Zoetis Services Llc | Signal amplification in solution-based plasmonic specific-binding partner assays |
JP2018528417A (ja) * | 2015-08-04 | 2018-09-27 | アバクシス, インコーポレイテッド | 溶液ベースのプラズモン特異的結合パートナーアッセイにおけるシグナル増幅 |
US11215614B2 (en) | 2015-08-04 | 2022-01-04 | Zoetis Services Llc | Signal amplification in solution-based plasmonic specific-binding partner assays |
JP2017095744A (ja) * | 2015-11-19 | 2017-06-01 | 大日本塗料株式会社 | 金ナノロッドを含む被験物質を検出するための組成物及びその用途 |
US11977072B2 (en) | 2017-01-30 | 2024-05-07 | Zoetis Services Llc | Solution-based plasmonic specific-binding partner assays using metallic nanostructures |
US11287385B2 (en) | 2017-09-20 | 2022-03-29 | Industry-University Cooperation Foundation Hanyang University Erica Campus | Composite particles having nanogap, and preparation method therefor |
KR101944346B1 (ko) * | 2017-09-20 | 2019-01-31 | 한양대학교에리카산학협력단 | 나노 갭을 갖는 복합 입자, 및 그 제조 방법 |
WO2019059663A1 (ko) * | 2017-09-20 | 2019-03-28 | 한양대학교에리카산학협력단 | 나노 갭을 갖는 복합 입자, 및 그 제조 방법 |
JP2019066323A (ja) * | 2017-09-29 | 2019-04-25 | 日鉄ケミカル&マテリアル株式会社 | 標識抗体、その製造方法及び免疫学的測定法 |
WO2020040159A1 (ja) * | 2018-08-21 | 2020-02-27 | デンカ生研株式会社 | 表面プラズモン共鳴を担体粒子を用いて増幅させるイムノクロマト法 |
JP2020020810A (ja) * | 2019-10-23 | 2020-02-06 | 株式会社Jvcケンウッド | エクソソームの検出方法 |
JP7383271B2 (ja) | 2020-05-08 | 2023-11-20 | 公立大学法人大阪 | 微小物体の検出装置、検出システムおよび検出方法 |
WO2021225157A1 (ja) * | 2020-05-08 | 2021-11-11 | 公立大学法人大阪 | 微小物体の検出装置、検出システムおよび検出方法 |
JPWO2021225157A1 (ja) * | 2020-05-08 | 2021-11-11 | ||
WO2022234849A1 (ja) * | 2021-05-07 | 2022-11-10 | 公立大学法人大阪 | 被検出物質の検出方法、検出キットおよび検出システム、ならびに、検出キットの製造方法 |
JP7515940B2 (ja) | 2021-05-07 | 2024-07-16 | 公立大学法人大阪 | 被検出物質の検出方法、検出キットおよび検出システム、ならびに、検出キットの製造方法 |
WO2023224100A1 (ja) * | 2022-05-18 | 2023-11-23 | 公立大学法人大阪 | 糖タンパク質を検出するためのキット |
Also Published As
Publication number | Publication date |
---|---|
US20130252275A1 (en) | 2013-09-26 |
JPWO2012077756A1 (ja) | 2014-05-22 |
JP5822239B2 (ja) | 2015-11-24 |
US9797842B2 (en) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5822239B2 (ja) | 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法 | |
Kotsifaki et al. | Fano-resonant, asymmetric, metamaterial-assisted tweezers for single nanoparticle trapping | |
Procházka | Surface-enhanced Raman spectroscopy | |
Hong et al. | Nanobiosensors based on localized surface plasmon resonance for biomarker detection | |
Radziuk et al. | Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells | |
Peng et al. | Recent advances in optical imaging with anisotropic plasmonic nanoparticles | |
Long et al. | Localized surface plasmon resonance based nanobiosensors | |
Wang et al. | Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays | |
EP2993460B1 (en) | Target-substance detection apparatus and method | |
Ha et al. | Focused orientation and position imaging (FOPI) of single anisotropic plasmonic nanoparticles by total internal reflection scattering microscopy | |
Zhu et al. | Hydrophobic plasmonic nanoacorn array for a label-free and uniform SERS-based biomolecular assay | |
Jiang et al. | Point spread function of objective-based surface plasmon resonance microscopy | |
Ghosh et al. | Next-generation optical nanotweezers for dynamic manipulation: from surface to bulk | |
Csaki et al. | Molecular plasmonics: light meets molecules at the nanoscale | |
Combs et al. | Label-free raman mapping of surface distribution of protein A and IgG biomolecules | |
Pradhan et al. | Gold-nanorod-enhanced fluorescence correlation spectroscopy of fluorophores with high quantum yield in lipid bilayers | |
Person et al. | Material-specific detection and classification of single nanoparticles | |
Cui et al. | Nanopillar array-based plasmonic metasurface for switchable multifunctional biosensing | |
Balint et al. | Simple route for preparing optically trappable probes for surface-enhanced Raman scattering | |
Cui et al. | Bulk phase-encoded gold nanoparticles: the fourth-generation surface-enhanced Raman scattering tag for Hg2+ ion detection | |
Fasolato | Surface enhanced Raman spectroscopy for biophysical applications: using plasmonic nanoparticle assemblies | |
Kumari et al. | Development of cost-effective plasmonic biosensor using partially embedded gold nanoparticles for detection of immunoglobulin proteins | |
Ljungblad | Antibody-conjugated gold nanoparticles integrated in a fluorescence based biochip | |
Zhang et al. | Self-Referenced Au Nanoparticles-Coated Glass Wafers for In Situ SERS Monitoring of Cell Secretion | |
Puravankara et al. | A Wettability Contrast SERS Droplet Assay for Multiplexed Analyte Detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11847455 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2012547909 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13992475 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11847455 Country of ref document: EP Kind code of ref document: A1 |