JP5822239B2 - 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法 - Google Patents

金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法 Download PDF

Info

Publication number
JP5822239B2
JP5822239B2 JP2012547909A JP2012547909A JP5822239B2 JP 5822239 B2 JP5822239 B2 JP 5822239B2 JP 2012547909 A JP2012547909 A JP 2012547909A JP 2012547909 A JP2012547909 A JP 2012547909A JP 5822239 B2 JP5822239 B2 JP 5822239B2
Authority
JP
Japan
Prior art keywords
metal
substance
detected
spectrum
metal nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012547909A
Other languages
English (en)
Other versions
JPWO2012077756A1 (ja
Inventor
志保 床波
志保 床波
琢也 飯田
琢也 飯田
陽二郎 山本
陽二郎 山本
椎木 弘
弘 椎木
長岡 勉
勉 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture University
Original Assignee
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture University filed Critical Osaka Prefecture University
Priority to JP2012547909A priority Critical patent/JP5822239B2/ja
Publication of JPWO2012077756A1 publication Critical patent/JPWO2012077756A1/ja
Application granted granted Critical
Publication of JP5822239B2 publication Critical patent/JP5822239B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、金属ナノ粒子集積構造体を利用して被検出物質を検出するための装置および方法に関する。
近年、体外診断方法では、金コロイドの局在表面プラズモン共鳴による発色を利用した診断方法が提案されている。たとえばイムノクロマト法において、金コロイドに抗体を固定した標識粒子を用いる方法が提案されている。この方法によれば、被検出物質である抗原が試料に含まれる場合に、その抗原と標識粒子とが結合した複合体が形成される。複合体は移動層を展開して判定部位の抗体に捕捉される。これにより判定部位が赤く発色する。判定部位において発色が見られるかどうかを確認することによって、抗原の有無を確認することができる。
たとえば特開2009−210505号公報(特許文献1)は、上記のイムノクロマト法への適用を目的とした免疫学的測定キットを開示している。たとえば特表2005−533246号公報(特許文献2)は、標的分子の識別に使用される表面増強共鳴ラマン散乱(SERRS)活性ビーズを開示する。このビーズは、ポリマーシェル内にカプセル化された凝集金属コロイドおよび少なくとも1つのSERRS活性染料を含む。
特開2009−210505号公報 特表2005−533246号公報
被検出物質の検出感度を高める技術、言い換えれば微量の被検出物質を検出可能な技術に対する要望が常に存在する。特開2009−210505号公報(特許文献1)に開示の方法によれば、判定部位の発色を確認することによって抗原の有無を簡易に確認することが可能となる。しかし、発色の有無を目視によって確認するためには、試料中の被検出物質の濃度がある程度高く、大量の被検出物質が必要になると考えられる。
本発明の目的は、微量の被検出物質を検出可能な装置および方法を提供し、上記課題の解決に資することである。
本発明のある局面に従う被検出物質の検出装置は、試料に含まれる可能性がある被検出物質の検出装置である。検出装置は、被検出物質を特異的に付着可能な第1のホスト分子で修飾された金属ナノ粒子が集積されることにより形成された、金属ナノ粒子集積構造体と、被検出物質を特異的に付着可能な第2のホスト分子で修飾された金属ナノ構造体とを備える。
好ましくは、検出装置は、金属ナノ粒子集積構造体を固定するための基板をさらに備える。
好ましくは、検出装置は、試料に金属ナノ粒子集積構造体と金属ナノ構造体とが導入された状態において試料を照射するための第1の光源と、試料のスペクトルを測定するための分光器と、分光器で測定されたスペクトルに基づいて、被検出物質を検出する検出器とをさらに備える。
好ましくは、第1の光源は、白色光を発する。
好ましくは、第1の光源は、金属ナノ粒子集積構造体または金属ナノ構造体の局在表面プラズモン共鳴のピークの半値全幅の2倍に対応する、1またはいくつかの領域に係る、実質的に単色の光を発する。
好ましくは、検出装置は、試料に偏光を照射する第2の光源をさらに備える。
好ましくは、分光器により測定されるスペクトルは、局在表面プラズモン共鳴の消衰スペクトルである。消衰スペクトルとは、散乱スペクトルと吸収スペクトルとを足し合わせたものである。
好ましくは、分光器により測定されるスペクトルは、表面増強ラマン散乱(SERS)スペクトルである。
好ましくは、金属ナノ粒子集積構造体は、金属ナノ粒子が固定された表面を有するビーズを含む。金属ナノ構造体は、金属ナノロッドである。
好ましくは、金属ナノロッドの短軸の長さは1nm以上である。金属ナノロッドのアスペクト比を短軸の長さに対する金属ナノロッドの長軸の比と定義すると、アスペクト比は、1よりも大きい値である。
好ましくは、金属ナノ粒子集積構造体の金属ナノ粒子と金属ナノロッドとは、同じ種類の金属により形成される。
好ましくは、金属ナノ粒子集積構造体の金属ナノ粒子と金属ナノロッドとは、互いに異なる種類の金属により形成される。
好ましくは、被検出対象物質は、抗原である。第1および第2のホスト分子は、抗原と抗原抗体反応を起こす抗体である。
本発明の他の局面に従う被検出物質の検出方法は、試料に含まれる可能性がある被検出物質の検出方法である。検出方法は、試料に金属ナノ粒子集積構造体と金属ナノ構造体とを導入するステップを備える。金属ナノ粒子集積構造体は、金属ナノ粒子が集積されることにより形成される。金属ナノ粒子は、被検出物質を特異的に付着可能な第1のホスト分子で修飾される。金属ナノ構造体は、被検出物質を特異的に付着可能な第2のホスト分子で修飾される。検出方法は、試料に光を照射するステップと、試料のスペクトルを測定するステップと、スペクトルに基づいて、被検出物質を検出するステップとをさらに備える。
好ましくは、光を照射するステップは、試料に偏光を照射して金属ナノ粒子集積構造体および金属ナノ構造体を集めるステップを含む。
好ましくは、光を照射するステップは、試料に白色光を照射するステップを含む。
好ましくは、光を照射するステップは、試料に、金属ナノ粒子集積構造体または金属ナノ構造体の局在表面プラズモン共鳴のピークの半値全幅の2倍に対応する、1またはいくつかの領域に係る、実質的に単色の光を照射するステップを含む。
好ましくは、スペクトルは、局在表面プラズモン共鳴の消衰スペクトルである。
好ましくは、スペクトルは、表面増強ラマン散乱(SERS)スペクトルである。
本発明のさらに他の局面に従う被検出物質の検出方法は、金属ナノ粒子が固定された表面を有するビーズに被検出物質を特異的に付着させて、局在表面プラズモン共鳴の消衰スペクトルを測定する、被検出物質の検出方法である。
本発明のさらに他の局面に従う被検出物質の検出方法は、金属ナノ粒子が固定された表面を有するビーズに被検出物質を特異的に付着させて、表面増強ラマン散乱(SERS)スペクトルを測定する、被検出物質の検出方法である。
本発明によれば、微量の被検出物質を検出可能な装置および方法を提供することができる。
本発明の実施の形態に用いられる金属ナノ粒子集積構造体の模式的構造を示した図である。 金属ナノ粒子集積構造体の一例の走査型電子顕微鏡(SEM)写真である。 本発明の実施の形態に係る金属ナノ粒子集積構造体10の消衰スペクトルの測定結果と、局在表面プラズモン共鳴の消衰スペクトルの計算結果とを示した図である。 局在表面プラズモン共鳴の消衰、散乱および吸収スペクトルを計算するための二次元モデルを示した図である。 図4に示された二次元モデルの粒子の個数Nを96に設定した場合における、局在表面プラズモン共鳴の消衰スペクトル、散乱スペクトルおよび吸収スペクトルを計算した結果を示した図である。 図4に示された二次元モデルの粒子の個数Nを288に設定した場合における、局在表面プラズモン共鳴の消衰スペクトル、散乱スペクトルおよび吸収スペクトルを計算した結果を示した図である。 図4に示された二次元モデルの粒子の個数Nを576に設定した場合における、局在表面プラズモン共鳴の消衰スペクトル、散乱スペクトルおよび吸収スペクトルを計算した結果を示した図である。 本発明の実施の形態に係る被検出物質の検出方法を模式的に説明した図である。 金属ナノロッド結合体の消衰スペクトルを計算するための二次元モデルを示した図である。 図9に示した金属ナノロッド結合体のモデルを用いて消衰スペクトルを計算した結果を示した図である。 金属ナノ粒子集積構造体10のサイズが大きい場合の計算モデルを示した図である。 図11に示した金属ナノロッド結合体のモデルを用いて消衰スペクトルを計算した結果を示した図である。 相対的に大きな半径を有する金属ナノ粒子集積構造体に金属ナノロッドが結合した状態を模式的に示した図である。 相対的に小さな半径を有する金属ナノ粒子集積構造体(ビーズ)に金属ナノロッドが結合した状態を模式的に示した図である。 金ナノロッドの消衰スペクトルの測定結果を示した図である。 消衰スペクトルの測定に使用した金ナノロッドの透過型電子顕微鏡(TEM)写真である。 図16に示された金ナノロッドの三次元モデル(円柱状)を示した図である。 図17に示された金ナノロッドの三次元モデルを用いて消衰スペクトルを計算した結果を示した図である。 金属ナノ粒子が固定化されたビーズの三次元モデルを説明するための図である。 銀ナノ粒子固定化ビーズの電子顕微鏡写真である。 図20に示した銀ナノ粒子固定化ビーズの計算モデルを示した図である。 銀ナノ粒子固定化ビーズの消衰スペクトルの計算結果と、金ナノロッドの消衰スペクトルの計算結果とを示した図である。 本発明の1つの実施の形態に係る検出装置の概略的構成を示したブロック図である。 キットに固定された金属ナノ粒子集積構造体の模式図である。 本発明の1つの実施の形態に係る被検出物質の検出方法を説明したフローチャートである。 本発明の1つの実施形態に係る検出装置の構成を示した図である。 図26に示した光プローブ107を用いた、物質の検出を説明するための模式図である。 金属ナノ粒子集積構造体を固定する基板を保持するためのホルダの1つの例を示した分解図である。 図28に示したベース120Aと押さえ部材120Bとによって基板21を保持した状態を示した図である。 図29に示されたホルダ120の開口部付近の概略を示した拡大図である。 光誘起力によって2つの金属ナノ粒子の間に作用する引力を説明するための図である。 光誘起力によって2つの金属ナノ粒子の間に作用する斥力を説明するための図である。 偏光による4つのナノ粒子の配列を模擬した結果を示した図である。 本発明の他の実施の形態に従う検出装置を示した図である。 図19に示されたモデルを用いた消衰スペクトルの計算結果を示した図である。 銀ナノ粒子固定化ビーズによる電場増強の効果を説明するための図である。 金属ナノ粒子集積構造体によって金属ナノロッド16が固定化された三次元モデルを説明するための図である。 図37に示したモデルの拡大図である。 図37および図38に示されたモデルにより増強された光電場の強度を計算した結果を示した図である。 入射光のみによる光電場の強度を計算した結果を示した図である。 銀ナノ粒子固定化ビーズに結合する金ナノロッドの個数による消衰スペクトルのピークの変化を示した図である。 銀ナノ粒子固定化ビーズと金ナノロッドとの結合体の組を暗視野顕微鏡で観測することにより得られた消衰スペクトルを示した図である。
以下において、本発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
本発明およびその実施の形態において、「金属ナノ粒子集積構造体」とは、複数の金属ナノ粒子が集積することによって形成された構造体である。「金属ナノ粒子」とは、ナノメートルのオーダーのサイズを有する金属粒子である。「ナノメートルのオーダー」とは1から数百ナノメートルの範囲を含み、典型的には1〜100nmの範囲であり、好ましくは、1〜50nmの範囲である。
本発明およびその実施の形態において、「金属ナノ構造体」とは、ナノメートルのオーダーのサイズを有する金属の構造体である。金属ナノ粒子が集積することによって形成された構造体も金属ナノ構造体に含みうる。
本発明およびその実施の形態において「ホスト分子」とは、被検出物質を特異的に付着させることができる分子である。被検出物質を特異的に付着させることのできるホスト分子と被検出物質との組み合わせについては、例えば、抗原と抗体、糖鎖とタンパク質、脂質とタンパク質、低分子化合物(リガンド)とタンパク質、タンパク質とタンパク質、一本鎖DNAと一本鎖DNAなどが挙げられる。これらの特異的親和性を有する両者のうちいずれか一方が被検出物質である場合に、他方をホスト分子として用いることができる。すなわち、抗原が被検出物質である場合は、ホスト分子として抗体を用いることができる。逆に抗体が被検出物質である場合には、ホスト分子として抗原を用いることができる。また、DNAのハイブリダイゼーションにおいては、被検出物質が検体DNAであり、ホスト分子がプローブDNAである。また、「抗原」は、アレルゲン、ウィルスを含みうる。また、本発明およびその実施の形態によれば、抗体の種類を変えることによって、検出可能なアレルゲンあるいはウィルスの種類を変えることもできる。したがって本発明およびその実施の形態により検出可能なアレルゲンあるいはウィルスの種類は特に限定されるものではない。
さらに、本発明およびその実施の形態において、被検出物質は、生体分子に限定されない有機分子であってもよい。
さらに、本発明およびその実施の形態において、被検出物質は重金属イオンであってもよい。この場合には、重金属イオンを捕集可能な分子をホスト分子に利用することができる。
「第1のホスト分子」および「第2のホスト分子」は、被検出物質の異なる部位に特異的に付着しうるホスト分子である。たとえば抗原が被検出物質である場合、第1のホスト分子は一次抗体であり、第2のホスト分子は二次抗体である。
本発明およびその実施の形態において、「白色光」との用語は、可視域を含む紫外域〜近赤外域の波長範囲(たとえば200nm〜1100nmの波長範囲)を有する連続光、またはパルス光を意味する。
本発明およびその実施の形態において、「単色光」との用語は、金属ナノ粒子集積構造体または金属ナノ構造体の局在表面プラズモン共鳴のピークの半値全幅の2倍に対応する領域内の波長を有する光である。局在表面プラズモン共鳴のピークの半値全幅の2倍に対応する領域の数は1つでもよく、複数でもよい。
本発明およびその実施の形態において、「偏光」との用語は、光電磁波の伝播方向に垂直な電場ベクトルを意味する。
本発明およびその実施の形態において、「試料」とは被検出物質を含む物質または被検出物質を含む可能性がある物質を意味する。試料は、たとえば動物(たとえばヒト、ウシ、ウマ、ブタ、ヤギ、ニワトリ、ラット、マウスなど)からの生体試料でありうる。生体試料は、たとえば、血液、組織、細胞、分泌液、体液等を含みうる。なお、「試料」はそれらの希釈物を含んでもよい。
本発明およびその実施の形態において、「媒質」とは金属ナノ粒子集積構造体の存在する環境を意味する。
<金属ナノ粒子集積構造体>
図1は、本発明の実施の形態に用いられる金属ナノ粒子集積構造体の模式的構造を示した図である。図2は、金属ナノ粒子集積構造体の一例の走査型電子顕微鏡(SEM)写真である。
図1および図2を参照して、金属ナノ粒子集積構造体10は、ビーズ11および金属ナノ粒子12を有する。金属ナノ粒子12はビーズ11の表面を覆い、かつビーズ11の表面に固定化される。これにより、金属ナノ粒子12の集積構造体が形成される。
ビーズの平均粒径は、サブマイクロオーダーあるいはマイクロオーダーであり、たとえば0.1〜100μm、より好ましくは、0.1〜10μmである。
ビーズ11は、樹脂粒子である。所望の粒径を有する粒子を形成可能であれば、ビーズ11の材料は特に限定されない。ビーズ11に使用される材料は、たとえばアクリル、ポリオレフィン、ポリエチレン、ポリプロピレン、ポリスチレンなどの樹脂であるがこれらに限定されない。
樹脂を微粒子化する方法は、当該分野において使用されうる任意の方法が使用可能であり、たとえば、モノマーキャスティング、懸濁重合、溶融スピンコート、超遠心、超音波などの方法が樹脂の種類に応じて適宜選択される。
金属ナノ粒子は、局在表面プラズモン共鳴を起こしうる金属ナノ粒子である。金属ナノ粒子としてたとえば金ナノ粒子が挙げられる。後に詳細に説明するように、金ナノ粒子に可視〜近赤外域の光を照射した場合、金ナノ粒子の表面では局在表面プラズモン共鳴が誘起される。局在表面プラズモン共鳴を起こしうる金属ナノ粒子であれば、金ナノ粒子以外の金属ナノ粒子も本発明に適用できる。そのような金属ナノ粒子の1つの他の例は、たとえば銀ナノ粒子である。この実施の形態では、これら金ナノ粒子および銀ナノ粒子を採用する。
金属ナノ粒子の平均粒径は、サブナノオーダー〜ナノオーダー(約2nm〜1000nm)であり、たとえば2〜500nm、好ましくは、2〜100nm、より好ましくは、5〜50nmでありうる。
ビーズ11の表面への金属ナノ粒子の固定は、ビーズ11表面に存在する金属ナノ粒子と相互作用し得る部位を介し得る。「相互作用」とは、化学結合、ファンデルワールス力、静電的相互作用、疎水性相互作用および吸着力などをいう。金属ナノ粒子が金ナノ粒子である場合には、金と相互作用し得る部位(基)としては、たとえばチオール基が挙げられるがこれに限定されるものではない。相互作用部位は、たとえばビーズ11の表面に予め形成させてもよく、金コロイドの表面に予め形成させてもよい。
金属ナノ粒子をビーズの表面に固定化するための方法として、種々の公知の方法を用いることができる。たとえば金ナノ粒子をビーズの表面に固定化する場合には、ビーズを金ナノ粒子分散液に混合し、その金ナノ粒子分散液を攪拌または静置してもよい。金ナノ粒子分散液は、任意選択的に有機バインダを含んでいてもよい。固定反応温度は、反応期間中に分散液が完全に凍結または蒸発しない温度であれば任意の温度でありうる。好ましくは、固定反応温度は、室温付近(たとえば10〜35℃)である。
金ナノ粒子分散液は、市販品を用いてもよく、金イオン(金錯体イオン)含有溶液および還元剤を用いて溶液内還元反応によって製造してもよい。たとえば、塩化金酸溶液にクエン酸を加えてもよい。
金属ナノ粒子集積構造体は基板上に固定されることが好ましい。ただし、金属ナノ粒子集積構造体は媒質(たとえば液体)中に分散してもよい。
図3は、本発明の実施の形態に係る金属ナノ粒子集積構造体10の消衰スペクトルの測定結果と、局在表面プラズモン共鳴の消衰スペクトルの計算結果とを示した図である。
図3を参照して、「実験」と示されたグラフは、金属ナノ粒子集積構造体の消衰スペクトルの測定結果を示す。この測定結果は、直径6μmのビーズに固定された金ナノ粒子に誘起された局在表面プラズモン共鳴によるものである。このグラフに示されるように、消衰スペクトルのピーク波長は約650nmである。
「計算」と示されたグラフは、局在表面プラズモン共鳴の消衰および吸収スペクトルの計算結果を示す。図4は、局在表面プラズモン共鳴の消衰、散乱および吸収スペクトルを計算するための二次元モデルを示した図である。
図4を参照して、平面上に円環状に配列されたN個の粒子を計算モデルに用いた。ρは、N個の粒子を円環状に配列することで形成された円の半径であり、ビーズ11の半径に相当する。
計算モデルでは、金属ナノ粒子の直径を30nmとし、隣接する2つの金属ナノ粒子の中心間距離を32.7nmとした。図4は、一例としてN=48に設定したモデルを示しているが、N=96、N=288およびN=576のモデルについて、消衰スペクトルおよび吸収スペクトルを計算した。N=96の場合における円の半径ρは500nmであり、N=288の場合における円の半径ρは1500nmであり、N=576の場合における円の半径ρは3000nmである。
この計算モデルを用いて、Maxwell方程式を離散化積分方程式として解くことで、局在表面プラズモン共鳴の消衰スペクトルおよび吸収スペクトルを計算できる。光吸収(Cabs)は、電流J、電場E、および感受率χによって、以下の式(1)に従って表わされる。
消衰スペクトルは、系全体に加わる光の伝播方向の散逸力から換算される。この散逸力は、光散乱および吸収に比例する(T. Iida, H. Ishihara "Nano-Optical Manipulation Using Resonant Radiation Force" Progress in Nano-Electro-Optics VI, M. Ohtsu 編集、Springer, Berlin 2008)。
図5は、図4に示された二次元モデルの粒子の個数Nを96に設定した場合における、局在表面プラズモン共鳴の消衰スペクトル、散乱スペクトルおよび吸収スペクトルを計算した結果を示した図である。図6は、図4に示された二次元モデルの粒子の個数Nを288に設定した場合における、局在表面プラズモン共鳴の消衰スペクトル、散乱スペクトルおよび吸収スペクトルを計算した結果を示した図である。図7は、図4に示された二次元モデルの粒子の個数Nを576に設定した場合における、局在表面プラズモン共鳴の消衰スペクトル、散乱スペクトルおよび吸収スペクトルを計算した結果を示した図である。
図5〜図7を参照して、消衰スペクトル、吸収スペクトルおよび散乱スペクトルの各々のピークの位置は、ビーズの直径が変化してもほとんど変化しないことが分かる。したがって、消衰スペクトル、吸収スペクトルおよび散乱スペクトルのいずれを検出してもよい。なお、図5〜図7に示した散乱スペクトルは、(消衰)=(吸収)+(散乱)の関係に従って計算されたものである。
図3、図5〜図7の計算結果からも分かるように、局在表面プラズモンのスペクトル上のピーク位置は、消衰スペクトル、散乱スペクトル、吸収スペクトルのいずれにおいてもほぼ同じであるので、本発明では、消衰スペクトル、散乱スペクトル、吸収スペクトルのうち、いずれのスペクトルを検出してもよい。
金属ナノ粒子は球状セルであると仮定する。応答光電場は、Maxwell方程式の積分形として表現できる。電場Eは以下の式(2)に従って表わされる。
i,jは球状セルの粒子番号である。M,Lは自己相互作用に関連する量である。
個々の金属構造体の内部での感受率および電場分布は平坦であるとする。誘起分極Piは以下の式(3)に従って表わされる(O. J. F. Martin, N. B. Piller, Phys. Rev. E 58 3909 (1998))。
個々の球状金属ナノ粒子内での感受率および電場分布は平坦であるとする。上記式(2)および式(3)を連立して、自己無撞着方程式を数値的に解いて得られる応答光電場および誘起分極の関数として、局在表面プラズモン共鳴の消衰、散乱および吸収のスペクトルが求められる。なお、感受率χにはDrudeモデルが適用される。感受率χは以下の式(4)に従って表わされる。
χは背景(非共鳴部分)の感受率を表わし、ωはプラズマエネルギーを表わし、γは非輻射緩和定数を示し、Vはフェルミ面上における電子速度を示す。非輻射緩和定数は励起された電子から光以外(たとえば熱)への緩和を示す値である。また、aは粒子の半径を示す。
計算では、ビーズ11および周囲の媒質の屈折率を、水の屈折率に近い1.33とした。また、非共鳴部分の比誘電率を11とした。プラズマエネルギーωpを8.958(eV)とした。非輻射緩和率γを72.3(meV)とした。フェルミ面上での電子速度Vfを0.922(nm・eV)とした。粒子の半径aを30(nm)とした。
図3、図5〜図7に戻り、N=96、N=288およびN=576のいずれの場合においても、「計算」と示されたグラフにおける吸収スペクトルおよび消衰スペクトルのピーク波長は、約650nmである。このことは上記理論および計算に基づく結果が実験結果をよく再現していることを示している。
また、この計算結果から、粒子間距離が一定であれば、ビーズ11の粒径(すなわち金属ナノ粒子集積構造体10のサイズ)が変化しても、消衰スペクトルおよび吸収スペクトルの両方のピーク波長がほとんど変化しないことが分かる。一方で、後で述べるように、粒子間距離(粒子密度)が狭まれば長波長シフトが大きくなり、粒子間距離が広がれば長波長シフトが小さくなる。
なお、計算結果では、波長650nm付近だけでなく波長500nm付近にも消衰スペクトルおよび吸収スペクトルのピークが生じているが、実験結果では、波長500nm付近には消衰スペクトルのピークは見られない。この理由は、金ナノ粒子がさまざまな粒子間距離で固定化されることによって、波長500nm付近から650nm付近までの様々な波長での消衰スペクトルのピークが重なりあったためと推測される。
図8は、本発明の実施の形態に係る被検出物質の検出方法を模式的に説明した図である。図8を参照して、本発明の実施の形態では、ホスト分子13で修飾された金属ナノ粒子集積構造体10と、ホスト分子17で修飾された金属ナノロッド16とを用いて被検出物質18を検出する。金属ナノロッド16は、金属ナノ構造体に相当する。図示の都合上、図8では、一部の金属ナノ粒子12がホスト分子13で修飾され、金属ナノロッド16の一部がホスト分子17で修飾されている。しかし、ホスト分子13は金属ナノ粒子集積構造体10の表面の全体を修飾してもよく、ホスト分子17も同様に金属ナノロッド16の表面の全体を修飾してもよい。
被検出物質18は、たとえばウィルスあるいはDNAである。ホスト分子13は一次抗体であり、ホスト分子17は二次抗体である。ウィルスと抗体との反応によって金属ナノ粒子集積構造体10と金属ナノロッド16とが結合される。これにより、消衰スペクトルの変化が生じる。したがって消衰スペクトルを測定することにより被検出物質18を検出することができる。
上記の通り、被検出物質18を介在してホスト分子13およびホスト分子17が結合される。この実施の形態によれば、ホスト分子13,17を適切に選択することによって様々な物質が検出可能である。一例では、被検出物質18は生体分子に限定されない有機分子である。別の例では、被検出物質18は、重金属イオンであり、ホスト分子13,17は、たとえば錯体分子のような、重金属イオンを捕集可能な分子である。
なお、以下の説明では、便宜上、被検出物質18によって結合された金属ナノ粒子集積構造体10および金属ナノロッド16を「金属ナノロッド結合体」と呼ぶことにする。
図9は、金属ナノロッド結合体の消衰スペクトルを計算するための二次元モデルを示した図である。図9を参照して、金属ナノロッド16は、一方向に配列された複数個の金属ナノ粒子12として表わされる。金属ナノロッド16の長軸方向の長さはL1であり、金属ナノロッド16の短軸方向の長さはL2である。
金属ナノロッド16のアスペクト比を、金属ナノロッド16の短軸方向の長さL2に対する金属ナノロッド16の長軸方向の長さL1の比と定義する。L1>L2であるので、アスペクト比(L1/L2)は1よりも大きい。
金属ナノロッド16は、被検出物質18(たとえばウィルスあるいはDNA)によって金属ナノ粒子集積構造体10に結合される。この状態における金属ナノロッド16の長軸方向および短軸方向をそれぞれx方向およびy方向とする。dは金属ナノ粒子集積構造体10と金属ナノロッド16との間の距離である。
このモデルに基づいて消衰スペクトルを計算した。消衰スペクトルの計算において、金属ナノ粒子12を金ナノ粒子とし、1個の金ナノ粒子の直径を30nmとした。金属ナノ粒子集積構造体10を形成する金属ナノ粒子12(金ナノ粒子)の個数Nを48とした。金属ナノ粒子集積構造体10の半径ρを365nmとした。この場合、金属ナノ粒子集積構造体10の隣接する2つの金属ナノ粒子12の間の中心間距離は47.8nmであり、それら隣接する2つの金属ナノ粒子12の間の表面間の最短距離は17.8nmである。
一方、金属ナノロッド16を形成する金属ナノ粒子12(金ナノ粒子)の個数を4とした。したがってL1は120nmであり、L2は30nmである。また、d=2nmとした。また、偏光5の偏光方向はx方向であり、偏光5の伝播方向は紙面に垂直の方向である。
図10は、図9に示した金属ナノロッド結合体のモデルを用いて消衰スペクトルを計算した結果を示した図である。図9および図10を参照して、金属ナノロッド16がない場合、すなわち金属ナノロッドが金属ナノ粒子集積構造体10に結合されていない場合には、波長550nm付近のみにピークが現れる。図3とピーク位置が異なる理由は、上記のように、粒子間距離が異なるためである。一方、金属ナノロッド16が金属ナノ粒子集積構造体10に結合することによって、波長550nm付近だけでなく波長650nm付近にもピークが現れる。波長650nm付近におけるピークは、金属ナノロッドが金属ナノ粒子集積構造体10に結合することによって発生した、金属ナノロッド結合体の長軸モードに対応するスペクトルの成分である。
金属ナノ粒子集積構造体10に結合される金属ナノロッドの個数が1個の場合、波長550nmでのピークと波長650nmでのピークとの比は、ピーク強度比(シグナル強度比)では約3:1と見積もられた。金属ナノ粒子集積構造体の体積の総和と1個の金属ナノロッドの体積との比は約12:1である。金属ナノ粒子集積構造体10に結合される金属ナノロッドの個数が1個から2個に増えるに従い、約650nm付近のピークが大きくなることが確認された。
すなわち図10に示した結果は、金属ナノロッド結合体の長軸モードに対応したピーク(図10の例では波長650nm付近のピーク)を消衰スペクトル中から検出することで、被検出物質18の検出が可能であることを示している。また、そのピークの大きさが、金属ナノ粒子集積構造体10に結合される金属ナノロッドの個数に依存することを表わす。金属ナノ粒子集積構造体10に結合される金属ナノロッドの個数は、試料に含まれる被検出物質の量に依存する。したがって、試料中の被検出物質の濃度が高いほど、金属ナノロッド結合体の長軸モードに対応したピークが大きくなる。
しかしながら、被検出物質の検出感度がより高いことが望まれる。このため、本実施の形態では、金属ナノ粒子集積構造体10を小さくすることが好ましい。金属ナノ粒子を固定化するためのビーズが小さいほど、そのビーズに固定化される金属ナノ粒子が少なくなる。したがって、少ない数(たとえば1個あるいは2個)の金属ナノロッドが金属ナノ粒子集積構造体10に結合するだけでも、金属ナノロッド自体の局在表面プラズモンによる消衰スペクトルのピークを明確に測定することが可能になる。すなわち、微量の被検出物質を検出できる。この点について以下に詳細に説明する。
図11は、金属ナノ粒子集積構造体10のサイズが大きい場合の計算モデルを示した図である。図11を参照して、金属ナノ粒子集積構造体10を構成する金属ナノ粒子12の個数Nを96とし、金属ナノ粒子集積構造体10の半径ρを730nmとした。図11に示した二次元モデルと図9に示した二次元モデルとは、金属ナノ粒子12の密度(粒子間距離)が同じである。なお、図9と同様に、偏光5の偏光方向はx方向であり、偏光5の伝播方向は紙面に垂直方向である。
図12は、図11に示した金属ナノロッド結合体のモデルを用いて消衰スペクトルを計算した結果を示した図である。図10および図12を参照して、金属ナノ粒子集積構造体10のサイズが大きくなると、波長550nmでのピークに対する波長650nmでのピークの比が低下する。図12に示した結果から、1個の金属ナノロッドが金属ナノ粒子集積構造体に結合した場合のときのシグナル強度比が約4.4:1となる。金属ナノ粒子集積構造体の体積の総和と1個の金属ナノロッドの体積との比は24:1である。
図10および図12に示した結果から、金属ナノ粒子集積構造体10のサイズが小さいほど検出効率が高められることがわかる。
図13は、相対的に大きな半径を有する金属ナノ粒子集積構造体に金属ナノロッドが結合した状態を模式的に示した図である。図14は、相対的に小さな半径を有する金属ナノ粒子集積構造体(ビーズ)に金属ナノロッドが結合した状態を模式的に示した図である。
図13に示した例では、4つの金属ナノロッド16が単一の金属ナノ粒子集積構造体10に結合される。金属ナノ粒子集積構造体10を球体と仮定し、その球体の半径をr(たとえばr=4μm)とする。金属ナノ粒子集積構造体10の表面積は、4πr2であり、金属ナノ粒子集積構造体10の体積は(4/3)πr3である。
図14に示した例では、16個の金属ナノ粒子集積構造体10が4行4列に配置される。各金属ナノ粒子集積構造体10の半径はr/4(1μm)である。中央に位置する4個(2×2)の金属ナノ粒子集積構造体10の各々に、1つの金属ナノロッド16が結合される。16個の金属ナノ粒子集積構造体10の表面積の合計は、16×4π×(r/4)2=4πr2となり、図11に示した金属ナノ粒子集積構造体10の表面積に等しい。一方、16個の金属ナノ粒子集積構造体10の体積の合計は、16×(4/3)π×(r/4)3=1/3πr3となり、図13に示した金属ナノ粒子集積構造体10の体積の1/4に等しい。
図13および図14に示されるように、小さなサイズの金属ナノ粒子集積構造体10を密に配置することによって、金属ナノロッドが固定化される面積を保ちつつ金属ナノ粒子集積構造体10によって示される体積を小さくできる。したがって材料コストの節約を図ることができる。
さらに、図14に示すように、検出光のスポット6が、金属ナノロッドが結合された4つの金属ナノ粒子集積構造体10の領域をカバーしている。金属ナノ粒子の密度が同じであれば、金属ナノ粒子集積構造体10のサイズが大きいほど、消衰スペクトルにおいて当該金属ナノ粒子集積構造体10によるピークが支配的となる。したがって、金属ナノ粒子集積構造体10に結合された金属ナノロッドの数が同じであっても、金属ナノロッドによるピークが観測しにくくなる(図12を参照)。スポット6のサイズが同じであれば、金属ナノ粒子集積構造体10のサイズを小さくすることによって金属ナノロッドによるスペクトルのピークを明瞭に確認できる。
図15は、金ナノロッドの消衰スペクトルの測定結果を示した図である。図16は、消衰スペクトルの測定に使用した金ナノロッドの透過型電子顕微鏡(TEM)写真である。図15および図16を参照して、TEM写真から、金ナノロッドの長軸の長さが約30nmであり、短軸の長さが約10nmであると見積もられた。消衰スペクトルのピークは、約800nmである。
図17は、図16に示された金ナノロッドの三次元モデル(円柱状)を示した図である。図17を参照して、このモデルでは、金ナノロッドの短軸の長さを10nmとした。さらに金ナノロッドの長軸の長さを30nm,32nm,35nmと変化させた。金ナノロッドの長軸の長さを変化させる理由は、実験的に作製された金ナノロッド(図16を参照)の長軸あるいは短軸の長さに、ばらつきが存在するためである。さらに、金ナノロッドのモデルを構成するクラスターの直径を1.5nmとし、球状クラスター間の間隙を補完して均一な結晶を表現するため、最密充填ファクターを考慮した。
図18は、図17に示された金ナノロッドの三次元モデルを用いて消衰スペクトルを計算した結果を示した図である。図18を参照して、短軸が10nm、長軸が35nmである金ナノロッドの消衰スペクトルは、800nmの付近の波長においてピークを有する。図18に示した破線は、このピークの位置を示す。図15に示した破線は、図18中の破線によって示された波長の位置を示す。図18に示されたピーク波長は、図15に示されたピーク波長をよく再現している。このことは、図18に示された計算結果が図15に示された実験結果をよく再現していることを意味する。
図19は、金属ナノ粒子が固定化されたビーズの三次元モデルを説明するための図である。図19を参照して、Dbは金属ナノ粒子集積構造体の直径である。Dcは、クラスター12Aの直径である。apはクラスター12Aを構成する金属ナノ粒子(金属ナノ粒子12)の直径である。dpは、クラスター12Aの間隔である。
図20は、銀ナノ粒子固定化ビーズの電子顕微鏡写真である。1個の銀ナノ粒子固定化ビーズには約20万個の銀ナノ粒子が固定化されている。図21は、図20に示した銀ナノ粒子固定化ビーズの計算モデルを示した図である。図20および図21を参照して、計算モデルでは、銀ナノ粒子の集合体をクラスターとして取り扱う(クラスターDDA(離散双極子近似)法)。図21に示したモデルの場合、クラスターの個数は3457個である。さらに、dp=2.01nmであり、Db=400nmであり、Dc=10nmであり、ap=2.5nmである。
図22は、銀ナノ粒子固定化ビーズの消衰スペクトルの計算結果と、金ナノロッドの消衰スペクトルの計算結果とを示した図である。図22を参照して、銀ナノ粒子固定化ビーズ(AgNPFB)の消衰スペクトルと、金ナノロッド(AuNR)の消衰スペクトルを200倍して得られるスペクトルと、銀ナノ粒子(Single AgNP)の消衰スペクトルを105倍して得られるスペクトルとが示される。ビーズの消衰スペクトルの計算において、図21に示されるように、ビーズの直径Dbを400nmとした。このモデルでは、1つのクラスターは、直径apが2.5nmである銀ナノ粒子を約64個(体積比)含む。クラスターの直径Dcは10nmである。これらのパラメータから、図20と同様に図21のモデルでは銀ナノ粒子固定化ビーズには約20万個の銀ナノ粒子が固定化されている。
金ナノロッドの消衰スペクトルの計算において、金ナノロッドの短軸を10nmとし、長軸を30nmとした。1個の金ナノロッドの消衰スペクトルを200倍したときのピークの高さは、銀ナノ粒子固定化ビーズの消衰スペクトルのピークの高さとほぼ同じである。さらに銀ナノ粒子固定化ビーズの消衰スペクトルのピークの高さは、単一の銀ナノ粒子(Single AgNP)の消衰スペクトルを105倍して得られるスペクトルのピークと同等の高さである。図22および図41から、1個の銀ナノ粒子固定化ビーズに少なくとも50個のオーダーの金ナノロッドが被検出物質18を介して結合されれば、金ナノロッドの消衰スペクトルが検出できると予想される。
本発明の1つの実施の形態によれば、局在表面プラズモンの消衰スペクトルを測定することで、微量の被検出物質を検出できる。消衰スペクトルは、散乱スペクトルと吸収スペクトルとを足し合わせたものである。したがって消衰スペクトルを測定することは、ピークの位置を議論する際には、散乱スペクトルを測定すること、または吸収スペクトルを測定することと実質的に同等である。いずれの場合においても局在表面プラズモンのスペクトル上のピーク位置はほぼ同じである。なお、散乱スペクトルを測定してもよく、吸収スペクトルを測定してもよい。以下、本発明の実施の形態に係る検出装置および検出方法を詳細に説明する。
<検出装置および方法>
図23は、本発明の1つの実施の形態に係る検出装置の概略的構成を示したブロック図である。図23を参照して、検出装置100は、光源101と、キット20と、分光器105と、演算部106とを備える。
光源101は、たとえば白色光を発する光源であり、たとえばハロゲンランプである。光源101にレーザ光源を用いることも可能である。ただし白色光源を光源101に用いることによって検出装置100を低コストで実現できる。光源101からの光(たとえば白色光)は、キット20に照射される。
光源101は、実質的に単色の光を発する光源であってもよい。単色光の波長は、サンプル30に導入された金属ナノ粒子集積構造体および金属ナノ構造体に誘起される局在表面プラズモン共鳴のピークの波長に対応する。ピークの半値全幅の2倍以内の波長領域内に単色光の波長が位置すればよく、単色光自体の線幅は特に限定されない。単色光源には、たとえばレーザ光源を用いてもよい。
分光器105は、サンプル30に導入された金属ナノ粒子集積構造体および金属ナノ構造体に誘起される局在表面プラズモン共鳴の消衰スペクトルを測定することによって、金属ナノ粒子集積構造体へ金属ナノロッドが結合する際の、金属ナノ粒子集積構造体の消衰スペクトルの変化を追跡するものである。分光器105は、その測定結果を示す信号を出力する。分光器105は、紫外域〜近赤外域(たとえば200nm〜1100nmの波長範囲)でスペクトルを測定可能な分光器であることが好ましい。また、分光器105の波長分解能は、より小さいほど好ましい。たとえば分光器105の波長分解能は、10nm以下、5nm以下、2nm以下、または1nm以下であるが、これに限定されない。単一の金属ナノ粒子集積構造および金属ナノ構造体の結合体の観測には、暗視野顕微鏡を用いることができる。
演算部106は、たとえばマイクロコンピュータあるいはパーソナルコンピュータ等によって実現される。演算部106は、分光器105からの信号(たとえば分光器105で検出された光の強度を示す信号)を受ける。演算部106は、消衰スペクトルから、金属ナノロッド結合体の短軸モードのピーク強度(たとえば図10、図12に示した波長550nmにおけるピーク強度)および金属ナノロッド結合体の長軸モードの波長(波長650nmにおけるピーク強度)を取得する。演算部106は、それらのピーク強度比に基づいて被検出物質の有無および/または被検出物質の濃度を検出する。
図23に示した構成では、キット20の上方に光源101が配置され、キット20の下方に分光器105が配置されているが、光源101と、分光器105および演算部106との配置が図23に示した配置と逆であってもよい。
また、図23には示されていないが、光源101からの白色光あるいは単色光をキット20に導くための光学部品(たとえばミラー、レンズ、光ファイバなど)が追加的に用いられてもよい。図26および図27のように、同じく、キット20からの反射光を分光器に導くための光学部品(光ファイバなど)が追加的に用いられてもよい。
1つの実施の形態では、金属ナノ粒子集積構造体は、金ナノ粒子が固定化されたビーズである。基板と、基板に固定された金属ナノ粒子集積構造体10とによって、キット20が構成される。
図24は、キットに固定された金属ナノ粒子集積構造体の模式図である。図24を参照して、キット20の基板21には溝構造が形成される。たとえば基板21はポリジメチルシロキサン(PDMS)膜である。PDMSは、シリコーンゴムの一種であり、型取りなどの手法によって、マイクロ構造を容易に形成可能である。したがって、図24に示すように、金属ナノ粒子集積構造体10の粒径に適した溝構造がPDMS膜に形成されて、その溝の中に金属ナノ粒子集積構造体10が配置される。
また、キット20の基板21を、単一のガラス板のように、白色光に対して透明な材料で作成してもよい。好ましくは、基板21に用いられる材料は、たとえばシリコン、石英のように、局在表面プラズモン共鳴に影響を与えないとともに偏光に対して異方性を示さない材料である。単一のガラス板を基板21として用いる場合には、シランカップリング剤を利用してメルカプト基またはアミノ基を導入する。これにより、金属ナノ粒子集積構造体10(ビーズ)が化学的または静電的に基板21上に捕捉される。
金ナノ粒子は、たとえば以下の方法によってビーズに固定化される。まず、金ナノ粒子分散液およびビーズをバインダ液中に投入する。バインダ液は、たとえばアルキルチオールの水またはエタノール溶液である。この溶液を室温中で攪拌する。溶液の色は当初は赤色であるが、攪拌するにつれて透明(無色)に変化する。溶液が透明になった後も、所定の時間、攪拌を続ける。これにより、金ナノ粒子集積構造体が生成される。
金ナノ粒子固定化ビーズをホスト分子で修飾するための方法として、たとえば以下の方法を用いることができる。
たとえばホスト分子がアビジン(Avidin)である場合、まず金ナノ粒子固定化ビーズをリン酸バッファ(20mM,pH7.4)中へ分散させる。1mMのジチオジプロピオン酸(DDA)を当該バッファに混合してバッファを1時間攪拌する。次に、バッファに1−エチル−3(3−ジメチルアミノプロピル)カルボイミド(EDC)を混合して1時間攪拌する。続いて、バッファに100mMのN−ヒドロキシスクシンイミド(NHS)を混合して1時間攪拌する。続いて、バッファにストレプトアビジン(100μg/mL)を混合して1時間攪拌する(たとえばAnalytical Chemistry, Vol.77, No. 21, November 1, 2005, p6976-p6984)。
また、ホスト分子がDNAである場合には、たとえば以下の方法を適用できる。まず、金ナノ粒子固定化ビーズを分散した液に3.61μMのチオール化DNAを添加して、その液をたとえば16時間放置する。上記溶液へ塩化ナトリウムとリン酸バッファ(pH7.0)とを0.1M,10mMになるように添加して、その液をたとえば40時間放置する。遠心分離によってナノ粒子を沈殿させて洗浄を行なう。
また、金ナノロッドは、たとえば以下の方法により作成される。まず、CTAB(Cetyltrimethylammonium Bromide)の水溶液(0.2M)50mLを調製する。次に金ナノロッドのグロース(Growth)溶液の調製を行なう。具体的には、CTAB溶液5mLに、硝酸銀水溶液(たとえば0.01M 100μL)、HAuCl4(0.01M 500μL)、アスコルビン酸水溶液(0.1M,55μL)をこの順に混合し、アスコルビン酸の還元によって金を析出させる。次に金ナノロッドのシード溶液を調製する。具体的には、たとえばCTAB溶液(5mL)に、HAuCl4溶液(0.01M 500μL)、十分に冷却したNaBH4水溶液(300μL、0.01M)を混合する。シード溶液(12μL)をグロース溶液と混合することで金ナノロッドを成長させる。このとき、できるだけ攪拌しないことが好ましい。ナノロッドの大きさは、成長時間にほぼ比例する。所定時間の経過の後、溶液を洗い流すことによって、金ナノロッドの成長を止める。
金ナノロッドのアスペクト比は、1より大きければ特に限定されるものではない。また、金ナノロッドの短軸の長さも特に限定されるものではない。たとえば金ナノロッドの作成を容易にする観点から、金ナノロッドの短軸の長さは10nm以上であることが好ましい。
また、金ナノロッドをホスト分子で修飾する方法は、金ナノ粒子固定化ビーズをホスト分子で修飾する方法と同じ方法を採用できる。このため、金ナノロッドをホスト分子で修飾する方法については詳細な説明を繰り返さない。上記のように、キット20にサンプル30および金属ナノロッド分散液22を滴下することによって、サンプル30に金属ナノ粒子集積構造体および金属ナノロッドが導入される。
図25は、本発明の1つの実施の形態に係る被検出物質の検出方法を説明したフローチャートである。図23および図25を参照して、ステップS1において、光源101からの光(白色光あるいは単色光)をキット20に照射する。ステップS2において、分光器105が、金属ナノ粒子集積構造体10および金属ナノロッドの局在表面プラズモン共鳴の消衰スペクトルを測定する。金属ナノロッド結合体が形成されていれば、消衰スペクトルにおいて、金属ナノロッド結合体の長軸モードによる成分と、金属ナノロッド結合体の短軸モードによる成分とが現れる。
ステップS3において、演算部106は、消衰スペクトルのピーク波長における強度に基づいて、被検出物質を検出する。たとえば予備的実験によって、サンプル中の被検出物質の濃度と、消衰スペクトルにおけるシグナル強度比との関係が測定される。演算部106は、この関係を、たとえばテーブルとして予め記憶する。演算部106は、分光器105の測定結果からシグナル強度比を算出する。演算部106は、算出されたシグナル強度比が、ある基準値を超えた場合に被検出物質を検出する。その基準値は、上記テーブルに従って予め設定される。
なお、演算部106は、上記テーブルに定義された関係と、分光器105の測定結果から得られるシグナル強度比とを用いて、被検出物質の濃度を算出してもよい。また、予備的実験の結果に基づいて、シグナル強度比から被検出物質の濃度を導くための関数を決定し、演算部106は、その関数と、分光器105によって測定されたシグナルの強度によって被検出物質の濃度を算出してもよい。
図26は、本発明の1つの実施形態に係る検出装置の構成を示した図である。図26を参照して、光源101からの光は光プローブ107によってキットに照射される。キットからの反射光は光プローブ107によって分光器105へと導かれる。演算部106は、パーソナルコンピュータによって実現される。パーソナルコンピュータは分光器105からの信号を処理する。分光器105は、ポータブルタイプの分光器である。たとえばOcean Optics.Incの製品USB4000を分光器105として用いることができる。
図27は、図26に示した光プローブ107を用いた、物質の検出を説明するための模式図である。図27を参照して、光プローブ107は、光ファイバ107A,107Bを含む。光ファイバ107Aは、金属ナノ粒子集積構造体10への入射光を光源101から伝達する。光ファイバ107Bは、金属ナノ粒子集積構造体10からの反射光を分光器105へと伝達する。
基板21上には、複数の金属ナノ粒子集積構造体10が配置される。たとえば各々の金属ナノ粒子集積構造体10には、別々の検体が与えられる。図示が煩雑になることを避けるために図27には金ナノロッドは示されていない。たとえば、光プローブ107あるいはキット20をスキャンすることにより、1つの金属ナノ粒子集積構造体10に光源からの光を照射して、その金属ナノ粒子集積構造体10からの反射光を取得する。これにより、検体ごとに被検出物質の検出が可能となる。
図28は、金属ナノ粒子集積構造体を固定する基板を保持するためのホルダの1つの例を示した分解図である。図28を参照して、ホルダ120は、ベース120Aと、押さえ部材120Bとを備える。開口部121Aおよび凹部122Aがベース120Aに形成される。開口部121Bおよび凸部122Bが押さえ部材120Bに形成される。ベース120Aと、押さえ部材120Bとは、金属(たとえばステンレスなど)によって形成される。
図29は、図28に示したベース120Aと押さえ部材120Bとによって基板21を保持した状態を示した図である。図30は、図29に示されたホルダ120の開口部付近の概略を示した拡大図である。図29および図30を参照して、基板21はベース120Aの開口部121Aに装着される。カバーガラス24は、押さえ部材120Bの開口部121Bに装着される。カバーガラス24と基板21との間の隙間にサンプル30が導入される。サンプル30の漏出を防ぐために、カバーガラス24と基板21との間にパッキン123が設けられる。押さえ部材120Bの凸部122Bがベース120Aの凹部122Aに挿入される。凸部122Bの先端には磁石124が設置される。磁石124とベース120Aとが引き寄せあうことによって押さえ部材120Bが固定される。
このように本発明の1つの実施の形態によれば、金属ナノ粒子集積構造体と金属ナノロッドとが被検出物質によって結合された場合に生じる、局在表面プラズモン共鳴の消衰スペクトルのピークに基づいて被検出物質を検出する。被検出物質の量が少なくても、金属ナノロッドが金属ナノ粒子集積構造体に結合すれば、消衰スペクトルにおいて金属ナノロッドによるピークが現れる。このため、被検出物質が微量でも、当該被検出物質を検出できる。したがって、本実施の形態に係る検出装置および方法によれば、微量の被検出物質を検出できる。
さらに、金属ナノ粒子集積構造体のサイズを小さくすることで、被検出物質の検出効率を高めることができる。加えて検出装置のコストを低減することができる。
微量の被検出物質を検出するためには、できるだけ効率よく金属ナノロッドを金属ナノ粒子集積構造体に結合させることが好ましい。一方、コストの観点からは、金属ナノ粒子集積構造体のサイズを小さくするとともに、金属ナノ粒子集積構造体および金属ナノロッドの量をできるだけ少なくすることが好ましい。このような課題を解決するため、たとえば特願2010−227627号に記載された、偏光によって金属ナノ粒子を配列する方法を応用して金属ナノ粒子集積構造体および金属ナノロッドを集めてもよい。以下では、特願2010−227627号に記載された方法の概要を説明する。
図31は、光誘起力によって2つの金属ナノ粒子の間に作用する引力を説明するための図である。図31を参照して、y方向に沿って粒子1,2が配列される。軸Axは、粒子1,2の中心を結ぶ軸を示す。
粒子1,2に偏光5が入射される。偏光5の偏光方向はy方向である。すなわち、偏光5の偏光の方向は、粒子1,2の中心を結ぶ軸Axと平行な方向である。この場合、粒子1,2の各々には、偏光5の偏光方向に平行な方向に沿って分極が生じる。粒子1には負の力が作用する一方で、粒子2には正の力が作用する。このため粒子1,2の間に引力が作用する。
図32は、光誘起力によって2つの金属ナノ粒子の間に作用する斥力を説明するための図である。図32を参照して、軸Axの方向と垂直な方向に偏光した偏光5が、粒子1,2に入射される。粒子1,2の各々には、偏光5の偏光方向に平行な方向に沿って分極が生じる。すなわち分極の方向は、粒子1,2の軸Axの方向と垂直である。粒子1および粒子2の分極の向きが互いに等しいため粒子1,2の間に斥力が生じる。
このように、偏光方向を制御することによって、2つの金属ナノ粒子間に生じる力(引力および斥力)を制御することができる。この引力あるいは斥力を利用して、金属ナノ粒子を配列することができる。
図33は、偏光による4つのナノ粒子の配列を模擬した結果を示した図である。なお金属ナノ粒子を金ナノ粒子とし、粒子の直径を40(nm)とした。さらに金ナノ粒子は常温の水に存在するものとした。光強度を600(mW)とし、励起波長を、非共鳴の波長である1064(nm)とした。また、スポットの直径を1000(nm)とし、レーザ光の照射時間を0.02(s)とし、ステップ数を1000000(ステップ)とした(描画の都合上、1000ステップに相当する20μsごとにナノ粒子の軌跡をプロットしている)。図33では、偏光方向と平行な方向に沿って4個の粒子を配列できることが示される。
以上説明したような金属ナノ粒子間に作用する引力あるいは斥力を利用することで、金属ナノ粒子集積構造体10および金属ナノロッド16を局所的に集めてもよい。
図34は、本発明の他の実施の形態に従う検出装置を示した図である。図34を参照して、検出装置110は、偏光を発する光源102をさらに備える。光源102は偏光方向を切替可能であることが好ましい。なお偏光の種類は直線偏光に限定されず、たとえば円偏光でもよく、さらには軸対称偏光であってもよい。なお、キット20の表面は、金属ナノ粒子集積構造体10の動きを妨げないように形成されていることが好ましい。金属ナノ粒子集積構造体が分散する液が基板の表面に滴下されていてもよい。このような基板をキット20として用いることができる。
金属ナノ粒子集積構造体は基板に固定されずに自由に移動可能である。したがって金属ナノ粒子集積構造体および金属ナノロッドが導入された試料に偏光を照射することによって、金属ナノ粒子集積構造体および金属ナノロッドを集めることができる。これにより、金属ナノ粒子集積構造体および金属ナノロッドの濃度を局所的に高くすることができるので、微量の被検出物質を効率よく検出できる。また、少ない量の金属ナノ粒子集積構造体および金属ナノロッドを用いて被検出物質を検出することができるので、材料コストの低減を図ることができる。これにより低コストの検出装置を実現できる。
別の実施の形態では、表面増強ラマン散乱(SERS)スペクトルが測定される。本発明の実施の形態に係るキット20をSERS用基板として利用することができる。SERSスペクトルを測定するための構成は、図23、図26あるいは図34に示された構成と同じである。キット20の構成は、たとえば図24あるいは図27に示された構成を適用することができる。
図8に示されるように、金属ナノ粒子12と金属ナノロッド16とが被検出物質18に結合された状態で光が照射される。金属ナノ粒子12と金属ナノロッド16との間の間隙において、局在表面プラズモン共鳴が増強される。つまり、金属ナノ粒子12と金属ナノロッド16との間の間隙では、電場が増強される。ラマン散乱は一般的には3次の非線形光学過程であるので、ラマン散乱光の強度は電場強度の3乗に比例する。電場が増強されることによって、ラマン散乱光の強度が著しく増大する。この実施の形態では、分光器105によって増大されたラマン散乱光が検出される。これにより被検出物質18が検出される。
金属ナノ粒子12と金属ナノロッド16とは、同種の金属により形成されてもよい。たとえば金属ナノ粒子12と金属ナノロッド16とは、金によって形成される。金属ナノ粒子12と金属ナノロッド16とは、異なる種類の金属により形成されてもよい。たとえば金属ナノ粒子12は銀ナノ粒子であり、金属ナノロッド16は金ナノロッドである。銀ナノ粒子を用いることによって、同サイズの金ナノ粒子よりも電場増強が大きいため、ラマン増幅率を高めることができる。以下に説明される実施の形態において、金属ナノ粒子12は銀ナノ粒子であり、金属ナノロッド16は金ナノロッドである。
図35は、図19に示されたモデルを用いた消衰スペクトルの計算結果を示した図である。図35を参照して、単一の銀ナノ粒子固定化ビーズ(AgNPFB)の消衰スペクトルと、単一の銀ナノ粒子(Single AgNP)の消衰スペクトルを50倍して得られるスペクトルとが示される。この計算では、単一の銀ナノ粒子固定化ビーズのモデルを次のように設定した。Db=400nmであり、Dc=ap=20nmである。すなわち1つのクラスターを1つの銀ナノ粒子とする。クラスターの数は1024個であり、dp=2nmである。
さらに銀ナノ粒子固定化ビーズのコア内部での電場増強の効果を計算により検証した。クラスターの数が0の場合と、クラスターの数が1024の場合とで、波長600nmでのコア内外の電場強度を比較した。計算結果によれば、クラスター数が1024の場合にはクラスター数が0の場合に比べて1000倍以上に電場が増強される場所がクラスター表面近傍に現れる。このことは、ビーズに固定された銀ナノ粒子の全体によって、電場が増強されることを示している。電場が増強されることによって、ラマン散乱光が大幅に増強される。したがって銀ナノ粒子固定化ビーズが固定された基板をSERS基板として利用できる。
図36は、銀ナノ粒子固定化ビーズによる電場増強の効果を説明するための図である。図36(a)は、入射電場のみの場合(クラスター数=0)のコアの電場強度を示す。図36(b)は、dp=2nmとし、クラスター数を1024とした場合のコアの電場強度を示す。図36では、波長λ=600nmとし、ビーズの中心を原点としたx−y平面の電場強度分布の拡大図を示している。
図36によって、金属ナノ粒子間の間隙(ナノギャップ)により、電場強度が100万倍近く増強されることが示される。このことは、上述した電場強度の増強の原理により、SERSの強度がナノギャップによって1018倍近く増強されることを意味する。ナノギャップより小さな検体であれば、高感度の検出が可能である。
次に、ビーズ表面の銀ナノ粒子と金ナノロッドとの間の間隙が10ナノメートルのオーダーである場合にも電場増強の効果が得られることを説明する。
図37は、金属ナノ粒子集積構造体によって金属ナノロッド16が固定化された三次元モデルを説明するための図である。図38は、図37に示したモデルの拡大図である。図37および図38を参照して、金属ナノ粒子集積構造体10Aは、銀ナノ粒子の集合体からなるクラスター12Aが固定された表面を有するビーズである。dp=2.01nmであり、Db=400nmであり、Dc=10nmであり、ap=2.5nmである。クラスターの数は3457個である。クラスター12Aの形状は球形である。金ナノロッド16Aは、図17に示した金ナノロッドである。このモデルでは、金ナノロッドの長軸の長さを30nmとし、金ナノロッドの短軸の長さを10nmとした。金ナノロッドを構成するクラスターの直径は1.5nmである。また、図17、図18における計算と同様に、最密充填ファクターを考慮した。クラスターの個数は919個である。金ナノロッド16Aとクラスター12Aとの間の距離は、この実施の形態では10nmとしているが、抗原、抗体および検体のサイズに依存し、最短距離は2nmである。
図39は、図37および図38に示されたモデルにより増強された光電場の強度を計算した結果を示した図である。図40は、入射光のみによる光電場の強度を計算した結果を示した図である。図39および図40では、励起波長は金属ナノロッドのピークに近い800nmである。入射光は、ロッドの長軸方向(y方向)に偏光し、紙面に垂直な方向(z方向)に進行するガウスビームである。なお、入射光のスポットの半径を500nmとした。図39および図40は、x−y平面内(z=0)での光電場の強度を示している。
図39に示されるように、金ナノロッド16Aと銀ナノ粒子のクラスター12Aとの間の間隙、すなわちナノギャップでは、電場の強度は5×107程度である。これに対して、入射光のみの場合、ナノギャップと同じy座標(破線により示される)における電場の強度は約450である。したがって、金ナノロッド16Aおよびクラスター12Aの間では、入射光の光電場強度が約100000倍に増強される。このことは、金ナノロッド16Aおよびクラスター12Aの間に被検出物質が存在する場合に、その物質からのラマン散乱光が1015倍以上に増強されることを意味する。
図41は、銀ナノ粒子固定化ビーズに結合する金ナノロッドの個数による消衰スペクトルのピークの変化を示した図である。消衰スペクトルは、図37〜図39に示されたモデルを使用して計算した。図41を参照して、「金ナノロッド無し」は銀ナノ粒子固定化ビーズのみのスペクトルを指す。「金ナノロッド×50(100,200)」は、金ナノロッドの部分の消衰スペクトルのみを、それぞれ、50倍、100倍、および200倍したものである。これらのスペクトルは、銀ナノ粒子固定化ビーズの上面(基板と反対側)に金ナノロッドが、抗原−抗体反応によって結合したモデル(図37を参照)のスペクトルに対応する。銀ナノ粒子固定化ビーズに結合する金ナノロッドの個数が増えるに従って、700nm〜800nm付近の波長領域におけるピークが増大する。
図42は、銀ナノ粒子固定化ビーズと金ナノロッドとの結合体の組を暗視野顕微鏡で観測することにより得られた消衰スペクトルを示した図である。銀ナノ粒子固定化ビーズと金ナノロッドとは、DNAにより結合されている。図42を参照して、複数の金ナノロッドが銀ナノ粒子固定化ビーズに結合されることにより、700nm〜800nm付近の波長領域におけるピークが増大している。図42は、消衰スペクトルの増大したピークが検出されたこと、すなわち、検出対象の物質(ここではDNA)が実際に検出されたことを示す。本実施例では、金ナノロッド1個の円形の端面がそれぞれ約7.6個のホストDNAで修飾されていると見積もられ、銀ナノ粒子固定化ビーズ1個の表面が3,070万個のホストDNAで修飾されていると見積もられる。さらに、図41と図42の600〜900nmでの波長領域における理論と実験との比較から、50〜100個の金ナノロッドが銀ナノ粒子固定化ビーズ1個に結合していると見積もられる。このことから、ターゲットDNA(被検出物質)が金ナノロッド端面上の全てのホストDNA(第2のホスト分子)に特異的に付着された状態で銀ナノ粒子固定化ビーズ上のホストDNA(第1のホスト分子)にも特異的に付着したとすると、380〜760個のターゲットDNAが検出されたことになる。
この実施の形態では、銀ナノ粒子固定化ビーズおよび金ナノロッドはホスト分子により修飾される。ホスト分子が被検出物質と結合することにより、銀ナノ粒子ビーズおよび金ナノロッドの間にナノギャップを生じさせることができる。したがって、この実施の形態によれば、SERSを検出することによって被検出物質を検出することができる。
この実施の形態では、銀ナノ粒子固定化ビーズは、基板に固定される。したがって、その基板をSERS基板として使用することができる。
さらに、この実施の形態では、白色光を発する光源、実質的に単色の光を発する光源のいずれも適用可能である。1つの例として、上記の計算に用いた800nm付近の波長を発する、市販のラマン散乱用光源(たとえばPD−LD Inc.の製品LuxxMaster(登録商標) COMPACT RAMAN BOXX(登録商標))を用いることができる。
銀ナノ粒子固定化ビーズは基板に固定されているものと限定されない。たとえば、銀ナノ粒子固定化ビーズが分散した液を準備してもよい。
さらに、この実施の形態で説明したSERSは、表面増強共鳴ラマン散乱(SERRS)を含みうる。
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内で全ての変更が含まれることが意図される。
1,2 粒子、5 偏光、6 スポット、10,10A 金属ナノ粒子集積構造体、11 ビーズ、12 金属ナノ粒子、12A クラスター、13,17 ホスト分子、16 金属ナノロッド、16A 金ナノロッド、18 被検出物質、20 キット、22 金属ナノロッド分散液、24 カバーガラス、30 サンプル、100,110 検出装置、101,102 光源、105 分光器、107 光プローブ、107A,107B 光ファイバ、121A,121B 開口部、122A 凹部、122B 凸部、123 パッキン、124 磁石、Ax 軸。

Claims (21)

  1. 試料に含まれる可能性がある被検出物質の検出装置であって、
    ビーズと、相互作用部位を介して前記ビーズの表面に固定され、前記被検出物質を特異的に付着可能な第1のホスト分子で修飾された複数の金属ナノ粒子とを含む金属ナノ粒子集積構造体と、
    前記被検出物質を特異的に付着可能な第2のホスト分子で修飾された金属ナノ構造体とを備え、
    前記金属ナノ粒子集積構造体において、前記複数の金属ナノ粒子は、互いに隙間を設けて、前記金属ナノ粒子の直径以下の間隔で配置される、被検出物質の検出装置。
  2. 前記金属ナノ粒子集積構造体を固定するための基板をさらに備える、請求項1に記載の被検出物質の検出装置。
  3. 前記試料に前記金属ナノ粒子集積構造体と前記金属ナノ構造体とが導入された状態において前記試料を照射するための第1の光源と、
    前記試料のスペクトルを測定するための分光器と、
    前記分光器で測定された前記スペクトルに基づいて、前記被検出物質を検出する検出器とをさらに備える、請求項1に記載の被検出物質の検出装置。
  4. 前記第1の光源は、白色光を発する、請求項3に記載の被検出物質の検出装置。
  5. 前記第1の光源は、前記金属ナノ粒子集積構造体または前記金属ナノ構造体の局在表面プラズモン共鳴のピークの半値全幅の2倍に対応する、1またはいくつかの領域に係る、実質的に単色の光を発する、請求項3に記載の被検出物質の検出装置。
  6. 前記試料に偏光を照射する第2の光源をさらに備える、請求項3に記載の被検出物質の検出装置。
  7. 前記分光器により測定される前記スペクトルは、局在表面プラズモン共鳴の消衰スペクトルである、請求項3に記載の被検出物質の検出装置。
  8. 前記分光器により測定される前記スペクトルは、表面増強ラマン散乱(SERS)スペクトルである、請求項3に記載の被検出物質の検出装置。
  9. 前記金属ナノ構造体は、金属ナノロッドである、請求項1に記載の被検出物質の検出装置。
  10. 前記金属ナノロッドの短軸の長さは1nm以上であり、
    前記金属ナノロッドのアスペクト比を前記短軸の長さに対する前記金属ナノロッドの長軸の比と定義すると、前記アスペクト比は、1よりも大きい値である、請求項9に記載の被検出物質の検出装置。
  11. 前記金属ナノ粒子集積構造体の前記金属ナノ粒子と前記金属ナノロッドとは、同じ種類の金属により形成される、請求項9に記載の被検出物質の検出装置。
  12. 前記金属ナノ粒子集積構造体の前記金属ナノ粒子と前記金属ナノロッドとは、互いに異なる種類の金属により形成される、請求項9に記載の被検出物質の検出装置。
  13. 前記被検出対象物質は、抗原であり、
    前記第1および第2のホスト分子は、前記抗原と抗原抗体反応を起こす抗体である、請求項1に記載の被検出物質の検出装置。
  14. 試料に含まれる可能性がある被検出物質の検出方法であって、
    前記試料に金属ナノ粒子集積構造体と金属ナノ構造体とを導入するステップを備え、
    前記金属ナノ粒子集積構造体は、ビーズと、相互作用部位を介して前記ビーズの表面に固定された複数の金属ナノ粒子とを含み、
    前記複数の金属ナノ粒子は、前記被検出物質を特異的に付着可能な第1のホスト分子で修飾され、かつ、互いに隙間を設けて前記金属ナノ粒子の直径以下の間隔で配置され、
    前記金属ナノ構造体は、前記被検出物質を特異的に付着可能な第2のホスト分子で修飾され、
    前記試料に光を照射するステップと、
    前記試料のスペクトルを測定するステップと、
    前記スペクトルに基づいて、前記被検出物質を検出するステップとをさらに備える、被検出物質の検出方法。
  15. 前記光を照射するステップは、
    前記試料に偏光を照射して前記金属ナノ粒子集積構造体および前記金属ナノ構造体を集めるステップを含む、請求項14に記載の被検出物質の検出方法。
  16. 前記光を照射するステップは、前記試料に白色光を照射するステップを含む、請求項14に記載の被検出物質の検出方法。
  17. 前記光を照射するステップは、前記試料に、前記金属ナノ粒子集積構造体または前記金属ナノ構造体の局在表面プラズモン共鳴のピークの半値全幅の2倍に対応する、1またはいくつかの領域に係る、実質的に単色の光を照射するステップを含む、請求項14に記載の被検出物質の検出方法。
  18. 前記スペクトルは、局在表面プラズモン共鳴の消衰スペクトルである、請求項14に記載の被検出物質の検出方法。
  19. 前記スペクトルは、表面増強ラマン散乱(SERS)スペクトルである、請求項14に記載の被検出物質の検出方法。
  20. ビーズと、相互作用部位を介して前記ビーズの表面に固定された複数の金属ナノ粒子とを含み、前記複数の金属ナノ粒子が、互いに隙間を設けて、前記金属ナノ粒子の直径以下の間隔で配置された、金属ナノ粒子集積構造体に被検出物質を特異的に付着させて、局在表面プラズモン共鳴の消衰スペクトルを測定する、被検出物質の検出方法。
  21. ビーズと、相互作用部位を介して前記ビーズの表面に固定された複数の金属ナノ粒子とを含み、前記複数の金属ナノ粒子が、互いに隙間を設けて、前記金属ナノ粒子の直径以下の間隔で配置された、金属ナノ粒子集積構造体に被検出物質を特異的に付着させて、表面増強ラマン散乱(SERS)スペクトルを測定する、被検出物質の検出方法。
JP2012547909A 2010-12-08 2011-12-08 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法 Active JP5822239B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012547909A JP5822239B2 (ja) 2010-12-08 2011-12-08 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010273284 2010-12-08
JP2010273284 2010-12-08
JP2012547909A JP5822239B2 (ja) 2010-12-08 2011-12-08 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法
PCT/JP2011/078438 WO2012077756A1 (ja) 2010-12-08 2011-12-08 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法

Publications (2)

Publication Number Publication Date
JPWO2012077756A1 JPWO2012077756A1 (ja) 2014-05-22
JP5822239B2 true JP5822239B2 (ja) 2015-11-24

Family

ID=46207239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012547909A Active JP5822239B2 (ja) 2010-12-08 2011-12-08 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法

Country Status (3)

Country Link
US (1) US9797842B2 (ja)
JP (1) JP5822239B2 (ja)
WO (1) WO2012077756A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614278B2 (ja) * 2010-12-24 2014-10-29 セイコーエプソン株式会社 センサーチップ、センサーチップの製造方法、検出装置
DK3489685T3 (da) 2011-11-21 2023-12-04 Zoetis Services Llc Signalforstærkning i sidestrømning og tilsvarende immunoassays
JP6151948B2 (ja) * 2013-03-29 2017-06-21 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット及びラマン分光分析方法
CN109342395B (zh) * 2012-08-10 2021-07-20 浜松光子学株式会社 表面增强拉曼散射单元
JP6230250B2 (ja) * 2013-03-29 2017-11-15 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット、及びラマン分光分析方法
EP2884265A4 (en) 2012-08-10 2016-09-28 Hamamatsu Photonics Kk SURFACE-REINFORCED RAM SPREADING ELEMENT
WO2014025037A1 (ja) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 表面増強ラマン散乱素子及びその製造方法
WO2014156329A1 (ja) 2013-03-29 2014-10-02 浜松ホトニクス株式会社 表面増強ラマン散乱ユニット及びラマン分光分析方法
JP6099108B2 (ja) * 2013-05-30 2017-03-29 公立大学法人大阪府立大学 被検出物質の検出装置および方法
JP6358610B2 (ja) * 2013-08-26 2018-07-18 公立大学法人大阪府立大学 被検出微生物を検出する検出方法
CN103439277A (zh) * 2013-09-02 2013-12-11 东北大学 基于表面增强的水质检测方法
TWI472059B (zh) * 2013-10-09 2015-02-01 Cheng Sheng Tsung A method of forming a surface plasma using a microstructure
JP6368516B2 (ja) * 2014-03-28 2018-08-01 学校法人 東洋大学 ラマン分光測定法
TWI691716B (zh) 2014-08-13 2020-04-21 美商艾巴希斯公司 電漿特異性結合搭配物檢定中之信號放大
RU2584199C2 (ru) * 2014-09-10 2016-05-20 Общество с ограниченной ответственностью "Институт Серебра" Способ определения концентрации металла в коллоидном растворе металла в воде
US10527494B2 (en) * 2014-09-26 2020-01-07 Korea Intitute of Machinery & Materials Substrate on which multiple nanogaps are formed, and manufacturing method therefor
US10656093B2 (en) * 2015-07-20 2020-05-19 Hewlett-Packard Development Company, L.P. Structures for surface enhanced Raman
DK3331818T3 (da) 2015-08-04 2024-08-12 Zoetis Services Llc Signalforstærkning i opløsningsbaserede plasmoniske assays med specifkke bindingspartnere
JP2017095744A (ja) * 2015-11-19 2017-06-01 大日本塗料株式会社 金ナノロッドを含む被験物質を検出するための組成物及びその用途
JP7308148B2 (ja) 2017-01-30 2023-07-13 ゾエティス サービシズ リミテッド ライアビリティ カンパニー 溶液ベースのプラズモン特異的結合パートナーアッセイおよび金属ナノ構造体
KR101944346B1 (ko) * 2017-09-20 2019-01-31 한양대학교에리카산학협력단 나노 갭을 갖는 복합 입자, 및 그 제조 방법
JP2019066323A (ja) * 2017-09-29 2019-04-25 日鉄ケミカル&マテリアル株式会社 標識抗体、その製造方法及び免疫学的測定法
US20210318327A1 (en) * 2018-08-21 2021-10-14 Denka Company Limited Immunochromatography in which carrier particles are used to amplify surface plasmon resonance
CN110441284B (zh) * 2019-07-23 2022-02-15 海南大学 一种可用于痕量检测的表面增强拉曼散射芯片的制备方法及所得产品和应用
JP6822537B2 (ja) * 2019-10-23 2021-01-27 株式会社Jvcケンウッド エクソソームの検出方法
WO2021225157A1 (ja) * 2020-05-08 2021-11-11 公立大学法人大阪 微小物体の検出装置、検出システムおよび検出方法
CN111579543B (zh) * 2020-05-15 2023-06-30 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 一种超低温增强拉曼光谱信号的检测方法及应用
JP7515940B2 (ja) 2021-05-07 2024-07-16 公立大学法人大阪 被検出物質の検出方法、検出キットおよび検出システム、ならびに、検出キットの製造方法
US20220381984A1 (en) * 2021-05-31 2022-12-01 Jinan University Fiber optic sensing apparatus and system
CN113740311B (zh) * 2021-08-13 2022-12-20 电子科技大学 一种金属-介电材料复合探针sers基底及其制备方法
WO2023224100A1 (ja) * 2022-05-18 2023-11-23 公立大学法人大阪 糖タンパク質を検出するためのキット

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132275B2 (en) * 2001-05-14 2006-11-07 The John Hopkins University Multifunctional magnetic nanowires
GB0216197D0 (en) 2002-07-12 2002-08-21 Univ Strathclyde Serrs active particles
US20050147963A1 (en) 2003-12-29 2005-07-07 Intel Corporation Composite organic-inorganic nanoparticles and methods for use thereof
US20050191665A1 (en) 2003-12-29 2005-09-01 Xing Su Composite organic-inorganic nanoclusters
BRPI0511255A (pt) * 2004-05-19 2007-11-27 Vp Holding Llc sensor óptico com estrutura de plasmon em camadas para detecção intensificada de grupos quìmicos através de sers
EP1715326A1 (en) 2005-04-22 2006-10-25 Universität Heidelberg Sensor chip with connected non-metallic particles comprising a metallic coating
JPWO2007040219A1 (ja) 2005-10-04 2009-04-16 株式会社アイ・ピー・ビー ナノアレイdnaチップ
US8137759B2 (en) 2006-04-07 2012-03-20 The Regents Of The University Of California Gold nanostructures and methods of use
US20100167958A1 (en) * 2006-06-16 2010-07-01 Washington, University Of Trapping of micro and nano scale objects based on localized surface plasmon
US20100285490A1 (en) * 2006-12-29 2010-11-11 Invitrogen Corporation Detection apparatus
AU2008228813C1 (en) * 2007-03-20 2015-01-22 Becton, Dickinson And Company Assays using surface-enhanced raman spectroscopy (SERS)-active particles
WO2009009198A2 (en) 2007-04-18 2009-01-15 Becton, Dickinson And Company Sers nanotag assays
JP2009150708A (ja) * 2007-12-19 2009-07-09 Canon Inc 標的物質の検出方法及び検査キット
JP4428670B2 (ja) 2008-03-06 2010-03-10 Tanakaホールディングス株式会社 免疫学的測定法、キット及び展開溶媒
WO2009136869A1 (en) * 2008-05-05 2009-11-12 Agency For Science, Technology And Research Sensor chip for biological and chemical sensing
JP5260339B2 (ja) 2009-01-30 2013-08-14 株式会社日立ハイテクノロジーズ 核酸分析デバイス、及び核酸分析装置

Also Published As

Publication number Publication date
US9797842B2 (en) 2017-10-24
JPWO2012077756A1 (ja) 2014-05-22
WO2012077756A1 (ja) 2012-06-14
US20130252275A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5822239B2 (ja) 金属ナノ粒子集積構造体を利用した被検出物質の検出装置および方法
Xu et al. Direct particle tracking observation and Brownian dynamics simulations of a single nanoparticle optically trapped by a plasmonic nanoaperture
Kotsifaki et al. Fano-resonant, asymmetric, metamaterial-assisted tweezers for single nanoparticle trapping
Procházka Surface-enhanced Raman spectroscopy
Lehmuskero et al. Laser trapping of colloidal metal nanoparticles
Radziuk et al. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells
Hong et al. Nanobiosensors based on localized surface plasmon resonance for biomarker detection
Peng et al. Recent advances in optical imaging with anisotropic plasmonic nanoparticles
Svedberg et al. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation
Heifetz et al. Photonic nanojets
Ploschner et al. Bidirectional optical sorting of gold nanoparticles
Long et al. Localized surface plasmon resonance based nanobiosensors
Ha et al. Focused orientation and position imaging (FOPI) of single anisotropic plasmonic nanoparticles by total internal reflection scattering microscopy
Ghosh et al. Next-generation optical nanotweezers for dynamic manipulation: from surface to bulk
Csaki et al. Molecular plasmonics: light meets molecules at the nanoscale
Pradhan et al. Gold-nanorod-enhanced fluorescence correlation spectroscopy of fluorophores with high quantum yield in lipid bilayers
Person et al. Material-specific detection and classification of single nanoparticles
Wu et al. Directivity-enhanced detection of a single nanoparticle using a plasmonic slot antenna
Karn-Orachai Gap-dependent surface-enhanced Raman scattering (SERS) enhancement model of SERS substrate–probe combination using a polyelectrolyte nanodroplet as a distance controller
Tsuyama et al. Detection and characterization of individual nanoparticles in a liquid by photothermal optical diffraction and nanofluidics
Balint et al. Simple route for preparing optically trappable probes for surface-enhanced Raman scattering
Cui et al. Bulk phase-encoded gold nanoparticles: the fourth-generation surface-enhanced Raman scattering tag for Hg2+ ion detection
Fasolato Surface enhanced Raman spectroscopy for biophysical applications: using plasmonic nanoparticle assemblies
Ljungblad Antibody-conjugated gold nanoparticles integrated in a fluorescence based biochip
Kotsifaki et al. Plasmon-Enhanced Optical Forces and Tweezers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R150 Certificate of patent or registration of utility model

Ref document number: 5822239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250