WO2015027777A1 - 基于表面增强的水质检测方法 - Google Patents

基于表面增强的水质检测方法 Download PDF

Info

Publication number
WO2015027777A1
WO2015027777A1 PCT/CN2014/082507 CN2014082507W WO2015027777A1 WO 2015027777 A1 WO2015027777 A1 WO 2015027777A1 CN 2014082507 W CN2014082507 W CN 2014082507W WO 2015027777 A1 WO2015027777 A1 WO 2015027777A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
aqueous solution
array
water quality
transmission spectrum
Prior art date
Application number
PCT/CN2014/082507
Other languages
English (en)
French (fr)
Inventor
司光远
吕江涛
王凤文
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2015027777A1 publication Critical patent/WO2015027777A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance

Definitions

  • the indicator titration method mainly drops into the aqueous solution to be tested by using different chemical reagents, and judges the PH value (ie, pH) of the analyte by the color after the reaction.
  • the technical problem solved by the present invention is: How to provide a water quality detection method based on surface enhancement to improve the accuracy of water quality detection.
  • an embodiment of the present invention provides a surface enhancement based S1: placing an aqueous solution to be tested in an interlayer of a metal nanopillar array, a light source incident from one side of the triangular prism, and another in the triangular prism Receiving reflected light of the light source;
  • the height of the interlayer of the metal nano-pillar array is the metal nano-column array.
  • the triangular prism is vertically fixed to the metal nano-pillar array except for the two sides in the step S1.
  • the metal nano-column array Fixed perpendicular to the substrate.
  • the metal nano-pillar arrays are formed with equal intervals between the intervals.
  • the height of the metal nano-pillar array is 150 nm to 750 nm.
  • the invention provides a water quality detecting method based on surface enhancement, and uses a finite time domain difference method to calculate the reflected light of the aqueous solution to be tested through the interlayer of the metal nanocolumn array, and the trough value of the obtained transmission spectrum is larger than the theoretical analog value. Big.
  • the plasmon resonance occurs through the metal nanocolumn array and the absorption spectrum of the impurity in the aqueous solution to be tested, and the trough value of the transmitted spectrum is amplified and enhanced, thereby greatly improving the accuracy of water quality detection.
  • FIG. 2 is a schematic structural view of a nano-pillar provided by an embodiment of the present invention.
  • Figure 3 is a water quality detecting device provided by an embodiment of the present invention.
  • Figure 4a is a theoretical simulated transmission spectrum of a nano-column array of different periods
  • 4b is a transmission spectrum of a different periodic metal nano-pillar array according to an embodiment of the present invention.
  • Fig. 5 is a graph showing the enhancement effect of the glucose absorption spectrum provided by the embodiment of the present invention. detailed description
  • the embodiment of the invention further provides a water quality detecting method based on surface enhancement.
  • the method flow chart is shown in FIG. 1 and includes:
  • the structure includes a nano-pillar structure and a triangular prism 2.
  • the nano-pillar structure is as shown in FIG. 3, and includes a substrate 3 and a metal nano-pillar array 4 formed on one side of the substrate 3.
  • One side of the triangular prism 2 is in close contact with the side of the metal nano-pillar array away from the substrate to form an aqueous solution interlayer 1 to be tested, and the aqueous solution interlayer 1 to be tested is an interlayer of a metal nano-pillar array.
  • the height of the interlayer of the metal nano-pillar array is the height of the metal nano-pillar array; the triangular prism is vertically fixed to the metal nano-pillar array except the two sides in the step S1, the metal nano-pillar array Fixed perpendicular to the substrate.
  • the height of the metal nanopillar array is
  • a metal nano-pillar array was used for measurement at a height of 180 nm.
  • the formation process of the nano-pillar structure is: first, depositing a certain thickness (180 nm in the present invention) of silver (silver, Ag) in quartz by using electron beam evaporation (electron-beam evaporation) method. On the substrate 3, a large-area metal nano-pillar array 4 functional region is then prepared by using laser lithography.
  • the aqueous solution to be tested needs to be placed in the aqueous solution sandwiching layer of the water detecting device, and the sealing property of the aqueous solution to be tested is specifically set according to the actual situation, and the embodiments of the present invention are not described herein.
  • the light source is incident as incident light from a side of the triangular prism that is not fixed perpendicular to the array of metal nanopillars, and is reflected by the triangular prism and the aqueous solution to be tested to obtain reflected light, and the reflected light is never emitted from the other side perpendicular to the metal nanocolumn array.
  • the reflected light is received by the receiver.
  • metal nano-pillar array period a period of spacing between metal nano-pillar arrays, in the embodiment of the present invention, hereinafter referred to as a metal nano-pillar array period
  • the system is called the weak coupling regime and the strong coupling regime.
  • far field dipole interactions dominate.
  • adjacent metal nanocolumns can excite strong near field coupling.
  • this column-to-column coupling can be estimated using a dipole model.
  • the metal nanopillar array can also be cylindrical.
  • the dipole model can well explain the spectral line shape of the localized surface plasmon resonance exhibited by the square nano-column array.
  • the resonance is the diffraction grating in the periodic structure and the local surface plasmon on the surface of the metal nano-column. Formed under the action. This interaction is greatly affected by the periodic arrangement of the array (most importantly the size of the period).
  • FIG. 4a is a theoretical simulated transmission spectrum of the nano-column arrays of different periods, when the interval between the arrays of metal nano-pillars is At 250 nm, 350 nm, and 450 nm, respectively, the resonance wavelengths at the time of resonance are 750 nm, 850 nm, and 980 nm, respectively, and the transmission values of the transmission spectra corresponding to the above resonance wavelengths are 18%, 4%, and 1%, respectively;
  • FIG. 4b is an embodiment of the present invention.
  • the transmission spectra of the nano-column arrays of different periods are provided.
  • the periods of the spacing between the metal nano-column arrays are 250 nm, 350 nm, and 450 nm, respectively
  • the resonance wavelengths at the resonances are 760 nm, 910 nm, and 1090 nm, respectively, and the transmission spectra corresponding to the above resonance wavelengths are respectively obtained.
  • the transmission values are 38%, 255%, and 40%, respectively.
  • the surface plasmon resonance trough varies in the transmission spectrum with the period of the interval between the metal nanocolumn arrays, and the larger the period, the larger the resonance wavelength.
  • the peak value of the resonance trough of the transmission spectrum plays a role of amplification and enhancement with respect to the theoretical simulation value.
  • the plasmon resonance occurs through the metal nanocolumn array and the absorption spectrum of the impurity in the aqueous solution to be tested, thereby greatly increasing the water S3: determining impurities in the aqueous solution to be tested according to the resonance wavelength of the transmission spectrum.
  • the impurities of the aqueous solution to be tested respectively correspond to different resonance wavelengths, and the type of impurities in the aqueous solution to be tested is obtained according to the resonance wavelength of the obtained transmission spectrum.
  • Embodiments of the present invention provide an enhanced effect diagram of a glucose absorption spectrum.
  • the upper diagram in FIG. 5 is an enhancement effect diagram of the glucose absorption spectrum, wherein the solid line in the figure is a theoretical simulation value, and the broken line is an absorption value based on the method provided by the embodiment of the present invention, if the absorption peak is to be The local spectral amplification of the nearby spectral line will be more obvious.
  • the corresponding enhancement effect is about 2 to 3 times on average.
  • the relationship between the absorption spectrum, the transmission spectrum and the reflection spectrum is one of three.
  • the aqueous solution to be tested is uniformly dispersed in the array of metal nanocolumns.
  • the absorption spectrum of different substances in the aqueous solution to be tested can be coupled with the surface plasmon resonance corresponding to the array of metal nanopillars. It has a strong enhancement effect, so that the original low content can also be detected accurately, and the absorption spectra of different substances are different. Therefore, the aqueous solution to be tested can be sounded by one spectral detection, and the whole detection process is efficient. Time saving, easy operation and high precision.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种基于表面增强的水质检测方法,方法包括:S1:将待测水溶液置于金属纳米柱阵列的夹层中,光源从三角棱镜的一边入射,并在所述三角棱镜的另一边接收所述光源的反射光;S2:改变所述金属纳米柱阵列之间间隔的周期,根据接收到的反射光以及通过有限时域差分计算得到不同周期对应的透射光谱;S3:根据所述透射光谱的共振波长判断待测水溶液中的杂质。采用有限时域差分计算透过位于纳米柱阵列夹层的待测水溶液的反射光,得到的透射光谱的波谷值比理论的模拟值要大。通过金属纳米柱阵列发生等离子共振与待测水溶液中的杂质的吸收光谱相作用,对透射光谱的波谷值起增强作用,从而大幅度提高了水质检测的精度。

Description

基于表面增强的水质检测方法 技术领域
背景技术
随着经济社会的快速发展, 人们生活水平逐渐提高, "健康饮水" 的生活意识也不断提升。 人们对饮用水源一般只能从浊度、 味觉、 嗅 觉等方面对水质进行检测。
传统的水质检测技术通常采用指示剂滴定法和电解器水质检验 法。 其中指示剂滴定法主要通过使用不同的化学试剂滴入待测水溶液 中, 通过反应后的颜色来判断待检物的 PH值(即酸碱度)。
然而对于传统水质检测技术, 无法实现实时检测, 只能将相关的 测试样品带到实验室用齐全的设备加上复杂的化学反应进行检测, 因
发明内容
(一)解决的技术问题
本发明解决的技术问题是: 如何提供一种基于表面增强的水质检 测方法, 提高水质检测的精度。
(二)技术方案
为解决上述技术问题, 本发明实施例提供了一种基于表面增强的 S1 : 将待测水溶液置于金属纳米柱阵列的夹层中, 光源从三角棱 镜的一边入射, 并在所述三角棱镜的另一边接收所述光源的反射光;
S2: 改变所述金属纳米柱阵列之间间隔的周期, 根据接收到的反 射光以及通过有限时域差分计算得到不同周期对应的透射光谱; S3: 根据所述透射光谱的共振波长判断待测水溶液中的杂质。 优选地, 所述金属纳米柱阵列的夹层的高度为所述金属纳米柱阵 所述三角棱镜除步骤 S1中两个边以外的边与所述金属纳米柱阵列 垂直固定, 所述金属纳米柱阵列与衬底垂直固定。
优选地, 所述金属纳米柱阵列之间形成间隔周期相等。
优选地, 所述金属纳米柱阵列的高度为 150nm~750nm。
(三)有益效果
本发明通过提供一种基于表面增强的水质检测方法, 采用有限时 域差分法计算透过位于金属纳米柱阵列夹层的待测水溶液的反射光, 得到的透射光谱的波谷值比理论的模拟值要大。 通过金属纳米柱阵列 发生等离子共振与待测水溶液中的杂质的吸收光谱相作用, 对透射光 谱的波谷值起到放大和增强作用, 从而大幅度提高了水质检测的精度。 附图说明
图 1是本发明实施例提供的方法流程图;
图 2是本发明实施例提供的纳米柱结构示意图;
图 3是本发明实施例提供的水质检测装置;
图 4a为不同周期纳米柱阵列的理论模拟透射光谱;
图 4b 为本发明实施例提供的不同周期金属纳米柱阵列的透射光 谱;
图 5本发明实施例提供的葡萄糖吸收光谱的增强效果图。 具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面 将对实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显 而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普 通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附 图获得其他的附图。 实施例 1:
本发明实施例还提供了一种基于表面增强的水质检测方法, 方法 流程图如图 1所示, 包括:
S1 : 将待测水溶液置于金属纳米柱阵列的夹层中, 光源从三角棱 镜的一边入射, 并在所述三角棱镜的另一边接收所述光源的反射光; 其中, 纳米柱结构示意图如图 2所示, 该结构包括纳米柱结构以 及三角棱镜 2。 其中, 纳米柱结构如图 3所示, 包括衬底 3和在所述衬 底 3的一侧形成的金属纳米柱阵列 4。 所述三角棱镜 2的一个边与所述 金属纳米柱阵列远离所述衬底的一侧紧贴, 形成待测水溶液夹层 1, 该待测水溶液夹层 1 即为金属纳米柱阵列的夹层。 所述金属纳米柱阵 列的夹层的高度为所述金属纳米柱阵列的高度; 所述三角棱镜除步骤 S1中两个边以外的边与所述金属纳米柱阵列垂直固定, 所述金属纳米 柱阵列与衬底垂直固定。 所述金属纳米柱阵列的高度为
150nm~750nm, 在本发明实施例中采用金属纳米柱阵列为 180nm的高 度进行测量。
所述纳米柱结构的形成过程为: 首先通过使用电子束蒸镀 ( electron-beam evaporation )的方法将一定厚度(在本发明中为 180纳 米 )的银 (silver, Ag)沉积在石英 (quartz)衬底 3上, 然后通过使用激光全 息光刻技术( interference lithography )制备得到大面积的金属纳米柱阵 列 4功能区域。
在实际检测时, 待测水溶液需要置于水质检测装置的待测水溶液 夹层内, 对于该待测水溶液夹层的封闭性根据实际情况具体设置, 本 发明实施例在此不作赘述。
光源作为入射光从三角棱镜的不与金属纳米柱阵列垂直固定的一 边入射, 经过三角棱镜、 待测水溶液进行反射后得到反射光, 反射光 从不与金属纳米柱阵列垂直固定的另一边射出, 利用接收器对该反射 光进行接收。
S2: 改变金属纳米柱阵列之间间隔的周期, 根据接收到的反射光 以及通过有限时域差分计算得到不同周期对应的透射光谱;
一般来说, 基于不同的金属纳米柱间距 (inter-rod spacing), 即金属 纳米柱阵列之间形成间隔的周期, 在本发明实施例中以下简称金属纳 米柱阵列周期, 有两种不同的耦合体系, 分别叫做弱耦合体系 (weak coupling regime)和强賴合体系 (strong coupling regime)。对于相对较大的 金属纳米柱阵列周期, 远场偶极相互作用占主导地位。 当金属纳米柱 阵列周期明显地减小时, 相邻的金属纳米柱能够激发出很强的近场耦 合。 对于正方形结构的金属纳米柱阵列, 这种柱与柱之间的耦合作用 可以用双极子 (dipole)模型来估计。 金属纳米柱阵列也可以为圆柱形。 双极子模型可以很好地解释正方形的纳米柱阵列所呈现的局域表面等 离子体共振的谱线线形, 共振是在周期结构的衍射光栅和局限于金属 纳米柱表面的局域表面等离子体相互作用下形成的。 这种相互作用受 到阵列的周期布置的极大影响 (最主要的则是周期的大小)。
所述金属纳米柱阵列之间形成间隔周期相等。 当对金属纳米柱阵 列之间间隔的周期进行调整时, 则共振波长不同, 如图 4所示, 图 4a 为不同周期纳米柱阵列的理论模拟透射光谱, 当金属纳米柱阵列之间 间隔的周期分别为 250nm、 350nm和 450nm时, 共振发生时共振波长 分别为 750nm、 850nm和 980nm, 上述共振波长对应的透射光谱的透 射值分别为 18%、 4%和 1%; 图 4b为本发明实施例提供的不同周期纳 米柱阵列的透射光谱, 当金属纳米柱阵列之间间隔的周期分别为 250nm、350nm和 450nm时,共振发生时共振波长分别为 760nm、910nm 和 1090nm, 上述共振波长对应的透射光谱的透射值分别为 38 %、 25 %和 40 %。
由图 4 中的两个图可以得出, 基于表面等离子共振波谷在透射光 谱中随着金属纳米柱阵列之间间隔的周期的变化而变化, 周期越大, 共振波长越大。 本发明实施例中, 透射光谱的共振波谷的峰值相对于 理论模拟值起到放大和增强的作用。 通过金属纳米柱阵列发生等离子 共振与待测水溶液中的杂质的吸收光谱相作用, 从而大幅度提高了水 S3: 根据所述透射光谱的共振波长判断待测水溶液中的杂质。 其中, 待测水溶液的杂质分别对应不同的共振波长, 根据得到的 透射光谱的共振波长, 获知待测水溶液中的杂质类型。
本发明实施例提供了葡萄糖吸收谱的增强效果图。 如图 5所示, 图 5 中上部图为葡萄糖吸收光谱的增强效果图, 其中, 图中实线为理 论模拟值, 虛线为基于本发明实施例提供的方法的吸收值, 如果将吸 收峰附近的谱线进行局部放大, 这种增强作用会更为明显, 如图 5 下 部图所示, 可以看出相应的增强效应平均约为 2 ~ 3倍左右。 其中, 吸 收光谱、 透射光谱和反射光谱的关系为三者之和为 1。
在检测过程中, 待测水溶液均匀分散在金属纳米柱阵列中, 在光 谱测试过程中, 待测水溶液中的不同物质的吸收光谱可以和金属纳米 柱阵列所对应的表面等离子共振相耦合, 起到很强的增强作用, 使得 原本含量很低的物质也可以被准确无误的检测出来, 并且, 不同的物 质对应的吸收光谱不同, 因此, 可以通过一次光谱检测把待测水溶液 响, 整个检测过程高效、 省时、 易操作、 精度高。 以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关 技术领域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各种变化和变型, 因此所有等同的技术方案也属于本发明 的范畴, 本发明的专利保护范围应由权利要求限定。

Claims

权 利 要 求 书
1、 一种基于表面增强的水质检测方法, 其特征在于, 所述方法包 S1 : 将待测水溶液置于金属纳米柱阵列的夹层中, 光源从三角棱 镜的一边入射, 并在所述三角棱镜的另一边接收所述光源的反射光;
S2: 改变所述金属纳米柱阵列之间间隔的周期, 根据接收到的反 射光以及通过有限时域差分计算得到不同周期对应的透射光谱;
S3: 根据所述透射光谱的共振波长判断待测水溶液中的杂质。
2、 如权利要求 1所述的方法, 其特征在于, 所述金属纳米柱阵列 的夹层的高度为所述金属纳米柱阵列的高度;
所述三角棱镜除步骤 S1中两个边以外的边与所述金属纳米柱阵列 垂直固定, 所述金属纳米柱阵列与衬底垂直固定。
3、 如权利要求 1所述的方法, 其特征在于, 所述金属纳米柱阵列 之间形成间隔周期相等。
4、 如权利要求 1所述的方法, 其特征在于, 所述金属纳米柱阵列
PCT/CN2014/082507 2013-09-02 2014-07-18 基于表面增强的水质检测方法 WO2015027777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310393258.8 2013-09-02
CN2013103932588A CN103439277A (zh) 2013-09-02 2013-09-02 基于表面增强的水质检测方法

Publications (1)

Publication Number Publication Date
WO2015027777A1 true WO2015027777A1 (zh) 2015-03-05

Family

ID=49692978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082507 WO2015027777A1 (zh) 2013-09-02 2014-07-18 基于表面增强的水质检测方法

Country Status (2)

Country Link
CN (1) CN103439277A (zh)
WO (1) WO2015027777A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105675536B (zh) * 2016-01-19 2018-05-04 首都师范大学 用于THz-TDS系统的金属光栅表面等离子体效应生物检测芯片
US11118974B2 (en) 2017-07-19 2021-09-14 Hewlett-Packard Development Company, L.P. Spectroscopic device including design groups
CN114199377B (zh) * 2021-08-23 2023-12-05 南开大学 一种近红外纳米增强光谱仪

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671981B1 (en) * 2006-06-27 2010-03-02 Axsun Technologies, Inc. System for spectroscopic carpet identification
CN101929956A (zh) * 2010-07-29 2010-12-29 浙江大学 一种基于表面等离子体共振与生物传感的水芯片
WO2012077756A1 (ja) * 2010-12-08 2012-06-14 公立大学法人大阪府立大学 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法
CN103149616A (zh) * 2013-01-31 2013-06-12 东北大学秦皇岛分校 反射型纳米柱表面等离子体滤光器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671981B1 (en) * 2006-06-27 2010-03-02 Axsun Technologies, Inc. System for spectroscopic carpet identification
CN101929956A (zh) * 2010-07-29 2010-12-29 浙江大学 一种基于表面等离子体共振与生物传感的水芯片
WO2012077756A1 (ja) * 2010-12-08 2012-06-14 公立大学法人大阪府立大学 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法
CN103149616A (zh) * 2013-01-31 2013-06-12 东北大学秦皇岛分校 反射型纳米柱表面等离子体滤光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, HONGYING ET AL.: "Fundamentals and Application Advances in Attenuated Total Internal Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR", JOURNAL OF THE GRADUATES SUN YAT-SEN UNIVERSITY ( NATURAL SCIENCES.MEDICINE, vol. 32, no. 1, 31 December 2011 (2011-12-31), pages 21 *

Also Published As

Publication number Publication date
CN103439277A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
Kong et al. Logarithmic data processing can be used justifiably in the plotting of a calibration curve
CN105190295B (zh) 用于细菌监测的方法和设备
Pour et al. Use of a hydrogel polymer for reproducible surface enhanced Raman optical activity (SEROA)
Pal et al. A miniaturized nanobiosensor for choline analysis
WO2014017430A1 (ja) 被測定物の測定方法
WO2011061944A8 (ja) 蛍光免疫測定方法
WO2015027777A1 (zh) 基于表面增强的水质检测方法
CN104458660B (zh) 基于透射式多孔硅光子晶体微腔角度检测装置的生物分子检测方法
Zhang et al. Ultrasensitive detection of lead (II) ion by dark-field spectroscopy and glutathione modified gold nanoparticles
CN105717058B (zh) 一种基于紫外吸收预测氯化消毒副产物三氯乙醛生成量的方法
CN102435587B (zh) 纳米金共振散射光谱法快速测定水中亚硝酸盐的方法
CN111693494B (zh) 一种基于CNTs超表面的THz波传感器、制备方法及其用途
Sun et al. Surface plasmon resonance alcohol sensor with Ni (OH) 2 nanoflowers/Au structure
CN104034693B (zh) 一种基于反射光强的多孔硅微腔生物传感器检测生物分子的方法
CN112051237A (zh) 一种用于检测禽流感病毒的生物传感器及其制备方法
Chi et al. Ultrasensitive photoelectrochemical biosensing platform based target-triggered biocatalytic precipitation reactions on a flower-like Bi 2 O 2 S super-structured photoanode
CN104406936A (zh) 一种基于多孔硅的阵列生物芯片及其制备方法和应用
Wan et al. SERS-based error calibration of a TMB–H 2 O 2 colorimetric system
CN105388196B (zh) 一种检测铅的生物传感器及检测方法
CN110186888B (zh) 一种选择性定量检测碘离子的方法及应用
CN107589085B (zh) 一种用适配体调控纳米二氧化硅活性-吸收光谱测定Hg2+的方法
CN108051417B (zh) 一种食用槟榔卤水的荧光检验方法
CN110862478A (zh) 一种基于酶促反应的可视化重金属传感器及其制备方法
Zhang et al. Highly sensitive fiber-optic chemical pH sensor based on surface modification of optical fiber with ZnCdSe/ZnS quantum dots
CN109916860B (zh) 一种双束p偏振棱镜SPR重金属离子传感器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.06.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14840273

Country of ref document: EP

Kind code of ref document: A1