WO2012077393A1 - 太陽電池モジュールおよび太陽電池モジュールのコネクタ - Google Patents

太陽電池モジュールおよび太陽電池モジュールのコネクタ Download PDF

Info

Publication number
WO2012077393A1
WO2012077393A1 PCT/JP2011/070489 JP2011070489W WO2012077393A1 WO 2012077393 A1 WO2012077393 A1 WO 2012077393A1 JP 2011070489 W JP2011070489 W JP 2011070489W WO 2012077393 A1 WO2012077393 A1 WO 2012077393A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
jack housing
contact
connector
Prior art date
Application number
PCT/JP2011/070489
Other languages
English (en)
French (fr)
Inventor
裕文 篠原
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to CN201180059304XA priority Critical patent/CN103262355A/zh
Priority to AU2011339841A priority patent/AU2011339841A1/en
Priority to EP11847331.3A priority patent/EP2650978A4/en
Publication of WO2012077393A1 publication Critical patent/WO2012077393A1/ja
Priority to US13/910,360 priority patent/US20130263910A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Embodiments according to the present invention relate to a solar cell module and a connector of the solar cell module.
  • the solar power generation system includes a solar cell module that generates direct-current power by receiving light, and an inverter that converts the direct-current power into alternating-current power and sends the alternating-current power to the power transmission network.
  • the solar power generation system includes a plurality of solar cell modules in order to obtain a desired power generation capacity.
  • a circuit connecting a plurality of solar cell modules in series is called a solar cell string, and a circuit connecting a plurality of solar cell strings in parallel is called a solar cell array.
  • FIG. 12 is a schematic view showing a solar cell string.
  • the solar cell string 101 includes a plurality of solar cell modules 102 that are electrically connected in series.
  • Each solar cell module 102 has a positive cable 105 electrically connected to the positive electrode, a positive connector 106 at the tip of the positive cable 105, a negative cable 107 electrically connected to the negative electrode, and a tip of the negative cable 107.
  • a negative electrode connector 108 is provided.
  • the solar cell string 101 includes a series circuit of solar cell modules 102 in which a positive electrode connector 106 and a negative electrode connector 108 between adjacent solar cell modules 102 are connected one after another.
  • the rear view which shows schematic structure of the solar cell module which concerns on embodiment of this invention.
  • the cross-sectional perspective view which shows schematic structure of the solar cell module which concerns on embodiment of this invention.
  • the schematic diagram which shows the connection state of a solar cell array provided with the solar cell module which concerns on embodiment of this invention.
  • Sectional drawing which shows schematic structure of the connector of the solar cell module which concerns on embodiment of this invention.
  • Sectional drawing which shows the perfect fitting state of the connector of the solar cell module which concerns on embodiment of this invention.
  • Sectional drawing which shows the schematic structure in the other example of the connector of the solar cell module which concerns on embodiment of this invention.
  • Sectional drawing which shows the schematic structure in the other example of the connector of the solar cell module which concerns on embodiment of this invention.
  • the rear view which shows the schematic structure in the other example of the solar cell module which concerns on embodiment of this invention.
  • the rear view which shows the schematic structure in the further another example of the solar cell module which concerns on embodiment of this invention.
  • Schematic which shows a solar cell string.
  • a so-called mega solar system called a solar power generation system exceeding 1 MW includes a solar cell array in which several thousand solar cell modules having a power generation capability of several tens of watts are combined.
  • a photovoltaic power generation system having a large number of solar cell modules such as a mega solar system
  • the connectors between the solar cell modules installed on the table are connected (connector connection operation) to assemble all or part of the solar cell string, and these operations are repeated to complete the solar cell array.
  • the atmosphere to which the solar cell module is exposed has high density of sea salt particles and high humidity. If the solar cell module is left unconnected for 1 to several days in such a place (for example, the period from installation work to connector connection work in the mega solar system), the inside of the connector, especially the contact (pin insert) There is a risk that sea salt particles adhere to the socket insert) and the sea salt particles stick to the humidity due to the humidity in the air and remain connected to the connector.
  • the connector is connected with sea salt particles remaining inside, the contacts in the connector, the cable conductors connected to the contacts, and the surrounding members will deteriorate such as rust and corrosion. These deteriorations lead to poor conduction resistance between the solar cell modules and poor insulation resistance of the solar cell modules, causing a short circuit, generation of heat, and deterioration of the resin part due to heat generation.
  • the resin portion may be cured, cracked, carbonized, intruded by moisture, and burned out.
  • the short-circuit current of a solar cell module including a crystalline solar cell is about 1.2 times or less of the optimum operating current when the solar cell generates maximum power, and the size itself is not a problem.
  • the connection of the connector is released in a state where a short-circuit current is flowing, that is, the connection between the contacts is released, a local arc discharge is generated and the contacts are damaged, and reconnection may be hindered.
  • the solar battery module including the amorphous solar battery cell may accelerate the deterioration of the solar battery itself, which is not preferable.
  • a connector cap can be attached to the connector to prevent the intrusion of sea salt particles.
  • the connector cap becomes waste consisting of twice the number of solar cell modules. After all it is not preferable.
  • an object of the present invention is to provide a solar cell module and a solar cell module connector in which foreign matters such as sea salt particles do not easily enter the connector without putting the solar cell module into an output short circuit state.
  • a solar cell module connector is a solar cell module connector that electrically connects one solar cell module and another solar cell module to form a solar cell array.
  • a first contact that is electrically connected to either the positive electrode or the negative electrode of the solar cell module, a jack housing that surrounds the first contact, and an electric electrode that is electrically connected to either the positive electrode or the negative electrode of the solar cell module.
  • a first contact state that surrounds the first contact and the second contact in a non-conductive and substantially airtight manner in cooperation with the jack housing.
  • a plug housing that can be fitted to the jack housing in a second fitting state that covers the one contact and the second contact in a conductive and substantially airtight manner; Characterized in that it comprises a.
  • the solar cell module according to the embodiment of the present invention is a solar cell module in which one solar cell module and another solar cell module are electrically connected to form a solar cell array.
  • a first contact electrically connected to one of the negative electrodes; a jack housing surrounding the first contact; a second contact electrically connected to either the positive electrode or the negative electrode of the solar cell module; Surrounds the second contact and cooperates with the jack housing to cover the first contact and the second contact in a non-conductive state and in a substantially airtight state, or electrically connects the first contact and the second contact.
  • a plug housing that can be fitted to the jack housing in a second fitting state that covers the gas housing in a substantially airtight state.
  • the solar cell module according to the embodiment of the present invention is a solar cell module in which one solar cell module and another solar cell module are electrically connected to form a solar cell array. And a pause cap provided on the solar cell module so as to cover the contact of the positive electrode connector in a non-conductive state and in a substantially airtight manner when the connector is fitted.
  • FIG. 1 is a perspective view showing a photovoltaic power generation system including a solar cell module according to an embodiment of the present invention.
  • the solar power generation system 1 includes a plurality of solar cell arrays 2.
  • the solar cell array 2 includes one solar cell module 3 and another solar cell module 3 that are electrically connected.
  • the solar cell array 2 includes a support base 5 installed on the ground and a plurality of solar cell modules 3 installed on the support base 5.
  • the support base 5 has a steel structure made of a plurality of steel materials.
  • the support 5 supports the plurality of solar cell modules 3 arranged in a matrix toward the sun.
  • the solar cell module 3 receives light from the rectangular light receiving surface 3a and generates power.
  • Each solar cell module 3 has a power generation capacity of several tens of watts.
  • the solar cell string 6 includes a plurality of solar cell modules 3 that are electrically connected in series.
  • the solar cell array 2 includes a plurality of solar cell strings 6 that are electrically connected in parallel.
  • FIG. 2 is a rear view showing a schematic configuration of the solar cell module according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional perspective view showing a schematic configuration of the solar cell module according to the embodiment of the present invention.
  • the solar cell module 3 includes a flat plate-shaped solar cell 11 arranged in a matrix, a transparent surface protection plate 12 on the light receiving surface 11 a side of the solar cell 11, and a solar cell.
  • the adhesive resin sealing layer 13 which is in the non-light-receiving surface side of the cell 11 and is excellent in adhesive sealing property, the protective layer 14 which covers the adhesive resin sealing layer 13, and the outer frame 15 are provided.
  • the surface protection plate 12 is also the light receiving surface 3a of the solar cell module 3, and is a flat plate made of an inorganic material such as a glass plate or an organic material such as a transparent acrylic plate.
  • the adhesive resin sealing layer 13 is a layer formed by heat-sealing, for example, EVA (Ethylene Vinyl Acetate copolymer: ethylene-vinyl acetate copolymer resin).
  • EVA Ethylene Vinyl Acetate copolymer: ethylene-vinyl acetate copolymer resin
  • the protective layer 14 is a resin containing metal foil formed by bonding ethylene monofluoride on both sides of an aluminum foil, for example, an organic film such as a fluorine-based film, a composite material obtained by bonding an organic film and a metal foil, metal Metal and inorganic materials such as plates and glass plates may be used.
  • the outer frame 15 is a structural material formed of, for example, an aluminum alloy.
  • the outer frame 15 has a groove into which edges of the solar battery cell 11, the surface protective plate 12, the adhesive resin sealing layer 13 and the protective layer 14 can be fitted, and holds these.
  • the solar cell module 3 is provided on the positive electrode lead wire 16 electrically connected to the positive electrode of the solar battery cell 11, the negative electrode lead wire 17 electrically connected to the negative electrode of the solar battery cell 11, and the protective layer 14.
  • a terminal box 18 that accommodates the respective ends of the positive electrode lead wire 16 and the negative electrode lead wire 17, a positive electrode cable 21 that is electrically connected to the positive electrode lead wire 16 and extends outside the terminal box 18, and a tip of the positive electrode cable 21.
  • a positive electrode connector 22, a negative electrode cable 25 electrically connected to the negative electrode lead wire 17 and extending outside the terminal box 18, and a negative electrode connector 26 at the tip of the negative electrode cable 25 are provided.
  • the terminal box 18 is on the non-light-receiving surface 3b side of the solar cell module 3.
  • the terminal box 18 includes a positive terminal (not shown) that electrically connects the positive lead 16 and the positive cable 21, and a negative terminal (not shown) that electrically connects the negative lead 17 and the negative cable 25. And a terminal block 27 for holding the positive terminal and the negative terminal.
  • the positive electrode cable 21 and the negative electrode cable 25 have cable lengths that can be connected in series between the adjacent solar cell modules 3 when the solar cell string 6 is constituted by the solar cell modules 3.
  • FIG. 4 is a schematic diagram showing a connection state of a solar cell array including the solar cell module according to the embodiment of the present invention.
  • the solar cell string 6 of the solar cell array 2 includes a positive cable 21 extending from a terminal box 18 of one solar cell module 3 (3 ′) and a terminal of another solar cell module 3 (3 ′′).
  • the positive electrode connector 22 and the negative electrode connector 26 are connected one after another by bringing the negative electrode cable 25 extending from the box 18 close to each other.
  • the solar cell array 2 is obtained by electrically bundling the positive connector 22 at the positive end of the solar cell string 6 and electrically bundling the negative connector 26 at the negative end of the solar cell string 6.
  • the power generation capacity of the solar cell array 2 is adjusted by the number of series stages of the solar cell modules 3 constituting the solar cell string 6 and the number of parallel stages of the solar cell strings 6.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the connector of the solar cell module according to the embodiment of the present invention.
  • the connectors 22 and 26 of the solar cell module 3 include a pin insert 31 that is electrically connected to the positive electrode of the solar cell module 3, a jack housing 32 that surrounds the pin insert 31, and the solar cell module 3.
  • a socket insert 35 electrically connected to the negative electrode and a plug housing 36 surrounding the socket insert 35 are provided.
  • the positive connector 22 includes a pin insert 31 and a jack housing 32
  • the negative connector 26 includes a socket insert 35 and a plug housing 36
  • the pin insert 31, the jack housing 32, the socket insert 35, and the plug housing 36 can arbitrarily replace the combination of the positive electrode side and the negative electrode side.
  • the pin insert 31 and the plug housing 36 may be combined as the positive connector 22, and the socket insert 35 and the jack housing 32 may be combined as the negative connector 26.
  • the socket insert 35 and the plug housing 36 may be combined as the positive connector 22, and the pin insert 31 and the jack housing 32 may be combined as the negative connector 26.
  • the pin insert 31 and the socket insert 35 are contacts that are detachably fitted and electrically connected, and either one is a first contact and the other is a second contact.
  • the pin insert 31 and the socket insert 35 are joined by being crimped to one of the core wires of the positive cable 21 and the negative cable 25, respectively.
  • the jack housing 32 is a cylinder made of hard resin such as nylon.
  • the jack housing 32 includes a partition wall 38 having an insert holding hole 37 that holds the proximal end portion of the pin insert 31 (or the socket insert 35) to be inserted.
  • the partition wall 38 divides the hollow portion of the jack housing 32 into two parts.
  • One of the hollow portions partitioned by the partition wall 38 surrounds and holds the positive cable 21 (or the negative cable 25) connected to the pin insert 31 (or socket insert 35). A gap between the jack housing 32 and the positive cable 21 (or the negative cable 25) is closed by an adhesive (not shown) or a sealing material (not shown). The other of the hollow portions partitioned by the partition wall 38 surrounds the pin insert 31 that protrudes from the insert holding hole 37.
  • the jack housing 32 includes a pin 39 protruding to the outer periphery.
  • the pin 39 is positioned on the outer periphery in the vicinity of the tip end portion of the jack housing 32 fitted into the plug housing 36 and extends in the radial direction of the jack housing 32.
  • the plug housing 36 cooperates with the jack housing 32 when the jack housing 32 is fitted shallowly, and is in a standby fitting state (first fitting state) that covers the pin insert 31 and the socket insert 35 in a non-conductive state and in a substantially airtight state.
  • first fitting state covers the pin insert 31 and the socket insert 35 in a non-conductive state and in a substantially airtight state.
  • second fitted state covers the conductive state and substantially airtightly.
  • the plug housing 36 is a cylinder made of hard resin such as nylon.
  • the plug housing 36 includes a partition wall 42 having an insert holding hole 41 for holding the proximal end portion of the socket insert 35 (or the pin insert 31) to be inserted.
  • the partition wall 42 includes a sleeve 43 that supports the socket insert 35 so as not to fall down, and divides the hollow portion of the plug housing 36 into two parts.
  • One of the hollow portions partitioned by the partition wall 42 surrounds and holds the negative cable 25 (or the positive cable 21) connected to the socket insert 35 (or the pin insert 31).
  • a gap between the plug housing 36 and the negative cable 25 (or the positive cable 21) is closed by an adhesive (not shown) or a sealing material (not shown).
  • the other of the hollow portions partitioned by the partition wall 42 surrounds a sleeve 43 extending from the peripheral edge of the insert holding hole 41.
  • the sleeve 43 surrounds the socket insert 35 extending from the insert holding hole 41.
  • the plug housing 36 has a groove 45 into which the pin 39 can be inserted when the jack housing 32 is fitted.
  • the groove 45 is located on the inner circumference on the other side of the hollow portion partitioned by the partition wall 42.
  • the groove 45 includes a first groove portion 45a having a bent portion 46 that abuts against the pin 39 so that the jack housing 32 temporarily stops at a shallow fitting position where the jack housing 32 is in a standby fitting state, and the jack housing is completely connected to the first groove portion 45a.
  • a second groove 45b that leads to a deep fitting position that is in a fitted state.
  • the first groove 45a is a groove that extends linearly in the traveling direction of the jack housing 32 that fits into the plug housing 36 (solid arrow in FIG. 5).
  • the second groove portion 45 b is a groove that spirally extends in the traveling direction (solid arrow in FIG. 5) of the jack housing 32 that fits into the plug housing 36 continuously to the refracting portion 46.
  • the pin 39 and the groove 45 are a lock mechanism that locks the positive electrode connector 22 and the negative electrode connector 26 in a standby fitting state or a completely fitting state.
  • the solar power generation system 1 performs the operation
  • the connectors 22 and 26 between them are connected (connector connection work), and all or part of the solar cell string 6 is assembled, and these operations are repeated to complete the solar cell array 2.
  • the connectors 22 and 26 of the solar cell module 3 are the period from the installation work (or the previous loading) to the connector connection work, the pin insert 31, the socket insert 35, the partition wall 38, There is a risk of exposing the hollow portion delimited by 42 to the atmosphere.
  • the solar cell module 3 includes a positive electrode connector 22 and a negative electrode connector 26 in the same solar cell module 3 during the period from installation work to connector connection work, or from shipment to connector connection work. Is fitted.
  • FIG. 6 is a cross-sectional view showing a standby fitting state of the connector of the solar cell module according to the embodiment of the present invention.
  • the pin insert 31 and the socket insert 35 are not in contact with each other, that is, the positive electrode side and the negative electrode side of the solar cell module 3 are in a non-conductive state, and the plug housing 36
  • the jack housing 32 that fits shallowly closes the periphery of the pin insert 31 and the socket insert 35 in an airtight manner to the atmosphere of the connectors 22 and 26.
  • the fitting part of the plug housing 36 and the jack housing 32 has a fitting dimension which closes the periphery of the pin insert 31 and the socket insert 35 in a substantially airtight manner and prevents sea salt particles from entering.
  • FIG. 7 is a cross-sectional view showing a completely fitted state of the connector of the solar cell module according to the embodiment of the present invention.
  • FIGS. 8 and 9 are cross-sectional views showing a schematic configuration in another example of the connector of the solar cell module according to the embodiment of the present invention.
  • the positive connector 22 ⁇ / b> A includes a packing 47 that wraps around the outer circumference of the jack housing 32.
  • the plug housing 36 of the negative electrode connector 26A can be fitted with a packing 47, and has a packing groove 48 that cooperates with the packing 47 and seals the gap between the jack housing 32 and the plug housing 36 in an airtight manner.
  • the packing 47 may be wound around the inner circumferential direction of the plug housing 36.
  • the packing groove 48 is formed in the jack housing 32.
  • the first packing 47a and the first packing groove 48a that fit when the jack housing 32 and the plug housing 36 are shallowly fitted in the standby fitting state, and the jack housing 32 and the plug housing 36 are completely formed. It has the 2nd packing 47b and the 2nd packing groove
  • the packing 47 is a first packing 47 a located on the front end side of the jack housing 32 and a second packing 47 b located on the rear side.
  • the packing groove 48 is located on the opening side of the plug housing 36. The first packing groove 48a to be performed and the second packing groove 48b located on the rear side thereof.
  • the first packing 47a is fitted into the first packing groove 48a, and the gap between the jack housing 32 and the plug housing 36 is airtightly closed.
  • the first packing 47a is fitted into the second packing 47b, and the second packing 47b is fitted into the first packing groove 48a, so that the jack housing 32 and the plug housing are fitted. 36 gaps are airtightly closed.
  • the fitting portion between the jack housing 32 and the plug housing 36 is closed by the packing 47 and the packing groove 48, and the surroundings of the pin insert 31 and the socket insert 35 with respect to the atmosphere regardless of the accuracy of the fitting dimensions. Close tightly.
  • FIG. 10 is a rear view showing a schematic configuration in another example of the solar cell module according to the embodiment of the present invention.
  • the solar cell module 3 ⁇ / b> A includes the positive cable 21 (or the negative cable 25) extending from the terminal box 18, but the negative cable 25 (or the positive cable 21) extends outside the terminal box 18.
  • a negative electrode connector 26 or a positive electrode connector 22 that is integrally fixed to the terminal box 18 is provided.
  • the positive cable 21 (or the negative cable 25) of the solar cell module 3A has a cable length that can be connected to the negative connector 26 (or the positive connector 22) of the adjacent solar cell module 3A.
  • FIG. 11 is a rear view showing a schematic configuration in still another example of the solar cell module according to the embodiment of the present invention.
  • the solar cell module 3B is provided with a dormant cap 51, 52 provided on the solar cell module 3B so as to cover the pin insert 31 or the socket insert 35 in a non-conductive state and substantially airtightly when the connectors 22, 26 are fitted. Is provided.
  • the rest caps 51 and 52 are caps to which the positive connector 22 or the negative connector 26 can be detachably fitted, respectively.
  • the rest caps 51 and 52 are fixed to the non-light-receiving surface 3b of the solar cell module 3B or the outer frame 15 or are integrally formed.
  • the solar cell module 3B pauses the positive electrode connector 22 and the negative electrode connector 26 in the same solar cell module 3 during a period from installation work to connector connection work, or from shipment to connector connection work.
  • the caps 51 and 52 are fitted into a resting state.
  • the solar cell modules 3 and 3A and the connectors 22, 26, 22A, and 26A according to the present embodiment are in a standby fitting state in which the positive side and negative side contacts are closed in a non-conductive state and airtight, and the positive side and negative side contacts Has a completely fitted state that closes the airtightly and airtightly, thereby preventing adhesion and adhesion of sea salt particles, protecting the contact, the positive cable 21, the negative cable 25 or their surroundings from deterioration such as rust and corrosion.
  • the conduction resistance between the battery modules 3 and 3A and the insulation resistance of the solar cell modules 3 and 3A can be maintained satisfactorily. This function of preventing adhesion and adhesion of sea salt particles is particularly effective when the photovoltaic power generation system 1 is constructed in a coastal area of the sea.
  • the solar cell module 3B prevents the adhesion and adhesion of sea salt particles by the dormant caps 51 and 52 that close the contact between the positive electrode side and the negative electrode side in a non-conductive state and airtightly. Further, the negative electrode cable 25 or the surroundings thereof can be protected from deterioration such as rust and corrosion, and the conduction resistance between the solar cell modules 3B and the insulation resistance of the solar cell module 3B can be maintained well.
  • the solar cell modules 3, 3A, 3B and the connectors 22, 26, 22A, 26A have a standby fitting state or a dormant state, so that the output short-circuit state of the solar cell modules 3, 3A, 3B To prevent deterioration of the solar cell itself and burning around the outside due to local arc discharge.
  • the solar cell module 3B generates waste by fixing or integrally molding the pause caps 51 and 52 that put the connectors 22, 26, 22A, and 26A in a dormant state on the solar cell module 3B. prevent.
  • the connectors 22, 26 are not put into the output short circuit state of the solar cell modules 3, 3A, 3B. , 22A and 26A are less likely to enter foreign matters such as sea salt particles.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

 太陽電池モジュールを出力短絡の状態にすることなく、コネクタの内部に海塩粒子などの異物が侵入し難い太陽電池モジュールおよび太陽電池モジュールのコネクタを提供する。太陽電池モジュール3のコネクタ22、26は、正極または負極のいずれか一方に電気的に接続するピンインサート31と、ピンインサート31を囲むジャックハウジング32と、正極または負極のいずれか他方に電気的に接続するソケットインサート35と、ソケットインサート35を囲むとともに、ジャックハウジング32を嵌合するとジャックハウジング32と協働してピンインサート31およびソケットインサート35を非導通状態かつ略気密に覆う待機嵌合状態またはピンインサート31およびソケットインサート35を導通状態かつ略気密に覆う完全嵌合状態でジャックハウジング32に嵌合可能なプラグハウジング36と、を備える。

Description

太陽電池モジュールおよび太陽電池モジュールのコネクタ
 本発明に係る実施形態は、太陽電池モジュールおよび太陽電池モジュールのコネクタに関する。
 太陽光発電システムは、光を受けて直流電力を発電する太陽電池モジュールと、この直流電力を交流電力に変換して送電網へ送るインバータと、を備える。
 また、太陽光発電システムは、所望の発電能力を得るために複数の太陽電池モジュールを備える。複数の太陽電池モジュールを直列に接続する回路を太陽電池ストリングと呼び、複数の太陽電池ストリングを並列に接続する回路を太陽電池アレイと呼ぶ。
 図12は、太陽電池ストリングを示す概略図である。
 図12に示すように、太陽電池ストリング101は、電気的に直列に接続する複数の太陽電池モジュール102を備える。
 各太陽電池モジュール102は、正極に電気的に接続する正極ケーブル105と、正極ケーブル105の先端にある正極コネクタ106と、負極に電気的に接続する負極ケーブル107と、負極ケーブル107の先端にある負極コネクタ108と、を備える。
 太陽電池ストリング101は、隣り合う太陽電池モジュール102間の正極コネクタ106と負極コネクタ108とが次々に接続する太陽電池モジュール102の直列回路を備える。
特開2003-229199号公報
本発明の実施形態に係る太陽電池モジュールを備える太陽光発電システムを示す斜視図。 本発明の実施形態に係る太陽電池モジュールの概略的な構成を示す背面図。 本発明の実施形態に係る太陽電池モジュールの概略的な構成を示す断面斜視図。 本発明の実施形態に係る太陽電池モジュールを備える太陽電池アレイの接続状態を示す模式図。 本発明の実施形態に係る太陽電池モジュールのコネクタの概略的な構成を示す断面図。 本発明の実施形態に係る太陽電池モジュールのコネクタの待機嵌合状態を示す断面図。 本発明の実施形態に係る太陽電池モジュールのコネクタの完全嵌合状態を示す断面図。 本発明の実施形態に係る太陽電池モジュールのコネクタの他の例における概略的な構成を示す断面図。 本発明の実施形態に係る太陽電池モジュールのコネクタの他の例における概略的な構成を示す断面図。 本発明の実施形態に係る太陽電池モジュールの他の例における概略的な構成を示す背面図。 本発明の実施形態に係る太陽電池モジュールのさらに他の例における概略的な構成を示す背面図。 太陽電池ストリングを示す概略図。
 所謂メガソーラーシステムと呼ばれる1MWを越える太陽光発電システムは、数十Wの発電能力を有する太陽電池モジュールを数千枚以上組み合わせる太陽電池アレイを備える。メガソーラーシステムのように大量の太陽電池モジュールを備える太陽光発電システムの場合、先ず太陽電池モジュールを支持台に設置する作業(設置作業)を数日に渡って連続して行い、この後、支持台に設置した太陽電池モジュール間のコネクタを接続して(コネクタ接続作業)太陽電池ストリングの全部または一部を組み立て、これらの作業を繰り返して太陽電池アレイを完成する。
 ところで、太陽光発電システムを海の沿岸地区に建設する場合、太陽電池モジュールが晒される雰囲気は、海塩粒子の密度が高く、かつ湿度が高い。このような場所にコネクタを未接続のままで太陽電池モジュールを1日ないし数日間放置(例えば、メガソーラーシステムにおける設置作業からコネクタ接続作業までの期間)すると、コネクタの内部、特に接点(ピンインサートおよびソケットインサート)に海塩粒子が付着し、この海塩粒子が空気中の湿度によって粘着して残存したままコネクタを接続してしまう虞がある。
 内部に海塩粒子が残存したままでコネクタを接続すると、コネクタ内の接点や、接点に接続するケーブルの導線、これらの周囲の部材に錆や腐食などの劣化を生じる。これらの劣化は、太陽電池モジュール間の導通抵抗の不良、太陽電池モジュールの絶縁抵抗の不良を招き、短絡や発熱の発生、発熱にともなう樹脂部分の劣化を生じさせる。樹脂部分の劣化が進行すると、樹脂部分の硬化、ひび割れ、炭化、これらからの水分の侵入、焼損に至る虞もある。
 一方、隣り合う太陽電池モジュール間のコネクタを接続する以前(すなわち、コネクタ接続作業以前)、単一の太陽電池モジュールにおいて正極コネクタと負極コネクタとを接続しておくことで、コネクタの内部に対する海塩粒子の付着を防ぐことができる。なお、従来の太陽電池モジュールのコネクタは、正極コネクタと負極コネクタとを接続するとコネクタ内の接点も電気的に接続する。
 ところが、正極コネクタと負極コネクタとを接続した太陽電池モジュールは、光を受けると出力短絡の状態となる。結晶系の太陽電池セルを備える太陽電池モジュールの短絡電流は、太陽電池セルが最大電力を発生する時の最適動作電流の1.2倍程度以下であり、その大きさ自体は余り問題にならない。しかし、短絡電流が流れている状態でコネクタの接続を解除、すなわち接点間の接続を解除すると、局部的なアーク放電を発生して接点が損傷してしまい、再接続が阻害される虞がある。他方、アモルファス系の太陽電池セルを備える太陽電池モジュールは、最適動作電流に対する短絡電流の比が大きい場合、太陽電池セル自体の劣化を速める可能性があり好ましくない。
 また、海塩粒子の侵入防止のためにコネクタにコネクタキャップを装着しておくこともできるが、コネクタを接続した後、コネクタキャップは太陽電池モジュールの2倍の数量からなる廃棄物になるため、やはり好ましくない。
 そこで、本発明は、太陽電池モジュールを出力短絡の状態にすることなく、コネクタの内部に海塩粒子などの異物が侵入し難い太陽電池モジュールおよび太陽電池モジュールのコネクタ提供することを目的とする。
 前記の課題を解決するため本発明の実施形態に係る太陽電池モジュールのコネクタは、一の太陽電池モジュールと他の太陽電池モジュールとを電気的に接続して太陽電池アレイとなる太陽電池モジュールのコネクタにおいて、前記太陽電池モジュールの正極または負極のいずれか一方に電気的に接続する第一接点と、前記第一接点を囲むジャックハウジングと、前記太陽電池モジュールの正極または負極のいずれか他方に電気的に接続する第二接点と、前記第二接点を囲むとともに、前記ジャックハウジングと協働して前記第一接点および前記第二接点を非導通状態かつ略気密に覆う第一嵌合状態または前記第一接点および前記第二接点を導通状態かつ略気密に覆う第二嵌合状態で前記ジャックハウジングに嵌合可能なプラグハウジングと、を備えることを特徴とする。
 また、本発明の実施形態に係る太陽電池モジュールは、一の太陽電池モジュールと他の太陽電池モジュールとを電気的に接続して太陽電池アレイとなる太陽電池モジュールにおいて、前記太陽電池モジュールの正極または負極のいずれか一方に電気的に接続する第一接点と、前記第一接点を囲むジャックハウジングと、前記太陽電池モジュールの正極または負極のいずれか他方に電気的に接続する第二接点と、前記第二接点を囲むとともに、前記ジャックハウジングと協働して前記第一接点および前記第二接点を非導通状態かつ略気密に覆う第一嵌合状態または前記第一接点および前記第二接点を導通状態かつ略気密に覆う第二嵌合状態で前記ジャックハウジングに嵌合可能なプラグハウジングと、を備えることを特徴とする。
 さらに、本発明の実施形態に係る太陽電池モジュールは、一の太陽電池モジュールと他の太陽電池モジュールとを電気的に接続して太陽電池アレイとなる太陽電池モジュールにおいて、前記太陽電池モジュールのコネクタと、前記コネクタを嵌合すると前記正極コネクタの接点を非導通状態かつ略気密に覆うよう前記太陽電池モジュールに設けられる休止キャップと、を備えることを特徴とする。
 次に、本発明に係る太陽電池モジュールおよび太陽電池モジュールのコネクタの実施形態について図1から図11を参照して説明する。
 図1は、本発明の実施形態に係る太陽電池モジュールを備える太陽光発電システムを示す斜視図である。
 図1に示すように、太陽光発電システム1は、複数の太陽電池アレイ2を備える。
 太陽電池アレイ2は、電気的に接続する一の太陽電池モジュール3と他の太陽電池モジュール3とを備える。太陽電池アレイ2は、地盤上に設置する支持台5と、支持台5に設置する複数の太陽電池モジュール3と、を備える。
 支持台5は、複数の鋼材からなる鉄骨構造を有する。支持台5は、行列状に整列する複数の太陽電池モジュール3を太陽に向けて支持する。
 太陽電池モジュール3は、長方形状の受光面3aで光を受けて発電する。それぞれの太陽電池モジュール3は、数十Wの発電能力を有する。
 太陽電池ストリング6は、電気的に直列に接続する複数の太陽電池モジュール3を備える。太陽電池アレイ2は、電気的に並列に接続する複数の太陽電池ストリング6を備える。
 図2は、本発明の実施形態に係る太陽電池モジュールの概略的な構成を示す背面図である。
 図3は、本発明の実施形態に係る太陽電池モジュールの概略的な構成を示す断面斜視図である。
 図2および図3に示すように、太陽電池モジュール3は、行列状に並ぶ平板形状の太陽電池セル11と、太陽電池セル11の受光面11a側にある透明な表面保護板12と、太陽電池セル11の非受光面側にあり接着封止性に優れる接着性樹脂封止層13と、接着性樹脂封止層13を覆う保護層14と、外枠15と、を備える。
 表面保護板12は、太陽電池モジュール3の受光面3aでもあり、ガラス板などの無機系材料または透明アクリル板などの有機系材料からなる平板である。
 接着性樹脂封止層13は、例えばEVA(Ethylene Vinyl Acetate copolymer:エチレン-酢酸ビニル共重合樹脂)を熱融着封止してなる層である。
 保護層14は、例えばアルミ箔の両面に一弗化エチレンを接着してなる金属箔入り樹脂であり、フッ素系フィルムなどの有機系フィルム、有機系フィルムと金属箔を貼り合せた複合材料、金属板やガラス板などの金属・無機系材料でも良い。
 外枠15は、例えばアルミニウム合金で成形する構造材である。外枠15は、太陽電池セル11、表面保護板12、接着性樹脂封止層13および保護層14の縁部を嵌め込み可能な溝を有し、これらを保持する。
 また、太陽電池モジュール3は、太陽電池セル11の正極に電気的に接続する正極リード線16と、太陽電池セル11の負極に電気的に接続する負極リード線17と、保護層14に設けられて正極リード線16および負極リード線17のそれぞれの末端を収容する端子箱18と、正極リード線16に電気的に接続して端子箱18外に延びる正極ケーブル21と、正極ケーブル21の先端にある正極コネクタ22と、負極リード線17に電気的に接続して端子箱18外に延びる負極ケーブル25と、負極ケーブル25の先端にある負極コネクタ26と、を備える。
 端子箱18は、太陽電池モジュール3の非受光面3b側にある。端子箱18は、正極リード線16と正極ケーブル21とを電気的に接続する正極端子(図示省略)と、負極リード線17と負極ケーブル25とを電気的に接続する負極端子(図示省略)と、正極端子および負極端子を保持する端子台27と、を収容する。
 正極ケーブル21および負極ケーブル25は、太陽電池モジュール3で太陽電池ストリング6を構成する際に、隣り合う太陽電池モジュール3間で直列に接続可能なケーブル長さを有する。
 図4は、本発明の実施形態に係る太陽電池モジュールを備える太陽電池アレイの接続状態を示す模式図である。
 図4に示すように、太陽電池アレイ2の太陽電池ストリング6は、一の太陽電池モジュール3(3’)の端子箱18から延びる正極ケーブル21と他の太陽電池モジュール3(3”)の端子箱18から延びる負極ケーブル25とを互いに近づけて、正極コネクタ22と負極コネクタ26とを次々に接続したものである。
 また、太陽電池アレイ2は、太陽電池ストリング6の正極端にある正極コネクタ22を電気的に束ね、他方、太陽電池ストリング6の負極端にある負極コネクタ26を電気的に束ねたものである。
 太陽電池アレイ2の発電能力は、太陽電池ストリング6を構成する太陽電池モジュール3の直列段数および太陽電池ストリング6の並列段数によって調整される。
 次に、太陽電池モジュール3のコネクタ22、26について詳述する。
 図5は、本発明の実施形態に係る太陽電池モジュールのコネクタの概略的な構成を示す断面図である。
 図5に示すように、太陽電池モジュール3のコネクタ22、26は、太陽電池モジュール3の正極に電気的に接続するピンインサート31と、ピンインサート31を囲むジャックハウジング32と、太陽電池モジュール3の負極に電気的に接続するソケットインサート35と、ソケットインサート35を囲むプラグハウジング36と、を備える。
 換言すると、正極コネクタ22は、ピンインサート31と、ジャックハウジング32と、を備え、負極コネクタ26は、ソケットインサート35と、プラグハウジング36と、を備える。なお、ピンインサート31、ジャックハウジング32、ソケットインサート35およびプラグハウジング36は、正極側と負極側の組合せを任意に交換できる。具体的には、正極コネクタ22としてピンインサート31とプラグハウジング36とを組合せ、負極コネクタ26としてソケットインサート35とジャックハウジング32とを組み合わせても良い。また、正極コネクタ22としてソケットインサート35とプラグハウジング36とを組合せ、負極コネクタ26としてピンインサート31とジャックハウジング32とを組み合わせても良い。
 ピンインサート31およびソケットインサート35は、着脱自在に嵌合して電気的に接続する接点であり、いずれか一方が第一接点であり、いずれか他方が第二接点である。ピンインサート31およびソケットインサート35は、それぞれ正極ケーブル21および負極ケーブル25の芯線のいずれかに圧着して接合する。
 ジャックハウジング32は、ナイロンなどの硬質な樹脂製の筒である。ジャックハウジング32は、嵌入するピンインサート31(またはソケットインサート35)の基端部を保持するインサート保持孔37を有する仕切壁38を備える。仕切壁38は、ジャックハウジング32の中空部分を二分割に区切る。
 仕切壁38が区切る中空部分の一方は、ピンインサート31(またはソケットインサート35)に接続する正極ケーブル21(または負極ケーブル25)を囲んで保持する。ジャックハウジング32と正極ケーブル21(または負極ケーブル25)との隙間は接着剤(図示省略)やシール材(図示省略)によって塞がる。仕切壁38が区切る中空部分の他方は、インサート保持孔37から突出して延びるピンインサート31を囲む。
 また、ジャックハウジング32は、外周に突出するピン39を備える。ピン39は、プラグハウジング36に嵌入するジャックハウジング32の先端部分近傍の外周に位置してジャックハウジング32の径方向へ延びる。
 プラグハウジング36は、ジャックハウジング32を浅く嵌合するとジャックハウジング32と協働してピンインサート31およびソケットインサート35を非導通状態かつ略気密に覆う待機嵌合状態(第一嵌合状態)、さらにジャックハウジング32を深く嵌合するとピンインサート31およびソケットインサート35を導通状態かつ略気密に覆う完全嵌合状態(第二嵌合状態)でジャックハウジング32に嵌合可能である。プラグハウジング36は、ナイロンなどの硬質な樹脂製の筒である。プラグハウジング36は、嵌入するソケットインサート35(またはピンインサート31)の基端部を保持するインサート保持孔41を有する仕切壁42を備える。仕切壁42は、ソケットインサート35が倒れ込まないよう補助的に支持するスリーブ43を備えるとともに、プラグハウジング36の中空部分を二分割に区切る。
 仕切壁42が区切る中空部分の一方は、ソケットインサート35(またはピンインサート31)に接続する負極ケーブル25(または正極ケーブル21)を囲んで保持する。プラグハウジング36と負極ケーブル25(または正極ケーブル21)との隙間は接着剤(図示省略)やシール材(図示省略)によって塞がる。仕切壁42が区切る中空部分の他方は、インサート保持孔41の周縁部から延びるスリーブ43を囲む。スリーブ43は、インサート保持孔41から突出して延びるソケットインサート35を囲む。
 また、プラグハウジング36は、ジャックハウジング32の嵌合にともないピン39を嵌入可能な溝45を有する。溝45は、仕切壁42が区切る中空部分の他方側の内周に位置する。溝45は、ジャックハウジング32が待機嵌合状態となる浅い嵌合位置で一旦停止するようピン39に突き当たる屈折部46を有する第一溝部45aと、第一溝部45aに連続してジャックハウジングを完全嵌合状態となる深い嵌合位置に導く第二溝部45bと、を有する。
 第一溝部45aは、プラグハウジング36に嵌合するジャックハウジング32の進行方向(図5中、実線矢)へ直線状に延びる溝である。第二溝部45bは、屈折部46に連続してプラグハウジング36に嵌合するジャックハウジング32の進行方向(図5中、実線矢)へ螺旋状に延びる溝である。
 ピン39と溝45とは、正極コネクタ22と負極コネクタ26とを待機嵌合状態または完全嵌合状態にロックするロック機構である。
 そして、太陽光発電システム1は、先ず太陽電池モジュール3を支持台5に設置する作業(設置作業)を数日に渡って連続して行い、この後、支持台5に設置した太陽電池モジュール3間のコネクタ22、26を接続して(コネクタ接続作業)太陽電池ストリング6の全部または一部を組み立て、これらの作業を繰り返して太陽電池アレイ2を完成する。太陽電池モジュール3のコネクタ22、26は、何らの養生がなされない場合、設置作業(あるいは、それ以前の搬入時)からコネクタ接続作業までの期間、ピンインサート31、ソケットインサート35、仕切壁38、42が区切る中空部分を雰囲気に晒す虞がある。
 そこで、本実施形態に係る太陽電池モジュール3は、設置作業からコネクタ接続作業までの期間、あるいは出荷時からコネクタ接続作業までの期間、同一の太陽電池モジュール3内において正極コネクタ22と負極コネクタ26とを嵌合しておく。
 図6は、本発明の実施形態に係る太陽電池モジュールのコネクタの待機嵌合状態を示す断面図である。
 図6に示すように、コネクタ22、26は、プラグハウジング36にジャックハウジング32をまっすぐ嵌合すると(図6中の実線矢方向)、ピン39が溝45の第一溝部45aを進んで屈折部46に突き当たり、ジャックハウジング32が浅い嵌合位置で一旦停止して待機嵌合状態になる(第一嵌合状態)。
 コネクタ22、26は、待機嵌合状態にあるとき、ピンインサート31およびソケットインサート35が互いに接しない状態、すなわち太陽電池モジュール3の正極側と負極側とが非導通状態になるとともに、プラグハウジング36に浅く嵌合するジャックハウジング32がピンインサート31およびソケットインサート35の周囲をコネクタ22、26の雰囲気に対して略気密に閉ざす。なお、プラグハウジング36とジャックハウジング32との嵌め合い部分は、ピンインサート31およびソケットインサート35の周囲を略気密に閉ざして海塩粒子の侵入を防ぐ嵌合寸法を有する。
 図7は、本発明の実施形態に係る太陽電池モジュールのコネクタの完全嵌合状態を示す断面図である。
 図7に示すように、コネクタ22、26は、待機嵌合状態からジャックハウジング32を捻り込んで嵌合を進めると(図7中に実線と破線矢で描く方向)、ピン39が溝45の第二溝部45bに沿って進み、ジャックハウジング32が深い嵌合位置に至り完全嵌合状態になる(第二嵌合状態)。
 コネクタ22、26は、完全嵌合状態にあるとき、ソケットインサート35にピンインサート31が嵌合する状態、すなわち太陽電池モジュール3の正極側と負極側とが導通状態になるとともに、プラグハウジング36に深く嵌合するジャックハウジング32がピンインサート31およびソケットインサート35の周囲をコネクタ22、26の雰囲気に対して略気密に閉ざす。
 図8および図9は、本発明の実施形態に係る太陽電池モジュールのコネクタの他の例における概略的な構成を示す断面図である。
 なお、コネクタ22A、26Aにおいてコネクタ22、26と同じ構成には同一の符号を付し、重複する説明は省略する。
 図8および図9に示すように、正極コネクタ22Aは、ジャックハウジング32の外周の周方向に巻き付くパッキン47を備える。
 他方、負極コネクタ26Aのプラグハウジング36は、パッキン47を嵌め込み可能であり、パッキン47と協働してジャックハウジング32およびプラグハウジング36の隙間を気密に塞ぐパッキン溝48を有する。
 なお、パッキン47は、プラグハウジング36の内周の周方向に巻き付くものでも良い。この場合、パッキン溝48は、ジャックハウジング32に形成される。
 パッキン47およびパッキン溝48は、ジャックハウジング32およびプラグハウジング36が待機嵌合状態で浅く嵌合したときに嵌り合う第一パッキン47aおよび第一パッキン溝48aと、ジャックハウジング32およびプラグハウジング36が完全嵌合状態で深く嵌合したときに嵌り合う第二パッキン47bおよび第二パッキン溝48bと、を有する。
 より詳しくは、パッキン47は、ジャックハウジング32の先端側に位置する第一パッキン47aと、その後側に位置する第二パッキン47bと、である、パッキン溝48は、プラグハウジング36の開口側に位置する第一パッキン溝48aと、その後側に位置する第二パッキン溝48bと、である。
 ジャックハウジング32およびプラグハウジング36が浅く嵌合すると、先ず、第一パッキン47aが第一パッキン溝48aに嵌り込んでジャックハウジング32およびプラグハウジング36の隙間を気密に塞ぐ。そして、ジャックハウジング32およびプラグハウジング36が深く嵌合すると、先ず、第一パッキン47aが第二パッキン47bに嵌り込み、第二パッキン47bが第一パッキン溝48aに嵌り込んでジャックハウジング32およびプラグハウジング36の隙間を気密に塞ぐ。
 コネクタ22A、26Aは、ジャックハウジング32とプラグハウジング36との嵌合部分をパッキン47およびパッキン溝48によって塞ぎ、嵌合寸法の精度にかかわらずピンインサート31およびソケットインサート35の周囲を雰囲気に対して気密に閉ざす。
 図10は、本発明の実施形態に係る太陽電池モジュールの他の例における概略的な構成を示す背面図である。
 なお、太陽電池モジュール3Aにおいて太陽電池モジュール3と同じ構成には同一の符号を付し、重複する説明は省略する。
 図10に示すように、太陽電池モジュール3Aは、端子箱18から延びる正極ケーブル21(または負極ケーブル25)を備えるものの、負極ケーブル25(または正極ケーブル21)が端子箱18の外に延びておらず、端子箱18に一体化して固定された負極コネクタ26(または正極コネクタ22)を備える。太陽電池モジュール3Aの正極ケーブル21(または負極ケーブル25)は、隣り合う太陽電池モジュール3Aの負極コネクタ26(または正極コネクタ22)に接続可能なケーブル長さを有する。
 図11は、本発明の実施形態に係る太陽電池モジュールのさらに他の例における概略的な構成を示す背面図である。
 なお、太陽電池モジュール3Bにおいて太陽電池モジュール3と同じ構成には同一の符号を付し、重複する説明は省略する。
 図11に示すように、太陽電池モジュール3Bは、コネクタ22、26を嵌合するとピンインサート31またはソケットインサート35を非導通状態かつ略気密に覆うよう太陽電池モジュール3Bに設けられる休止キャップ51、52を備える。
 休止キャップ51、52は、それぞれ正極コネクタ22または負極コネクタ26を着脱自在に嵌合可能なキャップである。休止キャップ51、52は、太陽電池モジュール3Bの非受光面3bまたは外枠15の何れかの場所に固定され、または一体成形される。
 本実施形態に係る太陽電池モジュール3Bは、設置作業からコネクタ接続作業までの期間、あるいは出荷時からコネクタ接続作業までの期間、同一の太陽電池モジュール3内において正極コネクタ22と負極コネクタ26とを休止キャップ51、52に嵌合して休止状態におく。
 本実施形態に係る太陽電池モジュール3、3Aおよびコネクタ22、26、22A、26Aは、正極側と負極側の接点を非導通状態かつ気密に閉ざす待機嵌合状態と、正極側と負極側の接点を導通状態かつ気密に閉ざす完全嵌合状態を有することで、海塩粒子の付着、粘着を防ぎ、接点や正極ケーブル21、負極ケーブル25あるいはこれらの周囲を錆や腐食などの劣化から護り、太陽電池モジュール3、3A間の導通抵抗、太陽電池モジュール3、3Aの絶縁抵抗を良好に維持できる。この海塩粒子の付着、粘着防止機能は、太陽光発電システム1を海の沿岸地区に建設する場合に特に有効である。
 また、本実施形態に係る太陽電池モジュール3Bは、正極側と負極側の接点を非導通状態かつ気密に閉ざす休止キャップ51、52によって、海塩粒子の付着、粘着を防ぎ、接点や正極ケーブル21、負極ケーブル25あるいはこれらの周囲を錆や腐食などの劣化から護り、太陽電池モジュール3B間の導通抵抗、太陽電池モジュール3Bの絶縁抵抗を良好に維持できる。
 さらに、本実施形態に係る太陽電池モジュール3、3A、3Bおよびコネクタ22、26、22A、26Aは、待機嵌合状態または休止状態を有することで、太陽電池モジュール3、3A、3Bの出力短絡状態を回避し、太陽電池自体の劣化や、局部的なアーク放電の発生による当外部周囲の焼損を防ぐ。
 さらにまた、本実施形態に係る太陽電池モジュール3Bは、コネクタ22、26、22A、26Aを休止状態におく休止キャップ51、52を太陽電池モジュール3Bに固定または一体成形することで、廃棄物の発生を防ぐ。
 したがって、本実施形態に係る太陽電池モジュール3、3A、3Bおよびコネクタ22、26、22A、26Aによれば、太陽電池モジュール3、3A、3Bを出力短絡の状態にすることなく、コネクタ22、26、22A、26Aの内部に海塩粒子などの異物が侵入し難い。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 太陽光発電システム
2 太陽電池アレイ
3、3A、3B 太陽電池モジュール
3a 受光面
3b 非受光面
5 支持台
6 太陽電池ストリング
11 太陽電池セル
12 表面保護板
13 接着性樹脂封止層
14 保護層
15 外枠
16 正極リード線
17 負極リード線
18 端子箱
21 正極ケーブル
22、22A 正極コネクタ
25 負極ケーブル
26、26A 負極コネクタ
27 端子台
31 ピンインサート
32 ジャックハウジング
35 ソケットインサート
36 プラグハウジング
37 インサート保持孔
38 仕切壁
39 ピン
41 インサート保持孔
42 仕切壁
43 スリーブ
45 溝
45a 第一溝部
45b 第二溝部
46 屈折部
47 パッキン
47a 第一パッキン
47b 第二パッキン
48 パッキン溝
48a 第一パッキン溝
48b 第二パッキン溝
51、52 休止キャップ
101 太陽電池ストリング
102 太陽電池モジュール
105 正極ケーブル
106 正極コネクタ
107 負極ケーブル
108 負極コネクタ

Claims (7)

  1. 一の太陽電池モジュールと他の太陽電池モジュールとを電気的に接続して太陽電池アレイとなる太陽電池モジュールのコネクタにおいて、
     前記太陽電池モジュールの正極または負極のいずれか一方に電気的に接続する第一接点と、
     前記第一接点を囲むジャックハウジングと、
     前記太陽電池モジュールの正極または負極のいずれか他方に電気的に接続する第二接点と、
     前記第二接点を囲むとともに、前記ジャックハウジングと協働して前記第一接点および前記第二接点を非導通状態かつ略気密に覆う第一嵌合状態または前記第一接点および前記第二接点を導通状態かつ略気密に覆う第二嵌合状態で前記ジャックハウジングに嵌合可能なプラグハウジングと、を備えることを特徴とする太陽電池モジュールのコネクタ。
  2. 前記ジャックハウジングの外周に突出するピンを備え、
     前記プラグハウジングは、前記ジャックハウジングの嵌合にともない前記ピンを嵌入可能な溝を有し、
     前記溝は、前記ジャックハウジングが前記第一嵌合状態となる嵌合位置で一旦停止するよう前記ピンに突き当たる屈折部を有する第一溝部と、前記第一溝部に連続して前記ジャックハウジングを前記第二嵌合状態となる嵌合位置に導く第二溝部と、を有することを特徴とする請求項1に記載の太陽電池モジュールのコネクタ。
  3. 前記第一溝部は、前記プラグハウジングに嵌合する前記ジャックハウジングの進行方向へ直線状に延び、
     前記第二溝部は、前記屈折部に連続して前記ジャックハウジングの進行方向へ螺旋状に延びることを特徴とする請求項2に記載の太陽電池モジュールのコネクタ。
  4. 前記ジャックハウジングの外周および前記プラグハウジングの内周いずれか一方の周方向に巻き付くパッキンを備え、
     前記ジャックハウジングおよび前記プラグハウジングのいずれか他方は、前記パッキンを嵌め込み可能であり前記パッキンと協働して前記ジャックハウジングおよび前記プラグハウジングの隙間を気密に塞ぐパッキン溝を有することを特徴とする請求項1から3のいずれか1項に記載の太陽電池モジュールのコネクタ。
  5. 前記パッキンおよび前記パッキン溝は、前記ジャックハウジングおよび前記プラグハウジングが前記第一嵌合状態で嵌合したときに嵌り合う第一パッキンおよび第一パッキン溝と、前記ジャックハウジングおよび前記プラグハウジングが前記第二嵌合状態で嵌合したときに嵌り合う第二パッキンおよび第二パッキン溝と、を有することを特徴とする請求項4に記載の太陽電池モジュールのコネクタ。
  6. 一の太陽電池モジュールと他の太陽電池モジュールとを電気的に接続して太陽電池アレイとなる太陽電池モジュールにおいて、
     前記太陽電池モジュールの正極または負極のいずれか一方に電気的に接続する第一接点と、
     前記第一接点を囲むジャックハウジングと、
     前記太陽電池モジュールの正極または負極のいずれか他方に電気的に接続する第二接点と、
     前記第二接点を囲むとともに、前記ジャックハウジングと協働して前記第一接点および前記第二接点を非導通状態かつ略気密に覆う第一嵌合状態または前記第一接点および前記第二接点を導通状態かつ略気密に覆う第二嵌合状態で前記ジャックハウジングに嵌合可能なプラグハウジングと、を備えることを特徴とする太陽電池モジュール。
  7. 一の太陽電池モジュールと他の太陽電池モジュールとを電気的に接続して太陽電池アレイとなる太陽電池モジュールにおいて、
     前記太陽電池モジュールのコネクタと、
     前記コネクタを嵌合すると前記正極コネクタの接点を非導通状態かつ略気密に覆うよう前記太陽電池モジュールに設けられる休止キャップと、を備えることを特徴とする太陽電池モジュール。
PCT/JP2011/070489 2010-12-08 2011-09-08 太陽電池モジュールおよび太陽電池モジュールのコネクタ WO2012077393A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180059304XA CN103262355A (zh) 2010-12-08 2011-09-08 太阳能电池组件和太阳能电池组件连接器
AU2011339841A AU2011339841A1 (en) 2010-12-08 2011-09-08 Solar cell module and connector for solar cell module
EP11847331.3A EP2650978A4 (en) 2010-12-08 2011-09-08 SOLAR CELL MODULE AND CONNECTOR THEREFOR
US13/910,360 US20130263910A1 (en) 2010-12-08 2013-06-05 Solar module and solar module connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-274017 2010-12-08
JP2010274017A JP5674443B2 (ja) 2010-12-08 2010-12-08 太陽電池モジュールおよび太陽電池モジュールのコネクタ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/910,360 Continuation US20130263910A1 (en) 2010-12-08 2013-06-05 Solar module and solar module connector

Publications (1)

Publication Number Publication Date
WO2012077393A1 true WO2012077393A1 (ja) 2012-06-14

Family

ID=46206898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070489 WO2012077393A1 (ja) 2010-12-08 2011-09-08 太陽電池モジュールおよび太陽電池モジュールのコネクタ

Country Status (6)

Country Link
US (1) US20130263910A1 (ja)
EP (1) EP2650978A4 (ja)
JP (1) JP5674443B2 (ja)
CN (1) CN103262355A (ja)
AU (1) AU2011339841A1 (ja)
WO (1) WO2012077393A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040019A1 (fr) 2013-09-23 2015-03-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque a connectique amelioree

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656657B2 (en) * 2009-08-31 2014-02-25 Certainteed Corporation Photovoltaic roofing elements
US8926337B2 (en) * 2012-08-24 2015-01-06 Apple Inc. Method for improving connector enclosure adhesion
US9479201B2 (en) * 2014-03-26 2016-10-25 Rosemount Inc. Process variable transmitter with removable terminal block
US10097108B2 (en) 2014-12-16 2018-10-09 Abb Schweiz Ag Energy panel arrangement power dissipation
US10348094B2 (en) 2015-01-28 2019-07-09 Abb Schweiz Ag Energy panel arrangement shutdown
AU2016219770A1 (en) 2015-02-22 2017-09-07 Abb Schweiz Ag Photovoltaic string reverse polarity detection
WO2016195718A1 (en) 2015-06-05 2016-12-08 Lumeta, Llc Apparatus and method for solar panel on-board wiring
EP3316317A1 (en) * 2016-10-28 2018-05-02 Nexiot AG Solar cell module
TWI628909B (zh) 2016-12-21 2018-07-01 財團法人工業技術研究院 具可擴充性的太陽能電池次模組
CN107124138A (zh) * 2017-06-19 2017-09-01 苏州快可光伏电子股份有限公司 光伏组件串联系统防护连接器及组件串联系统
CN110017410B (zh) * 2019-03-22 2019-11-12 大庆油田水务工程技术有限公司 管道集肤效应电伴热系统
US20210091709A1 (en) * 2019-09-20 2021-03-25 Erthos Inc. Flat Tile Solar Panels
CN113299780A (zh) * 2021-05-20 2021-08-24 晶澳(扬州)太阳能科技有限公司 太阳能电池组件及其使用方法、电站
CN117154901B (zh) * 2023-10-31 2024-02-09 深圳市创诺新电子科技有限公司 一种太阳能户外储能电源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058899A (ja) * 1998-07-28 2000-02-25 Bp Solarex 電気レ―スウェイを一体に備える光起電性モジュ―ルフレ―ミングシステム
JP2002329881A (ja) * 2001-05-01 2002-11-15 Kubota Corp 太陽電池モジュール配線用ケーブル及び当該ケーブルを用いた太陽電池モジュール配線構造
JP2003229199A (ja) 2002-01-31 2003-08-15 Kitani Denki Kk 太陽光発電装置における電力接続用コネクタ
JP2004186548A (ja) * 2002-12-05 2004-07-02 Fuji Electric Holdings Co Ltd 太陽電池モジュール
JP2004186112A (ja) * 2002-12-06 2004-07-02 Yukita Electric Wire Co Ltd 防水コネクタ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10006A (en) * 1853-09-06 Improvement in printer s ink
JP3570614B2 (ja) * 1998-12-14 2004-09-29 矢崎総業株式会社 コネクタ組立体及びその取付方法
DE10334935B3 (de) * 2003-07-31 2004-12-23 Harting Electric Gmbh & Co. Kg Anschlusseinrichtung für ein Solarstrommodul
FR2895578B1 (fr) * 2005-12-26 2008-04-18 Carrier Kheops Bac Sa Connecteur electrique haute tension immergeable en milieu fluide
FR2909226A1 (fr) * 2006-11-29 2008-05-30 Procedes Marechal Sepm Sa Soc Dispositif de connexion electrique etanche comportant deux elements de connexion conjugues.
EP2092572A1 (en) * 2006-12-15 2009-08-26 Evergreen Solar, Inc. Plug-together photovoltaic modules
CN101207249B (zh) * 2006-12-22 2011-10-05 富士康(昆山)电脑接插件有限公司 电连接器
AU2009244548B2 (en) * 2008-05-05 2012-05-03 Dow Global Technologies Llc System for installation of photovoltaic devices on a structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058899A (ja) * 1998-07-28 2000-02-25 Bp Solarex 電気レ―スウェイを一体に備える光起電性モジュ―ルフレ―ミングシステム
JP2002329881A (ja) * 2001-05-01 2002-11-15 Kubota Corp 太陽電池モジュール配線用ケーブル及び当該ケーブルを用いた太陽電池モジュール配線構造
JP2003229199A (ja) 2002-01-31 2003-08-15 Kitani Denki Kk 太陽光発電装置における電力接続用コネクタ
JP2004186548A (ja) * 2002-12-05 2004-07-02 Fuji Electric Holdings Co Ltd 太陽電池モジュール
JP2004186112A (ja) * 2002-12-06 2004-07-02 Yukita Electric Wire Co Ltd 防水コネクタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650978A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040019A1 (fr) 2013-09-23 2015-03-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque a connectique amelioree
FR3011126A1 (fr) * 2013-09-23 2015-03-27 Commissariat Energie Atomique Module photovoltaique a connectique amelioree
US20160211798A1 (en) * 2013-09-23 2016-07-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic module with improved connector technology
EP3683898A1 (fr) 2013-09-23 2020-07-22 Commissariat à l'Energie Atomique et aux Energies Alternatives Ensemble ou système à connectique améliorée

Also Published As

Publication number Publication date
JP2012124034A (ja) 2012-06-28
AU2011339841A1 (en) 2013-07-04
US20130263910A1 (en) 2013-10-10
JP5674443B2 (ja) 2015-02-25
EP2650978A4 (en) 2014-06-18
CN103262355A (zh) 2013-08-21
EP2650978A1 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2012077393A1 (ja) 太陽電池モジュールおよび太陽電池モジュールのコネクタ
CN101630821B (zh) 镁铝合金光伏电池接线盒
US7432439B2 (en) Terminal box
US9385393B2 (en) Voltage monitoring device of stack
CN201590631U (zh) 镁铝合金光伏电池接线盒
CN1197550A (zh) 可充电电池及可充电电池用安装封口板
US10700635B2 (en) Solar cell module
EP2657983B1 (en) Solar cell module
KR20120102935A (ko) 파우치형 이차전지 및 이의 제조 방법
EP3780385B1 (en) Environmental power generator
JP2013518423A (ja) ソーラーモジュールアレイおよびダイオードケーブル
CN107431159A (zh) 电池组及包括该电池组的车辆
CN100341192C (zh) 密闭型碱性蓄电池
WO2016013661A1 (ja) 二次電池を備えた発電装置
KR20100109322A (ko) 태양전지 모듈
US20110226305A1 (en) Connection device for solar cell module
JP2008034263A (ja) パック電池
KR20160001050A (ko) 일체형 인버터 및 이를 포함하는 태양 전지 모듈
KR101305849B1 (ko) 태양전지 모듈
JP4851131B2 (ja) 太陽電池パネル用端子ボックス
CN220934301U (zh) 电池包及储能装置
KR20130049123A (ko) 태양광 발전장치
TWI434425B (zh) 改良的太陽能電池模組及其製造方法
JPH08172210A (ja) 太陽電池モジュールの配線接続構造
KR101786042B1 (ko) 태양광발전시스템의 희생금속 장착장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847331

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011847331

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011847331

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011339841

Country of ref document: AU

Date of ref document: 20110908

Kind code of ref document: A