WO2012077447A1 - 半導体素子の実装方法、及び実装体 - Google Patents

半導体素子の実装方法、及び実装体 Download PDF

Info

Publication number
WO2012077447A1
WO2012077447A1 PCT/JP2011/075677 JP2011075677W WO2012077447A1 WO 2012077447 A1 WO2012077447 A1 WO 2012077447A1 JP 2011075677 W JP2011075677 W JP 2011075677W WO 2012077447 A1 WO2012077447 A1 WO 2012077447A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating resin
resin layer
semiconductor element
bump
substrate
Prior art date
Application number
PCT/JP2011/075677
Other languages
English (en)
French (fr)
Inventor
崇之 齋藤
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Publication of WO2012077447A1 publication Critical patent/WO2012077447A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83856Pre-cured adhesive, i.e. B-stage adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the present invention relates to a semiconductor element mounting method and a mounting body.
  • a flip chip method As one method for connecting a semiconductor element such as an IC chip and a substrate such as a printed wiring board (PCB), there is a flip chip method.
  • bumps in the IC chip are opposed to wirings in the PCB, brought into direct contact or contact through conductive particles, and electrically connected by heating and pressing.
  • an anisotropic conductive film is used for connection via the conductive particles.
  • ACF anisotropic conductive film
  • an epoxy resin adhesive layer in which conductive particles are dispersed is used.
  • the ACF is disposed between the IC chip and the substrate, and heated and pressed. Then, the conductive particles are sandwiched and crushed between the bumps of the IC chip and the electrodes on the substrate, thereby realizing electrical connection between the bumps of the IC chip and the electrodes.
  • the narrowing of the pitch between bumps and the narrowing of the bump area of the IC chip are accelerating.
  • the limit of the particle diameter of the conductive particles is about 2 ⁇ m, and there is a limit to the adhesion by the anisotropic conductive film.
  • the bumps on the IC chip and the wirings on the substrate are bonded via a non-conductive film (NCF: Non Conductive Film).
  • NCF Non Conductive Film
  • the NCF bonding method is attracting attention.
  • stud bumps are used as bumps of the IC chip, and when the IC chip and the substrate are pressure-bonded, the stud bumps come into contact with the substrate and are crushed. The IC chip and the substrate are directly bonded.
  • the NCF is cured by heating after the IC chip and the substrate are pressure-bonded or during the pressure-bonding, thereby realizing adhesion and connection between the IC chip and the substrate.
  • the pressure bonding conditions are controlled with high accuracy, the bumps of the IC chip are too crushed, and contact between adjacent bumps occurs, resulting in a problem of conduction failure, that is, a short circuit. In particular, this problem becomes conspicuous as the pitch between the bumps becomes narrower.
  • a method for improving conduction a method is disclosed in which a joint ball is used as an electrode of an IC chip, and the IC chip and the substrate are bonded via a two-layer NCF (see Patent Document 1).
  • a layer containing an inorganic filler and a layer not containing are formed in a single type of epoxy resin composition in the thickness direction of the NCF. ing.
  • this proposed technique has a problem in that it cannot prevent the bumps from being crushed.
  • the present invention provides a method for mounting a semiconductor element with good adhesion while preventing conduction failure [short (short circuit)] due to excessive crushing of bumps, and a mounting body obtained by the method for mounting the semiconductor element. With the goal.
  • Means for solving the problems are as follows. That is, ⁇ 1> A laminate in which a cured first insulating resin layer and an uncured second insulating resin layer are laminated in this order on the surface of the semiconductor element on which the bump is formed having the bump is manufactured. A laminate manufacturing process, An arrangement step of arranging the laminate on a substrate having an electrode so that a surface of the substrate having the electrode faces the second insulating resin layer; A step of heating and pressing the semiconductor element to cure the second insulating resin layer and electrically connecting the bump and the electrode of the substrate. This is the implementation method.
  • ⁇ 2> The difference (T 2 ⁇ T 1 ) between the curing temperature (T 2 ) of the second insulating resin layer and the curing temperature (T 1 ) of the first insulating resin layer is 20 ° C. or more.
  • ⁇ 1> A method for mounting a semiconductor element according to ⁇ 1>.
  • ⁇ 3> The semiconductor according to any one of ⁇ 1> to ⁇ 2>, wherein the uncured second insulating resin layer is laminated on the cured first insulating resin layer in the laminate manufacturing step. This is an element mounting method.
  • ⁇ 4> The method for mounting a semiconductor element according to any one of ⁇ 1> to ⁇ 3>, wherein the bump is a solder ball.
  • ⁇ 5> A mounting body obtained by the method for mounting a semiconductor element according to any one of ⁇ 1> to ⁇ 4>.
  • a mounting body obtained by the method and the mounting method of the semiconductor element can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor element.
  • FIG. 2A is a schematic cross-sectional view showing an example of a semiconductor element mounting method of the present invention.
  • FIG. 2B is a schematic cross-sectional view showing an example of a semiconductor element mounting method of the present invention.
  • FIG. 2C is a schematic cross-sectional view showing an example of a semiconductor element mounting method of the present invention.
  • FIG. 2D is a schematic cross-sectional view showing an example of a semiconductor element mounting method of the present invention.
  • FIG. 2E is a schematic cross-sectional view showing an example of a semiconductor element mounting method of the present invention.
  • FIG. 3A is a schematic cross-sectional view showing another example of the semiconductor element mounting method of the present invention.
  • FIG. 3B is a schematic cross-sectional view showing another example of the semiconductor element mounting method of the present invention.
  • FIG. 3C is a schematic cross-sectional view showing another example of the semiconductor element mounting method of the present invention.
  • FIG. 3D is a schematic cross-sectional view showing another example of the semiconductor element mounting method of the present invention.
  • FIG. 3E is a schematic cross-sectional view showing another example of the semiconductor element mounting method of the present invention.
  • FIG. 3F is a schematic cross-sectional view showing another example of the semiconductor element mounting method of the present invention.
  • the semiconductor element mounting method of the present invention includes at least a laminate manufacturing process, an arrangement process, and a connection process, and further includes other processes as necessary.
  • the mounting body of the present invention is obtained by the semiconductor element mounting method of the present invention.
  • a cured first insulating resin layer and an uncured second insulating resin layer are laminated in this order on the surface of the semiconductor element on which the bump is formed having the bump. If it is the process of producing the laminated body which did, there will be no restriction
  • the laminate manufacturing step for example, after forming an uncured first insulating resin layer on the surface of the semiconductor element having the bumps, on the uncured first insulating resin layer, And a step of laminating an uncured second insulating resin layer and further curing the uncured first insulating resin layer. At this time, the uncured second insulating resin layer is not cured.
  • the uncured first insulating resin layer is cured, and the cured first A step of laminating an uncured second insulating resin layer on one insulating resin layer may be mentioned.
  • the semiconductor element is not particularly limited as long as it is a semiconductor element on which the bumps are formed, and can be appropriately selected according to the purpose.
  • an integrated circuit (IC) on which a bump is formed a large scale An integrated circuit (LSI), a transistor, a thyristor, a diode, and the like can be given.
  • the semiconductor element may be an aggregate of semiconductor elements before being singulated by dicing, that is, a semiconductor wafer on which each semiconductor element is formed.
  • the stud bump can be formed using, for example, a metal wire.
  • the solder ball can be formed, for example, by fixing it by heating and pressurizing an electrode of a semiconductor element together with ultrasonic waves.
  • a solder ball is preferable as the bump.
  • the average height of the bump is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 10 ⁇ m to 70 ⁇ m.
  • the height of the bump means, in other words, the maximum height of the protrusion serving as the bump from the semiconductor element surface.
  • the average height of the bump is an average value when the height of the bump is arbitrarily measured at 50 points.
  • the average bump pitch is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 50 ⁇ m to 150 ⁇ m.
  • the average pitch of the bumps is an average value when the bump pitch is arbitrarily measured at 20 points.
  • the height of the bump and the pitch of the bump will be described with reference to the drawings.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor element 1 on which bumps 2 are formed.
  • the height (H) of the bump 2 is the maximum height of the protrusion that becomes the bump.
  • the pitch (L) of the bumps 2 is the distance between the centers of the adjacent bumps.
  • the semiconductor elements can be mounted on the substrate without causing a short-circuit even when the distance between the bumps is short as described above, so-called narrow pitch. can do.
  • the curing agent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples of the imidazole curing agent include 2-methylimidazole and 2-phenylimidazole.
  • the acid anhydride curing agent include phthalic anhydride and maleic anhydride. As said phenol type hardening
  • Examples of the organic peroxide curing agent include lauroyl peroxide, butyl peroxide, benzyl peroxide, dilauroyl peroxide, dibutyl peroxide, benzyl peroxide, peroxydicarbonate, and benzoyl peroxide.
  • Examples of the anionic curing agent include organic amines.
  • Examples of the cationic curing agent include a sulfonium salt, an onium salt, and an aluminum chelating agent.
  • the inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, and magnesium oxide. , Alumina powder, silica, aluminum nitride, boron nitride powder, aluminum borate whisker and the like. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the inorganic filler in the insulating resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30% by mass to 70% by mass. When the content is less than 30% by mass, the dimensional stability may be lowered, and when it exceeds 70% by mass, it may be difficult to maintain the film state.
  • a stress relaxation agent for example, a stress relaxation agent, a softening agent, an accelerator, anti-aging agent, a coloring agent (pigment, dye), an ion catcher agent Etc.
  • the stress relaxation agent examples include PB (polybutadiene rubber), acrylic rubber, acrylonitrile rubber, EVA (ethylene / vinyl acetate copolymer resin), rubber-modified epoxy resin, and the like. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the stress relaxation agent in the insulating resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5% by mass to 30% by mass.
  • said curable resin for example, said curable resin, said hardening
  • the coating method include spin coating, casting, micro gravure coating, gravure coating, knife coating, bar coating, roll coating, wire bar coating, dip coating, and spray coating. Can be mentioned.
  • the insulating resin film is applied to the semiconductor element.
  • a release film such as a releasable PET (polyethylene terephthalate) film
  • the insulating resin film is applied to the semiconductor element.
  • the method of forming by sticking is mentioned.
  • the average thickness of the first insulating resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ m or more. If the average thickness is less than 5 ⁇ m, the adhesive strength may be lowered, which is not preferable.
  • the average thickness of the first insulating resin layer is preferably larger than 1 ⁇ 2 times the average height of the bumps, and more preferably larger than 3/5 times. If the average thickness is 1/2 times or less, a short circuit (conducting failure) may occur due to excessive crushing of bumps.
  • the average thickness of the second insulating resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ m or more. If the average thickness is less than 5 ⁇ m, the adhesive strength may be lowered, which is not preferable.
  • the average thickness of the second insulating resin layer is preferably smaller than 1 ⁇ 2 times the average height of the bumps, and more preferably smaller than 2/5 times. If the average thickness is 1 ⁇ 2 times or more, it may be impossible to control the crushing of the bumps during pressure bonding.
  • the first insulating resin is cured.
  • curing refers to a state where the curing rate exceeds 50%.
  • the second insulating resin layer is uncured.
  • uncured refers to a state where the curing rate is 50% or less.
  • the curing rate can be determined by the following method.
  • the insulating resin layer to be measured is subjected to differential scanning calorimetry with a differential scanning calorimeter, and the calorific value (J 1 ) is measured. Further, with respect to the insulating resin layer having the same composition as the insulating resin layer to be measured and having a thermal history lower than the curing temperature (has not been exposed to heat higher than the curing temperature), a differential scanning calorimeter is used. Differential scanning calorimetry is performed, and the calorific value (J 0 ) is measured.
  • the measurement conditions in the differential scanning calorimetry for example, the mass of the measurement sample is 10 mg, the heating rate is 10 ° C./min, and the measurement temperature is 25 ° C. to 200 ° C.
  • the difference (T 2 ⁇ T 1 ) between the curing temperature (T 2 ) of the second insulating resin layer and the curing temperature (T 1 ) of the first insulating resin layer is no particular limitation.
  • it can select suitably according to, it is preferable that it is 20 degreeC or more. If the difference (T 2 ⁇ T 1 ) is less than 20 ° C., the first insulating resin layer does not sufficiently function as a support and may cause a short circuit (conductivity failure) during crimping. .
  • the curing temperature refers to a temperature showing a minimum melt viscosity when an uncured insulating resin is measured by a rheometer method.
  • the curing temperature can also be referred to as a curing start temperature.
  • the measurement by the rheometer method can be performed, for example, using a rheometer (ARES, TA Instruments) under conditions of a temperature rising rate of 5 ° C./min and a frequency of 1 rad / sec.
  • a cured first insulating resin layer and an uncured second insulating resin are formed on the surface of the semiconductor element having the bumps of the semiconductor element as a semiconductor wafer on which each semiconductor element is formed. It may be a step of producing a laminate in which layers are laminated in this order. In this case, a hardened first insulating resin layer and an uncured second insulating resin layer are formed on the semiconductor element separated by performing a dicing process after the laminate manufacturing process. Can be obtained in this order.
  • the placement step is not particularly limited as long as it is a step of placing the laminate on the substrate having electrodes so that the surface of the substrate having the electrodes faces the second insulating resin layer. Can be appropriately selected according to the purpose.
  • the substrate is not particularly limited as long as it is a substrate having electrodes, and can be appropriately selected according to the purpose. Examples thereof include a glass epoxy substrate, a rigid substrate, and a flexible wiring board.
  • the connecting step is not particularly limited as long as it is a step of heating and pressing the semiconductor element to cure the second insulating resin layer and electrically connecting the bump and the electrode of the substrate. It can be appropriately selected depending on the purpose.
  • Examples of the pressing member provided with the heating mechanism include a heating bonder.
  • tip shape of the said press member According to the objective, it can select suitably, For example, planar shape, curved surface shape, etc. are mentioned.
  • tip shape is a curved surface shape
  • the heating temperature is not particularly limited as long as it is a temperature at which the second insulating resin layer is cured, and can be appropriately selected according to the purpose, but is preferably 100 ° C. to 300 ° C.
  • the heating and pressing time is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 1 second to 300 seconds.
  • the second insulating resin layer is cured by the heating to bond the semiconductor element and the substrate, and the bump contacts the semiconductor element and the electrode of the substrate by the pressing. Electrical connection is made. Since the first insulating resin layer is already cured during the heating and pressing, the cured first insulating resin layer can prevent the bumps from being crushed by the pressing. . In addition, this can prevent conduction failure due to contact between adjacent bumps.
  • FIG. 2A to FIG. 2E after forming the uncured first insulating resin layer on the surface of the semiconductor element having the bumps as the laminate manufacturing step, the uncured first insulating property is formed.
  • curing the said uncured 1st insulating resin layer is shown.
  • FIG. 2A is a schematic cross-sectional view of the semiconductor element 1 on which the bumps 2 are formed.
  • an uncured first insulating resin layer 3a and an uncured second insulating resin layer 4a are sequentially laminated on the surface of the semiconductor element 1 having the bumps 2 (FIG. 2B). Subsequently, the uncured first insulating resin layer 3a is cured and heated at a heating temperature at which the uncured second insulating resin layer 4a is not cured, and the uncured first insulating resin layer 3a is heated. The insulating resin layer 3a is cured to obtain a cured first insulating resin layer 3b, thereby obtaining a laminate (FIG. 2C).
  • the laminate is arranged on the substrate 5 having the electrodes 6 so that the surface of the substrate 5 having the electrodes 6 faces the uncured second insulating resin layer 4a (FIG. 2D). .
  • the uncured second insulating resin layer 4a and the substrate 5 may be in contact with each other.
  • the semiconductor element 1 is heated and pressed by a pressing member 7 equipped with a heating device, the uncured second insulating resin layer 4a is cured, and a cured second insulating resin layer 4b is obtained.
  • the bump 2 and the electrode 6 are electrically connected (FIG. 2E). Thus, a joined body is obtained.
  • FIG. 3A is a schematic cross-sectional view of the semiconductor element 1 on which the bumps 2 are formed.
  • an uncured first insulating resin layer 3a is formed on the surface of the semiconductor element 1 having the bumps 2 (FIG. 3B).
  • these are heated to cure the uncured first insulating resin layer to obtain a cured first insulating resin layer 3b (FIG. 3C).
  • an uncured second insulating resin layer 4a is formed on the cured first insulating resin layer 3b to obtain a laminate (FIG. 3D).
  • the laminate is arranged on the substrate 5 having the electrodes 6 so that the surface of the substrate 5 having the electrodes 6 faces the uncured second insulating resin layer 4a (FIG. 3E). .
  • the uncured second insulating resin layer 4a and the substrate 5 may be in contact with each other.
  • the semiconductor element 1 is heated and pressed by a pressing member 7 equipped with a heating device, the uncured second insulating resin layer 4a is cured, and a cured second insulating resin layer 4b is obtained.
  • the bump 2 and the electrode 6 of the substrate 5 are electrically connected (FIG. 3F).
  • a joined body is obtained.
  • Part means part by mass.
  • the unit of the numerical value of each formulation in Table 1 is “part by mass”.
  • the bisphenol A type epoxy resin is JR-828 (manufactured by Mitsubishi Chemical Corporation).
  • the cationic curing agent is Sun-Aid SI-60L (manufactured by Sanshin Chemical Co., Ltd., aromatic sulfonium salt).
  • the anionic curing agent is Amicure PN-23 (manufactured by Ajinomoto Fine Techno Co.).
  • the phenolic curing agent is PHENOLITE TD2131 (manufactured by DIC).
  • the acrylic rubber is SG-P-3 (manufactured by Nagase Chemtech).
  • Silica is EXV-4 (manufactured by Tatsumori).
  • “Curing temperature” in Table 1 is the curing temperature of the obtained insulating resin film.
  • the curing temperature is a temperature showing the lowest melt viscosity when measured by the rheometer method.
  • the measurement by the rheometer method was performed using a rheometer (ARES, TA Instruments) under the conditions of a temperature rising rate of 5 ° C./min, a frequency of 1 rad / sec, and 25 ° C. to 250 ° C.
  • Example 1 ⁇ Mounting of semiconductor elements> -Preparation of semiconductor elements- An IC chip for evaluation (manufactured by Sony Chemical & Information Device Co., Ltd., size 6.3 mm ⁇ 6.3 mm, thickness 0.2 mm, solder bump, bump average height 35 ⁇ m, bump average pitch 85 ⁇ m) was prepared. -Laminate manufacturing process- On the surface of the evaluation IC chip having the bumps, an insulating resin film (thickness 25 ⁇ m) of Formulation 1 was pasted to form an uncured first insulating resin layer.
  • blending 4 was affixed on the said uncured 1st insulating resin layer, and the uncured 2nd insulating resin layer was formed. And the said 1st insulating resin layer was hardened by heating at 100 degreeC for 30 minute (s), and the laminated body was obtained. After the heating, the curing rate of the first insulating resin layer was 100% (cured state), and the curing rate of the second insulating resin layer was 40% (uncured state). . -Placement process- Subsequently, the laminate was disposed on a substrate having an electrode (glass epoxy substrate) such that a surface of the substrate having the electrode opposed to the uncured second insulating resin layer.
  • the evaluation IC chip was heated at 250 ° C. and pressed at 50 N / IC for 30 seconds by a flip chip bonder (FCB3, manufactured by Panasonic Factory Solutions, a pressing member equipped with a heating device), and the uncured second IC chip was pressed.
  • FCB3 manufactured by Panasonic Factory Solutions, a pressing member equipped with a heating device
  • the two insulating resin layers were cured to form a cured second insulating resin layer, and the bumps and the electrodes were electrically connected.
  • the curing rate was determined by the following method.
  • the insulating resin layer to be measured was subjected to differential scanning calorimetry using a differential scanning calorimeter (DSC 9100, manufactured by TA Instruments), and the calorific value (J 1 ) was measured. Further, with respect to the insulating resin layer having the same composition as the insulating resin layer to be measured and having a thermal history lower than the curing temperature (has not been exposed to heat higher than the curing temperature), a differential scanning calorimeter is used. Differential scanning calorimetry was performed and the calorific value (J 0 ) was measured.
  • the curing rate (%) [(J 0 ⁇ J 1 ) / J 0 ] ⁇ 100].
  • the measurement conditions in the differential scanning calorimetry were as follows: the mass of the measurement sample was 10 mg, the heating rate was 10 ° C./min, and the measurement temperature was 25 ° C. to 200 ° C.
  • the conduction failure means that there is contact between adjacent bumps and there is conduction.
  • conduction when measured by the four-terminal method, if it is 0.1 ⁇ or more and 0.2 ⁇ or less, conduction is good, and if it is less than 0.1 ⁇ , a short circuit occurs. If it exceeds, it is determined that the connection is not sufficient.
  • Table 2-1 to Table 2-3 show the composition and thickness of the first insulating resin layer and the second insulating resin layer, and the heating temperature in the laminate manufacturing process in Example 1.
  • a semiconductor element was mounted, measured, and evaluated in the same manner as in Example 1 except that it was replaced with. The results are shown in Tables 2-1 to 2-3.
  • Example 14 ⁇ Mounting of semiconductor elements> -Preparation of semiconductor elements- An IC chip for evaluation (manufactured by Sony Chemical & Information Device Co., Ltd., size 6.3 mm ⁇ 6.3 mm, thickness 0.2 mm, solder bump, bump average height 35 ⁇ m, bump average pitch 85 ⁇ m) was prepared. -Laminate manufacturing process- An insulating resin film (thickness 25 ⁇ m) of Formulation 2 was pasted on the surface of the evaluation IC chip having the bumps to form an uncured first insulating resin layer. Subsequently, the first insulating resin layer was cured by heating them at 150 ° C. for 30 minutes.
  • an insulating resin film (thickness 10 ⁇ m) of Formulation 3 was pasted on the cured first insulating resin layer to form an uncured second insulating resin layer to obtain a laminate.
  • the curing rate of the first insulating resin layer in the obtained laminate was 100% (cured state).
  • the curing rate of the second insulating resin layer was 0% (uncured state).
  • the laminate was disposed on a substrate having an electrode (glass epoxy substrate) such that a surface of the substrate having the electrode opposed to the uncured second insulating resin layer.
  • the IC chip for evaluation is heated by a flip chip bonder (FCB3, manufactured by Panasonic Factory Solutions) for 30 seconds at 250 ° C. and pressed with 50 N / IC to cure the uncured second insulating resin layer.
  • FCB3 manufactured by Panasonic Factory Solutions
  • Example 14 the composition of the first insulating resin layer and the second insulating resin layer was changed to those shown in Table 2-4, and the semiconductor element of the semiconductor device was changed in the same manner as in Example 14. Mounting, measurement, and evaluation were performed. The results are shown in Table 2-4.
  • Table 3 summarizes the relationship between the curing temperature and the bump evaluation results of Examples 1 to 13 and Comparative Examples 1 to 23.
  • the mounting bodies obtained by the semiconductor element manufacturing methods of Examples 14 to 16 were cured with the first insulating resin layer and then the second insulating property. Since the resin layers were laminated, even when the curing temperature was close, the bump crush rate was 50% or less, and there was no conduction failure (short circuit), which was very good.
  • the mounting body obtained by the semiconductor element manufacturing method of Comparative Examples 1 to 23 has all the bump evaluation, adhesion, and connection reliability obtained by the semiconductor element manufacturing method of the present invention. Was inferior.
  • the method for mounting a semiconductor element according to the present invention can be suitably used for mounting a semiconductor element having a narrow pitch of bumps because it has good adhesiveness while preventing conduction failure (short circuit) due to excessive crushing of bumps. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 バンプが形成された半導体素子の前記バンプを有する面上に、硬化した第一の絶縁性樹脂層と、未硬化の第二の絶縁性樹脂層とをこの順に積層した積層物を作製する積層物作製工程と、電極を有する基板上に、前記基板の前記電極を有する面が前記第二の絶縁性樹脂層に対向するように前記積層物を配置する配置工程と、前記半導体素子を加熱及び押圧し、前記第二の絶縁性樹脂層を硬化させるとともに、前記バンプと前記基板の前記電極とを電気的に接続する接続工程と、を含む半導体素子の実装方法である。

Description

半導体素子の実装方法、及び実装体
 本発明は、半導体素子の実装方法、及び実装体に関する。
 ICチップ等の半導体素子と、プリント配線板(PCB)等の基板とを接続する方法の一つとして、フリップチップ工法がある。このフリップチップ工法では、前記ICチップにおけるバンプを、前記PCBにおける配線と対向させ、直接接触又は導電性粒子を介して接触させると共に、加熱加圧することにより電気的に接続する。
 従来、前記導電性粒子を介した接続には、異方導電性フィルム(ACF;Anisotropic Conductive Film)が用いられている。このACFとしては、一般に、エポキシ樹脂系の接着剤層中に導電性粒子を分散させたものが使用されており、例えば、前記ICチップと前記基板との間に前記ACFを配置し、加熱押圧すると、前記導電性粒子が、前記ICチップのバンプと前記基板における電極との間に挟まれて潰されることにより、前記ICチップのバンプと前記電極との電気的接続が実現されている。
 近年、電子機器の小型化及び高機能化に伴う半導体デバイスの高集積化により、ICチップのバンプ間スペースの狭ピッチ化及びバンプ面積の狭小化が加速している。
 しかし、前記導電性粒子の粒子径は2μm程度が限界であり、異方導電性フィルムによる接着には限界がある。
 そこで、バンプ間スペースの狭ピッチ化及びバンプ面積の狭小化に対応可能な接続法として、前記ICチップにおけるバンプと前記基板における配線とを非導電性フィルム(NCF:Non Conductive Film)を介して接着するNCF接合法が注目を集めている。このNCF接合法では、前記導電性粒子を用いず、スタッドバンプを前記ICチップのバンプとして使用し、前記ICチップと前記基板との圧着時に、前記スタッドバンプが前記基板と接触し、潰れることにより、前記ICチップと前記基板とが直接接合される。
 前記NCF接合法においては、前記ICチップと前記基板とを圧着した後に、又は圧着の際に、加熱することにより、前記NCFを硬化させ、接着及びICチップと基板との接続を実現している。
 しかし、圧着条件を高精度に制御しないと、前記ICチップのバンプが潰れすぎ、隣接するバンプ間での接触が発生し、導通不良、即ちショートが起きてしまうという問題がある。特に、バンプ間スペースの狭ピッチ化が進むとこの問題は顕著となる。
 導通を改良する技術として、ICチップの電極にジョイントボールを用い、二層構造のNCFを介して、ICチップと基板とを接合する方法が開示されている(特許文献1参照)。この提案の技術においては、前記NCFを二層構造にするために、前記NCFの厚み方向において、単一種のエポキシ樹脂組成物中に、無機質充填剤を含有する層と含有しない層とを形成している。
 しかし、この提案の技術は、バンプの潰れすぎを防ぐことはできない点で問題がある。
 また、可溶性ポリイミドを用い組成の異なる二層構造の接着シートを用いたNCF接合方法が開示されている(特許文献2参照)。
 この提案の技術は、ダイシング時の割れ、欠け、剥がれなどの欠損を低減し、切削粉による汚染を低減することができるものの、バンプの潰れすぎを防ぐことはできない点で問題がある。
 圧着時のバンプの潰れすぎを防ぐためには、NCFをある程度硬化させ、NCFを硬くした状態でバンプを圧着することも考えられるが、このようにした場合には、NCFの接着性が低下するという問題がある。
 したがって、バンプの潰れすぎによる導通不良を防ぎつつ、接着性が良好な半導体素子の実装方法、及び該半導体素子の実装方法により得られる実装体の提供が求められているのが現状である。
特開平10-289969号公報 特開2009-21562号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、バンプの潰れすぎによる導通不良〔ショート(短絡)〕を防ぎつつ、接着性が良好な半導体素子の実装方法、及び該半導体素子の実装方法により得られる実装体を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> バンプが形成された半導体素子の前記バンプを有する面上に、硬化した第一の絶縁性樹脂層と、未硬化の第二の絶縁性樹脂層とをこの順に積層した積層物を作製する積層物作製工程と、
 電極を有する基板上に、前記基板の前記電極を有する面が前記第二の絶縁性樹脂層に対向するように前記積層物を配置する配置工程と、
 前記半導体素子を加熱及び押圧し、前記第二の絶縁性樹脂層を硬化させるとともに、前記バンプと前記基板の前記電極とを電気的に接続する接続工程と、を含むことを特徴とする半導体素子の実装方法である。
 <2> 第二の絶縁性樹脂層の硬化温度(T)と第一の絶縁性樹脂層の硬化温度(T)との差(T-T)が、20℃以上である前記<1>に記載の半導体素子の実装方法である。
 <3> 積層物作製工程において、未硬化の第二の絶縁性樹脂層が、硬化した第一の絶縁性樹脂層上に積層される前記<1>から<2>のいずれかに記載の半導体素子の実装方法である。
 <4> バンプが、ハンダボールである前記<1>から<3>のいずれかに記載の半導体素子の実装方法である。
 <5> 前記<1>から<4>のいずれかに記載の半導体素子の実装方法により得られることを特徴とする実装体である。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、バンプの潰れすぎによる導通不良〔ショート(短絡)〕を防ぎつつ、接着性が良好な半導体素子の実装方法、及び該半導体素子の実装方法により得られる実装体を提供することができる。
図1は、半導体素子の一例を示す概略断面図である。 図2Aは、本発明の半導体素子の実装方法の一例を示す概略断面図である。 図2Bは、本発明の半導体素子の実装方法の一例を示す概略断面図である。 図2Cは、本発明の半導体素子の実装方法の一例を示す概略断面図である。 図2Dは、本発明の半導体素子の実装方法の一例を示す概略断面図である。 図2Eは、本発明の半導体素子の実装方法の一例を示す概略断面図である。 図3Aは、本発明の半導体素子の実装方法の他の一例を示す概略断面図である。 図3Bは、本発明の半導体素子の実装方法の他の一例を示す概略断面図である。 図3Cは、本発明の半導体素子の実装方法の他の一例を示す概略断面図である。 図3Dは、本発明の半導体素子の実装方法の他の一例を示す概略断面図である。 図3Eは、本発明の半導体素子の実装方法の他の一例を示す概略断面図である。 図3Fは、本発明の半導体素子の実装方法の他の一例を示す概略断面図である。
(半導体素子の実装方法、及び実装体)
 本発明の半導体素子の実装方法は、積層物作製工程と、配置工程と、接続工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
 本発明の実装体は、本発明の前記半導体素子の実装方法により得られる。
<積層物作製工程>
 前記積層物作製工程としては、バンプが形成された半導体素子の前記バンプを有する面上に、硬化した第一の絶縁性樹脂層と、未硬化の第二の絶縁性樹脂層とをこの順に積層した積層物を作製する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記積層物作製工程としては、例えば、前記半導体素子の前記バンプを有する面上に、未硬化の第一の絶縁性樹脂層を形成した後に、その未硬化の第一の絶縁性樹脂層上に、未硬化の第二の絶縁性樹脂層を積層し、更に前記未硬化の第一の絶縁性樹脂層を硬化させる工程が挙げられる。なお、この際に、前記未硬化の第二の絶縁性樹脂層は硬化させない。
 また、例えば、前記半導体素子の前記バンプを有する面上に、未硬化の第一の絶縁性樹脂層を形成した後に、前記未硬化の第一の絶縁性樹脂層を硬化させ、その硬化した第一の絶縁性樹脂層上に、未硬化の第二の絶縁性樹脂層を積層する工程が挙げられる。
-半導体素子-
 前記半導体素子としては、前記バンプが形成された半導体素子であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、バンプが形成された、集積回路(IC)、大規模集積回路(LSI)、トランジスタ、サイリスタ、ダイオードなどが挙げられる。また、前記半導体素子は、ダイシングにより個片化される前の各半導体素子の集合体、即ち、各半導体素子が形成された半導体ウェハーであってもよい。
 前記バンプとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スタッドバンプ、ハンダボールなどが挙げられる。前記スタッドバンプは、例えば、金属ワイヤを用いて形成することができる。前記ハンダボールは、例えば、半導体素子の電極に超音波を併用しながら加熱及び加圧して固定することにより形成することができる。これらの中でも、前記バンプとしては、ハンダボールが好ましい。
 前記バンプの平均高さとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、10μm~70μmが挙げられる。ここで、前記バンプの高さとは、言い換えれば、バンプとなる突起の前記半導体素子面からの最大高さをいう。前記バンプの平均高さは、前記バンプの高さを任意で50点測定した際の平均値である。
 前記バンプの平均ピッチ(バンプ間距離)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、50μm~150μmが挙げられる。
 前記バンプの平均ピッチは、前記バンプのピッチを任意で20点測定した際の平均値である。
 ここで、前記バンプの高さ、及び前記バンプのピッチについて図を用いて説明する。図1は、バンプ2が形成された半導体素子1の概略断面図である。図1において、前記バンプ2の高さ(H)は、バンプとなる突起の最大高さである。また、前記バンプ2のピッチ(L)は、隣接する前記バンプの中心間距離である。
 前記半導体素子の実装方法においては、前記バンプが必要以上に潰れることを防止できることから、上記のごとくバンプ間距離が短い、いわゆる狭ピッチにおいても、ショートを起こすことなく、半導体素子を基板上に実装することができる。
-第一の絶縁性樹脂層、及び第二の絶縁性樹脂層-
 前記第一の絶縁性樹脂層及び前記第二の絶縁性樹脂層の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硬化性樹脂と、硬化剤と、無機充填剤とを少なくとも含有し、更に必要に応じて、その他の成分を含有する絶縁性の材質が挙げられる。
--硬化性樹脂--
 前記硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、フェノキシ樹脂などが挙げられる。
 前記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂などが挙げられる。
 前記絶縁性樹脂層における前記硬化性樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、20質量%~40質量%が好ましい。
 前記含有量が、20質量%未満であると、接着層としての性能が低下することがあり、40質量%を超えると、接続信頼性に悪影響を及ぼすことがある。
--硬化剤--
 前記硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イミダゾール系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤、フェノール系硬化剤、ポリメルカプタン系硬化剤、有機過酸化物系硬化剤、アニオン系硬化剤、カチオン系硬化剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記イミダゾール系硬化剤としては、例えば、2-メチルイミダゾール、2-フェニルイミダゾールなどが挙げられる。
 前記酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸などが挙げられる。
 前記フェノール系硬化剤としては、例えば、フェノールノボラックなどが挙げられる。
 前記有機過酸化物系硬化剤としては、例えば、ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイド、ジラウロイルパーオキサイド、ジブチルパーオキサイド、ベンジルパーオキサイド、パーオキシジカーボネート、ベンゾイルパーオキサイドなどが挙げられる。
 前記アニオン系硬化剤としては、例えば、有機アミン類などが挙げられる。
 前記カチオン系硬化剤としては、例えば、スルホニウム塩、オニウム塩、アルミニウムキレート剤などが挙げられる。
 前記絶縁性樹脂層における前記硬化剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%~20質量%が好ましい。
--無機充填剤--
 前記無機充填剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、珪酸カルシウム、珪酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ粉末、シリカ、窒化アルミニウム、窒化ホウ素粉末、ホウ酸アルミウイスカなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記絶縁性樹脂層における前記無機充填剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、30質量%~70質量%が好ましい。
 前記含有量が、30質量%未満であると、寸法安定性が低下することがあり、70質量%を超えると、フィルム状態の維持が困難になることがある。
--その他の成分--
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、応力緩和剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、イオンキャッチャー剤などが挙げられる。
---応力緩和剤---
 前記応力緩和剤としては、例えば、PB(ポリブタジエンゴム)、アクリルゴム、アクリロニトリルゴム、EVA(エチレン・酢酸ビニル共重合樹脂)、ゴム変性エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記絶縁性樹脂層における前記応力緩和剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、5質量%~30質量%が好ましい。
 前記第一の絶縁性樹脂層、及び前記第二の絶縁性樹脂層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記硬化性樹脂、前記硬化剤、前記無機充填剤、及び溶剤などを含有する絶縁性樹脂層用組成物を塗布して形成する方法が挙げられる。
 前記塗布方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、ナイフコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法などが挙げられる。
 また、離型性のあるPET(ポリエチレンテレフタレート)フィルムなどの離型フィルムに前記絶縁性樹脂層用組成物を塗布して絶縁性樹脂フィルムを形成した後に、該絶縁性樹脂フィルムを前記半導体素子に貼り付けることにより形成する方法が挙げられる。
 前記第一の絶縁性樹脂層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、5μm以上が好ましい。前記平均厚みが、5μm未満であると、接着力が低下することがあり好ましくない。
 また、前記第一の絶縁性樹脂層の平均厚みとしては、前記バンプの平均高さの1/2倍よりも大きいことが好ましく、3/5倍よりも大きいことがより好ましい。前記平均厚みが、1/2倍以下であると、バンプの潰れ過ぎによるショート(導通不良)が生じることがある。
 前記第二の絶縁性樹脂層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、5μm以上が好ましい。前記平均厚みが、5μm未満であると、接着力が低下することがあり好ましくない。
 また、前記第二の絶縁性樹脂層の平均厚みとしては、前記バンプの平均高さの1/2倍よりも小さいことが好ましく、2/5倍よりも小さいことがより好ましい。前記平均厚みが、1/2倍以上であると、圧着時のバンプの潰れを制御できないことがある。
 前記積層物作製工程において、前記第一の絶縁性樹脂は硬化するが、本発明において「硬化」とは、硬化率が50%を超える状態をいう。
 また、前記積層物作製工程において、前記第二の絶縁性樹脂層は未硬化であるが、本発明において「未硬化」とは、硬化率が50%以下の状態をいう。
 前記硬化率は、以下の方法により求めることができる。
 測定対象の絶縁性樹脂層について、示差走査熱量計により示差走査熱量測定を行い、発熱量(J)を測定する。また、前記測定対象の絶縁性樹脂層と同じ組成であり、かつ熱履歴が硬化温度未満である(硬化温度以上の熱にさらされたことがない)絶縁性樹脂層について、示差走査熱量計により示差走査熱量測定を行い、発熱量(J)を測定する。そして、次式:硬化率(%)=〔(J-J)/J〕×100〕により硬化率(%)を求めることができる。
 ここで、示差走査熱量測定における測定条件としては、例えば、測定試料の質量が10mg、昇温速度が10℃/分、測定温度が25℃~200℃であることが挙げられる。
 前記第二の絶縁性樹脂層の硬化温度(T)と前記第一の絶縁性樹脂層の硬化温度(T)との差(T-T)としては、特に制限はなく、目的に応じて適宜選択することができるが、20℃以上であることが好ましい。前記差(T-T)が、20℃未満であると、第一の絶縁性樹脂層が十分に支柱として機能せず、圧着時にショート(導通不良)が発生する原因となることがある。
 ここで、前記硬化温度とは、未硬化の絶縁性樹脂をレオメーター法で測定した際に、最低溶融粘度を示す温度をいう。前記硬化温度とは、硬化開始温度ともいうことができる。
 前記レオメーター法による測定は、例えば、レオメーター(ARES、TAインスツルメンツ社)を使用し、昇温速度5℃/min、周波数1rad/secの条件にて行うことができる。
 前記積層物作製工程は、各半導体素子が形成された半導体ウェハーとしての前記半導体素子の前記バンプを有する面上に、硬化した第一の絶縁性樹脂層と、未硬化の第二の絶縁性樹脂層とをこの順に積層した積層物を作製する工程であってもよい。この場合、前記積層物作製工程の後に、ダイシング工程を行うことにより、個片化された前記半導体素子上に、硬化した第一の絶縁性樹脂層と、未硬化の第二の絶縁性樹脂層とをこの順に積層した積層物を得ることができる。
<配置工程>
 前記配置工程としては、電極を有する基板上に、前記基板の前記電極を有する面が前記第二の絶縁性樹脂層に対向するように前記積層物を配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
-基板-
 前記基板としては、電極を有する基板であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラスエポキシ基板、リジッド基板、フレキシブル配線板などが挙げられる。
<接続工程>
 前記接続工程としては、前記半導体素子を加熱及び押圧し、前記第二の絶縁性樹脂層を硬化させるとともに、前記バンプと前記基板の前記電極とを電気的に接続する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記加熱及び押圧の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、加熱機構を備えた押圧部材により行う方法が挙げられる。前記加熱機構を備えた押圧部材としては、例えば、加熱ボンダーが挙げられる。
 前記押圧部材の先端形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平面状、曲面状などが挙げられる。なお、前記先端形状が曲面状である場合、前記曲面状に沿って押圧してもよい。
 前記加熱の温度としては、前記第二の絶縁性樹脂層が硬化する温度であれば、特に制限はなく、目的に応じて適宜選択することができるが、100℃~300℃が好ましい。
 前記押圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記加熱及び押圧の時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1秒間~300秒間が挙げられる。
 前記加熱により、前記第二の絶縁性樹脂層が硬化して、前記半導体素子と前記基板とが接着されるとともに、前記押圧により、前記半導体素子の前記バンプと、前記基板の前記電極とが接触し電気的な接続が行われる。前記加熱及び押圧の際に、前記第一の絶縁性樹脂層は既に硬化していることから、この硬化した前記第一の絶縁性樹脂層により、押圧による前記バンプの潰れすぎを防ぐことができる。また、このことにより、隣接する前記バンプ間の接触による導通不良を防ぐことができる。
 ここで、図を用いて前記半導体素子の実装方法の一例を説明する。
 図2Aから図2Eに、前記積層物作製工程として、前記半導体素子の前記バンプを有する面上に、未硬化の第一の絶縁性樹脂層を形成した後に、その未硬化の第一の絶縁性樹脂層上に、未硬化の第二の絶縁性樹脂層を積層し、前記未硬化の第一の絶縁性樹脂層を硬化させる工程を用いた前記半導体素子の実装方法を示す。
 図2Aは、バンプ2が形成された半導体素子1の概略断面図である。まず、前記半導体素子1の前記バンプ2を有する面上に、未硬化の第一の絶縁性樹脂層3a、及び未硬化の第二の絶縁性樹脂層4aを順次積層する(図2B)。続いて、前記未硬化の第一の絶縁性樹脂層3aが硬化し、かつ前記未硬化の第二の絶縁性樹脂層4aが硬化しない加熱温度でこれらを加熱し、前記未硬化の第一の絶縁性樹脂層3aを硬化させ、硬化した第一の絶縁性樹脂層3bにし、積層物を得る(図2C)。続いて、電極6を有する基板5上に、前記基板5の前記電極6を有する面が前記未硬化の第二の絶縁性樹脂層4aに対向するように前記積層物を配置する(図2D)。なお、この配置の際には、前記未硬化の第二の絶縁性樹脂層4aと前記基板5は接していてもよい。続いて、前記半導体素子1を加熱装置を備えた押圧部材7により加熱及び押圧し、前記未硬化の第二の絶縁性樹脂層4aを硬化させ、硬化した第二の絶縁性樹脂層4bにするとともに、前記バンプ2と前記電極6とを電気的に接続する(図2E)。以上により接合体が得られる。
 また、図3Aから図3Fに、前記積層物作製工程として、前記半導体素子の前記バンプを有する面上に、未硬化の第一の絶縁性樹脂層を形成した後に、前記未硬化の第一の絶縁性樹脂層を硬化させ、その硬化した第一の絶縁性樹脂層上に、未硬化の第二の絶縁性樹脂層を積層する工程を用いた前記半導体素子の実装方法を示す。
 図3Aは、バンプ2が形成された半導体素子1の概略断面図である。まず、前記半導体素子1の前記バンプ2を有する面上に、未硬化の第一の絶縁性樹脂層3aを形成する(図3B)。続いて、これらを加熱して、前記未硬化の第一の絶縁性樹脂層を硬化させ、硬化した第一の絶縁性樹脂層3bにし、積層物を得る(図3C)。続いて、前記硬化した第一の絶縁性樹脂層3b上に、未硬化の第二の絶縁性樹脂層4aを形成し、積層物を得る(図3D)。続いて、電極6を有する基板5上に、前記基板5の前記電極6を有する面が前記未硬化の第二の絶縁性樹脂層4aに対向するように前記積層物を配置する(図3E)。なお、この配置の際には、前記未硬化の第二の絶縁性樹脂層4aと前記基板5は接していてもよい。続いて、前記半導体素子1を加熱装置を備えた押圧部材7により加熱及び押圧し、前記未硬化の第二の絶縁性樹脂層4aを硬化させ、硬化した第二の絶縁性樹脂層4bにするとともに、前記バンプ2と前記基板5の前記電極6とを電気的に接続する(図3F)。以上により接合体が得られる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。なお、「部」は質量部を示す。
(製造例1)
<絶縁性樹脂フィルムの作製>
 以下の表1に示す配合を含有する絶縁性樹脂用組成物を調製し、該絶縁性樹脂用組成物を離型フィルム上にバーコーターにより塗布し、その後70℃のオーブンにて有機溶媒を除去することにより、所定の厚みを有する絶縁性樹脂フィルムを作製した。
Figure JPOXMLDOC01-appb-T000001
 表1中の各配合の数値の単位は、「質量部」である。
 表1中、ビスフェノールA型エポキシ樹脂は、JR-828(三菱化学社製)である。カチオン系硬化剤は、サンエイドSI-60L(三新化学社製、芳香族スルホニウム塩)である。アニオン系硬化剤は、アミキュアPN-23(味の素ファインテクノ社製)である。フェノール系硬化剤は、PHENOLITE TD2131(DIC社製)である。アクリルゴムは、SG-P-3(ナガセケムテック社製)である。シリカは、EXV-4(龍森社製)である。
 表1中の「硬化温度」は、得られた絶縁性樹脂フィルムの硬化温度である。この硬化温度とは、レオメーター法で測定した際の、最低溶融粘度を示す温度である。前記レオメーター法による測定は、レオメーター(ARES、TAインスツルメンツ社)を使用し、昇温速度5℃/min、周波数1rad/sec、25℃~250℃の条件にて行った。
(実施例1)
<半導体素子の実装>
-半導体素子の準備-
 評価用ICチップ(ソニーケミカル&インフォメーションデバイス株式会社製、大きさ6.3mm×6.3mm、厚み0.2mm、ハンダバンプ、バンプ平均高さ35μm、バンプ平均ピッチ85μm)を用意した。
-積層物作製工程-
 前記評価用ICチップのバンプを有する面上に、配合1の絶縁性樹脂フィルム(厚み25μm)を貼り付け、未硬化の第一の絶縁性樹脂層を形成した。続いて、前記未硬化の第一の絶縁性樹脂層上に、配合4の絶縁性樹脂フィルム(厚み10μm)を貼り付け、未硬化の第二の絶縁性樹脂層を形成した。そして、100℃で30分間加熱することにより、前記第一の絶縁性樹脂層を硬化させ、積層物を得た。前記加熱後の、前記第一の絶縁性樹脂層の硬化率は、100%(硬化状態)であり、前記第二の絶縁性樹脂層の硬化率は、40%(未硬化状態)であった。
-配置工程-
 続いて、電極を有する基板(ガラスエポキシ基板)上に、前記基板の前記電極を有する面が前記未硬化の第二の絶縁性樹脂層に対向するように前記積層物を配置した。
-接続工程-
 続いて、前記評価用ICチップをフリップチップボンダー(FCB3、パナソニックファクトリーソリューションズ社製、加熱装置を備えた押圧部材)により30秒間、250℃で加熱及び50N/ICで押圧し、前記未硬化の第二の絶縁性樹脂層を硬化させ、硬化した第二の絶縁性樹脂層にするとともに、前記バンプと前記電極とを電気的に接続させた。
<測定>
-硬化率-
 硬化率は、以下の方法により求めた。
 測定対象の絶縁性樹脂層について、示差走査熱量計(DSC 9100、TAインスツルメンツ社製)により示差走査熱量測定を行い、発熱量(J)を測定した。また、前記測定対象の絶縁性樹脂層と同じ組成であり、かつ熱履歴が硬化温度未満である(硬化温度以上の熱にさらされたことがない)絶縁性樹脂層について、示差走査熱量計により示差走査熱量測定を行い、発熱量(J)を測定した。そして、次式:硬化率(%)=〔(J-J)/J〕×100〕により硬化率(%)を求めた。
 ここで、示差走査熱量測定における測定条件は、測定試料の質量が10mg、昇温速度が10℃/分、測定温度が25℃~200℃であった。
<評価>
-バンプ評価-
 SEM(S-3000N、日立製作所社製)によりバンプの潰れ率を測定し、更に隣接するバンプの導通を測定し、下記評価基準にて評価した。結果を表2-1に示す。
 ○:バンプ潰れ率が50%以下、かつ導通OK
 △:バンプ潰れ率が50%を超えるが導通はOK
 ×:バンプ潰れ率が50%を超える、又は導通不良
 ここで、バンプ潰れ率とは、次式:
 バンプ潰れ率(%)=[〔(実装前のバンプ平均高さ)-(実装後のバンプ平均高さ)〕/(実装前のバンプ平均高さ)]×100
で求められる値である。
 ここで、導通OKとは、隣接するバンプ同士に接触が無く、導通がないことを指す。導通不良とは、隣接するバンプ同士に接触があり、導通があることを指す。ここで、4端子法で測定した際に、0.1Ω以上0.2Ω以下であると導通は良好であり、0.1Ω未満であるとショート(短絡)が発生している、0.2Ωを超えるであると接続が十分でない、と判断する。
-接着性-
 目視により圧着時の接合体を下記基準により評価した。評価結果を表2-1に示す。
 ○:圧着時に基板と接合できた
 ×:圧着時に基板と接合できない
-接続信頼性-
 デジタルマルチメーター(Fluke社製、Fluke-115)により抵抗値を測定し、下記評価基準により評価した。結果を表2-1に示す。
 ○:0.1Ω~0.2Ω
 ×:0.1Ω未満、又は0.2Ωより大
(実施例2~13、比較例1~23)
 実施例1において、第一の絶縁性樹脂層、及び第二の絶縁性樹脂層の配合、及び厚み、並びに積層物作製工程における加熱温度を、表2-1~表2-3に示したものに代えた以外は、実施例1と同様にして、半導体素子の実装を行い、測定、及び評価を行った。結果を表2-1~表2-3に示す。
(実施例14)
<半導体素子の実装>
-半導体素子の準備-
 評価用ICチップ(ソニーケミカル&インフォメーションデバイス株式会社製、大きさ6.3mm×6.3mm、厚み0.2mm、ハンダバンプ、バンプ平均高さ35μm、バンプ平均ピッチ85μm)を用意した。
-積層物作製工程-
 前記評価用ICチップのバンプを有する面上に、配合2の絶縁性樹脂フィルム(厚み25μm)を貼り付け、未硬化の第一の絶縁性樹脂層を形成した。続いて、これらを150℃で30分間加熱することにより、前記第一の絶縁性樹脂層を硬化させた。続いて、前記硬化した第一の絶縁性樹脂層上に、配合3の絶縁性樹脂フィルム(厚み10μm)を貼り付け、未硬化の第二の絶縁性樹脂層を形成し積層物を得た。得られた積層物における、前記第一の絶縁性樹脂層の硬化率は、100%(硬化状態)であった。前記第二の絶縁性樹脂層の硬化率は、0%(未硬化状態)であった。
-配置工程-
 続いて、電極を有する基板(ガラスエポキシ基板)上に、前記基板の前記電極を有する面が前記未硬化の第二の絶縁性樹脂層に対向するように前記積層物を配置した。
-接続工程-
 続いて、前記評価用ICチップをフリップチップボンダー(FCB3、パナソニックファクトリーソリューションズ社製)により30秒間、250℃で加熱及び50N/ICで押圧し、前記未硬化の第二の絶縁性樹脂層を硬化させ、硬化した第二の絶縁性樹脂層にするとともに、前記バンプと前記電極とを電気的に接続させた。
 実施例1と同様にして、測定、及び評価を行った。結果を表2-4に示す。
(実施例15、及び16)
 実施例14において、第一の絶縁性樹脂層、及び第二の絶縁性樹脂層の配合を、表2-4に示したものに代えた以外は、実施例14と同様にして、半導体素子の実装を行い、測定、及び評価を行った。結果を表2-4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~13、及び比較例1~23のバンプ評価の結果について、硬化温度との関係を表3にまとめた。
Figure JPOXMLDOC01-appb-T000006
 表2-1~表2-3及び表3の結果から、実施例1~13の、本発明の半導体素子の製造方法により得られた実装体は、接続時に第一の絶縁性樹脂層が硬化していることから、バンプのつぶれによる導通不良(ショート)を防ぐことができた。また、接着性、接続信頼性も良好であった。特に、第二の絶縁性樹脂層の硬化温度(T2)と第一の絶縁性樹脂層の硬化温度(T1)との差(T2-T1)が20℃以上である実施例1~3、6~8、10、11、及び13においては、バンプ潰れ率が50%以下であり、かつ導通不良(ショート)もなく、非常に良好であった。
 また、表2-4の結果から、実施例14~16の、本発明の半導体素子の製造方法により得られた実装体は、第一の絶縁性樹脂層を硬化した上に第二の絶縁性樹脂層を積層しているため、硬化温度が近くても、バンプ潰れ率が50%以下であり、かつ導通不良(ショート)もなく、非常に良好であった。
 一方、比較例1~23の半導体素子の製造方法により得られた実装体は、バンプ評価、接着性、及び接続信頼性のいずれもが、本発明の半導体素子の製造方法により得られた実装体よりも劣っていた。
 本発明の半導体素子の実装方法は、バンプの潰れすぎによる導通不良〔ショート(短絡)〕を防ぎつつ、接着性が良好なため、バンプのピッチが狭ピッチの半導体素子の実装に好適に使用できる。
  1  半導体素子
  2  バンプ
  3a 未硬化の第一の絶縁性樹脂層
  3b 硬化した第一の絶縁性樹脂層
  4a 未硬化の第二の絶縁性樹脂層
  4b 硬化した第二の絶縁性樹脂層
  5  基板
  6  電極
  7  押圧部材

Claims (5)

  1.  バンプが形成された半導体素子の前記バンプを有する面上に、硬化した第一の絶縁性樹脂層と、未硬化の第二の絶縁性樹脂層とをこの順に積層した積層物を作製する積層物作製工程と、
     電極を有する基板上に、前記基板の前記電極を有する面が前記第二の絶縁性樹脂層に対向するように前記積層物を配置する配置工程と、
     前記半導体素子を加熱及び押圧し、前記第二の絶縁性樹脂層を硬化させるとともに、前記バンプと前記基板の前記電極とを電気的に接続する接続工程と、を含むことを特徴とする半導体素子の実装方法。
  2.  第二の絶縁性樹脂層の硬化温度(T)と第一の絶縁性樹脂層の硬化温度(T)との差(T-T)が、20℃以上である請求項1に記載の半導体素子の実装方法。
  3.  積層物作製工程において、未硬化の第二の絶縁性樹脂層が、硬化した第一の絶縁性樹脂層上に積層される請求項1から2のいずれかに記載の半導体素子の実装方法。
  4.  バンプが、ハンダボールである請求項1から3のいずれかに記載の半導体素子の実装方法。
  5.  請求項1から4のいずれかに記載の半導体素子の実装方法により得られることを特徴とする実装体。
     
PCT/JP2011/075677 2010-12-07 2011-11-08 半導体素子の実装方法、及び実装体 WO2012077447A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010272226A JP2012124244A (ja) 2010-12-07 2010-12-07 半導体素子の実装方法、及び実装体
JP2010-272226 2010-12-07

Publications (1)

Publication Number Publication Date
WO2012077447A1 true WO2012077447A1 (ja) 2012-06-14

Family

ID=46206948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075677 WO2012077447A1 (ja) 2010-12-07 2011-11-08 半導体素子の実装方法、及び実装体

Country Status (3)

Country Link
JP (1) JP2012124244A (ja)
TW (1) TW201227855A (ja)
WO (1) WO2012077447A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6129696B2 (ja) * 2013-09-11 2017-05-17 デクセリアルズ株式会社 アンダーフィル材、及びこれを用いた半導体装置の製造方法
JP6069143B2 (ja) * 2013-09-11 2017-02-01 デクセリアルズ株式会社 アンダーフィル材、及びこれを用いた半導体装置の製造方法
JP2015056480A (ja) * 2013-09-11 2015-03-23 デクセリアルズ株式会社 アンダーフィル材、及びこれを用いた半導体装置の製造方法
JP6956365B2 (ja) * 2017-02-10 2021-11-02 パナソニックIpマネジメント株式会社 はんだペーストとそれにより得られる実装構造体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109228A1 (en) * 2001-02-13 2002-08-15 Buchwalter Stephen L. Bilayer wafer-level underfill

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216183A (ja) * 1999-01-25 2000-08-04 Sumitomo Metal Mining Co Ltd 接着剤層付きの突起状電極付き配線材料の製造方法
JP2002299378A (ja) * 2001-03-30 2002-10-11 Lintec Corp 導電体付接着シート、半導体装置製造方法および半導体装置
WO2009001264A1 (en) * 2007-06-27 2008-12-31 Koninklijke Philips Electronics N.V. Light output device
JP5004351B2 (ja) * 2007-11-30 2012-08-22 信越化学工業株式会社 半導体装置の製造方法
US7951648B2 (en) * 2008-07-01 2011-05-31 International Business Machines Corporation Chip-level underfill method of manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109228A1 (en) * 2001-02-13 2002-08-15 Buchwalter Stephen L. Bilayer wafer-level underfill

Also Published As

Publication number Publication date
JP2012124244A (ja) 2012-06-28
TW201227855A (en) 2012-07-01

Similar Documents

Publication Publication Date Title
WO2013133015A1 (ja) 半導体装置の製造方法および半導体装置の製造装置
US9190381B2 (en) Connection method, connection structure, insulating adhesive member, electronic component having adhesive member, and method for manufacturing same
JP4282417B2 (ja) 接続構造体
WO2014136836A1 (ja) 接着フィルム、ダイシングシート一体型接着フィルム、バックグラインドテープ一体型接着フィルム、バックグラインドテープ兼ダイシングシート一体型接着フィルム、積層体、積層体の硬化物、および半導体装置、並び半導体装置の製造方法
JP2014060241A (ja) 半導体装置の製造方法
JP2009262227A (ja) フラックス活性剤、接着剤樹脂組成物、接着ペースト、接着フィルム、半導体装置の製造方法、及び半導体装置
TWI512076B (zh) 絕緣性樹脂薄膜、以及使用其之接合體及其製造方法
WO2012077447A1 (ja) 半導体素子の実装方法、及び実装体
JP2011151251A (ja) バックグラインドテープ付き導電接続材料、端子間の接続方法及び電気、電子部品
JP4802987B2 (ja) 接着フィルム
WO2009141949A1 (ja) 実装構造体の製造方法、および実装構造体
JP3718190B2 (ja) 面実装構造体の形成方法および面実装構造体
WO2019123518A1 (ja) 半導体装置、半導体装置の製造方法及び接着剤
JP5925460B2 (ja) フィルム状接着剤およびこれを用いた半導体装置の製造方法
JP2022100210A (ja) 半導体パッケージ用アンダーフィルフィルム及びこれを用いた半導体パッケージの製造方法
JP7172167B2 (ja) 半導体装置の製造方法、及びそれに用いられる半導体用接着剤
JP7149099B2 (ja) 半導体装置の製造方法
JP2011181467A (ja) 導電接続シートの製造方法、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
CN112771659A (zh) 半导体用黏合剂、半导体装置的制造方法及半导体装置
JP2014237843A (ja) フィルム状接着剤およびこれを用いた半導体装置の製造方法
JP4876882B2 (ja) フリップチップ実装方法
JP6690308B2 (ja) 半導体装置を製造する方法
JP4415920B2 (ja) 接着フィルム、それを用いた半導体パッケージまたは半導体装置、および半導体パッケージまたは半導体装置の製造方法
JP2019125691A (ja) 半導体装置の製造方法及び半導体用接着剤
JP7238453B2 (ja) 半導体用接着剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847087

Country of ref document: EP

Kind code of ref document: A1